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Abstract 

Since the emergence of the Internet and the spread of digital communica-
tions throughout the world, the amount of data stored on the Web has been 
growing exponentially. In this new digital era, a large number of companies 
have emerged with the purpose of filtering the information available on the 
web and provide users with interesting items. The algorithms and models 
used to recommend these items are called Recommender Systems. These 
systems are applied to a large number of domains, from music, books, or 
movies to dating or Point-of-Interest (POI), which is an increasingly pop-
ular domain where users receive recommendations of different places when 
they arrive to a city. 
In this thesis, we focus on exploiting the use of contextual information, es-
pecially temporal and sequential data, and apply it in novel ways in both 
traditional and Point-of-Interest recommendation. We believe that this type 
of information can be used not only for creating new recommendation mod-
els but also for developing new metrics for analyzing the quality of these 
recommendations. In one of our first contributions we propose different 
metrics, some of them derived from previously existing frameworks, using 
this contextual information. Besides, we also propose an intuitive algorithm 
that is able to provide recommendations to a target user by exploiting the 
last common interactions with other similar users of the system. 
At the same time, we conduct a comprehensive review of the algorithms 
that have been proposed in the area of POI recommendation between 2011 
and 2019, identifying the common characteristics and methodologies used. 
Once this classification of the algorithms proposed to date is completed, we 
design a mechanism to recommend complete routes (not only independent 
POIs) to users, making use of reranking techniques. In addition, due to the 
great difficulty of making recommendations in the POI domain, we propose 
the use of data aggregation techniques to use information from different 
cities to generate POI recommendations in a given target city. 
In the experimental work we present our approaches on different datasets 
belonging to both classical and POI recommendation. The results obtained 
in these experiments confirm the usefulness of our recommendation propos-
als, in terms of ranking accuracy and other dimensions like novelty, diversity, 
and coverage, and the appropriateness of our metrics for analyzing temporal 
information and biases in the recommendations produced. 



Resumen 

Desde la aparición de Internet y la difusión de las redes de comunicaciones 
en todo el mundo, la cantidad de datos almacenados en la red ha crecido 
exponencialmente. En esta nueva era digital, han surgido un gran número 
de empresas con el objetivo de filtrar la información disponible en la red 
y ofrecer a los usuarios art́ıculos interesantes. Los algoritmos y modelos 
utilizados para recomendar estos art́ıculos reciben el nombre de Sistemas de 
Recomendación. Estos sistemas se aplican a un gran número de dominios, 
desde música, libros o peĺıculas hasta las citas o los Puntos de Interés (POIs, 
en inglés), un dominio cada vez más popular en el que los usuarios reciben 
recomendaciones de diferentes lugares cuando llegan a una ciudad. 
En esta tesis, nos centramos en explotar el uso de la información contextual, 
especialmente los datos temporales y secuenciales, y aplicarla de forma nove-
dosa tanto en la recomendación clásica como en la recomendación de POIs. 
Creemos que este tipo de información puede utilizarse no sólo para crear 
nuevos modelos de recomendación, sino también para desarrollar nuevas 
métricas para analizar la calidad de estas recomendaciones. En una de 
nuestras primeras contribuciones proponemos diferentes métricas, algunas 
derivadas de formulaciones previamente existentes, utilizando esta infor-
mación contextual. Además, proponemos un algoritmo intuitivo que es 
capaz de proporcionar recomendaciones a un usuario objetivo explotando 
las últimas interacciones comunes con otros usuarios similares del sistema. 
Al mismo tiempo, realizamos una revisión exhaustiva de los algoritmos que 
se han propuesto en el ´ on de POIs entre 2011 yambito de la recomendaci´ 
2019, identificando las caracteŕısticas comunes y las metodoloǵıas utilizadas. 
Una vez realizada esta clasificación de los algoritmos propuestos hasta la 
fecha, diseñamos un mecanismo para recomendar rutas completas (no sólo 
POIs independientes) a los usuarios, haciendo uso de técnicas de rerank-
ing. Además, debido a la gran dificultad de realizar recomendaciones en el 
ámbito de los POIs, proponemos el uso de técnicas de agregación de datos 
para utilizar la información de diferentes ciudades y generar recomenda-
ciones de POIs en una determinada ciudad objetivo. 
En el trabajo experimental presentamos nuestros métodos en diferentes 
conjuntos de datos tanto de recomendación clásica como de POIs. Los 
resultados obtenidos en estos experimentos confirman la utilidad de nues-
tras propuestas de recomendación en términos de precisión de ranking y de 
otras dimensiones como la novedad, la diversidad y la cobertura, y cómo de 
apropiadas son nuestras métricas para analizar la información temporal y 
los sesgos en las recomendaciones producidas. 
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Introduction 

1.1 Motivation 

In 2018, the company DOMO estimated that during the year 2020 each person on 
planet Earth would generate an average of 1.7MB of data every second (Ahmad, 2018). 
Currently, it is very likely that this quantity of data has increased substantially because 
the sanitary crisis of COVID-19 has forced a large number of people to spend more time 
at home and make a greater use of the Internet, both generating and consuming content 
either by leisure purposes or work. 

In this context of exponential growth of information available on the web, the 
problem of information overload (Maes, 1994), where users may spend an excessive 
amount of time searching for the information they need, becomes even more evident. 
Recommender Systems (RS) arise to solve this problem. These software tools are 
oriented to filter the countless available items in a system to recommend the users 
those items that are more suitable to their needs based on their previous experiencies. 
Although the first search engines and Recommender Systems emerged in the 1990s, 
their use has spread in an unstoppable way over the recent years. 

Nowadays, companies such as Google, Amazon, Youtube, Netflix, and many more 
make use of these technologies to increase the number of users of their platforms while 
offering personalized content to existing customers. Specifically, Recommender Systems 
have proven to be an area of research in high demand, specially since the appearance of 
the Netflix prize between 2006 and 2009 (Bell and Koren, 2007), where 1M dollars were 
offered to the research group that managed to improve the prediction of its baseline 
algorithm by a 10%. At the same time, international conferences dedicated to this topic 
(among which the ACM conference of Recommender Systems1 stands out) increase the 
number of attendees every year, as well as the companies interested in sponsoring these 
congresses. However, Recommender Systems are not perfect by any means. Due to the 
massive data analysis performed by these algorithms, users have become increasingly 
aware of aspects such as privacy, intrusiveness, or the explanation of the recommenda-
tions (Ricci et al., 2015). Some of these problems are indeed major challenges in the 

1ACM Conference on Recommender Systems, RecSys, https://recsys.acm.org/ 
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Recommender Systems community, however they are beyond the scope of this thesis. 
The high degree of adaptability of Recommender Systems enables them to be ap-

plied in many different areas like movies, books, music, tourism, or even in dating 
apps (Ricci et al., 2015). Nevertheless, it is important to mention that each domain 
has its own particularities. For example, music and movies, which are well known rec-
ommendation domains, have substantial differences: the catalog of movies is normally 
more reduced than the catalog of songs, the music domain has a strong sequential com-
ponent, while failing a recommendation in the music domain is not too critical as songs 
are usually less than 5 minutes long, whereas failing a movie or video recommendation 
may affect more the users as they tend to get frustrated more easily, etc. (Schedl et al., 
2018, Jannach et al., 2018). Besides, there are domains that need to incorporate addi-
tional sources of information to make useful recommendations. In this sense, assistants 
such as Alexa (Amazon), Google Assistant, or Siri (Apple) might be particularly useful 
as they store more information about the users like their tastes, their current location, 
the time, or even the weather, among other data. 

An important area where all this type of information can be applied is the tourism 
domain, which has a great economic impact on both tourists and the regions they 
visit. For example, in countries like Spain, Iceland, or Mexico, the percentage of the 
total Gross Domestic Product (GDP) associated with tourism is higher than 8%2 . 
There are a large number of recommendation tasks related to tourism, including route 
(or trajectory) and group recommendation, but perhaps the best known and most 
studied one is the Point-of-Interest (POI) recommendation problem, where the items 
to be recommended are interesting venues or places for the user to visit when they 
arrive to a city (hotels, bars, restaurants, museums, etc.) (Ye et al., 2011). In this 
type of recommendation, Location-Based Social Networks (LBSNs) such as Foursquare, 
Yelp, or Gowalla (see Figure 1.1) are specially relevant as in these social networks 
the users can register the check-ins they make on the venues they visit and exchange 
information with the rest of the users in the system (Wang et al., 2013). In fact, the 
research in this domain has increased in recent years due to several reasons, including 
the growing number of people that can afford to make trips to different cities, the 
transport infrastructure improvement, and the facility to access high-level technology 
(e.g., high-speed networks or more advanced mobile phones). 

Initially, the first recommendation strategies only used interactions between users 
and items to make recommendations. However, in recent years, the use of contextual 
information has become particularly useful as it allows the algorithms to better adapt 
to the interests of the users in certain situations. This contextual information can be 
very varied, including temporal and/or sequential information, weather, popular trends, 
etc. (Adomavicius and Tuzhilin, 2015, Villegas et al., 2018). It is important to take into 
account that users may consume particular items depending on the current situation. 
For example, a user may watch different types of movies depending on whether she is 
alone or accompanied. The same reasoning applies in the music domain as a user may 

2Organization for Economic Co-operation and Development, OECD, https://www.oecd.org/cfe/ 
tourism/OECD-Tourism-Trends-Policies2020-Highlights-ENG.pdf 
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Figure 1.1: Example of two LBSNs. Foursquare (left) and Yelp (right). 

listen to different songs depending on if she is at work or with friends one Friday night. 
In tourism, this contextual information is also important since the types of POIs a user 
visits may be affected by the weather (i.e., in summer it is more feasible to do outdoor 
activities), time of the day (e.g., not recommending a bar early in the morning), or the 
geographical distance (Laß et al., 2017). 

On the other hand, while research on how to generate better recommendations is 
important, it is also essential to design mechanisms to evaluate the models. In fact, 
Recommender Systems evaluation has changed over successive years. Error prediction 
metrics oriented at measuring the difference between the predicted and real ratings 
were initially used to analyze the performance of the recommenders but, over the past 
few years, the evaluation of algorithms has evolved through the use of ranking-based 
accuracy metrics from the Information Retrieval (IR) area, where the objective is to 
predict a list of hypothetically interesting items for the user (Steck, 2013, Gunawar-
dana and Shani, 2015). However, this type of analysis, although useful, is incomplete 
since it is important from the user point of view to also measure the quality of the 
recommendations in terms of other complementary dimensions such as novelty, diver-
sity, or serendipity (Castells et al., 2015). Besides, recently there has been an increased 
awareness about providing fair recommendations to the users by avoiding possible coun-
terproductive biases in the algorithms, such as performing higher quality recommenda-
tions to specific social groups because of their age, gender, nationality, etc. (Steck, 2018, 
Abdollahpouri et al., 2019a). For these reasons, one of the goals in the community is to 
develop algorithms with a good balance between these dimensions and ranking accuracy 
– trying to obtain accurate techniques while being as fair as possible – although it is 
generally assumed that it is difficult, or even impossible, to develop an algorithm that 
can beat any other technique in all possible aspects. Furthermore, currently there is a 
growing concern about the reproducibility of the performance obtained by the models 
because it is often not possible to replicate the results reported by the original authors 
of the papers (Beel et al., 2016, Dacrema et al., 2019). In consequence, for some years 
now, an attempt has been made to promote the publication of the code of the models 

5 



1. INTRODUCTION 

developed and, at the same time, more attention has been paid to different aspects of 
the evaluation process. 

Thus, in this thesis we analyze some of the aforementioned issues by proposing so-
lutions in the form of algorithms and metrics to further explore the use of contextual 
information in recommendations. Although the developed proposals can be used in 
several recommendation domains, we will make a special emphasis on the POI recom-
mendation problem, since it is a growing area that can benefit from the use of this 
type of information to alleviate some of its fundamental problems (such as the great 
sparsity of the data). In our experimental work we demonstrate the usefulness of our 
proposed approaches as, on the one hand, our derived metrics allow us to obtain a 
more complete analysis of why algorithms make certain recommendations, and on the 
other hand, our contextual recommendation models allow us to improve the perfor-
mance of the algorithms in both ranking accuracy and complementary dimensions such 
as novelty, diversity, or freshness. 

1.2 Research goals 

This thesis has two major purposes. On the one hand, we claim that modeling contex-
tual information is important in order to improve the performance of the algorithms 
and, hence, we investigate how to incorporate contexts like sequentiality or time in 
classical recommender systems. Besides, we argue that these contexts can also be in-
tegrated in the evaluation phase by building new metrics in order to detect possible 
biases in the recommendations produced. Moreover, we focus on the Point-of-Interest 
recommendation problem by studying the main issues and challenges of the area while 
proposing solutions to palliate them. In this regard, we demonstrate that we can gener-
ate meaningful routes to the users exploiting reranking approaches whereas we can also 
use cross-domain techniques to improve the performance of the recommenders. Hence, 
taking these ideas as a starting point, in this thesis we propose the following research 
goals (RG): 

RG1: Review the state-of-the-art on POI recommender systems to iden-
tify and characterize the most important works in the area. Most of the 
surveys in the POI domain focus on analyzing the types of algorithm that are used 
in the models and the type of information they exploit. However, an important as-
pect that is usually overlooked in such surveys is the evaluation methodology and/or 
the datasets and metrics used. We therefore intend to create a survey to analyze all 
these aspects in depth in order to detect how comparable are the state-of-the-art POI 
algorithms. 

RG2: Study evaluation metrics for classical recommendation to adapt 
and integrate additional dimensions beyond relevance. When analyzing the 
performance of a recommender, most researchers focus on how well the model works 
in terms of ranking accuracy. Although additional dimensions such as novelty and 
diversity have been taken into account when evaluating the recommenders, we believe 
that it is important to incorporate other dimensions such as sequentiality, time, and 
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anti-relevance (items that users have specifically indicated they do not like) in the 
metrics. We hence plan to develop different metrics to take into account these additional 
dimensions and analyze the results of the algorithms in these new metrics. 

RG3: Develop mechanisms to add sequentiality in neighborhood-based 
recommender systems. Currently, in the Recommender Systems area, a large num-
ber of models have been proposed to incorporate contexts such as sequentiality or time 
in the recommendations produced. Popular methods, such as neural networks and dif-
ferent derivations of Markov chains, are used nowadays, although in some cases it is 
difficult to correctly interpret the recommendations they provide. Therefore, we aim to 
investigate the feasibility to incorporate the sequential context into neighborhood-based 
algorithms since they are easier to understand and develop than the aforementioned 
models. 

RG4: Explore the LBSNs data used in POI recommendation to explore 
new ways to make recommendations and enable full route recommendation. 
POI recommendation has traditionally been modeled as a recommendation of relevant 
but independent venues to the users. However, there is a clear sequential relation-
ship between the different venues that the users have checked-in (e.g., if they follow a 
trajectory). In this sense, we intend to exploit the information stored in LBSNs and in-
vestigate how to obtain routes from user data using simple techniques already explored 
in the area of Recommender Systems. 

RG5: Improve the performance of the algorithms in the POI recommen-
dation domain and analyze possible biases in the recommendations. The POI 
recommendation problem has specific considerations that must be taken into account 
when making recommendations. The survey we will conduct in RG1 will allow us to 
clearly establish these considerations in order to be able to propose new mechanisms to 
improve the recommendations produced. At the same time, we intend to study whether 
the POI recommendation problem is affected by different types of biases. 

1.3 Contributions 

The work done in this thesis has contributed to the current state-of-the-art of both 
classical and POI recommender systems. The contributions include: a systematic cat-
egorization of different types of POI recommendation algorithms, the definition of new 
metrics in order to analyze the performance of the recommendation models in var-
ious dimensions, the definition of new algorithms for classical recommendation that 
exploit the user context, and the analysis of routes and biases in the data found in 
Location-Based Social Networks. 

First, in Chapter 3 we focus on the POI recommendation domain and we conduct 
a survey analyzing the most important algorithms of the state-of-the-art between 2011 
and 2019. In this survey, apart from analyzing the type of information (geographi-
cal, content, collaborative, etc.) and algorithms (social, deep learning, factorization, 
etc.) used in the analyzed approaches, we also examined the most frequent evalua-
tion methodologies followed by the researchers. In this aspect, we determine the most 
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commonly used datasets as well as metrics and types of splits in order to determine 
how comparable are all these works with each other. Our review on the current POI 
approaches has been submitted to the following journal: 

• Pablo Sánchez and Alejandro Belloǵın. Point-of-Interest Recommender Sys-
tems: A Survey from an Experimental Perspective. Submitted to ACM Comput-
ing Surveys. Under Review (1st round of review). Impact Factor 2019: 7.990. 
JCR 2019: Q1: 4/108. Computer Science Theory & Methods. 

Secondly, in Chapter 4 we propose new metrics that incorporate different contexts 
for evaluating the recommenders. First, we exploit temporal information to determine 
if an item is novel or not depending on the specific moments in which it was consumed 
by the users in the system. Secondly, we adapt the Probabilistic Ranking Principle in 
order to define new metrics that measure how many “anti-relevant” (items with a very 
low rating) recommendations are made by the algorithms. This is a novel proposal 
because, even though it is important that a recommender makes good recommenda-
tions, it is equally important that the recommender does not suggest items the users 
have specifically categorized as “bad”. After that, we also define metrics that exploit 
the attributes of the users and items. The item attributes allow us to determine if a 
recommendation list is better than other depending on how the attributes of the rec-
ommended items match the ones of the test set. On the other side, the user attributes 
allow us to determine if the recommneders are providing recommendations of the same 
quality to different groups of users. Finally, we also modify the traditional ranking-
based accuracy metrics from Information Retrieval (IR) to take into account not only 
the relevance of the recommendations but also the order with respect to the test set 
of the user, to check if the recommended items follow a sequence. The publications 
related to this chapter are the following: 

• Pablo Sánchez and Alejandro Belloǵın. Time-aware novelty metrics for rec-
ommender systems. In Gabriella Pasi, Benjamin Piwowarski, Leif Azzopardi, 
and Allan Hanbury, editors, Advances in Information Retrieval - 40th European 
Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018, 
Proceedings, volume 10772 of Lecture Notes in Computer Science, pages 357-
370. Springer, 2018. DOI: https://doi.org/10.1007/978-3-319-76941-7_27. 
CORE 2018: A. Acceptance rate (long papers): 23%. The code for this 
paper is available in the following url3 . 

• Pablo Sánchez and Alejandro Belloǵın. Measuring anti-relevance: a study on 
when recommendation algorithms produce bad suggestions. In Sole Pera, Michael 
D. Ekstrand, Xavier Amatriain, and John O’Donovan, editors, Proceedings of the 
12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, 
Canada, October. 2-7, 2018, pages 367-371. ACM, 2018. DOI: http://doi.acm. 

3Time-aware novelty metrics, https://bitbucket.org/PabloSanchezP/timeawarenoveltymetrics 
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org/10.1145/3240323.3240382. CORE 2018: B. Acceptance rate (short 
papers): 25%. The code for this paper is available in the following url4 . 

• Pablo Sánchez and Alejandro Belloǵın. Attribute-based evaluation for recom-
mender systems: incorporating user and item attributes in evaluation metrics. In 
Toine Bogers, Alan Said, Peter Brusilovsky, and Domonkos Tikk, editors, Pro-
ceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, 
Copenhagen, Denmark, September 16-20, 2019., pages 378-382. ACM, 2019. 
DOI: https://doi.org/10.1145/3298689.3347049. CORE 2018: B. Accep-
tance rate (short papers): 24%. The code for this paper is available in the 
following url5 . 

After that, in Chapter 5 we adapt a subsequence matching algorithm to measure 
the similarity between the users in a system and integrate this similarity in a recom-
mendation model. As this algorithm is designed to work with sequences, it allows us to 
extend the basic formulation with both temporal and content information in a simple 
way. At the same time it is also suitable to work with repeated interactions, that is, 
users consuming the same item more than once. This is something useful in domains 
like music or POI recommendation where users tend to consume or visit the same item 
more than once. Besides, we have proposed a new recommendation algorithm based 
on neighbors in which candidate items are selected exploiting the last interaction that 
the neighbor has with the target user, in order to generate recommendations that take 
into account temporal and sequential information. The main publication related to this 
chapter is: 

• Pablo Sánchez and Alejandro Belloǵın. Time and sequence awareness in similar-
ity metrics for recommendation. Information Processing Management, 57(3):102228, 
2020. DOI: https://doi.org/10.1016/j.ipm.2020.102228. Impact Factor 
2019: 4.787. JCR 2019: Q1: 22/156. Computer Science, Information Systems. 
The code for this paper is available in the following url6 . 

This article is influenced by and can be understood as the future work of these 
previous publications: 

• Pablo Sánchez and Alejandro Belloǵın. Building user profiles based on se-
quences for content and collaborative filtering. Information Processing Manage-
ment, 56(1):192-211, 2019. DOI: https://doi.org/10.1016/j.ipm.2018.10. 
003. Impact Factor 2019: 4.787. JCR 2019: Q1: 22/156. Computer Science, 
Information Systems. 

• Alejandro Belloǵın and Pablo Sánchez. Collaborative filtering based on sub-
sequence matching: A new approach. Information Sciences, 418:432-446, 2017. 
DOI: https://doi.org/10.1016/j.ins.2017.08.016. Impact Factor 2017: 
4.305. JCR 2017: Q1: 12/148. Computer Science, Information Systems. 

4Anti-relevance metrics, https://bitbucket.org/PabloSanchezP/antirelevancemetrics 
5Attribute-based evaluation, https://bitbucket.org/PabloSanchezP/attreval4recsys 
6Time and sequence awareness, https://bitbucket.org/PabloSanchezP/bfrecommendation 
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Continuing the work on sequences, in Chapter 6 we also define mechanisms to 
obtain routes or trajectories of POIs, not just independent venues, using the data of 
LBSNs. Hence, we define a method to obtain and filter routes from POI interactions 
datasets and we then explore how to recommend routes applying and adapting rerank-
ing techniques in the area of POI recommendation. The publication related to this 
chapter is: 

• Pablo Sánchez and Alejandro Belloǵın. Applying reranking strategies to route 
recommendation using sequence-aware evaluation. User Modeling and User-
Adapted Interaction, 30(4):659-725, 2020. DOI: https://doi.org/10.1007/ 
s11257-020-09258-4. Impact Factor 2019: 4.682. JCR 2019: Q1: 4/22. 
Computer Science, Cybernetics. The code for this paper is available in the fol-
lowing url7 . 

Finally, due to the great sparsity of the POI recommendation area, in Chapter 7 
we apply techniques based on cross-domain to determine if it is possible to improve 
the recommendations produced by the algorithms both in terms of accuracy and other 
dimensions like novelty, diversity, and coverage. At the same time, we classify the users 
in two different groups, tourists and locals, and we analyze the effect of these techniques 
in both groups separately. The publications related to this chapter are: 

• Pablo Sánchez and Alejandro Belloǵın. On the effects of aggregation strategies 
for different groups of users in venue recommendation. Submitted to Information 
Processing and Management. Accepted paper. Impact Factor 2019: 4.787. 
Q1: 22/156. Computer Science, Information Systems. The code for this paper is 
available in the following url8 . 

• Pablo Sánchez and Alejandro Belloǵın. A novel approach for venue recom-
mendation using cross-domain techniques. In the 2nd Workshop on Intelligent 
Recommender Systems by Knowledge Transfer & Learning (RecSysKTL), held 
in conjunction with the 12th ACM Conference on Recommender Systems, Van-
couver, Canada, Oct, 2018. 

1.4 Structure of the thesis 

This thesis is structured as follows: 

• Chapter 2 presents the state-of-the-art of classical recommender systems. First, 
we define the recommendation problem and categorize the most popular types of 
models, highlighting their advantages, disadvantages, and the most representa-
tive approaches. Besides, we show the evolution on the evaluation methods and 

7Applying reranking strategies to route recommendation, https://bitbucket.org/PabloSanchezP/ 
serersys 

8Aggregation strategies for venue recommendation, https://bitbucket.org/PabloSanchezP/ 
tempcdseqeval 
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1.4 Structure of the thesis 

protocols that have been used in the area and we define the most well-known 
evaluation methodologies and metrics currently used. 

• Chapter 3 discusses about the POI recommendation problem and categorize the 
most important approaches in this domain between 2011 and 2019. In our sur-
vey, we classify the models according to the type of information used (temporal, 
sequential, content, etc.), the type of algorithm (similarities, factorization, neural 
networks, etc.), where we also make a special emphasis on the reproducibility as-
pect, showing the main evaluation strategies used in the area (metrics, datasets, 
types of splits, etc.). 

• Chapter 4 proposes a set of new metrics to incorporate additional contexts when 
evaluating Recommender Systems. First, we extend an existing novelty and di-
versity framework to incorporate temporal information. Secondly, we show how 
to take into account the items that are specifically not liked by the user in eval-
uation. Later, we show how we can use the item attributes in evaluation; finally, 
we show how to incorporate sequentiality in traditional ranking-based accuracy 
metrics. 

• Chapter 5 proposes a new similarity metric based on the Longest Common Sub-
sequence (LCS) algorithm to be used in neighborhood-based recommenders. Be-
sides, it also presents a reformulation of user-based neighborhood algorithms 
bringing ideas from ranking fusion techniques. 

• Chapter 6 continues exploring the data of Location-Based Social Networks and 
proposes mechanisms to obtain full routes from these types of datasets. Besides, it 
also presents mechanisms to obtain routes from independent venues using rerank-
ing techniques from the Information Retrieval (IR) area. 

• Chapter 7 further investigates the problem of traditional POI recommendation 
with special emphasis on the high sparsity of this domain. In order to try to 
partially alleviate this effect, we propose the use of data aggregation techniques 
(based on the cross-domain area) to improve the recommendations in indepen-
dent cities by augmenting the information from other cities based on different 
strategies. Besides, we also classify the users into two groups (tourists and locals) 
while analyzing the performance of recommenders in each group separately. 

• Chapter 8 summarizes the main conclusions of this thesis and discusses the main 
limitations and the future work for a further investigation. 
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2 

Recommender Systems 

Recommender Systems (RS) are software tools that analyze the users’ preferences (i.e., 
opinions, reviews, tastes) and suggest different items that fit into the users’ interests 
in a personalized way. These items depend on the domain where the recommendation 
engine is applied. For example, in companies like Netflix or Youtube, the items would 
be videos while in Spotify, the items would be songs, artists, or both, and in Amazon, 
the items might be any available product from its catalog. In all these companies, 
the information that the user can access to is so immense that information filtering, 
personalized recommendation, and discovery of items provided by the recommenders are 
indispensable to help users and improve their satisfaction (Ricci et al., 2015, O’Donovan 
and Smyth, 2005). 

In this chapter, we will make an overview of the traditional technologies and tech-
niques that are used in the recommendation domain and introduce the reader to the 
terminology that will be used in the rest of the thesis. First, in Section 2.1 we show 
the formulation of the recommendation problem. Later, in Section 2.2 we present the 
most important classical types of Recommender Systems, and in Section 2.3 we make a 
more in depth study about context-aware recommenders. Finally, Section 2.4 illustrates 
the main mechanisms for analyzing the performance of the recommenders in different 
dimensions, from accuracy to novelty and diversity. 

2.1 Definition of the recommendation problem 

In the recommendation process, there are a noteworthy number of factors that can be 
taken into account in order to improve the recommendations produced to users (e.g., 
long term preferences, exploring new content, analyze popular items, etc.). Neverthe-
less, the main objective of every recommender is to maximize the usefulness of the 
items that are being suggested to the target user. Although several formulations have 
been proposed in the area for this problem, one of the most cited is the one introduced 
by Adomavicius and Tuzhilin (2005), where the recommendation task is presented as 
an optimization formula. Nonetheless, before showing such formulation, we will clarify 
hereafter part of the notation that we will use in this thesis. First of all, we will denote 
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the set of users in the system with symbol U and the set of items with symbol I. We 
define a utility function g: U × I → R that measures the hypothetical interest that 
user u ∈ U may have on item i ∈ I. Thus, the objective is to provide to each user 
unknown items ordered by the utility function g: 

i ∗ (u) = arg max g(u, i) (2.1) 
i∈I 

Normally, R refers to real numbers and aims to capture the usefulness of the items with 
respect to the users. The relationship between users and items are modeled using a U × 
I matrix in which each cell represents a value indicating if the user liked or not that 
item, with empty cells denoting the items that the user has not consumed (actually, the 
interactions the system is not aware of, since in the real world the users may consume 
or interact with the same type of items in different systems). Traditionally, this matrix 
is very sparse (more than 99% of the values are unknown). Although the objective of 
any recommendation algorithm is to suggest the maximum number of relevant items 
to the target user u by approximating Equation 2.1, depending on how the user and 
item information are used, we can characterize several types of Recommender Systems. 
According to Ricci et al. (2015), we distinguish at least the following: 1) Content-
based, that suggest to the users items similar to the ones they liked in the past. 2) 
Collaborative filtering, which analyze the interactions between users and items and 
establish patterns between them in order to make recommendations. 3) Demographic, 
that provide recommendations by exploiting the demographic information of the user 
(country, language, etc.). 4) Knowledge-based, that suggest items based on specific 
knowledge of the item features and how they meet the users’ interests, normally taking 
into account additional inputs as queries or constraints of the users. All these techniques 
may have certain drawbacks in some circumstances. For example, for a collaborative 
filtering recommender it will be impossible to recommend items to a new user who 
has just entered the system. On the other hand, content-based algorithms need a 
very high amount of data to make consistent recommendations and may suffer from 
overspecialization, that is, most of the recommendations are too similar to the items 
that the user has already consumed. In order to alleviate some of these problems, hybrid 
recommender systems are often used. These techniques combine different strategies to 
obtain a better performance of the complete system (Burke, 2007). Nevertheless, among 
all of the mentioned techniques, the most well-known and analyzed recommenders are 
the content-based, collaborative filtering, and the hybrids recommender systems. Since 
we will focus on these three families of recommendation algorithms throughout the 
thesis, in the following subsection we will provide a more detailed explanation of these 
three families of recommendation algorithms. 

2.2 Traditional classification of Recommender Systems 

In this section, we review the most studied families of traditional Recommender Sys-
tems, describing their formulations and discussing their main advantages and disadvan-
tages. Herein, we define as traditional Recommender System (or classical recommen-
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dation) those proposals that have been used in the area for several decades and that 
are still used today as basic baseline algorithms. We will make a special emphasis on 
the collaborative filtering approaches as they represent the most explored family in the 
area. 

2.2.1 Content-based recommenders 

Content-based (CB) algorithms recommend to the users items that those users liked 
in the past. Normally, these algorithms analyze the items and/or user features (con-
tent information) like genres in the case of movies, books, and music or categories 
(bar, restaurant, museum, etc.) in the case of POIs, and use them to create user and 
item profiles to recommend items to the target user that are similar to the ones she 
liked previously. Typically, three independent components are distinguished in a CB 
recommender (de Gemmis et al., 2015, Aggarwal, 2016): 

• Content analyzer: in some situations, the available information of the items need 
to be pre-processed in a structured way from different sources (web pages, de-
scriptions, documents, etc.) in order to extract keywords, concepts, or other 
information. Once such information has been processed, it can be used as input 
for the other components. 

• Profile learner: using the content information of the items interacted previously 
by the user, this component builds a profile for every user in the system by 
applying machine learning techniques like regression or classification. The profile 
learner must have up-to-date information in order to adapt to users’ changing 
tastes. 

• Filtering component: once the user profile is learned, recommendations are per-
formed in this step matching the user profile against the items in the system. The 
items are sorted according to their estimated relevance and recommended to the 
user. 

Many content-based algorithms obtain the features of items from text using com-
mon techniques from the Information Retrieval area such as the Vector Space Model 
(VSM) (Baeza-Yates and Ribeiro-Neto, 2011), where an n-size vocabulary in the form 
of keywords or terms is obtained from documents, and then this vocabulary is used to 
represent each document dj in an n-dimensional space in which each coordinate rep-

~ resents the weight (wk) for each term tk. That is: dj = 〈w1j , w2j , · · · , wnj 〉. To build 
these vectors, a common approach is using schemes based on Term Frequency (TF), 
Inverse Document Frequency (IDF), and combinations thereof (such as the well-known 
approaches of TF-IDF or BM25) (Cantador et al., 2010). 

The TF-IDF is a well-known and simple mechanism for term-weighting which is 
based on two main assumptions. On the one hand, it assumes that terms that appear 
several times in a document are more relevant than those that appear few times and on 
the other hand, it considers that unusual terms are more important than usual ones. 
Thus, the TF-IDF scheme can be defined as: 
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TF − IDF (tk, dj ) = TF (tk, dj ) · IDF (tk) (2.2) 

where 
fk,j 

TF (tk, dj ) = (2.3) 
maxz fz,j 

|D|
IDF (tk) = log (2.4) 

nk 

In these equations, TF (tk, dj) takes into account the frequency of term k by dividing 
such frequency by the maximum of the frequencies fz,j of all keywords kz that appear 
in document dj . The second part of Equation 2.2, IDF (tk), will penalize keywords 
that appear in many documents as they do not help in distinguishing between useful 
and non-useful items. In this case, |D| denotes the total number of documents of the 
system and nk is the number of documents where the term k occurs at least once. 

In order to bound the weights between [0,1], the TF-IDF function is usually nor-
malized as follows: 

TF − IDF (tk, dj ) 
wkj = (2.5)»∑|T | 

TF − IDF (ts, dj )2 
s=1 

Once we have transformed all the items into vectors, a similarity metric (such as 
cosine similarity) can be applied to obtain a ranking of similar items with respect to 
others the user has previously consumed: ∑k 

j=1 wuj wij
#» cos(w # » 

u, wi) = »∑k 
»∑k 

(2.6)
2 2· j=1 wuj j=1 wij 

In this type of representation, Equation 2.6 can be interpreted as the generic function 
g defined in Equation 2.1. 

Even though modeling this problem with a VSM is still popular nowadays, the 
use of embeddings has increased lately to exploit possible latent relationships between 
documents and associated terms (Lops et al., 2019). The process when working with 
embeddings would be the same as the one mentioned above with the VSM, where the 
space of the features is lower and more dense, so the sparsity is reduced, hence, allowing 
to address the curse of dimensionality (Amatriain and Pujol, 2015). 

At the same time, probabilistic approaches like Bayesian classifiers have also been 
applied in CB recommendation to classify documents usually in two main classes: 
whether the user considers the document as relevant or not. For this, a classifier is 
learned based on P (c|d), that is, the probability to classify a document d into class c 
(e.g., the user likes it or dislikes it, or even one class for each possible rating value), 
which in turn is based on the probability of observing document d given the class c, 
i.e., P (d|c), and the prior probability of each class P (c). Applying Bayes theorem: 

P (c)P (d|c)
P (c|d) = (2.7)

P (d) 
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The most difficult part is the estimation of P (d|c), although it is common to use a 
Näıve Bayes classifier, in such a way that the document could be replaced by a vector 
of keywords following the same procedure as we explained before. 

Apart from probabilistic models, relevance feedback and neighborhood-based al-
gorithms are also used with content information. The former is a technique that re-
fines the user profile by taking into account their opinion of the previous suggested 
items, with Rocchio’s formula being one of the most well-known relevance feedback 
approaches used in Information Retrieval (Baeza-Yates and Ribeiro-Neto, 2011). For 
neighborhood-based algorithms (see Section 2.2.2) it is common to use a similarity func-
tion computed on the VSM representation of the items, and then select the class for the 
unclassified item taking into account the classes of the nearest neighbor items (de Gem-
mis et al., 2015). 

As we can see from the aforementioned formulations, content-based recommenda-
tions will always look for items that resemble those the user has previously consumed, 
which means that they only rely on the interactions of the target user for building her 
profile (user-independence). Another important advantage is that items with very few 
interactions or even none can also be recommended. This is because, as long as we 
have the features associated to those items, we can build the VSMs and match them 
to the users profiles. However, it is important to mention that with this type of rec-
ommendation, it is difficult to surprise the user with new and diverse items, since the 
recommendation will always emphasize items with very similar features, as those are 
the ones enjoyed by the user in the past (de Gemmis et al., 2015, Adomavicius and 
Tuzhilin, 2005). 

2.2.2 Collaborative filtering recommenders 

Collaborative Filtering (CF) techniques analyze the interactions between users and 
items and establish patterns between them in order to make recommendations. These 
techniques are normally divided into two groups: memory-based (or nearest neighbors) 
that perform the recommendations using the interactions (usually represented as a user 
× item matrix as shown in Section 2.1) in a direct way by computing similarities be-
tween users and/or items (Ning et al., 2015), and model-based algorithms that build a 
predictive model by approximating the information stored in the preference or interac-
tion matrix (Koren and Bell, 2015). We now explain some of the fundamental concepts 
related to these two families of CF algorithms. 

Memory-based methods 
Memory-based methods (also called nearest neighbors or k-NN) are one of the most 

well-known and implemented strategies in traditional recommendation due to its ease 
of programming and the great interpretability of the recommendations obtained (Ning 
et al., 2015). 

The idea behind these algorithms is to recommend to the target user the most 
appropriate items by exploiting similarities between the rest of the users/items in the 
system. To do this, they build neighborhoods– by considering those users/items with 
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2. RECOMMENDER SYSTEMS 

highest similarities – and predict the score for new items based on those similarities and 
the scores provided by such neighbors (Ning et al., 2015). Although we can find both 
user (UB) or item-based (IB) k-NN algorithms, we will show the formulations for the 
UB approach (the IB formulations can be obtained in a complementary way). In the 
following equation, we denote how these methods estimate the utility function shown 
in Equation 2.1: ∑ 

r̂ui = rviwuv (2.8) 
v∈Ni(u) 

where Ni(u) represent the top-k neighbors with the highest similarity with the target 
user u, wuv denotes the similarity between users u and v and rvi represents the rating 
that the neighbor v gave to item i. 

Note that here we are representing the neighborhood-based formulation without 
normalizing the score, as in Aiolli (2013), although the original formulation normalizes 
the score with the sum of the similarities of all neighbors (dividing Equation 2.8 by ∑ 

|wuv|). We decided to show the non-normalized version because this formula-v∈Ni(u) 
tion has obtained better results in the task of top-n recommendation (Cremonesi et al., 
2010). In this task, we are interested in obtaining a list of items ordered by score, to 
recover the top-n of the items to recommend a small subset, so that score does not need 
to be bounded by an interval. 

Obviously, the similarity function is the most critical component in this type of 
algorithms, since it is used to select the neighbors and to weight each of them for 
the final score. Classical similarity metrics exploit trends in ratings such as cosine 
similarity (Equation 2.9) or Pearson Correlation (Equation 2.10), although there are 
other approaches that do not use ratings, as they directly exploit how many items in 
common are recorded between user/item interactions, by means of variations of overlap 
measurements such as the Jaccard index (Equation 2.11): ∑ 

ruirvi i∈Iuvcos(u, v) = »∑ ∑ (2.9)
2 2 

i∈Iu 
rui j∈Iv 

rvj ∑ 
(rui − ru)(rvi − rv)i∈IuvPC(u, v) = »∑ ∑ (2.10) 

)2 )2(rui − ru (rvi − rvi∈Iuv i∈Iuv 

|Iu ∩ Iv|
Jaccard(u, v) = (2.11)

|Iu ∪ Iv| 
where Iu, Iv and Iuv denote the sets of items rated by users u, v, and u and v respec-
tively. 

Model-based methods 
Model-based algorithms represent the other major family of CF methods (Koren 

and Bell, 2015, Breese et al., 1998). This type of recommenders rely on machine learning 
techniques to learn a predictive model from the interactions of the users and items. 
Generally, these methods introduce a large number of parameters that are learned in 
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a training phase minimizing a loss function. There are a large variety of model-based 
algorithms, including probabilistic models (Hernando et al., 2016, Li et al., 2007), neural 
network techniques (Hidasi and Karatzoglou, 2018, Tang and Wang, 2018), or matrix 
factorization models (Hu et al., 2008), which have enjoyed great popularity because of 
their importance on the Netflix Prize (Bell and Koren, 2007). 

Matrix Factorization (MF) approaches approximate the user × item matrix by 
transforming both users and items into a latent factor space of low dimensionality so 
that the user-item interactions can be explained (or recovered) by applying dot products 
in that space (Koren and Bell, 2015). Hence, these models associate each user u ∈ U 
with a vector pu ∈ Rk and each item i ∈ I with a vector qi ∈ Rk so that the inner 
product between qi and pu give us the rating of user u to item i: 

r̂ui = qiT · pu (2.12) 

The latent space is learned either by applying Stochastic Gradient Descent (SGD) 
or Alternating Least Squares (ALS) optimization techniques, depending on the do-
main characteristics and efficiency constraints (Koren and Bell, 2015). To do so, it is 
necessary to minimize the regularized squared error: ∑ 

Tmin (rui − qi pu)2 + λ(||qi||2 + ||pu||2) (2.13) 
q∗,p∗ 

(u,i)∈K 

In this case, K is equivalent to the set of pairs (u, i) whose rating is known (training 
set). The λ variable is a constant whose purpose is to avoid overfitting (regularization 
term), as this is computed over the set of known ratings. For the Stochastic Gradient 
Descent approach, the system predicts rui for each rating in the training set. The error 
is then computed as: 

T eui = rui − qi · pu (2.14) 

Then the parameters are modified proportionally to γ in the opposite direction of the 
gradient: 

qi ← qi + γ(eui · pu − λqi) (2.15) 
pu ← pu + γ(eui · qi − λqu) (2.16) 

Although the optimization shown in Equation 2.13 is the core of many of these 
techniques, there are also proposals that incorporate additional contexts like temporal, 
sequential or geographical information if it is available in the domain that they are 
applied. In Section 2.3 we describe more in depth some of these approaches. 

Of all the methods we can find for collaborative filtering, the probabilistic optimiza-
tion model named Bayesian Personalized Ranking (BPR), proposed by Rendle et al. 
(2009), deserves special attention. The BPR is an optimization criterion specifically 
designed to obtain a ranking for the target user, unlike other aforementioned proposals 
that were optimized to predict if a user liked a specific item. Hence, the objective is to 
provide to every user u a personalized ranking order >u. To do so, they use item pairs 
for training so that if the user interacted with item i1 but no with item i2, we assume 
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that the user preferred i1 over i2, that is: i1 >u i2. Thus, the objective is to maximize 
the following posterior probability: 

p(Θ| >u) ∝ p(>u |Θ)p(Θ) (2.17) 

where Θ represents the parameters of the model we are optimizing for (e.g., matrix 
factorization or a k-NN recommender) and >u represents the desired latent preference 
structure for user u. The authors assume all users are independent of each other and 
the ordering of each pair of items (i, j) for each user is unique, hence it is personalized. 
Therefore, the likelihood function p(>u |Θ) can be represented as: ∏ ∏ 

p(>u |Θ) = p(i >u j|Θ) (2.18) 
u∈U (u,i,j)∈DS 

where DS is defined as: DS = {(u, i, j)|i ∈ Iu ∧ j ∈ I \ Iu} and p(>u j|Θ) = σ(x̂uij (Θ)), 
with σ being the logistic sigmoid and x̂uij being a function that models the relationship 
between user u and the items i and j. Finally, the prior density is approximated with 
a normal distribution, that is: p(Θ) ∼ N(0, ΣΘ), setting ΣΘ = λΘI, with λΘ being the 
regularization parameters of the model, yielding to the following optimization criterion: 

BP R − OP T = ln p(Θ| >u) = ln p(>u |Θ)p(Θ)∏ ∑ 
= ln σ(x̂uij )p(Θ) = ln σ(x̂uij ) + ln p(Θ) 

(u,i,j)∈DS (u,i,j)∈DS∑ 
= ln σ(x̂uij ) − λΘ||Θ||2 

(u,i,j)∈DS 

We want to emphasize that BPR is not an algorithm per se, but a loss function 
(optimization criterion). That is, the parameters to be optimized correspond to a 
recommendation model which can be, among others, a k-NN or a MF. In fact, this 
optimization method has been used in a large number of algorithms, including the 
next basket recommendation approach of Rendle et al. (2010) (further detailed in Sec-
tion 2.3), the friend recommendation algorithm of Ding et al. (2017), or the Point-of-
Interest recommendation models proposed in Li et al. (2015a) and Yuan et al. (2016). 
It is important to mention that the BPR is an example of a pair-wise learning to rank 
approach as it considers two items in the loss function (Karatzoglou et al., 2013). 

As we have shown in this section, collaborative filtering techniques are very different 
from content-based ones as they do not exploit any additional information about the 
items or the users, just their interactions. Besides, it can be observed that in general the 
collaborative filtering recommenders do not have the same problem of specialization as 
the content-based ones, since the neighbors and/or latent factors can surprise the user 
with different recommendations (Adomavicius and Tuzhilin, 2005, Ning et al., 2015). 
However, the main drawback is that it is very difficult to recommend items to the users 
with very few interactions, as there will not be much neighbors who have scored it, nor 
will the factors associated with that item optimized. 
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2.2.3 Hybrid recommenders 

All of the aforementioned types of recommenders may have some drawbacks under 
certain circumstances. As explained before, if a new item appears in a collaborative 
filtering recommender, it will not be recommended unless it is consumed by other 
users in the system. At the same time, most of the recommendations produced by 
a content-based recommender will be similar as it will only suggest items matching 
the item features of the previous items liked by the user. In order to alleviate these 
problems, different hybrid recommendation methods have been proposed, all of them 
oriented to combine several strategies in order to minimize the limitations of each 
independent algorithm (Ricci et al., 2015). According to Burke (2007), there are seven 
main hybridization techniques: 

• Weighted: each recommender obtains a score for each candidate item and these 
scores are combined using a linear formula. 

• Switching: it switches between recommenders depending on the situation. That 
is, it turns on one or another, so there is only one active recommender at each 
moment. 

• Mixed: each recommender makes its own recommendations and the final output 
is a combination of them. 

• Feature combination: features derived from various sources are combined and 
sent to the recommendation model. 

• Feature augmentation: similar to feature combination but instead of deriving fea-
tures of other recommender, the recommenders augment (generate) new features 
and send them to the final recommendation algorithm. 

• Cascade: these hybrid techniques normally use a weak and a strong recommender. 
The recommendations are done using the main recommender and the weak model 
is only used when the strong recommender gives the same score to more than one 
item. 

• Meta-level: a recommender produces a model, which is the input for the second 
recommender. Similar to feature augmentation but the second recommender does 
not work with raw data, only with the model provided by the first recommender. 

Of all the possible combinations between families of Recommender Systems, the ones 
that stand out the most are the recommenders that use both collaborative and content 
information. In fact, one of the first recommendation models, proposed in Balabanovic 
and Shoham (1997), is a hybrid recommender system in which the users are provided 
with items scoring high against their profile and when they are also liked from users 
with a similar profile (content-based similarity). Other examples include the feature 
augmentation algorithm based on Bayesian networks of de Campos et al. (2010) in 
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which the balance between the collaborative and content-based parts is automatically 
selected and another feature augmentation algorithm proposed in Melville et al. (2002) 
that uses a content-based recommender to populate the rating matrix and applying 
then a user neighborhood model. Several examples can be found in recent research, 
where sometimes it is actually difficult to identify if an algorithm is a hybrid, since 
several components are typically considered, all interacting in a single model. We will 
show more examples about these and more complex hybrids in Chapter 3 (referring to 
POI, where we analyze many more types and combinations for hybrids). 

2.3 Incorporating contextual information in Recom-
mender Systems 

The aforementioned Recommender Systems only made use of the information avail-
able from users’ interactions with the items, except in the case of the content-based 
recommenders that also exploit the items features. However, it should be taken into 
account that users are influenced by other contexts when choosing the items they con-
sume (Adomavicius and Tuzhilin, 2015). For example, the music a user consumes at 
work may not be the same as the music she consumes in his leisure time. When rec-
ommending touristic venues in a city, it may be interesting to take into account the 
weather and not recommend outdoor activities if it is raining. In fact, the weather is a 
context that is sometimes taken into account in the Point-of-Interest (POI) recommen-
dation domain (Trattner et al., 2016, Villegas et al., 2018), as well as the geographical 
influence, as the users normally tend to visit nearby POIs (Bagci and Karagoz, 2015, 
Zhang and Chow, 2015a, Ren et al., 2017). However, beyond the POI recommendation 
problem, these contexts are not usually available. In contrast, two contexts are particu-
larly relevant in traditional recommender systems and can be obtained more easily: the 
temporal and sequential information. Although they are sometimes considered as the 
same context, in this thesis we prefer to make a distinction between them. We argue 
that they should be treated independently, as not every sequence involves a temporal 
relationship and vice versa (e.g., a sequence of characters when searching for a word in 
a document does not contain any temporary information). Therefore, we consider that 
an algorithm exploits the temporal context as long as it uses any kind of timestamps 
in the model (like giving more weight to recent ratings, analyzing the different phases 
of the day, movie release dates, etc.). On the other hand, if the timestamps are only 
exploited to make sequences of interactions, we will state that it only uses sequential 
information. 

Both temporal and sequential information have proven to be of vital importance to 
model and understand the evolution of the user behavior and have been applied in a 
large number of algorithms (Anelli et al., 2019). One of the best known examples has 
been the matrix factorization algorithm (shown in Section 2.2.2), extended to incorpo-
rate the timestamps of interactions (Koren and Bell, 2015). In the k-NN recommenders 
systems, this temporal component has also been applied. For example, Ding and Li 
(2005) incorporated a time decay (TD) function in an item-based k-NN recommender: 
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∑ 
j∈Ni 

ruj · wi,j · fλ(tuj ) 
r̂ui = ∑ (2.19) 

j∈Ni 
wi,j · fλ(tuj ) 

where again rui is the rating that user u gave to item i and w(i, j) refers to the simi-
larity between items i and j (any similarity function like Pearson Correlation, Cosine 
Similarity, etc.), and tuj is the moment when u rated item j. The time function fλ(t) 

−λt 1is defined as fλ(t) = e , with λ = T0 
(with T0 representing days). 

The authors introduce the exponential function where λ is the decay rate or half-
life parameter. It is defined so that old data obtains small weights, which means that 
larger values of t correspond to older interaction times, where t = 0 is the present. It is 
not clear, however, how such values of t are computed or normalized from the original 
timestamps, since no other information is provided; in particular, it is not obvious what 
t = 0 actually represents for the authors, is it the last interaction in training? in the 
whole dataset? 

This approach based on a time decay function has also been adapted to user-based 
recommenders, as shown in Campos et al. (2014): ∑ 

v∈Nu 
(rvi − rv) · wu,v · e−λ·(t−tvi) 

r̂ui = ru + ∑ (2.20) 
v∈Nu 

wu,v 

in which the authors used the mean-centering formulation besides incorporating the 
temporal influence in the user-based recommender. The mean-centering is a normal-
ization scheme that allow us to detect if a the rating that a user u gives to an item i is 
positive of negative by comparing that rating to the user’s mean. 

Moreover, in this case the time decay function receives the difference of two times-
tamps (instead of only one as before): the neighbor’s interaction time tvi and the 
prediction time t. Again, it is not obvious how such time t is used in this formulation, 
although it is very likely that it would represent the timestamp that appears in the 
test set, which exposes an unrealistic situation since the recommender would be using 
a different t for every item in the test set, exploiting information that should remain 
hidden to the algorithm in the prediction stage. 

Leaving aside this time decay similarity function, time analysis of user’s preferences 
has also favored the emergence of algorithms that exploit these user-item interactions as 
sequences in their models. In this type of sequential recommendation, researchers model 
each user in the system as a sequence of actions S(u) = (S1, S2, S3, · · · , Sn) – following 
a similar notation as in He and McAuley (2016) – where each action corresponds to 
one item the user has consumed. Thus, the recommendation problem here is to predict 
the next item to be consumed by the user. While most traditional algorithms rely on 
the full history of the user, in sequence recommendation only the latest interactions 
of the user are normally considered (or, at least, the most recent ratings receive more 
attention than the others). 

One classical approach to identify these sequential patterns is to use an L-Markov 
chain model, where L denotes the number of previous actions that are taken into ac-
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count in order to make the recommendations. The L-order Markov Chain (MC) for 
modeling user sequences can be represented as: 

p(St | St−1, St−2, · · · , St−L) (2.21) 

When considering a first order MC (L = 1), the probability of choosing item j given 
the actual item i at the next step, p(j | i), is obtained by using maximum likelihood 
estimation on the item-to-item transition matrix. This model, although simple, is at 
the core of many approximations. For example, Rendle et al. (2010) proposed a more 
complex approach for basket recommendation where each user has its own transition 

A ∈ [0, 1]|U|×|I|×|I|matrix, leading to a global representation of a transition tensor: . 
To deal with the high sparsity of tensor A, they approximate it using the Canonical 
Decomposition A := C × V U × V L × V I , where V U , V L and V I represent the feature 
matrix of the users, the items of the last transition and the items to predict, respectively, 
all with the same dimension k. For modeling the pairwise interactions between the 
three main components of the model (users, and both types of items), they use two 
factorization matrices for each of them: hence, for modeling the relationship between 
U and I they have matrices V U,I and V I,U , for I and L they use matrices V I,L and V L,I 
and for the interaction between U and L they use matrices V U,L and V L,U . Apart of 
exploiting the transitions between the items, they also incorporated matrix factorization 
techniques in their probabilistic framework, combining both approaches (MF and MC) 
into a single model: Factorizing Personalized Markov Chains (FPMC). In that model 
they estimate the probability of item i belonging to the actual basket Bt as follows: 

∑1U,L I,U I,L L,I x̂u,t,i = vu · vi + vi · vl (2.22)
|Bu |t−1 l∈Bu 

t−1 

Another interesting approach that model sequences of actions is defined in He and 
McAuley (2016). In that article, the authors use an L-order Markov Chain making 
a weighted sum for the short and long term dynamics of the user preferences. The 
proposed model (named Fossil, from Factorized Sequential Prediction with Item Sim-
ilarity Models) is a combination of both Factored Item Similarity Models (FISM) and 
Markov Chains with personalization. In this context, FISM is a method to factorize an 
item-to-item similarity matrix W (of dimension |I| × |I|) into two low-rank matrices in 
order to reduce the number of parameters and reduce sparsity of matrix W as follows: 

W = P · QT (2.23) 

where P and Q are |I|×K where K << |I|. For exploiting the sequential information, in 
Fossil the authors model short-term dynamics using high-order Markov Chains. Instead 
of using a first-order Markov Chain, they allow to exploit the most L recent items that 
the user has consumed. Hence, the final model combines both FISM and L-order 
Markov Chains: 
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∞ ∫ 
L∑ ∑1 

pu(j | St
u 
−1, St

u 
−2, · · · , St

u 
−L) ∝ βj + Pj 

′ + (ηk + ηk
u) · PS t

u 
−k 
, Qj|Iu \ {j}|α 

j′∈Iu\j k=1 
(2.24) 

According to the reported results in their paper, the Fossil approach outperforms 
many sequential state-of-the-art algorithms, including the FISM techniques, FPMC, 
and matrix factorization models optimized with BPR, although the authors did not 
analyze the performance of other classic recommenders such as standard MF approaches 
or neighborhood-based algorithms. 

In addition to the aforementioned algorithms, neural network techniques have also 
acquired special relevance recently in recommendation because of their success in other 
related areas such as Machine Learning (ML) and in the industry with companies like 
Google or Netflix (Johnson et al., 2017, Abadi et al., 2015, Liberty et al., 2020, Zhang 
et al., 2019a). Besides, there are many deep learning techniques that have been ap-
plied in recommendation, such as Multi-Layer Perceptrons, Autoencoders, restricted 
Boltzmann machines, etc. (Zhang et al., 2019a). Many of these techniques are flexi-
ble enough to incorporate some of the contextual information mentioned above. For 
example, Hidasi et al. (2016) proposed GRU4Rec in 2015 (and improved in 2016) a 
recurrent neural network session-based algorithm that captures the sequential depen-
dencies between the user preferences in order to make recommendations. For next-item 
recommendation we can find the new type of GRU presented in Donkers et al. (2017) 
and the behavior-intensive neural network from Li et al. (2018a), consisting on two 
main components, the neural item embedding (for obtaining a unified representation 
of the items) and the discriminative behavior learning that modelizes the interests of 
the user over time and the actual consumption motivation. Finally, Tang and Wang 
(2018) proposed Caser, a convolutional neural network model designed to learn the 
sequential patterns by applying convolutional filters to the item embeddings in order 
to make predictions. The architecture of the model is shown in Figure 2.1. 

Despite the large number of neural network proposals, a debate has recently opened 
in the Recommender Systems community to clarify whether they are so useful (or 
whether they are being implemented correctly). Regarding this issue, Dacrema et al. 
(2019) analyzed a total of 18 deep learning models presented in the most important 
conferences in the area, reaching the conclusion that only seven of them could be repli-
cated and that six of those seven approaches achieved a worse performance than other 
simpler models such as neighborhood-based algorithms. The authors attributed these 
differences in results to using not appropriate evaluation methodologies, not tuning 
properly the baselines, not using competitive baselines, etc. For these reasons, we be-
lieve that it is always critical to be concise in the evaluation methodology followed in 
the experiments, and we advocate for the importance of providing the source code of 
the algorithms if possible. 
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Figure 2.1: Network architecture of the Caser model as shown in Tang and Wang (2018). 

2.4 Recommender Systems evaluation 

As well as there is an extensive and an ongoing research in the recommendation models, 
the evaluation of Recommender Systems remains a very active topic in the area. If the 
quality of the recommendations is good enough, it will attract more and more users 
to our system. Normally, when we want to incorporate a recommendation algorithm 
to an application, we have several possible candidates. For the selection of the final 
recommender we need to design different types of experiments, considering diverse 
factors, including: performance in terms of results obtained, memory used, reliability 
and temporal and spatial scalability (Gunawardana and Shani, 2015). 

Due to the large number of issues that need to be taken into account to evaluate the 
algorithms, in this section we review some of the most important ones when evaluating 
Recommender Systems. 

2.4.1 Evaluation settings 

There are principally three major types of evaluation methodologies (Gunawardana 
and Shani, 2015): 

• Offline experiments: in these experiments, we exploit the preferences of the users 
from a dataset normally obtained from an already deployed system. These type of 
experiments are widely used as they do not need to interact with real users so they 
allow a faster comparison within the algorithms. As a counterpart, they usually 
work with very little information, since we do not have additional data from the 
users, such as the opinion of the users regarding the recommendations (e.g., if 
they found them interesting or surprising) or the actual user satisfaction. Some 
institutions and researchers have made public datasets for offline experiments, 
such as the University of Minnesota with the GroupLens1 datasets (including 

1GroupLens datasets, https://grouplens.org/datasets/ 
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MovieLens for movies or Book Crossing for books), the Stanford Network Analysis 
Project (SNAP)2 with datasets coming from social networks including Gowalla, 
Brighkite, and Facebook, or the Amazon product datasets available in Julian 
McAuley webpage3 . 

• User Studies: in user studies, a group of people is selected to perform certain 
actions using the recommendation system by monitoring their behavior. Some-
times, these user studies are also accompanied by questions to analyze user sat-
isfaction (Hu and Pu, 2009). Although the information that can be obtained 
from user studies is valuable, it must be taken into account that running this 
type of study is very expensive, in addition to the fact that there may be users 
who are not completely sincere as they may be interested only in being paid for 
participating in the study (Russell et al., 2000). 

• Online experiments: these type of experiments are normally performed in sys-
tems that are already working where there is a large number of users, studying 
their behavior using protocols such as A/B testing. In general, under this con-
figuration, the system randomly redirects the users to two different engines or 
small variations of a single one, the one in production and the alternative one, 
so that the interactions of the users in the recommendation engines are recorded 
and analyzed (Kohavi et al., 2009). Normally these types of experiments are done 
in industry, but they are not so common in academia. 

In this thesis we focus on offline evaluation, hence, for a review of other evaluation 
techniques, we refer the reader to the following works (Knijnenburg and Willemsen, 
2015, Kohavi et al., 2009). 

2.4.2 Evaluation methodologies 

In offline evaluation, the performance of recommenders is usually measured by com-
paring the recommendations produced with the ground truth of the items we know 
are relevant to the user. Therefore, starting from the complete dataset R, at least one 
partition is usually made by dividing the dataset into two subsets, the training set 
Rtraining and the test set Rtest so that R = Rtraining ∪ Rtest. In some research areas such 
as Machine Learning (ML), it is common to add a third subset to optimize the parame-
ters of the algorithms, called the validation set Rval, so that R = Rtraining ∪ Rval ∪ Rtest. 
The percentage of information contained in these subsets usually varies depending on 
the context but generally the training set always contains more data than both the 
validation and test set. Thus, the standard procedure is to train the recommendation 
algorithm with the training set, select the best parameters with the validation set (if 
available) and evaluate the recommenders using the test set. To create these subsets 
there are several strategies. A common evaluation procedure is to perform random 
partitions where each iteration of the complete dataset had a probability ptraining to go 

2SNAP datasets, http://snap.stanford.edu/data/index.html 
3Amazon products datasets, https://jmcauley.ucsd.edu/data/amazon/ 
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to training, a pval probability for validation, and a ptest probability to go to test (with 
ptraining + pval + ptest = 1). Other common evaluation methodology is the so-called 
k-fold cross-validation in which the full dataset is splitted in k roughly equal and non-
overlapping subsets in which one fold is left as the test set and the rest of the folds are 
used to train the recommenders. Finally, this process is repeated k times. 

However, this type of evaluation is unfair in contexts where temporal information 
is available because there may be interactions in the training set that occurred in a 
posterior moment of time than other interactions in the test set. This affects the 
recommenders who use temporal information within their models, but also it is an 
unrealistic methodology as when using a real environment we cannot access to infor-
mation that occurs in the future. For that reason, it is becoming more frequent to see 
temporal splits where the user interactions in the test are always posterior with respect 
to the ones contained in the training set. Nonetheless, this temporal split can be done 
according to different hypotheses or scenarios in mind; this is usually translated into 
splitting the data either at the user level or at the system level, according to certain 
restrictions. For more information on this type of splits, Campos et al. (2014) present 
a taxonomy of recommendation evaluation protocols or methodologies, where they are 
classified according to the following conditions: base set (it specifies if the splitting 
is applied to the whole dataset or to each subset independently, such as one dataset 
for each user), ordering (it establishes an ordered sequence for the ratings), and size 
(criterion to compute the number of ratings to be assigned to each training and test 
split). As expected, the ordering condition is the one that controls whether an eval-
uation methodology is sensitive to the temporal dimension, the other two conditions 
entail different constraints that may produce more or less realistic methodologies, such 
as fixed vs proportion size (where all the users in the test set contain exactly the same 
number of interactions or a ratio of their whole user profile) or community-centered vs 
user-centered base set (where all the ratings are used as a whole or each user is consid-
ered as a separate dataset). Nevertheless, we will focus on two common procedures in 
time-aware recommendation, one with a user-centered base set with fixed size condition 
(that we will name per user) and the community-centered base set with a proportion 
size condition (that we will name system). With a per user methodology for each user 
in the dataset, their interactions are sorted in ascending order selecting some of the 
first interactions to the training set, leaving the rest (the more modern ones) for the 
test set. On the other hand, in the system methodology a timestamp is selected so 
that all interactions that occurred before that specific moment in time will form the 
training set and the rest of the interactions will form the test set. It is noteworthy 
to mention that these same system or per user protocols can be applied in a random 
partitioning (i.e. select a percentage of the interactions of the whole dataset to test or 
select a number of interactions of each user randomly to test). 

