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Abstract: In this paper, we generalize the classical definition of Gromov hyperbolicity to the context
of directed graphs and we extend one of the main results of the theory: the equivalence of the Gromov
hyperbolicity and the geodesic stability. This theorem has potential applications to the development
of solutions for secure data transfer on the internet.
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1. Introduction

A geodesic metric space is said to be (Gromov) hyperbolic if every geodesic triangle is uniformly
“thin” (see Definition 2). The theory of hyperbolic spaces was introduced by M. Gromov in [1,2],
and after that studied by many scientists, see, e.g., in [3–6]. It is especially remarkable that this “new”
theory grasps the essence of negatively curved spaces, and the connections between graph theory and
potential theory on Riemannian manifolds (see, e.g., in [7–11]).

In [12], a certain graph is constructed for each geodesic metric space and it is proved that one is
hyperbolic if and only if the other is; furthermore, in [13–15] there are analogous results for Riemannian
surfaces (and simple graphs). Therefore, the study of Gromov hyperbolic graphs can shed light on the
hyperbolicity of more general geodesic metric spaces.

The research on mathematical properties of hyperbolic spaces and their applications is a subject
of interest in graph theory; see, e.g., in [16–37] and the references therein.

Originally, the theory of hyperbolic spaces was developed to be applied to finitely generated
groups and, in that field, it has proved relevant competence in practical applications. For example, they
were historically applied to some computer science questions, as hyperbolic groups have a soluble
word problem. In [38], it is proved that they are biautomatic and automatic; actually, they are strongly
geodesically automatic, meaning that there is an automatic structure on the group, where the set of all
geodesic words is the language accepted by the word acceptor. Many other applications are supported
by the concept of Gromov hyperbolicity. For instance, research evidence suggests that the Internet is
hyperbolic (see [39]); the outstanding growth/preferential attachment process as a mean to construct
a scale-free graph produces a (scaled) hyperbolic graph (see [28,40]); the greedy geographical routing
tries to embed the network graph in the (hyperbolic) Poincaré disk (see [41]). The spread of viruses
through the Internet can be modeled by hyperbolic spaces (see [27,42]).
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Today, and thanks to the geodesic stability of hyperbolic spaces (see Theorems 2 and 3), Gromov
hyperbolicity is successfully applied to the development of solutions for secure data transfer on the
internet. As Edmond Jonckheere states in [42], any electronic message is usually split into many
different packets, which are sent separately to its destination. Most of them follow the same path, but,
unfortunately, it facilitates the interception and subsequent reconstruction of the message by malicious
listeners. A better strategy to bypass this type of electronic spying is to send packets along distinct
routes [43]. However, this design raises a further difficulty: the reconstruction by the protocol of
all those packets, which reach destination in a disorganized way (due to the intrinsic delays of the
different routes chosen), is not trivial.

For all these reasons, a remarkable feature of hyperbolic networks is that in a (well-located by
geodesic stability) neighborhood of any geodesic (optimal path) there are many other quasi-optimal
paths, i.e., routes whose costs are close to the optimal one. Thus, hyperbolic networks facilitate the
assembly of packets sent through different routes with similar delay times [44].

Nevertheless, when it comes to the application of Gromov spaces to this field, some problems arise
due to the fact that modelization still not accurate of this process is not yet accurate. The communication
between a client computer and its internet connection server is not “symmetric" in the following sense:
data transferring from server to client is much faster than from client to server. Mathematically,
it means that the function modeling the distance between client and server is not symmetric either, i.e.,
it is not a distance function.

We can first address the problem with a mathematical model that assumes that data transferring
between server and client is symmetric. Although we know that this is not very accurate, it seems
a very reasonable approach, as this makes it possible to work with a usual distance function (see the
discussion in [42]).

However, it is desirable to pursue a more realistic model. For instance, Edmond Jonckheere
cleverly decided to apply noncommutative geometry methods to overcome the difficulty introduced
by the asymmetry (see [42]).

