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SERVICE ROBOTS AND COVID-19: EXPLORING PERCEPTIONS OF 

PREVENTION EFFICACY AT HOTELS IN GENERATION Z

Purpose: COVID-19 is expected to enhance hospitality robotization because frontline robots 

facilitate social distancing, lowering contagion risk. Investing in frontline robots emerges as 

a solution to recover customer trust and encourage demand. However, we ignore how 

customers perceive these initiatives and, therefore, their efficacy. Focusing on robot 

employment at hotels and on Generation Z customers, this research analyzes guests’ 

perceptions about robots’ COVID-19 prevention efficacy, and their impact on booking 

intentions.

Design/methodology/approach: This study tests its hypotheses combining an experimental 

design methodology with partial least squares. Survey data from 711 Generation Z 

individuals in Spain were collected in two periods of time.

Findings: Generation Z customers consider that robots reduce contagion risk at hotels. Robot 

anthropomorphism increases perceived COVID-19 prevention efficacy, regardless of the 

context where the robots are employed. Robots’ COVID-19 prevention efficacy provokes 

better attitudes and higher booking intentions.

Originality/value: This study combines preventive health, robotics, and hospitality literature 

to study robot implementation during the COVID-19 pandemic, focusing on Generation Z 

guests —potential facilitators of robot diffusion. 

Research limitations/implications: The sampling method employed in this research impedes 

our results generalization. Further research could replicate our study employing random 

sampling methods to ensure representativeness, even for other generational cohorts. 

Practical implications: Employing robots as a COVID-19 prevention measure can enhance 

demand, especially if robots are human-like. Hoteliers need to communicate that robots can 

reduce contagion risk, particularly in markets more affected by COVID-19. Robots must be 

employed in low social presence contexts. Governments could encourage robotization by 

financially supporting hotels and publicly acknowledging its benefits regarding COVID-19 

prevention.

Keywords: Robots, COVID-19, prevention efficacy, anthropomorphism, social presence, 

Generation Z
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SERVICE ROBOTS AND COVID-19: EXPLORING PERCEPTIONS OF 

PREVENTION EFFICACY AT HOTELS IN GENERATION Z

1. INTRODUCTION

Service robot employment in hospitality firms occurs within a more general trend of 

replacing interpersonal encounters with technological interfaces (e.g., Kim and Qu, 2014; 

Lee et al., 2018). These robots are system-based machines furnished with artificial 

intelligence, that interact, communicate, and deliver a wide variety of customer services 

(Wirtz et al., 2018).  They are expected to become a relevant competitive asset for the 

hospitality industry in the near future (Murphy et al., 2019). Service robot adoption by 

hospitality firms will take place in a context dominated by COVID-19, at least during its 

early phases—as suggested by the evolution of the disease (World Health Organization, 

2021). COVID-19 is likely to accelerate robotization processes in the hospitality and 

tourism industries (e.g., Cha, 2020; Seyitoğlu and Ivanov, 2020; Zeng et al., 2020), in 

spite of the unfavorable context of demand contraction provoked by the virus, because 

robots, as other automation technologies, are advantageous tools to implement a 

necessary social distancing during the pandemic (Ivanov et al., 2020). Thus, for example, 

some hotels from the Hilton and Marriott chains have already incorporated robots for this 

purpose (Hospitality Technology, 2020). Social distancing concerns will persist in the 

post-pandemic world (Goretti et al., 2021), thus making investments  in this technology 

also profitable in the long term.

Embracing a  customer point of view is critical to advance in our comprehension of 

robotics in hospitality (e.g., Belanche, Casaló and Flavián, 2020a, 2020b; Tussyadiah and 

Park, 2018; Xu et al., 2020). Therefore, managers’ decisions to implement service robots 

as a means of achieving social distancing have to be evaluated from the customer’s 

perspective. Restoring customer confidence is essential for business recovery in this 

pandemic (Jiang and Wen, 2020), but we do not know whether customers really consider 

that robots can lower the contagion risk or, even more, the impact of these initiatives of 

customer preferences. In other words, we lack a proper evaluation of such initiatives, 

beyond their health benefits, which impedes a confident implementation of them in 

hospitality firms. Thus, the purpose of this study is exploring how customers evaluate 

robot employment in frontline tasks at hospitality firms, particularly at hotels, in terms of 

COVID-19 prevention, and the impact of such assessment on booking intentions. 
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We conduct our empirical analysis on Generation Z customers—individuals born 

between 1995 and the late 2000s (Băltescu, 2019). Generation Z constitutes an interesting 

group to study for several reasons. First, despite being an attractive market segment for 

hospitality firms as potential or actual high spenders (Dimitriou and Abouelgheit, 2019), 

they have seldom been researched in hospitality from a consumer perspective (e.g., Bravo 

et al., 2020; Haddouche and Salomone, 2018) and not regarding to service robot 

acceptance. Second, Generation Z members are technology savvy and use social media 

extensively (Turner, 2015), which makes them potential facilitators of robot diffusion. 

Finally, the younger generation’s perceptions of robots will guide robot design in the 

future (de Kervenoael et al., 2020), making Generation Z customers an appealing group 

to study. 

Hence, this research contributes to extant literature by analyzing how potential hospitality 

customers—particularly Generation Z members—perceive service robot adoption by 

firms in terms of COVID-19 prevention. We respond to research calls on frontline 

automation in the context of COVID-19 (Jiang and Wen, 2020). We study how this 

perception generates attitudes toward such technology and its impact on booking 

intentions. We find that customers from Generation Z consider that robots can reduce 

COVID-19 contagion risk at hotels. However, hotel managers cannot use them 

indiscriminately in all frontline tasks. We provide managerial recommendations 

involving robot adoption by hotels and communication strategies, together with cues for 

policy makers aiming to help hospitality firms. Throughout this paper, the term “robot” 

refers to “service robot,” unless otherwise specified.