Finally, it is important to note that although in areas such as Machine Learning 
it is very common to perform a validation step to optimize the recommenders, in the 
recommendation domain the best parameters are usually reported directly in the test 
set, as can be observed in some popular works (Hu et al., 2008, Rendle et al., 2009, 2010, 
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Ding and Li, 2005, Qu et al., 2016, Li et al., 2016a, Yang et al., 2017a). Nevertheless, 
we can also find parameter optimization through different kind of validation subsets 
in other relevant works (Tang and Wang, 2018, Hidasi et al., 2016, Yuan et al., 2019). 
On the one hand, if no validation step is performed in all recommenders it might be 
argued that the overall results should remain stable as the same evaluation methodology 
is performed in all recommenders. On the other hand, the results will probably be 
too optimistic and this procedure may favor those models with more parameters as 
they have a larger space (or more degrees of freedom) to find an optimal solution. 
Nevertheless, in our opinion, this is an aspect that is overlooked in the community and 
more attention should be paid in the future to ensure transparent, reproducible, and 
comparable research. 

2.4.3 Evaluation metrics 

In the emergence of Recommender Systems it was assumed that the models were better 
if they were able to solve the main task considered then: rating prediction. That is, 
the system is good if the difference between the predicted rating and the real rating is 
low. To this end, two main metrics were used, Mean Absolute Error (MAE), and the 
Root Mean Squared Error (RMSE): 

∑1 
MAE = |r̂(u, i) − rui| (2.25)

|Rtest| 
rui∈Rtest √ ∑1 

RMSE = (r̂(u, i) − rui)2 (2.26)
|Rtest| 

rui∈Rtest 

where r̂  is the predicted rating (provided by the recommender) and r is the real rating 
that the user u gave to item i. Rtest refers to the ratings in the test set, which forms the 
ground truth. Although both metrics are used to measure the error, normally RMSE 
is preferred as it penalizes more larger errors. 

However, in recent years, the evaluation metrics used in Recommender Systems have 
changed. One important reason is that sometimes the real ratings are not available in 
the systems, only a list of the items liked by the user. A second, probably more 
decisive, reason for this shift in evaluation is that recommenders, do not try to predict 
a rating anymore, but provide users with a list of recommendations normally of not 
consumed items (top-n recommendation). For this reason, since these metrics are not 
useful in this new scenario, other evaluation metrics emerged, oriented at comparing 
the suggested recommendation list to the users’ and the list of items consumed in the 
test set by them. We now show the formulations of these metrics computed for a given 
user u. To obtain the value of the complete metric for a full set of recommendations, we 
compute the value of the metric for each user individually, and then we divide it by the 
total number of recommended users. Two of the most famous metrics are Precision@k 
(P@k) and Recall@k (R@k), shown in Equations 2.27 and 2.28 respectively. The former 
measures the fraction of recommended items in the top k positions of the ranking that 
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are relevant while Recall indicates the fraction of relevant items that were recommended 
in the top k positions: 

Relu@k
P@k(u) = (2.27)

k 

Relu@k
R@k(u) = (2.28)

Relu 

where Relu@k denotes the set of relevant items recommended at top k and Relu repre-
sents the set of all relevant items of the user. 

Mean Average Precision (MAP) (Equation 2.29) is another popular ranking metric 
in the area. It calculates Precision@k at each k position where a relevant item is found 
and then computes the average. 

∑1 
MAP(u) = P @k (2.29)

|Relu| {k:ik∈Relu} 

where ik denotes the item at position k in the recommended list. 
Finally, Järvelin and Kekäläinen (2002) proposed the normalized Discounted Cumu-

lative Gain (nDCG), shown in Equations 2.30 and 2.31 which, in addition to allowing 
several levels of relevance, it takes into account the position of relevant items in the 
ranking by applying a discount model. The discount component models the fact that 
items located in the lowest position in the ranked list are less likely to be seen by the 
user. In this sense, those recommendation lists that include non-relevant items in the 
first positions of the rankings will be further penalized. Because of this, this metric is 
usually favored with respect to the previous ones, as it encapsulates different levels of 
relevance and penalization by ranking position. 

∑ 2relnDCG(u)@k k − 1 
nDCG@k(u) = (2.30) DCG(u)@k = (2.31)

IDCG(u)@k log2(n + 1) 
n=1 

where reln denotes the real relevance of item n (normally a value between 0 and 5, 
with 0 representing a non-relevant value). Finally, IDCG is computed in the same way 
as DCG but using the list of relevant items (ordered by descending real relevance). 

All these metrics are bounded in the [0, 1] interval, with 1 denoting the perfect score 
and 0 the lowest value. 

Novelty and diversity 
Accuracy evaluation has been the most extended way of evaluating the performance 
of Recommender Systems for many years, either measured in terms of decreasing the 
error or as ranking prediction. However, some researchers have alerted for a long time 
that this type of evaluation is “incomplete” because it does not take into account other 
possible contexts as not always a good performance in accuracy translates in a better 
user experience (McNee et al., 2006, Ge et al., 2010, Campos et al., 2014). 
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2.4 Recommender Systems evaluation 

Two of the most important perspectives in this regard are novelty and diversity. 
Although they are related concepts, they are not synonyms. Diversity normally only 
refers about how different the recommended items are to each other, whereas novelty 
measures how “unknown” the recommended items are for a community or the target 
user (Castells et al., 2015). These dimensions, although they do not measure the 
accuracy of recommendations, should be as fundamental as the evaluation presented 
previously (Castells et al., 2015) and, hence, the results that we will show throughout 
this thesis will include the performance of the recommenders in terms of accuracy as 
well as in these complementary dimensions. 

Some metrics that are used to measure diversity are (Castells et al., 2015, Vargas 
and Castells, 2014): 

Aggregate Diversity: a diversity metric which counts the total number of items 
that the system recommends taking into account all recommendation lists Ru received 
by every user. Sometimes this metric is also referred as “Item Coverage” (IC) and it is 
often reported normalized by the total number of items: 

⋃ 
AggDiv = Ru (2.32) 

u∈U 

Intra-List Distance: one of the first diversity metrics proposed (Smyth and Mc-
Clave, 2001). It is computed as the average pairwise distance of the items in the set of 
recommended items in a recommendation list Ru: ∑ ∑1 

ILD(u) = d(i, j) (2.33)
|Ru|(|Ru| − 1) 

i∈Ru j∈Ru 

where d(i, j) is a distance metric that measures the difference between items i and j. 
Gini Index: a diversity metric that shows how unequally different the items 

chosen by a particular system s are: 

|I|∑1 
Gini = 1 − (2k − |I| − 1)p(ik | s) (2.34)

|I| − 1 
k=1 

|{u ∈ U|i ∈ Rs }|u p(i | s) = ∑ (2.35)
|{u ∈ U|j ∈ Rs }|j∈I u 

where p(ik | s) is the probability of the k-th least recommended item being drawn from 
the recommendation list generated by s, that is, when considering all rankings Rs foru 
every user. In this case, we will use the complementary of the Gini Index proposed 
in Castells et al. (2015), as defined in Vargas and Castells (2014). 

With respect to novelty, this dimension has generally been modeled as the opposite 
of popularity. Two examples of this would be the Inverse User Frequency (see Equa-
tion 2.36) and the Expected Popularity Complement (or EPC) shown in Equation 2.37. 
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Inverse User Frequency: a novelty metric based on the IDF model described in 
Section 2.2.1, in which the novelty of a recommendation list for a user u is defined as: 

1 ∑ |Ui|
IUF (u) = − log2 (2.36)

|Ru| |U|
i∈Ru 

Expected Popularity Complement: this metric, derived from the novelty and 
diversity framework from Vargas and Castells (2011), considers that the novelty of the 
items is complementary to the probability of being consumed by the rest of the users 
in the system. Besides, this metric also incorporates a discount and a relevance model, 
to allow us to measure accuracy and novelty in the same metric. ∑ 

EPC(u) = C disc(k)p(rel | ik, u)(1 − p(seen | ik)) (2.37) 
ik∈Ru ∑ 

where C is a normalizing constant (generally C = 1/ ), disc(n) denotes a discount i∈Ru 
function, as in nDCG (a common discount function is disc(n) = 1/log2(n)) and the 
term p(rel | in, u) represent the probability of being relevant given the item i and user 
u. 

Technical considerations when computing the metrics 
In the evaluation step, there are several factors that may influence the performance of 
the recommenders, from the quality of the data to the types of processing done to the 
original inputs. However, there are several, more subtle considerations when running 
the evaluation that may have profound implications. Even using the same datasets, 
splits, and metrics reported in a specific paper, different results might be obtained 
depending on the number of users to whom we are making recommendations and the 
set of items to be considered as candidates for each user. Regarding the set of items 
to be recommended, Said and Belloǵın (2014) describe two of the most well-known 
approaches for selecting candidates items to be recommended and show that they have 
a strong impact on the results of the recommenders: TrainItems and RelPlusN. In 
TrainItems, every item in the training set is considered as candidate except the ones 
already rated by the target user. In RelPlusN, one high relevant item is selected from 
the test set and then a set of non-relevant items is created by selecting N additional 
items. This latter strategy is often used in neural networks approaches because it is 
cheaper mechanism than generating a score for every possible candidate item. For 
both strategies, the metrics are then computed as shown before. However, a recent 
study conducted by Krichene and Rendle (2020) concluded that the performance of 
the metrics were highly dependent on the type of mechanism used to select the non-
relevant items and hence strategies like RelPlusN should be avoided if possible. Because 
of that, unless stated otherwise, in this thesis we will make recommendations following 
the TrainItems methodology. 

On the other hand, depending on the type of split, there might be users that appear 
in the training set but not in the test set and vice versa, so it is generally assumed that 
the recommendations should be made to the users that appear in the test set to avoid 
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generating useless lists of recommendations. While this seems obvious as it does not 
affect the performance on accuracy metrics (since we can simply ignore users who do 
not appear in the test set), for non-accuracy metrics it has a substantial effect, since 
they do not focus on analyzing the relevance of the recommendations. Hence, the per-
formance of the non-accuracy metrics may vary if we consider making recommendations 
for all users in the training set, instead of those users who only appear in the test set. 
Independently of that, other questions still remain. What happens if there are users 
in the test set who do not appear in the training set? This, in fact, is very common 
in some types of temporal splits. On the one hand, non-personalized algorithms such 
as a Random or a Popularity recommender can make recommendations to new users 
because they do not learn any tastes of the users. However, other recommendation 
algorithms like those presented previously in Sections 2.2 and 2.3 would be incapable 
of providing recommendations to those users. 

For these reasons, in this thesis, unless stated otherwise, recommendations will be 
made for users who appear in test to whom the recommenders are capable of providing 
a recommendation. This means that there may be recommenders who have a lower or 
higher user coverage than others. At the same time, when computing the average of 
the metrics, we will only consider the users in the test that have at least one relevant 
item. To see more in detail the implications of this way of computing the average of 
the metrics, let us consider the example shown in Figure 2.2. In this figure we observe 
three recommendation lists for three different users (Ru1 , Ru2 and Ru3 ). Below the 
recommended lists, the items in the test for each user are also shown (Tu1 , Tu2 and Tu3 

with their corresponding ratings). If no relevance threshold is used (i.e., we consider 
all items in the test set as relevant) and the metric P@5, the final result will be: 

2 2 73P @5(u1) + P @5(u2) + P @5(u3) 555 + + 
|Utest| 3 3 

= 0.4Û65P @5 = = = 

However, if we consider an evaluation threshold of 4 (i.e., we consider as relevant the 
items in the test set that have a rating ≥ 4). In this case, the result would be: 

1 0 43P @5(u1) + P @5(u2) + P @5(u3) 555 + + 
|Utest| 3 3 

= 0.2Û65P @5 = = = 

But, with the relevance threshold of 4, in this example, for the u2 we can never provide 
a useful recommendation as that user does not have any relevant item in the test set, 
thus, we argue that we should ignore this user and use only the users in the test set 
with at least one relevant item using a relevance threshold of 4 (i.e., |U4 |):test 

1 43P @5(u1) + P @5(u2) + P @5(u3) 55 + 
|U4 | 2 2test 

5P @5 = = 0.4= = 

Based on this discussion, in this thesis, we will compute the average of the metrics 
by all users to whom we have provided recommendations ignoring those who do not have 
any relevant items in the test set, that is, as in the last formulation. To complement 
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Figure 2.2: Toy example for analyzing the difference in results obtained by three users 
depending on the type of evaluation used. The geometrical figures represent each item and 
the number denotes the rating the user gave to those items in the test set. 

the metrics and provide a full picture of the performance of the algorithms, we will also 
report the number of users each recommender is able to provide recommendations to 
(also known as user coverage). 
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3 

Point-of-Interest 
recommendation 

As aforementioned in the thesis, Recommender Systems can be applied in a large num-
ber of domains. In this chapter we will study in more detail the Point-of-Interest 
(POI) recommendation problem analyzing the similarities and differences with respect 
to traditional recommendation. Firstly, we define the POI recommendation problem by 
exploring the specific characteristics of this domain, including the main differences with 
respect to the original recommendation problem and the alternative sources of informa-
tion that are sometimes used in the area. Then, we show a review of the works on POI 
recommendation between 2011 and 2019 (retrieved by three different databases), char-
acterizing the types of algorithms, information, and evaluation mechanisms currently 
used in the domain. Finally, we focus on those works with more cites and analyze the 
datasets used to show how comparable the algorithms are with each other. 

The work presented in this chapter has been sent for publication to the ACM 
Computing Surveys journal1 

• Pablo Sánchez and Alejandro Belloǵın. (2020). Point-of-Interest Recommender 
Systems: A Survey from an Experimental Perspective. Submitted to ACM Com-
puting Surveys. Under Review (1st round of review). 

3.1 Problem definition 

The POI recommendation problem is formally the same as the traditional recommenda-
tion problem defined in Section 2 except that the items in this case are physical locations 
or venues (museums, hotels, restaurants, parks, etc.). Thus, the main objective is to 
recommend new places to the users when they visit a specific region (usually a city). 
In this domain, the Location-Based Social Networks (LBSNs) are specially relevant as 
the users can establish social links with other users in those systems, share information, 

1In the revised version submitted to the journal, we have made some changes to those shown in this 
chapter (e.g., expanding the survey with the 2020 papers). 
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and record check-ins to the specific venues they visit when located in a city (Zhang and 
Chow, 2013, Yuan et al., 2016, Wang et al., 2018a). Foursquare, Gowalla, or Yelp are 
examples of this kind of social networks that are currently explored by the research 
community. However, even if POI recommendation is similar to the traditional recom-
mendation problem, there are specific details that differ from classical recommendation 
that need to be further analyzed (Li et al., 2015a, Wang et al., 2013, Liu et al., 2017). 
These include, but are not limited, to: 

• Sparsity: in the RS domain, the user × item matrix is normally very sparse. 
However, in venue recommendation this effect is even more severe because there 
are in general fewer known values of the user × item matrix. For example, the 
densities of the Movielens20M and Netflix datasets (classic movie datasets used in 
standard recommendation) are 0.539% and 1.177% respectively, while the sparsity 
of datasets from Foursquare (Yang et al., 2016) and Gowalla (Cho et al., 2011) 
are 0.0034% and 0.0047% respectively. 

• Implicit and repeated interactions: in classic recommendation, the infor-
mation encoded in the user × item matrix has been traditionally modeled us-
ing ratings. However, in most POI recommendation datasets (e.g., Brightkite, 
Gowalla, or Foursquare), we only have the specific moment of time in which a 
user visited a POI. Moreover, since users may check-in at the same place several 
times, researchers often build frequency matrices to model these repetitions. In 
fact, the presence of repeated interactions has a strong effect on performance 
when exploited properly (Sánchez and Belloǵın, 2018a). This differs from tradi-
tional recommendation, where it is normally assumed that users rate each item 
once (Ning et al., 2015). 

• External influences: while most classic recommendation approaches only ex-
ploit the information available in the user × item matrix (user, item, score, and 
sometimes the timestamp associated), venue recommendation is highly affected 
by temporal, social (user friends), and geographical influences. The latter is pos-
sibly the most critical effect to consider in POI recommendation to improve the 
recommendation performance, as it is usually assumed that users prefer to visit 
venues that are close to each other. As the first law of geography states “Every-
thing is related to everything else, but near things are more related than distant 
things” (Miller, 2004). That is the reason why researchers have proposed algo-
rithms including, as an explicit component, the modeling of the venue location 
(Liu et al., 2014, Ye et al., 2011, Lian et al., 2014). Nevertheless, these influences 
are not only important to improve the performance of the algorithms, sometimes 
it is mandatory to take them into account because they impose certain restrictions 
on the recommendations. For example, some POIs such as shops, restaurants, 
museums, etc. are only open for a certain period and users cannot make visits to 
POIs that are too distant from each other. 
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3.2 Alternative information sources 

As presented before, the density of most POI recommendation datasets is very low. For 
this reason, most POI recommendation approaches use some kind of auxiliary data; in 
particular, the vast majority of them use more than one source of information. As we 
shall discuss later, most of the processed articles that we will show in this chapter, work 
with one or more of the following sources of information. 

3.2.1 Interaction types 

Although we have equated check-ins in LBSNs with the main interaction between users 
and items (as ratings in classical recommender systems), this is not the only type of 
interaction recorded in this type of systems. Other LBSNs – such as Yelp – allow users 
to perform reviews of the POIs they visit and, in some cases, rate the item; through 
these reviews we can determine whether the user liked the POI or not, either by directly 
considering the rating or by analyzing the sentiment of the text in the review (Hu and 
Ester, 2014, Manotumruksa et al., 2016). Other works obtain the items to be processed 
from the photos that users take and upload to other applications such as Flickr or 
Instagram (Nie et al., 2016, Wang et al., 2017a), which may include GPS coordinates 
as their metadata along with visual information, so that the path followed by the users 
could be recovered. Similarly, user generated content tagged with GPS coordinates – 
such as tweets from Twitter or the traces left by mobile apps – can potentially be used 
in POI recommendation applications (Zheng et al., 2018, Zhong and Ma, 2018). 

3.2.2 Rich side information of items 

The items in this type of recommendation, POIs, can be associated with a richer 
kind of information than in other domains. First, each POI has a geographic location 
associated, although this information is not always available in the datasets. This 
source of knowledge is especially relevant because people tend to go to venues that are 
close to each other. Sometimes this information is exploited to calculate centroids or 
clusters of activity for either users and items in order to make recommendations (Si 
et al., 2019, Liu et al., 2014). In relation to the algorithms that we are going to analyze 
for this chapter, we consider that a model uses this kind of information if it uses 
the user/POIs coordinates somewhere in the proposed model (e.g., when computing 
distances, creating clusters, building distributions based on proximity, and so on). 

Second, and more similar to the traditional recommendation situation where items 
usually have associated characteristics – such as genres in the movie, book, or music 
domains –, in POI recommendation the venues are frequently linked to a specific POI 
category (e.g. restaurants, hotels, parks, museums, etc.), which may have different 
levels (thus, building a category hierarchy) depending on how specific the category is – 
for instance, an item could be labeled as a Vietnamese restaurant, an Asian restaurant, 
or simply as Food. This information is very useful and, as we will show later, exploited in 
many works (Ying et al., 2012, Zhang and Chow, 2015b), since some users may be more 

37 



3. POINT-OF-INTEREST RECOMMENDATION 

interested in visiting only certain types of POIs while, at the same time, it is not very 
common for a user to always visit very similar POIs, affecting the recommendations. 

On top of this, we may find approaches that make use of the opening and closing 
times or the time windows or prices of the POIs, since these are particularly impor-
tant characteristics when creating practical recommendations for users of real systems. 
However, it should be noted that this type of information is generally considered in 
works that are evaluated with user studies or mobile apps, or that try to solve a differ-
ent problem where constraints on the recommendations need to be taken into account 
(for example, trajectory instead of POI recommendation), and hence, they are less 
represented in this review because those approaches are out of its scope. 

3.2.3 Textual reviews 

In some LBSNs, users can not only register their check-ins, but also write reviews about 
the POIs they have visited and exchange this information with other users of the sys-
tem, either as long, more elaborated texts (as in Yelp) or as short, concise texts (as 
the so-called tips in Foursquare). This type of textual information can be exploited by 
recommendation approaches and structure this information using topic modeling tech-
niques like Latent Dirichlet Allocation (LDA) or Latent Semantic Analysis (LSA) (Ren 
et al., 2017). This textual information may provide more useful and high-quality infor-
mation about the users’ interests since, in combination with check-in data, it is possible 
to capture when the user visited a venue and whether she liked it, together with the 
reasons about such opinion. 

It is important to note that, even though the textual information available from re-
views is different than the aforementioned POI features (since such features are intrinsic 
and static to the items, they do not change, while the reviews represent a subjective 
opinion from the user perspective), in our classification we will not make a distinction 
between these two types of information, counting together those works that exploit 
textual reviews or POIs features. 

3.2.4 Social links 

As we already know from other domains, users tend to be more interested in a product 
when their friends have some opinion about it; in the same way, this type of informa-
tion may influence users when receiving POI recommendations. Because of this, some 
approaches exploit such social links when predicting the user preferences, for instance, 
by replacing the collaborative neighborhood in classical CF methods with those users 
who have some social relation with the user (Ye et al., 2011, Cheng and Chang, 2013), 
or by building social graphs between the users in the system (Wang et al., 2013). 

It should be considered, however, that the social links that exist in LBSNs, even 
though they are usually denoted as “friends”, because of the nature of these networks, 
it is very likely that they do not correspond to friends outside of the system, but 
similar-minded people or with close tastes, interested in following their opinions or 
controlling the places they visit. In fact, some datasets that include this information 
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extract it from a different social network (for instance, the global-scale dataset from 
Foursquare reports friends from Twitter (Yang et al., 2016)), so this information should 
be exploited with great care. 

3.2.5 Sequential and temporal information 

Apart from the geographical influence, as we stated in Section 3.1, POI recommendation 
is also affected by the temporal dimension. The temporal context is also vital in this 
domain, mainly because it affects in a significant way the type of venues that can be 
visited, but also because users tend to diversify when deciding the next venue to visit. 
Hence, it becomes paramount to know, and to consider in the recommendation process, 
their previous visits. Similarly, since the user interactions usually have a timestamp 
associated, it is possible to exploit this data to know the evolution of users’ tastes over 
time; it can also be used to detect the periods of time where some POIs have more 
activity than others (e.g., bars and restaurants from midday onwards). 

For this chapter, we consider that an algorithm uses sequential information if it 
processes or analyzes the different events when they occur immediately one after the 
other or if they exploit successive visits to different POIs. At the same time, we assume 
that a model uses temporal information if they work with the different timestamps of 
the check-ins or if they use time schedules of the POIs. As pointed out in Section 2.3, 
sequential and temporal information, although related concepts, they are not the same. 
For example, once we know a user visited three venues at 4PM, 8PM, and 10AM, we 
might be tempted to create a sequence of length 3, however, it is very likely that the 
user stopped to rest during the night, so the sequence should be splitted; the inverse 
case is more obvious: if we know the sequence followed by a user, it is impossible to 
recover the exact timestamps unless we know information about the initial time, and 
the time involved to go from each venue to the next, together with how much time was 
spent in each of them. 

3.3 Characterization of POI recommendation works 

In this section, we classify existing research works according to six main classes of algo-
rithms, based on the most frequent approaches we have identified in our analysis: based 
on similarities, factorization models, probabilistic approaches, deep learning techniques, 
graph- or link-based methods, and hybrid techniques. These categories may or may not 
use more than one information source among those presented in the previous section, 
as we shall discuss in detail in Section 3.6. In the following, we describe these categories 
together with some representative methods from the state-of-the-art reviewed in this 
chapter. 

In order to select the papers we have analyzed, we searched in three digital libraries: 
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Scopus2 , ScienceDirect3 , and ACM Digital Library4 . As each library has a different 
query language to use within its search system, three different queries were needed to 
be defined and executed, however, they were designed to be as equivalent as possible5 . 

The main characteristics these queries should satisfy are: 

• Focus on articles between 2011 and 2019 (both included). 

• Each publication should include in the title: “Point of interest recommendation” 
(or similar texts such as “POI recommender”). 

• Each publication should also include somewhere in the title, abstract, or key-
words the terms “location-based social network” (or “LBSN”), since this review 
is oriented to models using data coming from these systems. 

Thus, the final queries issued to each source are shown in Table 3.1. Based on 
this, Table 3.2 shows the number of papers we initially obtained with each query, as 
well as the actual number we finally analyzed. The difference was mostly caused to 
some papers not being available, some of them appeared in more than one source, 
and some had to be filtered out because they address a different task to the one we 
want to focus here. In the same way, we have found some “repeated” articles that 
corresponded to improved versions of other works from previous years, conducted by 
the same authors; in those cases, we have only taken into account the oldest article. 
For example, LARS* from 2014 and presented in Sarwat et al. (2014) is an extension 
of LARS, proposed in 2012 by the same authors; to avoid overrepresenting the same 
methods, we decided to ignore the second paper and only consider the oldest one (as 
it is the original formulation of the model). 

We also decided to keep only those papers whose final goal is to recommend a list of 
POIs to each user; this includes related tasks such as next-POI recommendation as long 
as no trajectory or route recommendation is performed (as in Zhang and Wang (2015)), 
but discards tasks such as route, category, or friend recommendation (Kurashima et al., 
2010, Chen et al., 2015, Symeonidis et al., 2011). As a final note, we have not applied 
additional filters in the paper collection phase such as selection by conferences or jour-
nals, to not incur in any subjective bias, although we had to remove few papers where 
the proposal was not presented in a clear way. 

Figure 3.1 shows the number of articles we include in this review according to their 
publication venue (conference or journal). We observe that the number of publications 
has increased steadily since 2014; although initially most of the papers were published 
in conferences, over the years there has been a growing interest in publishing in journals. 
This figure shows that the problem of POI recommendation is still relevant today. All 
the works included in our analysis are available as supplementary information6 . 

2Scopus, https://www.scopus.com/ 
3ScienceDirect, https://www.sciencedirect.com/ 
4ACM, https://dl.acm.org/ 
5The queries were issued last time on January 2020 so some of the results may have changed. 
6Available here, http://ir.ii.uam.es/~alejandro/poi_survey/index.html. 
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Table 3.1: Queries issued to the three digital libraries considered. For ScienceDirect 
the query is used in the field “Title, abstract or author-specified keywords”, indicating 
2011-2019 in the field “Years”. 

Source Query 

Scopus ( ( TITLE ( point-of-interest ) OR TITLE ( venue ) OR TITLE ( poi ) OR TITLE 
( location ) ) AND ( TITLE ( recommendation ) OR TITLE ( recommender ) ) 
AND ( TITLE-ABS-KEY ( lbsn ) OR TITLE-ABS-KEY ( ”location-based social 
network” ) ) AND ( PUBYEAR > 2010 ) ) AND ( PUBYEAR < 2020 ) AND 
NOT TITLE ( survey ) AND ( LIMIT-TO ( LANGUAGE , ”English” ) ) 

ScienceDirect ((lbsn) OR (”location-based social network”)) AND -survey AND (”point of inter-
est” OR venue OR location OR poi) AND (recommendation OR recommender) 

ACM [[Publication Title: ”point-of-interest”] OR [Publication Title: ”point of interest”] 
OR [Publication Title: poi] OR [Publication Title: venue] OR [Publication Ti-
tle: location]] AND [[Publication Title: recommendation] OR [Publication Title: 
recommender]] AND [[Abstract: ”location-based social network”] OR [Abstract: 
”lbsn”]] AND [Publication Date: (01/01/2011 TO 12/31/2019)] 

Table 3.2: Papers retrieved and final 
papers processed from the three digital 
libraries considered. 

Source Papers retrieved Valid papers 

Scopus 
ScienceDirect 
ACM 

321 
36 
46 

238 
22 
24 

Unique papers 347 244 201
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Figure 3.1: Number of papers con-
sidered in this study based on their 
publication venue by year. 

Difference with previous surveys on this domain 
Due to the growing interest in the general recommendation area on this domain, there 
is a considerable number of surveys related to POI recommendation and its different 
ramifications that complement our work. On the one hand, we have the works of Syme-
onidis et al. (2014), Yu and Chen (2015), Bao et al. (2015) which cannot be considered 
to be up to date anymore, since they were published more then 5 years ago, thus our 
review should provide a novel overview of the works developed in this time. On the 
other hand, Gavalas et al. (2014) presented an overview of optimization approaches 
that aim to solve a problem with applications on related tasks: the Tourist Trip De-
sign Problem (TTDP); this can be applicable to route recommendation, which, as we 

41 



3. POINT-OF-INTEREST RECOMMENDATION 

specified in the next section, is not completely in the scope of this survey. 
Additionally, we found some surveys that were too focused on specific subproblems. 

For instance, Zheng et al. (2018) considers the problem of location prediction but 
only based on Twitter information. Another example is Christoforidis et al. (2019), 
where the authors focus on deep learning techniques while neglecting the other types 
of recommendation algorithms. 

However, even after filtering those works, there are still several reviews dedicated to 
the problem of POI recommendation based on LBSNs data, as we address herein. Our 
main differences with the following works is the comprehensive analysis that we present, 
involving more than 240 papers from 9 years categorized according to their algorithmic 
and evaluation models. For instance, in Ding et al. (2018a), it is presented a survey 
where the authors group the articles according to different recommendation objectives, 
such as location, trip, or activity recommendation, among others. In Zhao et al. (2018a), 
an overview of the problem from the geographical and temporal perspectives is provided, 
but then they focus on two specific algorithms. 

Besides, since our analysis is also tailored towards the evaluation aspects of the 
works, it is worth mentioning those reviews where this aspect has been considered. 
However, we must acknowledge that we could not find any survey that focused on 
this particular aspect; because of that, we consider our survey is very valuable in this 
domain at the moment. To somehow overcome this shortcoming, we resort to reporting 
the experimental comparison presented by Liu et al. (2017), where they compared 12 
recommendation models under different evaluation protocols and using three datasets, 
which could help to analyze the behavior of those methods under the same and different 
conditions. 

We now show the different types of POI recommendation algorithms that we have 
been able to characterize in this review. 

3.3.1 Based on similarities 

These algorithms correspond to the classic k-NN approaches explained in Section 2.2.2, 
where researchers use similarities between users or items like the well-known cosine 
similarity. Due to the additional information available in this domain, some authors 
incorporate a temporal decay in the formulation or even use similarities based on the 
geographical distance between items. For example, the UTE+SE approach from Yuan 
et al. (2013) divides the check-in matrix in different time slots and uses it in a user 
neighborhood CF model; however, since this increases the data sparsity, the authors 
add a term in the prediction score to account for the similarity between time slots. 
Nevertheless, as social links between users are often available, instead of calculating 
similarities between users, in some works, they use the friends of the target user as 
“nearest neighbors” as they assume that friends in this type of networks may have 
common interests. This is exactly what is used in LBSMF, the work proposed in Yang 
et al. (2013), where besides exploiting the sentiment of the reviews of the users, and 
using a probabilistic MF approach, the users’ friends are integrated to compute a social 
influence term that is later combined to produce the final recommendation score. 
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It should be noted that in the examined works, neighborhood-based models are 
usually an intermediate phase of a more complex algorithm. That is why we decided 
to extend the category beyond k-NN approaches to consider any proposal that use 
similarities between items/users and/or use these similarities to establish relationships 
between them. As a particular example, the LARS approach proposed in Levandoski 
et al. (2012) would fit in this category, since it takes into account two different similarity 
spaces: preference locality (users in the same region tend to have similar tastes) and 
travel locality (users tend to travel short distances when visiting the venues of a region). 

3.3.2 Factorization 

The basic premise of this family of algorithms is to decompose the check-in matrix C 
∈ R|U|×|I| into two matrices, one for users U ∈ R|U|×K and one for POIs L ∈ R|I|×K , 
with K being the number of latent factors. We want to note we did not name this 
class of techniques as the most frequent name matrix factorization, because algorithms 
using tensor factorization (where the additional dimension is used to model time or 
geographical information) or other types of latent factor models also fit in this category. 

Recommendation approaches that belong to this type include GT-BNMF, proposed 
in Liu et al. (2013a), which is a geographical probabilistic factor analysis framework 
that takes into account the geographical influence and the textual information of the 
POIs, to avoid limitations from pure collaborative information such as the cold-start 
problem. In fact, factorization approaches that exploit the geographical information 
are very frequent in this domain, as this is a critical information source. The following 
three models have become state-of-the-art baselines because of their popularity in the 
area. First, GeoMF, a weighted factorization model proposed in Lian et al. (2014) 
that divides the full geographical space into different grids to model the following 
influences: user activity areas and POI influence areas. Second, IRenMF from Liu et al. 
(2014) incorporates geographical information in the form of neighboring POIs of the 
target item by exploiting two types of influences: the instance level influence (assuming 
users tend to visit neighboring locations) and region level influence (to capture user 
preferences that are shared in the same geographical region). Third, RankGeoFM 
from Li et al. (2015a) is a geographical factorization method that incorporates the 
influence of the neighboring POIs of the target item by including a distance weight in 
the optimization formula. Other methods like GeoIE proposed in Wang et al. (2018b) 
also incorporate geographical influence, but in this case a power law distribution is used 
to consider that POIs that are far from other POIs in the system are less likely to be 
selected. A tensor model is introduced in He et al. (2016), where the authors apply 
factorization techniques to transition tensors so that transitions between consecutive 
POIs are modeled, together with a geographical preference term so that far away POIs 
are less likely to be selected, just as in the previous approach. 

The temporal dimension is exploited in the LRT model from Gao et al. (2013). 
This algorithm is a matrix factorization model that incorporates the temporal effects 
of the POIs by considering two properties: non-uniformness (the users have different 
preferences during the day) and consecutiveness (users tend to have similar preferences 
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in consecutive hours). STELLAR, the model proposed in Zhao et al. (2016a), is a 
time-aware successive POI recommendation model by using a four-tuple tensor while 
adapting the BPR optimization criteria from Rendle et al. (2009). Geo-Teaser as pro-
posed in Zhao et al. (2017a), on the other hand, combines two different models: a 
temporal POI embedding for sequential influence that differentiates between weekday 
and weekends, and a hierarchical pairwise preference ranking model based on BPR that 
discriminates POIs based on the distance between them. 

Social information has also been used in factorization techniques. For instance, 
TenMF from Yao et al. (2018) is a tensor factorization approach (integrating users, 
venues, and time frames) that incorporates spatial and social influences in the regu-
larization terms. GeoEISo is an MF approach based on the SVD++ model proposed 
in Gao et al. (2018a) that incorporates both geographical and social influence (in par-
ticular, the trust relationships between the users). The model TGSC-PMF proposed 
in Ren et al. (2017) also combines different information sources, since its probabilistic 
matrix factorization method exploits categorical and textual information by using an 
LDA technique, geographical information with a Kernel Density Estimation, and social 
information using a power-law distribution. 

Categorical or content information, as in the last method described, is easy to be 
integrated in factorization methods. For instance, CAPRF is proposed in Gao et al. 
(2015a) where besides the user and POI latent matrices, it incorporates the content 
and sentiment analysis obtained from the user tips. In a more complex method, ASMF 
merges social, geographical, and categorical influences, by exploiting check-ins of social, 
location, and neighboring friends in order to learn the potential locations to recommend, 
and using an additional score based on a distance distribution between the users’s home 
and their actual check-ins to model the geographical influence, while the categorical 
information is considered through an additional weight in the recommendation score. 

3.3.3 Probabilistic 

Probabilistic approaches typically consider several random variables that might be re-
lated according to some laws or formulations, which in recommendation usually involve 
users, items, and the potential interaction between the former and the latter. Proba-
bilistic graphical models are one of the most useful frameworks that allow to encode 
these probability distributions over arbitrary domains, however it is possible to also 
define simple probability models just by applying Näıve Bayes or other simple ap-
proximations with strong (and probably not too realistic) independence assumptions. 
Besides those techniques that match these formulations, we also extend our categoriza-
tion as probabilistic to any model that uses some kind of probabilistic distribution in 
its algorithms to represent or process the data. 

In this sense, for example, we consider that those approaches that model the ge-
ographic influence by means of power-law distributions such as Wang et al. (2018b) 
and Ren et al. (2017), those that make use of the Kernel Density Estimation (KDE) 
like Zhang et al. (2014), or those using Bayesian algorithms in the inference or in the 
optimization steps as in Li et al. (2015b) fit into this category. Another example can be 
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found in WWO from Liu et al. (2016a), which is a model that exploits the sequential 
preferences of the users to recommend POIs within a time duration; for this, it esti-
mates the distribution of the temporal intervals and creates a low-rank graph to deal 
with the sparse conditions of the data. 

It is important to mention that many proposals can be classified as members of the 
probabilistic and factorization categories, such as Probabilistic Matrix Factorization 
(PMF) or some formal topic modeling algorithms, like latent Dirichlet allocation (LDA); 
a couple of examples can be found in Guo et al. (2015a) and Ren et al. (2017). For 
instance, LA-LDA is a location-aware probabilistic generative model proposed in Yin 
et al. (2015) composed of two parts inspired by LDA: ULA-LDA (that exploits the 
preference locality of the users and assumes each user is affected by her own interests 
but also by other users in the same home location) and ILA-LDA (that exploits the 
geographical clustering and the category locality assuming that the POIs that are close 
to each other should appear in the same topic). 

In the same way, we consider proposals based on Markov Chains (MC) as proba-
bilistic since they model the probability of going to the next POI using the immediately 
previous visited POIs. In fact, this is one of the most popular approaches because of 
its simplicity and expressiveness. For example, Cheng et al. (2013) propose FPMC-
LR, an approach that makes use of FPMC but adding physical restrictions: instead of 
building the entire transition tensor, only neighbor POIs are considered after dividing 
the Earth in different grids; then, a modified version of the BPR optimization tech-
nique is used to take into account the sequential components. PRME-G is a next-POI 
metric embedding method proposed in Feng et al. (2015) that models the sequential 
influence by borrowing ideas from MC: instead of computing the transition probabili-
ties by counting, they are estimated by computing the Euclidean distance of the POIs 
in a latent space. An MC model is also used in Tang et al. (2019), although now to 
alleviate the sparsity problem; the final probability of a user visiting the target POI 
also takes into account the influence of communities formed by other users. A more 
complex method is proposed in Ying et al. (2019), where the approach called MEAP-T 
considers the sequential component between the POIs (using a first-order MC) and also 
the temporal influence by modeling the periodicity and the time intervals between the 
POIs; then, the user preferences, POI transitions, and POI and temporal relationships 
are transformed into three latent spaces, while exploiting the Euclidean distance and 
using BPR as optimization criterion. 

3.3.4 Deep Learning 

Deep Learning encompass a set of techniques from the Machine Learning area. While 
they emerged throughout the 20th century, in the area of recommendation their popu-
larity has grown in the last 10 years. When processing and learning from the data, these 
types of techniques make use of layers of artificial neurons in order to obtain different 
representations of the data by optimizing a differentiable function. Although there are 
many types of Neural Networks, some of the best known are (Zhang et al., 2019a): the 
Multilayer Perceptron (MLP), that is the most basic Neural Network composed by one 
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or more hidden layers between the output and the input layer using different activation 
functions in each neuron; the Autoencoder (AE) and Variational Autoencoder (VAE), 
that are unsupervised techniques oriented as compressing and then rebuilding the orig-
inal data (VAE also assumes that the input data follows a probability distribution 
and tries to learn the parameters of that distribution); Convolutional Neural Networks 
(CNN), oriented at processing images using pooling operations and convolutional lay-
ers; and Recurrent Neural Networks (RNN) that memorize previous computations for 
processing sequential information. As we shall see later, these approaches for POI rec-
ommendation have become paramount in the last 3 years; some paradigmatic examples 
are the following. First, PACE is a deep neural network technique proposed in Yang 
et al. (2017a), where an architecture with three main components is presented: an em-
bedding layer that takes as inputs the embeddings of the POI and user), the context 
layer used for context prediction, and the preference layer composed by multiple feed-
forward layers. Second, VPOI from Wang et al. (2017a) is one of the few approaches 
that use images for POI recommendation, because of this, here the authors use CNNs 
to extract the visual contents from the images and which are later exploited in the 
learning process. Another example is CARA, an approach based on RNNs proposed 
in Manotumruksa et al. (2018), that consists in two gating mechanisms: the first one 
to control the influence of ordinary contexts and the second one to model the sequen-
tial influence by analyzing time intervals and geographical distance between successive 
check-ins. 

Other deep learning techniques that have been used more recently in the area of 
POI recommendation are embeddings, specifically graph and word embeddings. The 
latter consists of learning a latent representation of the words so that those that have 
a similar meaning also have a similar representation (Naili et al., 2017), while in graph 
embeddings the objective is to transform a graph into one or more d-dimensional vectors 
which preserve the graph information as much as possible (Cai et al., 2018). Neverthe-
less, other techniques such as matrix factorization are used to learn these embeddings, 
so in this review we will include these proposals within the family of deep learning 
techniques or factorization depending on the specific case. One example from the POI 
recommendation domain is STA from Qian et al. (2019), where the authors define a 
graph embedding approach that incorporates both temporal and geographical informa-
tion. 

3.3.5 Graph/Link 

Link-based or graph-based techniques build one or more graphs using the data stored 
in the system, which in our case is a LBSN. They typically consider the users or 
POIs as nodes, and exploit various influences (e.g., geographical, social, temporal, 
etc.) to create and weight links between these nodes. There are a great number 
of models based on graphs, among which the following are the most used in POI 
recommendation approaches: Random Walk (RW), Hypertext Induced Topic Selection 
(HITS), PageRank, etc. However, as we shall see in the next sections, its popularity in 
the area of POI recommendation is not as high as other mechanisms like factorization 
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techniques. 
Among the few (representative) examples we have found in the literature, the fol-

lowing is a paradigmatic example of how this type of methods are used. In Noulas et al. 
(2012), a random walk approach is proposed, where a graph is built in which both the 
venues and users are nodes of the graphs, and where a link exists between a user and 
an item whenever the user has checked-in in that item; additionally, users are linked 
to each other based on their social relationships. In the model proposed in Yuan et al. 
(2014), GTAG, also two types of links are used, but considering different information: 
geographical and temporal influence; on the one hand, POIs are connected by distance 
to the nearest venues and weighted according to a power-law distribution, on the other 
hand, users and POIs are connected according to sessions defined based on their check-
ins and using an exponential function to weight the edges to account for the temporal 
influence; with all this information, a Breadth-first Preference Propagation algorithm 
is used. 

Thanks to the flexibility of these models, they can exploit almost any type of infor-
mation source. For instance, Bao et al. (2012) propose an online POI recommendation 
model where a weighted categorical tree is built for each user, where a HITS-based 
approach is used to obtain local experts, which are later used to produce recommenda-
tions. A more complex approach is found in UPOI-Walk, where a Dynamic HITS-based 
random walk model is proposed in Ying et al. (2014) that combines several relation-
ships captured in the data: popularity (between POIs and check-ins), social (between 
POIs and users’ social circles), and categorical (between semantic labels and user pref-
erences). 

3.3.6 Hybrid 

Contrary to the more classical understanding of how hybrid methods are defined (Burke, 
2007) (see Section 2.2.3), in this review we do not classify approaches using and com-
bining several components within the same algorithm as such – for example, adding a 
similarity computation in a matrix factorization formulation or using a matrix factor-
ization algorithm in a more complex deep learning model. We decided to follow this 
procedure because, as we have discussed previously and it can be observed in most 
of the examples shown before, most algorithms combine several sources (geographical, 
temporal, sequential, social, etc.) in different ways, in such a way that if we took the 
more traditional and strict definition of hybrid recommender, almost every recommen-
dation approach could be considered as such. 

In the following, we present some of the approaches that we do consider as hybrids, 
starting with those that integrate social information, since it was identified in many 
hybrid methods. One possible reason for this is that this information source cannot 
be easily modeled under a unified framework together with other sources due to its 
different nature, hence, it needs tailored combinations or aggregations as the ones we 
present next. For example, the UPOI-Mine approach proposed in Ying et al. (2012) 
besides considering the individual preferences of the users (through the tags of the 
previously visited POIs), it exploits the social information from the target user friends 
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and uses the popularity of the venues in order to counter the data sparsity; all of this is 
then combined into a regression tree model, focused on predicting the next restaurant to 
visit, instead of general POIs. On the other hand, the USG model proposed in Ye et al. 
(2011) combines three different scores: user preferences, social information through 
a combination of the classical user-based CF formulation, and geographical influence 
with a power-law distribution. Similarly, various information sources are combined 
in Geng et al. (2019), although in this case the authors model POI recommendation 
as a multi-objective optimization problem considering social, geographical, and user 
similarity influences. 

As in the previously described method, we found several approaches where two 
other sources of information besides social are exploited. LORE is a method proposed 
in Zhang et al. (2014) that combines social (by computing similarities between friends), 
geographical (using a two-dimensional Kernel Density Estimation), and sequential (with 
an additive Markov Chain trained with the transition probabilities between all the 
users) information. Categorical information is exploited in GeoSoCa, a model proposed 
in Zhang and Chow (2015b) where social, geographical, and categorical influences are 
combined, using a power-law distribution for the first and last models, whereas a similar 
method to the one described in LORE is used for the geographical one. 

Besides social information, geographical (as already discussed in other parts of this 
review) is another source that is exploited frequently; indeed, this is evidenced in the 
following hybrid approaches which exploit this type of signal among others. The so-
called LBPR method from He et al. (2017a) adapts the BPR technique to predict the 
next category and then obtain a ranking of POIs using the predicted category and 
after incorporating a geographical score for the candidate POIs; the main difference 
with other approaches based on BPR is that this model uses lists of categories instead 
of category pairs in the learning step. The APRA-SA model as proposed in Si et al. 
(2019), on the other hand, takes into account geographical and temporal information 
by computing the popularity of the POIs in different time periods and using a Kernel 
Density Estimation component. Finally, the GE method proposed in Xie et al. (2016a) 
consists of a graph-based embedding model where four types of graphs are considered: 
a POI-POI graph (to capture the check-in sequences of POIs), a POI-region graph 
(to exploit the geographical information), a POI-time graph (for temporal and cyclic 
behaviour), and a POI-word graph (to exploit semantics). 

3.4 Characterization of evaluation methodologies in POI 
recommendation 

The evaluation methodologies used in the POI recommendation domain are not too 
different from those traditionally used in classical recommendation and presented in 
Section 2.4. However, considering the importance some dimensions have in this domain 
– i.e., time and geographical information, mostly – we describe now in more detail those 
time-aware evaluation methodologies used in the area (Campos et al., 2014), together 
with some variations inherent to the POI recommendation problem. 
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Table 3.3: Evaluation protocols characterized by their application level and the type of 
split; where X+Y denotes the type (X, either Random or Temporal) and application level 
(Y, either System or User) of the split, and 3, 7, and ? indicate if that characteristic is 
known to occur, never occur, or it is impossible to know in a protocol. 

Characteristics R+S R+U T+S T+U 

All users are evaluated ? 3 ? 3 
Leaks future data in test from training Very likely Very likely 7 For some users 

Test contains recent check-ins ? ? 3 3 
Test is made as a random subset 3 3 7 7 

As explained in Section 2.4.2, the first step in any offline evaluation is to divide 
the available data into different sets: at least training and test, although an additional 
validation set is preferred to tune the parameters of the models and not overfit the test 
set. How the original data is divided is critical to imitate the use of the recommendation 
algorithm in a real scenario, that is why in the POI recommendation scenario we 
observe that the time dimension is often used when splitting the dataset, even though 
these methodologies were already used and formalized in the area, nonetheless, random 
partitions of the data are still very popular (Campos et al., 2014). 

More specifically, we consider a split is temporal whenever the check-ins are ordered 
according to the temporal dimension (either by the actual timestamps or because there 
is some sequential information in the data) so that the check-ins in the test set are 
more recent than those in the training set; otherwise we consider the split is random, 
including the cross-validation setting presented in Section 2.4.2. An additional criteria 
that may have a great impact on the final results is whether the split is done at the 
system or per user level (see Section 2.4.2); this reflects whether the previous criteria 
(temporal or random) is applied to the whole dataset or in a user basis – i.e., for each 
user independently. This criteria affects the number and type of users that belong 
to each set, since performing a per user split would guarantee that all the users exist 
in both training and test sets. Finally, a parameter that defines different variations 
of these protocols is whether the subset is selected according to a percentage or ratio 
between training and test – typical values are 80% for training and the rest for test – 
or based on a fixed number of elements, for example, the last 1 or 2 interactions go into 
the test set; for the sake of a cleaner presentation we will not consider this parameter 
in the classification we use in the next sections. We present in Table 3.3 a summary of 
the implications for the four possibilities regarding data splitting that will be used in 
the rest of the chapter. Even though we have found some papers where the evaluation 
was performed in other ways (e.g., temporal windows or splits by distance between 
locations), most of the analyzed articles fit into the aforementioned evaluation protocol 
classification. Based on this, we argue that the most realistic scenario is a temporal 
partition at the system level, as it takes into account the temporal dimension while 
avoiding any leaking of the user interactions from the future into the training set. 

Because of the paramount importance of the geographical dimension, some authors 
include in their experimental settings variations tailored for the POI recommenda-
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tion problem. In particular, those approaches that exploit geographical information or 
neighbor venues tend to filter the data by cities or, in general, by geographical regions, 
such as country or continent. Another important characteristic of the data produced by 
LBSNs is that users may visit the POIs more than once, hence, this leads to two ways 
of producing the splits explained before: at the check-in level (keeping all the check-ins, 
even the repeated ones) or at POI level (removing the duplicated user-POI pairs and 
keeping only one instance before running the splitting strategy). These repetitions may 
have a significant effect in training since it allows to capture item frequencies at the 
user level, but its effect is even more dramatic in the test set, since it may hide the fact 
that some uninteresting baselines (such as returning those items previously interacted 
by the user) would perform very well (Sánchez and Belloǵın, 2018a). 

Finally, regarding the metrics used when evaluating POI recommender systems, it 
should be noted that error-based metrics are not very interesting when the interaction 
to be predicted is a check-in, since that value is always 1; when the user interaction is 
different (such as ratings or those described in Section 3.2), then these metrics can be 
applied, considering the limitations already described in Section 2.4.3. Nonetheless, it 
is important to mention that in recent years, researchers dealing with the problem of 
POI recommendation and related tasks (see Section 3.5) have adapted ranking-based 
accuracy metrics to consider distances between the recommended POIs and the actual 
order followed by the users in the test set; some examples can be found in Chen et al. 
(2016a), where the authors use a metric based on F1 that takes into account the pairwise 
order between POIs, and our work presented in Sánchez and Belloǵın (2018a, 2020), 
where the Longest Common Subsequence algorithm is introduced in ranking-based 
accuracy metrics to penalize those recommendations less similar with the sequence 
followed by the user (more details will be given in Section 4.4). 

3.5 Relation to other recommendation tasks 

POI recommendation is not the only task that can be performed using LBSNs, due 
to the richness of the data of this kind of social network, a large number of related 
tasks/problems have arisen. Since they are not in the focus of this review, we discuss 
them briefly now: 

• Trajectory (or route) recommendation: typically, POI recommendation ap-
proaches provide each user with a list of POIs that hopefully may be of interest; 
however, there is generally no intrinsic relationship between these recommended 
POIs. Instead, in route recommendation, a complete trajectory is generated and 
provided to the target user. Because of this, additional restrictions must be taken 
into account, such as the duration or length of the route or the schedule of the 
venues (Chen et al., 2016a). 

• Friend recommendation: this is a well studied problem in the context of tradi-
tional social networks, like Twitter or Facebook. Considering the importance 
of the social dimension in LBSNs in general, and of social information for POI 

50 



3.6 Systematic review of state-of-the-art algorithms 

2012 2014 2016 2018
0

10

20

30

Years

N
um

be
ro

fP
ap
er
s

Information usage e olution per year

Geographical Social Content
Sequential Temporal

2012 2014 2016 2018
0

10

20

Years

N
um

be
ro

fP
ap
er
s

E aluation methodology e olution per year

Temporal Random
Other

Figure 3.2: Number of papers using dif- Figure 3.3: Number of papers using dif-
ferent information sources by year. ferent evaluation methodologies by year. 

recommendation (discussed in previous sections), there is an increasing interest 
in this problem by the community like the approaches from Bagci and Karagoz 
(2016) and Chu et al. (2013). 

• Group recommendation: quite frequently users visit a city in groups, either com-
posed by friends, family, or even as organized tours. In this case, instead of 
recommending POIs to a unique target user, the algorithms should be tailored 
to groups of users (Ayala-Gómez et al., 2017, Purushotham et al., 2014). This 
problem needs to take into account additional factors, such as the difference be-
tween passive and active users in such groups, or the balance between individual 
preferences. 

3.6 Systematic review of state-of-the-art algorithms 

In this section, we analyze the state-of-the-art algorithms according to the classification 
presented in Section 3.3 for the papers considered in this study. 

First, we selected the most representative papers for each year and include their 
whole characterization in Table 3.4. When selecting the most representative papers, 
we considered the top-5 most cited articles per year according to Scopus with at least 
one citation. Nevertheless, the full tables analyzing all the papers reported in Table 
3.2 can be seen in Tables A.5, A.6, A.7 and A.8, located in Appendix A. 

We also include in Tables 3.4 and 3.5 two summary rows that count how many 
papers (among the sets of most representative or the entire collection) satisfy each 
condition in Table 3.4. Each of the conditions (columns) correspond to the categories 
described in Sections 3.2, 3.3, and 3.4, respectively. 

Based on these tables, let us first analyze the trends on information sources used 
throughout the years. We observe that most of the algorithms make use of geographic 
information in some way (either by calculating distances between POIs, grouping users 
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Table 3.4: Summary of analyzed POI recommendation approaches sorted by publication 
year. The 3mark denotes that the proposed model has the feature indicated in the column, 
whereas (N.A.) shows that no acronym was given. 
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2011 Ye et al. (2011) USG 3 3 3 3 3 3 
2012 Levandoski et al. (2012) LARS 3 3 3 
2012 Bao et al. (2012) (N.A.) 3 3 3 3 3 
2012 Ying et al. (2012) UPOI-Mine 3 3 3 3 3 
2012 Noulas et al. (2012) RW, Weighted-RW 3 3 3 3 
2013 Yang et al. (2013) LBSMF 3 3 3 3 3 3 
2013 Liu et al. (2013a) GT-BNMF 3 3 3 3 3 
2013 Cheng et al. (2013) FPMC-LR 3 3 3 3 3 
2013 Gao et al. (2013) LRT 3 3 3 
2013 Yuan et al. (2013) UTE+SE 3 3 3 3 3 3 
2014 Ying et al. (2014) UPOI-Walk 3 3 3 3 
2014 Yuan et al. (2014) GTAG 3 3 3 3 
2014 Lian et al. (2014) GeoMF 3 3 3 
2014 Liu et al. (2014) IRenMF 3 3 3 
2014 Zhang et al. (2014) LORE 3 3 3 3 3 3 3 
2015 Yin et al. (2015) LA-LDA 3 3 3 3 3 
2015 Li et al. (2015a) RankGeoFM 3 3 3 3 
2015 Zhang and Chow (2015b) GeoSoCa 3 3 3 3 3 3 
2015 Feng et al. (2015) PRME-G 3 3 3 3 3 3 
2015 Gao et al. (2015a) CAPRF 3 3 3 
2016 Xie et al. (2016a) GE 3 3 3 3 3 3 3 3 
2016 Li et al. (2016a) ASMF 3 3 3 3 3 3 
2016 Zhao et al. (2016a) STELLAR 3 3 3 
2016 He et al. (2016) (N.A.) 3 3 3 3 
2016 Liu et al. (2016a) WWO 3 3 3 3 
2017 Zhao et al. (2017a) Geo-Teaser 3 3 3 3 3 3 3 
2017 Yang et al. (2017a) PACE 3 3 3 3 
2017 Ren et al. (2017) TGSC-PMF 3 3 3 3 3 3 
2017 He et al. (2017a) LBPR 3 3 3 3 3 3 3 
2017 Wang et al. (2017a) VPOI 3 3 3 3 3 
2018 Ma et al. (2018) SAE-NAD 3 3 3 
2018 Yao et al. (2018) TenMF 3 3 3 3 3 
2018 Manotumruksa et al. (2018) CARA 3 3 3 3 3 
2018 Gao et al. (2018a) GeoEISo 3 3 3 3 3 
2018 Wang et al. (2018b) GeoIE 3 3 3 3 
2019 Ying et al. (2019) MEAP-T 3 3 3 3 3 
2019 Geng et al. (2019) MLR 3 3 3 3 3 3 
2019 Tang et al. (2019) (N.A.) 3 3 3 3 3 3 
2019 Si et al. (2019) APRA-SA 3 3 3 3 3 
2019 Qian et al. (2019) STA 3 3 3 3 3 

Most Representatives 31 14 14 11 14 10 23 23 5 5 9 1 18 17 1 
Total 164 92 111 50 102 74 118 110 35 37 79 17 123 82 14 
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Table 3.5: Evaluation details of analyzed POI recommendation approaches sorted by
publication year.

Details Evaluation configuration Baselines Split type Split level
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2011 Ye et al. (2011) USG 3 7 3 3 3 3 3
2012 Levandoski et al. (2012) LARS 3 7 3 3 3 3
2012 Bao et al. (2012) (N.A.) 3 3 3 7 3 3
2012 Ying et al. (2012) UPOI-Mine 3 3 7 3 3
2012 Noulas et al. (2012) RW, Weighted-RW 3 3 3 3 3 3 3 3
2013 Yang et al. (2013) LBSMF 3 3 3 3 3 3 3
2013 Liu et al. (2013a) GT-BNMF 3 3 3 3 3 3
2013 Cheng et al. (2013) FPMC-LR 3 3 3 3 3
2013 Gao et al. (2013) LRT 3 3 7 3 3 3
2013 Yuan et al. (2013) UTE+SE 3 3 3 3 7 3 3 3 3
2014 Ying et al. (2014) UPOI-Walk 3 3 3 ? 3 3
2014 Yuan et al. (2014) GTAG 3 3 3 3 7 3 3 3 3
2014 Lian et al. (2014) GeoMF 3 3 7 3 3 3
2014 Liu et al. (2014) IRenMF 3 3 3 7 3 3 3 3
2014 Zhang et al. (2014) LORE 3 3 3 3 3
2015 Yin et al. (2015) LA-LDA 3 3 7 3 3 3 3
2015 Li et al. (2015a) RankGeoFM 3 3 3 3 3 3 3 3
2015 Zhang and Chow (2015b) GeoSoCa 3 3 3 3 3 3
2015 Feng et al. (2015) PRME-G 3 3 3 3 3 3 3 3 3
2015 Gao et al. (2015a) CAPRF 3 3 3 7 3 3 3
2016 Xie et al. (2016a) GE 3 3 3 3 3 3 3 3
2016 Li et al. (2016a) ASMF 3 3 3 7 3 3 3 3 3
2016 Zhao et al. (2016a) STELLAR 3 3 3 3 3 3
2016 He et al. (2016) (N.A.) 3 3 3 ? 3
2016 Liu et al. (2016a) WWO 3 3 3 3 3
2017 Zhao et al. (2017a) Geo-Teaser 3 3 3 3 3 3 3
2017 Yang et al. (2017a) PACE 3 3 3 3 3 3
2017 Ren et al. (2017) TGSC-PMF 3 3 3 3 3 3 3
2017 He et al. (2017a) LBPR 3 3 3 3 3 3 3
2017 Wang et al. (2017a) VPOI 3 3 3 7 3 3 3 3
2018 Ma et al. (2018) SAE-NAD 3 3 3 7 3 3 3 3
2018 Manotumruksa et al. (2018) CARA 3 3 3 3 3 3 3 3
2018 Yao et al. (2018) TenMF 3 3 7 3 3 3 3
2018 Gao et al. (2018a) GeoEISo 3 3 3 3 3 3 3 3
2018 Wang et al. (2018b) GeoIE 3 3 3 3 3 3 3
2019 Ying et al. (2019) MEAP-T 3 3 3 3 3 3 3 3 3
2019 Geng et al. (2019) MLR 3 3 7 3 3 3 3
2019 Tang et al. (2019) (N.A.) 3 3 3 ? 3
2019 Si et al. (2019) APRA-SA 3 3 3 3 3 3 3
2019 Qian et al. (2019) STA 3 3 3 3 3 3 3

Most Representatives 24 10 5 38 23 C:21 P:16 7 3 30 26 18 17 1 13 22
Total 135 37 22 229 135 C:150 P:66 27 29 147 142 123 82 14 101 104
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Figure 3.4: Number of papers using different algorithms by year.

and POIs in clusters according to regions, modeling movement distributions, etc.).
Most researchers argue that this type of information is critical since users tend to
visit POIs close to where they are and this conclusion can be obtained by performing
a preliminary analysis of the LBSNs data. On the other hand, social information is
also widely modeled, partly because many of the datasets used, such as Gowalla, also
provide the links of friendship between users. However, while there is more or less
consensus on the importance of geographical information, this is not so clear for social
information, where some researchers claim it is not so important (Gao et al., 2012,
Cheng et al., 2016) while others state it plays an important role (Cheng and Chang,
2013, Gao et al., 2018a). One possible explanation for this effect is that even though
users may share their tastes with friends (from the same or different cities), they may
not visit the same POIs, in part because it is common for users to visit the locations
closest to their centers of activity (home and work, basically) and most likely they will
be different from their friends’, even if they are “similar” in terms of tastes.

Textual or content information is also exploited by many approaches, especially
those using some kind of probabilistic model such as topic modeling or the POI cate-
gories. This is because the features of the items (categories) in this domain are very
distinctive and may even discriminate between different types of users in a LBSN; for
example, a tourist may prefer to visit museums and restaurants, whereas a local may
prefer a bar or a shopping center. Finally, regarding temporal and sequential infor-
mation, we observe that the latter is not so exploited (although some deep learning
techniques make use of sequential information implicitly), but temporal information is
taken into account in many approaches regardless of the technique used by the model
under analysis, probably because of its flexibility to be introduced in almost any rec-
ommendation technique (usually at the cost of increased sparsity). The same trend
can be found in Figure 3.2, where all the selected papers in the review, not only the
representative ones, are shown in a year basis.

Now, when we analyze the type of model, a change in trend can be seen in the years
between 2011 and 2015 and subsequent years, since for the former, proposals that used
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3.7 Systematic review of state-of-the-art evaluation methodologies

some type of collaborative system based on neighbors were reasonably popular, but
not anymore. However, in subsequent years there has been a greater dominance of
probabilistic and factorization proposals. This is something that already happened in
traditional recommendation, where since the Netflix prize in 2009 (Bell and Koren,
2007) in which matrix factorization models outperformed other traditional approaches,
they have received more attention from the RS research community. In the same
way, neural network techniques have experienced a significant growth since 2017 in
the POI recommendation area. This becomes evident in Figure 3.4 where, again, all
the papers are included. Here, we observe that until 2017 there are less than 5 Deep
Learning techniques included in the selected papers, but this type of model increases
steadily year after year. Finally, with respect to graph/link-based and hybrid models we
observe that, in general, graph models are not widely used, whereas hybrid techniques,
even though they are not widely used, they have been used throughout all the years
collected in our analysis. One reasonable assumption for this is that hybrid proposals
allow several elements to be combined into one, thus alleviating the possible drawbacks
that each of them may show separately.

In the next section, we analyze in detail the evaluation aspects, including the split
types that appear in the already discussed tables.