Our main aim in this paper is to show a new mathematical theory to provide an alternative
approach to the problem, involving a less sophisticated mathematical foundation. In particular,
we think that a more intuitive model can be found in “directed graphs”: each pair of adjacent vertices
A and B is joined by two directed edges AB and BA of (possibly) different lengths. This point of view
introduces asymmetry as something natural.

In real life asymmetric distances are natural; for instance, given a set X of mountain peaks
connected by twisted roads, the usual driving times between these peaks form a quasi-metric because
it takes longer to travel up hill than down hill; also, the taxi geometry with some one-way streets,
where a path from location P to location Q contains a different set of streets than a path from Q to P.

Thus, in this paper we extend Gromov hyperbolic spaces to the new context of directed graphs.
Specifically, we prove one of the most important results of the theory: a counterpart to the geodesic
stability theorem, which happens to be the most utilized theorem both in theory and in applications of
hyperbolic spaces in the usual context of geodesic metric spaces (see Theorem 5).

Notation. For each geodesic metric space X, we shall denote by dX and LX , the distance and the
length, respectively.

2. Background on Hyperbolic Spaces

Although there are several definitions of hyperbolicity, in this paper we will use the one that
involves thin triangles, as it is intuitively simple and has a clear geometric interpretation. For more
background and results on hyperbolicity, see [2].

Definition 1. If X is a metric space and I is a real interval, then a curve γ : I → X is a geodesic if it is an
isometry, i.e., LX(γ|[t,s]) = dX(γ(t), γ(s)) = |t− s| for each t, s in the interval I. X is said to be a geodesic
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metric space if for each x1, x2 ∈ X there exists at least one geodesic joining x1 and x2; we denote by [x1x2] any
of such geodesics (since uniqueness of geodesics is not required, this is an ambiguous but convenient notation).

Definition 2. If X is a geodesic metric space and Y = {Y1, Y2, Y3}, with Yj ⊆ X, we say that Y is δ-thin if for
each j ∈ {1, 2, 3} and y ∈ Yj one has d(Y,∪i 6=jYi) 6 δ. If x, y, z ∈ X, then a geodesic triangle T = {x, y, z}
is the union of the three geodesics [xy], [yz] and [zx]. X is said to be δ-hyperbolic (or that it satisfies the Rips
condition) if each geodesic triangle in X is δ-thin. Denote by δ(X) the sharp hyperbolicity constant of the space
X, i.e., δ(X) = inf{δ > 0 : X is δ-hyperbolic }. The space X is said to be Gromov hyperbolic (or simply
hyperbolic) if it is δ-hyperbolic for some δ > 0. If X is not hyperbolic, then define δ(X) = ∞.

Example 1.

I Each bounded space S is (diam S)/2-hyperbolic [2] (p. 29).
II Any complete simply connected manifold with sectional curvature above bounded by −k2 < 0 is hyperbolic

(see, e.g., in [45] (p. 130) and [2] (p. 52)).
III Every tree with edges of arbitrary length is 0-hyperbolic (see, e.g., in [2] (p. 29)).

In fact, the hyperbolicity constant δ(X) of a geodesic metric space can be interpreted as a way
to decide how far the space is from being a tree. Recall that the metric trees are the spaces with
hyperbolicity constant equal to zero. In practice, the borderline between tractable and intractable
problems can be the tree-like degree of the corresponding graph (see [46]).

Next, the class of maps which play a central role in the theory is presented.

Definition 3. Given constants a > 1, b > 0, a function between two metric spaces f : X −→ Y is said to be
an (a, b)-quasi-isometry if

1
a

dX(x1, x2)− b 6 dY( f (x1), f (x2)) 6 adX(x1, x2) + b , for every x1, x2 ∈ X.

An (a, b)-quasigeodesic in X is an (a, b)-quasi-isometry from a real interval to X.