2. LITERATURE REVIEW

COVID-19 has provoked an unprecedented crisis in the hospitality and tourism industries 

(Matiza, 2020). Beyond mobility and occupation restrictions, this disease has increased 

health concerns among the population and reduced revenues in hospitality firms due to 

people’s beliefs about being susceptible to COVID-19 (Jiang and Wen, 2020; Neuburger 

and Egger, 2020), expecting a long-lasting effect beyond the current pandemic (Matiza, 

2020). Robots already performed frontline tasks in hospitality before the pandemic 

(concierges, waiters, bartenders, etc.). This technology allows enhancing customer 

experience  and achieving cost reductions (e.g., Belanche, Casaló and Flavián, 2020b; 

Cha, 2020; de Kervenoael et al., 2020; Shin and Jeong, 2020). Nowadays, COVID-19 is 
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spawning another incentive for robotization: recovering customer trust due to a higher 

social distance (Jiang and Wen, 2020). However, we ignore whether robotization 

initiatives responding to this motivation are valid. Customer acceptance of robots is 

typically studied in the light  of customer- robot- and service encounter-related factors 

(Belanche, Casaló, Flavián, et al., 2020a), and omit customer assessment of robots as a 

means of preventing COVID-19. We next propose a research model that considers the 

impact of such assessment on booking intentions by integrating robot acceptance and 

preventive health care literature.

Generation Z customers—the generational cohort selected to study customer assessment 

of robots as a means of preventing COVID-19—are usually described as digital natives, 

fully connected virtually, technology open and savvy, and willing to accept innovative 

products and services (Băltescu, 2019; Bravo et al., 2020; Dimitriou and Abouelgheit, 

2019). Research focusing on robots’ acceptance by Generation Z is scarce. Generation Z 

hospitality students –future managers in this industry– consider that robots can perform 

service tasks properly as hospitality workforce (Ivkov et al., 2020). Thus, their general 

knowledge of technology could enhance their acceptance of robotics systems also as 

customers, due to a better understanding of their benefits (Belanche et al., 2019; 

Belanche, Casaló and Flavián, 2020b). Nevertheless, this generational cohort does not 

show necessarily a positive emotional response toward robots, indeed leaning more 

toward fear and anxiety (Fenech et al., 2020). Beyond Generation Z-focused research, 

extant literature that controls for age effects reports either counterintuitive results 

regarding younger people’s motivations for hospitality robots adoption (Cha, 2020), or a 

non-significant influence of age (Belanche et al., 2019). Thus, previous research does not 

provide clear clues to understand Generation Z acceptance of service robots as hospitality 

customers, neither in general nor for the current pandemic. Similarly,  preventive health 

care literature about Generation Z members and COVID-19 does not consider 

robotization or other technologies either, focusing on what media are appropriate for 

conveying information about the disease to this generational cohort (Kamenidou et al., 

2020). Thus, we conduct our literature review without circumscribing it to any 

generational cohort or age group.

Model overview

Our model includes three main constructs, namely prevention efficacy, 

anthropomorphism, and social presence (customer-, robot-, and service encounter-related 

Page 4 of 35

http://mc.manuscriptcentral.com/ijchm

International Journal of Contemporary Hospitality Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Contem
porary Hospitality M

anagem
ent

factors respectively). Prevention efficacy captures the extent to which a person considers 

that robots reduce this health threat. Anthropomorphism is a perception of human-like 

traits in a non-human agent (Epley, 2018). Particularly, we focus on physical human 

likeness. Social presence captures the “sense of being with another” (Biocca et al., 2003; 

Heeter, 1992). These three constructs determine attitudes toward being attended by a 

robot, which influence booking intentions. We borrow prevention efficacy and some of 

its drivers that apply to our research from the Extended Health Belief Model (Burns, 

1992), hereafter EHBM. This model explains the decision process through which 

individuals move regarding preventive health actions. The model states that, due to 

antecedents that include individual factors among others, people first evaluate the risk 

associated with an illness (stage 1). Next, individuals assess potential remedies (stage 2). 

Finally, individuals assess the outcome of such remedies after implementing them (stage 

3). From this model we take three concepts for our research: health history, health 

importance, and perceived susceptibility. Health history relates to past illness 

experiences; health importance indicates the degree to which a person values good health; 

perceived susceptibility captures beliefs about being susceptible to a disease (Abraham 

and Sheeran, 2015; Kirscht, 1998).  

Thus, grounding on the EHBM, we propose that individuals who have been more affected 

in some way by COVID-19 are more concerned about health importance; and that health 

importance leads to a higher perceived susceptibility and a better evaluation of robots as 

a means to reduce contagion risk. Such evaluation provokes better attitudes toward being 

attended by a robot, that is, better affective reactions (Ahadzadeh et al., 2015; Venkatesh 

et al., 2003). We propose that better attitudes lead to higher booking intentions at the 

hotels employing robots for reducing the COVID-19 risk of contagion. 

We augment the EHBM by including anthropomorphism and the social presence of the 

context where the robot will be used, as additional determinants of prevention efficacy. 

Previous literature suggests that individuals evaluate service robot performance taking 

into account anthropomorphism (Goudey and Bonnin, 2016; Gursoy et al., 2019; Kim et 

al., 2019; Park, 2020; Yu, 2020; Zhu and Chang, 2020). Hence, we consider it plausible 

that anthropomorphism also might affect prevention efficacy perceptions. Given that 

prevention efficacy indeed occurs because robots reduce social contact, we expect that 

the degree of social presence associated with a context also affects prevention efficacy 

assessments. Hence, we argue that both anthropomorphism and social presence might 
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influence attitudes toward being attended by a robot through their impact on prevention 

efficacy. Additionally, more in line with previous research, we propose that there could 

be also a direct influence of anthropomorphism and social presence on attitudes toward 

being attended by a robot (e.g., Ivanov et al., 2020; Lu et al., 2019; Tung and Au, 2018).  

2.1. Prevention efficacy of robots for COVID-19 contagion risk.

The EHBM (Burns, 1992) deals with the adoption of preventive health behaviors by 

healthy subjects through three stages. Our research focuses on the first two: threat 

assessment and preventive health action assessment.