3.7 Systematic review of state-of-the-art evaluation
methodologies

In this section, we continue the analysis on the state-of-the-art in POI recommendation
presented previously but focusing on the evaluation aspects. Thus, we analyze the last
columns of Table 3.4, together with Figure 3.3, which shows the characterization of
some evaluation protocols, as shown in Section 3.4. We observe they are well distributed
between random and temporal splits, although it is interesting to note that until 2014
the random partition predominated over the temporal split. However, from that year
onwards the use of temporal splitting has increased steadily.

Nonetheless, there is still no common evaluation protocol to evaluate the perfor-
mance of POI recommenders; this is an interesting but also a concerning conclusion,
since this means that we might be comparing models that try to solve the same problem
(POI recommendation) but, at the same time, we are evaluating them in very different
ways, which in turn affects the performance of the algorithms. In particular, we have
found surprising combinations regarding this, such as works with models using tempo-
ral information in their formulation that were running a random evaluation protocol in
their evaluation, like Yuan et al. (2013), Gao et al. (2013), Zhao et al. (2016a), Yuan
et al. (2014).

In any case, as mentioned in Section 2.4 it should be noted that even if the entire
community moves to a common splitting method, there are other aspects of the exper-
imental settings that could affect the final performance of the algorithms and, hence,
the validity of the published results.

Because of this, in Table 3.5 we extend the evaluation aspects to be considered for
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the same works presented before. We now include whether some kind of data filtering
is performed (to avoid both users and POIs with very few interactions), if a validation
subset is used, the type of metric (error or ranking) reported, if the split was used based
on geographical information, and if repetitions or not were considered (i.e., if the split
was done by check-ins or POIs), as discussed in Section 3.4. We also decided to include
if the authors performed some kind of cold-start analysis and the types of baselines
considered in the experiments: whether they use classic non-personalized recommen-
dation baselines (popularity and/or random), classic and customized baselines (UB,
IB, BPR, or MF), and geographical baselines (any algorithm that uses a geographical
component).

Based on this information, we first observe that a relatively large number of articles
apply some kind of filter in the data, the most typical one being to remove users or
POIs with less than n interactions. It is important to note that we only put the mark
3 if the authors specifically state in their paper that they filter the data, so there might
be other proposals that use a pre-filtered dataset that do not count in the table; hence,
these numbers are probably underestimating this aspect. Nonetheless, it is true that
in some situations it might be necessary to make some pre-filtering of the data, but we
must be careful since, if the filtering is too strict, we may end up evaluating the system
with very little data, making the obtained results not generalizable. On the other hand,
sometimes, instead of performing a simple training and test splits, researchers obtain
a third subset of data to tune the parameters (called validation but different from a
k-fold cross-validation). However, as we observe in the table, this is not very common in
POI recommendation (mirroring what happens in traditional recommendation). With
respect to the type of metrics reported, there seems to be more consensus, since the
vast majority of papers use some kind of ranking-based accuracy metric. Besides, most
approaches that evaluate using rating prediction also use ranking evaluation, although
there are very few approaches that only use rating prediction, like Yang et al. (2013).

Regarding the region split column, we believe it is quite important when comparing
research works in this domain, since algorithms executed in a worldwide dataset are not
comparable against those executed in independent cities, mostly because the geograph-
ical influence is indeed affecting the recommenders in a very different way, depending
on the type of split we are using. Similarly, depending on whether the split is done by
check-ins or by POIs, it might affect the obtained results. Although this distinction
might be subtle, if we analyze this aspect we observe there is a lot of disparity in the
works, not leading to any clear conclusion. Let us consider for example that we select
for each user 80% of their check-ins to train and the rest 20% to test, as we mentioned
before, on many LBSNs there may be repetitions so the test set may be composed by
check-ins that appear in the training set; however, if the split is made by POIs, we
make sure to remove such repetitions and therefore we would not be recommending
POIs that the user has already visited. At the same time, even though datasets in this
domain are very sparse, few researchers perform a specific analysis on cold start, as
evidenced from the values shown in the table (we denote as cold start those works that
explicitly consider users or POIs with very few interactions, e.g., less than 5).
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Now, in terms of the baselines used, although most of the approaches compare
against baselines that can be categorized as classic algorithms such as MF or k-NN,
and many others use geographical influence, it is surprising that there are a limited
number of works that test their approaches against very basic baselines like popularity,
when it has been shown to be quite effective in domains with a high sparsity (Belloǵın
et al., 2017).

3.8 Systematic review of datasets used in state-of-the-art

There are several LBSNs that researchers use to explore the problem of POI recom-
mendation and related tasks, but among all of them, there are four that stand out:
Foursquare7, Gowalla8, Brightkite9, and Yelp10, as it is evidenced by Table 3.6, that
shows the number of papers reporting data from each LBSN. Hence, researchers ob-
tained data from these systems and used them for their experiments, even though the
same data could be used for different purposes – i.e., not only the pure POI recommen-
dation task we address here, but also for social or review recommendation.

Besides the differences in the actual recommendation task, which might be more
or less obvious when comparing two research works, we noticed remarkable differences
in the statistics reported for datasets that (in principle) belong to the same LBSN.
The reason might be obvious: the datasets are obtained and pre-processed differently,
however, since there is no canonical name for the datasets (as it occurs in other domains,
e.g., with the MovieLens or Lastfm datasets), they are indistinctively referred as the
name of the corresponding LBSN, which confuse the reader and other researchers into
thinking that the same data is used in two works. To shed some light on this aspect,
we now present some details about the most important datasets based on these LBSNs
and later analyze some of these differences.

• Foursquare: it is possibly the most famous LBSN, which agrees with our statistics
(see Table 3.6) that show it is the LBSN most frequently used by researchers,
among the works included in our analysis. Users in Foursquare can visit a place,
mark it as visited in the system (by checking-in in the venue) so their followers
or friends could track it, like a venue, comment on it (by writing tips), and
obtain recommendations from the system (since 2014 most of this functionality
was derived to Swarm). In general, these check-ins cannot be obtained directly
neither from its website nor its API; because of that, most researchers rely on
other social networks where users share their interactions with Foursquare, mostly
Twitter. Even though we will show different datasets from this LBSN in Tables 3.7
and 3.8, we consider important to emphasize that many papers that report using
Foursquare include a url11 that does not work anymore; these include the original

7Foursquare, https://foursquare.com
8It does not exist anymore since 2012.
9It was acquired by another social network in 2009 and does not exist anymore since 2012.

10Yelp, https://www.yelp.com
11A Foursquare dataset, http://www.public.asu.edu/~hgao16/dataset.html
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work Gao et al. (2012) and many more, such as Gao et al. (2013), Zhang et al.
(2014, 2015a), Stepan et al. (2016), Hosseini and Li (2016).

• Gowalla: a LBSN that was acquired by Facebook in 2011. Most papers use the
Gowalla dataset that can be found in the SNAP repository12, such as Wang et al.
(2013), Guo et al. (2015a), Chen et al. (2016b). As it also happens with other
LBSNs, some researchers claim they use Gowalla, but they fail to provide any
source to obtain such dataset (Ying et al., 2012, Noulas et al., 2012, Zhou and
Wang, 2014, Li et al., 2017a).

• Brightkite: a less popular LBSN, but used in a large number of research works
because of its availability. In the same way as Gowalla, a dataset from this
LBSN is included in the SNAP repository13, which makes it easy to be used by
researchers, since it is not available since 2012; some examples include Hosseini
and Li (2016), Chen et al. (2016b), Yao et al. (2015).

• Yelp: this is a LBSN that focuses on businesses, rather than generic POIs like
other LBSNs. It also differs from the other LBSNs in that users provide a rating
based on 5 stars to the different businesses they visit; besides, users can also
write a review about them. The Yelp dataset is available on its website14 and
can be obtained after agreeing on the dataset license; however, many papers refer
to a different url15 that does not work anymore, like Li et al. (2015b), Gupta
et al. (2015), Yang et al. (2017a), Baral et al. (2018); this is because this dataset
was first released in the context of a challenge ran by Yelp, which has gone at
least through 12 rounds where the data has been increased each time; this makes
the comparisons even more difficult since it is not possible to get the dataset
corresponding to a specific round, and this information is usually omitted in the
papers.

• Others: in addition to the aforementioned LBSNs, some proposals work with
datasets extracted from other systems, such as Jiepang (a Chinese LBSN sim-
ilar to Foursquare) used in Lian et al. (2014, 2015, 2016), Ravi and Subra-
maniyaswamy (2017a), Weeplaces used in Baral and Li (2016), Baral et al. (2016),
GeoLife used in Abdel-Fatao et al. (2015), Zhu et al. (2017), and others less pop-
ular in our context, like Twitter and TripAdvisor.

While doing our systematic review, we found several versions of datasets coming
from the same LBSN. For the sake of space and clarity, we show in Table 3.7 the
LBSNs used by the research work with more citations (according to Scopus) for each
year, together with some statistics of the dataset and other evaluation details reported
in the experiments, such as the type of split and the evaluation metrics. Based on

12Gowalla, http://snap.stanford.edu/data/loc-gowalla.html
13Brightkite, http://snap.stanford.edu/data/loc-brightkite.html
14Yelp dataset, https://www.yelp.com/dataset
15Yelp dataset, https://www.yelp.com/dataset_challenge
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Table 3.6: Papers included in our review that use a dataset from each LBSN.

Number of Papers
LBSN

Gowalla Foursquare Yelp Brightkite Other

Most Representatives 26 31 4 3 7
Total 118 153 37 32 36

Table 3.7: Details of the experimental settings for the works with most citations each
year (note each work appears once for each reported dataset). NA denotes that value is
not provided in the paper. The columns Ref. and Cit. denote the original reference for
that work and the number of citations, as of June 2020.

Details Statistics Evaluation Details
Year Ref. Acronym Cit. Dataset Users POIs Check-ins Metrics used Type of Split

Foursquare 153,577 96,229 NA
2011 Ye et al. (2011) USG 697

Whrrl 5,892 53,432 NA
P, R Random per user

Foursquare (NY) 2,886 NA 10,687
2012 Bao et al. (2012) NA 431

Foursquare (LA) 228 NA 9,836
P, R Other

Foursquare 2,321 5,596 194,108
2013 Yuan et al. (2013) UTE, SE, UTE+SE 463

Gowalla 10,162 24,250 456,988
P, R Random per user

2014 Lian et al. (2014) GeoMF 281 Jiepang 276,450 574,095 NA P, R Random per user
Foursquare 2,321 5,596 194,108

2015 Li et al. (2015a) RankGeoFM 180
Gowalla 10,162 24,250 456,988

P, R Temporal per user

Gowalla 52,216 98,351 2,577,336
2016 Li et al. (2016a) ASMF 132

Foursquare 2,551 13,474 124,933
P, R, MAP Temporal per user

Gowalla 18,737 32,510 1,278,274
2017 Yang et al. (2017a) PACE 98

Yelp 30,887 18,995 860,888
P, R, nDCG, MAP Temporal per user

Foursquare 6,118 88,193 172,961
2018 Wang et al. (2018b) GeoIE 23

Gowalla 1,624 3,585 115,890
P, R Temporal per user

Foursquare 114,508 62,462 1,434,668
2019 Qian et al. (2019) STA 14

Gowalla 107,092 1,280,969 6,442,892
R, nDCG Temporal per user

Table 3.8: Statistics of reported versions for the Foursquare dataset in works included in
our review, sorted by number of check-ins.

Users POIs Check-ins References using this dataset

18,107 36,907 2,073,740 Huang et al. (2015), Stepan et al. (2016)
114,508 62,462 1,434,668 Ren et al. (2017), Qian et al. (2018, 2019), Christoforidis et al. (2018)

Zhang and Chow (2013), Zhang et al. (2014, 2015a), Zhang and Chow (2015a)
11,326 182,968 1,385,223

Stepan et al. (2016), Zhang and Chow (2016), Gao et al. (2018b), Gao et al. (2018)
10,766 10,695 1,336,278 Manotumruksa et al. (2017a, 2018, 2020, 2019)
12,422 46,194 738,445 Liu et al. (2013a, 2015)
10,034 16,561 865,647 Zhao et al. (2016a, 2017a)
4,163 121,142 483,813 Zhang and Chow (2015b), Hosseini and Li (2016), Xie et al. (2016b), Hosseini et al. (2017, 2019)

49,823 18,899 419,509 Xia et al. (2017a, 2018)
5,269 26,381 288,079 Gao et al. (2013), Stepan et al. (2016)

Yuan et al. (2013, 2014), Kojima and Takagi (2015), Li et al. (2015a)
Zhao et al. (2017b), Si et al. (2017), Yu et al. (2017), Xu et al. (2018a)2,321 5,596 194,108

Chen et al. (2018a), Kala and Nandhini (2019), Gao et al. (2019), Zeng et al. (2019)
2,579 97,013 157,404 He et al. (2017a), Li et al. (2019a)
2,823 84,937 130,583 He et al. (2016), Li et al. (2019a)
2,551 13,474 124,933 Li et al. (2016a, 2017a), Su et al. (2019a)
8,308 49,521 86,375 Ozsoy et al. (2014, 2016)
9,800 4,626 45,711 Zhu et al. (2018a, 2019)
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this information, we observe that all of them evaluate based on some notion of ranking
quality; while it is true that this evidences researchers are taking into account the
guidelines provided in the recommendation field as a whole (McNee et al., 2006), a
possible reason for this is that the data to be predicted is not ratings anymore, but
binary feedback: whether the user visited the POI or not. In any case, this table
emphasizes an even more important problem: most researchers are only focused on
accuracy, disregarding additional dimensions such as novelty, diversity, or serendipity
that are becoming prevalent in recent years in the evaluation of RS (Castells et al.,
2015).

Table 3.7 also shows an interesting paradigm shift: those works prior to 2015 used
a random split, and those more recent used a temporal split. We consider this a very
important signal, since it indicates that (at least for the works that are later more
cited by colleagues) a more realistic type of split is being used, which would indeed
make the proposed approaches easier to put in context in a real scenario. It is also
positive that most of these works (it is by no means the same in general) contrast their
approaches against two data sources, which makes the results easier to generalize. On
the other hand, what can be considered as a worrying sign is that there are not two
articles sharing the number of check-ins or users, except Yuan et al. (2013) and Li et al.
(2015a), but even in this case, each work performs a different data splitting; moreover,
there are even cases where some of the statistics are not included (like the number of
items or check-ins). This makes it almost impossible to compare two research works
without implementing everything from scratch, hence hindering reproducibility and the
advancement of the field (Said and Belloǵın, 2014).

We were also surprised that in most cases the source code of the proposed algorithm
is not provided. In particular, among the papers with more citations, Yang et al. (2017a)
redirects to a repository with source code. With respect to the rest of the analyzed
papers (that is, out of the 244 works, only Hu and Ester (2014), Li et al. (2015b),
Zhao et al. (2017a), Ma et al. (2018), Manotumruksa et al. (2018), Li et al. (2018b),
Christoforidis et al. (2018), Yu et al. (2019) provide a url to download the source code
of their algorithm.

As a final analysis, we present in Table 3.8 different versions of datasets extracted
from Foursquare, considering this is the most widely used LBSN in the articles included
in our review. In this selection we show the datasets used by more than one article,
since there are works using other variations not reported here but, for the sake of
space, we focused only on those reported more than once among the papers considered
in our analysis16. Nevertheless, it is remarkable to observe the large difference in
the number of check-ins, ranging from 45k to 2M interactions; as a consequence, the
experiments presented in the different works are probably not comparable at all – even
if they belong to the same LBSN – since the inherent properties of the system are not

16For instance, a widely used version called Global-scale dataset presented in Yang et al. (2016) is
not included in this table because only one paper reported the exact statistics as the original paper
(which is actually not considered because it does not perform POI recommendation), whereas other
works take subsets of it.
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preserved: for instance, in some cases we have more users than items and in others the
other way around, the levels of sparsity change dramatically, together with the number
of cities/regions included in each dataset. Additionally, it is interesting to observe that
most datasets are seldom used, and the few cases where the same dataset is used by
many works, it is because they belong to the same authors, as in Zhu et al. (2018a,
2019), or Zhao et al. (2016a, 2017a).

3.9 Discussion

In this chapter we have dealt with RG1: review the state-of-the-art on POI recom-
mender systems to identify and characterize the most important works in the area. We
have presented a summary of the POIs recommendation works between 2011 and 2019
classifying them according to the type of information and the type of algorithm used
and the evaluation methodology (with special emphasis to this last aspect). Besides, we
have also identified some open issues after performing an analysis on the state-of-the-
art on POI recommendation. After that we have listed some potential future research
lines we believe are in line with parallel developments in the RS field.

Although several research efforts have been devoted to the problem of POI rec-
ommendation, it is still possible to find unresolved issues in the field, which opens
up opportunities to improve the area as a whole, for instance, because they are more
aligned with the necessities of the final users and, probably, with industry practitioners.
By analyzing the current proposals in POI recommendation, we have observed some
important open issues that need to be addressed. In the following, we group them
according to the three main systematic reviews we performed: models or algorithms,
evaluation methodologies, and datasets.

3.9.1 Open issues

Regarding algorithms, matrix factorization and, more recently, deep neural networks
models are very popular approaches in POI recommendation; however, it is often dif-
ficult to explain why the recommendations from these methods are made since they
behave like a black box and this can be problematic in some domains, in particular in
tourism. In addition, we have also observed that most researchers do not test their
approaches against other classic recommendation algorithms like simple CF methods
or non-personalized item popularity, comparing only with other POI recommendation
approaches. Similarly, the sequential information, despite its relevance in this domain,
is not usually exploited, which sometimes prompts incorrect or not realistic evaluation
methodologies.

In fact, about evaluation methodologies we consider the comparisons between dif-
ferent algorithms must always be as transparent and as fair as possible in order to
determine which proposals are superior to others. Therefore, although in the papers
analyzed in this survey there seems to be consensus in evaluating the approaches us-
ing IR metrics like Precision or Recall, this is not the case about how to perform the
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splits, as there are both random and temporal partitions (each of them with different
variations), even though the latter ones are the only strategies that could simulate real
scenarios. At the same time, the sparsity of the datasets used, whether or not they have
been pre-filtered, etc., also affects the performance of the models, which in particular
may prevent from having research works that are comparable between each other.

Regarding the datasets, although most proposals extract data from well-known
LBSNs such as Foursquare, Gowalla, or Yelp, these datasets are often not comparable
among them due to different decisions considered when filtering users or items, or
even how the data were captured, which produces a large number of versions for each
LBSN. Comparing datasets is even more difficult when some researchers do not provide
complete statistics about the actual dataset used in the experiments, leading to data
with completely different characteristics and inherent properties (sparsity, granularity
of temporal, geographical, and social information, POI attributes, and so on) even
when they belong to the same LBSN.

3.9.2 Recommendations

As we have seen along the survey, the problem of POI recommendation is attractive to
a growing number of researchers in the area of Recommender Systems. However, it may
seem as if most of these issues have something in common: they make both the repro-
ducibility and the generality of the proposed algorithms very difficult. Thus, in order
to advance towards better systems and foster high-quality research, we recommend to:

• Explain in detail how the algorithms have been evaluated indicating the met-
rics used, the type of split and the rest of the models that have been used as
baselines. In this regard, we suggest to test the proposed algorithm against spe-
cific POI recommendation models while also analyzing its performance against
other baselines used in classical recommendation, such as neighborhood-based
algorithms, matrix factorization approaches, and the most-popular method. The
evaluation methodology must be the same for all the algorithms and if it is nec-
essary to make different experiments for choosing the parameters, this needs to
be done for all the algorithms involved in the experiments and, if possible, with
a validation subset independent of the test set.

• Clearly indicate the statistics of the used datasets, stating if any pre-processing
step has been performed and showing the final details of the used data, including
the number of users, POIs, and check-ins. This would help to detect the percent-
age of data that was removed to critically analyze if the filtered dataset is actually
representative of the original dataset. We also strongly recommend researchers
to use more than one dataset or, at least, to use different types of splits or more
than one split from the same data if enough information is available.

• Finally, the easiest way to replicate a research work is by providing the code with
a detailed description to achieve the same results mentioned in the paper; if this
is not possible, the next best option is to, at least, provide the final datasets with
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which the algorithms were evaluated, so anyone interested in replicating it should
not worry about that step of the evaluation pipeline.

In general, these recommendations aim to fix a lack of reproducible experimental
settings that could hinder whether there is a significant improvement in the field, as
already discussed in the RS and IR communities (Said and Belloǵın, 2014, Armstrong
et al., 2009).
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4

Novel approaches for evaluating
Recommender Systems

As previously discussed in this thesis, Recommender Systems evaluation is a topic
that still receives significant attention in the area. We have shown in Section 2.4 that
measuring the recommenders quality by only considering their accuracy in terms of
relevance is incomplete, and even though other researchers have proposed the study
of alternative aspects such as novelty and diversity, it is still possible to analyze other
important dimensions. Hence, in this chapter, we propose different models to evaluate
the algorithms by integrating additional contexts. More specifically, in Section 4.1 we
show how to incorporate temporal information into a novelty and diversity framework
proposed in Vargas and Castells (2011), to consider as novel those items that have
more recent interactions in the system. Then, in Section 4.2, we show complementary
metrics to the classical ranking accuracy ones to analyze those items recommended by
the algorithms that have a very low rating. Later, in Section 4.3 we show how to make
use of the attributes of the items and the users in the evaluation of the recommenders.
On the one hand, item attributes allow us to define a relevance model considering as
partially relevant those recommended items that share similarities with the ground
truth of the user even if they do not appear in the test set. On the other hand,
user attributes allow us to determine if the recommenders are biased towards specific
groups of users or if otherwise the recommendations are of similar quality between
the users. In Section 4.4 we show how to incorporate sequentiality in classical ranking
accuracy metrics to take into account not only relevance but also the order in which the
recommendations are produced. In Section 4.5, we show an experimental analysis of the
proposed metrics using a wide range of classical recommenders in well-known datasets,
and finally, in Section 4.6 we discuss about other potential uses and the importance of
these metrics.

The content of this chapter has been partially published in the following articles:

• Pablo Sánchez and Alejandro Belloǵın. Time-aware novelty metrics for rec-
ommender systems. In Gabriella Pasi, Benjamin Piwowarski, Leif Azzopardi,
and Allan Hanbury, editors, Advances in Information Retrieval - 40th European
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Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018,
Proceedings, volume 10772 of Lecture Notes in Computer Science, pages 357-370.
Springer, 2018. DOI: https://doi.org/10.1007/978-3-319-76941-7_27.

• Pablo Sánchez and Alejandro Belloǵın. Measuring anti-relevance: a study on
when recommendation algorithms produce bad suggestions. In Sole Pera, Michael
D. Ekstrand, Xavier Amatriain, and John O’Donovan, editors, Proceedings of
the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver,
BC, Canada, October. 2-7, 2018, pages 367-371. ACM, 2018. DOI: http:

//doi.acm.org/10.1145/3240323.3240382.

• Pablo Sánchez and Alejandro Belloǵın. Attribute-based evaluation for recom-
mender systems: incorporating user and item attributes in evaluation metrics. In
Toine Bogers, Alan Said, Peter Brusilovsky, and Domonkos Tikk, editors, Pro-
ceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019,
Copenhagen, Denmark, September 16-20, 2019., pages 378-382. ACM, 2019.
DOI: https://doi.org/10.1145/3298689.3347049.

4.1 Time-aware novelty metrics

One of the most important contexts to be used in Recommender Systems is the temporal
information. This type of information can be very diverse (for example, the time when
the item was consumed by the user, the time when the item was included in the system,
or the date of publication/premiere when the items are books or movies, etc.) and has
generally proven useful in several domains of Recommender Systems, like the Point-of-
Interest (POI) problem (see Chapter 3). However, temporal data has generally been
modeled for generating recommendations, not for evaluating them. In order to explore
its application in the evaluation step, we propose to include the temporal influence in
the novelty and diversity framework defined in Vargas and Castells (2011) as follows:

m(Ru | θ) = C
∑
in∈Ru

disc(n)p(rel | in, u)nov(in | θ) (4.1)

where θ is a variable that represents the context on which the item discovery is applied
(e.g., time intervals, group of users, etc.). The rest of the elements are the same as the
ones explained for the novelty metric named Expected Popularity Complement (EPC),
shown in Equation 2.37. In fact, the EPC metric is derived from this framework if we
model the novelty component as follows: nov(in | θ) = 1−p(seen|i, θ), that is, that the
more popular an item is, the less novel it is. Thus, our plan is to extend that framework
to incorporate time and to observe when the recommended items are novel according
to a temporal model.

Hence, in our time-aware novelty model, we define an item profile 〈t1(i), · · · , tn(i)〉
for each item i, according to a specific time model t. This representation is flexible
enough to allow us to operate with diverse data. For example, we may use different
types of the metadata available in the system about the item (e.g., it could be its release
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time, its creation date, or inclusion in the system catalog, which may differ from the
creation time, as in music or movies databases). In fact, our item profile could include
all these different times in the same representation, since we will use an aggregation
function to summarize it into a single value. An example of this item profiling is used
in Chou et al. (2015), where the authors exploit the release dates of music songs.

Nonetheless, when dealing with collaborative datasets, another source of informa-
tion becomes available. It is possible to define the temporal profile of an item as the
instants when a user interacted with it in the system. Even though the most typical
interaction type in the literature are ratings, this definition is easily extended to any
other interaction between users and items, such as comments, reviews, clicks, purchases,
or check-ins (in the case of Point-of-Interest recommendation).

Obviously, these time profiles will model the item in a different way. Whereas the
metadata-based item representations are based on some objective, static information
(such as the release date), an interaction-based representation produces dynamic pro-
files, which will change depending on when the profiling is performed. At the same
time, these latter representations are probably more subjective in the sense that they
depend on how users interact with the system, but, because of this, they allow for
profiles more tailored to how the community is actually interacting with a specific item
in the system.

We can draw a parallelism with how documents are treated when building temporal
query profiles. According to Jones and Diaz (2007), documents in IR are annotated
with a timestamp corresponding to the date the document was published; this would
correspond to the first group of time models presented, those based on metadata. How-
ever, we could also annotate the documents according to when they are accessed – or
retrieved – as a response to a query; this document profiling strategy would correspond
to the second group of time models, those based on interactions.

As explained before, the core idea in the framework shown in Equation 4.1 is how
to define the item novelty model nov(i | θ), where θ stands for a generic contextual
variable. Thus, in order to model a time-aware novelty metric, we propose to encode
the time model of the items in the θ variable as follows:

θt = {θt(i)} = {(i, 〈t1(i), · · · , tn(i)〉)} . (4.2)

Here, tj(i) represents the j-th component of the temporal representation or profile
of item i by a specific time model t. Hence, we propose to compute the item novelty
model based on different statistics of each item temporal profile.

In this context, the most basic model would account the item novelty based on
the first appearance of that item in the system (FIN, from First Item Novelty), that
is, novF (i | θt) ∝ minj∈θt(i) θt(i) ; in this sense, an item is novel when looking at the
system timeline (by default, starting with the first logged interaction, although this
initial timestamp could be configured to have a later value) and onwards. On the other
hand, we may also model the item novelty with respect to the point of view of the
evaluation split, where the item would be considered more novel the closer it is with
respect to the end of the training split (LIN, Last Item Novelty). Note that the LIN
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model does not necessarily simplify to the complement of FIN, since its actual value
will depend on the time model being used. Additionally, we can also model the item
novelty by computing the average (AIN) or median (MIN) of the item profile.

These item novelty models cannot be integrated like that in the framework shown
in Equation 4.1, since it is a probabilistic model, and hence, these quantities need to
be, at least, normalized to produce valid values of the novelty metric. At the moment,
the range of the item novelty models is the same as the range of the item time models,
which, in general, return timestamps. A simple normalization scheme would divide the
output of the item novelty model by the maximum possible value of a specific time
model, another possibility would be applying a min-max normalization. Therefore, we
can formalize the item novelty model as follows:

novf,n(i | θt) = n(f(θt(i)), θt) , (4.3)

where f is one of the previous functions LIN, FIN, AIN, or MIN, and n is a normaliza-
tion function, either the simple normalization function defined as n(x, s) = x/max s,
or the min-max normalization formulated as n(x, s) = (x−min s)/(max s−min s). To
help the reader better understand how the values of LIN, FIN, AIN, and MIN would
work, we show in Figure 4.1 an example where we see the interactions of the users
within the items in a system and also the different values of the novelty models.

In summary, we propose a family of time-aware item novelty models that depend on
a specific item time model, an aggregation function that summarizes the item temporal
profile into a single number, and a normalization function that allows a fair compari-
son among novelty values for different items. Then, these item novelty models would
lead to time-aware novelty metrics when integrated within the framework presented in
Equation 4.1.

4.2 Anti-relevance metrics

In Section 2.4 we showed different metrics to measure the relevance of the recommen-
dations and other complementary dimensions like novelty or diversity. In the previous
section, we extended a novelty framework to provide a more complete picture of the
temporal novelty of the items that are recommended to users. Even if all these met-
rics allow us to analyze different characteristics of the recommendations, an analysis
of the recommended items that have been specifically marked by the user as “bad”
(those items in the user profile explicitly rated as such – i.e., with low values in a
bounded scale or “not liked” products) is still missing. Such an analysis would provide
a complementary view of the accuracy of recommendations: while it is clear that a
recommender suggesting more relevant items is preferred to another showing less rele-
vant items, when the number of relevant items is comparable, techniques producing too
many bad recommendations should be avoided, as the user confidence in the system
may be undermined (Herlocker et al., 2004).

With this idea in mind, we aim to analyze the failures the algorithms make when
recommending by accounting for these effects in the evaluation metrics. As far as we
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Figure 4.1: Example of different values of LIN, FIN, AIN, and MIN depending on the
rating evolution of the items throughout the life of the system. Each color represents an
item, whereas each square is the moment in which that item was consumed by a user.

know, this is an issue not addressed in the field, at least from an analytical perspective
and in terms of defining new metrics, as we present hereafter, although some researchers
have started to consider this problem (Mena-Maldonado et al., 2020).

One of the few examples we have identified in the area can be found in Ekstrand
and Riedl (2012), where the authors measure how close different algorithms produce
predictions with respect to the real ratings, and propose to use those findings to create
a hybrid recommendation algorithm. In Gui et al. (2016), the authors proposed a
method to detect bad recommendations using a residual model to capture users’ utility.
In IR, where there is a long tradition on evaluation, however, we do find authors that
introduce alternative definitions for evaluation metrics, either to focus on the most
difficult queries (Voorhees, 2004) or directly on the not relevant documents (frustration
metric) (Myaeng and Korfhage, 1990), and even others that question relevance as a
criteria to evaluate the performance of systems (Belkin et al., 2008).

Thus, drawing from IR and recent RS papers, we adapt the Probabilistic Ranking
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Principle (PRP) for recommendation (Cañamares and Castells, 2018) and interpret it
as the starting point for the definition of an objective function that should be optimized
by our algorithm (Clarke et al., 2008). The PRP states that if a system’s response to
a query is a ranking of documents in order of decreasing probability of relevance, the
overall effectiveness of the system to its users will be maximized (Robertson, 1997).

Hence, to apply the PRP (or to estimate the PRP to evaluate a retrieval or recom-
mender system) we must estimate the probability that a document or item i is relevant
for a user (need or profile) u, i.e., p(rel = 1|u, i). This quantity is usually translated
into RS evaluation as p(rui ≥ τR|u, i), where τR is a relevance threshold, meaning that
any item in the test set of user u that was rated above (or equal) to such threshold will
be considered relevant.

In our proposal, we study the dual PRP problem: estimating the probability of anti-
relevance and ranking the documents according to the opposite of this probability, that
is: 1−p(rel = 0|u, i). As before, this could be translated into RS as 1−p(rui ≤ τAR|u, i)
for some anti-relevance threshold τAR. It should be noted that these estimates can also
be computed even when no ratings are available, as long as some measure of negative
and positive interaction – e.g., products explicitly liked and not liked by the user – can
be defined.

We argue that most evaluation metrics m are formulated as estimating the classical
PRP (note the similarities between this formulation and the one shown in Equation 4.1
if we incorporate the relevance model inside the metric):

m(Ru|θrel) = C
∑
i∈Ru

m(θrel(rui)|u, i) (4.4)

since θrel encodes the dependency on relevance from the PRP p(rui ≥ τR|u, i), where
C is a normalization constant and Ru is the recommendation list computed for user u;
that is, most evaluation metrics only account for the relevant items in the test set of
a user. Now, to formulate the anti-metrics we follow the dual PRP problem as stated
before:

m(Ru|θarel) = C
∑
i∈Ru

(1−m(θarel(rui)|u, i)) ∝

∝ 1− C ′
∑
i∈Ru

m(θarel(rui)|u, i) = 1−m(Ru|θarel) (4.5)

Thus, our anti-metrics formulation is equivalent to computing any relevance-based met-
ric using an anti-relevance model (where an item is relevant if rui ≤ τAR) and returning
its complement. In Figure 4.2 we show an example of the intuition behind the anti-
relevance metrics. In this figure we compare the test set of the user (Tu) against two
recommendation lists (R1

u and R2
u). In both lists, a relevant item is recommended

(marked in green) but in the test set we can observe that the user specifically stated
I7 as anti-relevant. Therefore, R2

u should be preferred over R1
u, as R1

u is returning that
anti-relevant item.
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Figure 4.2: Comparison between the test set of a user (Tu) and two recommendation lists
(R1

u and R2
u) that return the same number of relevant items (1, marked in green), but in

one case the list return an anti-relevant item (marked in red) whereas the second list only
returns non-relevant items (marked in grey). As a consequence, the second list should be
preferred as it does not provide any anti-relevant items.

Note that Equations 4.4 and 4.5 are computed for every user to whom we have
made recommendations, so when reporting the value of the metrics in a set of users,
we normally compute the arithmetic mean of all the results obtained.

We should note that unknown items (those whose ratings are not in the test set)
are still considered as non-relevant by the classical metrics and by the anti-relevance
model – i.e., they contribute with a 0 in the metric computation – however, since the
anti-metric reports the complement value, the amount of unknown items is actually
affecting the final result, and hence, it should be somehow considered. However, it
is not easy to integrate this value in the final metric, since depending on the metric
m the final result could be normalized or transformed in some way (e.g., nDCG);
nonetheless, for simple, binary metrics such as precision or recall, this issue could be
addressed by subtracting the number of unknown items in Ru (or unk(Ru)) as follows:
1− (m(Ru|θarel) + unk(Ru)).

Finally, by optimizing the ranking obtained by the dual problem, relevant items
are ignored (just as anti-relevant items were ignored when optimizing for the original
PRP). Hence, in order to balance the information measured in each case, we should
combine the metrics based on relevance and anti-relevance. Thus, if we have a measure
x computed by some metric m, and another measure x computed by its anti-metric
m, we can linearly combine those values with the average µ(x) = 1/2(x + x), the
harmonic mean H(x) = 2 xx

x+x , or taking the likelihood ratio LH(x) = x
1−x inspired

by the probabilistic interpretation of m and how this statistic is typically used to take
decisions when comparing classifications based on two classes (in our case, rel = 1 and
rel = 0).
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4.3 Attribute-based evaluation

Despite all the advances done in Recommender Systems evaluation, and the novel
formulations shown in the previous sections, there are still some issues that need to
be addressed. Firstly, when analyzing the evaluation results we tend to treat all users
equally, ignoring the specific underlying aspects of each user profile. This is something
not entirely new, as it is easy to observe that in many datasets there are users that
are more difficult to satisfy than others (e.g., they do not have a mature history of
ratings, or they are simply different to the rest of the community, the so-called gray
sheep effect). Furthermore, as described in the previous section, when evaluating the
relevance of the recommendations, we normally only take into account those items the
user has somehow interacted with, either by liking, rating, or clicking on them, ignoring
the rest of recommended items, and, thus, considering them as non-relevant, which may
have a strong impact on the evaluation hypotheses and obtained results (Belloǵın et al.,
2017). In some domains, like Point-of-Interest recommendation, this assumption may
impose constraints too difficult to satisfy by the algorithms due to the high sparsity of
the data. As a solution to this issue, some researchers decided to measure matchings
between the item attributes (categories) in the test set and the recommended ones,
instead of the actual items (He et al., 2017a, Brilhante et al., 2013, Palumbo et al.,
2017, Lim et al., 2015).

With these ideas in mind, we aim to delve into some aspects of the evaluation
of RS that are generally neglected in traditional evaluation. On the one hand, we
define a way to generalize classic ranking-based accuracy metrics in order to consider
as “partially relevant” those items that, although not specifically stated as relevant,
are highly similar to the ones the user liked. On the other hand, we formalize the
notion of aggregating the evaluation metric values at the user level by assigning users
into different groups according to the available attributes (such as age, gender, or their
consumption history), which would help us to detect if a recommendation algorithm
makes more correct recommendations to users belonging to some specific groups.

As explained in the previous section, it is generally acknowledged that a common
formulation for many evaluation metrics is the following (arithmetic) mean:

m(θ) =
1

|U|
∑
u∈U

m(Ru, θ) (4.6)

where m(θ) represents the value of a metric m on the output of some recommen-
dation algorithm, and m(Ru, θ) is the user-level metric value considering the list
Ru provided by such algorithm. For example, in agreement with the formulation
presented in Section 2.4.3 for Precision or P@k, this function would be defined as
m(Ru, θ) = Relu@k/k , whereas for nDCG, it would take the form of m(Ru, θ) =∑k

n=1(2reln − 1)/(log2(n + 1))/IDCG(u)@k, where IDCG(u)@k represents the ideal
ranking for each user.

In this context, we may now analyze whether all users in a recommender system have
the same behavior, especially from the system perspective (Jannach and Adomavicius,

74



4.3 Attribute-based evaluation

2016). In fact, some users may have more influence than others – either as power
users (Herlocker et al., 2004) or influential in a social network context (Trusov et al.,
2010) –, some spend more time in the system, or some could even be easier to satisfy
than others (Said and Belloǵın, 2018). In any case, it is reasonable to assume that,
under various settings, the system designer might want to aggregate these user-level
metric values according to different schemes (Deldjoo et al., 2021). For this, we propose
to use a function c that assigns a weight for each user, either based on her behavior in
the system or according to her attributes, which is incorporated into Equation 4.6 as
follows:

m(θ) = C−1
∑
u∈U

c(u)m(Ru, θ) (4.7)

where C =
∑

u c(u). Even though this formulation is reduced to a simple weighted sum
of the user-level metric values (note that Equation 4.6 is recovered by setting c(u) = 1),
we argue that it consolidates many ad-hoc evaluations performed in the literature: for
instance, cold-start evaluation and recommendation fairness can be recovered by setting
binary weights on function c such that only the cold-start users or those belonging to
a specific group are aggregated; additionally, typical filters applied to the data, such
as ignoring users with low ratings in training or test, could be modeled under this
formulation by setting the appropriate function c. These examples will be considered
later as use cases in the experiments.

Now that we have shown how to incorporate user attributes in any evaluation
metric, we shall show how we can do the same with the item attributes by exploiting
some concept of item similarity in the evaluation metrics. This idea is not completely
new, since most of the works on diversity evaluation use some concept of similarity
metric (Castells et al., 2015), the main difference is that in those cases such metric is
computed within the recommendation list, to analyze how similar the recommended
items are with respect to each other. Moreover, our proposal is inspired by the works
of He et al. (2017a) and Brilhante et al. (2013), where the item categories instead of the
actual items are compared as ground truth. It should be noted that in a recent published
work, the authors performed a user study where they analyzed the recommended items
that were not included in the ground truth, and found that those items highly similar to
those selected by the user were perceived as acceptable recommendations (Frumerman
et al., 2019), hence, validating our proposal.

We define the following three sets of items based on those items included in the
recommendation list Ru, the items in the ground truth of user u (Tu), and a given item
similarity metric simF (i, j) over the feature space F: I+(u) are those items explicitly
interacted by the user and included in the test set, i.e., I+(u) = {i ∈ Ru : i ∈ Tu};
I∗(u) is formed by those items that show a non-zero similarity, I∗(u) = {i ∈ Ru ∧ i /∈
I+(u) : ∃j ∈ T ∗u , simF (i, j) > 0}, where T ∗u = Tu ∩ I+(u), that is, the subset of the
user test that was not recommended; and, finally, the set I−(u) is formed by those
items not included in the previous two sets. Now, taking the formulation previously
introduced in Equation 4.6, we integrate and exploit these sets of items when computing
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the item-level metric value as follows:

m(Ru, θ) ∝
∑

i∈I+(u)

w+(u, i) +
∑

i∈I∗(u)

w∗(u, i) +
∑

i∈I−(u)

w−(u, i) (4.8)

where each w+, w∗, and w− are properly adjusted weights; typically, w+(u, i) = 1 and
w−(u, i) = 0, we propose to define w∗ as a function τ that depends on the similarity with
respect to the closest item not interacted by the user, that is: w∗(u, i) = τ(sim∗F (i, j;α)),
where sim∗F (i, j;α) = maxj∈Te∗(u) α · simF (i, j), where we use a penalization weight α.
Note that this item set could use as many similarity metrics as desired, associating
each similarity with a different penalization; for instance, as we shall show in the
experiments, we may consider two items as similar when they share the same director
or the same genre, but obviously the penalization should be higher in the latter case. It
is now straightforward to obtain those metrics defined in the literature where authors
matched items at the category level (He et al., 2017a, Brilhante et al., 2013): by
simply setting w+(u, i) = w∗(u, i) = 1, w−(u, i) = 0 and taking function simF (i, j)
as the binary mapping that outputs 1 if two items share the same category and 0
otherwise. We should take care, however, when we create item set I∗(u) that each
item j found to have the highest similarity with respect to a recommended item i, is
only considered once; this can be achieved by iterating through the recommendation
list in order and removing the items from T ∗(u) once they are used. In Figure 4.3 we
show a toy example explaining how the metrics incorporating the item categories would
work. In this case, the test set of the user contains a circle, a diamond and a triangle.
However, the first recommendation list only return a diamond (the relevant item), but
no other item matching any attribute of the test items. On the other hand, the second
recommendation list contains a relevant item (circle) but also two non-relevant items
(I20 and I16) that matches the attributes of the items in the test set (hence, R2

u should
be preferred over R1

u).

We want to emphasize that our proposal does not extend the actual ground truth
being exploited, as the number of relevant items is still limited by the items found in
the test set of the user.

4.4 Sequential metrics

As we have shown in the previous sections, Recommender Systems can be evaluated
in terms of a large number of dimensions (novelty, diversity, accuracy, freshness, etc.).
However, regardless of the context being evaluated, the ordering of items is normally
ignored. For example, traditional IR metrics (typically used in the RS area) like Preci-
sion, Recall, MAP, or nDCG do not consider the order in which the user consumed the
items in the test set to measure the accuracy of the recommendations, they only focus
on the relevance of the items. While this may be sufficient for most recommendation
tasks, we believe that this type of sequential metrics might be very useful in domains
where sequences have a great importance, such as music recommendation and POI and
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Figure 4.3: Comparison between the test set of a user (Tu) and two lists that return the
same number of relevant items (1, marked in green), and non-relevant items (marked in
grey). In this case, the shape of the item denotes its attribute/category. As we observe,
there are more non-relevant items in the second list that matches the categories of the
relevant items in the test set. As a consequence, the second list should be preferred since
it provides more items matching the attributes of the relevant items of the test set.

route recommendation, since generally in these areas the proposed models are still eval-
uated with classical techniques such as MAE/RMSE or ranking-based accuracy metrics
(explained in Section 2.4) (Liu et al., 2017, Schedl et al., 2018). In fact, as part of the
thesis is focused on LBSNs data, we will pay special attention to the application of
these metrics on trajectory recommendations as we will show in Chapter 6.

More specifically, except for the work presented in Chen et al. (2016a), where the
authors propose a metric based on F1 that takes into account the pairwise order between
items, and the evaluation done in Menon et al. (2017) that used the same metric based
on F1 on pairs of items, we have not found other approaches where the evaluation
metrics explicitly compare the order of the recommendations against the consumed
items. Although sequential frameworks have been proposed in several domains, many
of them do not include sequentiality in the evaluation step. For example, Monti et al.
(2018) proposed a framework for sequence-based recommender systems, but the authors
did not include any sequence-aware metric comparing against the order observed in the
test set. We find a similar situation in a recent challenge on playlist continuation,
where no sequence-aware metrics were used even though sequentiality was key for the
solutions proposed (Zamani et al., 2019) and simple metrics based on the proportion of
common elements in two top-n lists have been applied in the past to 2-song and 3-song
sequences (Maillet et al., 2009); on the other hand, in the context of trajectory mining
we do find measures that compare two trajectories with respect to all points in those
trajectories while considering the order (Jeung et al., 2011).

One of those techniques that allows us to perform alignments between two sequences
is the Longest Common Subsequence (LCS). The LCS algorithm is a technique used to
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Algorithm 1 Longest Common Subsequence

1: procedure LCS(x, y) . The LCS of x and y
2: L[0 · · ·m, 0 · · ·n]← 0
3: for i← 1,m do
4: for j ← 1, n do
5: if xi = yj then
6: L[i, j]← L[i− 1, j − 1] + 1 . There is a matching
7: else
8: L[i, j]← max(L[i, j − 1], L[i− 1, j])
9: end if

10: end for
11: end for
12: return L[m,n] . L[i, j] contains the length of an LCS between x1 . . . xi and

i1 . . . yj
13: end procedure

find a subsequence of elements (not necessarily consecutive) whose length is the max-
imum possible between two sequences. Formally, the Longest Common Subsequence
problem is defined like this: given a string x over an alphabet Σ = (σ1, · · · , σs), a
subsequence of x is any string w that can be obtained from x deleting zero or more (not
necessarily consecutive) symbols. The LCS problem for input strings x = x1 · · ·xm
and y = y1 · · · yn (assuming m ≤ n) consists of finding a third string w = w1 · · ·wl
such that w is a subsequence of x and also a subsequence of y, and w is of maximum
possible length. In general, such w is not unique. This problem arises in a number
of applications, from text editing to molecular sequence comparisons, and has been
extensively studied (Apostolico, 1997). The standard dynamic programming solution
to compute the LCS can be seen in Algorithm 1, which consists in filling a matrix C
of dimensions m× n following the Equation 4.9:

C[i, j] =


0 if i = 0 or j = 0

C[i− 1, j − 1] + 1 if i, j > 0 and xi = yj

max(C[i, j − 1], C[i− 1, j]) if i, j > 0 and xi 6= yj

(4.9)

where xi and yj represent the characters at indexes i and j (starting in 1) of strings
X and Y . Hence, the final value in C[lx, ly] will be the length of the LCS between
the two input strings. This algorithm has a complexity of O(mn) for both time and
space, where n and m are the length of the two input sequences. In Table 4.1 the
reader can see an example of a computation of the LCS for the strings “BACBAD”
and “ABAZDC”, whose LCS is “ABAD” with a length of 4.
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Table 4.1: LCS example matrix. The circled number represents the length of the LCS
found by the algorithm.

0 B A C B A D

0 0 0 0 0 0 0 0
A 0 0 1 1 1 1 1
B 0 1 1 1 2 2 2
A 0 1 2 2 2 3 3
Z 0 1 2 2 2 3 3
D 0 1 2 2 2 3 4

C 0 1 2 3 3 3 4

Our proposal, hence, is to incorporate the LCS technique into well-known rank-
ing evaluation metrics such as Precision or nDCG, already described in Section 2.4.3.
Although the original LCS problem is designed to work with strings, we can consider
the sequence of items of a user as if it were a string in which each item consumed
represents a character in the sequence. However, other possible transformations may
also be applied, e.g. operating with the item categories (these transformations will be
presented in more detail in Section 5.1).

Hence, we aim to measure how many items were recommended in the same order
as the user visited them, while considering, at the same time, the inherent evaluation
dimensions defined by each evaluation metric. As a consequence, if the relevance of the
items is binary, then the sequence-aware evaluation metrics (based on LCS) will always
achieve a lower or equal value than their non-sequential counterparts, since the LCS
component would serve as a penalization factor every time a sequence is not followed
in order.

More specifically, when adapting the LCS technique for evaluation, one of the se-
quences to be compared will be the recommendation list (Ru) and the other the actual
consumed items that appear in the test set of the user (Tu, ordered by ascending times-
tamp). We propose to perform a slight modification on how the LCS is computed so
that any classical ranking-based accuracy metric could be adapted in such a way that
sequentiality is integrated seamlessly in their computation.

Based on this definition, a straightforward modification would be to create a new
variable that will compute the value in a user basis for any evaluation metric. Such
a variable would need to be updated whenever there is a match (second line in Equa-
tion 4.9), since that means that the subsequence found is now larger than before and,
hence, the sequentiality will be considered. However, this process would not always
work, since during the LCS computation there are matches that are not used because
other subsequences are actually longer1.

In any case, this observation helps us on finding where and how we should modify

1Consider, for example, a symbol that appears at the beginning of the first sequence and at the end
of the second one (such as A in ABCDE and BDFA); even if this is a valid matching, the difference
between the position of the symbol in both subsequences makes it to not be part of the longest common
subsequence.
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Algorithm 2 Longest Common Subsequence: Backtracking

1: procedure LCS Backtracking(Ru, Tu, C) . The recommendation list Ru is
limited to the desired cutoff; Tu denotes the ordered test set of user u.

2: s← 0
3: (i, j)← dim(C)
4: while i > 1 AND j > 1 do
5: xi ← Ru[i]
6: yj ← Tu[j]
7: if xi = yj then
8: s← s+m(Ru, Tu, xi, i) . There is a matching
9: i← i− 1

10: j ← j − 1
11: else if C[i− 1][j] > C[i][j − 1] then
12: i← i− 1
13: else
14: j ← j − 1
15: end if
16: end while
17: return s
18: end procedure

the LCS algorithm to produce valid measurements. The correct place to integrate the
evaluation metric component into the LCS algorithm is whenever the longest subse-
quence is being restored: at the end of the LCS algorithm, in the backtracking step
(shown in Algorithm 2) that uses the computed matrix C to find which elements belong
to the common subsequence.

When performing the backtracking step as in Algorithm 2, we assume any evaluation
metric can be divided in a user-item basis in such a way that m(Ru, Tu, xi, i) provides
the contribution that item xi presented in the recommendation list Ru at ranking
position i makes to user u as evidenced in her test set. In the following, we provide
these user-item components for some of the most well-known evaluation metrics: mP =

1/|Ru| for Precision, mR = 1/|Tu| for Recall, mnDCG = (2rel(xi,u) − 1)/(log (i+ 1)) for
nDCG, mARHR = 1/i for ARHR (Gunawardana and Shani, 2015). Note that, in the
case of the metrics that need to be normalized by an ideal metric value (like nDCG), it
would be enough to call the same procedure but with the test set of the user instead of
the recommendation list. From now on, to denote the sequential variation of a specific
metric M (provided a user-item component of such metric mM is available) we shall
use Ms.

In order to illustrate the differences between classical ranking-based accuracy met-
rics and the proposed adaptation (based on LCS) for sequence-aware metrics, we show
in Figure 4.4 an example of how these metrics behave when using a user-item com-
ponent based on Precision for two recommendation lists R1

u and R2
u. Here we observe
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Figure 4.4: Comparison between the test set of a user (Tu) and two lists that return
the same number of relevant items (3, marked in green), but in one case the list does not
present all the items in the correct order (R1

u), hence LCS(Tu, R
1
u) = 2, whereas in the

other case, the order is the same as in the test set, and the value of LCS is maximum:
LCS(Tu, R

2
u) = 3. As a consequence, Ps (R2

u) = P(R2
u) = 3/5, whereas Ps (R1

u) = 2/5 and
P(R1

u) = 3/5.

that Ps is equivalent to P only when the relevant items are returned in the same order
– that is, for list R2

u – and produces a lower value in other case, as explained before.
Note that by using the LCS algorithm we admit sequences of symbols that are not
necessarily consecutive. This differs from the problem of finding the Longest Common
Substring, whose algorithm can also be used to compare sequences (Gusfield, 1997);
however we believe such technique is less suitable for the task we address here because
of its lack of flexibility, since a recommended sequence of items, despite having gaps
with respect to the test set, should also be considered interesting for the user.

4.5 Experiments on novel approaches for evaluating Rec-
ommender Systems

In order to analyze the behavior of the metrics proposed in this chapter of the thesis, we
have decided to experiment with them in isolated experiments that will be presented
now. To do so, we decided to work with two representative datasets in the area.
The first one is the Movielens1M dataset, i.e. a movie-based dataset provided by the
GroupLens research lab. In the GroupLens website2 there are different versions of these
datasets, including the 100K dataset (formed by 100,000 interactions from 943 users
on 1682 movies), the 1M dataset (formed by 1,000,209 interactions from 6,040 users
on 3,900 movies and is the one used in these experiments), the 10M dataset (formed
by 10,000,054 interactions from 71,567 users on 10,681 movies) and the 20M dataset

2Grouplens, https://grouplens.org/
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(formed by 20,000,263 interactions from 138,493 users on 27,278 movies). Some of these
datasets also contain additional information such as movie genres and user information
such as age or gender. The second one will be the city of Tokyo from a large Foursquare
dataset. This Foursquare dataset is a POI dataset formed by 33,278,683 check-ins by
266,909 users on 3,680,126 venues in 415 different cities around the world provided
by Yang et al. (2016). The dataset is available in the authors website3 and it also
contains additional information like the gender, friends, and followers for the users who
have checked-in in the cities of New York and Tokyo.

We have selected these datasets because they are representative from two recom-
mendation domains, either a traditional one (Movielens1M) or another one based on
Point-of-Interest (Foursquare). Besides, they also provide additional information of the
users, like their gender (in both datasets) or their age in the Movielens1M dataset and
also the timestamps of the interactions. We need all this information to test the afore-
mentioned metrics, which need temporal information (for time-aware novelty models),
user and item attributes (for the user and item attribute metrics), and ratings (for the
anti-relevance framework). As in this chapter we will analyze the data from Tokyo of
the Foursquare dataset, we will refer to this dataset as FS (Tokyo).

4.5.1 Evaluation settings

As in this chapter we want to analyze more in depth how Recommender Systems are
evaluated, we will show the results of classic algorithms of the state-of-the-art (de-
fined in Sections 2.2 and 2.3) using both standard evaluation metrics and our proposed
metrics shown before, except for the sequential metrics, that will be used in the exper-
iments of Chapter 6 (where we propose algorithms for generating trajectories). Hence,
the reported recommenders are:

• Random (Rnd): the recommended items are selected randomly for each user.

• Popularity (Pop): this model recommends the items that have been rated by
more users in the system.

• Collaborative-via content (UBCB): a hybrid user-based neighborhood recom-
mender that uses a content-based similarity, based on the one proposed in Bala-
banovic and Shoham (1997), explained in Section 2.2.3.

• Item-based (IB): an item-based neighborhood recommender described in Sec-
tion 2.2.2.

• User-based (UB): a user-based neighborhood recommender described in Sec-
tion 2.2.2.

• Matrix Factorization (HKV): a matrix factorization algorithm that uses Alternat-
ing Least Squares (ALS) for optimization. Shown in Section 2.2.2 and proposed
in Hu et al. (2008).

3Foursquare dataset, https://sites.google.com/site/yangdingqi/home/foursquare-dataset

82

https://sites.google.com/site/yangdingqi/home/foursquare-dataset


4.5 Experiments on novel approaches for evaluating Recommender
Systems

• Bayesian Personalized Ranking for Matrix Factorization (BPRMF): matrix fac-
torization algorithm that uses BPR as optimization method, as shown in Sec-
tion 2.2.2 and proposed in Rendle et al. (2009).

• Temporal decay user-based (TD): a user-based neighborhood recommender that
incorporates a time decay function so that items rated more recently have a higher
score. Based on the algorithm shown in Equation 2.20, in Section 2.3, without
mean-centering and normalization.

• Factorized Markov Chains (MC): first-order Markov chains algorithms that fac-
torized the item × item transition matrix. Implementation provided by He and
McAuley (2016).

• Factorized Personalized Markov Chains (FPMC): combination of matrix factor-
ization and first order Markov chains techniques explained in Section 2.3, pro-
posed in Rendle et al. (2010). Implementation provided by He and McAuley
(2016).

• Factorized Sequential Prediction with Item Similarity Models (Fossil): combi-
nation of Factorized Item Similarity Models and Markov Chains explained in
Section 2.3 and proposed in He and McAuley (2016).

• Convolutional Sequence Embedding Recommendation Model (Caser): sequential
deep learning model that learns the sequential patterns using convolutional filters.
Explained in Section 2.3 and proposed in Tang and Wang (2018).

• Skyline (Skyline): recommender that reads the test set and recommends to the
users the items they consider as relevant. This recommender serves to show the
maximum value that can be obtained by the recommender in the ranking-based
accuracy metrics.

For the experiments shown in this section and the rest of the thesis, unless stated
otherwise, we have used the following frameworks: for most of the algorithms, we have
used the models implemented in the RankSys library4, as it is the library implemented
in the Information Retrieval Group (IRG) from the Universidad Autónoma de Madrid
(UAM). Nevertheless, for the MC, FPMC and Fossil recommenders, we have used
the code provided by the authors5, adapting it to generate top-n recommendations.
For the BPRMF recommender we have used the MyMedialite library6. Finally, for
the Caser recommender, we have used the code available in the following url7. The
parameters tested for the recommenders can be shown in Table 4.2. Note that for the
Caser recommender we tried more parameters to build the sequences, but the algorithm

4RankSys, https://github.com/RankSys/RankSys
5Source code from He and McAuley (2016), https://drive.google.com/file/d/

0B9Ck8jw-TZUEeEhSWXU2WWloc0k/view
6MyMedialite, http://www.mymedialite.net/
7Caser implementation, https://github.com/graytowne/caser_pytorch
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Table 4.2: Parameters used with the evaluated recommenders. VecC and SetJ stand for
VectorCosine (Equation 2.9) and SetJaccard (Equation 2.11).

Recommender Parameters

Rnd None
Pop None

UBCB k={40, 60, 80, 100, 120}
IB k={40, 60, 80, 100, 120}, sim={VecC, SetJ }
UB k={40, 60, 80, 100, 120}, sim={VecC, SetJ }

HKV Factors={10, 50, 100}, α={0.1, 1, 10}, λ={0.1, 1, 10}

BPRMF
Factors={10, 50, 100}, Iter=50, LearnRate=0.05, RegJ=RegU/10,
BiasReg={0, 0.5, 1}, RegU=RegI={0.0025, 0.001, 0.005, 0.01, 0.1}

TD k={40, 60, 80, 100, 120}, sim={VecC, SetJ }, λ={0.05, 0.1}
MC K={5, 10, 20, 50}, λ={0.1, 0.2}
FPMC K={5, 10, 20, 50}, λ={0.1, 0.2}
Fossil K={5, 10, 20, 50}, λ={0.1, 0.2}, L={1, 2, 3}

Caser
L=2, T={1, 2}, Iter=30, bath=512, LearnRate=0.003, negSamples=3,
d={10, 50}, v=4, h={4, 16}, drop=0.5

Skyline None

fails if every user do not have at least L interactions. Finally, it should be mentioned
that throughout the different chapters and sections of this thesis, we will explain (if
necessary) additional algorithms and their corresponding configurations used in the
experiments.

In order to analyze different evaluation aspects, we create two splits at system level
(community-centered base set with a proportion size condition) in each of the datasets.
For the first one, we make a temporal split where 80% of the oldest ratings are sent
to the training set and the rest to test. For the second split, we perform a random
partition where 80% of the ratings go to training and the rest to test. In addition, in
the case of FS (Tokyo), we have performed a 2-core, that is, we have filtered the dataset
forcing all users and items to have at least 2 interactions. We show in Table 4.4 the
statistics of the two datasets and the two splits that we are using in our experiments.
At the same time, it should be noted that there may be repetitions in this dataset, i.e.
a user may have visited the same POI more than once (and in the same way, it might be
some interactions in the test set that have already appeared in training set). However,
as the classic recommendation problem is intended to discover new items to users, we
follow the TrainItems methodology (see Section 2.4.3), that is, for each user we consider
as candidate item all those items that the user has not consumed before (that appear
in the training set). On the other hand, since the behavior of the recommenders is not
defined to deal with repetitions, in the case of FS (Tokyo), we remove the repetitions of
the training set, making each user visit each POI only once, maintaining the timestamp
of the last interaction. Finally, for the Movielens1M dataset, we consider as relevant
all test items that have a rating of 4 or 5 (5 is the maximum value in a 1-5 rating
scale), while in FS (Tokyo) we consider as relevant any POI that the user has visited
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Table 4.3: Optimal parameters for Movielens1M and FS (Tokyo) datasets used in the
experiments of this chapter. For each dataset, we report the best parameters of the rec-
ommenders for each split (Temporal or Random) according to nDCG@5.

Movielens1M FS (Tokyo)

Rec Temporal Random Temporal Random

UBCB: k 120 100 120 120
IB: k, sim 80, VecC 40, VecC 120, VecC 120, VecC
UB: k, sim 80, VecC 100, VecC 100, SetJ 60, SetJ

HKV: k, α, λ 10, 1, 10 50, 1, 10 10, 10, 0.1 50, 10, 10
BPRMF: k, λu = λi, λ0 10, 0.01, 0 100, 0.01, 0 100, 0.01, 0 100, 0.005, 0

TD: k, sim, λ 120, VecC, 0.1 - 120, SetJ, 0.05 -
MC: k, λ 50, 0.2 - 50, 0.1 -
FPMC: k, λ 5, 0.2 - 10, 0.2 -
Fossil: k, λ, L 20, 0.1, 1 - 20, 0.1 -
Caser: T, d, nh 1, 10, 4 - 2, 10, 16 -

Table 4.4: Statistics of the Movielens1M and FS (Tokyo) datasets used in the experiments
of this chapter. For each dataset, we report the statistics of the full dataset (denoted as
Complete) and for each of the training and test splits. The density is computed as the
number of interactions divided by the product of the number of users and items.

Dataset Split Training/Test |U| |I| Interactions Density Period

Movielens1M

Complete - 6k 3.7k 1M 4.47% Apr 2000 - Feb 2003

Temporal Training 5.4k 3.7k 800k 4.05% Apr 2000 - Dec 2000
Temporal Test 1.8k 3.5k 200k 3.2% Dec 2000 - Feb 2003

Random Training 6k 3.7k 800k 3.6% Apr 2000 - Feb 2003
Random Test 6k 3.5k 200k 1% Apr 2000 - Feb 2003

FS (Tokyo)

Complete - 11.6k 51.1k 998k 0.17% Apr 2012 - Sep 2013

Temporal Training 10.9k 49.7k 798k 0.15% Apr 2012 - Apr 2013
Temporal Test 8.3k 29.2k 200k 0.08% Apr 2013 - Sep 2013

Random Training 11.6k 50.8k 798k 0.14% Apr 2012 - Sep 2013
Random Test 10.5k 33.7k 200k 0.06% Apr 2012 - Sep 2013
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Table 4.5: Performance results on Movielens1M dataset. Temporal system split (80%
older ratings to train, rest to test). In bold, it is represented the best performance without
considering the Skyline recommender. We show in bold with a † the best performance
considering the Skyline recommender. All metrics @5.