Next result shows that quasi-isometries preserve hyperbolicity. That is why they play a central
role in Gromov hyperbolic spaces.

Theorem 1. ([2] (p. 88)) Let us consider an (a, b)-quasi-isometry between two geodesic metric spaces f :
X −→ Y. If Y is hyperbolic, then X is hyperbolic. Furthermore, if f is onto, then X is hyperbolic if and only if Y
is hyperbolic.

Definition 4. Let us consider H > 0, a metric space X, and subsets Y, Z ⊆ X. The set VH(Y) := {x ∈ X :
d(x, Y) 6 H} is called the H-neighborhood of Y in X. The Hausdorff distance between Y and Z is defined
byH(Y, Z) := inf{H > 0 : Y ⊆ VH(Z), Z ⊆ VH(Y)}.

The following is a beautiful and useful result:

Theorem 2. ([2] (p. 87)) For each δ > 0, a > 1 and b > 0, there exists a constant H = H(δ, a, b), which
only depends on these three parameters, with the following property:

Let us consider any δ-hyperbolic geodesic metric space X, any (a, b)-quasigeodesic g joining x and y. If γ

is any geodesic joining x and y, thenH(g, γ) 6 H.

Mario Bonk proved that the above property, known as “geodesic stability”, is equivalent to
hyperbolicity, as shown below.

Theorem 3. ([47] (p. 286)) Let us consider a geodesic metric space X with the following property:
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For each a > 1 there exists a constant H such that for any x, y ∈ X, any (a, 0)-quasigeodesic g in X
joining x and y, and any geodesic γ joining x and y, the inequalityH(g, γ) 6 H holds.

Then, X is hyperbolic.

Note that Theorems 2 and 3 give that, in fact, the hypothesis in Theorem 3 is equivalent to
the following: For each a > 1 and b > 0 there exists a constant H such that for any x, y ∈ X,
any (a, b)-quasigeodesic g in X joining x and y, and any geodesic γ joining x and y, the inequality
H(g, γ) 6 H holds.

3. Directed Graphs

If G = (V(G), E(G)) is a directed (finite or infinite) graph, with V(G) the set of vertices and E(G)

the edges, we use the notation uv for an edge starting at a vertex u and ending at the vertex v. As we
allow loops and multiple edges this notation is ambiguous, but it is convenient. We suppose that G is
locally finite, i.e., each vertex belongs to a finite amount of edges. Also, assume that each edge uv has
length LG(uv). We shall identify (by an isometry) each directed edge uv ∈ E(G) with the directed real
interval [0, l] (where l := LG(uv)); therefore, any point in the interior of the edge uv is a point of G,
and then G is a metric directed graph.

Definition 5. We say that a directed graph is admissible if it is connected (for every x, y ∈ G there exists
a directed path from x to y), locally finite (i.e., every vertex has finite degree) and we have uv ∈ E(G) if and
only if vu ∈ E(G) (we allow LG(uv) 6= LG(vu)). (See Figure 1a.)

Given an admissible graph G and two adjacent vertices u, v ∈ V(G), let us define the parameters

C(u, v) :=
max{LG(e) : e is an edge joining either u and v or v and u}
min{LG(e) : e is an edge joining either u and v or v and u} ,

C(G) := sup{C(u, v)},
D(G) := sup{LG(e) : e ∈ E(G)}.

Note that 1 6 C(u, v) 6 C(G) 6 ∞ and 0 < D(G) 6 ∞.

Definition 6. Given an admissible graph G, we define its canonical graph G0 as the simple (without loops
and multiple edges) undirected graph with V(G0) = V(G) obtained by replacing the directed edges joining two
adjacent vertices u and v in G by a single undirected edge, uv ∈ E(G0), with

LG0(uv) := max{LG(e) : e is an edge joining either u and v or v and u}.

It can be checked that G0 is a geodesic metric space; thus, we also see G0 as a metric graph (see Figure 1b).