Threat assessment depends on several factors. We highlight three of them: health history, 

health importance, and perceived susceptibility. Health history refers to past health 

experiences. People experiencing a serious illness, either directly or in close family 

members, develop positive feelings toward preventive actions (LeSeure and Chongkham-

ang, 2015; Reiter et al., 2020). Previous research shows that people who know that a 

relative or a friend has been infected by COVID-19 are more concerned about their own 

health (Asare et al., 2020; Shmueli, 2021). Given our research focus, we operationalize 

health history as the degree to which potential guests or their close relationships have 

suffered from COVID-19; and health importance as the importance attributed to health 

during a stay at a hotel, where contagion might occur due to sharing space with other 

people. Thus, consistent with previous literature, we expect that people in any way 

affected by COVID-19 will consider health as more important when staying at a hotel. 

H1: Health history is positively associated with health importance. 

Next, we posit that the higher the health importance, the more prone people are to consider 

themselves as more susceptible to COVID-19 exposure (that is, they have a higher 

perceived susceptibility for this disease). COVID-19’s omnipresence in daily life makes 

people aware of contagion risk. Media coverage of the disease can increase perceived 

susceptibility (Ranjit et al., 2021; Zemke et al., 2015). Due to selective distortion, we 

consider that this effect must be more intense in the case of people worried about health 

issues. Consistently, previous research suggests that people who are more concerned 

about their health or are more health-conscious consider themselves more susceptible to 

COVID-19 (Shmueli, 2021; Wong et al., 2021). Thus, we argue that health importance 

during a hotel stay increases the perception of being potentially exposed to COVID-19.

H2: Health importance is positively associated with perceived susceptibility.
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After assessing the disease threat, individuals evaluate preventive health actions. 

Therefore, customers can evaluate the prevention efficacy of COVID-19 prevention 

measures adopted by companies. People with higher levels of perceived susceptibility 

have a greater motivation to adopt a health-oriented behavior (e.g., Ahadzadeh et al., 

2015; Cahyanto et al., 2016; Scarinci et al., 2021) and hence positively assess prevention 

measures. For example, individuals who consider themselves susceptible to being 

infected by COVID-19 tend to perceive more benefits from vaccination (Shmueli, 2021). 

Similarly, given that robots decrease human-to-human contact, we expect that customers 

with higher perceived susceptibility will consider robots more positively as a prevention 

measure than customers with lower levels of perceived susceptibility.

H3:  Perceived susceptibility is positively associated with prevention efficacy.

Subsequently, the EHBM proposes that after evaluating the value of a preventive action, 

subjects develop a predisposition to action. Thus, people who positively evaluate the 

benefits of COVID-19 vaccines are more willing to receive them (Reiter et al., 2020; 

Shmueli, 2021; Wong et al., 2021; Zampetakis and Melas, 2021). Similarly, if people 

consider that COVID-19 safety measures are beneficial (for example, using face masks 

and sanitizers, keeping social distance), they will be more likely to adopt such measures 

(Asare et al., 2020; Tong et al., 2020). We expect a similar effect for prevention efficacy 

of robots. We consider that if customers perceive robots can reduce the COVID-19 

contagion risk, they will develop positive attitudes toward being attended by a robot. 

Additionally, consistent with  technology acceptance models (e.g., Davis et al., 1992;  

Kim & Qu, 2014; Kim et al., 2010; Lee et al., 2018), we expect that positive attitudes 

toward being attended by a robot will elicit higher booking intentions at the hotel 

employing robots to prevent COVID-19 contagion. 

H4: Prevention efficacy is positively associated with attitudes toward being attended by 

a service robot.

H5: Attitudes toward being attended by a service robot are positively associated with 

booking intentions.

2.2. Anthropomorphism

Robot anthropomorphism influences potential users’ perceptions, attitudes, and behaviors 

regarding robots (Goudey and Bonnin, 2016; Park, 2020; Zhu and Chang, 2020). This 

feature can originate from both psychological and physical features (e.g., Gray and 
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Wegner, 2012). The uncanny valley theory states that human likeness positively 

influences individual evaluations of robots, up to a point at which it provokes adverse 

reactions. This theory has received contradicting empirical support (Belanche, Casaló and 

Flavián, 2020a; Goudey and Bonnin, 2016) and has seldom been studied in hospitality 

(Shin and Jeong, 2020). Hospitality literature concludes that human likeness 

predominantly provokes positive perceptions about robots (Tussyadiah and Park, 2018). 

Consequently, anthropomorphism increases robot adoption intentions in hospitality and 

tourism settings (Tussyadiah, 2020; Tussyadiah and Park, 2018). Nevertheless, several 

studies find also a negative impact of human likeness (Kim et al., 2019; Lu et al., 2019; 

Yu, 2020)¸ and even report that human-like robots are not necessarily preferred by 

hospitality customers (de Kervenoael et al., 2020; Shin and Jeong, 2020). Thus, the 

effects of anthropomorphism on attitudes are still controversial (Zhu and Chang, 2020), 

making this robot feature worthy of investigation  (Tussyadiah et al., 2020).

Anthropomorphism influences how people perceive a robot in terms of two aspects: 

warmth and competence (van Doorn et al., 2017). Regarding warmth, anthropomorphism 

is positively associated to it (Kim et al., 2019; Zhu and Chang, 2020). Robots sharing 

human features are perceived as more helpful or caring, because human characteristics 

make robots more trustworthy (Tussyadiah, 2020; Tussyadiah and Park, 2018) and 

sociable (Broadbent et al., 2013; Li et al., 2010). Given these effects of human likeness, 

we argue that anthropomorphism can increase expectations about COVID-19 prevention 

efficacy. 

H6: Robot anthropomorphism is positively associated with prevention efficacy. 