Recommender P R nDCG EPC Gini IC UC UC-Rel

Rnd 0.019 0.001 0.012 0.962 †0.651 †0.920 †1,783 †1,762
RndCF 0.015 0.001 0.008 †0.964 0.565 0.784 1,143 1,122

Pop 0.281 0.030 0.221 0.566 0.004 0.025 †1,783 †1,762
PopCF 0.210 0.026 0.161 0.587 0.005 0.025 1,143 1,122

UBCB 0.254 0.039 0.195 0.669 0.018 0.070 1,143 1,122
IB 0.234 0.034 0.177 0.670 0.014 0.057 1,143 1,122
UB 0.248 0.039 0.195 0.684 0.024 0.091 1,143 1,122

HKV 0.257 0.043 0.202 0.725 0.038 0.122 1,143 1,122
BPRMF 0.231 0.034 0.172 0.700 0.036 0.146 1,143 1,122

TD 0.248 0.040 0.194 0.675 0.021 0.079 1,143 1,122
MC 0.177 0.029 0.134 0.708 0.010 0.039 1,143 1,122

FPMC 0.212 0.029 0.159 0.616 0.004 0.021 1,143 1,122
Fossil 0.227 0.036 0.170 0.650 0.009 0.048 1,143 1,122
Caser 0.192 0.029 0.136 0.788 0.089 0.238 1,143 1,122

Skyline †0.943 0.280 †1.000 0.871 0.131 0.368 1,762 †1,762
SkylineCF 0.911 †0.363 0.999 0.883 0.133 0.322 1,122 1,122

in test. The final configuration of the recommenders are selected by the maximum
value obtained according to nDCG@5. In Table 4.3 we show final parameters for both
datasets under the two splits with this metric. Finally, we only report the results of
the temporal/sequential recommenders (MC, FPMC, Fossil, TD, and Caser) under the
temporal split as they are formulated to specifically predict future events.

4.5.2 Analyzing the effect of different splits on classical metrics

In Tables 4.5 and 4.6 we show the performance of the recommenders presented in
Section 4.5.1 in terms of accuracy metrics (P, R, nDCG), novelty (EPC), diversity
(Gini, IC), and user coverage (UC and UC-Rel) in the Movielens1M dataset under
the temporal and random splits respectively. First, let us start by explaining the
difference between UC and UC-Rel: UC represents the number of users to whom the
recommenders are capable of recommending at least one item, while UC-Rel represents
the number of users that have at least one relevant item in the test set to whom we
are capable of making a recommendation. Hence, when computing the average of all
the users in the metrics, we divide the cumulative result by UC-Rel, not UC. Thus, by
comparing both values we can see that not all test users have a relevant item (it should
be noted that we only consider as relevant those items that have been rated with a 4 or
5; items rated with a lower score are therefore not taken into account). When analyzing
Table 4.5, we observe how the best recommender in terms of accuracy (ignoring the
Skyline) is usually the Pop recommender. This is an interesting result and it is due
to several reasons. First, the popularity bias, in which popular items tend to be more
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Table 4.6: Performance results on Movielens1M dataset. Random system split (80%
ratings to train, rest to test, randomly selected). Same notation and cutoffs as in Table 4.5.

Recommender P R nDCG EPC Gini IC UC UC-Rel

Rnd 0.006 0.002 0.004 †0.967 0.786 †1.000 †6,036 †5,978
RndCF 0.006 0.002 0.004 0.966 †0.789 †1.000 †6,036 †5,978

Pop 0.168 0.052 0.141 0.626 0.003 0.012 †6,036 †5,978
PopCF 0.168 0.052 0.141 0.626 0.003 0.012 †6,036 †5,978

UBCB 0.281 0.099 0.249 0.703 0.015 0.080 †6,036 †5,978
IB 0.287 0.105 0.241 0.712 0.015 0.108 †6,036 †5,978
UB 0.330 0.133 0.300 0.714 0.019 0.106 †6,036 †5,978

HKV 0.350 0.142 0.316 0.787 0.061 0.219 †6,036 †5,978
BPRMF 0.295 0.107 0.248 0.769 0.068 0.368 †6,036 †5,978

Skyline †0.914 †0.512 †1.000 0.859 0.200 0.606 5,978 †5,978
SkylineCF †0.914 †0.512 †1.000 0.859 0.200 0.606 5,978 †5,978

recommended than the rest of the items (Abdollahpouri et al., 2019a, Boratto et al.,
2019). Besides, in this dataset, all users have consumed at least 20 items, so it is rare
to find users who have seen unpopular items. In addition, we emphasize that it is a
temporal split and as we can observe, there are a high number of users to whom most of
the recommenders cannot provide any kind of recommendation (users who do not have
any interaction in the training set). For this reason, we also show different versions for
the recommenders with a total coverage (Pop, Rnd and Skyline). These new versions
have the subscript “CF”, from Collaborative Filtering, indicating that they only make
recommendations to those users who have previously appeared in the training set. In
that case, the performance of the PopCF decreases substantially, showing us that the
new users that this recommender cannot perform any recommendation tend to consume
the most popular items in the test set, hence getting a high advantage from this method.
Regarding the Skyline, it is important to mention that it does not obtain a value of
1 in the relevance metrics because not all users have a large number of relevant items
(in particular, less than the cutoff used, which limits the upper bound of metrics like
precision), besides, there might be new items in test that the recommender cannot
return due to the TrainItems strategy.

For the rest of the recommenders, we can see that there are small differences be-
tween the IB and the UB, although the latter shows slightly better performance in the
relevance metrics, perhaps because it learns user profiles better (we know that each
user has rated at least 20 items but we do not know the equivalent value for the items).
TD performance has almost no differences with the classic UB. This may be because
the timestamps in Movielens1M are not as representative as in other datasets (Harper
and Konstan, 2016). The matrix factorization approaches (HKV and BPRMF) ob-
tain different results with respect to the neighborhood-based approaches, obtaining a
similar performance in the relevance metrics. It should be noted, however, that these
types of algorithms have many more parameters than those based on neighbors, so it
may be that the parameter tuning that has been done is not sufficient to find the best
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Table 4.7: Performance results on FS (Tokyo) dataset. Temporal global split (80% older
ratings to train, rest to test). Same notation and cutoffs as in Table 4.5.

Recommender P R nDCG EPC Gini IC UC UC-Rel

Rnd 0.000 0.000 0.000 0.999 †0.419 †0.564 †8,268 †8,268
RndCF 0.000 0.000 0.000 †0.999 0.404 0.536 7,615 7,615

Pop 0.065 0.035 0.078 0.767 0.000 0.000 †8,268 †8,268
PopCF 0.059 0.030 0.070 0.771 0.000 0.000 7,615 7,615

UBCB 0.060 0.031 0.072 0.802 0.000 0.005 7,615 7,615
IB 0.054 0.026 0.066 0.854 0.026 0.132 7,611 7,611
UB 0.064 0.033 0.076 0.795 0.000 0.009 7,611 7,611

HKV 0.059 0.031 0.070 0.857 0.001 0.005 7,615 7,615
BPRMF 0.060 0.031 0.071 0.772 0.000 0.001 7,615 7,615

TD 0.064 0.033 0.077 0.796 0.000 0.011 7,611 7,611
MC 0.048 0.024 0.057 0.812 0.001 0.020 7,471 7,471

FPMC 0.038 0.021 0.047 0.853 0.000 0.003 7,457 7,457
Fossil 0.047 0.025 0.056 0.894 0.002 0.022 7,457 7,457
Caser 0.045 0.026 0.054 0.861 0.011 0.070 7,615 7,615

Skyline 0.775 †0.520 †0.933 0.984 0.164 0.301 7,900 7,900
SkylineCF †0.777 0.500 0.928 0.985 0.163 0.289 7,250 7,250

combinations. Finally, the three sequential recommenders (MC, FPMC, and Fossil)
deserve special attention. It is important to note that despite being the most complex
algorithms do not get the best results, this may be attributed to several reasons. First,
in the original paper where these recommenders were proposed (He and McAuley, 2016)
the authors optimized the recommenders using the Area Under Curve (AUC) metric.
Besides, as they are sequential recommendation algorithms, they are optimized to pre-
dict the next item the user will consume. In this sense, the algorithms order all the
interactions for each user and use the last item consumed in training by that user as
validation. However, we have performed a temporal global split, so there might be users
who have a large number of interactions in test and not so many in training, making
it difficult to optimize the parameters under these circumstances. A similar effect can
be the cause of the discrete performance of Caser that it is also oriented for exploiting
sequences under a temporal per user split, even if the author of the repository claims
that it is prepared to work with the Movielens1M dataset.

Finally, with respect to novelty and/or diversity performance, it should be noted
that in general, in this type of metrics the Rnd recommender is always the best. This
is because this algorithm does not introduce any artificial bias in the recommendations,
so the recommendations are totally independent from the user’s profile (except, for the
fact that we do not recommend the users items they have consumed in the training
set). Notwithstanding this result, it serves to confirm that in general the best rec-
ommendation is the one that achieves a balance between accuracy and non-accuracy
metrics. In fact, if we analyze the Skyline (the ideal recommender), we can see that this
recommender is superior in all metrics to the rest of the recommenders, if we ignore
the Rnd algorithm, proving that the relevant items are also novel and diverse.
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Table 4.8: Performance results on FS (Tokyo) dataset. Random system split (80% ratings
to train, rest to test, randomly selected). Same notation and cutoffs as in Table 4.5.

Recommender P R nDCG EPC Gini IC UC UC-Rel

Rnd 0.000 0.000 0.000 †0.999 0.477 0.643 †10,463 †10,463
RndCF 0.000 0.000 0.000 †0.999 †0.479 †0.645 10,432 10,432

Pop 0.041 0.032 0.052 0.772 0.000 0.000 †10,463 †10,463
PopCF 0.041 0.032 0.052 0.772 0.000 0.000 10,432 10,432

UBCB 0.044 0.035 0.057 0.806 0.000 0.007 10,432 10,432
IB 0.044 0.032 0.056 0.857 0.033 0.167 10,430 10,430
UB 0.050 0.040 0.064 0.807 0.001 0.015 10,430 10,430

HKV 0.051 0.040 0.064 0.894 0.002 0.012 10,432 10,432
BPRMF 0.042 0.032 0.053 0.775 0.000 0.002 10,432 10,432

Skyline 0.736 †0.540 †0.923 0.981 0.195 0.353 10,086 10,086
SkylineCF †0.738 0.538 †0.923 0.981 0.195 0.352 10,055 10,055

Let us now study Table 4.6 (random split). First, as already mentioned, we do not
include the temporal and sequential models as in the random split there may be inter-
actions in the test that have occurred before others in training. The most significant
change with respect to the previous table can be seen in the Pop recommender, which
now becomes the second worst model (after Rnd), both in terms of relevance and in
terms of novelty and diversity. We can also observe how the number of users in the
test is much higher, showing that the activity of the users in a system change between
the splits (there may be users who interact continuously and others who interact very
sporadically or who abandon the system). Regarding the other recommenders, the per-
formance of the matrix factorization algorithms deserves special attention, since besides
exceeding in accuracy the rest of the models, they are also capable of obtaining a larger
novelty and diversity. This may be due to the way of learning the latent factors. While
neighborhood-based models are very dependent on finding common users (therefore the
recommended items depend considerably on the neighbors found), the factors learned
in MF do not have this problem. These results obtained using a widely known dataset
in the area shows that the type of split is critical when analyzing the performance of
the recommenders.

Let us now analyze what happens when we use the Foursquare dataset in the city
of Tokyo. In Tables 4.7 and 4.8 we show the performance of the algorithms again
using a temporal and a random split (respectively). If we look at the results of the
recommenders in terms of accuracy, we can see how in this dataset the values obtained
are much lower than in Movielens1M, this is due to the sparsity of the LBSNs: while in
Movielens1M every user has rated at least 20 items, in this dataset the only restriction
has been a 2-core. However, we can find equivalencies with respect to the results in
the previous dataset. When we perform a temporal split, the Pop recommender is the
best in terms of accuracy, although the differences between the algorithms are much
smaller than in Movielens. Nevertheless, it is striking how sequential recommenders
perform worse than classic recommenders in terms of accuracy, although they have a
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Table 4.9: Performance results on Movielens1M dataset. Temporal system split (80%
older ratings to train, rest to test). Same notation and cutoffs as in Table 4.5. Compar-
ison between the best recommenders reported in previous tables and best recommenders
obtained using a validation set for parameter tuning.

Recommender P R nDCG EPC Gini IC UC UC-Rel

Rnd 0.019 0.001 0.012 0.962 †0.651 †0.920 †1,783 †1,762
RndCF 0.015 0.001 0.008 †0.964 0.565 0.784 1,143 1,122

Pop 0.281 0.030 0.221 0.566 0.004 0.025 †1,783 †1,762
PopCF 0.210 0.026 0.161 0.587 0.005 0.025 1,143 1,122

UBCB 0.254 0.039 0.195 0.669 0.018 0.070 1,143 1,122
UBCBval 0.254 0.039 0.195 0.669 0.018 0.070 1,143 1,122

IB 0.234 0.034 0.177 0.670 0.014 0.057 1,143 1,122
IBval 0.234 0.034 0.177 0.670 0.014 0.057 1,143 1,122
UB 0.248 0.039 0.195 0.684 0.024 0.091 1,143 1,122

UBval 0.247 0.039 0.194 0.674 0.021 0.081 1,143 1,122

HKV 0.257 0.043 0.202 0.725 0.038 0.122 1,143 1,122
HKVval 0.257 0.043 0.202 0.725 0.038 0.122 1,143 1,122
BPRMF 0.231 0.034 0.172 0.700 0.036 0.146 1,143 1,122

BPRMFval 0.213 0.027 0.155 0.595 0.005 0.025 1,143 1,122

TD 0.248 0.040 0.194 0.675 0.021 0.079 1,143 1,122
TDval 0.242 0.040 0.192 0.679 0.022 0.085 1,143 1,122
MC 0.177 0.029 0.134 0.708 0.010 0.039 1,143 1,122

MCval 0.165 0.027 0.124 0.714 0.009 0.037 1,143 1,122
FPMC 0.212 0.029 0.159 0.616 0.004 0.021 1,143 1,122

FPMCval 0.205 0.026 0.148 0.606 0.005 0.021 1,143 1,122
Fossil 0.227 0.036 0.170 0.650 0.009 0.048 1,143 1,122

Fossilval 0.215 0.029 0.169 0.624 0.004 0.022 1,143 1,122
Caser 0.192 0.029 0.136 0.788 0.089 0.238 1,143 1,122

Caserval 0.184 0.031 0.131 0.790 0.089 0.244 1,143 1,122

Skyline †0.943 0.280 †1.000 0.871 0.131 0.368 1,762 1,762
SkylineCF 0.911 †0.363 0.999 0.883 0.133 0.322 1,122 1,122

very good performance on novelty. This may be due to the fact that in this dataset
there are many users with very few interactions, which means that the transitions
between items do not provide much information. At the same time, in the random
split, the Pop recommender is no longer the best one in terms of accuracy, as the
UB and HKV (as in Movielens1M) are now the recommenders that perform the best.
Besides, it is important to note how the Skyline has much less coverage than the rest
of the algorithms. This is due to two reasons: first, there is no restriction on the
minimum number of interactions in the training and test subsets, so there may be test
users without interactions in training; secondly, this dataset has repeated interactions,
so it may happen that when making recommendations, there are test users who have
not visited any different POI with respect to the ones already rated in the training set.

As explained in Section 2.4.2, when performing offline experiments, in related areas
like Machine Learning (ML) an additional subset is used for parameter tuning, the
validation set. Although this is not so common in Recommender Systems, we now
want to show here the different behavior of the recommenders when tuning the pa-
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Table 4.10: Performance results on Movielens1M dataset. Random system split (80%
ratings to train, rest to test, randomly selected). Same notation and cutoffs as in Table 4.9.

Recommender P R nDCG EPC Gini IC UC UC-Rel

Rnd 0.006 0.002 0.004 †0.967 0.786 †1.000 †6,036 †5,978
RndCF 0.006 0.002 0.004 0.966 †0.789 1.000 †6,036 †5,978

Pop 0.168 0.052 0.141 0.626 0.003 0.012 †6,036 †5,978
PopCF 0.168 0.052 0.141 0.626 0.003 0.012 †6,036 †5,978

UBCB 0.281 0.099 0.249 0.703 0.015 0.080 †6,036 †5,978
UBCBval 0.281 0.099 0.249 0.703 0.015 0.080 †6,036 †5,978

IB 0.287 0.105 0.241 0.712 0.015 0.108 †6,036 †5,978
IBval 0.287 0.105 0.241 0.712 0.015 0.108 †6,036 †5,978
UB 0.330 0.133 0.300 0.714 0.019 0.106 †6,036 †5,978

UBval 0.329 0.131 0.300 0.710 0.018 0.099 †6,036 †5,978

HKV 0.350 0.142 0.316 0.787 0.061 0.219 †6,036 †5,978
HKVval 0.350 0.142 0.316 0.787 0.061 0.219 †6,036 †5,978
BPRMF 0.295 0.107 0.248 0.769 0.068 0.368 †6,036 †5,978

BPRMFval 0.295 0.107 0.248 0.769 0.068 0.368 †6,036 †5,978

Skyline †0.914 †0.512 †1.000 0.859 0.200 0.606 5,978 †5,978
SkylineCF †0.914 †0.512 †1.000 0.859 0.200 0.606 5,978 †5,978

rameters using such a validation subset. Hence, we now show in Tables 4.9 and 4.10
the performance of the best recommenders according to nDCG@5 for Movielens1M as
in the previous tables along with the corresponding best algorithm obtained with the
same metric using a validation subset. The validation subset was created following the
same split mechanism but splitting the training set into two subsets, the validation
training and the validation test subsets. Hence, for the random split, we selected the
training subset of the random split and maintained a random subset of 80% of the
interactions for training and the rest for validation. Similarly, in the temporal split
we obtain two subsets from the training split but applying a temporal split in this
case. The recommenders optimized using the validation subset are denoted with the
subscript “val”.

Based on the results in these tables, we can observe that in most cases we achieve
the same result using the training and the validation subsets, except for the models
that have more parameters (like the matrix factorization and sequential approaches).
This may be due to the fact that these algorithms optimize a model that starts from
a high number of random factors and even if these factors are optimized according to
a loss function, they are more sensitive to the data used for training them than other
algorithms based on similarities. Hence, in Recommender Systems, where the user ×
item matrix is so sparse, the parameters of model-based recommenders tend to have a
higher variance than other approaches. However, this effect may also be due to param-
eter tuning conducted in algorithms. As we can see, in Table 4.2, we have performed a
relatively small parameter tuning, so if we were to increase the number of parameters
to analyze (e.g. by increments of 5 by 5 in the case of neighborhoods), we would possi-
bly find more differences between the proposals optimized with the test and validation
subsets. Likewise, this opens an interesting debate in the Recommender Systems do-
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Table 4.11: Performance results on FS (Tokyo) dataset. Temporal system split (80%
older ratings to train, rest to test). Same notation and cutoffs as in Table 4.5. Allowing
previous consumed items in train.

Recommender P R nDCG EPC Gini IC UC UC-Rel

Rnd 0.000 0.000 0.000 †0.999 †0.418 †0.562 †8,268 †8,268
RndCF 0.000 0.000 0.000 †0.999 0.409 0.540 7,615 7,615

Pop 0.160 0.080 0.185 0.723 0.000 0.000 †8,268 †8,268
PopCF 0.162 0.079 0.187 0.723 0.000 0.000 7,615 7,615

UBCB 0.169 0.083 0.196 0.754 0.000 0.004 7,615 7,615
IB 0.170 0.080 0.191 0.885 0.157 0.346 7,611 7,611
UB 0.204 0.105 0.242 0.801 0.002 0.024 7,611 7,611

HKV 0.195 0.096 0.234 0.868 0.001 0.007 7,615 7,615
BPRMF 0.162 0.079 0.188 0.723 0.000 0.000 7,615 7,615

TD 0.204 0.105 0.242 0.793 0.001 0.020 7,611 7,611
MC 0.141 0.068 0.161 0.767 0.001 0.022 7,471 7,471

FPMC 0.125 0.066 0.151 0.899 0.003 0.038 7,471 7,471
Fossil 0.087 0.039 0.102 0.883 0.002 0.022 7,457 7,457
Caser 0.131 0.071 0.153 0.821 0.009 0.062 7,615 7,615

Training 0.201 0.104 0.237 0.872 0.007 0.058 7,615 7,615

Skyline 0.822 †0.609 †0.994 0.978 0.185 0.340 8,247 8,247
SkylineCF †0.828 0.598 †0.994 0.979 0.184 0.328 7,597 7,597

main (and probably in other related areas such as Machine Learning) since sometimes
when authors propose new algorithms, they perform comparisons against weak or not
well-tuned baselines (Dacrema et al., 2019). As a conclusion, and based on these mi-
nor differences, in the rest of the thesis we will show results where recommenders are
optimized according to the test set.

Finally, we want to analyze the effect of repeated interactions on the recommen-
dation algorithms (a user consuming the same item several times). This analysis can
only be performance on FS (Tokyo) since on Movielens1M users consume a movie only
once. Hence, in Tables 4.11 and 4.12 we we use another recommendation strategy
that we have named “ItemsInTraining”, which consists of recommending to users those
items that appear in the training set without any additional restriction (i.e., all items
in training are ordered from highest to lowest score, including those that have been
previously consumed by the user). Our objective is to examine the difference in per-
formance both in relevance and in novelty and diversity if we consider these repeated
items when recommending them. In these tables, we also include a new algorithm,
the training recommender, which only recommends for each user the same items that
she has previously visited in the training set (denoted as Training). In this case we
can observe how in both splits the recommender that only returns the training items
obtains a very competitive result, being only closely outperformed by UB and TD. In
addition, if we analyze the novelty and diversity performance, we can also observe that
this recommender obtains significantly higher results than the rest of the algorithms.
This implies two important considerations. First, this behavior reinforces the idea that
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Table 4.12: Performance results on FS (Tokyo) dataset. Random system split (80%
ratings to train, rest to test, randomly selected). Same notation and cutoffs as in Table 4.11.

Recommender P R nDCG EPC Gini IC UC UC-Rel

Rnd 0.000 0.000 0.000 †0.999 0.476 0.642 †10,463 †10,463
RndCF 0.000 0.000 0.000 †0.999 †0.478 †0.643 10,432 10,432

Pop 0.145 0.080 0.169 0.727 0.000 0.000 †10,463 †10,463
PopCF 0.145 0.080 0.169 0.727 0.000 0.000 10,432 10,432

UBCB 0.153 0.088 0.182 0.763 0.000 0.006 10,432 10,432
IB 0.172 0.087 0.191 0.883 0.174 0.411 10,430 10,430
UB 0.204 0.124 0.243 0.827 0.002 0.029 10,430 10,430

HKV 0.197 0.110 0.236 0.877 0.002 0.007 10,432 10,432
BPRMF 0.147 0.081 0.171 0.732 0.000 0.008 10,432 10,432

Training 0.203 0.121 0.240 0.882 0.009 0.078 10,432 10,432

Skyline 0.806 †0.641 0.998 0.977 0.238 0.421 10,456 10,456
SkylineCF †0.807 0.640 †0.999 0.978 0.238 0.421 10,425 10,425

in this type of datasets, previous rated items have a great impact on recommendations.
Second, despite the fact that the recommended items from the training recommender
are very different from each other (in terms of novelty and diversity), the other rec-
ommenders are suffering from a severe popularity bias. Hence, these algorithms are
learning the patterns derived from the most popular items, as we can infer from the
lower values obtained in novelty and diversity. In the Appendix A.3.3 we explore again
the effect of recommendations of already consumed items.

4.5.3 Analyzing time-aware novelty metrics

In this section we analyze the behavior of the recommenders on our proposed time-
aware novelty metrics from Section 4.1. As these metrics are oriented to measure how
novel the items are according to a temporal profile, we will show the results only on
the temporal split. For the sake of simplicity, we will ignore in our time-aware novelty
model both the discount and relevance (i.e., in Equation 4.1 we only take into account
the temporal novelty). Thus, in Tables 4.13 and 4.14 we show the results of the best
recommenders previously shown in Movielens1M and FS (Tokyo) datasets respectively.
In both tables we show the four different metrics of our proposed models, FIN, that
analyze the first timestamp of the items, AIN, that takes into account the average,
MIN, that uses the median, and finally LIN that only works with the last timestamp
associated with each item (all these metrics were explained in Section 4.1). If we
analyze the results, we can observe some interesting and illustrative behaviors. Firstly,
the Pop recommender has the lowest value of FIN but at the same time the highest
value of LIN, indicating that the most popular items are consumed throughout all the
life of the system in both datasets. On the other hand, in Movielens1M we can see
that the Skyline recommenders have a slightly higher value in our time-aware metrics
than the rest of the recommenders, showing that sometimes analyzing the temporal
novelty should also be taken into account for producing relevant recommendations. In
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Table 4.13: Performance results on Movielens1M dataset. Temporal system split (80%
older ratings to train, rest to test) for time-aware novelty metrics. Same notation and
cutoffs as in Table 4.5.

Recommender nDCG EPC Gini IC FIN AIN MIN LIN UC UC-Rel

Rnd 0.012 0.962 †0.651 †0.920 0.118 0.630 0.616 0.971 †1,783 †1,762
RndCF 0.008 †0.964 0.565 0.784 0.112 0.626 0.611 0.972 1,143 1,122

Pop 0.221 0.566 0.004 0.025 0.000 0.614 0.592 †1.000 †1,783 †1,762
PopCF 0.161 0.587 0.005 0.025 0.000 0.613 0.591 †1.000 1,143 1,122

UBCB 0.195 0.669 0.018 0.070 0.001 0.608 0.579 0.999 1,143 1,122
IB 0.177 0.670 0.014 0.057 0.001 0.605 0.570 0.999 1,143 1,122
UB 0.195 0.684 0.024 0.091 0.004 0.610 0.581 0.999 1,143 1,122

HKV 0.202 0.725 0.038 0.122 0.005 0.611 0.585 0.999 1,143 1,122
BPRMF 0.172 0.700 0.036 0.146 0.003 0.614 0.591 0.999 1,143 1,122

TD 0.194 0.675 0.021 0.079 0.004 0.612 0.587 0.999 1,143 1,122
MC 0.134 0.708 0.010 0.039 0.028 0.629 0.614 0.999 1,143 1,122

FPMC 0.159 0.616 0.004 0.021 0.001 0.606 0.577 0.999 1,143 1,122
Fossil 0.170 0.650 0.009 0.048 0.004 0.613 0.591 0.999 1,143 1,122
Caser 0.136 0.788 0.089 0.238 0.025 0.626 0.609 0.999 1,143 1,122

Skyline †1.000 0.871 0.131 0.368 0.136 0.666 0.661 0.998 1,762 †1,762
SkylineCF 0.999 0.883 0.133 0.322 †0.145 †0.671 †0.670 0.997 1,122 1,122

the case of FS (Tokyo), we can see that in the Skyline the value of FIN is much higher
than the rest of the algorithms (except for Rnd). This may indicate that there is a
significant popularity bias in this dataset, since most of the items being returned by the
recommenders have a very low FIN (i.e., they are the items that have low timestamps)
and therefore have existed for a longer period of time in the system and hence they are
more likely to have been visited more.

Now, if we analyze the personalized recommendation algorithms and, specifically,
the time-aware and sequential ones (i.e., TD, MC, FPMC, Fossil, and Caser), we find
the following. First, it is important to note that, except TD, the rest of the sequential
recommenders, will try to predict items that fit the sequence of the user. This means
that sometimes they can obtain a worse result in this type of metric than other proposals
that do not exploit the temporal context (such as the case of FPMC that obtains a
worse result in Movielens1M than the BPRMF). Nevertheless, we can observe that the
performance of TD is always slightly superior with respect to UB as it will prioritize
the items recommended if their timestamps are higher. However, in Movielens1M, the
behavior of the rest of sequential recommenders needs a further analysis. As we can
observe, the MC and Caser algorithms have a higher temporal novelty than the FPMC
and Fossil models. To analyze this effect, it is desirable to analyze well the difference
of the temporal splits of both Movielens1M and FS (Tokyo). As shown in Table 4.4, in
the Movielens1M temporal split there are very few users in the test set compared to the
total number of users in the full dataset, while in the FS (Tokyo) temporal split this
effect is not so critical. This affects the distribution of ratings, because it means that
there is a significant number of users in the Movielens1M dataset that are not active
in the test set. Besides, Fossil and FPMC are personalized, that is, that these models
are optimizing the sequences for each user while MC not. On the other hand, Caser,
as we can see in Figure 2.1, uses the sequences of the user but only uses the latent
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Table 4.14: Performance results on FS (Tokyo) dataset. Temporal system split (80%
older ratings to train, rest to test). Same notation and cutoffs as in Table 4.13.

Recommender nDCG EPC Gini IC FIN AIN MIN LIN UC UC-Rel

Rnd 0.000 †0.999 †0.419 †0.564 †0.232 0.474 0.468 0.733 †8,268 †8,268
RndCF 0.000 †0.999 0.404 0.536 †0.232 0.475 0.470 0.736 7,615 7,615

Pop 0.078 0.767 0.000 0.000 0.001 0.483 0.535 †1.000 †8,268 †8,268
PopCF 0.070 0.771 0.000 0.000 0.001 0.483 0.534 †1.000 7,615 7,615

UBCB 0.072 0.802 0.000 0.005 0.002 0.482 0.527 0.999 7,615 7,615
IB 0.066 0.854 0.026 0.132 0.131 0.509 0.544 0.918 7,611 7,611
UB 0.076 0.795 0.000 0.009 0.003 0.480 0.523 0.998 7,611 7,611

HKV 0.070 0.857 0.001 0.005 0.003 0.481 0.516 0.999 7,615 7,615
BPRMF 0.071 0.772 0.000 0.001 0.001 0.483 0.531 0.999 7,615 7,615

TD 0.077 0.796 0.000 0.011 0.003 0.482 0.527 0.998 7,611 7,611
MC 0.057 0.812 0.001 0.020 0.005 0.473 0.496 0.997 7,471 7,471

FPMC 0.047 0.853 0.000 0.003 0.005 0.481 0.517 0.997 7,457 7,457
Fossil 0.056 0.894 0.002 0.022 0.011 0.483 0.526 0.989 7,457 7,457
Caser 0.054 0.861 0.011 0.070 0.014 0.481 0.513 0.986 7,615 7,615

Skyline †0.933 0.984 0.164 0.301 0.201 0.540 †0.550 0.886 7,900 7,900
SkylineCF 0.928 0.985 0.163 0.289 0.205 †0.541 †0.550 0.883 7,250 7,250

representation of the user in the final step, so the convolutional layers are applied to
the sequences ignoring the users to which they belong. This may indicate that MC and
Caser learn more about the patterns globally while Fossil and FPMC learn at the user
level and if there are many users who have not been in the system for a long time, they
will produce less novel recommendations at the temporal level. This effect is not seen
in the FS (Tokyo) dataset, probably because in this case, the number of users being
tested is closer to the number of users in the entire set (they are more active throughout
the life of the system).

4.5.4 Analyzing anti-relevance metrics

Let us analyze now the results of the recommenders with the anti-relevance metrics
shown in Section 4.2. In this case we will only show the results on the Movielens1M
dataset as the anti-relevance model only works on datasets with explicit data interac-
tions, that is, ratings. Thus, in Tables 4.15 and 4.16 we show the performance of the
recommenders in some classic ranking accuracy metrics with their anti-relevance coun-
terparts while keeping the user coverage. Recall that this type of metrics is intended
to measure the number of anti-relevant items that have been recommended to the user
(in this case, we have decided to consider as anti-relevant the items scored with a 2 or
less). In the same way, these metrics measure the complementary, so the closer to 1,
the fewer anti-relevant items we will be recommending. In those tables we also include
the Skyline recommender that represents the complement of the Skyline model. That
is, the Skyline will recommend to the users the items rated by the user with a 2 or
less. This recommender serves to check the minimum value that can be obtained with
the anti-relevance metrics, and, as we can see, it does not obtain values of 0 in the
anti-relevance metrics because there may be users who have not rated a high number
of anti-relevant items.
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Table 4.15: Performance results on Movielens1M dataset. Temporal system split (80%
older ratings to train, rest to test). Anti-relevance metrics. Same notation and cutoffs as
in Table 4.5.

Recommender P P R R nDCG nDCG UC UC-Rel

Rnd 0.019 0.993 0.001 0.999 0.012 0.996 †1,783 †1,762
RndCF 0.015 0.994 0.001 0.999 0.008 0.997 1,143 1,122

Pop 0.281 0.977 0.030 0.990 0.221 0.981 †1,783 †1,762
PopCF 0.210 0.979 0.026 0.990 0.161 0.983 1,143 1,122

UBCB 0.254 0.979 0.039 0.991 0.195 0.985 1,143 1,122
IB 0.234 0.979 0.034 0.990 0.177 0.987 1,143 1,122
UB 0.248 0.985 0.039 0.992 0.195 0.990 1,143 1,122

HKV 0.257 0.985 0.043 0.991 0.202 0.990 1,143 1,122
BPRMF 0.231 0.975 0.034 0.988 0.172 0.983 1,143 1,122

TD 0.248 0.987 0.040 0.993 0.194 0.990 1,143 1,122
MC 0.177 0.972 0.029 0.988 0.134 0.978 1,143 1,122

FPMC 0.212 0.979 0.029 0.991 0.159 0.985 1,143 1,122
Fossil 0.227 0.974 0.036 0.989 0.170 0.984 1,143 1,122
Caser 0.192 0.969 0.029 0.990 0.136 0.977 1,143 1,122

Skyline †0.943 †1.000 0.280 †1.000 †1.000 †1.000 1,762 1,762
SkylineCF 0.911 †1.000 †0.363 †1.000 0.999 †1.000 1,122 1,122

Skyline 0.000 0.189 0.000 0.397 0.000 0.001 1,519 1,507

SkylineCF 0.000 0.221 0.000 0.376 0.000 0.001 914 902

Based on these results, we can observe an interesting behavior: the Rnd recom-
mender is the best one according to the anti-relevance metrics. Although this may be
contradictory, this effect can be explained as follows: as we have mentioned, these met-
rics measure the number of anti-relevant items we are recommending to the users, but
in the same way that the Rnd recommender has a low probability of recovering a rele-
vant item, it is also difficult for it to recover an anti-relevant item. This leads towards
an interesting dichotomy. The fact of learning the tastes of users and recommending
relevant items sometimes also causes the algorithms to recommend items that the users
do not like, and that is something we should pay attention to, because a failure in a
recommendation (understanding as a failure the recommendation of an item that the
user specifically does not like) affects the user more than a recommendation that is
neither relevant nor anti-relevant.

With respect to the recommenders, we can observe how in the temporal split the
recommenders which work with implicit data (MC, FPMC, Fossil, and BPRMF) obtain
the worst results in terms of relevance and anti-relevance. This may be due to the fact
that these algorithms do not work with ratings, so in this case it may be detrimental
to this type of metrics. In fact, those models consider every item as relevant, and in
the case of the sequential recommenders, they try to predict the item that the user
will consume next, without considering the rating. Another special case can be seen
in the Pop recommender, which in the temporal split obtains worse results in the anti-
relevance metrics than other personalized algorithms such as UB or HKV, whereas
in the random split the Pop recommender is one of the best ones in this dimension.
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Table 4.16: Performance results on Movielens1M dataset. Random split (80% ratings to
train, rest to test, randomly selected). Same notation and cutoffs as in Table 4.15.

Recommender P P R R nDCG nDCG UC UC-Rel

Rnd 0.006 0.998 0.002 0.999 0.004 0.998 †6,036 †5,978
RndCF 0.006 0.998 0.002 0.999 0.004 0.998 †6,036 †5,978

Pop 0.168 0.987 0.052 0.984 0.141 0.986 †6,036 †5,978
PopCF 0.168 0.987 0.052 0.984 0.141 0.986 †6,036 †5,978

UBCB 0.281 0.986 0.099 0.982 0.249 0.986 †6,036 †5,978
IB 0.287 0.980 0.105 0.979 0.241 0.982 †6,036 †5,978
UB 0.330 0.982 0.133 0.975 0.300 0.980 †6,036 †5,978

HKV 0.350 0.986 0.142 0.981 0.316 0.985 †6,036 †5,978
BPRMF 0.295 0.972 0.107 0.970 0.248 0.972 †6,036 †5,978

Skyline †0.914 †1.000 †0.512 †1.000 †1.000 †1.000 5,978 †5,978
SkylineCF †0.914 †1.000 †0.512 †1.000 †1.000 †1.000 5,978 †5,978

Skyline 0.000 0.367 0.000 0.183 0.000 0.000 4,556 4,509

SkylineCF 0.000 0.367 0.000 0.183 0.000 0.000 4,556 4,509

This may be due to the variation in the number of users in the test set (see the UC
metric), since in the temporal split there are far fewer users, and therefore, failing the
recommendations affects more the average in the metrics. Finally, it should be noted
that the Skyline always gets 1 in all anti-relevant metrics because it only recommends
test items with a score higher than 4.

4.5.5 Analyzing user attributes

Tables 4.18 and 4.19 show the results in the Movielens1M dataset comparing the per-
formance of nDCG@5 (denoted as Std) against different aggregations based on user
attributes. In Table 4.17 we show the percentage of users in the test subset for both
datasets under the two splits. Regarding the user attributes, we decided to group the
user ages in four intervals for Movielens1M: [1, 18), [18, 35), [35, 56) and [56, +∞).
Besides, for both datasets we have also created 4 user groups based on the quartiles
obtained from the number of items consumed by each user, either in the training or
in the test set. Hence, users are grouped in quartiles Q1-Q4 according to the number
of preferences of each user in the corresponding set (ordered from lowest to highest
number of preferences). Finally, again, for both datasets, we also exploited the gender
of the users. Note that in that table there might be users that do not match any at-
tribute. For example, when computing the quartiles for training, the new users that
appear in the test set will not belong to any quartile. At the same time, we do not
include information about the ages of the users in FS (Tokyo) as this information is
not available.

Returning to the aforementioned tables, by analyzing the first attribute (gender),
we observe the performance is generally much lower for females than for males in every
recommender except Rnd. This can be explained if we take into account that there
is a large difference between males and females in both the number of users and their
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Table 4.17: User features of the Movielens1M and the FS (Tokyo) datasets in the tem-
poral and random splits. The columns indicate the percentage of the users in the test set
matching the user feature.

Movielens1M FS (Tokyo)
Feature Value Temporal Random Temporal Random

Genre
Female 27% 28% 11% 11%
Male 73% 72% 80% 80%

Age

1 4% 4% - -
18 57% 53% - -
35 34% 37% - -
56 5% 6% - -

Training
Quartiles

Q1 11% 26% 14% 20%
Q2 11% 24% 22% 26%
Q3 26% 25% 26% 27%
Q4 15% 25% 29% 27%

Test
Quartiles

Q1 26% 28% 26% 28%
Q2 24% 23% 25% 25%
Q3 25% 24% 24% 22%
Q4 25% 25% 25% 25%

activity in the system (see Table 4.17). Regarding the age, we can see an interesting
behavior. While people who are over 56 years old have a worse result (they represent a
very small percentage of users), in the case of 18 years old, also representing a minority
group, they obtain relatively high results. Perhaps the explanation may be that users
under 18 are more like people between 18 and 35 than those over 56. Finally, about the
quartiles, in general the results are higher in the upper quartiles. This is an expected
behavior because the higher the number of the quartile, the larger the user profile,
and therefore the recommenders are able to have more information about the user.
However, it is interesting to observe how the split type again affects the performance of
the recommender depending on the characteristics of the users. Thus we can see how
in the temporal split, the best recommender varies for each feature while in the case of
a random split the best recommender is always the HKV.

Now, let us analyze the behavior on the FS (Tokyo). We now show the results under
the temporal split in Table 4.20 and the results in the random split in Table 4.21. In this
dataset we can observe again that in the two splits, the users identified as women obtain
a lower performance than the rest of the users who identified as men. However, although
the difference between the percentage of users is larger than in the Movielens1M dataset,
the difference in the result of the recommenders is lower than the one reported in the
movies domain. This may be due to the type of items that we are recommending in
each dataset. While in the case of Movielens1M we are recommending movies that may
have a very significant bias in the gender of the users, in the case of POIs this gender
bias may not be as important as, for example, the type of “traveler” the user might be.
More specifically, the check-in behavior of a user who visits a city on a business trip
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Table 4.18: Performance results on Movielens1M dataset in terms of nDCG@5 with
different user attributes. Temporal system split (80% older ratings to train, rest to test).
Same notation and cutoffs as in Table 4.5.

Gender Age Training Quartile Test Quartile

Family Std F M 1 18 35 56 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Rnd 0.012 0.011 0.012 0.011 0.014 0.009 0.005 0.007 0.014 0.008 0.009 0.003 0.004 0.016 0.023
RndCF 0.008 0.010 0.008 0.003 0.009 0.009 0.000 0.011 0.009 0.005 0.009 0.002 0.003 0.006 0.027

Pop 0.221 0.177 0.238 0.192 0.250 0.190 0.132 0.191 0.163 0.163 0.147 0.055 0.160 0.260 0.406
PopCF 0.161 0.131 0.171 0.185 0.178 0.135 0.101 0.191 0.163 0.163 0.147 0.043 0.114 0.219 0.344

UBCB 0.195 0.177 0.202 0.195 0.206 0.180 0.164 0.225 0.193 0.183 0.191 0.057 0.178 0.264 0.368
IB 0.177 0.153 0.185 0.168 0.187 0.161 0.166 0.213 0.172 0.186 0.158 0.052 0.144 0.239 0.351
UB 0.195 0.173 0.202 0.194 0.208 0.176 0.160 0.207 0.170 0.199 0.198 0.067 0.165 0.274 0.352

HKV 0.202 0.184 0.209 0.207 0.213 0.185 0.191 0.235 0.185 0.210 0.192 0.074 0.166 0.284 0.366
BPRMF 0.172 0.166 0.175 0.180 0.179 0.164 0.144 0.201 0.172 0.184 0.154 0.056 0.144 0.232 0.330

TD 0.194 0.176 0.200 0.188 0.205 0.178 0.171 0.202 0.173 0.203 0.194 0.066 0.162 0.270 0.358
MC 0.134 0.127 0.137 0.127 0.142 0.123 0.122 0.169 0.130 0.144 0.115 0.052 0.109 0.170 0.257

FPMC 0.159 0.139 0.166 0.196 0.176 0.134 0.085 0.192 0.162 0.145 0.152 0.044 0.124 0.215 0.327
Fossil 0.170 0.178 0.168 0.160 0.177 0.160 0.172 0.211 0.170 0.183 0.146 0.062 0.134 0.221 0.333
Caser 0.136 0.141 0.135 0.114 0.143 0.128 0.129 0.171 0.144 0.137 0.118 0.044 0.109 0.202 0.248

Skyline †1.000 †1.000 †1.000 †1.000 †1.000 †0.999 †1.000 †1.000 †1.000 †1.000 †0.999 †1.000 †1.000 †0.999 †1.000
SkylineCF †1.000 †1.000 †1.000 †1.000 †1.000 †0.999 †1.000 †1.000 †1.000 †1.000 †0.999 †1.000 †1.000 †0.999 †1.000

Table 4.19: Performance results on Movielens1M dataset with different user attributes.
Random system split (80% ratings to train, rest to test, randomly selected). Same notation
and cutoffs as in Table 4.18.

Gender Age Training Quartile Test Quartile

Family Std F M 1 18 35 56 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Rnd 0.004 0.003 0.004 0.001 0.004 0.004 0.001 0.002 0.002 0.003 0.008 0.002 0.001 0.004 0.008
RndCF 0.004 0.003 0.004 0.002 0.004 0.004 0.002 0.001 0.002 0.003 0.009 0.001 0.002 0.003 0.009

Pop 0.141 0.093 0.159 0.108 0.168 0.116 0.072 0.066 0.082 0.136 0.278 0.064 0.084 0.141 0.275
PopCF 0.141 0.093 0.159 0.108 0.168 0.116 0.072 0.066 0.082 0.136 0.278 0.064 0.084 0.141 0.275

UBCB 0.249 0.203 0.267 0.202 0.276 0.226 0.182 0.134 0.186 0.262 0.413 0.138 0.186 0.266 0.410
IB 0.241 0.196 0.259 0.220 0.259 0.227 0.186 0.142 0.192 0.250 0.381 0.142 0.194 0.254 0.380
UB 0.300 0.249 0.320 0.249 0.325 0.279 0.242 0.204 0.243 0.310 0.442 0.200 0.248 0.315 0.441

HKV 0.316 0.265 0.337 0.277 0.337 0.300 0.259 0.219 0.260 0.329 0.457 0.213 0.263 0.335 0.459
BPRMF 0.248 0.210 0.262 0.199 0.266 0.236 0.187 0.147 0.190 0.262 0.391 0.143 0.193 0.266 0.394

Skyline †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000
SkylineCF †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000 †1.000

might be different than another user who visited the same city for leisure. However,
users that are “locals” from a city do not visit the same types of POIs as other users
that are “tourists”, so this attribute might be more important than the gender in this
domain.

However, when we analyze the quartiles we do find some interesting results. Al-
though in the test quartiles, the higher the quartile, the better the results are obtained
in both types of split (which makes sense, since the higher the number of items in the
test, the more likely it is that the recommendations will match at least one item), this is
not the case in the training quartiles for the temporal split, since the lower the quartile,
the better the performance of the recommendation. This can be due to the well-known
effect of the popularity bias. If a user has few items in training it may be normal to
recommend the most popular items, especially in areas with as much sparsity as in the
POI recommendation domain. This effect can be combined with the fact that there is
a set of users belonging to the first quartile that might be becoming more active in the
moment of the split (e.g., tourists that have just arrive in the city). Besides, in this
type of split there may be bursts of activities depending on the time context (events
such as concerts, sports activities, exhibitions, etc.) and for that reason there may be
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Table 4.20: Performance results on FS (Tokyo) dataset. Temporal system split (80%
older ratings to train, rest to test). Same notation and cutoffs as in Table 4.18.

Gender Training Quartile Test Quartile

Family Std F M Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Rnd 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RndCF 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001

Pop 0.078 0.066 0.076 0.089 0.077 0.057 0.069 0.037 0.053 0.080 0.141
PopCF 0.070 0.062 0.069 0.089 0.077 0.057 0.069 0.033 0.046 0.072 0.128

UBCB 0.072 0.065 0.071 0.083 0.078 0.061 0.073 0.033 0.046 0.073 0.132
IB 0.066 0.053 0.066 0.061 0.073 0.058 0.070 0.029 0.040 0.068 0.124
UB 0.076 0.066 0.075 0.093 0.078 0.065 0.077 0.037 0.049 0.077 0.138

HKV 0.070 0.059 0.069 0.081 0.076 0.061 0.067 0.035 0.046 0.070 0.125
BPRMF 0.071 0.062 0.070 0.090 0.077 0.058 0.070 0.033 0.046 0.074 0.129

TD 0.077 0.068 0.075 0.093 0.081 0.064 0.077 0.038 0.047 0.078 0.140
MC 0.057 0.051 0.057 0.074 0.063 0.047 0.054 0.027 0.037 0.059 0.101

FPMC 0.047 0.044 0.046 0.079 0.055 0.037 0.035 0.027 0.035 0.049 0.073
Fossil 0.056 0.043 0.056 0.078 0.068 0.045 0.048 0.030 0.037 0.059 0.095
Caser 0.054 0.046 0.054 0.083 0.076 0.046 0.032 0.033 0.039 0.060 0.084

Skyline †0.933 †0.950 †0.931 †0.944 †0.902 †0.910 †0.954 †0.903 †0.851 †0.975 †0.999
SkylineCF 0.928 0.944 0.926 †0.944 †0.902 †0.910 †0.954 0.889 0.836 0.973 †0.999

Table 4.21: Performance results on FS (Tokyo) dataset. Random system split (80%
ratings to train, rest to test, randomly selected). Same notation and cutoffs as in Table 4.18.

Gender Training Quartile Test Quartile

Family Std F M Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Rnd 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001
RndCF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Pop 0.052 0.047 0.051 0.051 0.047 0.047 0.064 0.046 0.047 0.049 0.068
PopCF 0.052 0.047 0.051 0.051 0.047 0.047 0.064 0.046 0.047 0.049 0.068

UBCB 0.057 0.052 0.057 0.057 0.051 0.053 0.069 0.051 0.050 0.055 0.075
IB 0.056 0.049 0.055 0.046 0.050 0.053 0.072 0.043 0.050 0.055 0.077
UB 0.064 0.061 0.063 0.067 0.056 0.057 0.078 0.059 0.055 0.061 0.083

HKV 0.064 0.061 0.062 0.061 0.056 0.063 0.073 0.055 0.056 0.065 0.080
BPRMF 0.053 0.047 0.052 0.050 0.047 0.048 0.066 0.045 0.047 0.051 0.070

Skyline †0.923 †0.938 †0.923 †0.932 †0.844 †0.917 †0.993 †0.912 †0.825 †0.961 †0.996
SkylineCF †0.923 †0.938 †0.923 †0.932 †0.844 †0.917 †0.993 †0.912 †0.825 †0.961 †0.996

users who have been very active in training and not in test. On the other hand, in the
random split, the number of training and test users are more balanced so we do not
observe this behavior in such a pronounced way, as in this case the users belonging to
the Q4 group obtain better results.

4.5.6 Analyzing item attributes

For the item attributes, we work with a main feature and a secondary one: directors
and genres in Movielens1M and level 3 and level 1 categories in FS (Tokyo). We use
as similarity function simF the Jaccard coefficient between the features of each pair
of items; we set the penalization weight α as 0.8 and 0.6 for the main and secondary
feature. When using both features at the same time, we first compute the similarity
using the main feature, if there is no matching we use the secondary feature, and if
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Table 4.22: Performance results on Movielens1M dataset with different item attributes.
Temporal system split (80% older ratings to train, rest to test). τ = 0, represents the pure
metric and τm, τs and τms represent the metric with the main, the secondary and both the
main and the secondary features respectively. Same notation and cutoffs as in Table 4.5.

nDCG P

Family τ = 0 τm τs τms τ = 0 τm τs τms

Rnd 0.012 0.034 0.269 0.276 0.019 0.053 0.329 0.344
RndCF 0.008 0.023 0.251 0.255 0.015 0.040 0.308 0.320

Pop 0.221 0.244 0.361 0.372 0.281 0.325 0.461 0.484
PopCF 0.161 0.189 0.308 0.322 0.210 0.259 0.396 0.421

UBCB 0.195 0.221 0.356 0.366 0.254 0.297 0.450 0.471
IB 0.177 0.206 0.322 0.337 0.234 0.281 0.417 0.442
UB 0.195 0.224 0.347 0.360 0.248 0.297 0.438 0.463

HKV 0.202 0.230 0.364 0.375 0.257 0.302 0.454 0.476
BPRMF 0.172 0.201 0.334 0.347 0.231 0.279 0.429 0.454

TD 0.194 0.223 0.347 0.361 0.248 0.296 0.439 0.463
MC 0.134 0.170 0.312 0.327 0.177 0.234 0.397 0.424

FPMC 0.159 0.181 0.314 0.325 0.212 0.248 0.407 0.426
Fossil 0.170 0.195 0.331 0.342 0.227 0.270 0.428 0.450
Caser 0.136 0.166 0.309 0.321 0.192 0.239 0.401 0.426

Skyline †1.000 †1.000 †1.000 †1.000 †0.943 †0.943 †0.943 †0.943
SkylineCF 0.999 0.999 0.999 0.999 0.911 0.911 0.911 0.911

there is no matching then, we assume the items have a zero similarity. Additionally,
we need to specify the τ function used to map the maximum similarity values into
relevance weights; for this work we use the following simple mapping, in the future we
aim to study how to better define such correspondence: τ(s) = 0.25 if 0 < s ≤ 0.5,
τ(s) = 0.5 if 0.5 < s ≤ 0.75, τ(s) = 0.75 if s > 0.75, and τ(s) = 0 otherwise. Abusing
the notation, we shall use τm, τs, or τm,s when this function is applied to the output
of the Jaccard similarity as explained before to the main, secondary, or combined
features. Hence, in Tables 4.22 and 4.23 we show the results of the recommenders in
the Movielens1M dataset for the system and the random split respectively. Analyzing
the results we can observe that with the first feature the recommenders obtain results
more similar to the pure metric (and at the same time lower than the ones reported
with the second feature). This makes sense since in this dataset we have a total of 3,565
different directors while we only have 16 film genres. This causes the metrics using the
second feature to obtain such high results. Still, it is interesting that in most cases the
best recommender is the same in all configurations (it only changes in the temporal
split with nDCG), showing us the potential of these types of metrics. However, we
would like to warn about the behavior of the Rnd recommender, since when we use the
secondary feature it performs much better than we would expect, being very close to
some other personalized recommenders. This shows that we must be specially careful
when selecting the features to consider relevant items since although somewhat more
specific features such as the directors in this case, could help us to better analyze the
differences of the recommenders, if we use more generic features, the results can be
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Table 4.23: Performance results on Movielens1M dataset with different item attributes.
Random system split (80% ratings to train, rest to test, randomdly). Same notation and
cutoffs as in Table 4.22.

nDCG P

Family τ = 0 τm τs τms τ = 0 τm τs τms

Rnd 0.004 0.013 0.217 0.220 0.006 0.019 0.257 0.263
RndCF 0.004 0.013 0.218 0.222 0.006 0.020 0.258 0.265

Pop 0.141 0.165 0.288 0.298 0.168 0.206 0.342 0.359
PopCF 0.141 0.165 0.288 0.298 0.168 0.206 0.342 0.359

UBCB 0.249 0.267 0.406 0.414 0.281 0.309 0.465 0.479
IB 0.241 0.261 0.381 0.390 0.287 0.315 0.454 0.468
UB 0.300 0.319 0.435 0.444 0.330 0.359 0.491 0.505

HKV 0.316 0.336 0.457 0.466 0.350 0.379 0.516 0.530
BPRMF 0.248 0.268 0.401 0.411 0.295 0.323 0.476 0.490

Skyline †1.000 †1.000 †1.000 †1.000 †0.914 †0.914 †0.914 †0.914
SkylineCF †1.000 †1.000 †1.000 †1.000 †0.914 †0.914 †0.914 †0.914

counterproductive.

Let us analyze the effect of these metrics in the FS (Tokyo) dataset. In Tables 4.24
and 4.25 we show the results on this dataset for the temporal system and random system
split respectively. Regarding these results, we can observe how the behavior of the Rnd
recommender is similar to the reported in the Movielens1M dataset (with the main
feature improving the performance slightly but with the secondary feature improving
the performance substantially). However, there is a fundamental difference between
the features. In this case, the results obtained using the main feature are normally
superior to the ones obtained using the second feature. The reasons for this may be
in the number of different features, since although there are not many differences with
respect to the size of the secondary features (9 in this case versus 15 in Movielens1M),
but 429 in the case of the main feature (versus 3,565 in Movielens1M). This makes the
main feature of FS (Tokyo) more generic than in the case of Movielens1M, and thus
explaining the greater increase in the results in this dataset. In addition, it should be
noted that in this case, the main features are included in the secondary features. That
is, if a primary feature is for example “Italian Restaurant”, its associated secondary
feature would be “Food”. On the other hand, in this dataset we can see more changes in
the ranking of the recommenders when we use the item attributes, while in Movielens1M
they were much more stable. This may be due to two main reasons. First, it is more
challenging to make relevant recommendations in this dataset because of its sparsity
and secondly, when evaluating using the item features we may end up having greater
discrepancies because there are a fewer number of different features than in the case of
Movielens1M, specially in the main feature. Although we want to emphasize again to be
careful with this type of metrics since we believe that a deeper analysis on the penalties
to apply when using these features should be done, we also believe that this type of
metrics can be especially useful in some circumstances, e.g., in very sparse scenarios
or as tie-breaker when we have recommenders obtaining a very similar performance in
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Table 4.24: Performance results on FS (Tokyo) dataset with different item attributes.
Temporal system split (80% older ratings to train, rest to test). Same notation and cutoffs
as in Table 4.22.

nDCG P

Family τ = 0 τm τs τms τ = 0 τm τs τms

Rnd 0.000 0.090 0.279 0.306 0.000 0.085 0.246 0.271
RndCF 0.000 0.094 0.282 0.310 0.000 0.088 0.250 0.276

Pop 0.078 0.386 0.366 0.469 0.065 0.307 0.302 0.383
PopCF 0.070 0.386 0.362 0.468 0.059 0.307 0.301 0.384

UBCB 0.072 0.415 0.380 0.494 0.060 0.342 0.320 0.413
IB 0.066 0.373 0.388 0.489 0.054 0.310 0.330 0.414
UB 0.076 0.401 0.366 0.473 0.064 0.325 0.305 0.390

HKV 0.070 0.381 0.375 0.476 0.059 0.318 0.317 0.401
BPRMF 0.071 0.382 0.363 0.467 0.060 0.304 0.302 0.384

TD 0.077 0.400 0.368 0.475 0.064 0.324 0.306 0.392
MC 0.057 0.381 0.365 0.473 0.048 0.315 0.307 0.395

FPMC 0.047 0.368 0.366 0.473 0.038 0.294 0.309 0.394
Fossil 0.056 0.338 0.367 0.460 0.047 0.290 0.318 0.398
Caser 0.054 0.338 0.370 0.463 0.045 0.276 0.313 0.388

Skyline †0.933 †0.933 †0.933 †0.933 0.775 0.775 0.775 0.775
SkylineCF 0.928 0.928 0.928 0.928 †0.777 †0.777 †0.777 †0.777

ranking-based accuracy metrics.

4.6 Discussion

In this chapter we have addressed RG2: study evaluation metrics for classical recom-
mendation to adapt and integrate additional dimensions beyond relevance. We have
presented several metrics that incorporate both temporal and sequential information
to evaluate the recommendations produced by the model. In addition, we have also
defined other metrics by exploring other sources of information, such as low ratings
(usually ignored in recommendation) and attributes of both users and items.

With the metrics developed, we have been able to analyze in more detail the recom-
mendations produced by the different algorithms, detecting some interesting behaviors.
Thus, with the time-aware novelty metrics we have found a correlation between relevant
and temporal novel items. Using the negative ratings of the items, we have observed how
some traditional personalized models, while producing relevant recommendations for
users, they sometimes also produce recommendations that displease the user. Finally,
with the user and item attributes we detected some biases in the recommendations pro-
duced, since for the users belonging to a less numerous group, it is more likely to obtain
worse recommendations. In the case of item attributes, we have shown that they might
be useful in domains where the sparsity is too high, although the selection of these
attributes is critical. If we apply relatively low penalties on the features similarities or
reduced number of attributes are used (favoring more hits between the attributes of
the relevant and the recommended items), the results might be too optimistic.
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Table 4.25: Performance results on FS (Tokyo) dataset with different item attributes.
Random system split (80% ratings to train, rest to test, randomdly). Same notation and
cutoffs as in Table 4.22.

nDCG P

Family τ = 0 τm τs τms τ = 0 τm τs τms

Rnd 0.000 0.086 0.269 0.295 0.000 0.079 0.234 0.257
RndCF 0.000 0.087 0.270 0.297 0.000 0.081 0.236 0.260

Pop 0.052 0.389 0.359 0.472 0.041 0.302 0.289 0.375
PopCF 0.052 0.390 0.360 0.472 0.041 0.302 0.289 0.376

UBCB 0.057 0.428 0.383 0.505 0.044 0.341 0.310 0.408
IB 0.056 0.383 0.389 0.497 0.044 0.312 0.323 0.411
UB 0.064 0.410 0.372 0.485 0.050 0.323 0.299 0.388

HKV 0.064 0.399 0.387 0.496 0.051 0.326 0.319 0.407
BPRMF 0.053 0.385 0.367 0.477 0.042 0.300 0.297 0.383

Skyline †0.923 †0.923 †0.923 †0.923 0.736 0.736 0.736 0.736
SkylineCF †0.923 †0.923 †0.923 †0.923 †0.738 †0.738 †0.738 †0.738

However, we have also observed that it is very difficult for an algorithm to obtain the
best results in all metrics. While we would argue that the accuracy in terms of relevance
should be one of the most important criteria for choosing the best recommenders, it
is also necessary to analyze other dimensions (novelty, diversity, etc.) as in many
cases these recommendations might be very similar to each other (sometimes users
are interested in expanding their tastes and finding new items). We argue that with
the developed metrics, we can further analyze what kind of recommendations each
algorithm produces and detect possible biases in the datasets.

On the other hand, we have observed that the results of the recommenders change
significantly depending on the evaluation methodology followed to make the recom-
mendations (parameter tuning and type of split performed). Thus, we noticed that
the results obtained with a system random split tend to be higher in terms of accu-
racy than those obtained using a system temporal partition. Moreover, we have also
observed that in the case of temporal splits we might be losing user coverage, showing
that user interactions with the system are not homogeneous (with a large number of
users who are active for only a short time in the system). However, we would like
to point out once again that when evaluating algorithms in an offline environment,
they should be performed in the most realistic configuration possible. Hence, we argue
that the evaluation should be conducted using temporal splits, since past and future
interactions should not be mixed when making recommendations.
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5

Sequence integration in k-NN
recommender systems

In the previous chapters, we have shown how to incorporate the temporal and sequen-
tial contexts in recommendation metrics. We have also explained some state-of-the-art
proposals based on Neural Networks and Markov Chains (usually combined with other
models such as matrix factorization) that capture this type of information. In this
chapter, as a novel contribution, we will show how these contexts can be incorporated
into neighborhood-based algorithms, since they are techniques that are easier to imple-
ment efficiently and to understand than those mentioned above. First, in Section 5.1 we
define a sequential similarity metric based on the Longest Common Subsequence (LCS)
algorithm; then, in Section 5.2 we show a reformulation of a classic user-based neigh-
borhood algorithm by bringing ideas from ranking fusion techniques. In Section 5.3 we
show the experiments of our proposals in two different datasets under two temporal
evaluation methodologies and finally, in Section 5.4 we make a discussion about our
sequential k-NN proposed algorithms.

The content of this chapter has been partially published in the following articles:

• Pablo Sánchez and Alejandro Belloǵın. Time and sequence awareness in
similarity metrics for recommendation. Information Processing Management,
57(3):102228, 2020. DOI: https://doi.org/10.1016/j.ipm.2020.102228.

• Pablo Sánchez and Alejandro Belloǵın. Building user profiles based on se-
quences for content and collaborative filtering. Information Processing Manage-
ment, 56(1):192-211, 2019. DOI: https://doi.org/10.1016/j.ipm.2018.10.
003.

• Alejandro Belloǵın and Pablo Sánchez. Collaborative filtering based on sub-
sequence matching: A new approach. Information Sciences, 418:432-446, 2017.
DOI: https://doi.org/10.1016/j.ins.2017.08.016.