Remark 1. Note that if C(G) < ∞, then for any edge e ∈ E(G) joining u and v (or v and u) it holds

LG(e) 6 LG0(uv) 6 C(G) LG(e). (1)

Although there is no usual distance in an admissible directed graph G, we introduce now the
following quasi-distance or quasi-metric DG:

DG(a, b) := inf{LG(η) : η is a directed curve starting at a and ending at b}.

Recall that a quasi-distance satisfies the properties of a distance except for the symmetry, e.g., it is
possible to have DG(a, b) 6= DG(b, a).
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However, we have the following relationship between DG(u, v) and DG(v, u): if C(G) < ∞, then

1
C(G)

DG(u, v) 6 DG(v, u) 6 C(G)DG(u, v), for every u, v ∈ V(G).

Quasi-metrics are used in many contexts, such as Computer Science and Approximation Theory.
From a historical viewpoint, a kind of quasi-metric spaces were already considered for the first time by
Hausdorff in his book on Set Theory [48]. This concept is extended later to introduce quasi-uniform
topological spaces. Other authors also studied asymmetric distances. In [49], Künzi claims that there
was much progress in quasi-uniform spaces between the years 1966 and 1982. This is just the period
when different authors gave the first steps in asymmetric approximation. Indeed, to the intrinsic
interest of this topic we might add applications in Approximation Theory and Computer Science. That
is why there exists a vast amount of results both on abstract asymmetric normed spaces and on more
general quasi-metric spaces.

One of the main applications in Computer Science is the project to develop robust models for
measuring the complexity distance between programs and algorithms, which has been considered
in the last 40 years. A model in the context of quasi-metric spaces was introduced by M. Schellekens
in [50] and further developed by different authors (see, e.g., [51] and the references therein).

Definition 7. Given constants a > 1, b > 0, we say that a function between an interval I of R and a directed
graph f : I −→ G is an (a, b)-quasigeodesic if

1
a
(t− s)− b 6 DG( f (s), f (t)) 6 a (t− s) + b , for every s, t ∈ I, with s 6 t.

A geodesic in a directed graph (G, DG) is a (1, 0)-quasigeodesic in (G, DG). We denote by [xy] a geodesic
starting at x and ending at y. (See Figure 1).

(a)

(b)

Figure 1. (a) An admissible graph G. (In bold face, the directed geodesic joining A and E); (b) Its
canonical graph G0. (In bold face, the geodesic joining A and E).
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Next, let us define the Hausdorff distance in any directed graph G.

Definition 8. Let us consider a directed graph G, and subsets A, B ⊆ G. We define the “Hausdorff
distance”, HG(A, B), between A and B in G as the infimum of the positive numbers α satisfying the two
following properties:

I For every a ∈ A there exists b ∈ B such that DG(a, b) 6 α and DG(b, a) 6 α.
II For every b ∈ B there exists a ∈ A such that DG(b, a) 6 α and DG(a, b) 6 α.

Note thatHG is a symmetric function although DG is, in general, non-symmetric.

Definition 9. Given an admissible directed graph G such that C(G), D(G) are finite numbers, we say that G
is δ-hyperbolic if and only if its canonical graph G0 is δ-hyperbolic. We say that G is hyperbolic or Gromov
hyperbolic if it is δ-hyperbolic for some δ > 0.

To prove the following theorem we need two last definitions.

Definition 10. If G is an admissible directed graph and x1, x2, x3 ∈ G, a geodesic triangle T = {x1, x2, x3}
in G is the union of three directed geodesics J1 = [x1x2] (or [x2x1]), J2 = [x2x3] (or [x3x2]) and J3 =

[x3x1] (or [x1x3]). We say that T is δ-thin if for every x ∈ Ji there exists a point y ∈ ∪j 6=i Jj such that
DG(x, y), DG(y, x) 6 δ.