Regarding competence, robot anthropomorphism is associated with robot skills and 

efficacy. Customers indeed appreciate companies investing in human-like robots, since 

this technology is then not perceived just as a means of reducing costs at the expense of 

customer satisfaction (Belanche, Casaló and Flavián, 2020b). Anthropomorphism makes 

users perceive robots as being alive, which is positively associated with inferred 

intelligence (Bartneck et al., 2009; Li et al., 2010) and, therefore, with appropriate 

performance in a service context. Individuals attribute higher capabilities to robots when 

they resemble humans (Gray and Wegner, 2012; Wirtz et al., 2018), such as being more 

able to interact with humans (van Doorn et al., 2017; Shin and Jeong, 2020) and a higher 

effectiveness (Tussyadiah and Park, 2018). These expectations about performance can 

elicit more positive attitudes toward being attended by a robot. 
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H7: Robot anthropomorphism is positively associated with attitudes toward being 

attended by a robot.

2.3. Social presence

Service encounter factors involve contextual elements, important when evaluating a 

technology (Oyedele et al., 2007) or, in general, any product or service (Fennell, 1978; 

Yang et al., 2002). Service robots are not an exception (Tussyadiah et al., 2020). Robot 

acceptance depends on the context where the human–robot interaction will occur (de 

Kervenoael et al., 2020; Tung and Au, 2018). This technology can be considered more 

trustworthy in some situations than in others, being inadequate for some activities 

(Seyitoğlu and Ivanov, 2020).

A context’s social presence involves the sense of being with other people. We propose 

that this variable will have a twofold effect. First, we argue that the perceived COVID-19 

prevention efficacy of robots will be higher when employed in contexts associated with 

a higher social presence (H8). Second, we also expect social presence to be negatively 

related to attitudes toward being attended by a robot (H9). Given that we also expect a 

positive impact of prevention efficacy on attitudes (H4), this might imply an indirect 

positive impact on attitudes (H4 and H8) together with a direct negative effect (H9).

Regarding prevention efficacy, we consider that the higher social presence of a context, 

the riskier the situation will be perceived as it involves more human-to-human contact. 

Human-to-human contact is responsible for COVID-19 contagion, hence a higher social 

presence implies a higher likelihood of exposure to this coronavirus. Individuals who 

perceive a disease as more threatening are more motivated to perform preventive actions 

(Burns, 1992), to which they attribute a higher prevention efficacy than if they do not 

perceive such threat (Liu et al., 2021). The more customers perceive a service context as 

threatening due to high social presence, the more beneficial they must perceive the 

substitution of humans by robots, as robots reduce human-to-human interactions. In other 

words, the higher the social presence in the context where a robot is employed, the higher 

prevention efficacy must be. 

H8: Social presence is positively associated with prevention efficacy. 

However, employing robots to substitute for humans in service contexts with a high social 

presence might generate worse attitudes toward being attended by such robots. 

Technological elements reducing interpersonal contact can be harmful for the relationship 
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between customers and service firms (Selnes and Hansen, 2001; Valdez Cervantes and 

Franco, 2020). Social presence is a subjective measure of being with others (Shih et al., 

2019). Hence, contexts with a high social presence are associated with human-to-human 

interactions. Individuals usually desire to connect with other individuals and experience 

their social support (Shin and Jeong, 2020). Particularly, hospitality customers expect to 

interact with employees who personalize the customer-firm relationship (de Kervenoael 

et al., 2020). Hospitality employees provide affective experiences to customers, whereas 

robots do not (Chan and Tung, 2019). Despite living in the automation age (Ratchford, 

2020), machines do not fully substitute for humans yet (Ghazizadeh et al., 2012) and 

provoke a loss of human contact during the service delivery, a key element in tourism and 

hospitality industries (Leung, 2019; Tussyadiah, 2020). Therefore, the higher the social 

presence, and hence the more human contact that the customer expects to lose due to 

automation, the lower the attitude toward the robot must be. Indeed, replacing humans 

with service robots in contexts where humans are considered necessary or at least 

prominent, for instance where emphatic interactions are required, is not appropriate (Reis 

et al., 2020). Therefore, we expect that the higher the social presence in a context, the 

lower the attitudes toward robots. 

H9: Social presence is negatively associated with attitudes toward being attended by a 

robot. 

Thus, we posit that employing robots in contexts associated with a high social presence 

deters attitudes toward being attended by a robot (H9); however, this negative impact 

might be attenuated if individuals consider that avoiding social presence when being 

attended by a robot could reduce contagion risk (H4 and H8). 

3. METHODOLOGY

3.1. Design and procedure

We tested our hypotheses about customer response to robot employment in hospitality 

contexts for COVID-19 prevention through a 3×2 experimental design, focused on hotels. 

First, we manipulated robot anthropomorphism by incorporating three levels of human 

likeness (low, medium, and high), in particular, showing respondents robot images 

corresponding to each level. Second, we manipulated the social presence of the context 

where the hotel robot was going to be employed by situating the robot in two different 
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contexts: checking in at the hotel reception vs. serving a drink at the hotel bar. Robot 

anthropomorphism and social presence are two predictors of prevention efficacy and 

attitude toward robots in our model.

We assigned our respondents to one of our six scenarios. We first told respondents that 

the purpose of the study was evaluating robots’ employment in the hospitality industry, 

without mentioning COVID-19. Employing a survey, respondents in each scenario were 

asked to evaluate the social presence of the service context presented to them. Next, we 

showed a picture of the service robot under evaluation. We requested respondents to 

evaluate anthropomorphism. Subsequently, we asked them to evaluate the remaining 

variables of our study. 

To prevent common method bias problems, we implemented several procedural 

recommendations (Podsakoff et al., 2003). We guaranteed responses’ confidentiality to 

participants and their usage only for the purpose of the study. We ensured respondent 

anonymity to avoid misleading answers. We induced a psychological separation between 

our variables by using a cover story not focused on COVID-19. Finally, we included 

questions not related to our research objective to prevent respondents connecting our 

dependent and independent variables (e.g., about robot beauty).   