105

https://doi.org/10.1016/j.ipm.2020.102228
https://doi.org/10.1016/j.ipm.2018.10.003
https://doi.org/10.1016/j.ipm.2018.10.003
https://doi.org/10.1016/j.ins.2017.08.016


5. SEQUENCE INTEGRATION IN K-NN RECOMMENDER SYSTEMS

Algorithm 3 Longest Common Subsequence for Recommender Systems

1: procedure LCS RecSys(u, v, f, δ) . The LCS of users u and v applying
transformation f

2: (x, y)← (f(u), f(v)) . String x contains m symbols
3: L[0 · · ·m, 0 · · ·n]← 0
4: for i← 1,m do
5: for j ← 1, n do
6: if match(xi, yj , δ) then
7: L[i, j]← L[i− 1, j − 1] + 1 . There is a δ-matching
8: else
9: L[i, j]← max(L[i, j − 1], L[i− 1, j])

10: end if
11: end for
12: end for
13: return L[m,n]
14: end procedure

5.1 Sequential similarity metric

In Section 2.2.2 we presented some of the most popular similarities that are applied
to the neighborhood-based recommender systems: cosine similarity (Equation 2.9),
Pearson correlation (Equation 2.10), and Jaccard index (Equation 2.11). However,
as we observe in those equations, these similarities work with the interactions between
users and items as if they were time-agnostic sets. Even though in Section 2.3 we showed
some examples of similarities incorporating temporal information (Campos et al., 2014,
Ding and Li, 2005), we believe that more grounded functions that exploit this type
of information could be defined, in particular, sequential similarities to be used in
neighborhood-based algorithms. In fact, there are several sequential metrics that can
be adapted to be used for this purpose (e.g. Levenshtein, Jaro-Winkler, Hamming,
etc.). We believe the Longest Common Subsequence (LCS), already introduced in
Section 4.4 to define a sequential evaluation metric, has a great potential to be used
in a neighborhood-based algorithm. To do so, it is necessary to define a method to
represent the consumed items into sequences and also a function that identifies when
two characters are the same (in order to detect a match in those sequences).

In Algorithm 3 we present the adaptation of the LCS algorithm (shown in Algo-
rithm 1) to be used as a similarity metric between two users. As the reader may
observe, there are two major changes with respect to the original formulation shown in
Algorithm 1, where we used this algorithm to compare the recommended items to the
target user with respect to those items consumed in the test set. Firstly, the algorithm
receives a function f that transforms both users into sequences and a δ-matching that
allows us to define when two symbols of the alphabet are considered equal. This second
modification lets us to be more flexible when comparing the elements of the sequences
(if the difference between the elements is lower that δ then the elements are considered
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equal).

The transformation function f deserves special attention as depending on the in-
formation we use to represent the users, we may obtain different sequences and hence
different value in the LCS metric. Assuming that a user can be modeled as a set of
interactions (items and ratings), we describe the following steps to generate a sequence
in a generic way:

1. Extend the associated information about the items interacted by the
user. Formally, we need a function that returns a set of elements associated to
every item. That is, a function of the form: e : I×R→ I× Tk, where R denotes
the set of ratings, k > 0 denotes the number of those elements that function e is
able to associate with every item, and T represents those elements, modeled in
general as tuples (item and rating). Note that a pure CF approach is derived from
this formulation if we use the identity function in this step: eir(i, r) = (i, {i, r}).
Nevertheless, content-based methods would exploit the feature space so that every
item is linked to their corresponding features: eAr(i, r) = (i, {Aj(i), r}j), where
the feature space A could be genres, directors, or actors in the movie domain or
text features in news recommendation.

2. Represent the tuples created as interpretable symbols by the LCS algo-
rithm. Here, we propose to use t : I×Tk → I×Zk, where a proper transformation
between T and Z (the set of integer numbers) is required. The reason why we
use the set of integer numbers instead of strings or other space is that they are
computationally more affordable. As a simple example, associated to the func-
tion eir we define the function tir(i, r) = 10 · id(i) + r in such a way that it is
also possible to recover the original elements of the tuple (the item identifier and
the corresponding rating of the interaction) given its output (bijective function).
The factor of 10 that multiplies the id allows us to separate the item id and the
rating while combining them into a single symbol; obviously, this factor depends
on the rating interval. Thus, if ratings are, for example, between 1 and 20, the
transformation function should be t′ir(i, r) = 100 · id(i) + r in order to make that
recovery possible – i.e., to have an actual bijection.

3. Arrange the symbols into a sequence. In string matching, the ordering of
the sequence is important, and it is an aspect that the LCS algorithm is able to
exploit. As a first approach, this step can be simplified to just sort the items
in the sequence according to their item id, although it is worth noting that any
other global ordering of the items would be equivalent to this one, for example, by
item popularity. However, in order to fully exploit the temporal information, it
would be more useful to sort the user sequences following a temporal order. This
allows the LCS-based similarity to be even more flexible, as we could give more
importance to the matchings that have occurred more recently. The LCS-based
similarities used in this chapter will order the sequences in a temporal manner.
In particular, the sequence arranging function proposed will take several pairs
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of items and tuples generated as described before and will output a sequence of
symbols, prepared to be processed by the LCS algorithm.

Thus, the sequence generation function f could be seen as a composition of the
three functions presented at each step: f = s ◦ t ◦ e.

To clarify the process of sequence generation explained before, let us present an ex-
ample considering a dataset based on movies, which usually have some content informa-
tion associated like actors, directors, or genres. We have the movie Star Wars IV, with
id 1, and a user u who has rated it with a 5 as rating value. If we use function egr to ex-
tend this information based on genres – i.e., A = G and then egr(i, r) = (i, {Gj(i), r}j) –
we could find that item 1 has two genres: Sci-Fi (id 7) and Adventure (id 10). According
to the definition of egr, this function leads to the tuple (1, {{Sci-Fi, 5}, {Adventure, 5}}).
After that, we would represent these tuples as useful symbols for the sequence similarity
function (LCS, in our case) using a reasonable tgr function. By taking a similar one to
tir, we could transform each genre into its id and use that value in combination with
its associated rating, creating the tuple (1, {75, 105}). Finally, to generate the sequence
corresponding to this user, we simply take the tuples associated to the only item this
user has rated: (75, 105). However, if the user had also rated The Godfather after
Star Wars IV (with a rating value of 4 and whose id is 15), then the output would be
slightly different. This movie has Drama (id 2) and Crime (id 6) as genres. The tuple
related to this second movie would be (following the same steps as before, i.e., using
tgr ◦ egr): (15, {24, 64}). The final step would produce the sequence (75, 105, 24, 64),
since the timestamp of Star Wars is lower than the one for The Godfather. Note that if
eir and tir functions are used, that is, pure collaborative filtering information is being
exploited, then each item will only generate one tuple and the final generated sequence
will be shorter: (15, 154).

Nevertheless, as we can derive from Algorithm 3, the LCS algorithm obtains values
in the [0,min(|f(u)|, |f(v)|)] interval. However, classic similarity metrics in recom-
mendation are usually normalized in the range [−1, 1] or [0, 1]. In line with the same
rationale, we propose to use the following repetition normalizations for our LCS-based
similarity metric:

simf,δ
1 (u, v) = LCS Recsys(u, v, f, δ) (5.1)

simf,δ
2 (u, v) =

simf,δ
1 (u, v)2

|f(u)| · |f(v)|
(5.2)

simf,δ
3 (u, v) =

2 · simf,δ
1 (u, v)

|f(u)|+ |f(v)|
(5.3)

simf,δ
4 (u, v) =

simf,δ
1 (u, v)

max (|f(u)|, |f(v)|)
(5.4)

simf,δ
5 (u, v) =

simf,δ
1 (u, v)

min (|f(u)|, |f(v)|)
(5.5)
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As these normalizations include the lengths of the sequences in the denominator as
penalization, they tend to favor longer subsequences found inside short sequences, while
producing values in the [0, 1]. These normalization functions were also used in de la
Rosa et al. (2005) in the context of data cleaning and processing by comparing groups
of string identifiers.

5.2 Sequential user-based k-NN recommenders

5.2.1 Background

As mentioned in the previous section, the traditional definition of user-based k-NN
recommenders does not incorporate nor temporal nor sequential information. Both
types of information have proven to be of vital importance to model and understand the
evolution of the user behavior and have been applied in a large number of algorithms.
Although in the previous section we mentioned how to incorporate sequentiality in a
similarity metric, we have not yet discussed in depth how to add these dimensions in
the formulation of neighborhood-based algorithms.

Let us now focus on the TD approaches shown in Equations 2.19 and 2.20 since they
have demonstrated good performance in the past. Even if these methods incorporate
temporal information in an intuitive way, they also have some limitations. Firstly, it
is not clear where the timestamp used in that formulation is captured, which affects
the reproducibility of the model and, secondly, both formulations are oriented to a
rating-prediction task where the objective is to minimize the error of the recommender.
However, as we have explained in Section 2.2, Recommender Systems community is cur-
rently focused in proposing approaches oriented to the ranking task, that is, providing
a list of items to the user, not a rating prediction to a specific item (Steck, 2013).

In order to address these concerns, we propose a reformulation of this time-aware
similarity metric to be used in a user-based k-NN recommender. Thus, bringing ideas
from Equations 2.19 and 2.20, we propose the following formulation of a k-NN using a
time-aware user similarity:

r̂ui =
∑
v∈Nu

sim(u, v) · rvi · fc(tLu , tv,i) (5.6)

where tLu is the timestamp of the last rating of user u in the training set, tv,i is the
time when user v rated item i, and fc(·, ·) is our soften time decay function. This
function, as the previous formulations, is based on an exponential function, which, by
default, has the following form: fc(t1, t2) = e−λ·diff(t1,t2), where diff(t1, t2) indicates the
difference in the same time units as λ (recall that λ is the decay rate and is usually
defined in days by default) between two timestamps (i.e., t1 − t2).

However, we decided to apply a soften value when diff(t1, t2) < 0 and
abs(diff(t1, t2)) > 1

λ · c, where we force diff(t1, t2) = − 1
λ · c. This bounds the time decay

factor to a value of ec, to avoid large values when the neighbor rated the item further
away in the future with respect to the last interaction of the target user. Hence, factor
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c, allows us to control up to which point in the future (c times the period T0 = λ−1) all
the neighbor interactions will have the same weight. It is worth remembering that the
similarity used between users is configurable and we could use both cosine, Pearson, or
even an LCS-based similarity in which the sequences are ordered temporarily.

5.2.2 Our approach

Our main contribution in this chapter regarding the neighborhood-based recommender
systems is to combine ranking fusion techniques used in the Information Retrieval
area with neighborhood-based algorithms. Thus, bringing ideas from Aggregated
Search (Dwork et al., 2001, Renda and Straccia, 2003), we will denote each neigh-
bor as a judge (in Information Retrieval, these judges normally refer to different search
engines) and will give a complete ordering of all the items to be ranked. We will refer
as τ to the candidate list of each neighbor and the final fused ranking will be denoted
as τ̂ . This ranking aggregation process can be divided in two different steps: 1) nor-
malization, where the scores of the ranks of τ are normalized into a common scale wτ (i)
for each item i, and 2) combination, where the normalized weights wτ (i) are combined
into a fused score for each item.

There are several methods for each of these stages. In this sense, Renda and Strac-
cia (2003) conducted an in-depth review of the most prominent ones. Interestingly, by
taking the identity normalizer for the scores (wτ (i) = τ(i)) and the so-called Comb-
SUM combiner (where the normalized weights are simply added for each item) with a
preference weight for each ranking equals to the similarity between the neighbor and
the target user, we obtain a linear combination of the normalized weights, which is
equivalent to the user k-NN recommender formulation. In fact, when we take into ac-
count the ratings of the neighbors, the “score” of user u to item i using CombSUM and
the identity normalizer produces the formulation in Equation 2.8. In this situation,
each ranking τ is composed of the item-rating pairs rated by a particular neighbor,
excluding, as a standard practice in the community, those items already rated by the
target user in training. Further extensions and ad-hoc modifications could be made to
these normalizers and combiners so that other formulations of this problem – such as
mean-centering or Z-score normalization (Ning et al., 2015) – are obtained.

Once we have reformulated the problem of neighborhood-based recommendation as
a ranking fusion technique, we now describe how we can incorporate temporal and/or
sequential information in the process. Our main idea is that each neighbor will find
her last common interaction with respect to the target user and will create a ranking
of her candidate alternatives iterating around that item, taking into account the order
(sequence) in which she rated each of those alternatives. We are aware that a major
drawback of this approach is that it does not take into account the time at which
the interactions occurred, so it could be that you end up recommending items from
a neighbor who has not been active in the system for a long time. Nevertheless, we
believe that this disadvantage can be easily mitigated by incorporating additional filters
to eliminate this type of users. Note, however, that the sequential aspect is considered
twice in this model: it is used to involve the target user (through the last common
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interaction) in setting the actual moment (context) of the recommendation and, at the
same time, to exploit the temporal sequence (order) in which the neighbor interacted
with the items.

Hence we now define our model called backward-forward (BF), as it first computes
the last common interaction between the users and then makes use of different strate-
gies to compute the order of the neighbors rankings. After that, a single ranking is
generated by normalizing and combining all the rankings generated by the neighbors.
For normalizing the scores, the most common strategies are the default normalization
(Def), where the item value is the same as its score, the standard normalization (Std),
that applies the min-max normalization to every item in the recommended list and
the rank-sim normalization (Rks), in which the item score is inversely proportional to
its position in the ranking. On the other hand, for the combination step the most
extended approach, as mentioned earlier, is the CombSUM combiner that computes
a weighted average of the normalized weights of each item using an additional prefer-
ence weight for each ranking. Other approaches such as CombMIN, CombMAX, and
CombMNZ (where the minimum, maximum, and the number of nonzero values is used
in the combination step) have been proposed, but we will not use them in our approach.

Thus, the first step of the BF approach is computing the last common interaction
between two users, that can be represented as follows:

n∗(u; v) = max
k

(
ik ∈ Itu : ik ∈ Itv

)
(5.7)

where Itu are the items rated by user u ordered by timestamp in ascending order:

Itu = sort (Iu, t) =
(
itk
)|Iu|
k=1

, with t
(
itk
)
< t

(
itk+1

)
(5.8)

It is important to note that the last common interaction represented in Equation 5.7
is not symmetrical, that is, n∗(u; v) 6= n∗(v;u), since it looks for the preferences of
the first user in those of the second user. Thus, we propose four different strategies to
generate a list of candidate items from each neighbor using the last common interaction
with respect to the target user: 1) take the m items that have been rated after that
common interaction (L+

m(v;u)) (b) take the m items that have been rated before that
common interaction (L−m(v;u)) (c) take the m items that have been rated before and
after that last common interaction alternating them (Lam(v;u)) (d) take the m items
that have been rated after the last common interaction first and concatenate them the
m that have been rated before (L±m(v;u)). Formally:

Let It(v;u) = sort (Iv − Iu, t)

L+
m(v;u) =

(
itk
)n∗(v;u)+m

n∗(v;u)
, itk ∈ It(v;u) (5.9)

L−m(v;u) =
(
itk
)n∗(v;u)

n∗(v;u)−m , i
t
k ∈ It(v;u) (5.10)

Lam(v;u) =
(
atk, b

t
k

)max(|L+
m(v;u)|,|L−m(v;u)|)

k=1
atk ∈ L+

m(v;u), btk ∈ L−m(v;u) (5.11)

L±m(v;u) =
(
L+
m(v;u), L−m(v;u)

)
(5.12)
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Figure 5.1: Example of user interactions in the movie domain. Items denoted with an
asterisk (∗) and a yellow border correspond to the last common interaction between u and
each neighbor, those with a − symbol as superscript and a red border are included in
L−

2 (v;u), whereas those with a + as superscript and a green border in L+
2 (v;u).

Therefore, we generate a list L(v;u) for each neighbor with all the candidate items
from that neighbor. This candidate list will be later normalized and combined, to
produce a single ranking, containing the recommendations for the target user u. Since
these items are related to the last interactions between users u and v, they can be
interpreted as “the recent difference” in interaction history between these users. It is
important to note that any similarity can be used in such scheme when obtaining the
last common interaction between the users or generating the lists with candidate items,
since these two steps do not depend on the user similarity, although the neighbors might
be different or the weights used at the combination step if the similarity changes.

In summary, when using this formalization, we obtain a neighborhood-based rec-
ommendation model equivalent to classical formulations that can further incorporate
the temporal information under different models.

5.2.3 Toy example

Finally, let us illustrate the whole process with an example shown in Figure 5.1 using
the movie domain. For the sake of simplicity, we do not include the user’s rating, so the
reader should assume that all sequences correspond to items that the user has equally
liked. In the movie domain, the temporal component is usually determining, since
newer movies tend to be consumed more often than older ones. In our example, user u
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is the target user, and we represent three neighbors v1, v2, and v3, where v1 and v3 have
three items in common whereas v2 shares four items with the target user. According to
these interactions, the candidate items generated with respect to the different strategies
presented before (limited to size 2) will be (considering that n∗(v1;u) = i9, n

∗(v2;u) =
i10, n

∗(v3;u) = i7):

L+
2 (v1;u) = (i14, i13), L−2 (v1;u) = (i6, i2), L±1,1(v1;u) = (i14, i6), La1,1(v1;u) = (i14, i6)

L+
2 (v2;u) = (i12, i13), L−2 (v2;u) = (i2), L±1,1(v2;u) = (i12, i2), La1,1(v2;u) = (i12, i2)

L+
2 (v3;u) = (i12, i15), L−2 (v3;u) = (i5, i6), L±1,1(v3;u) = (i12, i5), La1,1(v3;u) = (i12, i5)

Note that in this case, as we are selecting only two items, Lam and L±m are equivalent.
Suppose now that items i12, i13, and i14 are in the test set (as mentioned before,
newer items are more likely to be chosen by user u). A standard neighborhood-based
recommender (that does not consider any temporal aspect of the data) would probably
recommend item i2 whereas in our approach, we are favoring more recent items, like
the movie i12. In fact, i2 only appears in our method once for strategy L± and twice
for L−. Moreover, we believe that moving forward from the last common interaction is
more useful in terms of recommendation performance – especially for novelty purposes –
than moving backwards, this is evidenced by the strategies L+ and L± that recommend
i13 and i14; because of this, we ignore the L± strategy, since in some preliminary
experiments we found it was equivalent to L+, due to very sparse data.

5.3 Experiments

5.3.1 Datasets

In this chapter, we experiment with two datasets from different domains where all
the provided ratings have been timestamped: Foursquare and MovieTweetings. The
Foursquare dataset, as we have explained in previous chapters, comes from the tourism
domain (the items in this case are touristic venues or Point-of-Interest, as they are
usually denoted). This dataset was obtained from He and McAuley (2016), the authors
that provided the source code for MC, FPMC and Fossil. We decided to use this dataset
here because we wanted to test both our models and the state-of-the-art algorithms
using the dataset where the Fossil algorithm was proposed, as the author claimed that
their model performed very well on this dataset. The Foursquare dataset, as explained
before, contains implicit feedback and we only have information about whether a user
visited a specific venue. MovieTweetings, on the contrary is a movie dataset where
IMDb ratings have been collected from Twitter (Dooms et al., 2016). For Movie-
Tweetings, the users have indicated their tastes with different values (0 to 10), low
values representing bad opinions about the items. Besides, MovieTweetings is a dataset
that is constantly updated, we decided to take a specific snapshot of approximately
600K ratings.
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Table 5.1: Statistics from the datasets used in the experiments.

Dataset Users Items Ratings Density Scale Unique times Time interval

Foursquare 16k 3k 105k 0.205% 1 102k Dec 2011 - Apr 2012
MovieTweetings 15k 8k 519k 0.399% 0-10 517k Feb 2013 - Apr 2017

For both datasets, we have filtered the original data by removing all the repeated
preferences, taking into account only the newest preference when a user rated the same
item more than once. This processing only had an effect on Foursquare, since Movie-
Tweetings does not include repetitions. Additionally, we performed a k-core in both
datasets, this means that we removed every user or item that did not have at least k
preferences; in this case, we used k = 5 in MovieTweetings and Foursquare datasets.
The final statistics of the processed datasets are shown in Table 5.1.

We would like to draw the attention on the difficulty of obtaining datasets with
realistic temporal information. In some preliminary analyses, we discarded Movielens
(one of the most popular datasets in the area but where some researchers alerted
about its non-realistic timestamps (Harper and Konstan, 2016)) and Amazon reviews
datasets1, because too many items were consumed at the same time (in the exact
same second) by a user, which does not make sense for either performing a temporal
evaluation or running a time-aware recommendation algorithm. The datasets used
in this chapter are not perfect either (see column ’Unique times’ in Table 5.1 which,
ideally, should be close to the number of interactions in every case), but are the best
ones we could find with a large number of users and items and a decent number of
interactions.

5.3.2 Evaluation methodology

Since we deal with temporal information and its effect on Recommender Systems,
we should use time-aware evaluation methodologies such as the ones introduced in
Section 4.1. In this chapter, we use a time-dependent rating order (the timestamps
of the test split for each user occur after those of the training split) in two evaluation
methodologies: one with a user-centered base set and a fixed size condition (the last 2
actions of each user with at least 6 actions are included in the test split) and another
with a community-centered base set and a proportion-based size condition (the same
timestamp is used for all the users, in such a way that we retain the data corresponding
to the 20% of the most recent rating times for testing, and the rest for training).
Using the notation introduced in Chapter 2 (see Section 2.4.2), we refer to the first
configuration as temporal per user and the second as temporal system. There are
obvious differences between these two evaluation methodologies: whereas in temporal
system the test set is always (for every user) after the training set, in temporal per
user this may not be the case; besides, (almost) every user is included in the test set
of temporal per user but this is not the case for temporal system. Because of these

1Available here, http://jmcauley.ucsd.edu/data/amazon/.
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Figure 5.2: Rating distribution of the datasets for the temporal system split. Foursquare
(left), and MovieTweetings (right). The blue line represents the split of the training and
test sets.

features, the temporal system methodology represents better a real environment, where
there are some users that may not be active at some point, whereas with the temporal
per user evaluation we can analyze the recommendations for all the users, not only the
most active (or active in the last period when the dataset was collected) ones.

Furthermore, as in Chapter 4, we report the results obtained following the
TrainItems strategy to select the candidate items to be ranked by each algorithm;
that is, a ranking is generated for each user by predicting a score for every item that
has at least one interaction in the training set; as it is standard, we remove those items
already rated in training by the user from each candidate list (in a user basis). We then
compute classic ranking-based accuracy metrics (see Chapter 2) considering as relevant
every item rated at least with a 9 in the test split for MovieTweetings, whereas for
Foursquare every item in the user’s test set is considered as relevant. We present Preci-
sion (P), Recall (R) and nDCG for measuring the accuracy of the recommenders, EPC
for novelty, MIN for our time-aware novelty metric presented in Section 4.5.3, Gini and
IC for measuring diversity and finally the user coverage of the recommenders with UC
and UC-Rel. All metrics are reported using a cutoff of 5. In every case, higher values
means more accurate/fresh recommendations.

Unless stated otherwise, we report tuned versions of the recommendation algo-
rithms. This tuning has been performed by selecting the best configuration of each
algorithm by nDCG@5. Additionally, we show in Figure 5.2 the temporal evolution of
the rating distribution in both datasets for the temporal system methodology. Finally,
in Appendix A.1 we show the same experiments but finding the optimal parameters of
the recommenders using a validation set (best results again by nDCG@5).
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Table 5.2: Parameters used with the evaluated recommenders. VecC and SetJ stand for
VectorCosine and SetJaccard.

Recommender Parameters

Rnd None
Pop None

IB k={40, 60, 80, 100, 120}, sim={VecC, SetJ }
UB k={40, 60, 80, 100, 120}, sim={VecC, SetJ }

HKV Factors={10, 50, 100}, α={0.1, 1, 10}, λ={0.1, 1, 10}

BPRMF
Factors={10, 50, 100}, Iter=50, LearnRate=0.05, RegJ=RegU/10,
BiasReg={0, 0.5, 1}, RegU=RegI={0.0025, 0.001, 0.005, 0.01, 0.1}

TD k={40, 60, 80, 100, 120}, sim={VecC, SetJ }, λ={0.05, 0.1}

BFUB
k={40, 60, 80, 100, 120}, sim={VecC, SetJ }, L−m = L+

m={5, 10}, norm={ Def,
Std, Rks }, Wgt = {T,F}

BFsUB
k={40, 60, 80, 100, 120}, sim={sim1, sim2, sim3}, L−m = L+

m={5, 10}, norm={
Def, Std, Rks }, Wgt = {T,F}

MC K={5, 10, 20, 50}, λ={0.1, 0.2}
FPMC K={5, 10, 20, 50}, λ={0.1, 0.2}
Fossil K={5, 10, 20, 50}, λ={0.1, 0.2}, L={1, 2, 3}

Caser
L=2, T={1, 2}, Iter=30, bath=512, LearnRate=0.003, negSamples=3,
d={10, 50}, v=4, h={4, 16}, drop=0.5

Skyline None

5.3.3 Recommenders

In our experiments, we include a set of Recommender Systems that combine implemen-
tations provided in different libraries with our own code, as the experiments shown in
Chapter 4. These algorithms can be classified into non-personalized baselines, standard
collaborative filtering approaches, time-aware/sequential baselines, and our proposed
approaches. Most of the selected recommenders have already been shown in Section 4.5.

First, as non-personalized baselines, we report the random recommender (Rnd)
and the popularity recommender (Pop). Second, as standard CF methods, we use
the classical item-based (IB) and user-based (UB) k-NN recommenders, and the MF
recommender using ALS optimization (denoted as HKV (Hu et al., 2008)), as explained
in Section 2.2.2. We also include the BPRMF algorithm proposed in Rendle et al.
(2009). Third, we include as sequential recommenders the Fossil approach from He and
McAuley (2016), two algorithms based on Markov Chains (denoted as MC and FPMC)
from the same authors. We also consider Caser as a sequential recommender based on
neural networks proposed in Tang and Wang (2018).

Finally, we test the following combinations of our approaches (all of them imple-
mented on top of the RankSys framework): our adaptation of the temporal decay
method (TD, Equation 5.6) as an example of a time-aware similarity metric, and our
backward-forward approach using a standard k-NN similarity (BFUB) and a sequence-
aware similarity based on LCS (BFsUB). Despite the wide variety of parameters that
can be applied in our LCS-based similarity, we have decided to use a simple collabora-
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Table 5.3: Optimal parameters for MovieTweetings and Foursquare datasets used in
the experiments of this chapter. For each dataset, we report the best parameters of the
recommenders for each split (temporal system or temporal per user) according to nDCG@5.

MovieTweetings Foursquare

Rec System Per user System Per user

IB: k, sim 40, VecC 100, VecC 120, VecC 120, VecC
UB: k, sim 100, VecC 120, SetJ 120, SetJ 120, SetJ

HKV: k, α, λ 10, 10, 1 50, 1, 1 10, 10, 10 10, 10, 0.1
BPRMF: k, λu = λi, λ0 10, 0.0025, 1 100, 0.001, 1 50, 0.001, 0 100, 0.01, 1

TD: k, sim, λ 100, SetJ, 0.05 120, SetJ, 0.05 120, SetJ, 0.05 120, VecC, 0.05
BFUB: k, sim, L−m =
L+

m, norm, Wgt
120, SetJ, 5, Std, F 120, SetJ, 5, Std, T 120, SetJ, 10, Def, T 120, SetJ, 5, Def, T

BFsUB: k, sim, L−m
= L+

m, norm, Wgt
120, sim1, 5, Std, T 120, sim1, 10, Std, T 120, sim1, 10, Def, T 120, sim3, 5, Def, T

MC: k, λ 20, 0.1 50, 0.1 20, 0.1 10, 0.1
FPMC: k, λ 5, 0.1 5, 0.1 5, 0.1 5, 0.1
Fossil: k, λ, L 20, 0.1, 3 20, 0.1, 3 50, 0.1, 3 10, 0.1, 1
Caser: T, d, nh 2, 10, 16 2, 10, 4 2, 50, 4 2, 50, 4

tive similarity without taking ratings into account, ordering the sequences in ascending
temporal order (e.g., the function e will be ei). At the same time, for the BFsUB we
did not use any δ-matching. The parameters of the tested recommenders are shown in
Table 5.2 and the final parameters optimized at nDCG@5 are shown in Table 5.3.

5.3.4 Performance analysis: system temporal split

In Tables 5.4 and 5.5 we show the results obtained under the temporal system evaluation
methodology in the MovieTweetings and Foursquare datasets respectively.

Let us focus first on the relevance metrics, in particular, in the low results achieved in
this kind of metrics, especially in MovieTweetings. The main reason why this behavior
occurs is because we are using a high relevance threshold (we only consider as relevant
items those rated with a 9 or 10 in MovieTweetings). However, for Foursquare this is
not so critical since in that case we deal with implicit information, hence, all items in
the test set are relevant for the user, which is why these metrics obtain higher values,
i.e., around 0.2 and 0.18 in case of R and nDCG, respectively. Besides, since we have
performed a temporal system split, we may end up having users and items in the test set
that do not appear in the training data. Because of that, modeling user profiles under
these circumstances becomes a difficult task (as already discussed in the experiments
of Chapter 4).

Regarding the results, we observe the difference in performance of the Pop algorithm
in both datasets. While in Foursquare it is very competitive with respect to the rest
of the models, in MovieTweetings it is one of the worsts (after the Rnd recommender).
This, as mentioned throughout the thesis, may be due to the popularity bias, which may
be more pronounced in Foursquare as it has a higher sparsity than MovieTweetings.
In addition, it should be noted that in MovieTweetings not all items in the test set are
relevant (only those scored with a rating higher or equal 9), so this may be somewhat
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Table 5.4: Performance results on MovieTweetings dataset. Temporal system split (80%
ancient ratings to train, rest to test). In bold, the best recommender in each metric. Best
recommenders in nDCG@5.

Recommender P R nDCG EPC MIN Gini IC UC UC-Rel

Rnd 0.000 0.000 0.001 †0.996 0.410 †0.645 †0.949 †6,518 †4,962
RndCF 0.000 0.000 0.000 †0.996 0.411 0.600 0.900 5,118 3,704

Pop 0.004 0.003 0.003 0.853 0.207 0.001 0.006 †6,518 †4,962
PopCF 0.003 0.003 0.003 0.854 0.210 0.001 0.006 5,118 3,704

IB 0.009 0.010 0.010 0.914 0.585 0.012 0.126 5,117 3,703
UB 0.014 0.017 0.016 0.907 0.585 0.006 0.030 5,117 3,703

HKV 0.019 0.025 0.024 0.934 0.573 0.015 0.081 5,118 3,704
BPRMF 0.014 0.015 0.016 0.923 0.579 0.017 0.125 5,118 3,704

TD 0.019 0.024 0.023 0.916 0.697 0.006 0.053 5,117 3,703
BFUB 0.026 0.031 0.031 0.927 0.728 0.009 0.077 5,117 3,703
BFsUB 0.029 0.036 0.034 0.936 †0.828 0.007 0.076 5,117 3,703

MC 0.021 0.030 0.031 0.919 0.707 0.004 0.043 4,900 3,516
FPMC 0.015 0.018 0.020 0.913 0.634 0.004 0.040 4,900 3,516
Fossil 0.020 0.027 0.025 0.915 0.647 0.003 0.028 4,900 3,516
Caser 0.020 0.028 0.026 0.939 0.771 0.015 0.129 5,118 3,704

Skyline †0.520 0.630 0.806 0.977 0.588 0.108 0.295 3,545 3,545
SkylineCF 0.494 †0.644 †0.812 0.977 0.616 0.103 0.251 2,585 2,585

detrimental to this recommender.

With respect to the rest of the recommenders, we observe some interesting results.
First, we can see that the IB algorithm is the worst in MovieTweetings after Pop and
Rnd, while in the Foursquare dataset it outperforms other recommenders like MC,
FPMC, or BPRMF. However, in both datasets, IB always obtains a worse performance
than UB. This behavior was observed in the previous chapter, where algorithms based
on user-based similarity obtained better results than those based on item-based simi-
larity. However, in the case of the pure user-based algorithm, we can also see how TD
outperforms it in MovieTweetings, suggesting that in temporal contexts with realistic
timestamps (if they have enough data), it might be crucial to incorporate the tempo-
ral information in the recommendations. On the other hand, in the Foursquare the
performance of both TD and UB is practically the same.

It is surprising that some of the sequential recommenders (MC, FPMC, and Fossil)
do not produce good results in any of the datasets. In fact, the MC recommender
outperforms Fossil in MovieTweetings, and although in Foursquare the performance
of Fossil is clearly the best one when compared against MC and FPMC (as reported
in the original paper), its performance is lower than the UB. One possible reason of
such performance from Fossil is that, in the original paper (He and McAuley, 2016),
no ranking-based accuracy metrics were tested, only the AUC metric was used, the
same metric these algorithms aim to optimize; moreover, they did not use any eval-
uation threshold in their datasets, so that every item in the test set was considered
relevant. Besides, they focused on predicting the next item to consume, as they left
for testing the recommender only the last item rated by the user in the dataset. At
the same time, state-of-the-art recommenders such as nearest-neighbors were ignored
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Table 5.5: Performance results on Foursquare dataset. Temporal system split (80%
ancient ratings to train, rest to test). In bold, the best recommender in each metric. Best
recommenders in nDCG@5.

Recommender P R nDCG EPC MIN Gini IC UC UC-Rel

Rnd 0.001 0.002 0.001 †0.998 0.615 0.847 †1.000 †9,217 †9,217
RndCF 0.001 0.001 0.001 †0.998 0.612 †0.854 †1.000 9,130 9,130

Pop 0.070 0.181 0.130 0.879 0.515 0.001 0.004 †9,217 †9,217
PopCF 0.069 0.182 0.130 0.879 0.515 0.001 0.004 9,130 9,130

IB 0.071 0.200 0.155 0.952 0.613 0.177 0.828 9,130 9,130
UB 0.081 0.214 0.173 0.929 0.573 0.022 0.293 9,130 9,130

HKV 0.071 0.185 0.154 0.949 0.585 0.012 0.029 9,130 9,130
BPRMF 0.070 0.187 0.146 0.886 0.511 0.003 0.071 9,130 9,130

TD 0.081 0.211 0.170 0.929 0.582 0.023 0.307 9,130 9,130
BFUB 0.081 0.214 0.173 0.929 0.573 0.022 0.293 9,130 9,130
BFsUB 0.083 0.219 0.174 0.921 0.569 0.018 0.281 9,130 9,130

MC 0.064 0.172 0.133 0.945 0.624 0.027 0.269 8,909 8,909
FPMC 0.066 0.180 0.133 0.935 0.608 0.016 0.196 8,909 8,909
Fossil 0.078 0.206 0.163 0.938 0.624 0.012 0.131 8,909 8,909
Caser 0.079 0.208 0.170 0.929 0.610 0.028 0.301 9,130 9,130

Skyline †0.441 0.988 †0.998 0.960 †0.671 0.163 0.577 9,184 9,184
SkylineCF 0.436 †0.989 †0.998 0.960 0.670 0.161 0.573 9,097 9,097

in the experimental comparison in that paper. Similarly, Caser does not perform as
well as in the original paper (Tang and Wang, 2018). We hypothesize that we have
not replicated those positive results mostly because the authors performed a heavy
pruning of the dataset– removing all the cold-start users (those with less than 15 or
10 interactions, depending on the dataset) – and they did not include more traditional
recommenders (such as k-NN or MF) which are very competitive in our experiments.
In any case, sequential recommenders remain competitive, even beating other baselines
such as IB, UB, and BPRMF in MovieTweetings; and HKV and BPRMF in Foursquare.
In fact, Caser and MC show the best performance among the sequential baselines in
MovieTweetings, whereas Caser and Fossil obtain the best results in Foursquare.

Let us analyze the performance of our sequential-based k-NN. As aforementioned,
BFsUB refers to our backward-forward proposal with a sequential similarity (based
on LCS) and BFUB refers to our backward-forward proposal with a classic neighbor
similarity (VecC or SetJ). As we can see in the two datasets with this configuration, they
are the best ones in terms of accuracy, being the BFsUB the best among them. This
is an interesting conclusion because it demonstrates the usefulness of incorporating
temporal and/or sequential information in classical models, being able to overcome
other more complex algorithms in the area. Furthermore, although there are many
parameters that can be configured in matrix factorization or neural network proposals,
it should be noted that these parameters are sometimes difficult to justify, that is to
say, that sometimes it is not clear why modifying some parameters of regularization
or latent factors can improve or worsen the performance of some of the algorithms,
whereas in our proposal it is relatively simple to explain the effect that each one of
the parameters has in the final model. Hence, we can conclude that using temporal
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information in a recommender when performing a system temporal split improves the
ranking quality.

In terms of temporal novelty (freshness) we notice some interesting patterns. First,
we see that in MovieTweetings dataset, Caser, BFsUB, and BFUB obtain better results
than the rest of the recommenders. This is an expected result since these methods give
more importance to the items that are closer to the test split or to the last interacted
items by the neighbors, hence, it is more likely that these recommendations are more
temporally novel than those from time-agnostic approaches. Nevertheless it is also rel-
evant that this effect does not happen in Foursquare, where most of the recommenders
achieve a comparable level of the freshness metric MIN. This could be attributed to
the fact that the timespan in this dataset is rather short (less than a year), whereas
in the other dataset many years of interactions are available, so the temporal patterns
that we may be learning and evaluating upon in Foursquare may not be discriminating
enough. Besides, as we can see in Figure 5.2, the rating distribution in Foursquare is
less standard than the one in MovieTweetings.

Finally, regarding the user coverage of the recommenders, we find interesting results.
First of all, as always, the Pop and Rnd recommenders have full coverage. In this case,
we can also observe in the MovieTweetings dataset that there is a large number of users
who do not have any relevant item in test (as shown by the Skyline coverage). This
is due to the sum of two factors, the relevance threshold (9 for MovieTweetings) and
the fact that since it is a system split, there may be users who do not appear in the
training set. However, in both datasets it can be seen how our sequential proposals do
not lose coverage in the recommendations produced.

5.3.5 Performance analysis: per user temporal split

Let us now analyze the results obtained when using the temporal per user split. Ta-
bles 5.6 and 5.7 show the performance of the MovieTweetings and the Foursquare
datasets. As we can observe, the performance of the recommenders in general is higher
than the previous results. This is because under this configuration the test set is only
formed by the last 2 interactions of the users, so the training set has more information
than in the temporal system configuration.

Regarding the behavior of the recommendation approaches, we observe some situ-
ations that are very different to what we found using the temporal system split. IB
does not perform as bad as before, in fact, they are better or at the same level than
sequential recommenders. Interestingly, the baselines based on sequences (MC, FPMC,
and Fossil) do not achieve as good results as it should be expected, even though this
evaluation methodology is closer to the one presented in the original paper (He and
McAuley, 2016); however, as discussed before, we should consider that in that paper
the authors reported results based on the AUC metric whereas we are evaluating with
other ranking-based accuracy metrics and against other baselines. In the Foursquare
dataset, the performance of Fossil is better than other state-of-the-art algorithms, al-
though MC, again, is the best performing sequential baseline in MovieTweetings, being
able to beat Fossil.
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Table 5.6: Performance results on MovieTweetings dataset. Temporal per user split (last
2 actions for every user with at least 6 interacions to the test set). In bold, the best
recommender in each metric. Best recommenders in nDCG@5.

Recommender P R nDCG EPC MIN Gini IC UC UC-Rel

Rnd 0.000 0.001 0.000 †0.996 0.383 †0.722 †0.980 †13,860 †6,873
RndCF 0.000 0.000 0.000 †0.996 0.383 0.721 †0.980 †13,860 †6,873

Pop 0.008 0.034 0.024 0.870 0.159 0.001 0.005 †13,860 †6,873
PopCF 0.008 0.034 0.024 0.870 0.159 0.001 0.005 †13,860 †6,873

IB 0.019 0.073 0.050 0.919 0.402 0.018 0.185 †13,860 †6,873
UB 0.020 0.072 0.049 0.910 0.360 0.007 0.038 †13,860 †6,873

HKV 0.020 0.076 0.050 0.934 0.367 0.019 0.075 †13,860 †6,873
BPRMF 0.014 0.054 0.037 0.933 0.363 0.039 0.218 †13,860 †6,873

TD 0.030 0.116 0.081 0.916 0.451 0.009 0.077 †13,860 †6,873
BFUB 0.027 0.102 0.070 0.918 0.424 0.010 0.054 †13,860 †6,873
BFsUB 0.040 0.155 0.111 0.928 0.518 0.012 0.086 †13,860 †6,873

MC 0.025 0.094 0.062 0.905 0.436 0.004 0.073 †13,860 †6,873
FPMC 0.015 0.057 0.038 0.913 0.365 0.006 0.065 †13,860 †6,873
Fossil 0.019 0.073 0.050 0.909 0.386 0.004 0.045 †13,860 †6,873
Caser 0.031 0.120 0.083 0.928 0.483 0.019 0.158 †13,860 †6,873

Skyline †0.269 †1.000 †1.000 0.962 †0.525 0.092 0.260 6,873 †6,873
SkylineCF †0.269 †1.000 †1.000 0.962 †0.525 0.092 0.260 6,873 †6,873

We now note that one aspect where both evaluation methodologies agree on is that
the proposed time-aware and sequential-aware recommenders are very competitive in
terms of ranking-based accuracy metrics. Here, we observe this is especially clear in
MovieTweetings, where time-agnostic recommenders obtain very bad results; in fact,
our proposed approaches (BFUB, BFsUB) achieve the highest values, although some-
times BFUB obtains a worse performance than TD. Hence, we conclude that using
temporal information in a recommender when performing a temporal per user split
does not necessarily improves the ranking quality but it helps achieving high perfor-
mance, mostly due to inconsistencies in the way this evaluation methodology deals with
the preference data.

When analyzing the temporal novelty of the recommendations, we observe an
strange behavior in the datasets. The BF approaches achieve lower values than in
the previous tables; this effect, despite being counter-intuitive, can be explained if we
bear in mind that this evaluation methodology is not considering a temporal system
for all users, so there can be users that stop being active at the beginning of the sys-
tem lifetime and their recommendations may be less fresh than those from other users.
The TD recommender is not affected by this, as in that case the method considers
the timestamp, not the specific interaction sequence of the user. Nevertheless, we note
that for the MovieTweetings dataset it is clear that the time-aware neighborhood rec-
ommenders are able to improve the performance of their corresponding time-agnostic
approaches in terms of both relevance and freshness.

Finally, regarding the user coverage in this split, we observe a similar behavior to
the one reported in the temporal system split. Nevertheless, in this case, the difference
between full coverage and coverage of relevant users in MovieTweetings dataset might
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Table 5.7: Performance results on Foursquare dataset. Temporal per user split (last
2 actions for every user with at least 6 interacions to the test set). In bold, the best
recommender in each metric. Best recommenders in nDCG@5.

Recommender P R nDCG EPC MIN Gini IC UC UC-Rel

Rnd 0.001 0.002 0.001 †0.998 0.540 0.849 †1.000 †8,986 †8,986
RndCF 0.001 0.002 0.002 †0.998 0.538 †0.858 †1.000 †8,986 †8,986

Pop 0.069 0.172 0.133 0.878 0.501 0.002 0.004 †8,986 †8,986
PopCF 0.069 0.172 0.133 0.878 0.501 0.002 0.004 †8,986 †8,986

IB 0.089 0.222 0.186 0.950 0.535 0.147 0.829 †8,986 †8,986
UB 0.091 0.228 0.191 0.926 0.516 0.014 0.169 †8,986 †8,986

HKV 0.081 0.202 0.174 0.948 0.503 0.014 0.032 †8,986 †8,986
BPRMF 0.075 0.188 0.157 0.947 0.515 0.056 0.489 †8,986 †8,986

TD 0.088 0.220 0.185 0.929 0.536 0.018 0.232 †8,986 †8,986
BFUB 0.091 0.228 0.192 0.927 0.515 0.014 0.176 †8,986 †8,986
BFsUB 0.091 0.227 0.190 0.925 0.515 0.018 0.259 †8,986 †8,986

MC 0.077 0.192 0.159 0.940 0.558 0.016 0.185 †8,986 †8,986
FPMC 0.074 0.185 0.145 0.933 0.554 0.009 0.149 †8,986 †8,986
Fossil 0.087 0.217 0.177 0.939 0.563 0.010 0.080 †8,986 †8,986
Caser 0.087 0.217 0.182 0.932 0.559 0.029 0.307 †8,986 †8,986

Skyline †0.400 †1.000 †1.000 0.960 †0.568 0.174 0.687 †8,986 †8,986
SkylineCF †0.400 †1.000 †1.000 0.960 †0.568 0.174 0.687 †8,986 †8,986

be more striking. This effect in the temporal per user split can only be due to the rele-
vance threshold, as all test users appear in the training set, showing us that sometimes
applying high relevance thresholds produces significant effects on the performance of
recommendations. However, as we observe, our BF proposals again have a coverage
equal to that reported by other collaborative algorithms, proving that, in fact, our
proposals obtain superior performance in both accuracy and freshness metrics, since
the coverage is comparable.

5.3.6 Sensitivity of backward-forward components

To better understand the behavior of the different components in the proposed neigh-
borhood BF approach, we show in Tables 5.8 (for the temporal system strategy) and 5.9
(for the temporal per user strategy) the results for the best configurations using a
sequence-aware similarity metric (LCS) against a classic neighborhood similarity (BF-
sUB vs BFUB) using our backward-forward approach. In these tables, we compare these
similarities when using the normalization strategies (Nrm) defined in Section 5.2.2 and
testing whether to consider the weight of the neighbors or not (column Wgt).

Based on these results, we observe that the performance achieved by the sequential
similarity is always the best one in terms of accuracy except in the case of Foursquare
with the temporal per user split, however, the differences are, in general, small. We
hypothesize that considering sequences by using the BF method is enough to capture
the user preferences, and by also using a sequential similarity we impose too many
constraints on the algorithm to find proper, valid neighbors.

Moreover, regarding the other components of the BF approach, we observe that
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Table 5.8: Performance results on MovieTweetings and Foursquare dataset. Temporal
system split (80% ancient ratings to train, rest to test). In bold, the best recommender in
each metric. Best recommenders in nDCG@5 in every combination of the BF approaches.

Recommender MovieTweetings Foursquare
Sim Norm Wgt nDCG EPC MIN IC nDCG EPC MIN IC

BFUB

Rks F 0.029 0.929 0.745 0.055 0.169 0.930 0.578 0.292
Rks T 0.029 0.929 0.744 0.058 0.170 0.931 0.580 0.354
Std F 0.031 0.927 0.728 0.077 0.169 0.929 0.572 0.285
Std T 0.030 0.930 0.721 0.104 0.173 0.929 0.573 0.293
Def F 0.030 0.924 0.739 0.042 0.169 0.929 0.572 0.285
Def T 0.030 0.924 0.738 0.043 0.173 0.929 0.573 0.293

BFsUB

Rks F 0.030 0.936 0.830 0.046 0.171 0.922 0.575 0.282
Rks T 0.030 0.936 0.832 0.050 0.173 0.925 0.577 0.307
Std F 0.034 0.936 0.824 0.076 0.171 0.921 0.568 0.272
Std T 0.034 0.936 0.828 0.076 0.174 0.921 0.569 0.281
Def F 0.032 0.937 0.835 0.052 0.171 0.921 0.568 0.272
Def T 0.032 0.936 0.833 0.050 0.174 0.921 0.569 0.281

usually the best results are obtained with the Standard (Std) aggregation function in
both evaluation strategies specially when using the BFsUB similarity, although other
functions do not really produce very different results; however, the use of the neighbor
similarity to weight her contribution is important and tends to obtain better results
when it is used (T), at least in Foursquare.

Finally, in terms of freshness and novelty and diversity we can see that, in general,
BFsUB reports higher results than BFUB, except for Foursquare using the system
evaluation methodology. For the freshness dimension, this is an expected behavior
since, when selecting the neighbors, we give more importance to the users that have
rated the same items in the same order, hence, the items that are recommended at the
end of the sequences are more likely to be retrieved. In the case of IC and EPC, we
are not able to observe major differences between the BFUB and BFsUB, but we can
see how, in general, for both approaches when the Std normalization is used, the item
coverage increases considerably. This may be due to the fact that with Std, as the
scores of the candidates are normalized, the differences between them are somewhat
reduced, allowing more different items to be included in the final rankings.

5.4 Discussion

In this chapter, we have addressed RG3: develop mechanisms to add sequentiality in
neighborhood-based recommender systems. Thus, we have presented two techniques for
incorporating sequentiality in neighborhood-based recommender systems. First, we
have shown how to adapt the Longest Common Subsequence (LCS) algorithm to be
used as a similarity metric between two users (extending the formulation presented in
Section 4.4 for comparing the recommended list and the test set of the user). Secondly,
we have proposed a new formulation for neighborhood-based recommendation algo-
rithms (named backward-forward) that allows to integrate the temporal and sequential

123



5. SEQUENCE INTEGRATION IN K-NN RECOMMENDER SYSTEMS

Table 5.9: Performance results on MovieTweetings and Foursquare dataset. Temporal
per user split (last 2 actions for every user with at least 6 interacions to the test set).
In bold, the best recommender in each metric. Best recommenders in nDCG@5 in every
combination of the BF approaches.

Recommender MovieTweetings Foursquare
Sim Norm Wgt nDCG EPC MIN IC nDCG EPC MIN IC

BFUB

Rks F 0.069 0.921 0.426 0.061 0.186 0.927 0.518 0.170
Rks T 0.069 0.923 0.431 0.074 0.189 0.928 0.519 0.197
Std F 0.062 0.927 0.416 0.127 0.187 0.927 0.515 0.158
Std T 0.060 0.931 0.415 0.162 0.192 0.927 0.515 0.176
Def F 0.070 0.918 0.425 0.049 0.187 0.927 0.515 0.158
Def T 0.070 0.918 0.424 0.054 0.192 0.927 0.515 0.176

BFsUB

Rks F 0.095 0.932 0.513 0.070 0.187 0.922 0.520 0.162
Rks T 0.095 0.933 0.516 0.079 0.189 0.924 0.522 0.186
Std F 0.110 0.930 0.520 0.091 0.187 0.922 0.517 0.140
Std T 0.111 0.928 0.518 0.086 0.190 0.925 0.515 0.259
Def F 0.106 0.927 0.517 0.056 0.187 0.922 0.517 0.140
Def T 0.106 0.927 0.517 0.058 0.190 0.925 0.515 0.259

dimensions based on rank fusion techniques seamlessly and successfully, according to
the reported experiments.

To evaluate the performance of our proposals, we have used two different temporal
splits. The first one is a community-centered split using proportional size (temporal
system); the second split performed a per user evaluation with a fixed size (temporal
per user). In our experiments we have again confirmed how the evaluation methodology
significantly affects the performance of the algorithms and how not always the most
complex models obtain the best results. In fact, in terms of accuracy, our models have
proven to be really competitive, although regarding other dimensions like novelty and
diversity our approaches are (sometimes) outperformed by other approaches. Never-
theless, even though our algorithms may have a lot of potential (not only in terms of
performance but also in terms of interpretability), we believe that further experiments
should be performed on more datasets and other domains to generalize these results.

In this regard, we would like to emphasize again the difficulty of finding datasets
with realistic temporal information. In fact, although the datasets used in these ex-
periments have more consistent timestamps than other classical ones (like Movielens),
they are still not perfect, since sometimes we have been able to observe how the same
user has consumed several items in the same moment of time. We consider this aspect
critical, since algorithms that build sequences by ordering the interactions in a tem-
poral way may be creating incorrect or meaningless sequences due to “ties” between
the timestamp values of the interactions. This is also a disadvantage of our proposals
and therefore, we would like to test how our algorithms work in other environments or
domains by performing online experiments.

Finally, it is worth mentioning that we have performed statistical tests (t-test, two
paired) between the proposed BFsUB in terms of nDCG@5 with respect to the rest
of the baselines. We could observe that the results are statistically significant (p-
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value < 0.05) in all cases except for the following: MC in the MovieTweetings dataset
(temporal system split), Caser and UB in the Foursquare dataset (temporal system
split) and UB and IB in the Foursquare dataset (temporal per user split). We decided
not to include these results in the tables for the sake of presentation, since the statistical
tests may change depending on the metric, the compared baseline, splitting strategy,
and dataset.
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6

Sequences in POI
recommendation

In Chapter 3 we described the Point-of-Interest recommendation problem and we
showed its main differences with respect to the classical recommendation formula-
tion, while in Chapter 5 we investigated how to incorporate sequentiality in k-NN
recommenders. In this chapter, we analyze the effect of sequences in Point-of-Interest
recommendation and see how to apply simple techniques based on reranking to rec-
ommend not only independent POIs but complete routes to the users. To do so, first,
in Section 6.1 we describe how to obtain routes from the check-ins available in LB-
SNs datasets. Then, in Section 6.2 we describe our reranking approaches to generate
routes for the users based on sequential techniques like Markov chains and the Longest
Common Subsequence algorithm. We make use of the sequential metrics proposed in
Section 4.4 and evaluate the performance of the recommenders in Section 6.3 and finally
in Section 6.4 we discuss about our reranking approaches.

The work presented in this chapter has been published in the following article:

• Pablo Sánchez and Alejandro Belloǵın. Applying reranking strategies to route
recommendation using sequence-aware evaluation. User Modeling and User-
Adapted Interaction, 30(4):659-725, 2020. DOI: https://doi.org/10.1007/

s11257-020-09258-4.

6.1 A general framework to build routes from check-in
datasets

When analyzing touristic routes, users follow travel sequences by visiting POIs that
are related to each other (e.g., it is common to visit POIs that are close to each
other) (Miller, 2004) and following a specific order, where the starting and end points
play an important role in the definition of such sequences. However, raw, public data
in check-in datasets are not presented in the form of routes or itineraries, but as (some-
what) independent interactions between users and POIs, where a user may check-in in
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the same venue more than once (as shown in Chapter 3). Hence, restoring these routes
is critical if we aim to learn, recommend, and evaluate interesting and useful travel
sequences – also called trips, itineraries, or trajectories in the literature – to the users.

With this goal in mind, we present here a framework that includes three steps tai-
lored to sequence-aware venue recommendation: preprocessing the data, building the
sequences, and filtering the sequences. In each step, we provide a description and so-
lutions to the inherent challenging issues, together with a list of the main parameters
that could be used when needed. For such a framework, we took inspiration from
works on session identification on web search and e-commerce (Jansen et al., 2007,
Spiliopoulou et al., 2003), due to the commonalities between a user session in those
domains and touristic sequences or routes. It should be noted, however, that exist-
ing datasets in those domains such as YOOCHOOSE (Ben-Shimon et al., 2015) and
Tmall (Liu et al., 2016b), tend to provide explicit sessions, something, at the moment,
not so common in the POI recommendation domain, which emphasizes the importance
of such a framework to build travel sequences. We have also integrated and formalized
ad-hoc strategies developed explicitly in the venue and route recommendation domains,
such as the works of Choudhury et al. (2010), Lim et al. (2015) and Lim et al. (2018),
even though they were proposed to work with data from Flickr (mostly pictures taken
at specific coordinates), not from standard LBSNs, without establishing a common
working methodology, hence, making it difficult to perform comparisons between these
different approaches.

Thus, by borrowing ideas from the aforementioned works, we now introduce a
generic framework to obtain meaningful routes or travel sequences from raw check-
in datasets; for a visual description of the different steps we show Figure 6.1, together
with Table 6.1 where we summarize the most important parameters considered in each
step.

Step 1: Preprocessing data:

• Description: remove users or items the system has very little information
about (e.g., cold-start) (Gunawardana and Shani, 2015). At the same time,
only a subset of the users or items might want to be considered (for instance,
only cultural venues – i.e., museums – or users identified as tourists) (Liu
et al., 2017). However, due to the characteristics of the domain, further anal-
yses could be performed on the data, analogous to those taken on e-commerce
or web search data, where noise in the interactions is also prevalent.

• Solution: identify and remove noisy check-ins, for example, too many check-
ins in the same instant, either intentionally or because of a bug in the ap-
plication that collects the data; also users could be classified as spam, e.g.,
due to explicit attacks (Burke et al., 2015) or because a not-human behavior
– bot – is identified, i.e., when users visit a high number of POIs in a short
time.

• Parameters to consider: minimum number of check-ins provided by users
and items to be included in the processed data (pu and pi), alternatively, a
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Figure 6.1: Visual description of the framework presented in Section 6.1 to obtain se-
quences from raw check-ins. Each number and color represent a different user in the system
and each shape depicts the type of the POI (museums, restaurants, hotels, etc.) a user
interacted with (not necessarily a different POI each time).

pc-core subset of the data might be computed by forcing that every user has
interacted with at least pc items and every item by at least pc users (Rendle
et al., 2010), a concept borrowed from graph theory to describe that in a
k-core (where k = pc) every node has at least k connections; additionally, a
reported strategy to distinguish bots from valid users consists of removing
those users that spent less than ptb seconds transitioning between venues a
given number of times (pib), see (Palumbo et al., 2017) for more details.

• Challenging issues: correctly identifying noisy data without removing too
much valid or useful information corresponding to users and items; besides,
reproducibility of the reported results could be virtually impossible if these
preprocessing steps are not properly explained (Said and Belloǵın, 2015,
Dacrema et al., 2019).

Step 2: Building sequences:

• Description: group those check-ins the user visited during the same route
in a sequence (as if it was an e-commerce or web session). In this domain,
temporal and geographical information are important signals that can be
exploited to identify different groups of check-ins.

• Solution: build different sequences of POIs ordering them by timestamp for
every user; for instance, if the corresponding venues are too far away from
each other or if the timespan is too long, they may belong to different routes,
since it is assumed that a user does not follow a given route indefinitely, as
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she has to rest and sleep (Choudhury et al., 2010, Lim et al., 2015). We
might also impose other constraints on the sequences such as a maximum
number of visited venues, traveled length, or time spent in the route. In fact,
these constraints could be defined based on dynamic thresholds according to
previous check-ins. In any case, these alternatives are left for future work,
due to the lack of large-scale datasets with ground truth information to test
these hypotheses.

• Parameters to consider: maximum temporal difference between two consec-
utive check-ins (bt) and maximum distance between two consecutive venues
(bg) to consider they belong to the same sequence.

• Challenging issues: building correct sequences, since they could be used to
train and evaluate the algorithms, hence, if these sequences are not realistic
(too long, too short, or the constraints imposed are too flexible or strict) the
whole recommendation process will be adulterated and invalid conclusions
might be reached.

Step 3: Filtering sequences:

• Description: identify and remove noisy or incomplete sequences, so that the
system could train with the most informative data regarding users and items.

• Solution: remove routes with very few check-ins and/or users having very
few sequences.

• Parameters to consider: minimum and maximum length (defined as the
number of check-ins) of each travel sequence (fm and fM ), minimum number
of routes linked to each user and item (fu and fi).

• Challenging issues: as in the first step, discriminating which sequences are
noisy is critical, but care must be taken to not define too strict constraints,
otherwise, we might produce data biased to specific types of users or items
(those with larger interactions, popular items, etc.) or very small datasets.

Once the raw check-in data has been processed according to this framework, we
would obtain tuples (u, i, t, snu), where snu denotes the n-th travel sequence associated to
user u, which would contain every item identified as belonging to the same route. Since
we still have the typical user-item tuples, we could even make use of classical splitting,
recommendation, and evaluation techniques, however, the unique advantage of such a
processed dataset would be to exploit the sequences in the rest of the stages.

First, regarding data splitting, and assuming we want a time-aware evaluation strat-
egy (Campos et al., 2014) where the test set should occur after the training set – at
least in a user basis –, we have the following possibilities: find a global timestamp where
all the sessions after that timestamp are included in the test set (temporal system), or
decide a number of sessions tn to be included in the test set and create the test split by
taking the last tn sessions of every user (temporal per user), the remaining information
would determine the training split (see Section 2.4.2 for more details). Additional con-
straints could be imposed on the length of the sessions in test (tl) and the minimum
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Table 6.1: Summary of the parameters used in the framework presented in Section 6.1.

Step Parameter Description

Preprocessing
data

pu, pi
Minimum number of check-ins a user (pu) or item (pi)
must have to be considered in the dataset

pc
All users and items must interact with pc items and users
respectively

ptb, p
i
b

Number of times (pib) a user has consumed consecutive
items spending less than a number of seconds (ptb)

Building
sequences

bt
Maximum temporal difference between two consecutive
check-ins to be considered in the same sequence

bg
Maximum distance between two consecutive check-ins to
be considered in the same sequence

Filtering
sequences

fm, fM
Minimum (fm) or maximum (fM ) length of each travel
sequence to be considered in the final dataset

fu, fi
Minimum number of sessions linked to each user (fu) or
item (fi) to be considered in the final dataset

number of sessions in training (ts) for a user to be included in the test set, so as to
have more control on the users being tested. In any case, it is important to consider
complete (not partial) sequences of the users in this process (Quadrana et al., 2018).

Then, at the recommendation stage, we could again use standard recommendation
approaches or ad-hoc techniques able to exploit the travel sequences. In both situations,
a decision should be made about the repetitions in the system since, contrary to classic
RS where the users consume an item only once, in this domain a user may check-
in in the same venue an unlimited number of times. Hence, at least the following
three possibilities open up: transform the data as in classic RS (only one interaction
between users and items remains in the data), aggregate the check-ins in an item basis,
so that the frequency could at least discriminate the most interesting venues for a
user from the rest, as done with implicit feedback data (Hu et al., 2008), or keep the
repeated interactions. It should be noted that only the last strategy allows to maintain
the original temporal information – i.e., check-in timestamps or their sequential order
available in the system.

Finally, the evaluation should be aware of the sequences followed by the user (in the
test set), especially when the recommendations provided are assumed to be visited in
the order returned by the algorithm, which is the main premise in this work. Because
of this, we will make use of the sequential metrics that we introduced in Section 4.4. In
the next section we present a general recommendation approach that aims to produce
meaningful routes or travel sequences from sequence-agnostic algorithms.
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6.2 A novel approach for sequential venue recommender
systems based on reranking

6.2.1 Item reranking in retrieval and recommendation

In the fields of Recommender Systems and Information Retrieval, some models fre-
quently tend to recover very similar items in top-n rankings. To solve this problem, re-
searchers have proposed different techniques to improve the diversity of the results (San-
tos et al., 2015, Castells et al., 2015). Among them, possibly the best known and most
popular approach is item reranking, a strategy whose objective is to improve the quality
of a list of recommended items by reordering them according to a topic diversification
model. Some articles related to this subject include the works of Ziegler et al. (2005),
where the authors propose a diversification approach by minimizing the intra-list sim-
ilarity between items, the methods to collect diverse results by exploiting past query
reformulation of the user’s query from Radlinski and Dumais (2006), and the proba-
bilistic xQuAD framework presented in Santos et al. (2010) where the authors analyze
the underlying aspects of a query q in the form of sub-queries in order to obtain more
diverse results.

At the same time, this issue has been adapted to and analyzed in the recommenda-
tion context; for instance, Vargas et al. (2011) introduced the notion of user intent as
a translation of the query intents from retrieval, this idea was extended in Wasilewski
and Hurley (2018), where the authors injected components based on user intents in
item similarity measures; from a different perspective, Kaminskas and Bridge (2017)
provided an experimental comparison where the same reranking framework is exploited
but on different criteria: diversity, serendipity, novelty, and coverage, this allows to ana-
lyze the cross-effects and correlations between these criteria on several recommendation
algorithms. More recently, these techniques have been used to reduce the popularity
bias (Abdollahpouri et al., 2019b), which is equivalent to promote novelty on the re-
sults, as it was already explored in some of the previous works, although the authors
here focused on maintaining acceptable levels of recommendation accuracy.

6.2.2 Using item reranking to generate sequences of venues

In this chapter, we aim to optimize different criteria, all of them related (based on
our hypotheses) to more realistic and useful routes or venue sequences from the user
perspective, such as shorter routes or popular transitions between venues (according to
the collaborative knowledge or to their attributes). With this goal in mind, we propose
to exploit item reranking techniques to create more meaningful sequences of items, in
particular, we propose to start from non-sequential recommender systems and generate
sequential recommendations, an approach, as far as we know, novel in the area of venue
and route recommendation.