Definition 11. If uv is an edge in the admissible directed graph G (or in the graph G0) and x ∈ uv, we denote
by ux (respectively, xv) the segment contained in uv starting at u and ending at x (respectively, starting at
x and ending at v). Let us define the canonical projection Π : G → G0 as follows: Π(v) = v for every
v ∈ V(G); if x ∈ uv ∈ E(G), then Π(x) is the point in uv ∈ E(G0) such that

LG0

(
uΠ(x)

)
= LG(ux)

LG0(uv)
LG(uv)

.

The following result shows that we have a reasonable definition of Gromov hyperbolic
directed graphs.

Theorem 4. Any geodesic triangle T in a δ-hyperbolic admissible directed graph G with C(G), D(G) finite
numbers is δ′-thin, with δ′ a constant which only depends on δ, C(G) and D(G).

Proof. We perform the proof in three steps. We first show that given any geodesic γ in G, then Π(γ)

is a (C(G), 4D(G))-quasigeodesic in G0. Then, we prove that every (a, b)-quasigeodesic triangle in
G0 is (δ + 2H(δ, a, b))-thin, where H(δ, a, b) is the constant in Theorem 2. These facts will allow us to
conclude that every geodesic triangle in G is δ′-thin, with δ′ = δ + 2H(δ, C(G), 4D(G)) + 4D(G).

Step 1. From (1) we can deduce that

DG(x, y) 6 dG0(Π(x), Π(y)) 6 C(G)DG(x, y) for every x, y ∈ V(G). (2)

If u ∈ V(G) and x belongs to some edge starting or ending at u, then DG(x, u), DG(u, x) 6 2D(G); this
fact and (2) allows to deduce

DG(x, y)− 4D(G) 6 dG0(Π(x), Π(y)) 6 C(G)DG(x, y) for every x, y ∈ G. (3)

Therefore, if γ is a geodesic in G starting at x and ending at y, according to (3), we have that Π(γ) is
a (C(G), 4D(G))-quasigeodesic in G0 joining Π(x) and Π(y).
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Step 2. Let us consider an (a, b)-quasigeodesic triangle T′ in G0, whose sides we will denote by
g1, g2 and g3. Let γj be the geodesic in G0 joining the same endpoints of gj for every j = 1, 2, 3, and let
us denote by T0 the geodesic triangle in G0 with sides γ1, γ2, γ3.

Let us consider any point p′ ∈ T′; without lost of generality we can assume that p′ ∈ g1.
By Theorem 2 we know that there exist a constant H = H(δ, a, b) > 0 and a point p0 ∈ γ1 with
dG0(p′, p0) 6 H. As T0 is δ-thin, there exists q0 ∈ γ2 ∪ γ3 with dG0(p0, q0) 6 δ. According to
Theorem 2, there exists a point q′ ∈ g2 ∪ g3 with dG0(q

′, q0) 6 H.
Therefore,

dG0(p′, g2 ∪ g3) 6 dG0(p′, q′) 6 dG0(p′, p0) + dG0(p0, q0) + dG0(q0, q′) 6 H + δ + H,

and T′ is (δ + 2H(δ, a, b))-thin.
Step 3. Consequently, if T is a geodesic triangle in G, by Step 1 we have that T′ := Π(T) is

a (C(G), 4D(G))-quasigeodesic triangle in G0, and by Step 2 we know that T′ is (δ + 2H)-thin with
H = H(δ, C(G), 4D(G)). Let us prove now that T is δ′-thin in G.