We conducted our study among undergraduate Business students at University Carlos III 

in Spain, employing a non-probability convenience sampling method. Current 

undergraduate students mainly include Generation Z individuals, making them suitable 

for this research. Focusing on university students allows increasing the sample’s 

homogeneity and minimizing the random error caused by selecting a more general public 

(Calder et al., 1981). We collected data in two different periods: May 2020 and January 

2021. During the first one, Spain was in a hard confinement phase in the country’s first 

wave of COVID-19; during the second one, some curfews and occupancy limits were 

active, and cases were rising in a third wave of COVID-19. Collecting data in two 

different periods of time allows controlling for biases due to specific conditions during a 

single period of time. Thus, we gathered 372 and 339 usable questionnaires from 

Generation Z individuals in the first and second periods respectively. Regarding 

demographics, our respondents were between 18 and 25 years old and homogenous in 

terms of gender and nationality across periods (Table 1). Such homogeneity allows 

confidently pooling the data (n=711)—we include time period in our model to control for 

differences arising from the date of data collection (for example, in terms of health history 
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due to a higher spread of COVID-19). The number of questionnaires across scenarios 

oscillated between 108 and 123, far beyond the minimum number of cases in each 

scenario required in experimental designs (Cohen, 1988). 

3.2. Measurement

Except for health history of the respondent or surrounding people, we employed scales 

taken from previous research. We directly asked the extent of COVID-19 impact in a 

seven-point scale ranging from not at all to extremely, and from indirectly to directly. We 

measure anthropomorphism using a one-item scale taken from Kim et al. (2019), 

consistent  with our focus on the robot’s human likeness (Lu et al., 2019; Zhu and Chang, 

2020). We adapted the scales for social presence, perceived susceptibility, health 

importance, and prevention efficacy from  Gefen and Straub (2003); Cahyanto et al.  

(2016); Zemke et al. (2015); and Moon et al. (2017) respectively. We did not 

circumscribe the measurements of health history and health importance just to the 

respondent. This facilitates achieving enough variability in these two constructs, even if 

the respondent does not stay at hotels regularly or has not been affected directly by the 

disease. We took the attitude toward being attended by the service robot in a specific 

context from Davis et al. (1992); Kim and Qu (2014); Kim et al. (2010); and Lu et al. 

(2019). Finally, we employed Amaro and Duarte (2015) and Reimer and Benkenstein  

(2016) scales for booking intention. We operationalized the control variable capturing the 

period of data collection as a dummy variable with zero value for the first period of data 

collection, and one for the second period. 

3.3. Data analysis

We tested our hypotheses using partial least squares structural equation modeling (PLS-

SEM). Regarding ANOVA, this technique allows examining the multiple causal 

relationships of our model (Lei et al., 2008), controlling for measurement error, and 

assessing reliability, and validity (Bleijerveld et al., 2015). Regarding covariance-based 

structural equation models, PLS-SEM is more adequate for theory development, in the 

earlier stages of studying a phenomenon, and for research testing manifold relationships 

between exogenous and endogenous constructs; PLS-SEM also allows working with 

fewer items per construct. Additionally, this technique can assess whether the causes of 

a phenomenon in a model generate adequate predictions, i.e., the model’s practical 

relevance (e.g., Hair, Risher, et al., 2019; Hair, Sarstedt, et al., 2019; Shmueli et al., 

2019). 
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4. RESULTS

4.1. Manipulation checks

The manipulations of our experiment were successful. Our measurement of 

anthropomorphism ranges from 1- not at all human-like, to 7- very human-like. The 

anthropomorphism for each level is consistent with our intended manipulation 

(Meanlow=2.32, Meanmedium=3.01, Meanhigh=5.57), with significant differences across 

levels (p-valuelow-medium<.01, p-valuemedium-high<.01, p-valuelow-high<.01). Similarly, the 

social presence when being attended at a hotel bar is significantly lower than when 

checking in at the hotel reception (Meanbar=4.51, Meanreception=4.80, p<.01).

4.2. Measurement model

We first evaluated constructs’ reliability. We detected that one loading from perceived 

susceptibility was lower than .7, which we depurated from our scale. After this, all the 

items of our constructs are above .7, showing indicator reliability. The Cronbach’s α 

values of our variables (Table 2) are higher than .7 (Nunnally, 1978).  Composite 

reliability and ρA are also higher than .7. This supports the reliability of our variables. 

Regarding convergent validity, the average variance extracted (AVE) of our variables is 

higher than the common threshold value of .5 (Fornell and Larcker, 1981). 

Subsequently, we successfully assessed the discriminant validity of our constructs 

through three criteria: the loadings of the indicators of each variable are higher for their 

construct than for other variables; the AVE of all variables are greater than their absolute 

correlations with other variables (Fornell and Larcker, 1981; table 2); the heterotrait-

monotrait ratio of the correlations between variables are all lower than .85 (Clark and 

Watson, 2003; Kline, 2011; table 2). 

Finally, we discarded common method bias problems in our sample by inspecting 

whether the correlations among constructs are all below .9 (Pavlou et al., 2007); and by 

applying  the full collinearity assessment approach (Kock, 2015). These checks did not 

reveal any problem. Additionally, we followed Liang et al. (2007) procedure as an extra 

assessment: we converted each indicator to a single-indicator construct; we incorporated 

a common method factor in the model; and we computed the percentage of each indicator 

variance explained by the common method factor and by its substantive factor. On 
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average, the common method factor explains less than 4% of the variance of indicators 

for our sample, hence confirming that common method bias is not present. 

4.3. Hypotheses testing

We evaluated the standardized root mean residual (SRMR) of our model as an indicator 

of its global fit. This is .07, which is considered adequate (Hu and Bentler, 1998). Next, 

we evaluated the adjusted-R2 of our endogenous variables. These are 1.08% for health 

importance, 10.13% for perceived susceptibility, 5.82% for prevention efficacy, 26.14% 

for attitude, and 34.81% for booking intention. We also assess the predictive power of 

our model, through the cross-validated redundancy measures and the PLSpredict 

procedure. The former jointly capture both the in-sample and out-of-sample predictive 

power of a model. The latter focuses on out-of-sample predictive power (Shmueli et al., 

2019), thus offering a clearer picture of the practical relevance of the model. The cross-

validated redundancy measures of health importance, perceived susceptibility, efficacy, 

attitude, and booking intention are .01, .08, .05, .19, and .26. All are above 0, hence 

providing first evidence of our model predictive relevance (Hair, Risher, et al., 2019). 

