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To my grandparents, parents, and brother.

You can’t connect the dots looking forward,

you can only connect them looking backwards.

So you have to trust that the dots will somehow connect in your future.

Steve Jobs.





Resumen 

El software está cada vez más presente en nuestras vidas, y es necesario poder medir su calidad.

En este trabajo, hacemos un estudio del estado del arte de la calidad del software, analizando las

distintas defniciones teóricas y las herramientas prácticas utilizadas para medirla y mejorarla. Propo-

nemos una nueva puntuación multi-parametrizable para medir la calidad del software en función de

las prioridades de cada proyecto. En nuestro caso, empleamos un conjunto determinado de métricas

obtenidas mediante herramientas open source, entre las que destaca la cantidad de errores reales

presentes en el código, según su gravedad. Sin embargo, las métricas usadas pueden variar y la idea

del método seguiría siendo válida. Con este método, hemos desarrollado una herramienta que nos

permite automatizar la extracción de las métricas, y hemos analizado un total de 200 proyectos en cua-

tro lenguajes de programación, escogiendo los más populares por lenguaje según GitHub. Nuestros

resultados muestran que la calidad asociada a cada lenguaje varía notablemente en función de la pa-

rametrización utilizada, obteniendo como resultado Java y C++ como lenguajes más recomendables,

en función de si priorizamos mantenibilidad y rendimiento o un menor ratio de errores respectivamente.

Palabras clave 

lenguaje de programación, calidad del código, puntuación de la calidad, análisis estático, proyectos

de código abierto, métricas software

vii 





Abstract 

Software is increasingly present in our lives, and it is necessary to measure and compare its quality.

In this paper, we survey the state of the art of software quality, analyzing the different theoretical defni-

tions and practical tools used to measure and improve it. We propose a new multi-parametrizable score

to measure software quality according to the priorities of each project. In our case, we use a set of me-

trics obtained through open source tools, among which the number of actual errors and vulnerabilities

present in the code, according to their severity, stands out. However, the metrics used may vary, and the

idea of the method would still be valid. With this method, we have developed a tool that allows us to au-

tomate the extraction of the metrics, and we have analyzed a total of 200 projects in four programming

languages, choosing the most popular ones per language according to GitHub. Our results show that

the quality associated with each language varies considerably depending on the parametrization used,

resulting in Java and C++ as the most recommended languages, depending on whether we prioritize

maintainability and performance or a lower error rate, respectively.

Keywords 

programming language, code quality, quality score, static analysis, open source projects, software

metrics
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1
Introduction 

During the last decades, we have witnessed an impressive development of technology, where the

appearance of computers accessible to the general public, cell phones, and smartphones, has made

software increasingly present in our lives. In addition, more and more of the gadgets we use in our

daily lives depend on such software: intelligent light bulbs controlled through the internet, electric tooth-

brushes with mobile applications, smartwatches, and even cars, such as Teslas, wholly connected to

the internet, which base their entire operation on software, and that in a relatively near future, will be

able to drive for us, taking care of keeping us safe, and having our lives at their disposal.

This new paradigm we are facing makes it necessary to ensure that the code used in any device is

of the highest possible quality to avoid endangering our data, our devices, or even ourselves.

In addition, the rapid evolution of technology in recent years forces software to advance consistently,

as fast as possible, thus forcing developers to adopt a component-based approach and use external

libraries developed by other developers or companies. Although this can make working on a project

much easier, it can also introduce potential bugs or errors, making it necessary to be able to assess the

quality of such projects before using them.

This is one of the reasons why multiple programming languages of all kinds have been developed

in the last decades. Garbage collection, object-oriented programming, and functional programming are

some of the technologies that have emerged to facilitate the development process and improve software

quality. Furthermore, most used programming languages are updated every couple of years, or even

twice a year in the case of Java, to add new features and solve bugs. There is even an (unsuccessful)

attempt to create a programming language explicitly to facilitate software quality [1].

This work aims to propose an innovative parametrizable software project evaluation method that

allows the analysis of the quality of software of different programming languages. With this method, we

will perform multiple experiments to try to determine the most appropriate programming language in

terms of quality, depending on the project’s priorities.

The rest of the work is organized as follows. In Chapter 2 we survey the state of the art of software

quality to determine what is the quality of a software project, how to measure it, and what practical

1
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utilities are currently being used to determine and improve software quality. In Chapter 3 we discuss

the set of metrics we are using and design a parametrizable score for the quality of a software project

based on the priorities of the developer or project. In Chapter 4 we develop a tool based on open

source projects to extract those metrics and calculate the parametrizable score. We also explain the

used database and the experiments performed to determine the best programming language in terms

of software quality using our innovative score. The results of these experiments are shown at the end of

this chapter. These experiments and their limitations are discussed in Chapter 5. Finally, we state some

conclusions in Chapter 6.

Open Source platform for code security and quality assessment2



2
Related works 

Looking at the state of the art of software quality evaluation, we can see that there is plenty of work

which we can classify from two points of view. On the one hand, there are lots of papers studying how

various factors affect software quality. On the other hand, many platforms and tools are used to assess

software quality and help developers and companies improve their software. Therefore, in this chapter,

we will analyze the most important works from both of these points of view.

2.1. Defning software quality

A good way to start the study of software quality is to explain this concept and determine the mea-

ning we are going to use in this work. This will make it easier to evaluate the different tools available on

the market to assess the quality of a code.

The concept of software quality is much more complex than it might seem at frst glance and has

been discussed many times throughout the short history of computer science, from different points of

view. Following the model proposed by the Institute of Electrical and Electronics Engineers (IEEE) in [2],

the different perspectives through which code quality can be defned would be:

• The transcendental view, which perceives quality as something that can be recognized but not defned.

• The user view perceives quality as the degree to which it is ft for purpose.

• The manufacturing view perceives quality as the adequacy to specifcation.

• The product view perceives quality as being linked to inherent characteristics of the product.

• The value-based view perceives quality as dependent on the quantity a customer is willing to pay for the product.

It is more than evident that these measures provide us with certain information about the quality

of a product. However, in our case, we will understand quality from the product perspective, since it

is the one that we can analyze independently of the users, the market, and the requirements. It is

also the most objective one. From now on, and throughout this work, quality, as seen from the product

perspective, will be identifed as code quality.

With this perspective, we will determine which characteristics defne code quality so that we can

3
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then relate them to measurable attributes. Again, this subject has been discussed in depth by different

organizations, and two approaches, commonly used in the literature to defne software quality, stand

out.

2.1.1. Quality according to ISO/IEC 25000

When talking about technology-related standards, there are two outstanding international non-

governmental organizations. The frst and most important one is the International Organization for Stan-

dardization (ISO) , formed by 165 different countries, which is considered the world’s largest developer

of international standards, with over twenty thousand standards set in all kinds of topics. If we focus on

electronic, electrical and related technologies, the International Electrotechnical Commission (IEC) is

the international organization involved in developing the necessary standards.

These two organizations cooperate closely, as in the case of the ISO/IEC 9126, the quality standard
for software and systems up to 2011. In 2011, however, this standard was replaced by the ISO/IEC
25000 family, also known as SQuaRE (System and Software Quality Requirements and Evaluation),
which aims to create a common framework for evaluating software product quality. Within this family
of standards, the ISO/IEC 25010, last updated in 2017, categorizes product quality into eight distinct
characteristics (in turn divided into sub-characteristics that we will not mention as they do not provide
any necessary information to this work):

• Functional suitability: The degree to which the product satisfes the required needs when used under the

specifed conditions.

• Performance and effciency: Performance relative to the amount of resources used under the established con-

ditions.

• Compatibility: The degree to which the product, system, or component can exchange information with other

products, systems, or components and function while sharing the same hardware or software environment.