Given any point p ∈ T, there exists a point q in a different side of T such that dG0(Π(p), Π(q)) 6
δ + 2H. Consider a geodesic γ′ joining Π(p) and Π(q) in G0. Let us assume that p and q belong to the
interior of the directed edges upvp and uqvq, respectively (if p or q are vertices the argument is easier).
Denote by wp and wq the vertices in {up, vp} and {uq, vq}, respectively, such that Π(wp), Π(wq) ∈ γ′,
and we define γ′0 as the closure of γ′ \Π(upvp ∪ uqvq). Then, there exists a curve σ in G from wp to wq

such that Π(σ) = γ′0 and LG(σ) 6 LG0(γ
′
0) < dG0(Π(p), Π(q)) 6 δ + 2H. We can choose curves σp, σq

in G from p to wp and from wq to q, respectively, with LG(σp), LG(σq) < 2D(G). Then σp ∪ σ ∪ σq is
a curve from p to q, and DG(p, q) 6 LG(σp) + LG(σ) + LG(σq) 6 δ + 2H + 4D(G). A similar argument
gives DG(q, p) 6 δ + 2H + 4D(G).

Therefore, any geodesic triangle T in G is δ′-thin, with δ′ = δ + 2H(δ, C(G), 4D(G)) + 4D(G) and
H the constant in Theorem 2.

We prove now one of the main results both of the theory and the applications: the geodesic
stability is equivalent to the Gromov hyperbolicity for directed graphs.

Theorem 5. The following statements hold:

I For each δ, b, D > 0 and a, C > 1, there exists a constant H = H(δ, a, b, C, D), which only depends on
these five parameters, with the following property:

Let us consider any admissible δ-hyperbolic directed graph G with C(G) 6 C and D(G) 6 D, any
x, y ∈ G, and any (a, b)-quasigeodesic g starting at x and ending at y. If γ is any geodesic starting at x
and ending at y (or starting at y and ending at x), thenHG(g, γ) 6 H.

II Let us consider any admissible directed graph G with C(G), D(G) finite numbers, satisfying the following
property.

For each a > 1 and b > 0 there exists a constant H such that for any x, y ∈ G, any (a, b)-quasigeodesic
g in G starting at x and ending at y, and any geodesic γ starting at x and ending at y, the inequality
HG(g, γ) 6 H holds.

Then, G is hyperbolic.

Proof. First of all, note that from (3) we deduce for every A, B ⊆ G,

HG(A, B)− 4D(G) 6 HG0(Π(A), Π(B)) 6 C(G)HG(A, B) . (4)

Let us prove now the first statement. Consider x, y ∈ G, an (a, b)-quasigeodesic g starting at x and
ending at y, and a geodesic γ starting at x and ending at y (or starting at y and ending at x). According
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to Step 1 in the proof of Theorem 4 we have that Π(γ) is a (C, 4D)-quasigeodesic in G0 joining Π(x)
and Π(y).

We prove now that Π(g) is a (Ca, Cb + 4D)-quasigeodesic in G0 joining Π(x) and Π(y). If g :
[α, β] → G is a parametrization of g with 1

a (t − s) − b 6 DG(g(s), g(t)) 6 a (t − s) + b for every
α 6 s 6 t 6 β, then we obtain by using (3)

1
a
(t− s)− b− 4D 6 dG0(Π(g(s)), Π(g(t))) 6 Ca (t− s) + Cb for every α 6 s 6 t 6 β. (5)

Therefore, we conclude that Π(g) is a (Ca, Cb + 4D)-quasigeodesic in G0, since C > 1.
Now, we can finish the proof of the first statement from Definition 9 and Equation (4):
If the directed graph G is δ-hyperbolic, then G0 is δ-hyperbolic by Definition 9. According to

Theorem 2 there exists a constant H̃ = H̃(δ, Ca, Cb + 4D) > 0 such that if γ0 is a geodesic in G0 joining
Π(x) and Π(y), thenHG0(Π(γ), γ0) 6 H̃ andHG0(Π(g), γ0) 6 H̃; consequently,HG0(Π(γ), Π(g)) 6
2H̃. Applying now (4) we deduceHG(γ, g) 6 H with H := 2H̃ + 4D.