Hence, based on the formulation from Kaminskas and Bridge (2017), we define an
objective function fobj(u, i, Ru) that is used in a greedy reranking process, where we
select the item i maximizing such function among the candidate items available at
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any moment – where the original set of candidate items come from a recommendation
algorithm –; then, that item is removed from the candidate items and concatenated
in the recommendation list Ru to be returned to the user. As stated by Kaminskas
and Bridge (2017), researchers typically formulate this objective function as a linear
combination of the item’s relevance and the complementary dimension that we aim
to maximize (usually diversity in the works surveyed in the previous section); in our
case, such function combines the output of a recommendation algorithm and the utility
provided by the sequence-aware reranker component, which are denoted as frec(u, i, Ru)
(although since most recommendation algorithms typically ignore the previously ranked
items, the notation could be simplified to frec(u, i)) and fseq(u, i, Ru), respectively:

fobj(u, i, Ru) = λ · frec(u, i) + (1− λ) · fseq(u, i, Ru) (6.1)

As we shall show later, since some of the proposed fseq functions are able to provide
complete recommendation sequences – instead of a pointwise score in an item-basis –,
we combine the scores provided by each function after doing a rank-based normal-
ization (Renda and Straccia, 2003). This means that we use the scores provided by
the recommender and the reranker components to sort the items, then, each item is
assigned a score based on its position; the final, combined value of fobj(u, i, R) thus
depends on this normalized score and the weight λ.

We propose 8 different formulations for the sequence-aware reranker component
fseq (for simplicity, we shall refer to this function also as reranker since it is the main
discriminating piece in the whole reranking process), classified in the following 3 families
(a summary of these approaches can be found in Table 6.2):

• Independent: the score only depends on the target user-item pair. The reranking
procedure has no memory, hence, it does not incorporate any sequential compo-
nent and the reranked items are independent of each other:

– Random: the items are reranked randomly: f rndseq (u, i, Ru) = rnd ∈ [0, 1].

– Recommender-based: the items are reranked using a score r(u, i) pro-
duced by a recommender for user u and item i (e.g., popularity, user neigh-
borhood, etc.): f recseq (u, i, Ru) = r(u, i). It is important to note that if the
recommender used to perform the reranking and the one to produce the
candidate items are different, the resulting list (its order) could be very
different; in particular, this reranker opens up the possibility of produc-
ing personalized sequences based on a non-personalized algorithm like the
popularity recommender, where the output produced by such a reranking
compared against the ones obtained directly using either recommenders will
be potentially very different.

• Dependent on the previous item: the score for item i depends only on the last item
included in list Ru; let us denote such last item as in−1, i.e., Ru = {i1, · · · , in−1}.
We define three rerankers that aim to maximize a particular dimension between
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the target item i and previous item in−1; hence, these rerankers optimize different
criteria based on a 2-length sequence by exploiting the last item:

– Distance: reranker that selects the closest venue to the previous suggested
one: fdistseq (u, i, Ru) = 1/dist(in−1, i).

– Feature-based Markov chain: reranker that selects those venues whose
features maximize the transition probability with respect to target item i’s
features: ffeatseq (u, i, Ru) = p(ia|ian−1), where ia denotes the attributes of item
i.

– Item-based Markov chain: reranker that selects the venue that is more
frequently visited after item in−1: f itemseq (u, i, Ru) = p(i|in−1).

• Dependent on the whole sequence: the score depends on the entire sequence being
generated, i.e., the current list Ru and the potential following item i. We define
three different algorithms:

– LCS-based: reranker that maximizes the Longest Common Subsequence
(an algorithm that we have defined in Section 4.4) between the sequence
of item features in the current recommended list Ru assuming item i is
recommended at the end (Ru+i) and the item features built from the training
set of the user (ua) ordered by timestamp: f lcsseq(u, i, Ru) = lcs((Ru+ i)a, ua).

– Suffix tree: reranker that searches in linear time whether a specific sub-
string exists or not in a given sequence, in this case, it searches whether the
last m− 1 recommended items attached to each of the candidate items (de-
noted as {(Ru + i)}m, where {s}m stands for the last m items in a sequence
s) can be found in the suffix tree built from the item features of the user
profile ua: fstreeseq (u, i, Ru) = δST (ua)({(Ru+ i)a}m), where δST (ua)(s) denotes
whether the suffix tree ST contains the sequence s.

– Oracle: reranker whose output will be the sequence of POIs returned by
the recommender in the same order as they appear in the test set of the user,
it is, hence, the ideal reranker in terms of accuracy metrics and is used as
an upper-bound for the rest of the reranking strategies: foracleseq (u, i, Ru) =
ordertest(u, i). It should be noted, however, that this reranker is not realistic
since it has complete access to the test set. As a consequence, it produces
an optimal ranking (in terms of relevance metrics) based on the candidates
returned by the recommender; hence, foracleseq , like the other components,
depends on the original set of candidate items to be reranked, it does not
simply returns the test set of the user, but the best possible ranking using
the candidate items.

Each reranker family is inspired by the three main problems related to data in the
form of check-ins (Chen et al., 2016a): standard POI recommendation (independent
rerankers), next-POI recommendation (dependent on the last item), and route rec-
ommendation (dependent on the whole sequence). Our main hypothesis is that those
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Table 6.2: Summary of the rerankers defined in Section 6.2.2.

Family Name Abbr. Description

Independent Random frnd
seq Items reranked randomly

Recommender-
based

frecseq
Items reranked according to the score
given by a recommender

Dependent on
the previous
item

Distance fdistseq
Next selected item is the closest one to
the previous item in the sequence

Feature-based
Markov chain

ffeatseq

Next selected item based on the cat-
egory that maximizes the transition
probability with respect to the category
of previous item

Item-based
Markov chain

f itemseq

Next item is selected by maximizing the
transition probability with respect to
previous item

Dependent on
the whole se-
quence

LCS-based f lcsseq

Items reranked by maximizing the LCS
between the categories of the recom-
mended items and the user profile

Suffix tree fstreeseq

Items reranked by searching the poten-
tial sequence as a substring in the suffix
tree built based on the item categories
in user profile

Oracle foracleseq
Reranked items follow the same order
as in the test set

rerankers that exploit more information about the sequence are the ones that should
obtain a higher performance or, in general, should generate more meaningful sequences.
This may translate either into better accuracy or by reducing the geographical distance
of the recommended routes, since these dimensions incorporate in a natural way the
user preferences and the geographical context inherent in the route recommendation
problem.

6.2.3 Solving ties and coverage issues of reranking strategies

As it might be obvious from the definitions of the reranker components presented in
the previous section, some scoring functions may return the same value for different
items; a simple example is those rerankers based on features, since every candidate
item with the same feature will obtain the same score. Because of that, we propose
to consider other characteristics of the items that could improve the user experience
when receiving a recommendation of a travel sequence: the item popularity (measured
as the number of check-ins received by that POI) and the distance between consecutive
venues. Hence, in the experiments, and in order to solve these ties in a deterministic
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Figure 6.2: Comparison of 5 sequences of venues generated by different reranking strate-
gies as presented in Section 6.2.2. Those POIs colored in white form the training set of
the user; the orange POIs denote the candidate items to be reranked, that is, the items
suggested by a recommender that will be reordered by the presented rerankers. We also
show in yellow those POIs that appear in the test set but have not been recommended,
together with the starting POI of the test sequence in green. The arrows show the order
followed by the user, either based on the training set (solid line) or test set (dotted line).
For each item, we show the POI categories (as M, P, F, and R, denoting museums, parks,
food, and restaurants) and their ids (as subscripts of the categories), together with their
popularity using the marker size (the larger the POI, the more popular it is).

way, we order the subset of candidate items that share the same maximum score by a
combination of (inverse) distance and popularity and then by id, both in descending
order. It should be noted that, for most of the rerankers, however, sorting by distance
was counter-productive and we decided to solve ties based only on popularity; as a
consequence, the rerankers based on the whole sequence are the only ones that use
both criteria to solve ties.

Furthermore, another problem that may occur when instantiating these rerankers
and are applied to real data is that they may have less coverage than the original
recommendation list, since some candidate items may obtain no score from the reranker
component. To address this issue, we propose the following strategies:

• Filling the rest of the reranked list with the items that could not be scored by
the reranker but keeping the order from the original list.
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• Filling the rest of the reranked list with the items that could not be scored by
the reranker but ordering those items according to some criteria, for instance, by
popularity.

• Not filling the list in any way, as a result, some of the candidate items only receive
a score from the recommendation algorithm.

Depending on the selected strategy, the result after reranking could be very different,
in particular when measuring metrics related to user or item coverage and considering
the last strategy, since in that case the reranked list could be (much) shorter than the
original recommendation list. Unless stated otherwise, in this chapter we use the first
strategy (keeping the original order) to make a fair comparison between the baseline
recommenders (without reranking) and those where a reranking strategy (probably,
with some coverage problems) has been applied. Therefore, we leave for future work
the analysis of the performance of the three strategies in the different rerankers.

6.2.4 Further details about reranker components and toy example

In this section, we present specific aspects regarding some of the presented rerankers
that should be carefully considered. First, those rerankers based on probabilities (ffeatseq

and f itemseq ) need to incorporate a smoothing component to avoid zero probabilities (due
to sparsity issues of the data); we use the Jelineck-Mercer smoothing that linearly
balances the prior with the conditional probability: p(a|b) = αpml(a|b) + (1 − α)p(a),
where pml denotes the maximum-likelihood probability.

Second, the difference between f lcsseq and fstreeseq is subtle but important: whereas f lcsseq
aims to find those items that produce the Longest Common Subsequence when added to
the recommendation list, fstreeseq checks whether a given sequence is exactly contained in
another sequence and finds those items that allow to produce the matching sequences.

In order to help the reader to better understand the differences between the
rerankers, we present in Figure 6.2 a visual example of how some of them generate
sequences from a set of candidate POIs. In this figure we observe the following candi-
date items: M2, M4, R3, R6, P5, and P8. Note that F12, even though it is in the test
set, it was not recommended, so it is not a candidate item for any of the rerankers.
The fstreeseq reranker obtains the sequence M4 → P5 → R3 as it appears verbatim in
the training set (when only the item categories are considered, not the corresponding
items with those categories). This is because the suffix tree is built from the visited
POIs in the training set (white markers in the figure), thus, after a museum (category
M) the suffix tree continues this pattern either with another museum or with a park
(category P); in this case, since P5 is more popular than M2, the next POI ranked by
this reranker after M4 is P5. Once this strategy has generated the route M4 → P5, a
restaurant (category R, and hence, the POI R3) is the only possible candidate based
on the training data, since the user always visited a restaurant after a park. Then,
this reranker cannot continue the sequence because after a park the suffix tree only
accepts food venues, but there is no POI with this feature among the set of candidate
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Table 6.3: Statistics of the three unprocessed datasets used in the experiments: users
(U), items (I), and number of check-ins (Cr) and unique check-ins (Cr).

Dataset |U| |I| |Cr| |Cr|

Global-scale check-in dataset 266,909 3,680,126 33,263,633 15,074,342
Semantic trails 399,292 1,887,799 11,910,007 8,518,529

Trip builder (photos) 25,052 443,394 443,394 443,394
Trip builder (clusters/POIs) 22,611 1,349 133,089 133,089

items. In contrast, the f lcsseq reranker is able to add another POI following the Longest
Common Subsequence with P8, since it allows gaps when searching for the subsequence
(see Section 4.4). The other sequences obtained by the reranking approaches are more
straightforward: they either exploit the popularity (size) of the POIs (f recseq approach

using the Popularity recommender as reranker) or the distance between them (fdistseq ).

Finally, the oracle reranker foracleseq returns the items in the test set in the order followed
by the user, except for F12 because it does not belong to the set of candidate items.

6.3 Experiments

6.3.1 Datasets

For the experiments, we used three different datasets built from three data sources:
the Global-scale check-in dataset from Yang et al. (2016) (already introduced in Sec-
tion 4.5), the Semantic trails dataset by Monti et al. (2018), and Trip builder used in
the work of Brilhante et al. (2013); the first two exploit the Foursquare LBSN, whereas
the last one uses photos from Flickr to build the sequences (called trajectories in that
work) followed by the users. Table 6.3 shows the main statistics of these datasets
as provided by their authors; in the next sections we describe in more detail these
datasets and how we used them in our experiments. One key process we performed in
these datasets was to only select those interactions related to a particular city, instead
of experimenting with all the information as a whole. The rationale for this is that,
in many works on POI recommendation, authors tested their experiments on datasets
built with check-ins belonging to one specific city (He et al., 2017a, Li et al., 2017b,
Liu et al., 2014) because it is a realistic, natural partition of the data; besides, as our
plan is to generate routes to the users, it seems reasonable to just use the information
of each city independently.

Global-scale check-in dataset

This dataset covers more than 33M check-ins on 415 cities in 77 countries covering
18 months of user interactions with Foursquare captured through Twitter; it is available
in the author’s website1. In this dataset, most of the check-ins come from Turkey and

1Foursquare dataset, https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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Table 6.4: Statistics of the four cities used in the experiments. We show the number
of users, number of venues, number of check-ins, number of unique check-ins (without
repetitions), data density computed according to whether repetitions are considered or
not, and number of routes (sessions) found by our framework. We present these values for
the entire city, together with the corresponding training and test splits.

City Split |U| |V| |Cr| |Cr| |Cr|
|U|·|V|%

|Cr|
|U|·|V|% |S|

New York
Complete 11,590 20,842 235,607 148,774 0.097 0.062 170,397
Training 11,590 20,813 234,235 147,629 0.097 0.061 170,144
Test 253 815 1,372 1,322 0.665 0.641 253

Tokyo
Complete 9,707 44,458 511,800 286,418 0.119 0.066 308,404
Training 9,707 44,424 509,071 284,402 0.118 0.066 307,915
Test 489 1,473 2,729 2,595 0.379 0.360 489

Rome
Complete 7,954 394 61,330 49,608 1.957 1.583 27,252
Training 7,954 394 58,201 47,358 1.857 1.511 26,778
Test 474 229 3,129 2,723 2.883 2.509 474

Petaling Jaya
Complete 14,858 18,385 149,904 119,760 0.055 0.044 79,418
Training 14,858 18,302 148,689 118,831 0.055 0.044 79,165
Test 253 772 1,215 1,186 0.622 0.607 253

Indonesia, however, to better compare against the state-of-the-art, we decided to select
the cities of New York and Tokyo, as they are the most commonly used in the literature
and still appeared in the top-10 most checked-in cities in this dataset.

Semantic trails

In this dataset, the authors integrated different data sources to provide semantically
annotated user trails. They did this by starting from the Global-scale check-in dataset,
grouping the check-ins into sequences of activities, and then enriching it with semantic
information (mainly mapping the Foursquare categories to the Schema.org terms and
identifying the cities and countries to their corresponding Wikidata entities).

As described in Monti et al. (2018), the authors applied three filters to remove
problematic check-ins: multiple check-ins in a row in the same POI by a user are
ignored and only the last one is maintained, those check-ins performed by a user in
less than one minute were discarded, and those check-ins that required a speed greater
than Mach 1 to move from one venue to the next one were also removed. Then, the
remaining check-ins were grouped in trails assuming that two check-ins that are not
distant in time more than eight hours belong to the same trail.

It is interesting to note that the authors provide two versions of the dataset, the first
one (STD 2013) is mostly based on the Global-scale check-in dataset described before,
whereas the second one (STD 2018) is an expanded and updated version of the first
one, which is the one we use in this chapter and can be obtained here2. In particular,

2Semantic Trails dataset, https://figshare.com/articles/Semantic_Trails_Datasets/7429076
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among all the cities available in the STD 2018 dataset, we decided to select the second
one with the highest number of interactions, as the city with more check-ins was Tokyo,
already selected in the other dataset. Thus, the selected city was Petaling Jaya (with
Wikidata code Q864965). As Petaling Jaya belongs to Kuala Lumpur, most of the
check-ins with that identifier also contains check-ins from Kuala Lumpur. However,
we decided to maintain the name of Petaling Jaya for the selected city as it is the
identification associated with code Q864965. To obtain comparable information with
the other cities used in our experiments, we used the Foursquare API to obtain the
categories and the coordinates of its POIs, since these are not provided by the authors.

Trip builder

This dataset, as the previous one, also combines two data sources (Flickr and
Wikipedia) and is the only one that does not use Foursquare as the main source for
the user interactions. The authors performed the following process for three Italian
cities: the Wikipedia pages corresponding to the geographical region of each city were
downloaded – it was assumed that each of these pages corresponds to a POI –, these
POIs were clustered according to their geographical coordinates – since the authors
assumed that a user does not have to take a photo of one POI if she takes a photo of a
very close POI –, then, user trajectories were obtained by using Flickr and retrieving
the metadata of photos taken in the given cities, finally a matching between the photos
and the POIs was performed. The dataset is available in this repository3.

In our experiments, we selected the largest city among the three provided: Rome.
We considered the clusters as the items in the dataset, hence, mapping real sets of
venues with an item from the point of view of the recommenders and the evaluation.
As we can observe in Table 6.3, by doing this process, the number of items in the
system is greatly reduced, which is an important aspect to consider when performing
the experiments, since the characteristics of this dataset are very different to the other
ones; in fact, probably these items reflect more faithfully interesting POIs from a tourist
perspective than those included in the other datasets, since they are mostly limited to
neighborhoods, museums, and religious buildings. Finally, a manual mapping had to be
performed between the categories provided by the authors (taken from the Wikipedia
page and, thus, very specific) and a subset of the first level categories from Foursquare.

Datasets processing

The three datasets described earlier have been processed to obtain 4 cities where
the recommenders will be trained and evaluated: New York (NYC) and Tokyo (TOK)
from the Global-scale check-in dataset, Petaling Jaya (PJ) from Semantic trails, and
Rome (ROM) from Trip builder. We selected (on purpose) different cities from each
dataset so that we could show how the recommendation algorithms work on different
types of cities with different inherent characteristics. Moreover, selecting the same city

3TripBuilder dataset, https://github.com/igobrilhante/TripBuilder
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from all the datasets would raise additional problems, namely: not all the datasets
contain the same information and, in particular, the same cities, so in order to perform
such a comparison we would need to restrict ourselves to the smallest dataset and
select the cities available in it, which might be under-represented in the other datasets;
moreover, two of the presented data sources take the check-ins from the same LBSN
(i.e., Foursquare), hence, by using the same city we would probably obtain the same
or very similar results at the end; another issue that we believe is very important is
that, as it is standard in the literature, researchers typically use more than one city,
usually those well-known or more touristic, such as New York or Tokyo, a criteria we
also follow here (as described before).

The steps developed to transform the check-ins included in these datasets into routes
or venue sequences match those presented in Section 6.1, and even though we aimed to
process all of them in the same way, due to their inherent characteristics some minor
changes had to be done either in the value of the parameters or in the followed process.
Thus, as the first step (preprocessing data), we performed a 2-core in New York and
Tokyo (pc = 2); we also identified and removed those users who made consecutive check-
ins in 60 seconds or less more than 3 times for all the cities (ptb = 60, pib = 3). Besides,
for Petaling Jaya and Rome we removed all users with just one interaction. The second
step (building routes) was only performed on the first dataset, since we assume the trails
and trajectories included in the other datasets are valid; hence, in New York and Tokyo
we build the venue sequences so that the difference between consecutive POIs is less
than 8 hours (bt = 8, bg = ∞). Finally, regarding the third step (filtering sequences),
we did not impose any constraint on this (hence, fm = 0, fM = ∞, fu = 0, fi = 0),
although we used some of these constraints when creating the training-test splits, as
explained in the next section.

6.3.2 Evaluation methodology

As discussed at the end of Section 6.1, there are different possibilities to split sequential
data. We decided to build the test set with the last route identified for each user in
order to have more control and experiment with a large number of users (tn = 1).
Additionally, we impose the following constraints to the users so the recommenders are
tested on enough training and test data: only users with a minimum of 3 routes and
at least 4 venues in the last route are included in the test set, all the other information
is kept in the training split. The statistics of the four cities with their corresponding
training and test sets once this methodology is applied can be seen in Table 6.4. Note
that due to these constraints, the number of users and items in the resulting test sets
is much lower than in the complete or training sets, and, hence, the density of these
subsets is remarkably higher; however, these values are only included for completeness,
since no recommendation algorithm is trained using the test data and, hence, the
density of the test set has no effect on this aspect.

Some recommenders need item attributes such as the categories and geographical
coordinates of the venues. For the cities with a Foursquare id (New York, Tokyo,
Petaling Jaya) we take this information from Foursquare, using the categories of level
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1 unless stated otherwise; for Rome, we use the information available in the dataset
and a manual mapping for the categories to obtain a comparable number of categories
across the four cities, as described in the previous section.

Finally, due to the intrinsic nature of the user-item interactions in this domain, we
may have repetitions in both splits (users who have visited the same POI more than
once, so that they may appear both in training and test set and also more than once in
the training or test splits). As some recommenders may not deal well (or their behavior
is not defined) when this happens, we create two different training sets:

• Aggregated: we aggregate all the check-ins where a user interacted with the same
venue by assigning the number of times a user checked-in in the POI as the
preference value and the first timestamp of the repetitions as its timestamp.

• Not aggregated: we leave the training set with the repetitions.

As we shall show in Section 6.3.4, depending on the assumptions of the recommen-
dation algorithms, we use one or the other training set. We do not change the test set
because it does not affect the recommenders but their evaluations, and the proposed
sequential metric (described in Section 4.4) is able to deal with repeated items.

Unless stated otherwise, the results are shown using the TrainItems methodol-
ogy (Said and Belloǵın, 2014), that is, the candidate POIs are the ones appearing
in the training set that the target user has not visited before. More specifically, all
recommenders rank all the possible items, although they have been configured to store
only the top-100 items for each user; this parameter has no effect in the reported results
since we always report lower cutoffs. Furthermore, since some recommenders need an
starting POI to build the sequence, in order to make a fair comparison across all the
recommenders, the first POI in the test sequence of each user is also provided to every
recommendation algorithm, as it is often done in the literature (Kumar et al., 2017,
Monti et al., 2018, Zhao et al., 2018b).

6.3.3 Evaluation metrics

To analyze the performance of the recommenders, we use metrics oriented at measuring
different dimensions like accuracy (relevance), novelty, and diversity; additionally, since
we deal with potentially real recommendations, we want to measure the distance of the
obtained route, to assess how realistic such recommendations might be4. For relevance,
we show the results using Precision (P) and nDCG, together with their sequential
counterparts: Ps and nDCGs, according to the sequential metrics defined in Section 4.4.
On the other hand, for novelty and diversity, we show the results in terms of EPC and

4While it is true that a lower distance between recommended items is not necessarily requested by
the user, since it might depend on the actual context of the user (such as the city type or the possibility
of driving a car), in the POI recommendation literature it is common to exploit closeness between points
as a source of information for the algorithms (Miller, 2004), even though very few works have explicitly
presented experimental results based on this dimension. However, one of our main hypotheses is that
the geographical dimension is critical and should be minimized when recommending realistic routes.
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Gini. We also report the distance (denoted by Dist) in km as the sum of the distance
between each venue in the recommendation list and the next one. Except for the
distance metric, higher values indicate better results (i.e., recommendations are more
relevant/novel/diverse).

Furthermore, because of the high sparsity in this domain and the difficulty to match
the exact same venue the user visited in the test set, some authors report accuracy
metrics but at the category level instead of the item level, this means that a metric
like precision, for example, would measure how many categories that appear in the
test set are recommended by the algorithm, or other variations, such as measuring the
likelihood that the recommended categories would be produced at random (perplexity),
or measuring the interest of a user in a recommended tour based on the time she
spends on venues that belong to those categories (He et al., 2017a, Brilhante et al.,
2013, Palumbo et al., 2017, Lim et al., 2015). According to this, we define the Test
Feature Precision (TFP) that takes into account the features of the POIs that we
retrieved correctly but each category is only taken into account based on the number
of categories of each type available in the test set, so, for instance, if the recommended
list consists of 3 museums and in the test set there are only 2, only 2 of them will be
used in the computation of the metric.

It is worth noting that, by capping the maximum number of times each feature
can be considered in the whole list (according to the frequency such feature appears
in the test set), this metric could also measure to some extent the diversity on the
recommended features, since once it saturates the metric value (because the maximum
number of items with a specific feature has been reached), then recommending such
feature will not improve any more the value of the metric, which is similar to how
some diversity metrics are defined (Castells et al., 2015), although considering a more
extreme user behavior: one where the user abandons the ranking list once too many
items with a specific feature have been examined.

Additionally, and based on the sequential metrics defined in Section 4.4, we include
in our evaluation a category-based sequential metric that considers the correct order
of the features according to the sequence followed by the user in the test set; it is
computed as Ps but matching categories instead of POIs, we call it Sequential Feature
Precision or FPs. We note that this is one of the few works where both types of metrics
(either matching by category or by item) are shown and reported together; moreover,
this is the first time that sequentiality has been incorporated into the category-based
precision.

6.3.4 Recommenders

We experiment with 28 algorithms, covering different types and information sources,
because of this, we decided to group them in the following 6 families: Basic, Classic,
Temporal, Geo, Tour, and Skylines. We include standard methods in the Recommender
Systems literature and others more oriented to the contexts of venue and route rec-
ommendation. However, we should mention that we were not able to apply some of
the most typical solutions to the Tourist Trip Design Problem (TTDP) since they need

143



6. SEQUENCES IN POI RECOMMENDATION

additional data that is not easily available in public datasets, such as the price and
schedule of the venues, although we plan to collect this information and extend the
comparison in the future. In any case, we aimed at providing an exhaustive compar-
ison of techniques using different data – to avoid biases in the results – and provide
a wide perspective of how each of these techniques may perform in the real world, by
considering a realistic evaluation methodology, including both the metrics and how the
training-test splits was performed.

Most of the recommenders that we have used in these experiments have already
been explained in the experiments of our novel approaches for evaluation (Section 4.5)
and our backward-forward k-NN reformulation (Section 5.3). For that reason, below
we will only explain in detail the algorithms that have not been previously mentioned
in previous experiments (i.e., the algorithms from the Geo and Tour families).

• Basic: simple baselines, useful to test biases on the recommendations:

– Rnd: a random recommender. Already explained in Section 4.5.1.

– Pop: a popularity recommender. Already explained in Section 4.5.1.

– Train: recommender that suggests the items already interacted by the user
in the training set. Already explained in Section 4.5.2.

– Train: same as the Train recommender but using an inverse ordering of the
items; our own implementation.

• Classic: family of classic recommenders using a collaborative filtering or a content-
based component but, in any case, time and geographical agnostic:

– CBUI: a pure content-based recommender using a VSM where users are
represented as an aggregation of the features corresponding to the items she
visited, and every item as a combination of those users that interacted with
each item (de Gemmis et al., 2015). For the users, we allow each item feature
to have a weight proportional to the number of times the user visited that
item (parameter Wgt); our own implementation.

– CBCF: the collaborative-via content hybrid recommender. Already ex-
plained in Section 4.5.1.

– UB: a user-based nearest neighbor algorithm. Already explained in Sec-
tion 2.2.2.

– IB: an item-based nearest neighbor algorithm. Already explained in Sec-
tion 2.2.2.

– HKV: a matrix factorization algorithm. Already explained in Section 2.2.2.

– BPRMF: Bayesian Personalized Ranking for Matrix Factorization. Already
explained in Section 2.2.2.

• Temporal: recommenders exploiting the temporal or sequential information of
the items (using the item timestamps or its ordering in the user profile):
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Table 6.5: Parameters of evaluated recommenders; the values that are not between the
symbols {} are considered fixed and not tuned. Third column indicates the abbreviation
used in tables and figures. Fourth column shows whether the recommender can use an
aggregated training set (Y) or one where repetitions are allowed (N).

Family Recommender Abbr. Agg? Parameters

Basic

Random Rnd Y None
Popularity Pop Y None
Training Train Y None

Reverse training Train Y None

Classic

Content-based CBUI Y Wgt = Yes
Content-collaborative
filtering

CBCF Y k = {40, 60, 80, 100, 120}, Wgt = {Yes, No}

Item-based nearest neighbor IB Y k = {40, 60, 80, 100, 120}, sim = {SetJ, VecC }
User-based nearest neighbor UB Y k = {40, 60, 80, 100, 120}, sim = {SetJ, VecC }
MF using ALS HKV Y k = {10, 50, 100}, α = {0.1, 1}, λ = {0.1, 1}
Bayesian Personalized
Ranking for Matrix Fac-
torization

BPRMF Y k = {10, 50, 100},
λu = λi = {0.001, 0.0025, 0.005, 0.01, 0.1},
λ0 = {0, 0.5, 1}, λj = λu/10, iter = 50

Temporal

Temporal Popularity TPop Y None
User-based time decay TD Y k = {40, 60, 80, 100, 120}, sim = {SetJ, VecC }, λ = {0.05, 0.1}
Backward-Forward (No LCS) BFUB N k = {40, 60, 80, 100, 120}, sim = {SetJ, VecC }, Wgt

= {T, F }, Nrm = {Def, Std }, L−m = L+
m = {5, 10}

Backward-Forward (LCS) BFsUB N k = {40, 60, 80, 100, 120}, sim = {sim1}, Wgt = {T,
F }, Nrm = {Def, Std }, L−m = L+

m = {5, 10}
Markov Chain MC N k = {2, 5, 10, 20}, λ = {0.1, 0.2}
Factorized Personalized
Markov Chain

FPMC N k = {2, 5, 10, 20}, λ = {0.1, 0.2}

Factorized Sequences with
Item Similarities

Fossil N k = {2, 5, 10, 20}, λ = {0.1, 0.2}, L = {1, 2, 3}

Convolutional Neural Net-
work

Caser N T = {1, 2}, d = {10, 50}, nh = {4, 16}, L = 2, n iters
= 30, l rate = 0.003, nv = 4, drops = 0.5, ac convs
= relu, ac fcs = relu, batch size = 512, l2 = 10−6

Geo

Average Distance AvgDis Y None
Kernel Density Estimation KDE Y None
Pop + UB + AvgDis PGN Y k = {40, 60, 80, 100, 120}, sim = {SetJ, VecC }
Instance-Region Neighbor-
hood MF

IRenMF Y k = {50, 100}, α = {0.4, 0.6}, λ3 = {0.1, 1}, Clusters
= {50, 5}, λ1 = λ2 = 0.015, GeoNN = 10, Factors
= 100, α = 10

Ranking Geographical Fac-
torization

RankGeoFM Y k = {50, 100}, α = {0.1, 0.2}, n = {10, 50, 100, 200},
C = 1, ε = 0.3, iter = 120

Tour
Closest by distance DistNN Y None
Feature Markov Chain FeatMC N Smooth = {None, JM (0.1), JM (0.5), JM (0.9)}
Item Markov Chain ItemMC N Smooth = {None, JM (0.1), JM (0.5), JM (0.9) }

Skylines
TestOrder TestOrder N None

TestOrder Reverse TestOrder N None

– TPop: similar to the Pop recommender, but the item popularity computa-
tion also involves penalizing old check-ins by applying the min-max normal-
ization in the timestamps of the training set. It is based on the freshness
models presented in Section 4 (Sánchez and Belloǵın, 2018b); our own im-
plementation.

– TD: time-weighting user-based neighbor algorithm. Already explained in
Section 4.5.1.

– BFUB: our backward-forward approach explained in Chapter 5, with no
sequential similarity.

– BFsUB: our backward-forward approach explained in Chapter 5 with a se-
quential (LCS) similarity.
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– MC: Factorized Markov Chains explained in Section 4.5.1. Implementation
provided by He and McAuley (2016).

– FPMC: Factorized Personalized Markov Chains explained in Section 2.3,
proposed in Rendle et al. (2010). Implementation provided by He and
McAuley (2016).

– Fossil: Factorized Sequential Prediction with Item Similarity Models ex-
plained in Section 2.3 and proposed in He and McAuley (2016).

– Caser: Convolutional Sequence Embedding Recommendation Model ex-
plained in Section 2.3 and proposed in Tang and Wang (2018).

• Geo: family of venue recommenders that exploit the geographical influence com-
ponent of the POIs:

– AvgDis: algorithm that suggests the closest POIs to the user’s average loca-
tion, the average is computed by calculating the midpoint of the coordinates
of the visited POIs in the user profile; our own implementation.

– KDE: the geographical influence component from (Zhang et al., 2014), it
models a probability distribution over a two-dimensional space (latitude and
longitude) using Kernel Density Estimation for every user; our own imple-
mentation.

– PGN: a hybrid POI recommendation algorithm that combines the UB,
Pop, and AvgDis recommenders (giving the three recommenders the same
weight); our own implementation.

– IRenMF: weighted matrix factorization method proposed in (Liu et al., 2014)
that also exploits the geographical influence between neighbor venues; im-
plementation provided by other authors5.

– RankGeoFM: matrix factorization method using BPR as proposed in (Li
et al., 2015a), this method exploits the geographical influence between neigh-
bor POIs, but it also maintains an additional latent matrix to model the user
geographical preferences; our own implementation based on the one available
in LibRec6.

• Tour: recommenders that explicitly aim to recommend a route or a sequence of
POIs optimizing different criteria:

– DistNN: it selects the next item in the sequence by minimizing the distance
between the current venue and the next one; our own implementation.

– FeatMC: it selects the next item in the sequence by maximizing the transition
probability between the features of the current and candidate POIs, if there

5Liu et al. (2014) provide an implementation of this technique that is used in their experimental
comparison, available at http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17/.

6A Leading Java Library for Recommender Systems, available at https://www.librec.net and
described in Guo et al. (2015b).
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Table 6.6: Optimal parameters found in each city, see Table 6.5 for the explored range of
the parameters.

Rec New York Tokyo Rome Petaling Jaya

CBCF: k, Wgt 100, Yes 120, No 120, No 120, No
IB: k, sim 60, SetJ 120, SetJ 100, SetJ 100, SetJ
UB: k, sim 100, SetJ 120, VecC 120, SetJ 120, SetJ
HKV: k, α, λ 50, 0.1, 1 10, 0.1, 0.1 10, 0.1, 1 10, 1, 1
BPRMF: k, λu = λi, λ0 100, 0.005, 0 50, 0.005, 0 100, 0.1, 0 50, 0.1, 0

TD: k, sim, λ 120, SetJ, 0.1 120, VecC, 0.1 120, VecC, 0.05 120, VecC, 0.05
BFUB: k, sim, Wgt, Nrm, L−m = L+

m 120, SetJ, F, Def, 10 100, VecC, F, Def, 5 120, SetJ, T, Def, 10 120, VecC, T, Def, 5
BFsUB: k, Wgt, Nrm, L−m = L+

m 100, F, Def, 10 120, F, Def, 10 100, F, Def, 10 80, T, Def, 10
MC: k, λ 2, 0.1 10, 0.1 2, 0.2 20, 0.2
FPMC: k, λ 2, 0.2 10, 0.2 20, 0.2 20, 0.1
Fossil: k, λ, L 10, 0.2, 3 20, 0.1, 2 10, 0.2, 2 2, 0.1, 1
Caser: T , d, nh 1, 50, 4 1, 10, 4 2, 10, 4 1, 50, 16

PGN: k, sim 100, SetJ 100, VecC 100, VecC 100, SetJ
IRenMF: k, α, λ3, Clusters 50, 0.6, 1, 50 100, 0.6, 1, 50 50, 0.6, 1, 5 50, 0.4, 0.1, 5
RankGeoFM: k, α, n 100, 0.1, 100 100, 0.1, 10 100, 0.1, 200 100, 0.1, 200

FeatMC: Smooth JM (0.9) JM (0.1) JM (0.1) JM (0.5)
ItemMC: Smooth JM (0.1) JM (0.5) JM (0.5) JM (0.1)

are several items with the same probability, they will be sorted by popularity;
our own implementation.

– ItemMC: it selects the next item in the sequence by maximizing the tran-
sition probability between POIs by counting how often any user checked-in
in the two POIs (the current one and any of the candidates) one after the
other; our own implementation.

• Skylines: oracle recommenders that recommend the test set, they are useful to
analyze the maximum values that a recommender can achieve, at least in terms
of accuracy metrics:

– TestOrder: method that returns the test set for every user ordered by as-
cending timestamp (mirroring the order followed by the user according to
the test set); since the test set may contain repeated venues, this algorithm
only recommends each item once (based on its first timestamp) to be more
comparable to the rest of the algorithms; our own implementation. Note
that additional constraints could apply to mimic the behavior of the other
recommenders being compared, for instance, by limiting the candidate items
to those in the training set, as described in Section 6.3.2.

– TestOrder: same as the TestOrder but the items are ordered by descending
timestamp (i.e., the route followed by the user in the test set is reversed);
our own implementation.

We present in Table 6.5 the range of the parameters tested in the experiments,
whereas Table 6.6 shows the best parameters found for each recommender in every
city. The optimal parameters were selected according to the performance obtained
using the nDCGs@10 evaluation metric. We used a larger cutoff because in this case
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we are comparing routes, not independent items. Besides, a recent article argued that,
in general, metrics with larger cutoffs tend to be more stable than metrics with smaller
cutoffs (Valcarce et al., 2020).

Note that we also include in the table whether the recommender uses an aggregated
training or not (as explained in Section 6.3.2); we based this decision according to the
nature of each algorithm and, in some cases, because better results were obtained for
the reported configuration.

6.3.5 Performance of venue recommender systems

Table 6.7 shows the performance for each recommender in the city of New York where
all metrics are computed at cutoff 10 except the distance metric at cutoff 5. We decided
to present the results in this way because most sequences in test have less than 5 POIs
(see ratio between |Cr| and |S| in Table 6.4, which is between 4.8 and 6.6 for all the
test sets) and, thus, computing the distance of routes for the first 10 recommended
venues would produce a less realistic situation and not fair when compared against the
skylines. This effect will be further analyzed in Section 6.4.

The first thing we observe in this table is that the Skylines are not achieving a perfect
score (i.e., 1.0) in terms of relevance metrics such as nDCG or Precision. This is because
in our experimental setting we simulate a realistic situation, where all recommenders –
including the Skylines – can only recommend those venues that appear in the training
set, so those items that only appeared in the test set cannot be recommended; in this
way, the comparison between the Skylines and the rest of algorithms is fair, since they
all consider the same set of candidate items. Besides, it should also be noted that we
are measuring performance at cutoff 10 but many users have less items in their test
set, which impacts the value of the evaluation metrics. Moreover, since the test set
may contain repeated items for some users, the length of the test routes could decrease
even more, which, together with the fact that none of the evaluated recommenders are
allowed to suggest the same item more than once, may amplify such effect (see Section
6.4 for more details).

Analysis based on evaluation dimensions: distance, sequential and non-
sequential metrics, and novelty and diversity
As we observe in the table, the total distance of the recommended venues is very low for
the Skylines (which actually reflects the distance traveled by users in the test set), and
specifically, much lower than most of the other recommenders, whose distances range
from 20 to 40 Km (demonstrating that users tend to prefer shorter routes instead of
very long ones and, thus, validating our hypothesis that geographical distance is an im-
portant dimension to be minimized in route recommendation). However, as evidenced
by the poor performance in terms of relevance of DistNN, AvgDis, and KDE, it is a
challenge to produce short, but interesting routes. This is one of our main motivations
to integrate reranking strategies into route recommendation, where not only relevance,
but other alternative criteria, ought to be maximized at the same time.
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Table 6.7: Performance for the city of New York. All metrics presented are computed
at cutoff 10, except Dist at cutoff 5. They are grouped in three categories: accuracy (P,
nDCG, TFP), sequential accuracy (Ps, nDCGs, FPs), and non-accuracy (Dist, Gini, EPC).
In bold, we show the best recommender in each family, a † is used to emphasize the best
one for that metric without considering the skylines, whereas N is used when the skylines
are also considered.

Accuracy Seq. Accuracy Non-Accuracy
Family Rec P nDCG TFP Ps nDCGs FPs Dist Gini EPC

Basic
Rnd 0.100 0.354 0.324 0.100 0.345 0.290 32.1 N0.104 0.997
Pop 0.144 0.417 0.326 0.139 0.402 0.284 43.9 0.001 0.904

Classic

CBUI 0.100 0.354 0.310 0.100 0.346 0.294 32.0 0.080 N0.998
CBCF 0.127 0.395 0.301 0.126 0.385 0.284 38.2 0.012 0.945

IB 0.121 0.383 0.326 0.119 0.373 0.298 24.2 0.047 0.971
UB 0.139 0.409 0.340 0.136 0.396 0.300 40.8 0.008 0.933

HKV 0.121 0.382 0.323 0.120 0.372 0.289 35.8 0.004 0.949
BPRMF 0.145 0.418 0.330 0.141 0.404 0.285 45.3 0.001 0.905

Temporal

TPop 0.145 0.418 0.321 0.140 0.404 0.284 43.2 0.001 0.904
TD 0.135 0.405 0.342 0.131 0.391 0.300 40.6 0.011 0.937

BFUB 0.142 0.417 †0.349 0.138 0.402 0.307 41.8 0.004 0.926
BFsUB 0.145 0.420 0.336 0.140 0.404 0.302 42.4 0.003 0.920

MC 0.140 0.413 0.314 0.138 0.401 0.284 43.9 0.002 0.912
FPMC 0.138 0.406 0.323 0.136 0.395 0.294 16.1 0.002 0.932
Fossil 0.137 0.405 0.332 0.135 0.394 0.300 29.4 0.002 0.919
Caser 0.138 0.408 0.339 0.136 0.396 0.307 35.3 0.005 0.934

Geo

AvgDis 0.100 0.354 0.305 0.100 0.346 0.281 3.3 0.075 0.997
KDE 0.101 0.354 0.300 0.101 0.346 0.278 3.1 0.087 0.997
PGN 0.133 0.405 0.336 0.132 0.394 0.300 46.3 0.017 0.927

IRenMF †0.147 †0.420 0.345 †0.143 †0.405 0.306 43.9 0.002 0.916
RankGeoFM 0.130 0.394 0.334 0.127 0.382 †0.308 18.0 0.013 0.956

Tour
DistNN 0.109 0.367 0.311 0.107 0.356 0.288 N0.1 0.065 0.997
FeatMC 0.118 0.382 0.206 0.117 0.372 0.206 18.4 0.002 0.972
ItemMC 0.132 0.404 0.295 0.129 0.391 0.279 44.9 0.001 0.911

Skylines
TestOrder N0.453 N0.928 N0.453 0.205 0.569 0.335 11.6 0.023 0.979

% TestOrder N0.453 N0.928 N0.453 N0.453 N0.909 N0.453 8.3 0.023 0.979

When comparing P and nDCG metrics against their sequential counterparts (Ps

and nDCGs) – hence comparing, to some extent, the performance of the algorithms on
the venue recommendation task against that on route recommendation –, we find that
the sequential metrics always achieve a value lower or equal than the standard metric
result. This makes sense since these metrics penalize those POIs that have not been
returned in the exact order with respect to the test set of the user (as mentioned in
Section 4.4); however, most of the obtained differences are around 0.01 below the value
of the non-sequential metric. To further analyze this issue, in Figure 6.3 we show the
number of users with a specific difference between the values of P and Ps (left image)
and TFP and FPs (right image) for the best performing approach, which corresponds
to the IRenMF algorithm; since we contrast this difference against the number of
relevant items/features returned, it is obvious that the sequential variations of the
metrics have more margin to affect the final result when the algorithms return more
than 1 or 2 relevant items/features. The number of potential relevant items/features
recommended depends, on the other hand, on the test size of each user. In other set
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Figure 6.3: Difference between sequential (Ps and FPs) and non-sequential (P and TFP)
metric values and the number of users with such difference, depending on the number of
relevant items or features returned by IRenMF in New York.

of experiments (not reported for lack of space) we observe a similar situation: the
larger the test size of the users, the larger the differences between sequential and non-
sequential measurements. Therefore, the behavior we observe here is caused by the
inherent properties of these datasets and this particular recommendation task which,
as we discussed at the beginning of the paper, is very sparse; in fact, for features, where
sparsity is lower, the differences tend to be higher.

Independently of the previous observation, larger differences between the sequential
and non-sequential metrics are obtained for Skylines, in particular between TestOrder
and TestOrder, since all the items returned by both are relevant but the former receives
a strong penalty for returning the test items in the reverse order. As expected, non-
sequential metrics obtain the same value for either Skyline, evidencing their lack of
sensitivity to the order of the recommendation list, since they only account for the
number of relevant items (which is the same in both Skylines, since every recommended
item is relevant).

These results evidence that sequential metrics work as expected, but, at the same
time, they also show that it is very difficult to recommend interesting venues for users
that are at the same time presented in the correct order, or, in other terms, to optimize
at the same time for the venue and route recommendation tasks. Because of this, when
we analyze the TFP and FPs metrics we observe that, in general, it is easier to rec-
ommend fitting categories than actual POIs. Moreover, when considering the feature
relevance, the sequences give us more information: for example, even though the Pop
recommender has a high value in TFP, its performance in FPs decreases considerably.
We want to highlight that this is the first work – to the best of our knowledge – where
such comparison has been made. Additionally, it should be noted that it is straight-
forward to compare FPs and Ps since in the ideal case (Skylines) their performance is
the same, and in any other case, they are computed very similarly, although one finds
matches at the category level and the other at the item level. According to this, we
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find some examples (such as UB and BFUB) where the recommendation algorithm is
the best in terms of FPs but it is not as good in terms of Ps.

Now, regarding novelty and diversity (EPC and Gini), we notice a general trend
where the recommenders that perform the worst in terms of relevance, they tend to be
the best in terms of these dimensions (as we have already show in Section 4.5). This
is related to the classical tradeoff between relevance and novelty/diversity (Vargas and
Castells, 2011), but it is also related to how prone each recommendation algorithm is to
recommend popular items (Jannach et al., 2015), since the novelty metric penalizes the
most popular venues; diversity behaves in a similar way, since if we are recommending
the same (popular) venues for all the users, the overall diversity of the system decreases.

Behavior of evaluated recommenders
According to the presented results in Table 6.7, we observe that the geographical and
temporal recommenders are normally the ones that achieve the best results in terms of
pure relevance metrics (P, Ps, nDCG, nDCGs). Even though this might be reasonable,
there are two important aspects to analyze: the first one is the strong popularity bias
observed in these datasets, as this baseline is able to beat most of the recommenders
(both Pop and TPop). This effect, although common in RS, is even more pronounced
in the POI recommendation domain due to the high sparsity, as other baselines find
it difficult to exploit the preferences of users. Also, in relation to this effect, it can be
observed that algorithms using neighbors for collaborative similarity need to consider
large neighborhoods (a large value for the parameter k, see Table 6.6 where only in
two cases it is under 100), indicating that they need to exploit more information to
make recommendations. In fact, as discussed by some authors recently, when nearest
neighbor recommenders increase the number of neighbors, they tend to get closer to
popularity, and hence, their popularity bias is stronger (Cañamares and Castells, 2017).

The second aspect to consider is related to the tour recommenders as their per-
formance is rather low (except for ItemMC). One possible explanation for this is that
taking into account the distance between items or only how frequent users go from
one venue category to another is a rather incomplete heuristic (in fact, we also observe
a similar effect in the AvgDis and KDE recommenders, belonging to the Geo family)
and more information should be exploited in combination. More specifically, we need to
consider that some of these algorithms do not work with any kind of collaborative infor-
mation, just with the coordinates of the POIs the users have visited, and even though
users tend to go to venues that are close to each other (as the Dist metric shows) max-
imizing only this component may not reflect their interests as a whole. However, when
we combine the geographical component with other features like collaborative informa-
tion (as in RankGeoFM, IRenMF, and PGN), the performance increases considerably.

On the other hand, it is interesting and somewhat surprising that sequential ap-
proaches like MC, FPMC, Fossil, and Caser are not able to obtain higher results than
other, more simple models. The reason for this may be that these sequence-aware
models are defined and formulated to consider sequences when training the preference
data from users, but not to generate interesting sequences for the users, in the sense
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of items being consumed in sequence. That is, these models are focused on predicting
the next venue, not the whole route or sequence of venues; because of this, it is not so
strange that these algorithms do not perform as well as expected, or that other simple
techniques (such as those based on popularity) could obtain better results. Addition-
ally, we hypothesize this might be due to the high sparsity of our POI recommendation
datasets in contrast with the original papers, where the authors filtered out users with
a relatively high number of interactions – hence, increasing the data density (e.g., for
Caser, the authors removed users with less than 15 and 10 interactions when working
with Gowalla and Foursquare respectively).

From the Temporal family, only BFUB and BFsUB (recall that this the sequential
k-NN presented in Chapter 5 with a classic and a sequential similarity, respectively)
are able to get a performance close to the TPop recommender in terms of relevance and
BFUB is the best one in the TFP metric (slightly better than the IRenMF approach),
illustrating that it is possible to improve the performance of simple models like UB if
we combine them with sequential components. In relation to the Classic family, we
also find large differences between the two MF approaches – HKV and BPRMF– as
the results for the latter are in general much better. This can be explained by the way
they create the models and the assumptions they make: while HKV uses the score of
the user in the minimization formula, BPRMF focuses on optimizing the ranking (why
some items are consumed and why others are not), the most appropriate approach in
this type of situations where no ratings or explicit scores are available.

Finally, it is also interesting to observe that the IRenMF model obtains better
results than RankGeoFM. Although this contradicts the work of Liu et al. (2017),
this can be due to differences in the evaluation methodology, more specifically, in that
work the authors considered entire datasets, without dividing them into cities, which
could confuse geographical methods like these; moreover, heavy filters were applied to
those datasets, in particular, in the Foursquare dataset all users and POIs with less
than 10 interactions were removed, reducing its sparsity in comparison with the ones
we use here. Additionally, the implementation of these techniques could be slightly
different with respect to those tested in that paper, since while for IRenMF we have
taken the implementation as provided by the authors, for RankGeoFM we adapted the
implementation provided by the LibRec library (see Section 6.3.4).

Analysis on other cities
So far, we have only explored the results for the city of New York; now in Table 6.8 we
summarize the results for the best recommender in each family (according to nDCGs)
for New York and present the same results for Rome and Petaling Jaya, in this way
showing one city from each of the three datasets used. In the Appendix A.3.1, we show
and discuss the results for all the cities described in Section 6.3.1, but in the rest of
this chapter we shall focus on these three cases for the sake of space.

There are some interesting similarities between the results for these cities, which
are, in principle, very different (culturally but also regarding the data collected, ac-
cording to Table 6.4). First, the BPRMF recommender is the best one for the Classic
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Table 6.8: Performance for New York (NYC), Rome (ROM), and Petaling Jaya (PJ),
only showing the best recommender for each family. Notation and cutoffs like in Table 6.7.

Accuracy Seq. Accuracy Non Accuracy
City Family Rec P nDCG TFP Ps nDCGs FPs Dist Gini EPC

NYC

Basic Pop 0.144 0.417 0.326 0.139 0.402 0.284 43.9 0.001 0.904
Classic BPRMF 0.145 0.418 0.330 0.141 0.404 0.285 45.3 0.001 0.905

Temporal BFsUB 0.145 †0.420 0.336 0.140 0.404 0.302 †42.4 †0.003 †0.920
Geo IRenMF †0.147 †0.420 †0.345 †0.143 †0.405 †0.306 43.9 0.002 0.916
Tour ItemMC 0.132 0.404 0.295 0.129 0.391 0.279 44.9 0.001 0.911

Skylines TestOrder N0.453 N0.928 N0.453 N0.453 N0.909 N0.453 N8.3 N0.023 N0.979

ROM

Basic Pop 0.227 0.508 0.517 0.202 0.447 0.464 5.0 0.050 0.848
Classic BPRMF 0.226 0.508 0.518 0.201 0.447 0.460 6.3 0.050 0.848

Temporal FPMC 0.227 0.508 0.516 0.201 0.447 0.469 4.9 0.052 0.849
Geo RankGeoFM 0.211 0.486 0.516 0.187 0.427 0.457 5.6 †0.082 0.865
Tour ItemMC †0.231 †0.537 N0.519 †0.212 †0.477 †0.473 N2.0 0.076 †0.871

Skylines TestOrder N0.481 N0.915 0.481 N0.481 N0.858 N0.481 2.1 N0.217 N0.915

PJ

Basic Pop 0.128 0.413 0.249 0.126 0.404 0.245 35.0 0.001 0.915
Classic BPRMF 0.131 0.418 0.274 0.128 0.408 0.270 30.0 0.001 0.917

Temporal BFsUB †0.135 †0.423 †0.296 †0.134 †0.416 0.285 †26.6 0.003 †0.933
Geo PGN 0.129 0.415 †0.296 0.126 0.406 †0.286 30.0 †0.008 0.931
Tour ItemMC 0.127 0.412 0.244 0.125 0.403 0.240 28.4 0.002 0.918

Skylines TestOrder N0.369 N0.864 N0.368 N0.369 N0.853 N0.368 N7.0 N0.023 N0.980

family, whereas Pop performs the best for the Basic family. It should be noted that
the best recommenders from other families often obtain very close or lower values in
terms of relevance than Pop, evidencing a strong popularity bias. These results are
only improved when including different contextual factors like temporal or geographi-
cal information. Second, the TestOrder algorithm produces recommendations with the
lowest distance in every case, although in Rome, the ItemMC obtains slightly shorter
routes, but the difference is negligible. An important difference, however, is that the
best recommender in terms of sequential relevance belongs to the Geo family in one
case (New York), to the Tour family in another (Rome), and to the Temporal family in
the third one (Petaling Jaya). This confirms the importance of these recommendation
families in venue and, especially, route recommendation.

We do observe, however, an interesting difference in these results regarding the
larger values of the metrics in Rome. This is especially true for the FPs metric, and
in particular for the ItemMC recommender which is very close to the optimal value as
reported by the TestOrder skyline, although all the families obtain values much higher
(and closer to the optimal ones) than in the other cases. Our assumption is that this
unique behavior in Rome is related to the inherent characteristics of this dataset (see
Table 6.4) in comparison with the others: the number of items is very small, which
results in a more dense dataset, between 10 and 20 times less sparse than Tokyo or
New York7, together with the fact that the items in this dataset are artificially created
by the authors, by clustering existing venues by distance, assuming these items may be
more related from a touristic point of view. Even though these conditions may distort
the obtained results, we believe it is important to include at least one dataset not based

7It should be noted that we tried to reproduce these statistical conditions on any of the other
datasets by running simulations and discarding users, items, and check-ins, but we run out of data
before we could obtain a comparable dataset.
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on check-ins, despite their pervasiveness in the field, since they could provide a different
perspective of user behavior.

Short summary
Based on the conclusions drawn so far, we can analyze how the classical collaborative
filtering algorithms compare against approaches tailored to venue and route recom-
mendation. According to our results, simple models tend to obtain better results than
other complex models (mostly because these datasets suffer from very high sparsity),
although adding temporal or geographical contexts tend to improve the results. More-
over, those based on geographical or sequential properties tend to be amongst the best
ones, but it should be considered that a non-personalized method like a recommender
based on popularity provides a strong baseline which some algorithms are not able
to beat while others obtain very close, comparable performance. This conclusion, al-
though surprising, follows from the fact that, to the best of our knowledge, this is the
first work where so many families have been thoroughly compared and evaluated under
a realistic evaluation. Regarding whether performance changes when user sequences in
test are considered, we have not found many differences at the item level; our analysis
shows that this is because of the large number of potential items in these datasets,
which makes it very difficult to suggest relevant venues and in the correct order, since
larger differences between sequential and non-sequential metrics were found for those
users that receive more relevant recommendations. On the other hand, when the cate-
gory level is considered instead, larger differences between algorithms arise, where the
temporal and geographical ones tend to stand out.

In summary, we have found that many recommenders perform somewhat similarly
in terms of relevance, but they differ on other dimensions more related to the route
recommendation domain (geographical distance, venue categories) or to the sequential-
ity dimension. We aim to improve this by using reranking strategies; for instance, by
taking a simple, but good enough recommender, is it possible to improve the rest of
dimensions? We address this question and summarize the obtained results in the next
section.

6.3.6 Performance of reranking strategies

In this section, we present experiments for the proposed reranking strategies. For this,
we take Equation 6.1 with λ = 0, thus, only the sequence-aware reranker component
is considered (later in Section 6.4 we analyze the results at different values of λ).
Moreover, we rerank the first 20 items returned by each recommender for every user
using the 8 components presented in Section 6.2; specifically, f recseq uses a user-based

nearest neighbor with k = 100 and vector cosine as user similarity, f itemseq and ffeatseq

obtain better results without the smoothing component (α = 0) so it is not used in the
reported experiments, and f streeseq considers the last 4 items when querying the suffix
tree (m = 4), the rest of the rerankers are used as defined previously, since they do not
need additional parameters.
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Table 6.9 shows the results obtained for the rerankers described in Section 6.2 in
New York, Rome, and Petaling Jaya and for five out of the six families of recommenders
– we do not include the Skylines because their performance is optimal since they return
the test set of the user (see Section 6.3.4), so none of the reranking strategies would
help in increasing their performance. In these results, we focus on 3 complementary
dimensions that are very important for route recommendation according to our pre-
vious discussion: nDCGs (sequence-aware item-level relevance), FPs (sequence-aware
category-level relevance), and Dist (distance of the recommended route). As before,
complete results are presented in Appendix A.3.2 as separate tables, showing the re-
sults for all the cities presented in previous sections on every evaluation metric (see
Tables A.10, A.11, A.12, A.13, and A.14).

Performance comparison on a city basis
We observe a similar behavior in the three cities. First, the feature-based Markov chain
reranker (ffeatseq ) is usually the worst (together with the random one, f rndseq ), especially
in terms of FPs, but also for nDCGs, where it tends to decrease the performance with
respect to the baseline (base recommender without reranking). This can be attributed
to the fact that we are working with a limited number of features (note that there are
only 9 categories in the level 1 of Foursquare), so venues with the same feature can be
quite different (consider for instance a bar that belongs to the same category as a fast
food restaurant, or a hotel whose corresponding level 1 category is the same as a bus
station).

Second, it is interesting to observe that the baseline is often generating the longest
routes, hence, the reranking strategies allow to create more realistic and affordable
routes to the final user (except for the f rndseq , as the reranked items are sorted randomly).
However, there is a clear, non-negligible gap between the maximum values achievable
with the rerankers (illustrated by the oracle-based reranker foracleseq ) and the results
we obtain with the rest. Nonetheless, if we analyze this information from a different
perspective, we conclude that by simply reordering the first N candidates (in these
results, N = 20), the performance of some recommenders not specifically designed for
route recommendation can be improved in a varied range of percentages (depending on
the dimension that we are analyzing). For example, the distance of the route obtained
by the recommender from the Basic family (Pop) in PJ is 35.0 Km, while applying
fdistseq this distance is reduced to 7.2 Km – a decrease of 80% –; the value of FPs in
NYC for the Temporal family increases from 0.302 to 0.309 when applying the f recseq

reranker– an improvement of 2.32% –, and the performance on nDCGs for the Geo
family compared against when the item-based Markov chain reranker is applied in
ROM is 0.426 and 0.467 respectively – an improvement of 9.6%. We believe these
outcomes are very positive and promising, as route recommenders normally require
many different information sources and long execution times in order to work well,
but using this kind of techniques may help to find simple solutions for these cases by
balancing a tradeoff between relevance and the rest of the dimensions.
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Table 6.9: Effect of the reranking strategies (λ = 0, 20 candidate items reranked) on each
family of recommendation algorithms under three evaluation metrics.

New York Rome Petaling Jaya
Family Reranker nDCGs FPs Dist nDCGs FPs Dist nDCGs FPs Dist

Basic

Baseline 0.402 0.284 43.9 0.447 0.464 5.0 0.404 0.245 35.0
frnd
seq 0.383 0.297 28.0 0.402 0.452 5.9 0.387 0.274 29.5

fdistseq 0.396 N0.308 N4.1 0.469 †0.474 N1.4 †0.409 N0.296 N7.2

ffeatseq 0.400 0.267 33.3 0.422 0.371 5.0 0.402 0.267 33.2
f itemseq 0.399 0.279 37.8 †0.473 0.469 1.8 0.408 0.262 19.5
frecseq †0.406 0.298 42.4 0.422 0.452 6.0 0.407 0.271 26.3

f lcsseq 0.395 0.285 17.8 0.440 0.446 2.3 0.403 0.274 14.8
fstreeseq 0.402 0.289 38.4 0.446 0.466 3.2 0.403 0.263 25.9

foracleseq N0.468 0.296 43.2 N0.614 N0.482 4.2 N0.456 0.247 34.2

Classic

Baseline 0.404 0.285 45.3 0.447 0.460 6.3 0.408 0.270 30.0
frnd
seq 0.382 0.292 30.3 0.403 0.450 5.9 0.394 0.278 30.7

fdistseq 0.395 0.309 N4.2 0.468 †0.475 N1.4 †0.410 N0.294 N7.4

ffeatseq 0.398 0.267 33.5 0.424 0.373 5.0 0.402 0.269 34.0
f itemseq 0.400 0.276 38.0 †0.476 0.468 1.8 0.409 0.268 18.5
frecseq †0.406 0.300 42.4 0.422 0.452 6.0 0.407 0.273 26.5

f lcsseq 0.395 0.284 17.9 0.440 0.447 2.3 0.405 0.279 13.2
fstreeseq 0.404 0.294 38.6 0.447 0.465 3.7 0.405 0.275 22.1

foracleseq N0.468 0.300 44.3 N0.612 N0.482 4.9 N0.455 0.269 29.0

Temporal

Baseline †0.404 0.302 42.4 0.447 †0.469 4.9 †0.416 0.285 26.6
frnd
seq 0.379 0.317 25.3 0.409 0.449 6.0 0.383 0.308 28.1

fdistseq 0.389 N0.319 N3.5 0.464 0.468 N1.4 0.412 N0.326 N5.6

ffeatseq 0.388 0.272 30.6 0.421 0.375 5.0 0.397 0.291 30.2
f itemseq 0.400 0.293 37.2 †0.474 0.465 1.9 0.412 0.283 17.5
frecseq 0.403 0.309 41.5 0.422 0.452 6.1 0.407 0.292 26.1

f lcsseq 0.388 0.314 10.8 0.441 0.447 2.3 0.407 0.311 10.9
fstreeseq 0.398 0.311 29.6 0.445 0.468 3.1 0.411 0.301 17.3

foracleseq N0.462 0.308 39.9 N0.608 N0.482 4.1 N0.457 0.287 25.8

Geo

Baseline 0.405 0.306 43.9 0.427 0.457 5.6 0.406 0.286 30.0
frnd
seq 0.378 0.307 22.5 0.397 0.447 5.9 0.390 0.307 25.1

fdistseq 0.385 0.315 N3.6 0.456 †0.468 N1.4 0.405 N0.315 N5.8

ffeatseq 0.393 0.281 32.8 0.414 0.364 5.3 0.397 0.282 26.8
f itemseq 0.402 0.291 37.1 †0.467 0.466 2.1 †0.412 0.270 18.8
frecseq †0.405 0.311 42.0 0.417 0.453 6.0 0.407 0.290 25.8

f lcsseq 0.390 0.311 11.9 0.426 0.440 2.2 0.401 0.308 10.5
fstreeseq 0.402 0.321 31.3 0.431 0.458 3.5 0.404 0.302 19.4

foracleseq N0.464 0.314 41.7 N0.586 N0.472 4.6 N0.449 0.287 28.8

Tour

Baseline 0.391 0.279 44.9 †0.477 0.473 2.0 0.403 0.240 28.4
frnd
seq 0.364 0.305 23.9 0.400 0.448 5.7 0.390 0.291 30.8

fdistseq 0.381 0.311 N4.2 0.467 †0.474 N1.4 †0.412 N0.309 N7.1

ffeatseq 0.374 0.277 20.9 0.420 0.359 5.0 0.401 0.278 31.6
f itemseq 0.397 0.283 38.1 0.477 0.470 1.8 0.406 0.271 16.9
frecseq †0.403 0.289 41.4 0.427 0.451 5.8 0.408 0.273 26.6

f lcsseq 0.382 N0.312 12.0 0.438 0.446 2.1 0.406 0.290 13.9
fstreeseq 0.386 0.295 32.4 0.457 0.466 2.4 0.403 0.272 21.5

foracleseq N0.442 0.285 44.4 N0.600 N0.482 3.0 N0.455 0.244 28.0

Performance comparison on a reranker basis
Regarding specific rerankers, the distance-based reranker (fdistseq ) is, by definition, the
one that reduces the most the distance of the recommended route, but what is more
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Figure 6.4: Frequency of the number of venues each user visited in test for New York
and Rome.

important is that, in some situations, it is able to improve the performance in both
nDCGs and FPs (see for example the results in PJ for most of the families, but es-
pecially for Tour, or the results in ROM for all the families except Temporal). The
performance of the rerankers based on subsequences (f lcsseq and fstreeseq ) depend heavily
on the recommendation family, where in some situations they are able to decrease the
distance and improve FPs, as in PJ, where they outperform the baseline in every case,
or in NYC, where these rerankers obtain the best overall result in terms of FPs.

