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Abstract 

Explainable artifcial intelligence (XAI) is a feld blooming right now. With the popu-
larity of opaque systems, the need of explanation methods that shed light on how this
systems works has risen as well. In this work, we propose the usage of symbolic ma-
chine learning systems as explanation methods, a line that is yet to be fully explored.
We will do this by reviewing this symbolic systems, analyzing the existing taxonomies
of explanation methods and ftting the systems within the taxonomies. Finally, we
will also do some testing on solving numerical problems with symbolic systems.

Keywords 
Artifcial Intelligence, Explainability, Symbolic Machine Learning Systems, Logic.
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Resumen 

La inteligencia artifcial explicable (XAI) es un campo en pleno desarollo en la ac-
tualidad. Con la popularidad de los sistemas opacos, la necesidad de métodos ex-
plicativos que iluminen su funcionamiento ha aumentado también. En este trabajo
propondremos el uso de sistemas simbólicos de aprendizaje automático como método
explicativo, una línea de investigación que no se ha tenido en cuenta. Lo haremos
empezando con una revisión de estos sistemas y continuando con un análisis de las
taxonomías de métodos explicativos, para luego encuadrar los sistemas en dichas tax-
onomías. Finalmente llevaremos a cabo una serie de tests sobre sistemas simbólicos
para ver su comportamiento frente a problemas numéricos.

Palabras Clave 
Inteligencia Artifcial, Explicabilidad, Sistemas Simbólicos de Aprendizaje Au-

tomático, Lógica.
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CHAPTER 1 

Introduction 

Artifcial Intelligence (AI) has risen in popularity through the last decade, as both
its academic and industrial applications have grown. This recent developments have
had opaque decision systems such as Deep Neural Networks (DNN) at the helm, while
symbolic AI systems have been relegated to the background. However, as this black-
box methods are increasingly being used to make important predictions in critical
contexts [1], interpretability and explainability have become pressing issues: if things
go wrong, how can we explain why? how do we deal with scenarios in which ethics
matters?, how can we ensure fairness in processes such as Human Resources’ hiring
and fring or in forensics reports for the courts?

All of this has given birth to recent studies in explainable artifcial inteligence
(XAI), a feld that studies how and why should we make systems that can be ex-
plained. However, these problems have pertained researchers since the early days of
AI, as Michie[2] defned, as early as 1988, a classifcation for machine learning sys-
tems. Michie argued that strong machine learning systems are those that produce a
declarative version of the process under consideration, while ultra-strong systems are
those that produce knowledge about the process under consideration that could be
further used to generate new knowledge about the process. This classifcation is still
relevant to this day, with new systems being developed with this defnitions in mind.

Symbolic machine learning systems (symbolic systems from now on) are a subset
of AI systems, characterized by taking declarative inputs, using declarative methods
to process them and outputting declarative statements, making them by design ultra
strong systems. These systems were one of the earliest forms of AI, but, as time went
on, they were phase out in favour of more adequate systems for the problems relevant
at the time, such as the aforementioned DNNs. Nevertheless, symbolic systems have
become again a relevant topic, due to the need of potent interpretable systems. This
newfound relevancy has led to breakthroughs[3][4][5][6][7] in the feld, making them,
again, an interesting option.

The recent breakthroughs have created symbolic systems that not only keep math-
ematical guarantees of fnding the correct solutions, but are eÿcient in doing so, mak-
ing them a valid alternative to opaque systems that are currently en vogue. However,
the state of the art of XAI has consistently ignored symbolical systems, which shows
a disconnection between numerical systems experts and symbolic systems experts.
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2 Introduction

This is what motivated us to do this project, a survey of the state of the art of both
symbolic systems able to generate explanations and XAI, that tries to ft the systems
into the already existent classifcations of XAI implementations.

Our objectives are: frst to discuss the state of the art of symbolic systems able to
generate explanations and XAI, paying special attention to XAI taxonomies that clas-
sify the current accepted explanation systems. Second, to ft those symbolic systems
in those taxonomies, showing their spot in the already existing categories or creating
new ones. And fnally, testing some of the symbolical systems, trying to prove that
they are able to handle numerical problems.



CHAPTER 2 

State of the Art 

2.1. Symbolic Systems Able to Generate Explanations

2.1.1. Inductive Logic Programming

Inductive Logic Programming (ILP) is a symbolic artifcial intelligent system anchored
in the concept of inductive logic (i.e. formally generalizing concepts from concrete ex-
amples), using logic programming to represent background knowledge (BK), positive
examples, negative examples and learned programs. Its goal is to learn a hypothesis
that, with the BK, explains all the positive examples and no negative one[8].

There is a wide variety of implementations of this paradigm, as ILP is one of the
oldest learning systems, but the most relevant of them are anchored in the concept
of generalization and specialization. We say that a clause A is more general than a
clause B i˙. A ` B and B 0 A, analogously B is more specifc than A. With this
we could give the hypothesis space the structure of a lattice which we can travel by
generalizing or specializing. Early ILP systems used the concept of inverse entailment
which refers to the idea that if the BK and the hypothesis entail the positive examples
(BK, H ` E+), then BK, ¬E+ ` ¬H. This systems used inverse entailment with a
single example to build the bottom clause, which is the most specifc clause that covers
that example with the BK and then used a wide array of techniques to generalize
bottom clauses into a hypothesis that covers all examples.[9]

On the other hand, new ILP systems like meta-interpretative-learners (MILs) use
constraints on the hypothesis space such as metarules for MILs. This constraints
reduce the search task, while allowing for new features, such as predicate invention
through applying those constraints to new predicates.[3]

2.1.2. ILASP

ILASP is an ILP system based on answer-set programming (ASP)[10]. ASP is based
around the notion of answer sets (or stable models) which are used to solve logical
problems with negated rules in the body. Suppose a set of rules R where each rule may
have negated grounded atoms in the body. We pick a set of atoms M that appear in

3
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the rules as derivable atoms and we assume that no atom outside from M is derivable
so we can drop every rule with atoms not a where a ∈ M . Once this is done, we
are left with a reduct of the program R0 . If the set of atoms we can derive from R0 

coincides with M we can say that M is an answer set of R. ASP allows users to defne
the specifcation of a problem, rather than an algorithm to solve it, and then an ASP
solver searches for the possible solutions, which are the answer sets. This di˙ers from
Prolog programs, as those can only have one model (the Herbrand model) while ASP
programs may have many models. The nature of ASP makes ILASP radically di˙erent
than other ILP systems as ILASP mainly focuses on fnding the logical specifcation
of the problem instead of the program itself[11].

ILASP’s learning tasks have another component apart of the BK and the examples,
called the mode bias or language bias. This mode bias is used to defne the hypothesis
space easing its navigation. ILASP’s examples are also di˙erent from ILP’s ones, as
these examples entail partial interpretations that should (positive examples) or should
not (negative examples) be answer sets of the learned program. Finally, ILASP allows
for ordering examples, which in turn allows for preference learning (i.e. learning the
user’s preference for a type of solution).

The original ILASP1 mathematical basis lays in a generate-and-test approach.
For this, ILASP1 generates the set of hypothesis that cover all positive examples and
brave ordering examples (i.e. there should be at least one pair of answer sets that ex-
tend the referred examples which are ordered according to the ordering example). We
call all the hypothesis belonging to the set positive hypothesis. Among these positive
hypothesis we may fnd some that do not cover negative examples or cautious order-
ing, these are violating hypothesis. It is mathematically provable that the inductive
solution of the learning problem is the set of positive hypothesis that are not violating
hypothesis, so the algorithm of ILASP1 computes all positive hypothesis from the
hypothesis space (which is easy given that we defne the hypothesis space through
the language bias) of a given length, starting at 1. Then it adds all the violating
hypothesis as constraints and checks if there are any remaining positive hypothesis,
increasing the length if not. Once there is a set of positive hypothesis that are not
violating hypothesis it is returned as the solution.