• Usability: The degree to which specifed users can use the product or system to achieve specifed objectives

with effectiveness, effciency, and satisfaction in the specifed context of use.

• Reliability: The degree to which the system, product, or component performs the specifed functions under the

specifed conditions and time period.

• Security: The degree to which the system or product protects information and data so that individuals, or other

products or systems, have the appropriate degree of access to the data based on their type and level of authori-

zation.

• Maintainability: The degree of effectiveness and effciency with which a product or system can be modifed by

those responsible for its maintenance.

• Portability: The degree of effectiveness and effciency with which a system, product, or component can be

transferred from one hardware, software, or any environment, to another.

The ISO/IEC 25023 standard defnes measures to quantitatively evaluate the quality of a software

product in terms of these characteristics. However, these measures are made at the system or product

performance level, not at the code level (which causes the problems). Furthermore, note that some of

the proposed characteristics, as the functional suitability or usability, do not belong to what we have

Open Source platform for code security and quality assessment4



2.1. Defining software quality 

considered as quality of a software product.

Even so, the current literature ( [3], [4]) shows that, among these characteristics, functional sui-

tability, usability, maintainability and portability are highly related with some code characteristics as

complexity, coupling, documentation, degree of inheritance and size.

2.1.2. Quality according to CISQ

Another of the leading organizations to take into account when talking about code quality is the

Consortium for IT Software Quality (CISQ) . It is an organization focused on developing standards to

improve software quality, formed by more than 1,500 members, as important as the European Union,

the U.S. Department of Homeland Security, Amazon, Microsoft, Oracle or the IEEE .

To solve the fact that on the ISO/IEC standard the measurements are made at the system or product
performance level, the CISQ decides to expand that standard by adding some measurements which
can be computed directly from the code. This way, quality is related to found problems over a subset of
four specifed categories [5]. As we can see at [6], these four chosen categories, with their specifcation,
would be the following ones:

• Security: It measures code weaknesses by representing the most important security faws, taking into account

the Top 25 of Common Weakness Enumeration (CWE) and the Top 10 of Open Web Application Security Project

(OWASP) , two projects focused on determining and categorizing the most frequent software weaknesses and

vulnerabilities.

• Reliability: It measures the weaknesses of the code that affect its availability, fault tolerance, and ease of reco-

vering from faults.

• Performance and effciency: It measures code weaknesses that infuence response time, processor utilization,

memory, and other resources.

• Maintainability: It measures code weaknesses that affect its understandability, ease of modifcation, testability,

and scalability.

In this case, the sub-characteristics proposed in the ISO/IEC standard have been eliminated and

used to determine the scope covered by each category. A series of CWE weaknesses are defned

corresponding to the different categories that can be detected by analyzing the code. In total, there are

about eighty-six rules.

2.1.3. The problem with quality metrics

Once we have defned the characteristics that every quality code should have, the ideal objective

would be to be able to defne a standardized metric that, for any code, would provide us with a score,

say from 1 to 100. This ideal metric would be as objective as possible and perhaps broken down into

sub-categories, which would provide us with accurate information about the code’s quality and allow us

to establish a threshold to decide when any project is or is not of quality.

Javier Delgado del Cerro 5
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This, however, is impossible, because depending on the needs of the system or software product,

the complexity will be greater or lesser, the documentation will be more or less necessary, and the main-

tainability will be more or less critical. There are many variables that infuence code quality [7], including

the programming language itself: languages with strict typing or static typing, such as Java or C, are

generally associated with higher quality results than those with weak typing or dynamic typing, such as

Python. This relationship, however, could be because programmers with better working practices and

who produce higher quality software opt for more strongly typed languages.

In the origins of code quality research, the usual procedure was the extraction of a series of metrics

from the project code in an automated way, which were subsequently interpreted by an expert who

manually examined the code to take into account its particularities and determine whether or not the

project had the appropriate quality.

Thus, the approaches currently followed to determine code quality ( [8], [9]) are usually based on

the extraction of a large number of metrics by static analysis of the code, and the use of different types

of classifers or neural networks to obtain a score for each of the categories of complexity, coupling, do-

cumentation, degree of inheritance and size. The ground truth determinant of the quality of the software

product or system is usually the number of forks (times a project has been cloned) and stars (people

who have given it a star to indicate that they like the project) of the code on Github.

This approach, however, also has its limitations, as it is quite questionable whether the forks or stars

of a project in Github denote quality: there can be very unpopular projects with enormous quality, and

trendy and useful projects with a large number of stars and forks, but very low quality.

Another approach commonly used nowadays is the analysis of commits of open source reposito-

ries. For example, it is pretty common to take open source projects hosted in GitHub and analyze the

commit history, looking for messages related to bugs and fxes. In this way, the number of possible bugs

that the programmers have found, and the solutions, are taken into account to compare the quality of

different software projects. This approach is taken in [7] and [10], where the aim is to analyze how

the programming language, or the combination of several languages within the same software project,

infuences its quality.

2.2. Practical applications to measure software quality

As there is a considerable amount of very diverse tools developed and used to measure and improve

software quality, we think it makes sense to classify them according to the completeness of these tools.

We understand completeness as the number of types of analysis they perform, the integration with other

Continuous Integration/Continuous Deployment (CI/CD) tools and services, the number of programming

languages they support, and the way they represent the information.
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2.2.1. Platforms with multiple interrelated tools

The frst type we are going to develop are platforms with a large number of tools, aimed at ensuring

code quality in every possible way, but with slightly different objectives or methods, and which are

integrated with each other.

The most representative and important example of this category (according to [11]) would be the
multinational Synopsys. According to its website, it is an American software company founded in 1986
and currently has more than 15,000 employees worldwide. Among its products, it has a large number
of tools to detect as many quality and safety defects as possible, all of them with integrations in multiple
workfows. Some of the tools they offer are:

• Coverity: A static code security analysis tool that supports more than 21 programming languages such as C, C#,

Java, Python, Javascript, and 70 frameworks such as Node.js or .NET Core. It integrates with a large number of

IDEs such as IntelliJ, Eclipse, or Visual Studio.

• Web scanner: A dynamic web application analysis tool. It uses the application as a black box and looks for SQL

injection, XSS vulnerabilities, etc.

• Seeker: An interactive web application analysis tool. It is a combination of static and dynamic tools, but more

complex and modern. It works inside the application and analyzes the code and its operation, HTTP traffc, the

libraries and frameworks used, and the behaviour during execution.

• Tinfoil API Scanner: A tool to detect vulnerabilities in APIs of any type: RESTful or Internet of Things devices, for

example. It uses the documentation to detect all the endpoints with their parameters and generate the necessary

tests.

• Lack Duck: A software composition analysis tool. It allows knowing the risks associated with libraries or third-

party code used in an application. To do so, it uses a database with information about more than four million

components.

• Polaris: A platform that brings together all the tools mentioned above to work directly on IDEs, repositories, and

continuous integration tools such as Jenkins.

In general, all the companies mentioned in this section have tools for static code analysis (SAST),

dynamic analysis (DAST), interactive analysis (IAST), software composition analysis (SCA), etc. Most

of them are US companies such as White hat security, Rapid7 (which stands out especially for its

penetration testing software Metasploit), or Contrast Security. However, it is also important to mention

Checkmarx, an Israeli company with about 500 employees, and HCL Software, an Indian multinational

with more than 4,500 employees, which stands out for its HCL AppScan platform, consisting of tools of

all the types specifed above.