Let us prove now the second statement. Consider x0, y0 ∈ G0, an (a, 0)-quasigeodesic g0 joining
x0 with y0, and a geodesic γ0 joining x0 with y0. Fix x, y ∈ G, with Π(x) = x0 and Π(y) = y0. Let us
assume that x and y belong to the interior of the directed edges ex and ey, respectively, with Π(ex) 6=
Π(ey) (if x or y are vertices or Π(ex) = Π(ey), the argument is easier).

If g0 : [α, β]→ G0 is a parametrization of g0 with 1
a (t− s) 6 dG0(g0(s), g0(t)) 6 a (t− s) for every

α 6 s 6 t 6 β, then we define

α1 := sup{t ∈ [α, β]/ g0(t) ∈ Π(ex) },
β1 := inf{t ∈ [α, β]/ g0(t) ∈ Π(ey) }.

As g0 is a continuous and injective map, we have g0(t) ∈ Π(ex) for every t ∈ [α, α1], and g0(t) ∈ Π(ey)

for every t ∈ [β1, β].
For each e ∈ E(G0) \ {Π(ex), Π(ey)} such that e ∩ g0 has more than one point, we define

te
1 := min{t ∈ [α, β]/ g0(t) ∈ e },

te
2 := max{t ∈ [α, β]/ g0(t) ∈ e }.

As g0 is a continuous and injective map, we have g0(te
1) 6= g0(te

2) and g0(t) ∈ e if and only if t ∈ [te
1, te

2].
If t ∈ [α1, β1], then there exists e ∈ E(G0) \ {Π(ex), Π(ey)} such that e ∩ g0 has more than

one point, with t ∈ [te
1, te

2]; let us choose a directed edge g0(te
1)g0(te

2) ∈ E(G) and define a curve
g2 : [α1, β1]→ G as follows; g2(t) is the unique point in g0(te

1)g0(te
2) with Π(g2(t)) = g0(t).

If ex ends at g0(α1), then we define a curve g1 : [α′, α1] → G as follows: g1(t) is the unique
point in ex with Π(g1(t)) = g0(t), and α′ = α. If ex starts at g0(α1) and ends, say, at u, then let
us choose an oriented edge ug0(α1) ∈ E(G); we define a curve g1 : [α′, α1] → G such that g1 is
an arclength parametrization of xu ∪ ug0(α1) (obviously, α′ = α1 − LG(xu ∪ ug0(α1))). Note that
α1 − α′ = LG(xu ∪ ug0(α1)) < 2D(G).

If ey starts at g0(β1), then we define a curve g3 : [β1, β′] → G as follows: g3(t) is the unique
point in ey with Π(g3(t)) = g0(t), and β′ = β. If ey ends at g0(β1) and starts, say, at v, then let
us choose an oriented edge g0(β1)v ∈ E(G); we define a curve g3 : [β1, β′] → G such that g3 is
an arclength parametrization of g0(β1)v ∪ vy (obviously, β′ = β1 + LG(g0(β1)v ∪ vy)). Note that
β′ − β1 = LG(g0(β1)v ∪ vy) < 2D(G).

We prove now that g := g1 ∪ g2 ∪ g3 is an (aC(G), 8D(G))-quasigeodesic in G starting at x and
ending at y. We deal just with the case α′ = α1 − LG(xu ∪ ug0(α1)) and β′ = β1 + LG(g0(β1)v ∪ vy),
as the cases α′ = α and β′ = β, α′ = α and β′ = β1 + LG(g0(β1)v∪ vy), and α′ = α1− LG(xu∪ ug0(α1))

and β′ = β are simpler.
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Note that (3) gives

1
C(G)

dG0(Π(z), Π(w)) 6 DG(z, w) 6 dG0(Π(z), Π(w)) + 4D(G), for every z, w ∈ G. (6)

If α1 6 s 6 t 6 β1, then (6) gives

1
aC(G)

(t− s) 6 DG(g(s), g(t)) 6 a(t− s) + 4D(G).

If α′ 6 s 6 t 6 α1 or β1 6 s 6 t 6 β′, then

DG(g(s), g(t)) = t− s.