Similarly, the PLSpredict procedure also supported the predictive power of our model. 

PLSpredict splits the sample into k groups, estimating the model using data from all 

groups except one, making predictions for the data that has not been used in the 

estimation. As the assignation in the k groups is random, the procedure must be repeated 

multiple times to ensure the stability of results. Particularly, we applied PLSpredict with 

10 repetitions and k=10 (Shmueli et al., 2019). We focused on prevention efficacy as the 

main construct of our model. This procedure first evaluates the  statistics of the 𝑄2
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

variable indicators. Positive values indicate that the model outperforms the predictions 

produced by the means of the indicators of the training sample. We obtained positive 

 statistics, between .01 and .02. Next, PLSpredict compares the model predictions 𝑄2
𝑝𝑟𝑒𝑑𝑖𝑐𝑡

with the forecasts from a linear model through root mean squared error. Our model 

outperformed the linear model in two out of three indicators, thus showing a medium out-

of-sample predictive power.

Regarding our hypotheses, we used a non-parametric bootstrapping procedure (10,000 

samples, no sign change) to assess path coefficients significance in our model. We find 

support for all hypotheses except H8 in our Generation Z sample (Figure 1). Therefore, 

health history is positively related to health importance in our sample (H1:.11; p-

value<.05); health importance positively influences perceived susceptibility (H2: .31; p-
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value<.01); perceived susceptibility is positively associated with robot efficacy to prevent 

COVID-19 for Generation Z individuals (H3:.17; p-value<.01); robot efficacy to prevent 

COVID-19 positively influences attitudes toward being attended by a robot in hospitality 

contexts (H4: .44; p-value<.01); and attitudes toward being attended by a robot in 

hospitality contexts positively affects booking intention in our Generation Z sample 

(H5:.59; p-value<.01). Regarding anthropomorphism, we find a positive influence on 

robot efficacy to prevent COVID-19 (H6: .11; p-value<.01) and on attitudes toward being 

attended by a robot (H7: .22; p-value<.01) for our sample. Regarding social presence, our 

results do not support a positive association between this variable and robot efficacy to 

prevent COVID-19 (H8: .03; p-value>.05). In contrast, social presence is negatively 

associated with attitudes toward being attended by the robot at the hotel (H9:  -.08; p-

value<.05).

Post-hoc analysis of indirect and total effects of prevention efficacy, anthropomorphism 

and social presence

According to our results, prevention efficacy might have an indirect effect on booking 

intentions, mediated by attitudes toward being attended by a robot. Similarly, both 

anthropomorphism and social presence might have an indirect effect on attitudes toward 

being attended by a robot, mediated by prevention efficacy. This indirect effect could also 

reach booking intentions. We next analyze these potential indirect effects. 

Our bootstrapping procedure computes indirect effects by multiplying the effect of the 

independent variable on the mediating variable (IV→MV) by the effect of the mediating 

variable on the dependent variable (MV→DV). For example, the indirect effect of 

prevention efficacy on booking intentions is calculated in our research as prevention 

efficacy → attitudes × attitudes → booking intentions. These computations can be 

extended in a straightforward way in case of having more than one mediating variable. If 

a direct effect also exists, the total effect of a variable over another one is computed as 

the sum of its direct and its indirect effects (in case of not having direct effects, total 

effects are equal to indirect effects). 

Regarding prevention efficacy, our results indicate that it has an indirect effect on booking 

intentions, mediated by attitudes (.26; p-value<.01). Thus, the effect of prevention 

efficacy on booking intentions is positive and significant for our sample.
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Our results also reveal that anthropomorphism has an indirect effect on attitudes, 

mediated by prevention efficacy (.05; p-value<.01). Thus, anthropomorphism positively 

influences attitudes, both directly and indirectly. The total effect of anthropomorphism 

on attitudes is positive and significant for our sample (.26; p-value<.01). Moreover, the 

total effect of anthropomorphism on booking intentions is positive and significant for our 

sample (.16; p-value<.01).

Social presence has direct and indirect effects on attitudes. These effects have an opposite 

sign. The direct effect is negative, whereas the indirect effect is positive although non-

significant (.01; p-value>0.10). Together, both effects lead to a total negative effect on 

attitudes that is significant at a 90% level (-.07; p-value<.10). Likewise, the total effect 

of social presence on booking intentions is negative and significant at a 90% level (-.04; 

p-value<.10).

5. DISCUSSION

COVID-19 is likely to accelerate service robot adoption by hospitality firms, aiming to 

recover customer confidence and hence service demand (e.g., Cha, 2020; Zeng et al., 

2020). This study assesses whether this motivation is valid. Particularly, we explore 

whether the Generation Z cohort of potential hotel guests perceives robots as an effective 

means to reduce contagion risks, and how this perception influences guest attitudes 

toward being attended by a robot and their booking intentions. Additionally, we study 

whether robot anthropomorphism and the social presence of the context where the robot 

will be employed influence prevention efficacy perceptions, as well as attitudes and 

booking intentions directly. 

Regarding prevention efficacy, our study indicates that robots are considered by 

Generation Z an appropriate means to reduce COVID-19 contagion risk. Our results show 

that individuals’ exposure to the virus makes them consider health more important when 

traveling, which provokes a higher level of perceived susceptibility toward the disease 

and, consequently, a higher perceived prevention efficacy of technological solutions that 

reduce social contact: robots, in our research. Therefore, our findings are consistent with 

the chain of effects proposed by the EHBM (Burns, 1992). Extant literature has applied 

these variables for studying COVID-19 prevention measures (e.g., Asare et al., 2020; 

Shmueli, 2021). Our novel application of service robots at hotels suggests that Generation 
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Z individuals understand that technological solutions that ensure social distancing are 

effective at reducing COVID-19 contagion risk, therefore constituting their 

implementation by hotels a preventive action. This could be due to their familiarity with 

other technological solutions that aim at avoiding human-to-human contact (for example, 

digital menus at restaurants, or videoconferences instead of face-to-face meetings). Thus, 

our results confirm the view of studies that suggest that robotization is an appropriate 

means to recover customer trust in hospitality services (Jiang and Wen, 2020), against 

some practitioners’ opinions (Villacé-Molinero et al., 2021). 