The platforms provided by these manufacturers are the most complete that exist, but also the most

exclusive ones: in most cases, the price is not available on the websites, it is necessary to request a

demo so that someone from the company can show you how they work if you want to use them, and

in many cases, despite belonging to the same platform, they are promoted as different products, so

they require separate payments. Everything seems to indicate that the price will be prohibitive for small

companies, startups, or small developers who simply want to have some control over the quality and

security of the code they develop.
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2.2.2. Platforms based on static analysis

Slightly below (in terms of completeness) the platforms mentioned above are the ones mentioned in

this section. These are platforms developed by smaller companies, which generally have a single tool

that integrates with GitHub, GitLab, or BitBucket repositories, among others, to analyze the code and

look for possible security faws or problems that could compromise its quality. Thanks to the integration

with repositories, they can explore each commit and pull request of a repository, determine which are

safe or which add possible errors and should be reviewed or discarded, and even add notes to the

commits and pull requests themselves. Generally, they have their own dashboard where you can view

all the information obtained, such as bugs for each fle, etc.

In general, they support several programming languages, among which the basic ones are always

found, such as C, C++, Python, Java, and JavaScript. They do not offer any dynamic or interactive

analysis. Instead, they only include static analysis, and, in some cases, component integration, detec-

ting possible third-party libraries or modules that may introduce vulnerabilities.

Representative examples of this kind of platforms could be SonarSource, Codacy, ShiftLeft NG

SAST o DeepSource, and, in general, they all offer fairly similar features mentioned above. It is common

for them to offer the option of self-hosting so that large businesses can set up the platform on their

own server and ensure the integrity of their data; for example, in the case of SonarSource is option is

called SonarQube, and it allows integration with custom GitLab servers, or with GitHub Enterprise, while

SonarCloud integrates directly with GitHub and GitLab, and process everything in their cloud. Finally,

some of these platforms also offer integration with IDEs, such as SonarLint within SonarSource, which

works as an extension to multiple IDEs like Eclipse, IntelliJ IDEA, or Visual Studio, to allow the developer

to detect and fx quality issues while writing code.

Many of the solutions offer completely free plans for open source projects or small companies, and if

this does not apply, the rates start at base prices of around $10-$15/month. This makes these platforms

affordable for any small business.

Although some of these platforms, like SonarQube, are promoted as open source tools, there aren’t

really any of these tools that you can compile and use directly from the code deployed in their repository.

They usually only have small snippets that are of no use.

2.2.3. Simple tools

This is the most extensive section by far, and it is composed of simple tools, most of them open

source, that usually focus on analyzing code from a single programming language and looking for bugs

or getting metrics. Many of these libraries are used by the platforms mentioned above to obtain their

Open Source platform for code security and quality assessment8
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data. For example, Codacy specifes in its own web page 1 which tools it uses for every language and

objective.

Some of these tools simply use a database to look for potential errors on the code with the help

of the GNU grep tool, as it could be semgrep 2 or graudit 3, which work on multiple programming

languages like C, Go, Java and Python. This simplicity in their design makes them very susceptible to

false positives: they detect as errors code that is actually correct.

Other tools are more complex and understand the syntax of the code, which allows them to detect
errors more reliably and obtain different metrics, but forces them to specialize in fewer programming
languages. For example:

• For C or C++, fawfnder 4 and cppcheck 5 detect possible security errors that may be related to pointers,

overfows, out-of-index errors, etc., and tools such as CMetrics 6 and cqmetrics 7 generate metrics such as lines

of code, cyclomatic complexity, etc.

• For Python, bandit 8 and pylint 9 look for programming errors, code smells, and that certain standards are

satisfed, while vulture 10 fnds unused classes, functions and variables, and radon 11 provides information on

various metrics such as lines of code, lines of comments or cyclomatic complexity.

• For Java, error-prone 12, FindSecBugs 13 and pmd 14 allow us to detect possible common errors and ensure

compliance with good programming practices, and we can obtain a variety of metrics with tools such as ck 15.

• For JavaScript, JSPrime 16 performs a static analysis of the code’s security, while retire.js 17 detects the use

of libraries with known vulnerabilities, and escomplex 18 and yardstick 19 allows us to obtain multiple metrics.

There are some tools that, despite being in this section (because they are not part of a platform,

do not show the information clearly and simply, and do not integrate with any type of version control,

integration or distribution system), are extremely interesting and complete, as is the case of coala 20:

1https://docs.codacy.com/getting-started/supported-languages-and-tools/ 
2https://github.com/returntocorp/semgrep 
3https://github.com/wireghoul/graudit/ 
4https://www.dwheeler.com/flawfinder/ 
5http://cppcheck.sourceforge.net/ 
6https://github.com/MetricsGrimoire/CMetrics 
7https://github.com/dspinellis/cqmetrics 
8https://bandit.readthedocs.io/en/latest/ 
9http://pylint.pycqa.org/ 

10https://github.com/jendrikseipp/vulture 
11https://radon.readthedocs.io/ 
12https://errorprone.info/ 
13https://spotbugs.github.io/ 
14https://pmd.sourceforge.io/pmd-5.3.2/ 
15https://github.com/mauricioaniche/ck 
16http://dpnishant.github.io/jsprime/ 
17http://retirejs.github.io/retire.js/ 
18https://github.com/jared-stilwell/escomplex 
19https://github.com/calmh/yardstick 
20https://coala.io 
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an open source tool that allows you to analyze and repair code from a large number of programming

languages including C/C++, Python, JavaScript, CSS, and Java, to ensure that they follow different

quality requirements.

Of course, in all the sections mentioned above, there are many other similar platforms and tools that

we have not mentioned, as the length and time limitations of the work prevent a detailed and exhaustive

analysis. However, the above tools allow us to get an idea of the state of the art of code quality analysis

nowadays.

Open Source platform for code security and quality assessment10



3
Proposed method 

Our objective is to develop a parametrizable score to evaluate the quality of software projects and

compare the quality resulting from the choice of one programming language or another according to

our priorities. To achieve this, we select a generic set of metrics able to capture code vulnerabilities,

together with some representative metrics of complexity, documentation, maintainability and size, as

this information is highly related to software quality according to what we saw in Section 2.1.

With these generic metrics, we propose a parametrizable fnal score to get a rate from 0 to 100 for

every project, based on the developer’s needs. This score allows us to compare multiple programming

languages according to the priorities set on the parameters.

3.1. Metrics

We intend to select a complete, compact, and simple set of metrics with enough evidence for the

results to be rigorous. From our previous study of the state of the art, we have found three different

metrics commonly used that seemed interesting: cyclomatic complexity, percentage of comments, and

code duplications. Moreover, we want to innovate by using information about bugs and vulnerabilities

found in the code itself. This is a pretty intuitive approach that has never been taken on the literature

and can be very interesting. However, our method based on using a parametrizable score could be

applied with a different set of metrics.

3.1.1. Error rate by severity

This metric is one of our main contributions to the state of the art of study of software quality. It is

based on analyzing the code and considering the actual errors present in it, instead of estimating them

using other much less specifc metrics.

As we have seen in Chapter 2, there are many tools that allow us to detect errors within the code.

From these errors, we will make a classifcation according to their severity, using an integer from 0 (least

severe) to 5 (most severe). This allows us to know the number of errors a project has and how severe
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they are, and how they are distributed by their severity.

Although this information is precious, it has some limitations, the most important being a problem
inherent to code analysis, usually referred to as false negatives and false positives [12]:

• On the one hand, it is impossible to detect all the bugs contained in a code, because the tools are based on a set

of rules, and if a bug is not known, there will be no rule written for it, so there will always be false negatives. We

can do nothing about this issue other than updating the used tools regularly to make sure we catch as many errors

as possible and adding some other metrics that work relatively well as predictors of programming errors. These

metrics will be detailed in the following sections.

• On the other hand, if the static analysis is based on such rules, it is possible that the tools provide false positives:

problems that the developer has considered, and in practice may not occur, even if the analyzer assumes that they

do. To prevent these false positives, we allow the user to ignore specifc or general errors if he thinks they are false

positives. These discarded errors are not taken into account on the score explained in Section 3.2.