ILASP2 brought improvements by replacing the idea of violating hypothesis with
violating reasons. In general there are two reasons why a hypothesis may be violating,
there could be an interpretation that accepts a negative example or there could be two
interpretations that contradict a cautious ordering example. The set of all violating
interpretations and interpretations pairs of a violating hypothesis is called violating
reason. The algorithm now, which starts with an empty set of violating reasons, picks
a positive hypothesis, checks if it has any of the violating reasons already detected, if
not checks for new ones and fnally if it fnds no violating reasons whatsoever returns
it as the learned program.

A whole change of paradigm was brought by ILASP2i, which changed ILASP
from a batch learner (a learner that learns from all examples at the same time) to
a middle ground of a batch learner and a loop learner (a learner that incrementally
considers each example). It does this by using a set of examples called the relevant
examples, using ILASP2 to fnd a hypothesis that covers all relevant examples and
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fnally checking if any of the examples left out is not covered. If this happens, the
example is added to the relevant examples and if not the hypothesis is returned as
the induced program.

Both the changes induced in ILASP2 and ILASP2i were motivated by scalability
issues. However ILASP3 was intended to learn from noisy examples, a hard task for a
inductive learner. For this, ILASP3 uses an approximation function for the hypothesis,
that contains at least all examples covered by it (initialized to be the complete set of
examples). Then, it checks if any of the examples in the approximation coverage of the
hypothesis is actually not covered by it. If this happens, ILASP3 updates the coverage
function by changing the coverage constraint, a constraint that keeps account of which
examples are not covered by which class of hypothesis (using hypothesis schemas, a set
of structural conditions defning some class of hypothesis). ILASP3 keeps generating
hypothesis that are optimal to the approximate coverage and updating it until it is not
able to fnd an example in the approximate coverage that is not covered, returning the
hypothesis found. This method is overall slower than ILASP2i, but allowing learning
from noisy datasets is worth depending on the problem.[4]

Lastly, ILASP4 brings improvements on the paradigm that ILASP3 created. ILASP3
coverage constraints were necessary and suÿcient to explain while certain hypothesis
rejected certain examples and this made computations of those constraints pretty ex-
pensive. ILASP4 relaxes those constraints and makes them only neccesary, decreasing
computation times by a huge margin. Overall, ILASP4 is able to achieve a similar
performance than ILASP2i, while keeping the ability to learn from noisy datasets from
ILASP3.[11]

2.1.3. Inductive Functional Programming

Inductive Functional Progamming (IFP) works on the same basis as ILP but instead of
learning logical programs it learns functional programs. Its similarities to ILP lead to
having closely the same characteristics, such as being an ultra-strong machine learning
system and being transferable, but without the capacity of using logic entailment IFP
requires di˙erent algorithms to move in the search-space. This algorithms used to be
classifed into two groups, analytical or generate-and-test, however recent innovations
in the feld made possible to combine both techniques in what is called the analytically-
generate-and-test approach.

Analytical IFP systems, like Igor II [12], generally work solely with I/O examples,
using recurrences in the given examples which then are generalized to recursive func-
tions so hypothesis are, computed instead of searched[13]. This approach minimizes
the search-space but needs a big set of I/O examples that covers all complex inputs to
correctly limit the search-space, which in turn ends up causing a slow down on the syn-
thesis of the function, creating a trade-o˙ between eÿciency and user specifcation[14].

On the other side, generate-and-test systems, like MagicHaskeller was originally,
exhaustively search for all the possible programs that comply to a given set of con-
straints (which may be incomplete). To do this optimally it uses De Bruijn lambda
calculus, so all α-equivalent expressions are also syntactically equivalent, and a trie-
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based memoization system that stores in its leaves the di˙erent results of the memo
function, as doing this with the function that travels the search space provides a time
save[15]. All of this makes generate-and-test very time consuming for some assign-
ments, but it allows it to have no limitations on the given specifcations. Moreover,
this systems are able to learn functions from only one example, provided it’s general
enough, allowing the user to not be as exhaustive as with an analytical system [14].

Finally, analytically-generate-and-test systems, like MagicHaskeller is now[14], di-
vide the examples into two subsets, one that guides the search analytically and another
one that serves as a test for the stream of function that the analytical search fnds.
Using the frst subset to narrow the search space and the second one to refect the
user intentions allows analytically-generate-and-test systems to evade the trade o˙
that analytical systems must endure[14].

2.1.4. LFIT-PRIDE

Learning From Interpretation Transition (LFIT) [16] has been proposed to automati-
cally construct a model of the dynamics of a system from the observation of its state
transitions. Given some raw data a discretization of those data in the form of state
transitions is assumed. Several model extend from LFIT but we will focus ourselves
in PRIDE[7], a multi valued logic based model.

val Multi valued logic atoms are of the form a where v is a variable and val ∈ 
dom(a). The domain of each atom is a subset of natural numbers and may be di˙erent

val0 val1for each atom. Rules are of the form v ← v ∧ . . . vvaln , where the head (h(R)) is0 1 n 
on the left side of the arrow and the body (b(R)) is on the right side. We now proceed
to separate the set of variables into two disjoint sets, T (targets) and F (features), such
as ∀R, var(h(R)) ∈ T and ∀v ∈ b(r), v ∈ F . Then we defne a set of functions, called
discrete states, from variables in either T or F to the natural numbers. This discrete
states can be equivalently represented by a set of variables SF = {vs(v)|∀v ∈ F} (the
same works for T ). A state transition is a pair (s, s0) ∈ SF × ST Finally, we can say
that a rule R matches a discrete state s ∈ SF (R u s) if b(R) ⊆ s.

Given a set of observations T (which is a set of state transitions), PRIDE will learn
var 0 var a set of rules P that explains T : ∀(s, s0) ∈ T, ∀v ∈ s , ∃R ∈ P, R u s, h(R) = v 

and is correct w.r.t. T : ∀R ∈ P, ∀(s1, s2) ∈ T,R u s1 =⇒ ∃(s1, s3) ∈ T, h(R) ∈ s3.
Finally, PRIDE also guarantees that the rules are minimal: ∀R ∈ P, @R0, h(R) = 
h(R0), b(R) ( b(R0).[17]

2.1.5. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a family of algorithms that take inspiration from
the concept of "survival of the fttest", prevalent in biology, applying this idea over
ftness functions to be maximized.

The frst step in this application is called representation, where the real world
problem is mapped to the problem solving space. Candidate solutions are called phe-
notypes or individuals, while their encoding (the points in the search space) is called
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genotype. Crucially, this relationship is one to one. Genotypes will have placeholders
for objects to be placed in them, we call these placeholders genes and the objects
alleles. Population is initialized as a random sample of the genotype space and its
size will be constant through the learning progress. This induces competition through
limitation of resources.

Next we need an evaluation function. This function takes a genotype, converts it
into a phenotype and evaluates it. The evaluation function must be constructed for
each problem in a way that the target phenotype is the one that maximizes it. The
population will be evaluated at each step of the algorithm with individuals with high
scores being more desirable.

After the population is evaluated the algorithm will pick parents for the next
generation. The higher the score, the higher the probability of that individual being
picked, but all of them have a minimum chance of being picked to prevent EAs to get
stucked at a local maximum.