The more human-like a robot, the higher the prevention efficacy attributed to the robot 

by our Generation Z sample. This relationship, not yet studied by extant literature, might 

be due to warmth attribution arising from human characteristics (Kim et al., 2019; Zhu 

and Chang, 2020)—making the robot more trustworthy (Tussyadiah, 2020; Tussyadiah 

and Park, 2018) and, probably, more caregiving and protective. Additionally, our results 

reveal that anthropomorphism generates positive attitudes toward being attended by a 

hotel robot. Some studies have detected a negative influence (Kim et al., 2019; Lu et al., 

2019; Yu, 2020)¸ arising from feelings of discomfort; whereas other studies indicate that 

human likeness has a positive impact on hospitality customers (Tussyadiah, 2020; 

Tussyadiah and Park, 2018), due to associations with higher intelligence, capabilities, 

interactivity, and effectiveness (e.g., van Doorn et al., 2017; Tussyadiah and Park, 2018; 

Wirtz et al., 2018). Our research is consistent with the latter ones. Apart from customers’ 

associations to anthropomorphism, our sample’s preferences for technological advances 

might partially explain our findings, as more anthropomorphic robots might be considered 

less rudimentary by our Generation Z respondents. Finally, our results regarding the 

impact of anthropomorphism on attitudes do not allow us to conclude that being attended 

by robots with anthropomorphic forms is preferred over other options. Other robot forms 

or humans might indeed be preferred by hospitality customers (de Kervenoael et al., 2020; 

Shin and Jeong, 2020). Beyond of the scope of our research, we do not provide any 

explicit comparison in this regard. 

Contrary to our expectations, we find that social presence associated to the context where 

the customer will be attended by the robot does not influence prevention efficacy 

perceptions. Our sample might consider that checking in and ordering a drink at the hotel 

bar are tasks that can be completed quickly enough to be safe, hence not constituting 

health threats. This would suggest the existence of a threshold from which social presence 
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could affect prevention efficacy perceptions. Social presence below such a threshold 

would not influence prevention efficacy. However, the more social presence is expected 

in a context where the robot will be implemented, the lower the attitudes toward being 

attended by a robot. Our sample does not consider appropriate substitution of humans by 

robots in contexts where more intense human-to-human interactions are expected. This 

result is in line with previous research that highlights the importance of human contact in 

services (Chan and Tung, 2019; Gómez-Suárez and Veloso, 2020; Leung, 2019; 

Tussyadiah, 2020), where automation cannot fully substitute for humans (Ghazizadeh et 

al., 2012)–especially in situations where empathy and information-sharing expectations 

are high (de Kervenoael et al., 2020; Reis et al., 2020). Additionally, this finding is 

aligned with previous studies that indicate that robot acceptance is context-dependent (de 

Kervenoael et al., 2020; Tung and Au, 2018). We advance such studies by identifying a 

specific context feature that determines attitudes toward being attended by a robot. This 

effect might be stronger for individuals with more intense social needs (Belanche, Casaló, 

Flavián, et al., 2020b). 

6. CONCLUSION, IMPLICATIONS AND LIMITATIONS

6.1. Conclusion

Generation Z individuals previously affected in some way by COVID-19 are more 

conscious of health risks when traveling. This increases their perceptions of COVID-19 

susceptibility. As a result, they consider being attended by robots in hospitality contexts 

as an appropriate means to reducing the COVID-19 contagion risk. This perception leads 

to a positive attitude toward being attended by a robot and, consequently, to higher 

booking intentions. Robot anthropomorphism increases prevention efficacy perceptions 

and generates more positive attitudes toward being attended by the robot. Positive 

attitudes toward robots are lower in contexts with a high social presence. These results 

are circumscribed to our sample of Generation Z customers. However, given the 

inconclusive results of previous research regarding younger people’s response to robots 

(Belanche et al., 2019; Cha, 2020; Fenech et al., 2020; Ivkov et al., 2020), we consider 

that our exploratory study constitutes a valid first approximation to our phenomenon and 

can set a solid base for further research about the topic. We next explain the theoretical 

and managerial implications derived from our study.
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6.2. Theoretical implications

This study advances extant literature in several ways. First, we contribute to hospitality 

research by extending its boundaries through the incorporation of theories from other 

disciplines, namely the EHBM. Our results confirm the appropriateness of this model for 

studying health concerns for hospitality sectors. Further research in this regard needs to 

consider perceived susceptibility as a key construct that determines perceived efficacy of 

health prevention measures in hospitality establishments and, therefore, attitudes toward 

such measures. 

Second, we test the effects of anthropomorphism on customer perceptions, confirming 

previous research that identifies a positive influence of robot human likeness on  robot 

acceptance (e.g., Belanche, Casaló and Flavián, 2020b; Tussyadiah and Park, 2018) and 

extending it by incorporating anthropomorphism’ impact on customer assessment of 

robots for COVID-19 prevention. Anthropomorphism positively influences attitudes, 

directly and mediated by prevention efficacy, thus generating higher booking intentions. 

Robotics studies conducted under health threats must take into account such twofold 

influence.

Third, we find that robot acceptance in hospitality depends also on the context where the 

robot is employed, particularly on its social presence. Further studies about service 

automation must control for the robot usage context, and could incorporate findings from 

usage context literature (e.g., Fennell, 1978; Yang et al., 2002) to better understand 

robots’ acceptance. 

Fourth, our also study contributes to preventive health care literature by adding artificial 

intelligence tools for service automation implemented by companies as a prevention 

measure, and by evaluating individuals’ reactions to such a measure.