3.1.2. Cyclomatic complexity

One of the primary metrics we talked about in Section 2.1.3 is the software complexity, which is

highly related to the maintainability costs of a project [13]. Also, on [14], the authors found that the

complexity of a source code was a good predictor of possible vulnerabilities analyzing a complete

production operation system as Windows Vista.

The main complexity metric usually used is the called cyclomatic complexity. It was developed

in 1976 by Thomas J. McCabe, and it is a quantitative measure of the number of linearly independent

paths through the source code of a program.

Through these years, much literature has been published on this metric, and some research makes

it a very interesting metric to consider in our project. For example, [15] found that the cyclomatic com-

plexity is one of the better performance predictors, and [16] states that there is an inverse relationship

between cyclomatic complexity and the number of bugs in a program and programmer performance,

fnding that, even in UNIX, there is a correlation greater than 0.9 between the cyclomatic complexity

and the number of errors.

3.1.3. Percentage of comments

Another of the metrics mentioned in Section 2.1.3 is the comments percentage, i.e., the percentage

of lines with comments within the total number of lines of the project.

This metric is highly related to the maintainability of the source code; as explained code is much easier

to understand and to fx, preventing misunderstanding that could lead to new errors when changes are

made to the code.
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3.1.4. Duplicated code

Finally, the last two metrics we decide to include in this work are related to the quantity of duplicated

code in the project. This is, again, related to the maintainability of the project, as a duplicated code is

much likely to cause problems in the future, but it also less memory effcient. It is, according to [17]:

“one of the factors that severely complicates the maintenance and evolution of large software systems”.

If we assume that duplicated code blocks are supposed to do the same task, any simple refactoring

must be duplicated too. This puts pressure on the developer, which should fnd every place in which to

perform the refactoring. Although some automatic tools recognize these blocks as duplicates, failure to

keep the code in sync would prevent them from working as expected. This means that, if in the future,

an error is discovered, or a modifcation is required, the chances of something going wrong are really

high.

Initially, our idea was to calculate the total number of duplicated lines of code and divide it by the

total number of lines of code in the project so that we would have the percentage of duplicated code

of the project. However, although it seemed very simple, we discovered a small subtlety that was really

counter-intuitive and limiting. Suppose we have a project with three fles, as in Figure 3.1. Then, the frst

and second fles share a large block of code, in this case, represented by the orange color. This orange

block could be, for example, a class, which is duplicated in the two fles. On the other hand, inside the

orange block, another block of code is represented by the blue color, which also appears in the third

fle. It could be, for example, a method. This blue block is then repeated in the three fles of the project.

Figure 3.1: Example of duplications

Therefore, the number of duplicated lines would be 1 ∗ lines(orange)+2 ∗ lines(blue). This causes

the blue block to be counted several times, and, therefore, the percentage of duplicated code can

exceed 100 percent.

In practice, we found some projects with percentages much greater than one, so we decided to use

another approach by defning two different metrics. On the one hand, we have the number of duplica-
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tions per line, which is calculated as the number of duplicated code fragments by the total number of

non-blank lines of code of the project. For example, in Figure 3.1, the number of duplicated code frag-

ments would be 3 (1 orange block and 2 blue blocks). On the other hand, we calculate the average of

the hundreds of lines that each duplicated fragment has. Again, on Figure 3.1, this would be expressed

as [lines(orange)/100 + lines(blue)/100]/2.

With these two metrics, we have information about the duplications present on the project and their

size.

3.2. Scoring parametrization

Continuing with the development of our method, once we have selected a set of generic metrics

representative of software quality, we want to generate an adjustable score from 0 to 100 confgurable

by the user according to the priorities of the analyzed project. This score will allow us to compare the

quality provided by the different programming languages depending on the weighting used.

As we have already mentioned in Section 2.1.3, it is impossible to provide an absolute metric that

assesses the quality of every project, because depending on the needs, complexity, documentation, or

performance will be more or less of a priority.

Thus, to make our analysis as versatile as possible, we offer the possibility of weighting the im-
portance given to the different proposed metrics, hence obtaining a score from 0 to 100 according to
specifed requirements. This will allow us to compare the various programming languages, but it could
also be used to compare different projects that have the same objective in order to select one based
on quality (for example, one could use this method to choose the best web framework according to his
priorities).
The parametrizable weights used on the score we can be listed as follows:

• The weight of each severity, from 0 to 5, as an integer in [0, 10]. We use the number of errors of each severity per

10.000 lines of code. This allows the user to give more importance to errors with greater severity and ignore the

errors with severity 2, for example.

• The weight of the average cyclomatic complexity, rated as an integer in [0, 10].

• The weight of the number of duplicated fragments per non-blank line of code in each project, rated as an integer

in [0, 10].

• The weight of the average of thousands of lines per duplicated fragment of code in each project, rated as an

integer in [0, 10].

• The percentage of comments in each project in relation to the expected percentage. This means that the user

fxes an expected percentage of comments, and we set an integer weight from 0 to 10 used with the difference

between the expected and the total percentage of comments.

Now that the weights are defned, as they all go from 0 to 10, the parameters must have similar

scales so that the formula makes sense and these parameters have a real infuence on the score.

In general, according to the tests we have done, explained in Chapter 4, the ratio of errors per
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10,000 lines of code is between 0 and 0.4, although, in exceptional examples, it can exceed 1. The
cyclomatic complexity of a method is greater or equal than one and very rarely exceeds ten [18], so it is
understandable to take this value divided by ten so that the scale is similar to that of the errors. The two
duplication metrics are most of the time inside the interval [0, 0,5]. Finally, in the case of the percentage
of comments, we understand it as a percentage expressed as a decimal number (i.e., we take 100 %
as 1, not as 100).
The formula used to calculate the score can then be expressed as:

• Let ni, i ∈ {0, 1, ..., 5} be the number of errors of severity i per 10.000 lines of code, and wi ∈ {0, 1, ..., 10} the

weight assigned to that number.

• Let c be the average cyclomatic complexity of the project and wc ∈ {0, 1, ..., 10} the weight assigned to that

number.

• Let nd be the number of duplicated code fragments of the project and wnd ∈ {0, 1, ..., 10} the weight assigned

to that number.

• Let ld be the average hundreds of lines of duplicated code fragments of the project and wld ∈ {0, 1, ..., 10} the

weight assigned to that number.

• Let pc be the percentage of comments of the project, epc the expected percentage of comments, both as real

numbers in [0, 1], and wpc ∈ {0, 1, ..., 10} the weight assigned to that number. The value epc allows us to establish

a reference of what the percentage of comments should be so that it is not too low nor too high.

So, the raw score, which goes from 0 to ∞, can be expressed as:

hP5 
i 

i=0 wi ∗ ni + wc ∗ c/10 + wnd ∗ nd + wld ∗ ld + wpc ∗ |pc − epc|
raw_score = 

||w0 + w1 + w2 + w3 + w4 + w5 + wc + wnd + wld + wpc||2 

Note that, as we divide by the norm of the vector formed by all the weights, the important thing is

the ratio between the weights and not their value itself. In this way, one metric can be given twice as

much importance as another.

In order to turn this into an score from 0 to 100, where 100 is the greatest score, let COEF F be an

integer value not yet determined, which we will talk about later. Thus, the score could be expressed as:

h �i�raw_score 
score = 100 1 − tanh . 

COEF F 

Therefore, COEF F is just a linear transformation of the input of the scoring function.

In this way, it allows us to regulate the scores to be as appropriate as possible, but it does not alter

the comparisons between different projects. That is, if a project A has better quality than another project

B for COEF F = 5, it will still have better quality for any other value of COEF F .
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In order to validate our proposal, we have selected four programming languages to compare using

fve experiments, each one with a different parametrization, to look for the best language depending on

the weighting given to each metric. To facilitate the collection of these metrics, we have developed a

tool based on a selection of open source utilities, many of which were mentioned during the state of the

art study, in Section 2.2.3.