Once the parents have been picked, we generate children through two methods,
mutation and recombination. Mutation takes one parent and induces random changes
into the allele allocation, bringing "new blood" to the population. Recombination
takes n parents and combines them into one o˙spring, randomly selecting which parts
are to be kept from each parent. The logic behind recombination is that merging
individuals with distinct but desirable properties we can produce one that combines
them.

Finally we need to replace individuals in our population to keep the size constant.
Replacement is, most of the time, done heuristically, with an emphasis in the evalua-
tion of each individual. We are left then with a population that consists of a mix of
old individuals and o˙springs.

This algorithm is done until an termination condition is met. Usual termination
conditions are CPU time limits, the reaching of an upper bound in the evaluation
of an individual or that the evaluation improvement is under a threshold for enough
iterations.

The EA-based feld of machine learning is usually called automatic evolutionary
programming. The frst implementation of this kind of algorithms was Genetic Pro-
gramming, which learns Lisp programs through the use of EA. It uses a tree structure
as the genotypes where the genes are the leaves of the tree and the alleles are either
functions or variables. Genetic Programming takes advantage of Lisp syntax as a
functional programming language, which adapts very well to the tree structure. [18]

Grammatical Evolution [19] is one of the most famous and successful linear geno-
typed approaches to automatic evolutionary programming. The key idea is to design
a separate genotype-to-phenotype mapping module that incorporates the context free
grammar of the programming language under consideration. Genotypes are vectors
of integers and the mapping procedure sets a simple transcription mechanisms that
allow produce a syntactically correct program from the genotype. In this way, the
genetic level remains always the same.
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Further extensions to Grammatical Evolution such as [20, 21] replaces context free
grammar by respectively attribute grammars and Christiansen grammars that produce
programs that are both syntactically and semantically correct. These approaches
o˙ers the researchers the complete control of the kind of generated program. These
contributions show that it is not needed to add to much semantics to dramatically
reduce the search space. Computational costs of such a sophisticated translation
process suggest to use these approaches only in the case of really huge search spaces.

There is another really innovative and interesting approach to automatic evolution-
ary programming that overcomes some of the drawbacks of these other approaches.
They use the so called straight line programs or SLPs [22]. This approach can be
considered an hybrid between linear and tree-likes genotyped methods because of the
mixed nature of SLPs. Among its main features we can mention:

• SLPs can be seen in same way as quadruples in the sense in which compilers use
them. They are thus, in fact, a way of expressing algorithms close to low level
code (assembler) and are, because of that, very eÿciently handled.

• The genetic operators proposed by the authors ensure to keep semantic blocks
considering every sub expression as a semantic block avoiding the destructive
e˙ects of typical and general mutation and crossover operators.

From the viewpoint of approaches to generate explanations all these methods can
be considered strong machine learning algorithms because the code itself for a task
should be considered a declarative version of the task itself. Grammatical Evolu-
tion and its extensions provide the greatest fexibility while SLPs could result rather
obscure as explanations due to the low level nature of quadruples.

2.1.6. DeepProbLog

DeepProLog is a learning system that integrates logic reasoning with a neural network,
using a probabilistic logic language called ProbLog. The structure of a ProbLog
program consists in a set of probablistic facts F of the form p :: f , where p is a
probability and f a ground atom, and a set of rules R. As a consequence, the result
of a query in ProbLog is the probability of that query being inferred.

DeepProbLog addition is neural annotated disjunctions (nAD), expressions of the
form nn(mq, t, u) :: q(t, u1); . . . ; q(t, un) : −b1, . . . , bm, where bi are atoms, t is a
vector containing all neural inputs for predicate q, u is a vector containing all neural
outputs and mq represents the neural network model we are using. This sentence
makes DeepProbLog learn from the examples through a neural network a probability
for each q(t, ui) to be true with all the others being false (so the sum of all probabilities
is 1) given that the atoms b1, . . . , bm are true.

Once the neural network side of DeepProbLog has learnt the probabilites of the
nAD, the system learns a logical program by doing gradient descent over the ProbLog
program. For this to happen we frst have to defne the gradient semiring, a semiring
whose elements are tuples of the form (p, δp where p is a probability as in ProbLogδx 



2.1 Symbolic Systems Able to Generate Explanations 9

and δp is the gradient with respect to a parameter x a vector of xi, each defned asδx 
pi, the probability of probabilistic fact with a learnable probality (t(pi) :: fi).

We can rewrite the labels of all probabilistic facts to include these gradients:

(2.1) L(f) = (p, 0) for facts p :: f with fxed probability p 
(2.2) L(fi) = (pi, ei) for facts t(pi) :: fi with learnable probability pi 

with ei beign the i-th canonical vector. As this this is a semiring it has two operations
⊕ and ⊗ defned as follows:

(2.3) (a1, a2) ⊕ (b1, b2) = (a1 + b1, a2 + b2) 
(2.4) (a1, a2) ⊗ (b1, b2) = (a1 + b1, b1a2 + a1b2) 

which correspond to the OR logic operator and the AND logic operator respectively.
This way we can do gradient descent over logical operators.

The method we just discussed is built as a black box, only communicating with
the neural network through the nAD, which serve as an interface. As an example
of why this kind of learning is useful we can see that the the DeepProbLog system
was able to give programs for operations over the MNIST dataset, where the neural
network mapped the handwritten digits to integers while the logical part learnt the
program that solved the operations from a couple of examples.[6]

2.1.7. δILP

δILP is a reimplementation of ILP in an end-to-end di˙erentiable structure, trying to
combine the advantages of ILP with those of numerical learning systems such as noise
tolerance and the ability to work with unseen data. Although the concept is similar
to DeepProbLog, the mathematical basis behind it is pretty di˙erent, as δILP was
designed to work on its own, not supporting a neural network.

Before studying the nature of the algorithm behind δILP we should defne some
early concepts. A language frame L is a tuple (target, Pe, aritye, C) where target is
the predicate to learn, Pe is a set of given (extensional) predicates that will be used
in the BK, aritye is a map from both the target predicate and those predicates in Pe 
to the natural numbers giving their arity and C is the set of constants present on the
ILP problem. A program template Π, which specifes the range of possible programs
(like metarules in MILs o mode bias in ILASP), is a tuple (Pa, aritya, rules, T ) where
Pa is a set of auxiliary invented predicates, aritya their arities, rules is a map from
each invented predicate to a pair of rule templates (τ1, τ2). Finally a rule template τp p 
describes the clauses that can be generated and is a pair (v, int), where v is a natural
number that specifes the number of existentially quantifable variables, while int can
be 1 or 0 whether it allows the clause to uses invented predicates or only extensional
predicates, respectively.

We start by labeling each example,creating a set of tuples of the form {γ, 0} or
{γ, 1}, with the label being 0 if the example γ is negative or 1 if it is positive. We
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now construct a di˙erentiable model that implements conditional probability for the
label λ of the example γ:

(2.5) p(λ|γ, W, L, Π, B) 

where L and Π are the aforementioned language frame and program template, while W 
is a set of clause weights and B is the background knowledge. We want our predicted
label to match the real one so we want to minimize the logarithmic likelihood when
sampling pairs from the label set, so we want to minimize:

loss = −E[λ ˙ log(1 − p(λ|γ, W, L, Π, B))](2.6) log(p(λ|γ, W, L, Π, B)) + (1 − λ) ˙ 

Now we need to compute the value of p(λ|γ, W, L, Π, B) and for this we use four
auxiliary functions:

(2.7) p(λ|γ, W, L, Π, B) = fextract(finfer(fconvert(B), fgenerate(L, Π), W, T ), γ). 

fgenerate generates a set of clause from the language frame and the program template
using the rules defned in the program template. fconvert takes the BK and returns a
sequence of n zeroes or ones where n is the number of possible ground atoms and the
i-th entry is 1 or 0 if the ground atom is in the BK or not respectively. finfer is the
most important function of the bunch, returning a valuation (a function that assigns
every grounded atom a real number between 0 and 1) that represents the candidate
hypothesis. It uses the clause weights to represent the likehood of each clause being
in the fnal hypothesis. Finally fextract evaluates the example γ with the valuation
returned by finfer.