Finally, we observe that the recommender-based reranker (f recseq ) does not usually
improve the recommendation performance in any of the dimensions (except in some
cases in New York regarding the FPs); in particular, the distance tends to be very
high, not surprisingly since it does not consider explicitly any geographical component.
Despite these preliminary negative results, we believe this technique might evidence
better results if other recommenders are used (recall that we have only tested a user-
based nearest neighbor algorithm without tuning any of its parameters), especially
when applied to not collaborative baselines, as in the case of the Tour family in New
York where it manages to improve both FPs and nDCGs. A special mention deserves
the item-based Markov chain reranker (f itemseq ), since it is able to reduce the distance of
the recommended route in ROM consistently for any recommender family, and, on top
of that, it produces some of the best performing results in terms of nDCGs and FPs.

Performance comparison on a recommender family basis
Now, if we analyze these results from the perspective of the family of the recommenders,
we observe that the behavior is pretty stable in each city, independently of the origin
of the recommendations being reranked. We observe, however, that the oracle reranker
obtains different values depending on the family, which makes sense since each family
may produce a difference set of candidate items to be reranked (those in the top-n).
These optimal values are lower for those in the Tour family in New York, and higher in
the rest, evidencing that the candidate items have a lot of potential (except, to a lower
extent, those in the Tour family) and there is room for improvement.
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Figure 6.5: Frequency of the number of venues each user visited in test for New York
and Rome after removing repeated items in a per-user basis.

Short summary
Overall, these results confirm that it is possible to improve the performance of algo-
rithms by reranking the recommendations at least, in terms of reducing the distance of
the routes being suggested to the user, but also in terms of the category-level relevance
(FPs), while keeping the same (or lower but very close) item-level sequential relevance
(nDCGs). In particular, there is always a reranking strategy that allows to improve
the performance of the baseline recommender in each of the three compared evaluation
dimensions.

6.4 Discussion

This chapter has covered RG4: explore the LBSNs data used in POI recommendation
to explore new ways to make recommendations and enable full route recommendation.
In previous sections, we have presented and analyzed the performance of different rec-
ommendation techniques applied to the task of route recommendation using reranking
tecniques by exploiting sequentiality and the POI categories. We now aim to discuss
in more detail some aspects that may have a large impact on the evaluation of our
approaches. We first analyze the length of the route from every user in the test set;
then, we show the impact of the linear combination weight (λ in Equation 6.1) on the
different evaluation dimensions for some rerankers and recommenders. We have also
analyzed the case where recommenders are allowed to return items previously inter-
acted by the user, a situation very common in POI recommendation that produces a
repetition bias since users tend to visit the same venues more than once; however, since
this aspect is slightly out of the scope of this chapter, we moved those additional results
to Appendix A.3.3

For the first analysis, Figure 6.4 shows a bar plot where we present the number
of users with a given length in their test routes, for New York and Rome. In that
figure we observe that most users have routes with very few venues (note that the
minimum length, as explained in Section 6.3.2, is 4), this effect is further emphasized
when repeated venues in the test set are removed (see Figure 6.5), where there are users
with only 2 (unique) items in their test set. This situation could, in principle, affect the
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Figure 6.6: Sensitivity to λ parameter on three evaluation dimensions (nDCGs@10 left,
Dist@5 middle, FPs@10 right) for the Pop recommender using the following rerankers
(with markers) on New York: fdistseq , f itemseq , f lcsseq, fstreeseq , and foracleseq . The performance for
the baseline (no reranker) is included as the horizontal dashed line.
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Figure 6.7: Same information as in Figure 6.6 but for the IRenMF recommender.

experiments shown in previous sections, since when calculating the metrics presented
before, users with short routes contribute much more – because we compute the average
of the performance obtained by each user – than those few users with longer routes.
Looking at the plots, the number of users with routes of length 5 or less represents more
than 50% of the test users in any city. Note that this is an issue related to the general
formulation of the cold-start problem, as it reflects that user routes are usually short
(regardless of whether users have more or less interactions in the training set), which
makes the task of route recommendation even more difficult, in combination with the
high sparsity inherent in these datasets.

To continue with our discussion, we show in Figures 6.6 and 6.7 the evolution of
different λ values to analyze the impact of the sequence-aware reranker component
according to Equation 6.1 (recall that the results presented in the previous sections
were for λ = 0). Figure 6.6 shows the results for the Pop recommender on New
York whereas Figure 6.7 does the same for IRenMF. We select these recommenders
because we want to analyze the effect of the reranking strategies on a non-personalized
algorithm (Pop) and on the best-performing method (IRenMF) in this city; in both
cases, we compare five rerankers: distance, item-based Markov chain, based on LCS,
based on subsequences computed using a suffix tree, and oracle. We observe that, for
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the three reported dimensions, the larger the value of λ, the smaller the gap between
the rerankers and the oracle; this is a plausible result since for λ = 1 the output of the
reranking strategy is equivalent to that of the baseline recommender. More importantly,
the performance of most of the rerankers improve steadily until around λ = 0.5, where
it tends to abruptly get closer to the final value; hence, a safe value for λ to obtain a
tradeoff in all the dimensions would be, as expected, λ = 0.5. This value would allow
us, for instance, to improve FPs and the distance of the Pop recommender by using a
simple distance-based reranker, while for the IRenMF recommender, a reranker based
on LCS would even slightly improve on nDCGs (although the distance-based reranker
would also provide a good-enough tradeoff in the other dimensions). These results
evidence that reranking strategies could be exploited to create more meaningful routes
based on recommendations produced by either complex models (such as IRenMF) or
simple, not-personalized algorithms (such as Pop).
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7

Data augmentation and biases in
POI recommendation

In Chapter 3 we defined the POI recommendation problem and performed a review
of POI recommendation approaches between 2011 and 2019 showing, among other
aspects, the most extended types of algorithms, evaluation methodologies, and also the
challenges that still exist in the area. Moreover, in the previous chapter we explored
the use of reranking techniques to generate full routes to users showing the importance
of the geographical component to create these trajectories. In this chapter, we continue
exploring the POI recommendation problem by performing a more in-depth analysis of
the sparsity issue and the possible biases that can be found in LBSNs. For that reason,
in this chapter we further explore some of these issues by presenting a complete analysis
in different cities in the global-scale check-in dataset of Foursquare. Hence, we use data
aggregation techniques in order to improve the performance of the recommenders in
the POI recommendation domain based on cross-domain techniques. To do this, in
Section 7.1 we motivate our approach and introduce the key concepts that are being
addressed in this chapter. In Section 7.2 we define more in detail the cross-domain
recommendation problem; we then introduce our aggregation strategies in Section 7.3.
Then, in Section 7.4 we perform experiments in 8 independent cities from the full
dataset of Foursquare, we show the evolution of the recommenders in accuracy and
non-accuracy metrics using 3 different strategies: first, we will show the evolution of
the recommenders in each city separately (single-city), then we will expand the data for
each city with the 7 closest cities (by distance) to each of them, and finally we use the
data from the eight most popular cities to produce recommendations in each target city
independently. Finally, we will also show the performance of the recommendations in
two different types of users, tourists and locals, and analyze the biases that each group
may evidence separately. Finally, in Section 7.5 we discuss about the implications that
our proposed multi-city aggregation strategies may have in the POI recommendation
area.

The work presented in this chapter has been accepted to publication in the Infor-
mation Processing and Management journal:
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RECOMMENDATION

• Pablo Sánchez and Alejandro Belloǵın. On the effects of aggregation strategies
for different groups of users in venue recommendation. Submitted to Information
Processing and Management. Accepted paper.

A preliminary version of this work was published in the following workshop:

• Pablo Sánchez and Alejandro Belloǵın. A novel approach for venue recom-
mendation using cross-domain techniques. In the 2nd Workshop on Intelligent
Recommender Systems by Knowledge Transfer & Learning (RecSysKTL), held
in conjunction with the 12th ACM Conference on Recommender Systems, Van-
couver, Canada, Oct, 2018.

7.1 Motivation

Generally, in most areas of knowledge it is said that the accuracy of the algorithms
might be improved by extending the available information with additional data. In the
Recommender Systems domain this is especially important in datasets with a high level
of sparsity, where it is difficult to learn patterns between users and items due to the
low number of interactions between them. Transfer (or cross-domain) learning is one of
these valuable techniques that allow us to use external or additional information, mainly
to improve the performance in the target domain (Lu et al., 2015a, Yu et al., 2018).
In the context of RS, cross-domain recommendation is a recent and active research
topic, where POI recommendation has been acknowledged as a potential application
area (Zheng, 2015). However, not many experimental comparisons have been performed
using cross-domain or augmentation techniques in this field with a realistic evaluation.

Moreover, besides the inherent personalized results that are expected to be received
by users, they are traditionally treated equally when measuring the performance of the
recommenders (as explained with the user attributes in Section 4.3). However, this is
slowly changing since recently the field is paying more attention to whether users with
different attributes (such as age, gender, nationality, etc.) receive the same treatment,
or, in other terms, if the recommender system provides fair recommendations (Ekstrand
et al., 2018, Edizel et al., 2020). Nonetheless, these efforts are not easy to generalize
to other domains, in particular because users do not share the same characteristics
in different Recommender Systems and also because in some domains, there might
be some types of users that might not be easily categorized with just with a single
attribute, even though such groups exist and evidence distinct behavior. In particular,
in the tourism domain (which is typically studied with data from LBSNs), check-in data
has been used to characterize four types of travellers (Dietz et al., 2019): vacationers,
explorers, voyagers, and globetrotters, thus going beyond the classical tourist roles that
are usually considered (either leisure or business). Nonetheless, it is also acknowledged
that most of these users are not actual tourists but local users, or, at least, that
they tend to travel a limited distance from their home locations (an effect called travel
locality) (Levandoski et al., 2012). In any case, and independently of these uncertainties
in the types of users that can be identified in these systems, we think it is important to
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study if the susceptible algorithms to be used in such systems are to some extent biased
towards any particular user group, or if these groups are transparent to the algorithms.

Considering these issues, in this chapter we analyze the effect of producing recom-
mendations when using augmented information extracted from other cities, by exploit-
ing different Multi-City Aggregation (MCA) strategies, either based on the number of
interactions (popular cities) or by proximity with respect to the target city. Further-
more, we incorporate into our work an exploratory analysis with the aim to uncover
biases or effects that may inadvertently be present when making venue recommenda-
tions from LBSN data, either through state-of-the-art algorithms or when using our
proposed MCA strategies.

The work conducted in this chapter provides a thorough comparison of two Multi-
City Aggregation strategies for venue recommendation under a realistic time-aware
evaluation methodology. We report the results obtained by the MCA strategies in
terms of ranking accuracy, novelty, diversity, and coverage using the global-scale check-
in dataset of Foursquare. Moreover, we complement these results with an extensive
analysis of the effect of these strategies (together with the base performance of state-
of-the-art approaches) in two different types of users, tourists and locals.

7.2 Cross-domain recommendation

To properly understand the aggregation strategies proposed in this chapter, we first
need to introduce the area of cross-domain recommendation, where, in fact, there exist
multiple definitions of “domain” (Cantador et al., 2015): one can consider two items
belong to different domains if they have different values for a specific attribute but
others may argue different domains implies two separate systems or two types of items.
In any case, the basic idea behind this type of recommendation is that, to improve
recommendations over a target domain DT , some kind of knowledge from a source
domain DS needs to be exploited. In order to illustrate these concepts, consider for
example a source domain of books and a target domain of movies. We can make
recommendations of users who do not have a mature rating history in the target domain
by using some information stored in the source domain, i.e., if the target user liked
drama and horror books, she would probably also like movies of the same style even if
the items are from different domains.

Depending on the information analyzed and the destination users to make recom-
mendations, Cantador et al. (2015) describe the following three main recommendation
goals of cross-domain recommendation:

• Linked-domain recommendations: recommend items in the target domain by an-
alyzing both the target and source domains.

• Cross-domain recommendations: recommend items in the target domain to users
in the source domain by using only the information of the source domain.

• Multi-domain recommendations: recommend items belonging to the target or the
source domain to all kind of users.

163



7. DATA AUGMENTATION AND BIASES IN POI
RECOMMENDATION

Furthermore, we must consider that DS and DT may share some information about
the users, the items, or both, which allows us to categorize the different scenarios
according to the data overlap as: no overlap, item overlap, user overlap, and full over-
lap (both user and item overlap). Additionally, we can also classify the cross-domain
techniques according to how they exploit the knowledge. Based on the work of Can-
tador et al. (2015), there are two different categories: “aggregating knowledge”, when
the knowledge of the domains (user preferences, similarities, or single-domain recom-
mendations) is aggregated, and “linking and transferring knowledge”, where there is
a knowledge transfer between the different domains in order to produce recommenda-
tions, for instance by using common knowledge (semantic networks, items attributes,
etc.), sharing latent features, or transferring the rating patterns.

Nonetheless, we want to emphasize we have not found many examples of cross-
domain experiments combining more than two or three domains – usually, movies,
music, and books –, except for the works presented in Rafailidis and Crestani (2017)
and Sahebi and Brusilovsky (2015). In former, the authors exploited the information
of 10 domains (categories of different products from Epinions, hence, not related with
tourism) in order to analyze the performance of the recommendations using ranking
metrics (nDCG and R), however, these datasets are much smaller in terms of ratings
than the ones we use in this chapter (the largest one contains around 200K ratings)
and they are all more dense; while in the second one, the authors used 21 domains
(defined as the categories from different Yelp businesses) and measured the effects of
cross-domain recommendation in terms of RMSE by comparing the performance on
several domain pairs.

7.3 Aggregation techniques in POI recommendation

To avoid the inherent problems and limitations prevalent in POI recommendation, we
introduce now the concept of Multi-City Aggregation (MCA) strategies (based on cross-
domain recommendation explained in the previous section), that allow us to augment
the available data used by the recommendation algorithms to suggest interesting POIs
to users. The basic idea behind our proposed strategies is that, to improve recommen-
dations over a target city, the data from multiple cities will be aggregated and exploited
when training the recommendation algorithms. Since an infinite number of potential
strategies may exist, we shall focus on those that maximize the overlap information
between users.

More specifically, the main goal we aim to achieve, hence, if we focus on CF al-
gorithms, would be to find highly active users in the aggregated cities so they could
alleviate the inherent sparsity problem. Therefore, we consider the following possibili-
ties:

• Geographical nearest MCA (N) strategy: we use the n closest cities to the target
city as the aggregated information. We aim to capture cultural patterns (Yang
et al., 2016), while, at the same time, we keep control of the number of cities we
consider. Additionally, as a special case of nearest MCA strategy, we consider
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Table 7.1: Jaccard coefficient between users in the training splits of each city and the
corresponding MCA strategy.

Multi-City Aggregation Cities
Average

strategy (MCA) Istanbul Jakarta Kuala Lumpur Mexico City Moscow Santiago São Paulo Tokyo

N-MCA 89.54% 67.14% 83.44% 89.36% 94.48% 85.28% 64.87% 79.13% 81.66%
C-MCA 67.64% 57.54% 66.14% 67.80% 61.35% 83.68% 34.43% 74.52% 64.14%
P-MCA 29.09% 13.63% 13.53% 9.30% 8.71% 7.73% 8.99% 10.79% 12.72%

a country-based MCA (C) strategy, where the aggregated information is built
by all the cities of the same country as the target city. In this strategy, we
assume that users tend to visit more often those cities of the same country, or,
at least, that there are some kind of patterns shared among them, mostly due to
a similar culture and language (Yang et al., 2016), even though some situations
(large countries) may add too much noise into the model. The idea for this
strategy comes from previous works in POI recommendation that use datasets
with interactions belonging to a specific country or a state/province of a country,
as in Li et al. (2015a) and Xie et al. (2016a). Note that for the N-MCA strategy
there could be cities from a different country with respect to the target city while
in C-MCA strategy all selected cities will belong to the same country, even though
some of them may not be so close to the target city.

• Most-popular MCA (P) strategy: we use the n cities with more check-ins as the
aggregated data. This strategy allows us to test whether considering those cities
that the system has more information about can be useful for the model. We
hypothesize that having more information should be helpful for the recommenda-
tion algorithms, however, this strategy might also be more sensitive to noise and
may not improve the user overlap (even though a high user overlap may not be
sufficient to obtain a performance improvement). This strategy is also influenced
by other works in POI recommendation that use datasets with check-ins from all
over the world, including Gao et al. (2013), Zhang and Chow (2015c) and Zhang
and Chow (2015b).

As a first validation that these strategies might be actually helpful for POI recom-
mendation, we show in Table 7.1 the percentage of common users (measured using the
Jaccard coefficient) between the training set of each target city and the corresponding
training set of the multiple cities being aggregated according to the different strategies
described before. Using the same dataset that will be used and explained later in the
experiments, we compute these percentages using the Jaccard coefficient as follows (as
in Yang et al. (2016)):

Common Users(C1, C2) =
|U(C1) ∩ U(C2)|
|U(C1) ∪ U(C2)|

(7.1)

where U(C) denotes the set of users in city C.
We observe that the N-MCA and C-MCA strategies are really useful to find more

users in common, however, it is not clear the actual effect this result may have on
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Table 7.2: Description of the temporal partition evaluated (the complete dataset, the
training set, Tr, and the test set, Te), where U , I, and C denote the number of users,
items, and check-ins (either with repetitions, CR, or without, Cr). The column δ(C)
denotes the density of dataset as computed by C/(U · I).

check-in period U I CR Cr δ(CR) δ(Cr) Cr/U Cr/I

Apr’12-Sep’13 267k 3.7M 33.3M 15.1M 0.0034% 0.0015% 123.60 9.16
Tr: May-Oct ’12 202k 1.1M 9.9M 4.8M 0.0044% 0.0021% 23.67 4.31
Te: Nov ’12 150k 352k 831k 831k 0.0017% 0.0017% 5.52 2.36

the performance of venue recommendation algorithms, especially on those not based
on nearest neighbors. At the same time, even though the P-MCA strategy does not
discover many users in common, since it includes much more data to train the recom-
menders, it may be more beneficial to some recommendation approaches. Hence, in
the experiments we shall test which approach is actually more helpful to obtain better
recommendations.

In summary, our proposal would be similar to some techniques from cross-domain
(or transfer learning) recommendation, if we consider each city as a different domain. In
that way, when we augment the available information from the different cities (accord-
ing to the proposed MCA strategies), we would combine data from different domains,
hence performing a cross-domain recommendation. More specifically, according to the
taxonomy presented in Cantador et al. (2015) and presented briefly in the previous
section, it would fit in the category of merging user preferences by aggregating knowl-
edge, since we combine multiple sources of personal preferences (basically, the check-ins
from various cities and the target city). Additionally, our scenario is special and more
difficult according to the literature since no item overlap exists between the domains,
this is because an item (venue) will never appear in a different domain since they are
unique (even two places of the same food or clothing chain will be considered different).

The main advantage of applying some kind of cross-domain in venue recommenda-
tion is that we can expand the knowledge of the recommenders with a larger number of
users and items, in order to establish more relationships between them and find better
patterns. However, it is not obvious how we should select such knowledge: on the one
hand, noise might be added to the model, on the other hand, such information may
not to be useful at all. This is exactly what we propose to study and analyze in this
chapter: MCA strategies that select data according to different hypotheses and criteria.
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7.4 Experiments

7.4.1 Dataset

The experiments have been performed using the global-scale check-in dataset of
Foursquare1 made public by Yang et al. (2016), by capturing those check-ins posted
by Twitter users (the same dataset used in Sections 4.5 and 6.3.1). Considering the
worldwide nature of this dataset, it seems impractical for us to select a training/test
partition that would remain comparable for any city in the world. Therefore, we aimed
to maximize the amount of data included for training the models and to test their
performance, while, at the same time, the temporal patterns in each split should not
belong to seasons that are too different to each other. Based on this, and starting from
the original 33M check-ins, we created a temporal split containing 6 months of data in
its training step (from May to Oct ’12) and one month for test (Nov ’12); this period
of the year was selected to capture seasonal trends related to a particular season of
the year (summer) while including enough data to obtain significant results. In this
regard, it is important to mention that it is common to find POI recommendation
proposals that perform other type of splits for evaluation, such as random partitions,
cross-validation, or temporal per user splits (Liu et al., 2014, Ye et al., 2011, Yuan
et al., 2016). However, we argue that these types of splits are less realistic, since in
those partitions we may be predicting user interactions that occurred in the past mixed
with other events that occur in the future. In addition, user tastes change over time
and also there may be global trends that we would not be taking into account if a
temporal partition is not used.

Table 7.2 shows more statistics of both the original dataset and the training/test
split used in this chapter. Additionally, as a pre-processing step, we performed a 2-core
before splitting the data into training and test, which means that every user and POI
has at least two interactions.

7.4.2 Compared baselines

We report results obtained by the following state-of-the-art recommenders grouped in
different families according to the common mechanisms used to make the recommen-
dations.

• Classic no personalized (NP). Traditional recommendation algorithms that do
not learn a profile for each user:

– Pop: a popularity recommender. Already explained in Section 4.5.1.

– Rnd: a random recommender. Already explained in Section 4.5.1

• Only geographical (Geo). Basic algorithms used to model only the geographical
component:

1Global-scale check-in dataset, https://sites.google.com/site/yangdingqi/home/

foursquare-dataset
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Table 7.3: Parameters used with the evaluated recommenders. SetC and SetJ stand for
SetCosine and SetJaccard. Parameters optimized using P@5.

Recommender Parameters

Rnd None
Pop None
AvgDis None
KDE None

IB Sim={SetC, SetJ }, k={5, 10, · · · , 100}
UB Sim={SetC, SetJ }, k={5, 10, · · · , 100}

HKV Factors={10, 50, 100}, α={0.1, 1, 10}, λ={0.1, 1, 10}
BPRMF

Factors={10, 50, 100}, Iter=50, LearnRate=0.5, RegJ=RegU/10,
BiasReg={0, 0.5, 1}, RegU=RegI={0.0025, 0.001, 0.005, 0.01, 0.1}

GeoBPR
MaxDist={1, 4}, Factors={10, 50, 100}, BiasReg={0, 0.5, 1}, Iter=50,
RegU=RegI={0.0025, 0.001, 0.005, 0.01, 0.1}, LearnRate=0.05

IRenMF
k=10, Clusters=50, λ1=λ2=0.015,
Factors={50, 100}, α={0.4, 0.6}, λ3={0.1, 1}

RankGeoFM
Factors={10, 50, 100}, k={10, 50, 100, 200}, α={0.1, 0.2}, c=1,
dec=1, ε=0.3, boldDriv=true, Iter=120, LearnRate=0.001,
mRate=0.001

FMFMGM
MGM: α = {0.2, 0.4}, θ = {0.02, 0.1}, dmax=15. PMF: Iter=30,
Factors={50, 100}, α2={20, 40}, β=0.2, LearnRate=0.0001, sig-
moid=false

GeoSoCa Sim=SetJ, k=100
PGN k=100, Similarity=SetJ

– AvgDis: algorithm that suggests the closest POIs to the user’s average lo-
cation. Explained in Section 6.3.4.

– KDE: Kernel Density Estimation recommender already explained in Sec-
tion 6.3.4.

• Classic collaborative filtering (CF-NN). Traditional recommendation algorithms
based on nearest neighbors:

– IB: an item-based nearest neighbor algorithm. Already explained in Sec-
tion 2.2.2.

Table 7.4: Optimal parameters of models for each city. The order of the presented
parameters is: for UB and IB, similarity and neighborhood size; for BPRMF, factors, RegU,
BiasReg; for HKV, factors, α, λ; for IRenMF, factors, α, λ3; for RankGeoFM, factors,
neighborhood size, α; for GeoBPR, maxDist, factors, RegU, BiasReg; for FMFMGM, α,
θ, Factors, α2.

City UB IB BPRMF HKV IRenMF RankGeoFM GeoBPR FMFMGM

IST SetJ, 90 SetC, 100 50, 0.001, 0 10, 10, 10 100, 0.4, 1 100, 50, 0.1 4, 100, 0.001, 0 0.4, 0.02, 100, 20
JAK SetJ, 100 SetC, 80 100, 0.0025, 0 10, 10, 10 100, 0.4, 1 100, 200, 0.2 1, 100, 0.001, 0 0.2, 0.02, 100, 20
KUA SetJ, 100 SetJ, 100 50, 0.01, 0 10, 10, 10 100, 0.4, 1 100, 50, 0.2 1, 50, 0.001, 0 0.4, 0.02, 100, 20
MEX SetJ, 100 SetJ, 100 100, 0.01, 0 10, 10, 10 100, 0.4, 1 100, 100, 0.2 1, 100, 0.001, 0 0.4, 0.1, 100, 20

MOS SetC, 100 SetJ, 100 100, 0.01, 0 50, 10, 1 100, 0.4, 1 100, 200, 0.1 1, 50, 0.0025, 1 0.4, 0.1, 100, 20
SAN SetJ, 90 SetJ, 80 50, 0.005, 0 10, 10, 10 100, 0.4, 1 100, 100, 0.1 1, 50, 0.001, 0 0.4, 0.02, 100, 20
SAO SetJ, 100 SetJ, 100 100, 0.1, 0 50, 10, 0.1 100, 0.6, 0.1 100, 50, 0.2 1, 100, 0.001, 1 0.4, 0.02, 100, 20
TOK SetJ, 80 SetC, 80 50, 0.1, 0 10, 10, 10 100, 0.4, 1 100, 10, 0.1 4, 10, 0.001, 0 0.4, 0.02, 100, 20
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– UB: a user-based nearest neighbor algorithm. Already explained in Sec-
tion 2.2.2.

• Classic matrix factorization (CF-MF). Traditional recommendation algorithms
based on matrix factorization approaches:

– HKV: a matrix factorization algorithm. Already explained in Section 2.2.2.

– BPRMF: Bayesian Personalized Ranking for Matrix Factorization. Already
explained in Section 2.2.2.

• POI models (POI). State-of-the-art POI recommendation algorithms:

– GeoBPR: a POI recommendation approach that uses BPR to optimize the
model (Yuan et al., 2016). It incorporates the geographical influence by
assuming that users prefer to visit close rather than remote POIs with respect
to the ones that the user has already visited.

– IRenMF: weighted POI matrix factorization method explained in Sec-
tion 6.3.4.

– RankGeoFM: ranking-based matrix factorization approach explained in Sec-
tion 6.3.4.

• Hybrid POI recommendation models (H-POI). POI recommendation algorithms
whose final score is the combination of two or more independent algorithms:

– FMFMGM: is a fusion model proposed in Cheng et al. (2012) that com-
bines the Multi-center Gaussian Model technique (MGM) with Probabilistic
Matrix Factorization (PMF).

– GeoCFCa: a hybrid POI recommendation model based on the technique
proposed in Zhang and Chow (2015b) that combines the geographical influ-
ence using a two-dimensional KDE and the social and categorical influences
modeled by two different power-law distributions. As in the Foursquare
dataset the social information is not available for all the users, we decided
to use a k-NN algorithm as a substitute for the social component; because
of this, we changed its name from the original GeoSoCa to GeoCFCa.

– PGN: hybrid POI recommendation algorithm that combines the UB, Pop,
and AvgDis recommenders. Explained in Section 6.3.4.

In order to make a fair comparison among all the evaluated baselines, we removed
repetitions in a user basis for some classic algorithms. When repetitions are allowed,
we either aggregated them as frequencies or keep all the repeated interactions. This
means that we kept three versions of the training set: with and without check-in
frequencies but where each user-item pair only appeared once, and another scenario
where the user-item pairs might be repeated. More specifically, the following POI
recommendation algorithms could exploit the frequency of users when visiting a specific
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venue: AvgDis, IRenMF, FMFMGM, RankGeoFM and GeoCFCa; whereas KDE is the
only recommender that uses the training set with repetitions.

For every recommender except the IRenMF algorithm, we used the RankSys li-
brary (Castells et al., 2015); for IRenMF we used the implementation provided by
Liu et al. (2014), available here2; for RankGeoFM and GeoBPR, we implemented our
own versions on top of RankSys, based on the implementation provided by LibRec3

for the former, and on the code provided by Han and Yamana (2020) for the latter.
Finally, we also implemented our own versions of GeoCFCa and FMFMGM based on
the code provided by Liu et al. (2017) for both of them and Han and Yamana (2020)
for GeoCFCa.

The similarities used in the k-NN recommenders are based on set operations as the
data does not include ratings: SetJ is the well-known Jaccard Index and SetC is based
on the similarity proposed in Aiolli (2013), always considering that the similarities
between users/items are symmetrical.

7.4.3 Experimental setup

Based on the temporal split presented in Table 7.2, we decided to focus on the eight
largest cities in terms of number of check-ins: Istanbul (IST), Jakarta (JAK), Kuala
Lumpur (KUA), Mexico City (MEX), Moscow (MOS), Santiago (SAN), São Paulo
(SAO) and Tokyo (TOK). Hence, we will compare the recommendations produced
using the information of the training set of each of these eight cities independently
(Single City) with the recommendations obtained by augmenting the data from any
other cities in the dataset according to the proposed strategies.

To evaluate the recommenders, we applied the already explained methodology in
previous chapters called TrainItems (Said and Belloǵın, 2014), where only the venues
that appear in the training set of each target city are considered as candidates, except
the ones already rated by the user. Besides, we filter out in the test set all interactions
that appear in the training set, so the test set is only composed by new preferences.
Moreover, since the performance metrics we use are not well-defined when repetitions
exist in the data, we eliminate all repeated interactions from the test set, simulating
that each user will visit each POI only once. Then, we compare the recommendations
generated by the different algorithms when using different training information accord-
ing to the presented MCA strategies: multiple cities selected based on the nearest
cities (N-MCA and C-MCA) and based on most popular cities (P-MCA). We want to
emphasize that regardless of the data used to augment and train the algorithms, the
candidate POIs will always belong to the target city.

As in the previous chapters, we use an array of metrics to test the performance
of the recommenders in terms of ranking accuracy, novelty, diversity, and coverage.
For accuracy, we will make special emphasis on normalized Discounted Cumulative
Gain (nDCG), although results in terms of Precision (P) and Recall (R) will also be

2IRenMF implementation, http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17/
3LibRec, https://www.librec.net/
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Table 7.5: Performance results (nDCG@5) when no MCA strategy is used. In bold, we
show the highest value for each city in each family and we show with a dagger the highest
value in each city.

Family Rec IST JAK KUA MEX MOS SAN SAO TOK

NP
Pop 0.054 0.066 0.066 0.041 0.027 0.051 0.053 0.069
Rnd 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Geo
AvgDis 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001
KDE 0.003 0.004 0.004 0.006 0.006 0.005 0.008 0.005

CF-NN
IB 0.059 0.035 0.042 0.013 0.017 0.026 0.015 0.048
UB 0.073 0.070 0.073 0.044 0.037 0.053 0.049 0.069

CF-MF
HKV 0.070 0.066 0.066 †0.047 0.039 0.050 0.048 0.059

BPRMF 0.053 0.057 0.064 0.037 0.029 0.047 0.035 0.066

POI
GeoBPR 0.064 0.067 †0.073 0.046 †0.044 0.052 0.052 0.068
IRenMF †0.074 †0.071 0.072 0.042 0.035 0.049 0.044 0.065

RankGeoFM 0.059 0.044 0.051 0.027 0.019 0.031 0.025 0.036

H-POI
FMFMGM 0.060 0.050 0.060 0.029 0.028 0.033 0.034 0.061
GeoSoCa 0.033 0.026 0.029 0.017 0.016 0.013 0.017 0.026

PGN 0.067 0.067 0.070 0.043 0.032 †0.054 †0.057 †0.070

shown (Gunawardana and Shani, 2015). The optimal parameters (shown in Table 7.4)
were selected according to P@5 in the scenario when no MCA strategy (SC, from
Single City) is applied. The values obtained for the tested parameters are presented in
Table 7.3. This means that we use the optimal parameters found in that case and apply
the same values for the scenarios when either MCA strategy is used. We have decided
to use P instead of nDCG to select the best recommenders because it is more common
to use this metric in the area (as shown in Table 3.7). In addition, it should be noted
that the relevance in this type of dataset is binary. For novelty, diversity, and coverage
we present results for EPC, Gini, and IC. Additionally, unless stated otherwise, all
metrics are reported at a cutoff of 5.

7.4.4 Performance of the recommenders by using the augmented in-
formation through MCA strategies

In this section, we aim to answer the following question: Are state-of-the-art recom-
mendation algorithms able to exploit augmented information through MCA strategies
for venue recommendation? With this goal in mind, we analyze which POI recommen-
dation algorithms tend to improve or deteriorate their performance under the different
MCA strategies proposed.

First, we present in Table 7.5 the results of each recommender (for all families)
in each of the eight cities. In this case, no MCA strategies are applied, so both the
training and test sets correspond to the target city. The most noticeable result that
we observe in this table is the low values obtained by all the recommenders. These
low values are mostly due to the high sparsity of the data (see Table 7.2 and Table 7.7
for additional statistics about the cities and aggregation strategies used), together with
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the fact that we are using a temporal split, which makes the recommendation task even
more difficult, since, for instance, a small subset of the few items a user may have in her
test set may not appear in the training set at all. Moreover, another aspect that makes
it less likely to achieve high accuracy values is that, because of the temporal split, there
could be some new users that did not appear in the training set, so in those cases it
would be impossible to produce recommendations using any personalized model.

Regarding the recommenders, the AvgDis recommender is the second worst algo-
rithm (after Rnd) and followed by KDE, which evidences that simply modeling the user
by the geographical coordinates of her (most frequent) visited venues is not enough to
predict her future interactions. Additionally, we observe that the IRenMF approach,
even though it remains very competitive, it is not always the optimal recommender
across all the cities, somewhat in contradiction with reported experiments in previous
works (Liu et al., 2014, 2017). We attribute this behavior to the following reasons:
first, its claimed superior performance was only tested using a random split in Liu
et al. (2014) instead of a temporal evaluation as we do here; and second, classical rec-
ommendation algorithms such as Pop or standard CF approaches were neglected in
Liu et al. (2017) which, together with our previous discussion, definitely disturbs such
comparisons.

Similarly, RankGeoFM performs poorly, only slightly superior to IB. This could
again be explained by the different conditions of the experiments in the original pa-
per (Li et al., 2015a) with respect to ours. For example, in the original paper the
authors tested their algorithm only in one city on Foursquare (Singapore) and in two
states in Gowalla (Nevada and California), while we have selected 8 different cities
on Foursquare. On the other hand, GeoBPR shows very good results for some cities
(such as KUA and MOS), although not as good in others (see IST). In this context,
we must take into account that for all the recommenders that use matrix factorization
techniques, there is a large number of configurable and tunable parameters, making it
very difficult (and costly) to find the best configuration in all the situations.

For the rest of the recommenders, we observe that UB is one of the best approaches
for most of the cities, usually very close to the optimal one. However, it should be
taken into account that all personalized recommenders (except PGN) have less user
coverage than the NP family and we may find users in the test set that have not rated
any item in the training set. Later, in Section 7.4.6 we shall discuss this aspect again.
Additionally, it is interesting to note the relatively high performance of PGN, since it
is able to beat the rest of the baselines in many cities, despite its simplicity and the
fact that we did not perform any parameter tuning. A possible explanation for this
effect is the popularity bias, which is an important component of the PGN algorithm.
As we observe in these results, the pure popularity recommender (Pop) obtains a very
good performance, being able to surpass other more complex algorithms such as IB or
BPRMF.

We now present in Table 7.6 the results for all cities and the best recommender
(according to nDCG@5) of each family when the two proposed MCA strategies are
used: most-popular MCA (P), geographical nearest MCA (N), and a MCA (C) based
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on the cities of the same country. In the first case, for every city, the training set is
built by aggregating the training data from the eight most-popular cities; in the second
one, the training set is built by taking the nearest 7 cities with respect to the target
city, so the number of cities under consideration is comparable to that of P-MCA, and
finally for the country-based strategy, the training set is built using the check-ins of
all the cities belonging to the same country of the target city. In Appendix A.4 we
show the selected cities according to the N-MCA and C-MCA strategies for each target
city. In all scenarios the test set corresponds to the one of the target city. It should
be noted that we do not show results for the non-personalized family as the MCA
strategies do not affect this type of recommenders. The reason for this is that, even
though some models may be trained with data from different cities, we only allow to
recommend items from the target city; hence, the most popular items of a given city
will remain the same regardless of the set of cities used as source domain. Similarly,
the random recommender will always give a random score for each item of the target
city notwithstanding the aggregation strategy used.

Thus, Table 7.6 shows the relative improvement with respect to the base perfor-
mance of each algorithm when no MCA strategy is used to augment the training infor-
mation – that is, the performance of that algorithm when only information from the
target city is used, which corresponds to the results shown in Table 7.5. We observe
that classical CF algorithms (CF-NN and CF-MF) are able to exploit quite successfully
the augmented information using the P-MCA strategy, although the CF-MF often has
a lower performance with respect to the base scenario (column SC, from Single City).
Moreover, CF-NN always evidence a positive improvement under the N-MCA and C-
MCA strategies. We argue this trend for the CF techniques is related to whether the
new users from the aggregated cities – it should be noted that the new items found in
the augmented training set will never have overlap with the target items, since when
using information from other cities the POIs will always be different – have some level
of interaction with the target city. In this sense, when combining information from
nearby cities it is more likely to find similar users with useful suggestions or learning
relevant latent representations more related to the target items. Additionally, having
more data available so that the sparsity is reduced does not guarantee better recommen-
dations, since the MF approaches from CF-MF and POI families tend to deteriorate
their performance under the P-MCA strategy.

On the other hand, the performance of the Geo family is always worse when using
any of the MCA strategies. The reason for this might be quite obvious, since considering
other cities to compute a new user’s centroid will certainly move such centroid far away
from the target city, which is not useful when we are only interested in recommending
venues inside of that specific city. Nevertheless, it is interesting to observe that the POI
family, which includes a geographical component, also benefits from the MCA strategies
in some scenarios. For example, in IST, JAK, KUA, SAN, and TOK using both the
N-MCA and C-MCA strategies, these algorithms obtain a better performance than in
the Single City scenario. However, when using the P-MCA strategy, the performance
of this family is always worse. This result is particularly interesting since in some
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Table 7.6: Performance in terms of nDCG@5 when augmented information is used for
training. The improvement in performance with respect to Single City (SC) is represented
as ∆(%).

MCA ∆ MCA (%)
City Family SC N C P ∆ N (%) ∆ C (%) ∆ P (%)

IST

Geo 0.003 0.003 0.002 0.003 −14.16 −27.72 −0.90
CF-NN 0.073 0.073 0.075 0.073 0.32 3.83 0.35
CF-MF 0.070 0.071 0.073 0.068 1.98 4.79 −3.41

POI 0.074 0.076 0.077 0.072 2.88 3.46 −3.25
H-POI 0.067 0.068 0.071 0.068 1.61 6.17 0.91

JAK

Geo 0.004 0.003 0.003 0.004 −19.73 −24.52 1.83
CF-NN 0.070 0.075 0.078 0.071 6.68 10.46 0.37
CF-MF 0.066 0.070 0.072 0.060 6.31 9.34 −8.50

POI 0.071 0.076 0.077 0.064 8.16 9.39 −8.63
H-POI 0.067 0.070 0.072 0.068 4.75 6.86 0.63

KUA

Geo 0.004 0.003 0.003 0.004 −37.28 −41.48 −0.73
CF-NN 0.073 0.076 0.078 0.073 4.13 6.20 0.29
CF-MF 0.066 0.075 0.077 0.065 13.79 17.14 −1.55

POI 0.073 0.075 0.075 0.062 2.20 2.58 −15.48
H-POI 0.070 0.072 0.073 0.070 2.12 3.65 0.02

MEX

Geo 0.006 0.005 0.004 0.005 −13.79 −26.19 −1.37
CF-NN 0.044 0.045 0.047 0.045 1.62 7.17 1.24
CF-MF 0.047 0.045 0.045 0.037 −5.03 −3.95 −22.07

POI 0.046 0.044 0.043 0.031 −3.14 −4.64 −31.44
H-POI 0.043 0.044 0.046 0.044 2.21 7.13 1.33

MOS

Geo 0.006 0.005 0.005 0.006 −13.91 −22.09 −0.56
CF-NN 0.037 0.038 0.041 0.037 2.53 10.83 0.33
CF-MF 0.039 0.039 0.041 0.036 1.84 6.11 −7.70

POI 0.044 0.041 0.038 0.022 −7.60 −13.54 −49.03
H-POI 0.032 0.033 0.036 0.032 0.78 10.87 0.06

SAN

Geo 0.005 0.003 0.004 0.005 −36.08 −34.94 −1.40
CF-NN 0.053 0.060 0.064 0.054 12.98 19.34 0.86
CF-MF 0.050 0.060 0.062 0.046 20.21 24.22 −7.87

POI 0.052 0.057 0.055 0.038 9.46 6.74 −27.19
H-POI 0.054 0.059 0.060 0.055 8.68 10.16 1.14

SAO

Geo 0.008 0.007 0.006 0.008 −12.00 −19.03 −0.49
CF-NN 0.049 0.056 0.060 0.049 15.42 23.91 −0.22
CF-MF 0.048 0.056 0.058 0.047 15.23 19.78 −2.09

POI 0.052 0.047 0.040 0.031 −10.26 −22.55 −40.43
H-POI 0.057 0.057 0.058 0.057 0.41 2.06 0.53

TOK

Geo 0.005 0.003 0.003 0.004 −42.38 −45.74 −3.43
CF-NN 0.069 0.073 0.074 0.069 5.38 7.41 −0.20
CF-MF 0.066 0.066 0.065 0.062 0.93 −0.63 −6.13

POI 0.068 0.071 0.070 0.064 3.90 2.89 −6.30
H-POI 0.070 0.073 0.074 0.070 4.89 6.15 −0.16
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Table 7.7: Statistics for training splits of the reported cities and MCA strategies used.
Notation as in Table 7.2. The last two columns show the amount of information in the
MCA strategies that was already included in the target city C.

City U I CR Cr
CR
|U||I|

Cr
|U||I|

CR(C)
CR

Cr(C)
Cr

IST SC 23k 40k 668k 392k 0.072% 0.042% 100.0% 100.0%
N-MCA 26k 51k 784k 458k 0.060% 0.035% 85.21% 85.70%
C-MCA 34k 88k 1.2M 691k 0.039% 0.023% 56.62% 56.79%

JAK SC 11k 39k 347k 182k 0.082% 0.043% 100.0% 100.0%
N-MCA 16k 80k 678k 354k 0.052% 0.027% 51.13% 51.52%
C-MCA 19k 104k 861k 441k 0.044% 0.023% 40.31% 41.40%

KUA SC 11k 28k 312k 170k 0.102% 0.056% 100.0% 100.0%
N-MCA 13k 63k 642k 341k 0.078% 0.042% 48.62% 49.93%
C-MCA 16k 87k 856k 438k 0.061% 0.031% 36.43% 38.79%

MEX SC 7k 27k 285k 143k 0.144% 0.073% 100.0% 100.0%
N-MCA 8k 35k 344k 172k 0.119% 0.059% 82.80% 83.43%
C-MCA 11k 55k 506k 248k 0.084% 0.041% 56.34% 57.91%

MOS SC 7k 29k 304k 153k 0.150% 0.075% 100.0% 100.0%
N-MCA 7k 33k 328k 164k 0.137% 0.068% 92.58% 93.38%
C-MCA 11k 64k 584k 279k 0.081% 0.039% 52.08% 54.64%

SAN SC 6k 25k 324k 130k 0.211% 0.085% 100.0% 100.0%
N-MCA 7k 36k 433k 173k 0.168% 0.067% 74.92% 75.39%
C-MCA 7k 38k 455k 182k 0.162% 0.065% 71.23% 71.72%

SAO SC 7k 28k 294k 120k 0.145% 0.059% 100.0% 100.0%
N-MCA 11k 50k 491k 195k 0.089% 0.035% 59.76% 61.66%
C-MCA 21k 117k 1.1M 446k 0.047% 0.018% 25.65% 26.90%

TOK SC 9k 29k 328k 164k 0.133% 0.067% 100.0% 100.0%
N-MCA 11k 60k 631k 301k 0.097% 0.046% 51.97% 54.40%
C-MCA 11k 70k 705k 337k 0.088% 0.042% 46.48% 48.47%

All P-MCA 80k 245k 2.9M 1.5M 0.015% 0.007% - -

works researchers perform experiments using datasets with information from several
cities grouped together (Zhang and Chow, 2013, Gao et al., 2015b, Manotumruksa
et al., 2020), and as we can observe, this can affect negatively the performance of some
models.

From the perspective of the MCA strategies, we observe that the performance im-
provements obtained when using the P-MCA strategy is usually negligible. In general,
most of the improvements when using this strategy are very close to zero and, for many
of the city-recommender family combinations, extremely negative. At the same time,
N-MCA and C-MCA usually produce larger improvements with less training data in-
volved since those cities that belong to the same country or are geographically nearest
to the target city always include less check-ins than the originally selected cities, which
were the most popular ones in our dataset; see Table 7.7 for more details). Even if
these results seem to confirm that better data is more useful than more data, we now
analyze these effects in more detail.

To properly understand which of the MCA strategies are more suitable to augment
the data available for recommendation, we include in Table 7.7 the sparsity of each
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resulting augmented training set, together with the amount of information already
included in the target city with respect to each aggregation (last two columns). Based
on these statistics, we infer that the user overlap of each MCA strategy (reported
in Table 7.1) is not the only factor to consider in the success of the proposed data
augmentation approaches. For instance, the three cities with more user overlap (IST,
MEX, and MOS, with more than 82%) also show high ratios of Cr(C)/Cr when N-MCA
is used, which means that such aggregation strategy incorporates very little additional
information with respect to the original training data, resulting in a more sparse dataset
(to be expected from any MCA strategy, due to the large amount of new items and
users added) but where most of the interactions come from the same city. Going back
to the results in Table 7.6, we observe that the N-MCA strategy is less useful (for the
CF-MF approaches in particular, but also for the classical CF-NN methods) essentially
when such ratio is too large, since this means that the original and augmented training
splits are very similar and, hence, the performance improvement would be minimal.

Thus, we are able to answer our first research question: we have seen that some clas-
sic recommenders (i.e., nearest neighbors and matrix factorization) are able to benefit
from the augmented information if the cities used to define the Multi-City Aggregation
strategy are selected properly. In particular, we conclude that selecting cities by prox-
imity (and, as a special case, by country) has a greater benefit than selecting them by
the amount of information they contain (popularity). However, other approaches more
tailored for venue recommendation may decrease their performance when exploiting
knowledge from other domains. This is especially noticeable in strategies that give
great importance to geographical influence whenever the number of common users is
negligible, as in the P-MCA proposed method. This opens up the possibility of using
alternative cross-domain techniques that may benefit other algorithms that are not so
dependent on user overlap, such as item similarity models like Sparse Linear Meth-
ods (SLIM), FISM (see Chapter 2), or those based on embeddings Ning and Karypis
(2011), Kabbur et al. (2013). However, we leave as future work the analysis of these
similarity models for POI recommendation together with alternative data augmentation
techniques.

7.4.5 What is the impact of venue recommenders on different groups
of users?

As we have already mentioned previously, in the tourism domain it is possible to char-
acterize different types of users. In particular, we define two groups following the work
of Choudhury et al. (2010): tourists and locals. More specifically, we have established
that those users whose check-ins exist in the same city for more than 21 days are consid-
ered locals, and the rest are considered tourists. However, to avoid noisy or non-human
behavior, we filtered out in the test set for both groups those users who have performed
three or more consecutive check-ins with a temporal difference smaller than 60 seconds,
since they can be considered bots as in previous works (Palumbo et al., 2017). These
so-called bots do not count either as tourists or locals (hence, in this section they are
completely ignored), even though their performance is considered whenever the global
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Figure 7.1: Results of tourists and local users in Istanbul, Jakarta, Kuala Lumpur and
Mexico City in terms of nDCG@5. Labels SC, N, and P in the x-axis represent the single-
city (baseline) configuration, and N-MCA and P-MCA strategies respectively. Dashed line
indicates the performance of the best recommender when all users are considered under
the SC configuration, as shown in Table 7.5.
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Figure 7.2: Results of tourists and local users in Moscow, Santiago, São Paulo and Tokyo
in terms of nDCG@5. Rest of notation as in Figure 7.1.
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performance is measured (that is, in those tables or figures that appear in the rest
of the chapter). However, these unusual consecutive check-ins are not always caused
by bots. It may also be due to bugs in the application when recording interactions.
Therefore, we will classify these users as outliers. Besides, as the data of these users
may be useful for the rest of the recommenders, we keep the interactions of these users
in the training set.

Based on this, in Figures 7.1 and 7.2 we contrast the results of each type of users
in terms of nDCG@5 for all cities when no MCA strategy is used (SC) and when the
MCA strategies presented in the previous experiment are used (N, for N-MCA, C, for
C-MCA, and P, for P-MCA). We observe that for all cases (except in the Geo family
in Mexico City and Tokyo), tourists obtain significantly better results than locals.
We hypothesize this may be attributed to tourists having a more similar behavior in
common among the users in the same group: for example, when someone visits Paris,
regardless of where they come from, they are more likely to visit touristic venues such
as the Eiffel Tower or the Louvre museum rather than some suburban neighborhoods in
the city. On the other hand, locals are probably more heterogeneous, and hence, more
different behaviours are aggregated in the same group, making it much more difficult
to the recommendation algorithms to guess their preferences correctly. Besides, the
number of tourist users, because of its definition, tends to be smaller than local users,
which helps to obtain more coherent user groups.

Consistent with the results discussed in the previous section, the MCA strategy by
proximity obtains better performance and, in general, improves the base results more
than the strategy based on popularity for both types of users in most cities. There
are some exceptions, as in the case of São Paulo for tourists, where the performance
improvement of the P-MCA strategy is striking. However, the general trend is that
this strategy is outperformed by both the N-MCA and C-MCA; we note even some
cases where they produce worse performance than the base scenario, for example in
Moscow for most recommendation families or in Kuala Lumpur for the CF-NN and
POI families.

Since we observe no different behavior with respect to the user groups between using
MCA strategies or not, we come to the conclusion that venue recommenders evidence
a strong bias towards tourist users, in particular, this group of users seem to be much
easier to recommend. Hence, we summarize that every recommendation family except
the basic geographical algorithms improve their results when analyzing the subset of
tourists in isolation. In agreement with the previous research question, the N-MCA
and C-MCA strategies are also beneficial in this case, obtaining much better results, in
general, than P-MCA.
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Figure 7.3: Results of tourists (10.42% of the users) and local (71.60% of the users)
users in Mexico City in terms of accuracy metrics (Precision, Recall), novelty (EPC) and
diversity (Gini, ISC). Labels in the x-axis as in Figure 7.1, together with C representing
the C-MCA strategy.

7.4.6 Performance analysis on beyond-accuracy evaluation dimen-
sions

An important aspect that is sometimes ignored when evaluating recommendation algo-
rithms is finding a good balance between novelty, diversity, and accuracy (Gunawardana
and Shani, 2015); this is what we analyze in this section. For this, we present in Fig-
ures 7.3, 7.4 and 7.5 the results for the recommendation families used before using
all the metrics presented in Section 7.4.3 for the cities of Mexico City, Santiago and
Tokyo, that is, Precision, Recall, EPC for novelty, and Gini and IC for diversity. We
complement these results with user coverage of all cities in Table 7.8.

Our decision to select these three cities was because they evidence a different be-
havior with respect to the ratio Cr(C)/Cr when comparing the N-MCA and C-MCA
strategies: whereas TOK and SAN obtains a very similar ratio for both strategies with
a percentage around 50% and 73% respectively, MEX presents substantially different
values (see Table 7.7). Moreover, inspired by the very positive results found so far for
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Figure 7.4: Results of tourists (7.62% of the users) and local (72.43% of the users) users
in Santiago; notation as in Figure 7.3.

N-MCA, we will also consider all the cities that belong to the same country as the
target city, and name it C-MCA (C), from country-based N-MCA.

Based on the results reported in Figures 7.3, 7.4 and 7.5, and considering all users,
one observation that may draw our attention is that the algorithms of the Geo family
have higher novelty and diversity than the other families. This is because these rec-
ommenders are based solely on recommending POIs that are close to the target user,
ignoring other factors like the popularity of the POIs (something that, after observing
the results obtained by the rest of the recommenders, seems to confirm the popularity
bias of the data). Besides, this type of recommender is the worst in terms of accuracy,
as shown by the nDCG metric in the previous figures and with Precision and Recall
in the ones shown here, and it is well-known that there is typically a tradeoff between
accuracy and novelty/diversity.

Regarding the other recommenders, we observe that the H-POI family tends to
obtain better diversity results than the other families, although the novelty of its rec-
ommendations is usually lower. This can perhaps be explained by the fact that the
best algorithm of this family is always the PGN recommender, which combines pop-
ularity and collaborative filtering with the distance between the POIs. The first two
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Figure 7.5: Results of tourists (9.32% of the users) and local (62.44% of the users) users
in Tokyo; notation as in Figure 7.3.

contributions reduce the novelty and diversity, but the latter, as we have seen in the
Geo family, increases both dimensions so it makes sense that this approach may im-
prove to some extent either dimensions. It is also worth considering that, in general,
POI and CF-MF families achieve lower levels of novelty and diversity than the rest
of the algorithms. It must be taken into account that both families use some kind
of matrix factorization techniques, as the GeoBPR and IRenMF. Low diversity values
are indicative that very few different items are actually recommended, whereas low
novelty values suggest in this case that most of the recommended POIs are those that
have been visited by more users in the training set (popular items). This means that
there is a significant popularity bias in the recommendations provided by these families,
which is actually corroborated because their performance in terms of relevance is also
high (Jannach et al., 2015). On the other hand, the behavior of CF-MF in terms of
EPC (novelty) might be reinforced by another aspect. In Mexico City and Santiago we
observe that the novelty for the P-MCA strategy decreases steadily. We believe this
might be caused because in this type of strategy, we are increasing considerably the
number of items and users in the system, but at the same time we only recommend
POIs from the destination city; hence, the latent factors of those POIs that are more
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Table 7.8: User coverage obtained by the recommenders when augmented information is
used for training. The improvement in user coverage with respect to SC is represented as
∆(%).

City Family SC N C P ∆ N (%) ∆ C (%) ∆ P (%)

IST

Geo 81.65 83.82 87.65 81.74 2.66 7.36 0.12
CF-NN 84.58 86.38 89.92 84.61 2.12 6.32 0.03
CF-MF 85.10 86.93 90.25 85.19 2.14 6.05 0.10

POI 85.10 86.93 90.25 85.19 2.14 6.05 0.10
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

JAK

Geo 86.81 91.63 92.81 87.73 5.56 6.92 1.06
CF-NN 88.05 92.97 93.95 88.54 5.59 6.69 0.55
CF-MF 89.51 93.49 94.51 90.43 4.45 5.59 1.03

POI 89.51 93.49 94.51 90.43 4.45 5.59 1.03
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

KUA

Geo 80.77 88.91 91.03 81.36 10.08 12.71 0.74
CF-NN 85.01 90.79 92.31 85.37 6.80 8.58 0.42
CF-MF 85.30 91.06 92.56 85.95 6.76 8.51 0.77

POI 85.30 91.06 92.56 85.95 6.76 8.51 0.77
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

MEX

Geo 88.58 90.90 93.76 88.75 2.62 5.85 0.20
CF-NN 91.05 92.81 95.07 91.11 1.93 4.41 0.06
CF-MF 91.27 93.04 95.34 91.46 1.94 4.46 0.21

POI 91.27 93.04 95.34 91.46 1.94 4.46 0.21
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

MOS

Geo 85.27 85.83 89.55 85.74 0.67 5.02 0.56
CF-NN 87.57 88.00 91.55 87.41 0.49 4.55 −0.18
CF-MF 88.07 88.50 92.03 88.59 0.49 4.50 0.59

POI 88.07 88.50 92.03 88.59 0.49 4.50 0.59
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

SAN

Geo 90.54 94.19 94.88 91.23 4.03 4.79 0.76
CF-NN 92.06 95.00 95.64 92.26 3.19 3.89 0.21
CF-MF 92.28 95.27 95.91 92.94 3.24 3.93 0.72

POI 92.28 95.27 95.91 92.94 3.24 3.93 0.72
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

SAO

Geo 82.21 85.81 90.44 82.62 4.37 10.01 0.50
CF-NN 83.33 87.84 92.02 83.46 5.41 10.43 0.15
CF-MF 85.04 88.51 92.69 85.37 4.08 8.99 0.39

POI 85.04 88.51 92.69 85.37 4.08 8.99 0.39
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

TOK

Geo 87.75 92.68 93.64 88.01 5.61 6.71 0.30
CF-NN 90.32 94.15 94.78 90.32 4.24 4.94 0.00
CF-MF 90.52 94.29 94.96 90.78 4.17 4.91 0.29

POI 90.52 94.29 94.96 90.78 4.17 4.91 0.29
H-POI 100.00 100.00 100.00 100.00 0.00 0.00 0.00

popular are updated more frequently. If we look at the Tokyo results, the novelty of
this strategy does not decrease so much because it is already very low for all strategies.
This can be attributed to the fact that in Tokyo the optimal CF-MF algorithm is the
BPRMF, which is not so sensitive to the previous behavior, while in the other two
cities, is the HKV (see Table 7.5).

When we analyze the results by types of users (tourists or locals), it is important to
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consider the third type of users that is being ignored in the figure, the bots, together
with the new users (in the test set) that do not appear in the training set and, thus,
do not fit in any category. Because of this, we include in the caption of each figure
the percentage of tourists and locals in the test set of the corresponding city, so the
rest of the users would be labeled as bots or no belonging to any group. This piece
of information is important in this case because we show together information from
all users and separated by user group. Based on these results, we corroborate that in
terms of accuracy metrics (Precision and Recall) tourists achieve better performance
than locals, except in the Geo family.

To better understand the rationale behind these results, we have analyzed in more
detail the biases in the data and in the recommendations produced by the algorithms,
and discovered that tourists are more likely to visit popular POIs (according to the
training set) than locals, as evidenced by their check-ins in the test set. This is also
observed in the figures, due to the higher novelty and diversity values achieved by
most recommendation families for the local users (except for the CF-NN). As discussed
before, this could be attributed to several reasons. Firstly, there are more local users
than tourists, so it is more likely that there are more different recommended items for
this type of user. Secondly, it is more likely that tourists tend to visit the most touristic
venues in a city, but this should be considered in combination with the fact that locals
are probably visiting a larger variety of POIs, since they spread more evenly across the
city and throughout longer periods of time. This could be an explanation as to why
the novelty in locals tend to be higher than in tourists.

One dimension that deserves further attention is user coverage. This measurement,
as reported in Table 7.8, accounts for the number of users that have received at least
one recommendation. In these results, the first observation we make is that the H-POI
is the only recommender family with full user coverage, something that does not change
when using any aggregation strategy; the reason for this is that the best recommender in
this family is the PGN and one of the algorithms exploited by this hybrid recommender
is based on popularity, which is a non-personalized algorithm and, hence, also has full
user coverage by design. A more interesting result that emerges from this analysis is
that the C-MCA strategy always improves the coverage of the recommenders, in fact,
according to the column depicting the relative improvements with respect to results
from the single city, this strategy produces the largest improvements for every family
in all the cities. This is a very important outcome, since together with the results shown
in Figures 7.3, 7.4 and 7.5, where this strategy obtains better or equal accuracy results
than N-MCA for most of the families in every city, it means that it is able to improve the
results for more users in the system, simply by integrating carefully selected additional
information. This process, in any case, would be achieved at a lower cost than the P-
MCA strategy, hence, allowing more efficient computations. In particular, this allows
us to create a single training set containing the check-ins of the cities we need and
make recommendations from this training, instead of making an independent set by
each city and hence allowing more efficient computations. Nevertheless, we can observe
an interesting result in the city of Moscow. If we analyze the user coverage of this city
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Table 7.9: Performance in terms of nDCG@5 of the Popularity recommender in all cities
in both tourists and locals.

City All Users Tourists Locals ∆ Tourists (%) ∆ Locals (%)

Istanbul 0.054 0.064 0.048 19.04 −9.77
Jakarta 0.066 0.091 0.053 38.33 −19.92

Kuala Lumpur 0.066 0.077 0.060 17.34 −8.46
Mexico City 0.041 0.059 0.034 45.69 −15.70

Moscow 0.027 0.037 0.026 34.02 −4.48
Santiago 0.051 0.067 0.044 30.47 −13.21

São Paulo 0.053 0.061 0.031 14.85 −40.33
Tokyo 0.069 0.106 0.056 53.48 −18.73

more in detail, we can see how the user coverage decreases in the P-MCA strategy for
CF-NN recommenders. This behavior, although it may seem counter intuitive, is due
to the fact that those algorithms that work with similarities between users or items
(users, in this case) might obtain a large number of neighbors with the same degree
of similarity, some of them coming from the aggregated cities and with potentially no
check-ins in the target city. In this sense, and according to these results, by using
the P-MCA strategy it is more likely that we may find new neighbors with near-zero
overlap with items in the target city that are, hence, not able to recommend any POI
there, thus, reducing the coverage of such algorithms

As a summary, we have observed that the N-MCA strategy is the safest one both in
terms of accuracy and beyond-accuracy metrics, although C-MCA obtains very similar
results while improving the user coverage, hence, impacting positively to more users.
These strategies also show good results for tourists, although all users get some kind
of improvement with these approaches. Regarding the effect in the groups of users,
tourists are positively affected in terms of accuracy but negatively for other dimensions
such as novelty and diversity.