6.3. Managerial implications

This study offers interesting novel insights for managers considering employing robots 

to enhance COVID-19 safety perceptions. Given our focus on Generation Z, these 

managers need to evaluate the applicability of our insights in their companies before 

implementing them. Service automation through anthropomorphic robots can be an 

effective way to recover guest confidence in hotels, despite practitioners’ concerns 

regarding robots’ impact on customers’ emotions (Villacé-Molinero et al., 2021). 
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Additionally,  hotel managers should consider that more human-like robots produce better 

results in terms of recovering guest confidence. Our results also recommend employing 

robots in contexts where social presence is lower. Hotels should not incorporate robots to 

attend customers in contexts where they expect a high social presence (for example, in 

case of a service failure); in these contexts, hotels must take extra precautions, as it is 

more difficult to avoid human-to-human contact successfully. 

Our results offer clues in terms of hotel communication strategies about robot 

implementation. Companies implementing robots (or, in general, service automation) as 

a tool to reduce contagion risk must clearly convey this beneficial effect of technology, 

as prevention efficacy improves attitudes toward the safety measure and increase booking 

intentions. These messages are especially relevant for markets where COVID-19 has 

spread more intensively and therefore customers are more concerned about their health, 

as our results indicate. Generation Z might facilitate the spread of these messages if 

properly targeted through digital media. Additionally, managers must carefully select the 

context where the robot is shown to enhance a positive communication impact. 

Despite robots’ prices decreasing trend (Belanche, Casaló and Flavián, 2020a, 2020b), 

investing in this technology might be still difficult for many hospitality firms in a situation 

of demand contraction. A call for action from the World Tourism Organization (2020) 

encourages governments to invest on hospitality firms for mitigating the socioeconomic 

impact of COVID-19 and accelerate recovery. These investments could be fruitful if 

devoted to increasing hotel robotization, given its effectiveness in enhancing guest 

perceptions of prevention efficacy (and more important, guest and staff safety if 

accompanied by strict protocols and hygienic measures ensuring that human-to-human 

contact and exposure to the virus are indeed minimized). Additionally, governments 

could consider robot implementation as an important feature if developing COVID-19 

safety seals. Investments in robots will provide hotels with resilience and competitive 

advantage beyond this pandemic. Robot implementation can provoke employment losses 

(Tussyadiah, 2020; Villacé-Molinero et al., 2021), particularly in ‘low-tech’ jobs. 

However, policy makers can smooth this potential negative consequence of  automation 

through programs aiming at retraining hospitality professionals (Xu et al., 2020). 

6.4. Limitations and further research
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This exploratory research has several limitations. First, our results must be taken 

cautiously in terms of generalizability due to our convenience sampling procedure. 

Further research could replicate our study, employing random sampling methods that 

guarantee sample representativeness, even regardless of generational cohorts. Second, our 

model omits variables related to technology acceptance, such as ease of use, trust, etc., 

that could influence robot acceptance (Wirtz et al., 2018). Further research on the topic 

might incorporate these variables, to provide a better picture of attitudes toward being 

attended by robots. Third, our sample comprises individuals of several nationalities. 

Despite nationality not determining Generation Z belongingness, controlling for cultural 

differences might have been desirable. Further research could evaluate whether cultural 

differences moderate our results, especially for uncertainty avoidance. Fourth, our 

research does not consider the hotel type (e.g., budget, mid-market, or luxury) where the 

robot is implemented, which might influence attitude toward robots (Chan and Tung, 

2019; Shin and Jeong, 2020). Further research could investigate whether hotel type 

moderates our results to provide more accurate recommendations to managers. 

Furthermore, our study could be enriched through the inclusion of factors that might 

contribute to explaining prevention efficacy and customer attitudes. Robot employment 

could be evaluated in a wider range of contexts, classified in terms of other variables 

beyond social presence. Robot features such as gender, tone of voice, dressing etc., could 

be relevant to explain safety perceptions and attitudes toward robots. This fascinating 

topic is already capturing the attention of hospitality researchers, as reflected in this 

special issue. Beyond COVID-19 prevention efficacy, hospitality managers need to 

understand how their customers accept interacting with service robots. We expect our 

study to be helpful in this promising research stream.
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Table 1. Sample demographics

First period Second period Total sample χ2 test
Age 18-25 100% 100% 100% -

Gender Male 44.62% 41.00% 42.90%
Female 53.76% 58.11% 55.84%
Not reported 1.62% 0.89% 1.26%

χ2=1.89
(p-value=.39)

Nationality Spanish 72.85% 77.29% 74.96%
European 13.17% 10.03% 11.67%
Latin American 7.26% 5.01% 6.19%
Others 6.72% 7.67% 7.17%

χ2=3.63
(p-value=.30)

Note: p-values above .05 denote sample homogeneity across periods
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Table 2. Measurement model

α ρA CR AVE (1) (2) (3) (4) (5) (6) (7) (8) (9)
Health history (1) .76 .97 .89 80 .89 .11 .12 .04 .06 .04 .03 .04 .13
Health importance (2) .87 .92 .91 .71 .11 .85 .32 .18 .11 .17 .01 .15 .06
Perceived susceptibility (3) .88 .88 .92 .80 .12 .31 .90 .19 .20 .26 .08 .04 .07
Prevention efficacy (4) .90 .90 .93 .83 .03 .16 .17 .91 .50 .46 .10 .04 .15
Attitude (5) .90 .91 .93 .72 -.04 .11 .18 .45 .85 .64 .29 .10 .03
Booking intention (6) .92 .92 .94 .76 .00 .16 .24 .42 .59 .87 .21 .11 .05
Anthropomorphism (7) 1.00 1.00 1.00 1.00 .00 .00 .07 .10 .28 .21 1.00 .11 .10
Social presence (8) .85 .87 .89 .62 .03 .11 .02 .03 -.10 -.09 -.11 .79 .03
Control variable: period (9) 1.00 1.00 1.00 1.00 .11 .05 -.07 .14 .01 -.04 -.10 .02 1.00
Notes:  α = Cronbach’s alpha, CR = CR, AVE = average variance extracted.. Bold Numbers on the diagonal show the square root of 
the AVE; numbers below the diagonal represent construct correlations; numbers above the diagonal represent the HTMT ratio
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Figure 1. Model results
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