In conclusion what δILP does is turning an ILP problem into a classifcation
problem, where the system must correctly classify examples into correct or incorrect.
To do this, it fnds the weights that return the hypothesis that correctly classifes all
examples.[5]

2.2. Explainability

2.2.1. Overview

There has been a recent surge in publications about explainability and explainable
artifcial intelligence, corresponding with the recent developments in AI. This publi-
cations range from trying to standardize a set of good practices for developing XAI
to discussing methods to explain AI systems. We shall frst give an overview of the
feld before moving to discussing our main taxonomic references.

Defning what constitutes an explanation is an open debate in epistemology and
philosophy of science[23], so defning what is explainable AI and interpretable AI is
not an easy task which is why many of the publications belonging to this feld start
with a revision of those terms[24][1][25][26]. For this work, we defne interpretable
system as systems that generate their own explanations and explanatory methods as
the methods that try to explain systems.
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Metrics are another relevant topic in XAI, as evaluating which explanations are
better is key to fnding this explanations. However, it is still very much an open
problem, with several approaches and with most of the current metrics having a lot of
room for improvement. One of the approaches is evaluating explanations relating them
to human interaction[27], factoring how humans understand and prefer explanations.
This is, undoubtedly, a useful way to look at explanations, however human interaction
may decrease in relevance in more general cases. Another approach is evaluating
explanations on how good are them at explaining the system’s particularities while
remaining consistent[28], highlighting the features that are important to the system
while ignoring the irrelevant ones and being stable to small changes in the input.

Lastly, we should highlight that symbolic systems tend to be ignored in the status
quo of explainability which may signal a disconnect between numerical systems experts
and symbolic systems experts. Some reviews[26] reference systems such as ILP, but
they do so with outdated references that do not show the opportunities that this
systems may present. Among the little amount of topics with relations to symbolic
systems that appear in XAI publications is rule sets, which can be seen equivalent
to logic systems. Rule set extraction is one of the possible methods to explain AI
systems[29][30], but there is no discussion of its relationship with frst order logic.
Another interesting, but much more recent, point is hybrid systems that use their
symbolic part solely to create explanations[31][32]

Now we are going to shift our focus to the study of four[1][28][33][25] taxonomic
reviews of explainable systems, chosen because they give an exhaustive review of
those systems, and while [28] focuses on Graph Neural Networks (GNNs), the discrete
character of GNNs provides some similarities to symbolic systems. This study of
taxonomic reviews is done in order to place the symbolic systems we have already
discussed among these taxonomies.

2.2.2. Explainable Artifcial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI

This paper[1] aims to be an exhaustive review of the explainability feld, starting by
defning the key concepts, strongly relating them to human interaction, and reasoning
why XAI should be taken into account in the future of AI. Another interesting point is
the section about challenges and future research needs, where the authors outline the
need of a set of standardized metrics among other points, like neglecting the idea of the
existence of a tradeo˙ between accuracy and explainability in a model or addressing
the security issues of XAI, regarding things like adversarial AI. However, our focus is
on the taxonomy that the authors give, which we proceed to describe:

• Transparent Models: models that are explainable by themselves, such as
linear regression, decision trees, KNN, etc.

• Post-hoc explainability techniques: as the name denotes, this denotes all
techniques that are used to explain already developed models. Among this tech-
niques the authors di˙erentiate two big approaches: model agnostic techniques
and model specifc techniques.
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– Model agnostic techniques: these techniques are meant to work on
every system. The writers separate this techniques into three groups:

* Model simplifcation: in this group we fnd techniques that try to
extract a transparent model from the system, usually rule sets. In this
group we can fnd systems like LIME [34] or G-REX [35] among others.

* Feature relevance: techniques belonging to this group describe the
functioning of a system by ranking the importance each feature of the
input has on the output. Approaches such as SHAP [36] or ASTRID [37]
are in this group.

* Visualization techniques: these procedures return a visual expla-
nation of the system. A portfolio of this techniques can be found
here[36], but there are also other techniques not in the aforementioned
paper such as sensitivity maps[38] or individual conditional expecta-
tion plots[39].

– Model specifc techniques: approaches grouped in this category are
tailor made for a single model, so we will use the models as a frst catego-
rization

* Tree ensembles and random forests:
· Model simplifcation: this techniques reduce tree ensembles or
random forest to single decision trees[40]. However not many tech-
niques can be found in this category, as model agnostic techniques
cover tree ensembles well enough.

· Feature relevance: classic methods used were based on measur-
ing the mean decreased accuracy and mean increase error after per-
muting random variables of the input[41], while more recent ones
pose recommendations that when taken, switch examples from one
class to another.

* Support Vector Machine:
· Model simplifcation: this type of explanation systems is the
prevalent one regarding SVMs. This simplifcation is done mostly
through rule extraction[42].

· Feature relevance: feature relevance is done mostly through rule
extraction[43], which is prevalent in SVMs explanations.

· Visualization techniques: there are several visualizarion tech-
niques over SVMs, from visualizing which of the input variables
are actually related with the associated output data[44], to using
heat maps combined with the output[45] and statistics about the
margins between the classes[46].

* Multi-layer neural networks: as the number of layers grows, it gets
harder and harder to provide a good simplifcation for the system, so
the main method is feature relevance. However there are still examples
of model simplifcation approeaches

· Model simplifcation: DeepRED[30] is the most relevant ap-
proach, allowing rule extraction and simplifcation into decision
trees in the system.
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· Feature relevance: since simplifcation in this systems is diÿcult,
feature relevance is the most widely used approach. DeepLIFT[47]
does this by evaluating the di˙erence between a reference activa-
tion level and the actual activation level for each neuron.

* Convolutional neural networks: as CNNs are mainly used in image
processing, their explanations are mostly visual. We can separate those
in two main categories that mix feature relevance and visualization:

· Mapping the output to the input: The most relevant work of
this group[48] uses another neural network, feeding it the output
feature maps, to compute the maximum activation level from each
layer, which can be used to reconstruct the parts of the image that
produce that activation, using a saliency map to show them.

· Mapping the intermediate layers to the input: This type
of explanations try to show what does each layer of the CNN see.
To do this, they use a neural network that generates the most
representative image of a given neuron[49].

* Recurrent Neural Networks: given the long term dependencies
of RNNs, simplifcation approaches are not recommended for this sys-
tems. However other approaches are able to capture this dependencies.

· Feature relevance: through back-propagation, with rules that
account for long short term memory and gated recurrent units[50].

· Visualization techniques: using fnite horizon n-grams that dis-
criminate cells in LSTM and GRU systems[51].

· Architecture modifcation: modifying the underlying architec-
ture of the system to include a subsytem that output an explana-
tion. In [52] the writers implement an attention network, which
highlights the information fow.

2.2.3. Explainability in Graph Neural Networks: A Taxonomic Sur-
vey

From the viewpoint of the survey[28] itself, it actually explains how the traditional
methods for explaining Deep Learning environments have been tested in GNNs and
how and why most of them failed. The interest of this survey for us is how it deals
with the characteristics of the GNN’s domain as it is a clear case of discrete input
data environment.