4.1. Preparation of the experiments

4.1.1. Selection of programming languages

We want to implement some of the most popular programming languages, so, to obtain information

on the most currently used languages, we turned to the data provided by the latest Stack Overfow

survey [19], the default page for any developer, which in 2020 had almost 65,000 participants. From

which, taking the responses of professional developers, we obtain the graph shown in Figure 4.1.

Another reference source to obtain the popularity of different programming languages is the TIOBE

index, developed monthly from the popularity of programming language searches in various engines

such as Google, Bing, Yahoo!, Wikipedia, Amazon, YouTube, and Baidu ( [20]). In the March 2021

version, they offer the following ranking set out in Figure 4.2.

Based on this information and taking into account our knowledge of the different programming lan-

guages, we make our selection, in which we choose four languages: C, C++, Python, and Java. All of

them are present in the Top 15 of both rankings, and most of them in quite leading positions. Moreover,

they are selected to represent several paradigms: structured and strongly typed programming, such

as C, strongly typed object-oriented programming (C++ or Java), and dynamically typed (Python). This

allows us to apply our method to many different, very varied, and diverse projects.

However, it should be noted that the code we have developed is completely modular, and it’s open

source, which means that anyone could add support for the programming language or tool of their

choice simply and quickly.
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Figure 4.1: Stack Overfow Developer Survey 2020 - Most Popular Technologies

Figure 4.2: TIOBE Index in March, 2021
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4.1.2. Selection of evaluation tools

The source code of a software project can be composed of hundreds of thousands of lines of code,

so it is necessary to use automatic tools that allow us to collect the various metrics. Since the proposed

method is somewhat tool-independent, we have chosen a set of tools according to our convenience. In

this case, all the tools chosen are open source and can be freely downloaded and used. However, we

consider that our proposal could be used with any combination of analysis tools the user has available.

As we mentioned earlier, the idea is to choose a set of tools that are able to detect errors and CWE

vulnerabilities, together with some representative metrics of complexity, documentation, maintainability

and size.

We base our selection on, among other things, the time the project has been active, the quality

of the documentation, and the quality of the outputs provided. Most of these tools have already been

mentioned above in Section 2.2.3, so we avoid detailing them again.

First, the tools we use to look for possible code weaknesses or security issues are as follows:

• For C/C++ we use fawfnder and cppcheck.

• For Python we use bandit and pylint.

• For Java we use PMD, which analyzes Java source code directly, and FindSecBugs, which analyzes bytecode

code, so we need to compile it before analyzing it.

Then, to look for duplications in the code in the different programming languages, we go with the

Copy-Paste Detector (CPD) tool included in PMD, which we have already mentioned above. We use

the information provided by this tool to generate the two duplication metrics explained in Section 3.1.4.

Finally, to calculate the remaining metrics, we use:

• The radon tool for Python code analysis, which provides a huge number of metrics including lines of code and

comments, cyclomatic complexity per module and fle, maintainability index, and Halstead metrics.

• For the rest of the implemented programming languages we use the metrix++ 1 tool, which includes a smaller

amount of metrics and has the disadvantage that it is necessary to use it fle by fle to obtain suffciently detailed

information. However, it is the only open source software project that provides metrics for C++.

With these two tools, to calculate this cyclomatic complexity per project, we calculate the average

cyclomatic complexity per fle and compute the average on every fle, thus, getting the average cyclo-

matic complexity on the entire project. To calculate the percentage of comments, given the total number

of lines per fle and the lines of comments per fle, we calculate it as

P 
f ∈Δ lines_of_comments(f) 

comments_percentage = P , 
f ∈Δ lines(f) 

where Δ is defned as a set containing every source code fle on the project. We have considered 15 %

1https://github.com/metrixplusplus/metrixplusplus/ 
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as the expected percentage of comments along the different experiments, as it’s not too low or too high

according to our analysis.

We choose to use Python to develop the tool as it facilitates the integration of the different tools

(developed in multiple programming languages) via shell calls thanks to its subprocess module.

4.1.3. Development of the evaluation platform

With the tool already developed, and after having researched the state of the art in Chapter 2,

we realized that we could contribute a lot to the community by developing an open source platform.

Creating a platform such as those analyzed in section 2.2.1 is tremendously complex and costly, and

in no case do they mention that they make use of open source tools internally for their development.

However, the tools named in Section 2.2.2 are much simpler, as they focus only on static analysis of

the code by searching for security faws and calculating different metrics. Furthermore, although some

of them are promoted as open source, none of them is fully compilable or executable from public data;

there are simply some available fragments of their code that in no case become usable.

Figure 4.3: Screenshot of the platform’s Errors page. Here the user can see the errors a source code

has, flter them by category and severity, and even check the full fle’s source code. In this case, we

present the results of analyzing Git ’s source code.

We decide then to develop a platform of this style by expanding the command line tool we had
developed, and we focus on the following points as our proposal of value:

• Analysis and classifcation of design and safety problems: Given code in one or multiple programming lan-

guages, it will be analyzed to list and classify its errors, depending on the severity of the problem and the category

to which it belongs.

• Code duplication analysis: Given a code, we will detect and report duplications in that code, which may cause
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problems in the future.

• Obtaining a parametrizable metric: By analyzing the code, we will generate a set of metrics that will allow the

user to understand the main weaknesses or strengths of the code. This user will be able to weigh each metric

according to the objective of the analyzed code, obtaining an overall project score according to their needs.

• Comparison of multiple projects: The tool will also allow comparisons between different projects by using the

same parameters’ settings in all of them. This can allow the user to choose one of several alternatives to be used

in the project, depending on its quality, which will improve the quality of the fnal project.

When it comes to representing the data generated and stored in the database, among the many

possibilities available, we choose to use an HTML server that allows us to generate pages dynamically.

Thus, the platform can be used from any device without installing any program or extension.

Figure 4.4: Screenshot of the platform’s Dashboard page. Here, the user can get some general

information about the analysis performed on a project’s source code. In this case, we present the

results of analyzing Git ’s source code.

Thanks to using Python as the programming language, the development was straightforward, given

our previous experience. On the one hand, it natively allows shell calls, which facilitates communication

with the selected tools. On the other hand, thanks to the sqlalchemy 2 library, we can connect to SQL

databases, such as PostgreSQL 3, which has been chosen in this situation to store the results of the

analysis. Finally, the Flask 4 framework, with which we already have much experience, allows high-

speed and effcient development of a simple server, which also generates HTML pages dynamically

thanks to the jinja2 5 library.

We should also mention the use of the Bootstrap v5.0 6 framework to facilitate the design of the
different web pages that make up the platform’s interface, together with three other libraries:

2https://www.sqlalchemy.org 
3https://www.postgresql.org 
4https://flask.palletsprojects.com 
5https://jinja.palletsprojects.com/ 
6https://getbootstrap.com 
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• prism.js 7, which allows us to display code of multiple programming languages within the platform, in order to

visualize the context of errors, for example.

• Dropzone.js 8, which allows us to implement the typical drag and drop rectangle to upload fles to the platform.

• charts.js 9, which allows us to display some of the generated data on animated charts, so that the user can have

a better and easier understanding of the provided information.

Figure 4.5: Screenshot of the platform’s Group dashboard page. Here, the user can compare the

analysis of a project group. In this case, we compare the results of analyzing the source codes of Git,

Curl, FFMpeg and VLC.

We decide to include some other tools to look for SQL errors. In this case, we use SQLint 10 for

generic SQL source code, and PMD again, which in this case is used to analyze PostgresSQL code,

allowing us to analyze routines or functions more complex than simple queries. This new database

management language allows our platform to be even more complete, being able to analyze projects

holistically.