If α′ 6 s 6 α1 6 t 6 β1, then as a, C(G) > 1, we deduce

DG(g(s), g(t)) 6 DG(g1(s), g(α1)) + DG(g(α1), g2(t)) 6 2D(G) + dG0(g0(α1), g0(t)) + 4D(G)

6 a(t− α1) + 6D(G) 6 a(t− s) + 6D(G),

DG(g(s), g(t)) > DG(g(α1), g2(t))− DG(g(α1), g1(s))

>
1

C(G)
dG0(g0(α1), g0(t))− 2D(G) >

1
aC(G)

(t− α1)− 2D(G)

>
1

aC(G)
(t− s)− 2D(G)

aC(G)
− 2D(G) >

1
aC(G)

(t− s)− 4D(G).

If α1 6 s 6 β1 6 t 6 β′, then a similar argument also gives

1
aC(G)

(t− s)− 4D(G) 6 DG(g(s), g(t)) 6 a(t− s) + 6D(G).

If α′ 6 s 6 α1 and β1 6 t 6 β′, then

DG(g(s), g(t)) 6 DG(g1(s), g(α1)) + DG(g(α1), g(β1)) + DG(g(β1), g3(t))

6 2D(G) + dG0(g0(α1), g0(β1)) + 4D(G) + 2D(G)

6 a(β1 − α1) + 8D(G) 6 a(t− s) + 8D(G),

DG(g(s), g(t)) > DG(g(α1), g(β1))− DG(g(α1), g1(s))− DG(g3(t), g(β1))

>
1

C(G)
dG0(g0(α1), g0(β1))− 4D(G) >

1
aC(G)

(β1 − α1)− 4D(G)

>
1

aC(G)
(t− s)− 4D(G)

aC(G)
− 4D(G) >

1
aC(G)

(t− s)− 8D(G).

Therefore, we conclude

1
aC(G)

(t− s)− 8D(G) 6 dG0(Π(g(s)), Π(g(t))) 6 a(t− s) + 8D(G), for every α′ 6 s 6 t 6 β′,

and g is an (aC(G), 8D(G))-quasigeodesic in G starting at x and ending at y, as C(G) > 1. Furthermore,
g0 ⊆ Π(g) and LG0(Π(g) \ g0) 6 D(G).

If we replace g0 by γ0, then a similar process also gives an (aC(G), 8D(G))-quasigeodesic γ in G
starting at x and ending at y, with γ0 ⊆ Π(γ) and LG0(Π(γ) \ γ0) 6 D(G).

Then, by hypothesis, there exists a constant H, which depends neither on g or γ (C(G) and
D(G) are constants which only depends on G) such that HG(γ, g) 6 H. By (4), we deduce that
HG0(Π(γ), Π(g)) 6 C(G)HG(γ, g) 6 C(G)H. As g0 ⊆ Π(g), γ0 ⊆ Π(γ), LG0(Π(g) \ g0) 6 D(G)
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and LG0(Π(γ) \ γ0) 6 D(G), we conclude thatHG0(γ0, g0) 6 C(G)H + 2D(G). Finally, by Theorem 3,
G0 is hyperbolic and, by Definition 9, G is hyperbolic.

4. Conclusions

The theory of hyperbolic metric spaces is a well-studied subject. A natural question is how
to develop this theory in the context of spaces with “asymmetric distances”. This problem was
faced by Edmond Jonckheere in [42] by using noncommutative geometry. Our main aim in this
paper is to show a new mathematical theory to provide an alternative and simpler approach to the
problem: directed graphs. This point of view introduces asymmetry as something natural. Therefore,
in this work, we extend the theory of Gromov hyperbolicity to the new context of directed graphs.
In particular, we prove one of the most important results of the theory: a counterpart to the geodesic
stability theorem, which happens to be the most utilized theorem both in theory and in applications of
hyperbolic spaces in the usual context of geodesic metric spaces.
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