• Instance Level Methods: this methods provide input-dependant explanations
for each input graph. We can split them into 4 categories, depending at the type
of algorithm they use to evaluate how relevant is each feature in the input.

– Gradients/Feature-Based Methods: gradient-based methods compute
the gradient of a prediction with respect to the input by back-propagation,
while feature-based methods map the features of the nodes in the fnal
cape to the input space, trying to fnd the most important features. Both
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approaches have its problems, as the frst one can only show the sensitivity
between input and output and struggles with inputs in the saturation zone
between two classes. The second assumes that the fnal node embeddings
can refect the input importance, which is dependant of the implementation
and can only explain graph classifcation problems. Models belonging to
this class are SA[53], Guided-BP[53], CAM[54] and Grad-CAM[54].

– Perturbation-Based Methods: the basis of this technique lies in making
small changes to the input and studying the output, as ideally, if the im-
portant information remains unchanged, the output should remain equal.
All implementations of this approach use masks as an interface between
the input and the GNN, altering the input. This masks are recomputed
after every iteration trying to fnd the important features. It is worth
noting that most of this systems su˙er from the introduced evidence prob-
lem where alterations of the input may introduce new semantic meaning.
Methods belonging in this group are GNNExplainer[55], PGExplainer[56],
GraphMask[57] and SubgraphX[58].

– Surrogate Methods: surrogate methods use a simple and explainable
model to approximate the input graph and a small locality around it.
A suitable compirason could be Taylor series in mathematical analysis.
Usual problems relating to these methods are its inability to provide a
completely trustworthy explanation and that some of its implementations
are not able to deal with all GNN problems. The main implementations
are GraphLime[59], RelEx[60] and PGM-Explainer[61]

– Decomposition Methods: this methods break down the output score of
the system into terms, assigning terms to di˙erent input features. However,
as the number of possible features in input graphs is pretty high (taking
into account nodes, edges and edge labels) so thing such as graph walks
or graph structure are not able to be taken into account by some models.
Models in this group are LRP[53], Excitation BP[54] and GNN-LRP[62].

• Model Level Methods: the kind of explanations that should belong to this
group are those that are able to explain the whole system. However, there is only
one implementation of this kind of explanation techniques, due to the complex-
ity of dealing with discrete inputs. XGNN[63] is a system that explains GNNs at
a model level by using reinforcement learning to build a graph generator which
generates graph patterns. This patterns match each possible output and are con-
sidered an explanation. However, XGNN can only explain graph classifcation
problems, while it currently is unable to explain node classifcation.

2.2.4. Explaining Explanations: An Overview of Interpretability of
Machine Learning

This review[33] is a mix of the two that we have already seen. It is focused on one
particular type of AI systems, deep network systems, but it also aims to give a solid
background in XAI. The taxonomy this publication gives is based on what the methods
are trying to explain:
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• Explanations of deep network processing: deep networks derive their de-
cision using a large number of elementary operations, so in order to explain this
process we should reduce the number of operations. There are several methods
of doing this, but most of them fall in the model simplifcation category discussed
previously.

– Linear proxy methods: models like LIME[34] fall in this category, as it
uses perturbations on inputs to probe the behaviour of the system. This
behaviour is then built into a linear model, which is transparent.

– Decision trees: simplifying a deep network using a decision tree is also
an interesting option. Among the systems that do this we can fnd the
aforementioned DeepRed[30].

– Automatic rule extraction: rule extraction is widely used for deep net-
works. DeepRed[30] can also simplify a deep network into rule sets.

– Saliency maps: creating maps that show which parts of the input have
more infuence over the output is a relevant visualization technique. Here
we fnd algorithms such as CAM[64].

• Explanation of deep network representations: another interesting thing
is trying to explain the role of singular components of the network in the whole
system.

– Role of layers: understanding the role of each layer in a deep network is
a hard but useful task. In order to do this we can test a new problem on
the layer once the deep network is already trained. This process is called
transfer learning and we can fnd a framework for it here[65].

– Role of individual units: layers can be divided further into neurons.
This neurons can be explained qualitatively; sampling images that maxi-
mize its output or training a network to generate them; or quantitatively,
testing their ability to solve a problem. A comprehensive survey of this
methods can be found here[66].

– Role of representation vectors: we can also try to explain linear com-
binations of neurons. Concept Activation Vectors[67] provide a framework
to explain this subsystems.

• Explanation-producing systems: the fnal approach discussed by the paper
is modifying the whole system to output an explanation.

– Attention networks: attention networks capture the fow of the infor-
mation, and although this can be seen as an explanation (even if it is not
human readable), the most interesting approach is using a correct expla-
nation to build an attention network (like modelling human attention in
a natural language problem) and then using it to steer the information in
the deep network[68].

– Disentangled representations: this representations shows individual di-
mensions that represent the importance of features in the input. Deep
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networks can learn this kind of representations[69] which are a valid expla-
nation

– Generated Explanations: deep networks can also be trained to output
a human readable explanation along the solution[70]. The datasets for this
kind of systems have large sets of human readable explanations used to
train them.

2.2.5. A Survey Of Methods For Explaining Black Box Models

This paper[25] is defnitely one of the most interesting papers for our approach. It
takes a generic black box model and studies the di˙erent methods to explain it,
grouped by their interaction with the black box.

• Solving the model explanation problem: the model explanation problem
refers to the problem of fnding an approximation (either local or global) of the
black box model. It is akin to simplifcation methods or surrogate methods.
Explanations in this category are divided by the type of approximation they
return.

– Explanation by decision trees: like the already mentioned [40] or [30]

– Explanation by rule sets: like the already mentioned[30] or [42]

– Agnostic explanations: this are explanation systems that change the
output model depending on the black box that they are trying to explain.
Systems such as GAM[71] or PALM[72] belong in this category.

• Solving the outcome explanation problem: the outcome explanation prob-
lem refers to fnding an explanation for a specifc input and its vecinity. It is
akin to instance level methods.

– Explanation by saliency maps: saliency maps are used to highlight the
important part of the input. Models such as this are CAM[64] or attention
network models[73].

– Agnostic explanations: as it was explained before, this models explain
all black boxes. A possible example is LIME[34].

• Solving the inspection problem: the inspection problem refers to the prob-
lem of trying to understand the inner workings of a black box. It is similar to
explaining deep networks representations

– Sensitivity Analysis: sensitivity analysis studies the correlation between
the uncertainty in the output and the one in the input. Examples of meth-
ods belonging to this class are QII[74] or Integrated Gradients[75].

– Partial Dependence: partial dependence study the relation between re-
sponse of parts of the system and the predictor in a limited feature space.
Examples of methods belonging to this list are individual conditional ex-
pectation plots[39] or Prospector[76].
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• Solving the transparent box design problem: the transparent box desing
problem refers to the problem of building a system that is equivalent to the
original black box but is explainable locally or globally.

– Rule Extraction: this method builds an equivalent predictor with a rule
set. A notable example is CPAR[77], built over an old ILP system called
FOIL[78].

– Prototype Selection: a prototype is an object that is representative of
a set of similar instances. In this case, prototypes are made for subsets
of the dataset where each of those subsets has the same output. Notable
examples are PS[79] and BCM[80].





CHAPTER 3 

Symbolic Systems in Explanation 
Taxonomies 

3.1. Overview

In order to overcome the reasons that originate the lack of symbolic methods in current
taxonomies we propose in this contribution to add to the criteria used for classifying
XAI methods the following questions:

1. Declarative (discrete) nature of input data

2. Declarative (discrete) nature of the target kind of explanation

3. Declarative (discrete) nature of the method to generate explanations

Once we answer those questions for the symbolic systems and for the methods
categorized by the surveys, we will be able to ft the studied systems into the surveys.