Apart from the metrics provided, we are also interested in obtaining some information about the

operation of the code. That is, we want to be able to know what operations the code is performing:

whether it works with cryptography, with input-output, with the network, and so on. In this way, the user

can make sure that the code does not have undue functionalities that could jeopardize his project.

For this purpose, we make use of a cross-platform open source tool developed by Microsoft called

Application Inspector 11. Since it is open source, we can easily modify it to integrate it into our platform

fully.

It is essential to mention that there are other non-static analysis tools we could have used on this

7https://prismjs.com 
8https://www.dropzonejs.com 
9https://www.chartjs.org 

10https://github.com/purcell/sqlint 
11https://github.com/microsoft/ApplicationInspector 

Open Source platform for code security and quality assessment22

https://prismjs.com
https://www.dropzonejs.com
https://www.chartjs.org
https://github.com/purcell/sqlint
https://github.com/microsoft/ApplicationInspector


4.1. Preparation of the experiments 

Figure 4.6: Screenshot of the platform’s Features page. Here, the platform displays the information

extracted with Microsoft Application Inspector. In this case, we present the results of analyzing Curl’s

source code.

project to make the platform event more complete and valuable. However, after considering the pros

and cons, we decided not to take the risk that would involve the execution of unknown code on our

platform. This decision makes the system more robust and less susceptible to possible attacks.

4.1.4. Database description

As for the database, we decide to use production code of some of the most popular open source

projects available by analyzing the Top 50 open source projects for C, C++, Java, and Python, so that

we can draw some conclusions about the programming languages and how they compare with each

other, or what is most valued by developers in each programming language.

We then turn to GitHub, the most extensive version control platform based on Git, which hosts more

than 200 million repositories, and has more than 65 million developers (according to its offcial website

as of June 2021), to get a list of the most popular open source projects among the community.

We take as reference the Github-Ranking repository, which daily updates the ranking of each language

ordering the repositories according to the number of stars and forks in GitHub.

Note, however, that we discard repositories based on tutorials or listings of other libraries, as they are

not really repositories of code to use, and those with less than 50 % of code of the language to which

they belong. Thus, the top 10 projects for each language, as of June 8, 2021, are listed in Table 4.1.

Note that our approach when comparing quality achieved with different programming languages,
based on the real errors and metrics of the source code, is fairly innovative. As we mentioned in 2.1.3,
usually the quality is compared in two ways:

• On some studies like [7], [10] the quality of different programming languages is compared by selecting some

open source projects of each language and looking for commits which names are related to bugs and errors, or by

looking at bug databases [21].
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Top C C++ Java Python

1 linux tensorfow spring-boot youtube-dl

2 netdata electron elasticsearch models

3 scrcpy terminal mall fask

4 redis swift RxJava keras

5 git opencv guava ansible

6 php-src bitcoin MPAndroidChart transformers

7 wrk pytorch glide scikit-learn

8 obs-studio tesseract lottie-android core

9 ijkplayer godot zxing scrapy

10 FFmpeg x64dbg netty you-get

Table 4.1: Top 10 projects for each language on GitHub, sorted by Stars and Forks.

• Other studies as [8], [9] simply use some metrics to determine the software quality, without taking into account

the real errors the software has.

In our case, as we have looked for actual bugs within the code, calculated different metrics, and,

fnally, given an overall score to each project based on various parameters, we have a much more

practical, realistic, and customized approach depending on the needs that each project or developer

may have.

4.2. Experiments

Our experiments set is made of different combinations of parameters to check how they infuence

the fnal score for each language. We have also decided to add a new intermediate metric called weigh-

ted severity, which is the fraction of the raw score contributed by the severity. It can be expressed as:

hP5 
i 

i=0 wi ∗ ni 
weighted severity = . 

||w0 + w1 + w2 + w3 + w4 + w5 + wc + wnd + wld + wpc||2 

The main objective of this metric is to let the reader know how the error importance varies depending

on the parametrization.

4.2.1. Experiment I: Error weights relatives to their severity

A frst fairly intuitive approximation is to consider the weights of the errors as directly proportional

to their severity. Thus, the mistakes that we regard as more serious are more detrimental to the fnal

grade; they have more weight. We then take the values represented in Table 4.2, using the notation
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explained in Section 3.2.

epc wc wpc wnd wld w0 w1 w2 w3 w4 w5 

15 2 2 2 2 0 2 4 6 8 10

Table 4.2: Weights used in Section 4.2.1

In this scenario, we prioritize the errors when considering the quality, giving relatively low importance

to the cyclomatic complexity, the percentage of comments, and the duplications-related metrics.

We also consider in this particular experiment a small variation of the weights, now given in Table

4.3, to show how these subtle variations do not infuence the fnal result.

epc wc wpc wnd wld w0 w1 w2 w3 w4 w5 

15 2.4 1.6 2 1.8 0 2.3 3.8 5.6 8.5 9.4

Table 4.3: Weights used in Section 4.2.1 with slight variations.

4.2.2. Experiment II: Error weights relatives to their severity (II)

A small variation on the previous approach could be to give more importance to comments, dupli-

cations and cyclomatic complexity. In this case we would be considering that the maintainability of the

code has much more importance than in the previous section.

We then take the parameters refected in Table 4.4.

epc wc wpc wnd wld w0 w1 w2 w3 w4 w5 

15 8 8 8 8 0 2 4 6 8 10

Table 4.4: Weights used in Section 4.2.2

4.2.3. Experiment III: Focus on errors

We can consider, in the opposite way to the previous section, the case in which we only care about

errors, without taking into account duplications, complexity or comments. Here we would be ignoring all

the maintainability and performance of the code, as we have already explained in sections 3.1.2, 3.1.3

and 3.1.4.

4.2.4. Experiment IV: Ignore errors

One more possibility is to ignore the data provided by the classifcation of the errors by severity, and

take into account only the metrics. In this case, the used weights could be the ones represented on
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epc wc wpc wnd wld w0 w1 w2 w3 w4 w5 

15 0 0 0 0 0 2 4 6 8 10

Table 4.5: Weights used in Section 4.2.3

Table 4.6.

epc wc wpc wnd wld w0 w1 w2 w3 w4 w5 

15 5 5 5 5 0 0 0 0 0 0

Table 4.6: Weights used in Section 4.2.4

4.2.5. Experiment V: Uniform weights

Finally, we can give every weight the same value so that the importance of each metric is the same.

These weights are the one in Table 4.7.

epc wc wpc wnd wld w0 w1 w2 w3 w4 w5 

15 5 5 5 5 5 5 5 5 5 5

Table 4.7: Weights used in Section 4.2.5

4.2.6. Some more collected data

Some studies, as [22], fnd no correlation between software quality and the number of programmers

in a project. On the other hand, in the literature, it is common to use the number of stars and forks of a

GitHub project as the ground truth of the quality of that project, as done in [8] and [9].

To corroborate or disprove these claims, we have collected information provided by GitHub, intrinsic

to the projects, as the number of stars, forks, collaborators, and the age of the project in days. Then,

we have looked for possible correlations between the metrics obtained by our tool and these metrics

provided by GitHub.

4.3. Results

We present the results of the experiments divided into two sections. In Section 4.3.1 we show the

individual metrics, which do not depend on the parametrization chosen in a specifc experiment. In

Section 4.3.2 we present the results of each experiment with two different plots. On the left, we show

the weighted severity (explained in Section 4.2), where less is better, while on the right, we present the

Open Source platform for code security and quality assessment26



4.3. Results 

score obtained by each language, where more is better. In all cases, the graphs represent the mean

and standard deviation.

4.3.1. Parametrization-independent results

First of all, we can look at the individual metrics obtained, which do not depend on the parametriza-

tion given for the fnal score. In Fig. 4.7 the mean cyclomatic complexity and percentage of comments

are displayed, along with their standard deviation.