3.2. Classifcation of Symbolic Systems

Symbolic Systems
Criterion ILP ILASP IFP LLFIT EA DPL δ ILP
1. Yes Yes Yes Yes Yes Mixed Yes
2. Yes Yes Yes Yes Yes Yes Yes
3. Yes Yes Yes Yes Yes No No

After describing all of these systems all the answers feel pretty natural. The hybrid
models, as expected, use numerical methods to generate the programs (which are the
explanations themselves) and DPL has input data both declarative (logical facts) and
numerical (the input of the neural network and the probabilities for each probabilistic
logical fact).

19
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3.3. Classifcation of the Categories in the Surveys

We proceed to apply our criterions to the di˙erent taxonomies that we have already
discussed. Doing this will show that symbolic models are not considered in any of the
categories of those taxonomies.

3.3.1. Explainable Artifcial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI

Classifcation of Survey 1
Method Criterion 1 Criterion 2 Criterion 3
Transparent Systems
LR
kNN
Decision Trees
Rule Sets

No No
No No
No Yes
No Yes

No
No
Yes
Yes

Model Agnostic Techniques
Model Simplifcation
Feature Relevance
Visualization techniques

No Depends
No No
No No

No
No
No

Tree Ensembles & Random
Forests
Model Simplifcation
Feature Relevance

No Yes
No No

No
No

SVMs
Model Simplifcation
Feature Relevance
Visualization techniques

No Depends
No Depends
No No

No
No
No

Multi Layer NN
Model Simplifcation
Feature Relevance

No Depends
No No

No
No

CNNs
output→ input
intermediate layers→ input

No No
No No

No
No

RNNs
Feature Relevance
Visualization techniques
Architecture modifcations

No No
No No
No No

No
No
No

The taxonomy that [1] proposes fts in a very good way with our criterions, as
almost all methods answer either positively or negatively to our questions. How-
ever, model simplifcation methods depend on which transparent model the system
is reduced to, as the answer to the second criterion changes if the model gives the
explanation in a symbolical way or not.
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3.3.2. Explainability in Graph Neural Networks: A Taxonomic Sur-
vey

Classifcation of Survey 2
Method Criterion 1 Criterion 2 Criterion 3
Instance Level Methods
Gradient/Feature-Based
Methods
Perturbation Based Meth-
ods
Surrogate Methods
Decomposition Methods

Yes No

Yes No

Yes Depends
Yes No

No

No

No
No

Model level methods
XGNN Yes Yes No

We consider graphs to be a symbolic way to convey information, so all the inputs
are symbolical. Again, for surrogate methods, it depends on which transparent system
is used to simplify the model. Finally, XGNN gives explanations in the form of graph
patterns, which are symbolical due to them being generalized graph.

3.3.3. Explaining Explanations: An Overview of Interpretability of
Machine Learning

Classifcation of Survey 3
Method Criterion 1 Criterion 2 Criterion 3
Explanations of deep net-
work processing
Linear Based Methods
Decision Trees
Rule extraction methods
Saliency maps

No No
No Yes
No Yes
No No

No
No
No
No

Explanation of deep net-
work representations
Role of layers
Role of individual units
Role of representation vec-
tors

No No
No No
No No

No
No
No

Explanation-producing sys-
tems
Attention Networks
Disentangled representa-
tions
Generated explanations

No No
No No

No Yes

No
No

No

This survey is not a good ft with our criterions, as the di˙erent categories do
no correspond to di˙erent types of explanations, but rather to the di˙erent things
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that can be explained in a deep network. A noteworthy point is that the generated
explanations framework returns text based explanations, which we consider symbolic.

3.3.4. A Survey Of Methods For Explaining Black Box Models

Classifcation of Survey 4
Method Criterion 1 Criterion 2 Criterion 3
Model explanation problem
Decision Trees
Rule sets
Agnostic methods

Depends Yes
Depends Yes
Depends Depends

No
No
No

Output explanation prob-
lem
Saliency maps
Agnostic methods

Depends No
Depends Depends

No
No

Inspection problem
Sensitivity analysis
Partial dependence

Depends No
Depends No

No
No

Transparent box problem
Rule extraction
Prototypes Selection

Depends Yes
Depends No

No
No

As this survey uses a generic black box, the input data is neither described nor
accounted for, so for every category the answer to our frst criterion is that it depends
on the system. Another thing that depends on the system is the answer for the second
criterion for agnostic methods, as the output depends on the system.

3.4. Placing the Symbolic Systems

We are going to begin with the frst review[1]. One can say that, in a vacuum, symbolic
systems fall into transparent systems, but the interesting thing about the systems
we have discussed through this work is that they have a mathematical guarantee to
fnd the correct explanation if able to solve the problem. This makes them a perfect
candidate for the category of model simplifcations, not only as simplifcations, but
as replacements that fnd the correct solutions with no approximation needed.

Moving onto the second review[28], we can see that there is no category that
fts with our models, as they are model level methods but not on the same way
as XGNN. Surrogate methods comes close, as, as previously said, symbolic systems
work as replacement without approximation. But since this survey only contemplates
surrogate methods as instance level methods, we propose a new category, model level
surrogate methods.

For the third review[24], symbolic systems could be positioned in either one of two
categories. One can see them as explanations of deep networks processing, or
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as an explanation-producing system when the whole deep network is substituted
by the symbolic system.

Finally, the last survey[25] is the one where the place of our system is most clearly
defned. Symbolic systems are solutions to the transparent box problem, as
they are equivalent systems that are equivalent to the black box model in question
while being globally interpretable.





CHAPTER 4 

Tests 

4.1. Testing Objectives

For testing we chose to showcase how purely symbolic systems fare with numerical
problems. There are many examples of symbolic models solving symbolic problems[81]
and even outperforming numerical machine learning systems in some cases[82]. How-
ever there is not much literature about these kind of systems trying to solve more
"numerical" problems.

These kind of problems are key examples to understand why symbolic AI is such
an interesting line of research. Suppose some kind of bias is found in the example set,
be it sexual, racial, etc, which could easily not be found by the users given a large
enough dataset. A classic black-box, numerical-based, machine learning system will
detect it as a pattern and have it factored in the output of the system without the
user knowing it. However, symbolic systems by design will output an explanation of
the decision process, allowing the user to see the bias from the get go.

4.2. System Election

We chose to try the purely symbolic systems as we wanted to test how a system with
no numerical parts would deal with this data. This limited our options to ILP systems,
IFP systems, ILASP and LFIT. We discarded IFP systems early in testing as the most
recent breakthrough in the feld was in 2012[14] and we wanted to focus on systems
with open lines of investigation. Furthermore, a quick overview of system showcases
its focus on recursive functions, which is not a natural solution to our problem. A
couple of small tests showed that the system is still in an experimental phase and as
its support was abandoned we decided to leave it out of the relevant tests. We also
discarded LFIT as a very similar work was done on it recently[17].

This leaves us with ILP systems and ILASP as our test subjects. As there is only
one implementation of ILASP (with di˙erent iterations, yet ILASP4 has showed to
be arguably the best one to date[11]) there is no possible argument. However for ILP
there has been several implementations through the years, so we had to choose one.
The criterion we used was a mixture of recency in the development and relevancy
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in the feld. With this criterion in mind Metagol[83] was an obvious choice, as its
last update was recent enough and its backed by the most important researchers in
the feld. Popper[84] was also a candidate, being the most recent system developed
by Andrew Cropper, the co-creator of Metagol. However, Popper is still at early
development stages so right now Metagol is a safer option. Nonetheless it could be an
interesting option for the future.