In Figure 4.8 the two metrics related to code duplications are displayed. We can see the average

number of duplications per line of code on the left, while on the right, the average hundreds of lines per

duplication is shown.

Figure 4.7: Cyclomatic complexity and percentage of comments on each language. Represented as

the mean and standard deviation.

Figure 4.8: Average number of duplications and number of hundreds of lines per duplication per

language on GitHub ranking.

In addition, we can also present the results of the errors by severity and by language, again, without

taking into account any parametrization yet. Figure 4.9 shows the raw data represented in the table

on the top, along with the graphical representation for straightforward interpretation. It is important to

Javier Delgado del Cerro 27



Method validation 

note that most Python errors with severity 1 are due to the PEP 8 standard, which considers an error

something as simple as using tabs instead of spaces.

Figure 4.9: Mean of errors by severity on each language.

4.3.2. Parametrization-dependent results

Now that the simple metrics are presented, we can check how the fnal score varies depending on

different parameter settings, using COEF F = 1,5 on the scoring function explained at 3.2. Note that,

although the score varies a lot between our different experiments, that does not have any importance,

and could be compensated simply by changing COEF F , which does not affect the order of highest

scores. This is something we already explained in Section 3.2.

Figure 4.10: Weighted severity and score by language, represented as the mean and standard de-

viation. Weights as expressed in Section 4.2.1
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Figure 4.10 shows the mean and standard deviation of the weighted severity and fnal score using

the weights refected in Table 4.2. We can see how in this case, with the weights of the errors as directly

proportional to their severity and the rest of the weights with less importance, C++ is the language with

the highest quality. Python, on the contrary, is the language with the worst score while also being the

one with fewer comments. If we take the minor variations proposed in Table Table 4.3 the results are

pretty much the same, with some variations on the scores but maintaining the same ranking.

We then take the parameters proposed in Section 4.2.2, which give more importance to comments,

duplications, and cyclomatic complexity, and represent the results in Figure 4.11, where we can see

how, in this case, Java is the language with the highest score, followed by C++.

Figure 4.11: Weighted severity and score by language, represented as the mean and standard de-

viation. Weights as expressed on Section 4.2.2

Taking the parameters shown in Table 4.5, the results can be represented in Figure 4.12, where we

can see how C becomes the programming language with the highest average score if we ignore the

cyclomatic complexity, duplications and comments.

Figure 4.12: Weighted severity and score by language, represented as the mean and standard de-

viation. Weights as expressed on Section 4.2.3

Figure 4.14 shows the results of completely ignoring the errors, as expressed in Section 4.2.4, while

Figure 4.13 shows the result of choosing a uniform combination of parameters, with Java being again
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the language with the highest score, followed by C++, and C having the lowest one.

Figure 4.13: Weighted severity and score by language, represented as the mean and standard de-

viation. Weights as expressed on Section 4.2.5

Figure 4.14: Weighted severity and score by language, represented as the mean and standard de-

viation. Weights as expressed on Section 4.2.4

Finally, the correlations between metrics and GitHub attributes are refected in Figure 4.15. Note

that, in this case, we are using the weights proposed in Section 4.2.1. However, the results are pretty

much the same with any other combination of parameters. In particular, as parametrizations do not

affect individual metrics, the only two columns which vary when changing the parametrizations are the

Weighted severity and Score columns.

Figure 4.15: Matrix of correlations between the calculated metrics and some attributes intrinsic to

GitHub Projects.
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Discussion 

From the previous results, it might not be easy to determine a programming language proclaimed

as a clear winner in terms of quality. In this chapter we will discuss under which conditions it would be

advisable to use each language to maximize software quality.

5.1. Isolated metrics analysis

Fig. 4.7 represents the mean cyclomatic complexity and percentage of comments, along with their

standard deviation. We can see how the low cyclomatic complexity of Java code stands out, probably

due to a large number of getters and setters, which have a cyclomatic complexity of 1. On the other

hand, the cyclomatic complexity of C is considerably higher, probably because it is the oldest and

most rudimentary language. As C requires memory management by the programmer, the complexity

increases with the conditionals used to check whether the memory was allocated or not. Furthermore,

C does not have so many native libraries or functions to simplify operations, so even checking if a string

contains another substring requires a for loop, while in the other languages can be checked with a

simple method.

As for the percentage of comments, it is refected how Python code, with the lowest percentage, is

self-explanatory, and probably the use of Javadoc-formatted comments, which is very widespread, is

what raises the percentage of comments in Java.

Now, if we take a look at the rate of errors per severity, at Figure 4.9, it is clear how C has the lowest

rate of errors. This could be explained due to the fact that C is an older and more complex language

than C++, Java, or Python. It is not as attractive to novice developers, and programmers who choose

to use it are usually experienced in the programming feld, with years of experience, and, therefore,

less likely to make mistakes. In contrast, languages such as Python and Java are used by many junior

developers who may simply have taken a concise programming course to understand the basics. That

could be the reason why Python has the most signifcant rate of errors. However, it is important to note

how Python has the lowest rate of errors with a severity of 5, which are the most dangerous.

In Figure 4.8 the two metrics related to code duplications are displayed. We can see the average
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number of duplications per line of code on the left, while on the right, the average hundreds of lines

per duplication is shown. We can see how C has the biggest number of duplications per line, probably

due to being the only one of the four programming languages that do not support Object-Oriented

Programming and, therefore, inheritance. This could cause some functions to be duplicated with minor

modifcations. At the other extreme, Java has the lowest number of duplications per line, which goes in

line with the fact that it is the only language from the selected ones that does not support structured

programming. Python stands out with the highest average hundreds of lines per duplication, but we

have not found any particular reason that could explain it.

5.2. Multi-parametric analysis

With the individual metrics analyzed, we can consider the experiments’ results as a function of the

parameters. Hence, we have that the preference for one programming language or another is given

according to the ratio of priorities we give to maintainability and performance and to the error rate.

Thus, we frst consider the two extreme cases analyzed. In the frst one, represented in Section

4.2.3, we completely ignore the metrics and attend only to the errors. Moreover, we consider the impor-

tance of these errors as directly proportional to their severity. Therefore, more severe errors are more

detrimental to the score. In this case, the language with the best score is C, followed closely by C++,

which makes sense as they are the languages with the lowest rates of errors. If we take an opposite ap-

proach, considering only the metrics related to maintainability and performance, as in section 4.2.4, we

obtain Java as the highest-scoring language, followed by Python. This shows how the quality score is

completely dependent on the parametrization used, as the preferred language is different, and even the

programming paradigm varies from a structured programming language like C to an Object-Oriented

language like Java.

In the other three experiments considered, we tried different, more moderate approaches, giving

different priorities to the metrics. Thus, we see in sections 4.2.5 and 4.2.2 how, whether we give equal

priority to all metrics and errors, or prioritize maintainability and performance, Java is the language with

the highest quality, followed by C++. Conversely, if we prioritize a lower rate of errors, as in Section

4.2.1, C++ is the clear winner.

In summary, according to our results, the best languages are Java or C++, while the language with

the lowest quality in average is Python. In the case of Java, in average, it has the highest quality, and it

should be the primary option whenever code maintainability and performance has to be prioritized. In

the case of C++, we have seen how it is always above C, or practically at the same level, so it seems

advisable to use C++ instead of C, Python, or Java whenever having as few errors as possible is a

priority, without wanting to sacrifce too much code maintainability. This is in line with the fndings of P.

Bhattacharya et al. in [21], where they found that using C++ instead of C increased software quality and
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maintainability.

In general, our fndings are also consistent with the ones on [7], where they state “disallowing type

confusion is modestly better than allowing it, [...], static typing is also somewhat better than dynamic

typing.”, which goes in line with Java and C++ being the preferred languages in terms of quality. This

validates our methodology as an interesting way to determine and compare the software quality of

projects according to the requirements.