4.3. Problem Specifcation

The problem we chose to test is a resume classifer system. The input for this problem
is a set of resumes from a set of possible workers and the output would be a ranking
of those resumes. For this, the system will assign each curriculum a score depending
on the values of di˙erent felds (such as experience, recommendation letters, etc),
e˙ectively rendering the problem as fnding the weights of a weighted average from
examples.

It is key to understand what this example truly is, which is a proof of concept.
This is why the problem is simplifed and stripped of all fu˙, just to see if there is a
viable implementation in the systems we are discussing. The intention is not building
an application that classifes resumes, we are just trying to fnd the limits of this
systems as problem solvers.

4.4. Implementation and Results

4.4.1. Metagol

To try to implement the problem we reduced it to its simplest form. We started with
two di˙erent attributes, experience and recommendation, which were valued either
at 1 or 2, having or not having each thing respectively. Experience was weighted as
75% of the score, while having a title was weighted 25%. The expected solution would
be prio(A,T):-exp(A,E),rec(A,R), T is 3*E/4 + R/4., unfortunately Metagol is
only able to learn logical clauses so the arithmetic operations wont work. We tried to
bypass that in our frst try by giving the system a couple of "weight" functions. The
fnale program for our frst attempt is

:− use_module(’../metagol ’). 

%% tell Metagol to use the BK
body_pred(exp/2). 

body_pred(rec/2). 

body_pred(quar/2). 

body_pred(tquar/2). 

%% background knowledge
%% experience 1: hasn’t , 2: has
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%% rec 1: hasn’t , 2: has

exp("a" ,1). 

exp("b" ,1). 

exp("c" ,2). 

exp("d" ,2). 

rec("a" ,1). 

rec("b" ,2). 

rec("c" ,1). 

rec("d" ,2). 

quar(A,B):−B is A/4. 
tquar(A,B):−B is (3*A)/4. 
sum(A,B,C):−C is A+B. 

%%metarules
metarule([P,Q,R,S,T,U], [P,A,F], [[Q,A,B],[R,A,C],[S,B,D],[T,C,E],[U,D,E,F]]). 

:− 
Pos = [ 

prio("a" ,1), 

prio("b" ,1.25), 

prio("c" ,1.75), 

prio("d" ,2) 

], 

Neg = [ 

], 

learn(Pos,Neg). 

With this attempt we only wanted to check if Metagol was able to fnd the correct
solution, prio(A,T):-exp(A,E),rec(A,R),tquar(E,EW),quar(R,RW),sum(EW,RW,T).,
which has the same structure as the metarule we provided. Metarules give the struc-
ture of possible solutions, narrowing the search space to clauses that have that shape.

Unfortunately, this did not work. Metagol got stucked more than three hours
trying to fnd the correct hypothesis, which in a problem as simple as this should not
happen under any circumstances. There also is no trace and no error message so we are
left to speculate with the problem as debugging with swipl showed nothing abnormal.
Taking inspiration from the ILASP implementation we opted to not normalize the
values and just multiply them with 3 and 1, but got similar results. We believe that
the problem is with how ProLog handles assignations and mathematical operations
and how Metagol looks for logical functions.

The next implementation we tried was based around Metagol fnding a list of
weights. We defned a new function average(A,W,R):- average_aux(A,W,0,R). 
where average_aux([A1|A2] ,[W1|W2], C, R):- D is C + A1*W1,average_aux(A2 
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,W2,D,R). is an auxiliary function that helps with recursion. With this implementa-
tion, Metagol must fnd W, the correct weight list. Another change we made was
turning the experience and recommendation values into values in a list, so for a
person with experience valued at 1 and recommendation valued at 2, the data we
gave to Metagol was of the form charac("a", [1,2]). The solution then would be
prio(A,T):-charac(A, C), average(C,[3,1],T), opting again into not using ratio-
nal numbers. The resulting program was

:− use_module(’../metagol ’). 

%% tell Metagol to use the BK
body_pred(average /3). 

body_pred(charac /2). 

%% background knowledge
%% charac(−key, −Values)
%%Values: array of 2 integers
%%Values[1]: exp, 2: has, 1:hasn’t
%%Values[2]: recommendation, 2: has, 1: hasn’t
charac("d" ,[1,1]). 

charac("b" ,[1,2]). 

charac("c" ,[2,1]). 

charac("a" ,[2,2]). 

average([],[],0). 

average(A,W,R):− average_aux(A,W,0,R). 
average_aux([],[],R,R). 

average_aux([A1|A2],[W1|W2],C,R):− D is C+A1*W1, average_aux(A2,W2,D,R). 

%%metarules
metarule([P,Q,R,W], [P,A,E], [[Q,A,B],[R,B,W,E]]). 

:− 
Pos = [ 

prio("a" ,8), 

prio("b" ,5), 

prio("c" ,7), 

prio("d" ,4) 

], 

Neg = [ 

], 

learn(Pos,Neg). 

Once again, this attempt was unsuccessful. The reason for it was that the is\2 
function is not invertible, so ProLog itself returns an error when D is C + A1*W1 is
reached and D, C and A1 are all instantiated while W1 is not.
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We tried a few variations over those attempts but gave up shortly after. ILP has
showed the ability to solve numerical problems through time[81], but the burden of the
problem falls on the user, that has to come up with a correct logical implementation,
or even make changes in the paradigm[85]. For that reason we think that, while it
has the ability to do it, ILP in its current form is not really suited to solve numerical
problems.

4.4.2. ILASP4

ILASP’s preference learning seems tailor-made for this kind of problems so we used
it on our implementation. We, again, chose the same two attributes, but this time
we valued them between 1 and 5, thought we kept the same weighted relationship
between the two. Incrementing the number of possible values gives us more possible
examples and more possible comparisons between them.

As we are using preference learning, the solution ILASP gives us will take the
shape of a weak constraint. Weak constraints order examples minimizing a weight
associated with it and have the following structure: :-a1,...,an[w@l,t1,...,tn],
where a1,...,an are atoms either positive or negative, t1,...,tn are terms in the
atoms, wis a term that corresponds with the weight and lis the level of the constraint.
When an example contains the atoms a1,...,an a weight of level lis associated
to it according to the term w. The examples will be ordered minimizing the weights
priorizing the levels in a descending ordering, with each level having an infnite priority
over the next.

Once this concept is defned, we can write the correct solution to our program.
Given that the experience is worth 75% of the average and the title 25%, the cor-
rect constraint is :- exp(A), rec(B).[-3*A-B@1, A, B]. Since dividing by four all
weights yields an equivalent ordering, and given that ILASP does not work that well
with rational numbers we chose to ignore the normalization. There is also the need of
turning the weight into a negative number, as minimizing it would be equivalent to
maximizing its absolute value, which is what we want.

Another important issue is how do we defne the hypothesis space. ILASP accepts
mode biases (a description of which predicates can build a hypothesis and how to use
them), metarules or an ASP that describes the hypothesis space as valid descriptions
of the this space, but interestingly enough, it also accepts a literal defnition of the
hypothesis space. This latter defnition is what we implemented in the end, as none of
the other options admitted mathematical operations in the weight term of the weak
constraint. This brute force implementation of the hypothesis space is used by the
creators of the system in many of the examples, as it is a widely accepted way of
defning the hypothesis space. For this frst proof of concept we chose to use a search
space containing 25 possible solutions, the combinations of multiplying each attribute
with a number between 1 and 5. This yields a lot of equivalent candidate solutions,
but we also wanted to check how ILASP dealt with that.

This resulted in a program with 3 clearly di˙erentiated parts:

mailto:rec(B).[-3*A-B@1
mailto:a1,...,an[w@l,t1


30 Tests

• Examples: ILASP examples are of the form #type(tag,{P},{N},{C})., where
the type can be either #pos or #neg when the example is a positive one or a
negative one, respectively. P is a list with all the positive atoms in the clause
while Nis a list with all the negative ones. C is used in case the example is a
context-dependent example, allowing it to come with an extra bit of background
knowledge. In our case we only context-dependent examples, allowing us to by-
pass the background knowledge, but we could have done it giving the background
knowledge that experience and title are can take values between 1 and 5. Our
examples were of the shape #pos(eg_1, {}, {}, {exp(5).rec(5).}). 

• Ordering examples: Ordering examples show which examples should be pre-
ferred over which others. There are two types of ordering examples, brave or-
derings, which express that at least one pair of interpretations extending the
examples must respect it and cautious orderings, which express that every pair
of interpretations extending the examples must respect it. As there are no in-
terpretations that may extend our examples, it does not matter for us which
one are we using, but we chose to use cautious interpretations as technically,
if there were any interpretations that extend our examples, we want them to
respect the ordering. This gives us the following structure for an ordering exam-
ple: #cautious_ordering(comptag, egtag1, egtag2, rel)., where comptag 
is the ordering example’s tag, egtag1 and egtag2 are the tags of the examples
we are comparing and rel is the ordering relation between those examples. It is
important to note that the relation < means that the frst example has a higher
priority than the second, contrary to common sense.

• Defnition of the hypothesis space: As we already discussed, we imple-
mented a literal defnition of the hypothesis space. Each possible solution is writ-
ten as length ~ rule, so our rules are of the form 2 ~ :- exp(A), rec(B). 
[-w1*A-w2*B@1, A, B], with w1 and w2 being numbers between 1 and 5.

We will not include the code itself here, as it is nearly 200 lines long, while being
repetitive and already qualitatively described. Once we run this program the results
were:

Figure 4.1: Results for the simple proof of concept

As we see, the system fnds the correct solution pretty easily. It spent the majority
of the time searching for counterexamples, with the most being spent looking for a
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CDOE (context-dependant ordering example) counterexample and taking almost no
time looking for a CDPI (context-dependant partial interpretation) counterexample.
However, as this is a fairly small problem, it is very diÿcult to distinguish workload
di˙erence in the di˙erent parts of the process. That is why we decided to extend the
size of the problem.

The new problem has 4 di˙erent attributes: experience(50%), recommendation(10%),
interview(20%) and exam(20%). Each one is valued with an integer from 1 to 5, yield-
ing 54 examples, while the amount of possible ordering examples increases to 58 , all
of them included in the program. We also increased the hypothesis space, including
every possible combination of multiplying each of the values with a number from 1 to
10, which turns into 104 di˙erent hypothesis (and again, there are multiple equivalent
candidate hypothesis, which will not matter as long as it fnds a correct one). The
program was generated using a script that wrote all the examples, then all the order-
ing examples and fnally all the candidate hypothesis, as manually writing it would
be impossible. After running it we got:

Figure 4.2: Results for the large proof of concept, using all possible ordering examples.

As we see, it is even clearer now that the largest time sink is fnding counterex-
amples among the ordering examples, but the hypothesis search also requires a large
amount of time.

One of the key ideas behind symbolic systems is trying to learn from the fewest
amount of examples possible. The amount of ordering examples in the previous test
is huge, leading to a proof of concept with little practical utility. To solve this, we
introduced a random variable in the script that would leave only one third of the
examples, yielding the following result:
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Figure 4.3: Results after using only a third of the ordering examples

The solution was still the correct one, so the system was robust enough to handle
it. We then proceeded to keep only 10%, 5%, 2% and 1% of the examples.

Figure 4.4: Results after using only 10% of the ordering examples

Figure 4.5: Results after using only 5% of the ordering examples
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Figure 4.6: Results after using only 2% of the ordering examples

Figure 4.7: Results after using only 1% of the ordering examples

As the results show, the system keeps fnding the correct hypothesis (or one equiv-
alent) even with only a hundredth of the ordering examples. We could not fnd an
explanation of why the systems chose one hypothesis or the other, but whichever it
chose in each variation, it was consistent. Printing the trace of the program did not
show anything useful, as the frst correct hypothesis the program found was the chosen
one for the solution. Ultimately, it does not matter, as it found the correct solution.

As the number of ordering examples decreases we start to fnd a bottleneck in
the system, the time spent search for hypothesis to test is now the largest time sink.
This could be improved by removing all the equivalent hypothesis from the search
space, but because we are testing the limits of ILASP and not trying to optimize this
problem, we will leave that as future work.

ILASP is, in theory, capable of learning from noisy examples, so added it up to
our problem in order to test this capabilities. We took the program with 10% of the
ordering examples as our starting point. From there we introduced a random 10%
chance that the ordering example was changed to a random order relation instead of
the correct one. Unfortunately, this did not work as expected, as 8 hours into the
experiment the system had only done 30 iterations, while probably needing around
2000. We will now show the printed trace of the last iterations before we ended ILASP
and discuss it.
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Figure 4.8: Trace of the program with noise

Each iteration of the system took the hypothesis given from previous iteration,
checks for counterexamples and creates a constraint for one of them. Finally it com-
putes another hypothesis, optimal to the approximate coverage we talked about in
chapter 2. As we see in the trace, ILASP was in the right track, computing the cor-
rect hypothesis, but cutting one counterexample at a time, it would take two thousand
iterations for it to fnish. We can also see in iteration 41 that ILASP gets sidetracked
by an incorrect hypothesis, but as soon as it checks the number of counterexamples
it goes back to the correct hypothesis. We thus can conclude that given enough time,
ILASP would have returned the correct solution.

This tests showed ILASP’s ability to deal with a numerical problem through pref-
erence learning. Even in a noisy setting, the system showed it could fnd the solution
given enough time. As ILASP evolves with time, it will get more eÿcient, turning it
into a practical option for this kind of problems.



CHAPTER 5 

Conclusions & Future Work 

The surveys of both symbolic systems able to generate explanations and XAI have
been concluded successfully. We have shown the recent breakthroughs in those sym-
bolic systems and studied their inner workings. We have also reviewed the state of
the art of XAI, touching the hotspots and relevant points of the feld. Once this was
done, a classifcation of the symbolic systems among the existing surveys was done.
We think that the taxonomy that suits this systems better is [25], where the sym-
bolic systems ft perfectly in the category of solutions to the transparent box
problem.

Regarding the testing of symbolic systems, two of them were tested, Metagol (an
ILP implementation) and ILASP. Testing with Metagol was unsuccessful, as we were
unable to fnd an implementation of our problem that worked. Recent research has
shown, however, that ILP systems can handle numerical problems[85], but this are
through modifcations on the algorithm. On the other hand ILASP proved able to
solve the problem, as preference learning was well suited to learn numerical scores by
comparing the examples.

Future work has three possible branches, research in symbolic systems, research in
XAI and research combining both. For symbolic systems, there is still room for newer
and better algorithms that are more eÿcient and noise-tolerant. In XAI, metrics are
still pretty much an open problem, while the need of better explaining methods have
risen. Finally, in symbolic XAI, further tests are required with real world problems in
order to check to which problems are this systems aplicable.
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