It is also important to mention that, as we saw with the results when using the parameters in Table

4.3, small variations in the parameters do not imply variations in the ranking of programming languages.

This is due to the normalization being used on the scoring parametrization formula, explained in Section

3.2, and it is what allows us to express the weights as integers from 0 to 10.

5.3. Correlations analysis

Finally, when analyzing the correlations between metrics and GitHub projects attributes, represen-

ted in Figure 4.15, we found no signifcant correlations between the elements. In particular, we can

note there seems to be no correlation between the number of collaborators and the source’s quality,

something already seen on the literature [22]. Furthermore, there seems to be no correlation between

the quality score and the number of stars or forks of the projects. This goes against the premises of

some papers like [8] and [9], which consider the numbers of stars and forks as the ground truth for the

quality perceived by developers. Therefore, either the quality perceived by developers is not related to

code quality, or the number of stars and forks cannot be used as the ground truth.

5.4. Threats to validity

We recognize few threats to our reported results, mainly because we are using open source tools,

which are not as complete as we would like, and, therefore, they have limited a lot the metrics we can

work with to achieve a score. We can classify these limitations into two groups.

5.4.1. Threats to the errors found by the tools

There are some limitations imposed by the tools used to detect errors, vulnerabilities, and code

weaknesses, mainly because these tools are different depending on the programming language. This

implies that the percentage of bugs discovered in relation to the bugs in the code itself may vary between

tools, which, in turn, may disfavor the scores of some of the programming languages. It is also important

to consider the false positives and false negatives the tools may provide, which could make the error

severity metrics less reliable.
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In addition, when using different analyzers, the classifcation of issues and vulnerabilities into cate-

gories could be susceptible to errors. Since the categories provided by the analyzers are usually very

diverse, and, although we have tried to group them as coherently as possible, errors could arise in the

classifcation.

Finally, it is worth noting that if the used tools were better designed, all supporting the CWE nomen-

clature for errors, we could obtain more information about the quality of the projects.

As we mentioned in Section 2.1.2, the CISQ relates each of its categories to different errors listed as

CWE weaknesses. If every tool used to detect errors could classify the found errors within these CWE

weaknesses, we could assign a score to each of the categories mentioned by the CISQ from these

errors. However, this is only supported by two of the tools used, FlawFinder and CppCheck, which are

both for C and C++.

Nevertheless, none of these limitations affects the comparison of the evolution of the same project

or the comparison of multiple projects of the same programming language, since they will be subject to

the same analyzers. Therefore, the information provided by the tool will be consistent. In other words,

the used methodology is perfectly valid for two primary purposes. On the one hand, it can refect how

the quality of a project evolves, thus, helping developers take the necessary measures to improve the

product. On the other hand, the methodology would do a perfect job assisting the developers to choose

one library or framework from a set of alternatives, all written on the same programming language, to

assure that the dependencies of their software have as much quality as possible, avoiding possible

errors.

5.4.2. Threats due to the set of metrics provided by the tools

The generic set of metrics chosen also imposes limitations, and, although our method is usable with

any other group of metrics, we consider it essential to mention these limitations, as they may infuence

our results.

When it comes to obtaining metrics, by using two different tools and having to rely on the metrics

available in both tools, we are quite limited. This is mainly due to the absence of open source tools that

allow us to calculate complex metrics for C++.

As we saw earlier in Section 2.2.3, for Python we have radon, for Java ck, and for C CMetrics and

cqmetrics. All of these tools offer quite complex and complete metrics, although some are relatively

diffcult to use. However, for C++, no tool provides suffcient metrics. Thus, we have had to resort to

Metrix++, which covers C, C++, and Java, at the cost, however, of providing a very limited number of

metrics.

It would have been interesting, for example, to be able to take into account Halstead’s E metric,

which is the best predictor of performance [15], or perhaps the maintainability index (which has propo-
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nents and opponents). Other metrics that would have been useful are those related with coupling and

degree of inheritance which, as we explained in Section 2.1.1, are related with the categories proposed

on the ISO/IEC 25000 standard.
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6
Conclusions 

We have proposed an innovative method to evaluate the quality of a software project based on

the weights given to different metrics. In this way, the score given to each project depends on the

priorities involved in its development. In our case, we have applied a generic set of metrics that allows

an approach to the concept of software quality based on the defnitions given by the ISO/IEC 25000 and

the CISQ standards. However, one of the main advantages of our approach is that the set of metrics

chosen can vary, and the proposed scoring parametrization would still be valid.

Our methodology provides a considerable innovation regarding the approaches commonly used in

the literature, advocating the analysis of GitHub commits or of some metrics obtained from the code. In

our case, we use a holistic approach taking into account the metrics and the actual bugs, vulnerabilities,

and code smells found in the code.

To validate this methodology, we have chosen four programming languages (C, C++, Java, and

Python) and the 50 most popular open source projects available on GitHub for each language. With this

dataset, we have performed fve different experiments to check how the weighting of the various metrics

affected the overall quality of software projects depending on the programming language. Our experi-

ments reveal how the quality is highly dependent on the given parametrization, and result in two main

languages to consider: Java and C++. Java seems to be more recommended when code maintainability

is the main priority. However, when the main focus is to have a lower number of errors, at the expense

of lower maintainability, C and C++ prevail, although the use of C++ seems to be recommended as it

has slightly higher maintainability. In addition, the result of Python, which does not appear as a winner

in any of the tests, stands out. This shows how, despite being a trendy programming language, it does

not favor software quality in any case.

Throughout the work, we have encountered several diffculties when comparing metrics. On the one

hand, to use the proposed scoring formula, it is necessary to consider the scales of each metric so

that none has, by default, more importance than the rest. On the other hand, when comparing projects

with different programming languages, the tools for extracting metrics from the code may be biased and

either disadvantage or favor a specifc programming language.

In addition, in the case of code duplications, we have noticed the problem of trying to consider
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a percentage of duplicated code, as is usually done with the percentage of comments. To solve this

unintuitive fact, we propose two metrics that describe the number and length of code duplications.

To conclude, our method improves state of the art in several key points: it considers software quality

as something related to its different properties, providing a method to obtain an overall score according

to a project’s priorities. Furthermore, within the selection of metrics, we analyze the actual errors that a

code has. With all this, we compare some of the most popular programming languages, checking how

the given parametrization considerably affects the result of the language with the best quality.

6.1. Future work

Of course, there is still much work to be done to confrm the hypotheses put forward in our experi-

ments defnitively. For example, it would be desirable to implement a more extensive set of programming

languages and a higher number of projects per language and repeat our experiments, which should be

relatively simple thanks to our tool being open source.

In addition, the calculation of a larger number of metrics, such as coupling and degree of inheritance,

would allow us to determine the quality more objectively and obtain much more information about the

different programming languages. It would also be great to modify each of the used open source tools

to make the analysis and classifcation more consistent between tools.

The are also lots of improvements that could be made to the platform itself. Regarding the platform’s

effciency, we currently implement parallel processing of multiple projects through threads, something

that could be improved by using different processes and a queue to manage all requests to avoid the

server getting saturated when analyzing too many projects simultaneously.

Although we try to optimize storage by deleting code coming from GitHub so that we can access it

later if necessary (for example, when the user requests to view an entire fle from the platform) using

the GitHub API, there are also possible improvements to be made at the storage performance level.

Currently, we are employing a single SQL database, which is not the most convenient for storing all the

duplicate code. A mixed approach, using a NoSQL database to keep the duplications, would be much

more effcient in terms of performance.

Finally, we could also improve the platform’s functionality by implementing some kind of synchro-

nization with GitHub projects to allow the recurrent and automatic analysis, therefore, keeping track of

the evolution of the quality of a specifc project.
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CISQ Consortium for IT Software Quality.
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ISO International Organization for Standardization.
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