7.5 Discussion

In this chapter we have covered RG5: improve the performance of the algorithms in the
POI recommendation domain. According to the presented results, applying Multi-City
Aggregation strategies to augment the data available in venue recommendation can
improve the results obtained in some situations, although their effect is not as great
as one might expect (mainly due to the temporal split we used and the dataset being
too sparse). Nevertheless, since we explored some basic recommendation techniques
across a wide range of algorithmic families, these results are promising and may open
the door to debate about the importance of the geographical distribution of the check-
ins in evaluation. First of all, because we have seen that some algorithms are able to
make better recommendations (in some cases, up to a 20% improvement, as in the case
of Santiago), and in some situations – mostly under the C-MCA strategy – the user
coverage is enhanced; however, further analysis should be done to properly understand
the impact of such improvements in other evaluation dimensions, such as novelty or
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Figure 7.6: Popularity bias in the eight selected cities. Each plot shows the percentage
of users belonging to each group who have a check-in in the test set for each corresponding
item. Items are sorted according to their popularity in the training set.

diversity, and how it generalizes to different cities. Similarly, the N-MCA strategy has
generally returned cities belonging to the same country with respect to the target city
(except in the case of Santiago, where one of its 7 closest cities was Cordoba, a city of
Argentina). This, in particular, should be further analyzed in the future, since at the
moment the reasons behind the difference between C-MCA and N-MCA is not clear;
hence, more experiments should be conducted where cities with nearby cities from
other countries are included, to properly assess the performance difference between
these strategies

Secondly, due to the well-known popularity bias (Jannach et al., 2015, Boratto
et al., 2021), such a simple technique could outperform other methods like IB, KDE, or
AvgDis (see Table 7.5), and it has resulted in a very positive component to be integrated
in a hybrid algorithm (i.e., PGN), even though this type of baseline is usually ignored
in POI recommendation literature. Thirdly, we have observed that it is not the same
to train the recommenders with interactions of a certain city as training them with the
check-ins of a whole country. Hence, POI recommendation proposals that are trained
using information of specific regions may not be comparable to others trained with
data from around the world. In fact, we already explored this issue in Chapter 3, as
in Table 3.5 we showed there were researchers that did not perform any kind of region
split.

At the same time, we have observed that if we distinguish between two types of users
(tourists and locals), almost every recommendation algorithm produces very different
results to each user group. To further understand this, we now analyze in more detail
the effect of popularity bias in our experimental settings. First, in Table 7.9 we show
the results of the Popularity recommender in the Single City (SC) configuration. In
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that table we show the results obtained taking into account all users in the test set
as well as the results for the tourists and locals. The last two columns represent the
change in performance (as a percentage, negative or positive depending on whether the
performance improved or decreased) obtained by each group of users with respect to
the value obtained by considering that all users belong to the same group. As we can
observe, tourists tend to obtain a result between a 14% and a 50% higher than the rest
of the users. This seems to confirm that tourist users tend to visit more popular POIs
than locals. To further view this effect in detail, in Figure 7.6 we show the top 1% of
the most popular POIs of every city that appear in the test set with the percentage of
users (of each group) that checked-in in that POI. In this figure we can see how the
most popular POIs in general receive more visits from tourist users (relatively) than
from local users. This makes sense since, as we have indicated before, for a user to be
considered a tourist she has to perform check-ins in the city for at most 21 days, so it
is more likely that many of those tourists did not have enough time to visit the most
popular POIs in the training set and hence they visit them in the test set.

This evidences a general trend or systematic bias, since it is much easier to make
relevant recommendations to tourists due to the type of POIs they usually visit. In
particular, this result – which is, to the best of our knowledge, novel in the area –
would open up several possibilities in terms of deciding how many resources should be
devoted to each user group.

Additionally, a negative result we observed is that when the distance between the
venues is considered in the recommendation algorithm, augmenting the available in-
formation through MCA strategies can be counterproductive in terms of accuracy,
although other dimensions might be benefited from such augmentation. This effect
is not conclusive for the two types of users considered, although we have observed a
negative trend for tourists, whose diversity and novelty values tend to be much lower
than those for local users, in particular when MCA strategies are exploited.

It should be noted that some of our results are consistent with those discussed in
Sahebi and Brusilovsky (2015). The authors found that there are specific experiments
where cross-domain recommendation works worse than classic recommendation, even
though in general it behaves better or as good as strategies where cross-domain is not
used (single-domain). However, only comparisons between single- and cross-domain
approaches on three different algorithms and without considering any temporal split
were presented in that study; hence, our work helps on generalizing the conclusions
obtained in such paper.

We want to emphasize that considering information from different cities (under-
stood as different domains), despite being computationally more expensive, has a clear
advantage: such system would only need to train once whenever recommendations are
required for any of the cities included in the MCA strategy, whereas considering each
city as an isolated training domain (when no MCA strategy is used) only allows to
generate recommendations for a single city; hence, the recommendation model built in
such a way can be re-used more often in the former case, at the expense of being more
expensive (although this would depend on the actual strategy considered) in terms of
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memory and time consumption. This conclusion may help other researchers in the area
in order to apply a more favorable data preprocessing for the POI recommendation
models that they are developing.

Nonetheless, as we have shown here, if the MCA strategy is generated based on
the right cities, significant performance improvements can be achieved, not always by
selecting the cities with more information but those that are closer and more likely
to have overlap between their users, probably because they are culturally related and
share similar mobility patterns (Yang et al., 2016).
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Conclusions and future work

Recommender Systems have been progressively integrated into an increasing number of
applications, to the extent that they are now indispensable for handling the vast amount
of data available in a large number of technological companies. As a result, research
into these systems is crucial in order to improve the user experience by providing them
with better recommendations, adapting them to the current context of the users.

This thesis has focused on two main topics: the integration of temporal and sequen-
tial information in Recommender Systems (both in the recommendation and evaluation
steps) and the detailed study of the problem of Point-of-Interest recommendation by
analyzing the main issues and challenges, while also proposing solutions to palliate
them. Regarding the classical recommendation scenario, we have presented the current
state-of-the-art of the Recommender Systems area, showing both classical algorithms
and the most common metrics that are still used today, analyzing some of the challenges
of these classical approaches in order to define new metrics and algorithms using con-
textual information, specially temporal and sequential information. These contextual
recommenders are currently the algorithms that can offer a better experience to users,
as they can adapt more easily to their tastes and needs. For this, we have defined first
new metrics incorporating these contexts to analyze the recommendations produced
by the algorithms in the following aspects: freshness, anti-relevance, sequentiality, and
biases depending on user and item attributes, showing that all this information can
also be used to evaluate the recommenders. Second, we have proposed a new similarity
between users based on the Longest Common Subsequence (LCS) algorithm to be in-
tegrated into neighborhood-based recommender systems that takes into account both
temporal and sequential information. Besides, we have proposed a redefinition of the
neighborhood-based algorithms to make recommendations exploiting the last common
interaction between the target user and the rest of her neighbors, producing better and
more temporal novel recommendations than other state-of-the-art algorithms, showing
that simple models remain applicable in the area.

Additionally, we have analyzed in detail the Point-of-Interest (POI) recommenda-
tion problem by classifying a large number of recent proposals according to the type of
information, algorithms, and evaluation methodology used. With this review we have
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been able to confirm that the POI recommendation problem is still relevant today as
there are an increasing number of new works that are proposed every year. However,
we have also detected a problem regarding the reproducibility of the results obtained
by the models, since most of the algorithms are not comparable with each other be-
cause they have major discrepancies in the way recommendations and their evaluations
are made. Subsequently, we have also explored the recommendation of routes from
independent POIs, using categorical and sequential information to generate sequences
from independent recommended POIs by exploiting reranking techniques. Although
our reranking approaches have not shown remarkable superiority with respect to other
algorithms in terms of ranking accuracy, they have shown promising results in other
dimensions, like improving the category accuracy while reducing the distance to be
followed by the users based on the recommendations received. Finally, as in Point-of-
Interest recommendation the data sparsity is a severe challenge (more than in classical
recommendation), we have applied data aggregation strategies based on cross-domain
techniques to improve the performance of POI recommenders in different regions. Us-
ing these simple strategies we have been able to improve the performance of some
recommenders in several dimensions such as accuracy and user coverage.

In this chapter we present the main conclusions obtained in this thesis. In Sec-
tion 8.1 we provide more details about the contributions of this research and in Sec-
tion 8.2 we present some research directions that could be addressed in future work.

8.1 Summary of contributions

In the following subsections we discuss and summarize the main contributions of this
thesis by addressing the research goals stated in Chapter 1. First, for RG1, we reviewed
the state-of-the-art of POI recommendation approaches and characterize them in terms
of the information, type of algorithms, and evaluation methodologies used. With re-
spect to RG2, we developed a set of metrics incorporating additional information like
time, sequences, and user and item attributes where we tested them in two well-known
datasets. For RG3, we defined a similarity metric between users by exploiting the
Longest Common Subsequence between their interactions; we also redefined the formu-
lation of k-NN recommender systems by generating a ranking for the candidate user
by exploiting her last interactions with other users in the system. For RG4, we showed
that we can generate full trajectories from Location-Based Social Networks data by
using reranking techniques. Finally, for RG5 we studied how aggregation techniques
derived from the cross-domain area con help us improving the performance and the
user coverage of Point-of-Interest recommenders.

8.1.1 Alternative metrics for Recommender Systems

In Chapter 4 we presented a set of new metrics to be used in Recommender Systems that
exploit temporal, sequential, and categorical information. We also propose variations
of metrics that account for the cases when items with low ratings are recommended.
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We showed the importance of using this kind of information at the evaluation step in
order to further analyze the results of the recommenders.

With our time-aware novelty metrics, we have shown that there is a clear relation-
ship between the relevant items and their temporal novelty. This is in fact really useful
as these metrics allow us to detect possible biases and temporal burst of interactions
within the system. Besides, our time-aware novelty metrics allow us to build item pro-
files with repetitions, making them suitable to other recommendation domains such as
music.

By using our anti-relevance models we have determined that sometimes even if the
recommenders suggest relevant items to users, they also return items that users have
rated negatively. Because of this, we believe that when this information is available
(i.e., when using datasets with explicit ratings), those items recommended with a very
low rating should be further penalized when evaluating the recommenders. Besides, we
consider this an important aspect to be taken into account, since sometimes a really
bad recommendation might cause a great distrust in the users of the system. In fact,
even though we think that this aspect should be analyzed more in-depth, we have not
found many studies analyzing the “bad” recommendations produced by the algorithms;
hence, we consider it a novel dimension that this work has contributed to the field of
RS evaluation.

Regarding the user and item attributes in recommendations, we have observed
that users are typically classified into groups, which in turn may obtain very different
results depending on the groups they belong to. This observation connects with the
analysis of fairness in recommendation (since in those cases, some users will obtain
better or worse recommendations only because of some inherent characteristics), which
implies that some models may not be returning fair recommendations. With the item
attributes we can better distinguish the results returned by the algorithms and increase
the performance obtained by the algorithms on very sparse datasets. However, we
believe that allowing to evaluate with attributes should be done carefully as we may
end up unrealistically increasing the performance of recommenders if we do not apply
appropriate penalizations.

The metrics developed in Chapter 4 have therefore allowed us to obtain a more
complete view of the results obtained by the recommenders. We have tested the useful-
ness of our metrics on two well-known datasets: Movielens1M and Foursquare, in order
to analyze differences and similarities in both domains using two different evaluation
methodologies (random and time-aware splits). Finally, although this is a result already
known by the community, we have, in agreement with other researchers in the field,
found differences in the results obtained by the algorithms depending on the recom-
mendation scenario or evaluation methodology used (type of split, parameter tuning,
optimizing the algorithms, etc.), see (Beel et al., 2016, Dacrema et al., 2019). For
this reason, we again stress the importance of being as transparent as possible when
evaluating recommendation – or, in fact, any machine learning – algorithm.
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8.1.2 Sequential information in k-NN recommender systems

In Chapter 5 we presented two complementary proposals for neighborhood-based rec-
ommender systems. First, we proposed to adapt the use of the Longest Common
Subsquence algorithm to be considered as a classical similarity metric such as cosine
similarity or Pearson correlation. This similarity, even though it is computationally
more expensive than the aforementioned ones, it has two major advantages. On the
one hand, it allows us to take into account sequential components, on the other hand,
it is flexible enough to operate with additional information of the items, like their at-
tributes, in order to create a hybrid algorithm (with the additional advantage that it
is easy to explain and implement).

Second, we redefined the nearest neighbor algorithms to generate a ranking for the
target user based on the last interactions they have in common with their corresponding
neighbors. Our main proposal here was to use ranking fusion techniques, which allowed
us to generate recommendations that integrate sequential information. Besides, this
new formulation is capable to operate with any similarity metric, either classical ones
like Pearson or cosine, or the sequential similarity metric proposed earlier in our work.
These approaches have been evaluated against other state-of-the-art algorithms show-
ing that in some circumstances our proposal is more competitive than the rest of the
algorithms, whereas in other situations they are still effective. With this new formula-
tion of nearest neighbor algorithms, we demonstrate that these types of proposals are
still applicable and adaptable in the field because they are more interpretable, efficient
(since they can be easily parallelized), and simpler than other algorithms such as neu-
ral networks. We have tested our recommenders in two different datasets with realistic
timestamps: a MovieTweetings subset (from the movies domain) and a subset of the
Foursquare dataset (from the Point-of-Interest domain) under two time-aware evalu-
ation methodologies, a more realistic one considering a temporal split at the system
level and another temporal split per user to demonstrate that our proposal can obtain
competitive results in both methodologies.

8.1.3 New perspectives on Point-of-Interest recommender systems

In Chapter 3 we conducted a survey on the Point-of-Interest problem, showing that
this area is still relevant for the researchers. Although we have been able to identify
that algorithms that exploit geographical and temporal information are widely used,
we have also detected that there is not a common evaluation protocol for analyzing
the performance of the recommenders. In this regard, we have observed that most
models work with very different datasets and they use diverse evaluation methodologies
(different types of splits, differences in data filtering, etc.), and hence, making the
comparison between them, sometimes unfeasible.

In Chapter 6 we have explored the problem of route or trajectory recommendation
on the basis of the recommendation of independent POIs according to different con-
ditions (e.g., distance, item probability, or category probability). First, we define a
framework to generate routes from LBSNs data and then we propose the use of rerank-
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ing techniques to generate routes from the recommendations produced by classical
recommendation algorithms. Specifically, we used three different reranking techniques:
independent, where the score of the reranked items only depends on the user-item pair,
dependent on the last item, where the score of each reranked item depends on the
previous item, and finally the rerankers that depend on the whole sequence, where the
items are reranked to optimize the full recommended route based on the POI categories
previously visited by the user. Although our reranking techniques do not obtain sub-
stantial improvements in terms of relevance, they do allow improvements in terms of
POI category hits while achieving similar levels of accuracy starting from very simple
methods. This in particular shows that sometimes routes can be generated in a simple
way by taking advantage of recommendations previously produced by other algorithms.
To evaluate our proposals, we have used four different real world datasets. Our methods
worked well in all cases, specially in the one that contained more touristic information.

Finally, in Chapter 7 we developed a set of multi-city aggregation techniques in order
to improve the performance of both classical and POI recommendation algorithms.
Specifically, we have made recommendations to a subset of independent cities with
more check-ins from the Foursquare dataset using three different strategies: selecting
the geographical closest cities to each of them, selecting the rest of cities in each country
for each target city, and using the information of the most popular cities to perform
recommendations in each city independently. Through our experiments, we have been
able to prove that the accuracy and user-level coverage of most of the models can be
improved more by using the strategies based on proximity or by country than by using
the cities with the most check-ins, demonstrating that the algorithms depend more on
the quality than on the quantity of the data. Besides, we have been able to verify
that while the geographical component is useful if we perform recommendations for
each city independently, when aggregation strategies are used, the performance is not
always improved.

8.2 Future work

Throughout this thesis we have shown only a small fraction of the Recommender Sys-
tems area. In fact, although we have proposed solutions and advanced in the state-of-
the-art in both classical and Point-of-Interest recommendation, we believe that some
of these contributions can be further extended in the future. For this reason, in this
section we summarize the main lines of research that can be further developed.

8.2.1 On Recommender Systems evaluation

First, we believe that the developed metrics shown in Chapter 4 have enough potential
to be applied in other areas of recommendation. For example, we believe that the
time-aware novelty metrics have a special interest on streaming RS, where the time-
aware model of the recommender might not be the same as the one for the metric:
e.g., while the metric could be recomputed every day as the temporal novelty is cru-
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cial in this domain, the recommender could be trained once a week. In this way, a
more fine-grained analysis may be derived so, for instance, the optimal period to train
the recommender can be computed, or a day-by-day sensitivity could be explored for
different recommenders. It is worth mentioning that, although this is also possible to
achieve with offline data, the conclusions will not be as significant because most of the
datasets are very sparse, hence, it is necessary to use real, online data.

In the case of the anti-relevance framework, we aim to extend the analysis of those
metrics to more families of algorithms and also in specially difficult recommendation
tasks such as cold-start or cross-domain, to understand the behavior of the recommen-
dation techniques in those scenarios. More importantly, we would like to analyze how
to extend our framework to situations where no explicit ratings are available, but other
form of anti-relevance can be inferred, either directly or through the user interaction
with the system.

Regarding the features of users and items, by exploiting user attributes we can
extend the analysis performed in this thesis to other experiments, such as discriminating
between active or influential users, or between bots or any other type of attacker or
different groups of users beyond tourists and locals in the tourism domain. On the other
hand, the analysis of item attributes can be interesting in order to detect biases in the
recommendations (e.g., if the recommendations are biased towards specific categories
of the items or if users belonging to a particular group tend to consume items with
a distinct category) as well as to apply relevance metrics to match the categories of
recommended items with test items, in domains where there are a large number of
items, as in POI or music recommendation.

8.2.2 On sequential-based k-NN recommender systems

The results obtained by our novel similarity metric based on the Longest Common Sub-
sequence and the results of our reformulation of neighborhood based algorithms show
that these simple models are still competitive and can be adapted to include temporal
and/or sequential information. As future work, we plan to explore the use of alterna-
tive aggregation functions – such as those based on the score distribution (Manmatha
et al., 2001) – when integrated in our proposal. Furthermore, an exhaustive analysis
– with more datasets, baselines such as SVD++ with temporal information (Koren
and Bell, 2015) or other neural network techniques (Hidasi et al., 2016, Donkers et al.,
2017, He et al., 2017b), and other evaluation methodologies – should be made to better
understand each component of the proposed models. For instance, the number of items
allowed to be selected before and after the last common interaction, together with al-
ternative definitions for sequence-aware similarity metrics. As an example, we aim to
extend the proposed similarity based on LCS by exploiting other dimensions to build
the sequence upon (such as item features, ratings, or combinations thereof) or even by
applying filters to select those items that have been rated with a higher value than a
specific threshold to create the user sequences, as we recently analyzed in Sánchez and
Belloǵın (2019). However, for POI this might be counterproductive, as we may end up
adding more sparsity by filtering too much data.

196



8.2 Future work

Furthermore, it would be interesting to observe the impact on users’ online behavior
once they receive the recommendations, as it was recently analyzed for social networks
in Falavarjani et al. (2019). Besides, it would also be interesting to perform a complete
analysis on the impact of optimizing the parameters using (or not) a validation sub-
set. In fact, we have observed how difficult it was to find consistent results (from the
validation subset to the full dataset) in Chapter 4. Because of this, we aim to analyze
these issues in more detail in the future to obtain guidelines or theoretical guarantees
that the parameters learned using a temporal validation split would fit well using the
complete data, since we believe this is the most realistic way to tune the parameters,
as if it was done in a real-world system.

8.2.3 On the POI recommendation problem

Regarding the POI recommendation problem, thanks to the survey performed in Chap-
ter 3, we have been able to identify a large number of approaches that are not compa-
rable among them, mostly because the evaluation methodology conducted in most of
those works varies substantially (e.g., different types of splits, datasets, parameter tun-
ing, etc.). For this reason, as a future work, we believe that it is necessary to conduct
more experimental surveys (as in Liu et al. (2017)) comparing the most recent and most
cited approaches of POI recommendation while performing different types of splits in
at least the following conditions: recommendation in the same city, recommendation
in different cities around the world, and recommendation in specific regions. This will
help us to identify if the algorithms can exploit geographical influence in each of these
situations correctly. In addition, such an analysis can be used to understand in more
detail if there are more algorithms that can benefit from the cross-domain strategies
mentioned in Chapter 7.

With respect to these strategies, we consider that it is important to use other
aggregation strategies that, instead of maximizing the number of matching users, might
be based on establishing similarities between items. In this aspect, we consider that it
could be interesting to see how algorithms such as SLIM, FISM, or item embeddings
behave under theses circumstances.

Finally, we would like to emphasize once again that any conducted research work
should also publish the framework used to perform the experiments, since it is generally
acknowledged that the same model in different frameworks might produce completely
different results (Said and Belloǵın, 2014). In the same way, all the baselines used should
be tuned properly in order to find a competitive performance against the proposed
algorithms.
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Appendix A

Additional results on POI
recommendation

A.1 Results of the experiments in Chapter 5 using a val-
idation subset

In this section we extend the experiments performed in Chapter 5 for both temporal
evaluation methodologies (system and per user) selecting the best recommenders using
a validation subset. In the case of the temporal system split, we created the validation
subset by splitting again the training set selecting the previous 80% of the ratings for
training and the rest 20% for test. In the case of the temporal per user split, using the
training set, we used the last 2 interactions of each user to the validation set (for every
user with at least 4 interactions). Hence, as in Chapter 5, we first show in Tables A.1
and A.2 the results obtained under the temporal system configuration and in Tables A.3
and A.4 the results obtained under the temporal per user evaluation methodology in
the MovieTweetings and Foursquare datasets (using a validation subset).

As we can observe, comparing Tables A.1 and A.2 with their counterpart using
no validation subset (Tables 5.4 and 5.5, in the temporal system split) the results
are practically the same. Although in terms of relevance the performance of some
recommenders is lower with this new configuration (due to the fact that the parameters
obtained are not optimal in the test set), the ranking of the recommenders is practically
the same. The same behavior is observed in Tables A.3 and A.4 with their counterpart
using no validation subset (Tables 5.6 and 5.7). This may be due to the fact that
although the parameters obtained in the validation and test sets are not the same,
the differences observed in the metrics are negligible, showing that sometimes there is
almost no difference between using a validation set and not using a validation set. On
the other hand, we have observed that recommenders with a large number of internal
parameters (such as MF) are more sensitive to the data with which they are trained.
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A. ADDITIONAL RESULTS ON POI RECOMMENDATION

Table A.1: Performance results on MovieTweetings dataset. Temporal system split (80%
ancient ratings to train, rest to test). In bold, the best recommender in each metric. Best
recommenders in nDCG@5 in the validation subset.

Recommender P R nDCG EPC MIN Gini IC UC UC-Rel

Rnd 0.000 0.000 0.001 †0.996 0.410 †0.645 †0.949 †6,518 †4,962
RndCF 0.000 0.000 0.000 †0.996 0.411 0.600 0.900 5,118 3,704

Pop 0.004 0.003 0.003 0.853 0.207 0.001 0.006 †6,518 †4,962
PopCF 0.003 0.003 0.003 0.854 0.210 0.001 0.006 5,118 3,704

IB 0.009 0.010 0.010 0.914 0.585 0.012 0.126 5,117 3,703
UB 0.014 0.016 0.016 0.906 0.585 0.006 0.029 5,117 3,703

HKV 0.019 0.024 0.023 0.934 0.583 0.014 0.077 5,118 3,704
BPRMF 0.005 0.006 0.005 0.916 0.369 0.002 0.033 5,118 3,704

TD 0.018 0.023 0.022 0.918 0.695 0.007 0.065 5,117 3,703
BFUB 0.025 0.031 0.030 0.925 0.736 0.006 0.045 5,117 3,703
BFsUB 0.029 0.034 0.033 0.932 †0.831 0.004 0.046 5,117 3,703

MC 0.019 0.023 0.021 0.920 0.712 0.004 0.035 4,900 3,516
FPMC 0.014 0.018 0.020 0.912 0.614 0.004 0.044 4,900 3,516
Fossil 0.017 0.022 0.022 0.907 0.639 0.003 0.029 4,900 3,516
Caser 0.020 0.027 0.025 0.945 0.756 0.021 0.141 5,118 3,704

Skyline †0.520 0.630 0.806 0.977 0.588 0.108 0.295 3,545 3,545
SkylineCF 0.494 †0.644 †0.812 0.977 0.616 0.103 0.251 2,585 2,585

Table A.2: Performance results on Foursquare dataset. Temporal system split (80%
ancient ratings to train, rest to test). In bold, the best recommender in each metric. Best
recommenders in nDCG@5 in the validation subset.

Recommender P R nDCG EPC MIN Gini IC UC UC-Rel

Rnd 0.001 0.002 0.001 †0.998 0.615 0.847 †1.000 †9,217 †9,217
RndCF 0.001 0.001 0.001 †0.998 0.612 †0.854 †1.000 9,130 9,130

Pop 0.070 0.181 0.130 0.879 0.515 0.001 0.004 †9,217 †9,217
PopCF 0.069 0.182 0.130 0.879 0.515 0.001 0.004 9,130 9,130

IB 0.069 0.193 0.150 0.952 0.613 0.180 0.827 9,130 9,130
UB 0.081 0.214 0.173 0.929 0.573 0.022 0.293 9,130 9,130

HKV 0.070 0.182 0.150 0.948 0.574 0.012 0.032 9,130 9,130
BPRMF 0.070 0.186 0.143 0.882 0.510 0.002 0.040 9,130 9,130

TD 0.081 0.211 0.170 0.929 0.582 0.023 0.307 9,130 9,130
BFUB 0.083 0.219 0.174 0.921 0.569 0.018 0.281 9,130 9,130
BFsUB 0.081 0.214 0.173 0.929 0.573 0.022 0.293 9,130 9,130

MC 0.060 0.161 0.124 0.945 0.639 0.026 0.264 8,909 8,909
FPMC 0.066 0.180 0.133 0.935 0.608 0.016 0.196 8,909 8,909
Fossil 0.070 0.189 0.149 0.941 0.614 0.009 0.089 8,909 8,909
Caser 0.079 0.208 0.170 0.929 0.610 0.028 0.301 9,130 9,130

Skyline †0.441 0.988 †0.998 0.960 †0.671 0.163 0.577 9,184 9,184
SkylineCF 0.436 †0.989 0.998 0.960 0.670 0.161 0.573 9,097 9,097

A.2 Complete tables for the POI recommendation survey

In this section we extend the systematic review of the state-of-the-art algorithms of
POI reported in Section 3.6. Hence, in Tables A.5, A.6, A.7 and A.8 we show all the
algorithms (not only the most representative ones, as in Chapter 3) analyzed between
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A.2 Complete tables for the POI recommendation survey

Table A.3: Performance results on MovieTweetings dataset. Temporal per user split
(last 2 actions for every user with at least 6 interacions to the test set). In bold, the best
recommender in each metric. Best recommenders in nDCG@5 in the validation subset.

Recommender P R nDCG EPC MIN Gini IC UC UC-Rel

Rnd 0.000 0.001 0.000 †0.996 0.383 †0.722 †0.980 †13,860 †6,873
RndCF 0.000 0.000 0.000 †0.996 0.383 0.721 †0.980 †13,860 †6,873

Pop 0.008 0.034 0.024 0.870 0.159 0.001 0.005 †13,860 †6,873
PopCF 0.008 0.034 0.024 0.870 0.159 0.001 0.005 †13,860 †6,873

IB 0.020 0.074 0.050 0.918 0.403 0.018 0.183 †13,860 †6,873
UB 0.019 0.071 0.049 0.911 0.360 0.008 0.038 †13,860 †6,873

HKV 0.019 0.071 0.049 0.914 0.372 0.007 0.025 †13,860 †6,873
BPRMF 0.012 0.044 0.028 0.928 0.356 0.035 0.245 †13,860 †6,873

TD 0.030 0.114 0.081 0.916 0.449 0.009 0.076 †13,860 †6,873
BFUB 0.027 0.101 0.070 0.920 0.422 0.010 0.058 †13,860 †6,873
BFsUB 0.040 0.155 0.111 0.928 0.518 0.012 0.086 †13,860 †6,873

MC 0.023 0.090 0.059 0.911 0.440 0.004 0.072 †13,860 †6,873
FPMC 0.015 0.055 0.035 0.915 0.355 0.005 0.065 †13,860 †6,873
Fossil 0.017 0.063 0.042 0.913 0.391 0.004 0.043 †13,860 †6,873
Caser 0.030 0.115 0.080 0.939 0.474 0.032 0.179 †13,860 †6,873

Skyline †0.269 †1.000 †1.000 0.962 †0.525 0.092 0.260 6,873 †6,873
SkylineCF †0.269 †1.000 †1.000 0.962 †0.525 0.092 0.260 6,873 †6,873

Table A.4: Performance results on Foursquare dataset. Temporal per user split (last
2 actions for every user with at least 6 interacions to the test set). In bold, the best
recommender in each metric. Best recommenders in nDCG@5 in the validation subset.

Recommender P R nDCG EPC MIN Gini IC UC UC-Rel

Rnd 0.001 0.002 0.001 †0.998 0.540 0.849 †1.000 †8,986 †8,986
RndCF 0.001 0.002 0.002 †0.998 0.538 †0.858 †1.000 †8,986 †8,986

Pop 0.069 0.172 0.133 0.878 0.501 0.002 0.004 †8,986 †8,986
PopCF 0.069 0.172 0.133 0.878 0.501 0.002 0.004 †8,986 †8,986

IB 0.089 0.222 0.186 0.950 0.535 0.147 0.829 †8,986 †8,986
UB 0.091 0.227 0.191 0.926 0.516 0.013 0.156 †8,986 †8,986

HKV 0.080 0.200 0.171 0.948 0.502 0.013 0.033 †8,986 †8,986
BPRMF 0.068 0.171 0.143 0.938 0.540 0.017 0.332 †8,986 †8,986

TD 0.088 0.220 0.185 0.929 0.536 0.018 0.232 †8,986 †8,986
BFUB 0.091 0.227 0.191 0.926 0.516 0.013 0.157 †8,986 †8,986
BFsUB 0.091 0.227 0.189 0.924 0.524 0.014 0.178 †8,986 †8,986

MC 0.078 0.195 0.158 0.942 0.556 0.018 0.263 †8,986 †8,986
FPMC 0.073 0.182 0.143 0.932 0.558 0.013 0.234 †8,986 †8,986
Fossil 0.085 0.213 0.175 0.940 †0.569 0.010 0.087 †8,986 †8,986
Caser 0.085 0.212 0.178 0.926 0.568 0.023 0.279 †8,986 †8,986

Skyline †0.400 †1.000 †1.000 0.960 0.568 0.174 0.687 †8,986 †8,986
SkylineCF †0.400 †1.000 †1.000 0.960 0.568 0.174 0.687 †8,986 †8,986
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A. ADDITIONAL RESULTS ON POI RECOMMENDATION

Table A.5: Summary of analyzed POI recommendation approaches sorted by publication
year.

Details Information used Model Split type
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2011 Symeonidis et al. (2011) (N.A.) 3 3
2011 Ye et al. (2011) USG 3 3 3 3 3 3
2012 Levandoski et al. (2012) LARS 3 3 3
2012 Bao et al. (2012) (N.A.) 3 3 3 3 3
2012 Ying et al. (2012) UPOI-Mine 3 3 3 3 3
2012 Noulas et al. (2012) RW, Weighted-RW 3 3 3 3
2013 Zheng et al. (2013) CRTCF 3 3 3 3 3 3
2013 Zhao et al. (2013) GMM (1), GA-GMM (2) 3 3 2 3
2013 Rahimi and Wang (2013) PCLR 3 3 3 3 3 3
2013 Yang et al. (2013) LBSMF 3 3 3 3 3 3
2013 Long and Joshi (2013) (N.A.) 3 3 3
2013 Liu and Xiong (2013) TL-PMF 3 3 3 3
2013 Cheng and Chang (2013) CLW 3 3 3 3 3
2013 Liu et al. (2013b) (N.A.) 3 3 3 3 3 3 3 3
2013 Ference et al. (2013) UPS-CF 3 3 3
2013 Liu et al. (2013a) GT-BNMF 3 3 3 3 3
2013 Cheng et al. (2013) FPMC-LR 3 3 3 3 3
2013 Gao et al. (2013) LRT 3 3 3
2013 Wang et al. (2013) LFBCA 3 3 3 3
2013 Zhang and Chow (2013) iGSLR 3 3 3 3 3 3
2013 Yuan et al. (2013) UTE+SE 3 3 3 3 3 3
2014 Lu et al. (2014) Ricochet 3 3 3 3
2014 Ozsoy et al. (2014) MO 3 3 3 3
2014 Kosmides et al. (2014) PNN 3 3 3 3 3 3
2014 Zhao et al. (2014) BPTFSLR 3 3 3 3 3
2014 Hu and Ester (2014) ST 3 3 3 3 3
2014 Nunes and Marinho (2014) DGM 3 3 3 3
2014 Wang et al. (2014) GPUR, GPLR 3 3 3 3
2014 Zou et al. (2014) ITF 3 3 3
2014 Ying et al. (2014) UPOI-Walk 3 3 3 3
2014 Yuan et al. (2014) GTAG 3 3 3 3
2014 Lian et al. (2014) GeoMF 3 3 3
2014 Liu et al. (2014) IRenMF 3 3 3
2014 Zhang et al. (2014) LORE 3 3 3 3 3 3 3
2014 Zhou and Wang (2014) sPCLR 3 3 3 3 3 3
2015 Fukuda and Aritsugi (2015) (N.A.) 3 3 3
2015 Sattari et al. (2015) EFC 3 3 3 3
2015 Gao et al. (2015b) gSCorr 3 3 3 3 3 3 3 3
2015 Kojima and Takagi (2015) URG+SM 3 3 3 3 3
2015 Guo et al. (2015a) TSLR (1), TSLRS (2) 2 3 3 3 3 3
2015 Bagci and Karagoz (2015) RWCAR 3 3 3 3 3
2015 Huang et al. (2015) FGLR 3 3 3 3 3
2015 Zahálka et al. (2015) City Melange 3 3 3 3 3 3 3
2015 Mudda and Giordano (2015) REGULA 3 3 3 3 3
2015 Zhang and Wang (2015) LTSCR 3 3 3 3 3
2015 Griesner et al. (2015) GeoMF-TD 3 3 3 3
2015 Lin et al. (2015) USPB 3 3 3 3 3 3
2015 Zhang et al. (2015a) iGeoRec 3 3 3 3
2015 Yao et al. (2015) TenInt 3 3 3 3
2015 Li et al. (2015b) TCL-K 3 3 3 3
2015 Yin et al. (2015) LA-LDA 3 3 3 3 3
2015 Lu et al. (2015b) LURA 3 3 3 3 3 3 3 3 3
2015 Wang et al. (2015) UGC 3 3 3 3
2015 Qi et al. (2015) HRWR 3 3 3
2015 Gupta et al. (2015) (N.A.) 3 3 3 3 3
2015 Li et al. (2015c) MARS 3 3 3
2015 Zhao et al. (2015) TA-FPMC 3 3 3 3 3 3 3
2015 Zhang and Chow (2015a) CoRe 3 3 3 3 3 3
2015 Abdel-Fatao et al. (2015) STS 3 3 3 3 3 3
2015 Zhang et al. (2015b) ORec 3 3 3 3 3 3 3
2015 Liu et al. (2015) Poisson Geo-PFM 3 3 3 3
2015 Li et al. (2015a) RankGeoFM 3 3 3 3
2015 Zhang and Chow (2015b) GeoSoCa 3 3 3 3 3 3
2015 Feng et al. (2015) PRME-G 3 3 3 3 3 3
2015 Gao et al. (2015a) CAPRF 3 3 3
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A.2 Complete tables for the POI recommendation survey

Table A.6: Summary of analyzed POI recommendation approaches (same configuration
as Table A.5).

Details Information used Model Split type
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2015 Li et al. (2015d) SFPMF,UIPMF 3 3 3 3 3 3
2015 Lian et al. (2015) ICCF 3 3 3
2016 Li et al. (2016b) (N.A.) 3 3 3 3 3 3
2016 Vakeel and Ray (2016) (N.A.) 3 3 3
2016 Nie et al. (2016) (N.A.) 3 3 3
2016 Trattner et al. (2016) (N.A.) 3 3 3 3 3
2016 Capdevila et al. (2016) GeoSRS 3 3 3 3 3 3
2016 Li et al. (2016c) CPMFPPC 3 3 3 3 3 3
2016 Habib et al. (2016) (N.A.) 3 3 3 3
2016 Yao et al. (2016) TM-PFM 3 3 3 3 3
2016 Lian et al. (2016) RCTF 3 3 3 3 3
2016 Albanna et al. (2016) IALBR 3 3 3 3 3
2016 Stepan et al. (2016) (N.A.) 3 3 3 3 3 3
2016 Ozsoy et al. (2016) (N.A.) 3 3 3 3
2016 Xie et al. (2016a) GE 3 3 3 3 3 3 3 3
2016 Manotumruksa et al. (2016) DeepReg 3 3 3 3
2016 Zhu and Hao (2016) (N.A.) 3 3 3 3
2016 Chen et al. (2016c) (N.A.) 3 3 3 3 3 3 3
2016 Yuan and Li (2016) STS Grid, STS DBSCAN 3 3 3 3
2016 Pipanmaekaporn and Kamonsantiroj (2016) (N.A.) 3 3 3 3
2016 Baral and Li (2016) MAPS 3 3 3 3 3 3
2016 Cheng et al. (2016) BPRLR1, BPRLR2 3 3 3 3 3
2016 Jueajan et al. (2016) (N.A.) 3 3 3
2016 Eravci et al. (2016) PNS (1), CNF (2) 3 3 2 1 3
2016 Zhang and Chow (2016) TICRec 3 3 3 3 3 3
2016 Hosseini and Li (2016) USGT 3 3 3 3 3 3 3
2016 Zhang et al. (2016a) CTS 3 3 3 3 3
2016 Guo et al. (2016) CoSoLoRec 3 3 3 3 3 3 3 3
2016 Debnath et al. (2016) PLTSRS 3 3 3 3 3 3 3
2016 Li et al. (2016d) STPMF 3 3 3 3 3 3
2016 Xu et al. (2016a) Topical-GeoMF 3 3 3 3
2016 Maroulis et al. (2016) CoTF 3 3 3 3
2016 Chen et al. (2016b) MUG 3 3 3 3 3
2016 Zhao et al. (2016b) ATTF 3 3 3 3
2016 Zheng et al. (2016) TGTM-1, TGTM-2 3 3 3 3 3 3
2016 Xu et al. (2016b) SSR 3 3 3 3 3
2016 Rojas et al. (2016) MultiGran 3 3 3 3
2016 Fang and Dai (2016) SSR 3 3
2016 Zhang et al. (2016b) SGMF 3 3 3 3 3
2016 Baral et al. (2016) GeoTeCS 3 3 3 3 3 3 3
2016 Wang et al. (2016) RC, DCC 3 3 3 3 3
2016 Xie et al. (2016b) GME (1), GME-S (2) 2 3 3 3 3
2016 Katarya et al. (2016) (N.A.) 3 3
2016 Guan et al. (2016) (N.A.) 3 3 3 3 3 3 3
2016 Zhu et al. (2016) (N.A.) 3 3 3 3 3
2016 Li et al. (2016a) ASMF 3 3 3 3 3 3
2016 Zhao et al. (2016a) STELLAR 3 3 3
2016 He et al. (2016) (N.A.) 3 3 3 3
2016 Liu et al. (2016a) WWO 3 3 3 3
2016 Lv et al. (2016) ELR-DC 3 3 3
2016 Yuan et al. (2016) GeoBPR 3 3 3 3
2017 Rios et al. (2017) (N.A.) 3 3 3 3 3
2017 Kefalas and Manolopoulos (2017) USTTc 3 3 3 3 3 3
2017 Zhao et al. (2017a) Geo-Teaser 3 3 3 3 3 3 3
2017 Zhao et al. (2017b) HGMF 3 3 3
2017 Manotumruksa et al. (2017b) PRFMC 3 3 3 3 3 3
2017 Manotumruksa et al. (2017a) GRMF, MLRP 3 3 3 3 3 3
2017 Ravi and Subramaniyaswamy (2017a) SPTW 3 3 3
2017 tao Zheng et al. (2017) TPR-UM 3 3 3 3 3
2017 Gau et al. (2017) UGSE-LR 3 3 3 3 3 3
2017 Xia et al. (2017b) VRer 3 3 3
2017 Yang et al. (2017b) TDLDA, TATD 3 3 3 3 3
2017 Oppokhonov et al. (2017) CLB 3 3 3 3
2017 Chen et al. (2017) (N.A.) 3 3 3 3 3 3
2017 Yang et al. (2017a) PACE 3 3 3 3
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A. ADDITIONAL RESULTS ON POI RECOMMENDATION

Table A.7: Summary of analyzed POI recommendation approaches (same configuration
as Table A.5).

Details Information used Model Split type
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2017 Wang et al. (2017b) LSARS 3 3 3 3 3
2017 Si et al. (2017) CTF-ARA 3 3 3 3
2017 Guo et al. (2017) AGSG 3 3 3 3 3
2017 Wagih et al. (2017) (N.A.) 3 3
2017 Luan et al. (2017) PCTF 3 3 3 3
2017 Ying et al. (2017) TAP 3 3 3 3 3 3
2017 Ren et al. (2017) TGSC-PMF 3 3 3 3 3 3
2017 Zhu et al. (2017) SEM-PPA 3 3 3 3 3 3
2017 Yu et al. (2017) (N.A.) 3 3 3
2017 Ravi and Subramaniyaswamy (2017b) EIUCF, EIICF 3 3 3 3
2017 Han and Yamana (2017) (N.A.) 3 3 3 3 3
2017 He et al. (2017a) LBPR 3 3 3 3 3 3 3
2017 Li et al. (2017a) IEMF 3 3 3
2017 Zhao et al. (2017c) Geo-PRMF 3 3 3
2017 Wang et al. (2017a) VPOI 3 3 3 3 3
2017 Rahimi et al. (2017) LBA, BF 3 3 3 3 3 2 3
2017 Li et al. (2017c) CBGeoMFC 3 3 3 3 3 3
2017 Hosseini et al. (2017) NH-JTI 3 3 3 3
2017 Xu et al. (2017a) SCCF 3 3 3 3
2017 Xia et al. (2017a) ARNN 3 3 3 3 3
2017 Zeng et al. (2017) TSG 3 3 3 3 3
2017 Xu et al. (2017b) SSLR 3 3 3 3 3 3 3
2017 Shi and Jiang (2017) LST 3 3 3 3 3
2017 Xing et al. (2017) (N.A.) 3 3 3 3 3
2017 Erande and Chaugule (2017) (N.A.) 3 3 3 3
2018 Chen et al. (2018b) (N.A.) 3 3 3 3
2018 Liu and Wang (2018) (N.A.) 3 3 3 3 3 3
2018 Liu et al. (2018) PCRM 3 3 3 3
2018 Gao et al. (2018b) STSCR 3 3 3 3 3 3
2018 Qian et al. (2018) TransTL 3 3 3 3
2018 Griesner et al. (2018) ALGeoSPF 3 3 3 3
2018 Ma et al. (2018) SAE-NAD 3 3 3
2018 Zhu et al. (2018b) LTSR 3 3 3 3 3 3 3 3
2018 Zhao et al. (2018c) GR-DELM 3 3 3 3 3 3
2018 Xing et al. (2018) ReGS 3 3 3 3 3 3 3 3
2018 Amirat et al. (2018) LocRec 3 3 3 3 3
2018 Wang et al. (2018c) ULE 3 3 3 3 3 3 3
2018 Liao et al. (2018) (N.A.) 3 3 3 3
2018 Baral et al. (2018) ReEl 3 3 3 3 3
2018 Gao et al. (2018) GSBPR 3 3 3 3 3
2018 Xu et al. (2018b) BTC 3 3 3 3
2018 Manotumruksa et al. (2018) CARA 3 3 3 3 3
2018 Xu et al. (2018a) GeoUMF 3 3 3
2018 Liu et al. (2018) (N.A.) 3 3 3
2018 Wang et al. (2018) (N.A.) 3 3 3 3 3 3
2018 Guo et al. (2018) NBPR 3 3 3 3
2018 Su et al. (2018) CUSPG 3 3 3 3 3 3
2018 Baral and Li (2018) FCDST (1), MF(2) 3 3 3 3 2 1 3
2018 Yao et al. (2018) TenMF 3 3 3 3 3
2018 Gao et al. (2018a) GeoEISo 3 3 3 3 3
2018 Zhu et al. (2018a) TSG 3 3 3 3 3 3 3
2018 Gao and Yang (2018) ABPR 3 3 3
2018 Naserianhanzaei et al. (2018) APPR 3 3 3 3 3 3
2018 Wang et al. (2018a) DeepRec 3 3 3 3 3
2018 Wang et al. (2018b) GeoIE 3 3 3 3
2018 Zhu et al. (2018c) ImSoRec 3 3 3 3 3 3
2018 Zhang and Cheng (2018) CGA 3 3 3 3 3
2018 Zhong and Ma (2018) (N.A.) 3 3 3 3 3
2018 Pourali et al. (2018) (N.A.) 3 3 3 3 3
2018 Chen et al. (2018a) (N.A.) 3 3 3 3 3 3 3
2018 Ding et al. (2018b) ST-DME 3 3 3 3 3 3
2018 Zhang and Liu (2018) TSG-list MF 3 3 3 3 3 3
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A.2 Complete tables for the POI recommendation survey

Table A.8: Summary of analyzed POI recommendation approaches (same configuration
as Table A.5).

Details Information used Model Split type
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2018 Xia et al. (2018) LBIMC 3 3
2018 Yang et al. (2018) MFRA 3 3 3 3 3
2018 Li et al. (2018b) TMCA 3 3 3 3 3 3
2018 Christoforidis et al. (2018) JLGE 3 3 3 3 3
2018 Tal and Liu (2018) TCENR 3 3 3
2019 Manotumruksa et al. (2019) DRTL 3 3 3 3
2019 Gupta et al. (2019) (N.A.) 3 3 3 3 3
2019 Wang et al. (2019) (N.A.) 3 3 3 3 3 3 3
2019 Manotumruksa et al. (2020) CRCF 3 3 3 3 3
2019 Kala and Nandhini (2019) CCS-POI-RS 3 3 3 3 3
2019 Zhang et al. (2019b) HWREC 3 3 3 3 3 3
2019 Guo et al. (2019a) L-WMF 3 3 3 3 3
2019 Jiao et al. (2019a) (N.A.) 3 3 3 3 3 3
2019 Zhou et al. (2019a) UFC 3 3 3 3 3 3
2019 Zhou et al. (2019b) AKAWO 3 3 3 3 3
2019 Baral et al. (2019) HiRecS 3 3 3 3 3 3 3 3
2019 Li et al. (2019a) GPDM, PPDM 3 3 3 3 3 3
2019 Rahmani et al. (2019) CATAPE 3 3 3 3
2019 Ying et al. (2019) MEAP-T 3 3 3 3 3
2019 Zhang et al. (2019c) VCG 3 3 3 3 3 3 3
2019 Hao et al. (2019) RealTime-MF 3 3 3 3 3
2019 Gao et al. (2019) ST-RNet 3 3 3 3
2019 Cai et al. (2019) LC-G-P 3 3 3 3 3
2019 Yin et al. (2019) ADPR 3 3 3 3 3
2019 Su et al. (2019a) PRFPF 3 3 3 3 3
2019 Jang et al. (2019) (N.A.) 3 3 3 3
2019 Liu et al. (2019a) GT-HAN 3 3 3 3 3
2019 Li et al. (2019b) LORI 3 3 3 3 3 3
2019 Zhan et al. (2019) (N.A.) 3 3 3 3
2019 Lu et al. (2019) PEU-RNN 3 3 3 3
2019 Hosseini et al. (2019) MATI 3 3 3 3
2019 Jiao et al. (2019b) R2SIGTP 3 3 3 3 3
2019 Yu et al. (2019) DMGMT 3 3 3 3 3 3
2019 Li et al. (2019c) PA-Seq2Seq 3 3 3 3 3
2019 Liu et al. (2019b) HMM 3 3 3
2019 Xing et al. (2019) CPC 3 3 3 3 3 3
2019 Yang et al. (2019) NRLRS 3 3 3 3 3 3 3
2019 Geng et al. (2019) MLR 3 3 3 3 3 3
2019 Chuang et al. (2019) UGR 3 3 3 3
2019 Gan and Gao (2019) U-CF-Memory 3 3 3
2019 Guo et al. (2019b) AGS-MF 3 3 3 3 3 3
2019 Tang et al. (2019) (N.A.) 3 3 3 3 3 3
2019 Si et al. (2019) APRA-SA 3 3 3 3 3
2019 Guo et al. (2019c) Geo-SRank 3 3 3 3 3 3
2019 Zhu and Guo (2019) SG-NeuRec 3 3 3 3 3
2019 Xu et al. (2019) SSSER 3 3 3 3 3 3
2019 Rahimi et al. (2020) BLR 3 3 3 3 3 3 3
2019 Doan et al. (2019) ASTEN 3 3 3 3 3
2019 Yu et al. (2019) HeteGeoRanRec 3 3 3 3 3 3
2019 Qian et al. (2019) STA 3 3 3 3 3
2019 Su et al. (2019b) WBPR-DST 3 3 3 3
2019 Zeng et al. (2019) RBMNMF 3 3 3 3
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A. ADDITIONAL RESULTS ON POI RECOMMENDATION

Table A.9: Performance for all the cities, only showing the best recommender for each
family. Notation and cutoffs like in Table 6.7.

Accuracy Seq. Accuracy Non Accuracy
City Family Rec P nDCG TFP Ps nDCGs FPs Dist Gini EPC

NYC

Basic Pop 0.144 0.417 0.326 0.139 0.402 0.284 43.9 0.001 0.904
Classic BPRMF 0.145 0.418 0.330 0.141 0.404 0.285 45.3 0.001 0.905

Temporal BFsUB 0.145 0.420 0.336 0.140 0.404 0.302 †42.4 †0.003 †0.920
Geo IRenMF †0.147 †0.420 †0.345 †0.143 †0.405 †0.306 43.9 0.002 0.916
Tour ItemMC 0.132 0.404 0.295 0.129 0.391 0.279 44.9 0.001 0.911

Skylines TestOrder N0.453 N0.928 N0.453 N0.453 N0.909 N0.453 N8.3 N0.023 N0.979

TOK

Basic Pop 0.127 0.385 0.385 0.126 0.374 0.372 25.8 0.001 0.849
Classic BPRMF 0.128 0.386 †0.389 0.126 0.374 †0.375 22.7 0.001 0.852

Temporal BFsUB †0.132 0.389 0.382 †0.129 0.377 0.365 25.4 0.001 0.866
Geo IRenMF 0.131 †0.389 0.376 0.129 †0.377 0.361 23.7 0.002 0.870
Tour ItemMC 0.128 0.388 0.366 0.127 0.376 0.351 †17.9 †0.002 †0.878

Skylines TestOrder N0.443 N0.885 N0.443 N0.443 N0.865 N0.443 N8.1 N0.019 N0.965

ROM

Basic Pop 0.227 0.508 0.517 0.202 0.447 0.464 5.0 0.050 0.848
Classic BPRMF 0.226 0.508 0.518 0.201 0.447 0.460 6.3 0.050 0.848

Temporal FPMC 0.227 0.508 0.516 0.201 0.447 0.469 4.9 0.052 0.849
Geo RankGeoFM 0.211 0.486 0.516 0.187 0.427 0.457 5.6 †0.082 0.865
Tour ItemMC †0.231 †0.537 N0.519 †0.212 †0.477 †0.473 N2.0 0.076 †0.871

Skylines TestOrder N0.481 N0.915 0.481 N0.481 N0.858 N0.481 2.1 N0.217 N0.915

PJ

Basic Pop 0.128 0.413 0.249 0.126 0.404 0.245 35.0 0.001 0.915
Classic BPRMF 0.131 0.418 0.274 0.128 0.408 0.270 30.0 0.001 0.917

Temporal BFsUB †0.135 †0.423 †0.296 †0.134 †0.416 0.285 †26.6 0.003 †0.933
Geo PGN 0.129 0.415 0.296 0.126 0.406 †0.286 30.0 †0.008 0.931
Tour ItemMC 0.127 0.412 0.244 0.125 0.403 0.240 28.4 0.002 0.918

Skylines TestOrder N0.369 N0.864 N0.368 N0.369 N0.853 N0.368 N7.0 N0.023 N0.980

the years 2011 and 2019 following the same configuration as in Table 3.2.

A.3 Sequences in POI recommendation

A.3.1 Complete performance results of venue recommender systems

Table A.9 shows the results in the four cities described in Section 6.3.1 for the best
recommender for each family. We observe that the distance obtained in the TestOrder
recommender is the lowest in every city except Rome. Moreover, the Pop recommender
is the best one for the Basic family in all cities; in fact, it is a very hard baseline to beat
since the best recommenders from other families often obtain very close or lower values
in terms of relevance. Finally, we also observe that the best recommenders in terms
of relevance are among the Temporal, Geo, and Tour families. These results, hence,
confirm that there is a strong popularity bias in all cities and that including different
contextual factors like temporal or geographical information is critical to improve the
effectiveness of the models.

Regarding specific recommenders, the behavior of the ItemMC and the BPRMF
recommenders is interesting, as they are the best in their families, obtaining positive
results in all the metrics, but especially in the sequential ones. The reason for the good
performance of ItemMC might be attributed to the fact that it exploits collaborative –
but sequential – information, which suffers from a popularity bias, which, as analyzed
before, tends to produce good results just for statistical reasons. The BPRMF ap-
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A.3 Sequences in POI recommendation

proach, on the other hand, is tailored to optimize the ranking by modeling the implicit
feedback captured by the system in a pairwise fashion (Rendle et al., 2009), which fits
the POI recommendation scenario very well and, according to the results, could be a
key technique to take advantage of the available data.

A.3.2 Complete performance results of reranking strategies

In Tables A.10, A.11, A.12, A.13, and A.14 we present the complete results for the same
reranker strategies as in Table 6.9 (see Section 6.3.6), but not limited to distance and
item-level and category-level accuracy. We observe from these tables a similar behavior
in every city although each one has different characteristics. Firstly, the feature-based
Markov chain reranker (ffeatseq ) is usually the worst (together with the random one,
f rndseq ), especially in terms of FPs, but also for nDCGs, where it tends to decrease the
performance with respect to the baseline (base recommender without reranking).

Secondly, it is interesting to observe that the baseline is often providing the longest
routes to the users, hence, the reranking strategies allow to create more realistic and
affordable routes to the final user. Another example of the varied range of improvements
in different dimensions (below those already provided in the main part of Chapter 6) is
the following: the distance of the route obtained by the recommender from the Basic
family (Pop) in Petaling Jaya is 34.95 Km, while applying fdistseq this distance is reduced
to 7.21 Km – a decrease of 80%. We believe these outcomes (together with those
already presented) are very positive and promising, as route recommenders normally
require many different information sources and long execution times in order to work
well, but using this kind of techniques may help to find simple solutions for these cases
by balancing a tradeoff between relevance and the rest of the dimensions.

Regarding specific rerankers, the distance-based reranker (fdistseq ) is, by definition,
the one that reduces the most the distance of the recommended route, but what is more
important is that, in some situations, it is able to improve the performance in both
nDCGs and FPs (see for example the results in Petaling Jaya for most of the families,
but especially for Tour) or at least in one of the metrics (for example, in New York
this reranker is the best in terms of FPs). The performance of the rerankers based
on subsequences (f lcsseq and fstreeseq ) actually depends on each dataset, although it seems
they work better in Petaling Jaya; nonetheless, they tend to decrease the distance and
improve FPs, but these results also depend on the recommender family, so they are not
conclusive except in Petaling Jaya, where these strategies work better than the baseline
in every case.

Now, if we analyze these results from the perspective of the family of the recom-
menders, we observe that the behavior is pretty stable in each city, independently of
the origin of the recommendations being reranked; however, we observe how the oracle
reranker obtains different values depending on the family, which tends to be lower for
those in the Tour family except in Rome, and higher in the rest, evidencing that the
recommended items being reranked (those in the top-n) have a lot of potential (except,
to a lower extent, in the Tour family) and there is room for improvement.
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A. ADDITIONAL RESULTS ON POI RECOMMENDATION

Table A.10: Performance of the rerankers for the Basic family of recommenders. Same
notation as in Table 6.7.

Accuracy Seq. Accuracy Non-Accuracy
City Reranker P nDCG TFP Ps nDCGs FPs Dist Gini EPC

New York

Baseline 0.144 0.417 0.326 0.139 0.402 0.284 43.9 0.001 0.904
frnd
seq 0.132 0.396 0.324 0.128 0.383 0.297 28.0 N0.002 0.935

fdistseq 0.137 0.408 †0.331 0.134 0.396 N0.308 N4.1 0.001 N0.940

ffeatseq 0.143 0.415 0.285 0.138 0.400 0.267 33.3 0.001 0.914
f itemseq 0.137 0.412 0.309 0.134 0.399 0.279 37.8 0.001 0.908
frecseq †0.147 †0.422 0.331 †0.142 †0.406 0.298 42.4 0.001 0.913

f lcsseq 0.137 0.406 0.313 0.136 0.395 0.285 17.8 0.001 0.918
fstreeseq 0.143 0.416 0.326 0.140 0.402 0.289 38.4 0.001 0.905

foracleseq N0.163 N0.479 N0.332 N0.163 N0.468 0.296 43.2 0.001 0.904

Tokyo

Baseline 0.127 0.385 †0.385 0.126 0.374 0.372 25.8 0.001 0.849
frnd
seq 0.118 0.368 0.379 0.116 0.356 0.365 27.5 N0.001 N0.894

fdistseq 0.122 0.378 0.383 0.121 0.367 N0.373 N6.9 0.001 0.893

ffeatseq 0.126 0.384 0.315 0.124 0.372 0.315 26.0 0.001 0.860
f itemseq 0.127 0.386 0.369 0.125 0.374 0.359 18.2 0.001 0.856
frecseq †0.129 †0.386 0.358 †0.127 †0.374 0.346 24.5 0.001 0.858

f lcsseq 0.123 0.378 0.351 0.122 0.367 0.344 10.4 0.001 0.880
fstreeseq 0.127 0.383 0.372 0.126 0.371 0.359 15.5 0.001 0.862

foracleseq N0.138 N0.419 N0.386 N0.138 N0.408 0.372 25.1 0.001 0.849

Rome

Baseline 0.227 0.508 0.517 0.202 0.447 0.464 5.0 0.050 0.848
frnd
seq 0.186 0.449 0.511 0.171 0.402 0.452 5.9 N0.077 N0.885

fdistseq 0.225 0.523 †0.523 0.211 0.469 †0.474 N1.4 0.072 0.884

ffeatseq 0.199 0.476 0.423 0.181 0.422 0.371 5.0 0.048 0.876
f itemseq †0.232 †0.534 0.520 †0.214 †0.473 0.469 1.8 0.067 0.872
frecseq 0.207 0.477 0.510 0.187 0.422 0.452 6.0 0.058 0.857

f lcsseq 0.202 0.487 0.488 0.189 0.440 0.446 2.3 0.069 0.881
fstreeseq 0.218 0.502 0.520 0.198 0.446 0.466 3.2 0.063 0.861

foracleseq N0.289 N0.659 N0.531 N0.289 N0.614 N0.482 4.2 0.052 0.850

Petaling Jaya

Baseline 0.128 0.413 0.249 0.126 0.404 0.245 35.0 0.001 0.915
frnd
seq 0.118 0.394 0.283 0.117 0.387 0.274 29.5 N0.002 N0.939

fdistseq †0.132 †0.418 N0.311 †0.130 †0.409 N0.296 N7.2 0.002 0.937

ffeatseq 0.129 0.412 0.296 0.126 0.402 0.267 33.2 0.001 0.917
f itemseq 0.130 0.417 0.267 0.127 0.408 0.262 19.5 0.001 0.920
frecseq 0.131 0.415 0.277 0.129 0.407 0.271 26.3 0.002 0.924

f lcsseq 0.130 0.413 0.293 0.128 0.403 0.274 14.8 0.002 0.926
fstreeseq 0.130 0.413 0.283 0.126 0.403 0.263 25.9 0.001 0.919

foracleseq N0.144 N0.463 0.251 N0.144 N0.456 0.247 34.2 0.001 0.916
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Table A.11: Performance of the rerankers for the Classic family of recommenders. Same
notation as in Table 6.7.

Accuracy Seq. Accuracy Non-Accuracy
City Reranker P nDCG TFP Ps nDCGs FPs Dist Gini EPC

New York

Baseline 0.145 0.418 0.330 0.141 0.404 0.285 45.3 0.001 0.905
frnd
seq 0.130 0.393 0.320 0.127 0.382 0.292 30.3 N0.002 0.935

fdistseq 0.136 0.407 0.332 0.133 0.395 N0.309 N4.2 0.002 N0.941

ffeatseq 0.142 0.413 0.287 0.137 0.398 0.267 33.5 0.002 0.915
f itemseq 0.138 0.413 0.307 0.136 0.400 0.276 38.0 0.001 0.908
frecseq †0.147 †0.422 0.332 †0.142 †0.406 0.300 42.4 0.002 0.913

f lcsseq 0.138 0.407 0.316 0.136 0.395 0.284 17.9 0.002 0.919
fstreeseq 0.145 0.418 N0.335 0.141 0.404 0.294 38.6 0.001 0.906

foracleseq N0.163 N0.479 0.334 N0.163 N0.468 0.300 44.3 0.001 0.905

Tokyo

Baseline †0.128 †0.386 †0.389 †0.126 †0.374 N0.375 22.7 0.001 0.852
frnd
seq 0.116 0.366 0.371 0.115 0.356 0.357 27.0 N0.001 N0.897

fdistseq 0.123 0.378 0.374 0.122 0.367 0.362 N6.8 0.001 0.896

ffeatseq 0.125 0.384 0.315 0.124 0.372 0.315 26.0 0.001 0.860
f itemseq 0.127 0.385 0.370 0.126 0.373 0.360 17.4 0.001 0.856
frecseq 0.127 0.385 0.358 0.126 0.373 0.346 24.7 0.001 0.859

f lcsseq 0.123 0.377 0.349 0.122 0.365 0.343 10.3 0.001 0.885
fstreeseq 0.127 0.382 0.371 0.124 0.369 0.360 13.9 0.001 0.866

foracleseq N0.137 N0.416 N0.390 N0.137 N0.405 0.375 22.4 0.001 0.852

Rome

Baseline 0.226 0.508 0.518 0.201 0.447 0.460 6.3 0.050 0.848
frnd
seq 0.187 0.451 0.512 0.171 0.403 0.450 5.9 N0.077 N0.886

fdistseq 0.223 0.521 †0.525 0.210 0.468 †0.475 N1.4 0.071 0.884

ffeatseq 0.200 0.478 0.426 0.183 0.424 0.373 5.0 0.047 0.875
f itemseq †0.234 †0.536 0.519 †0.216 †0.476 0.468 1.8 0.067 0.871
frecseq 0.207 0.477 0.509 0.187 0.422 0.452 6.0 0.058 0.857

f lcsseq 0.200 0.487 0.487 0.188 0.440 0.447 2.3 0.068 0.880
fstreeseq 0.218 0.502 0.520 0.199 0.447 0.465 3.7 0.063 0.861

foracleseq N0.287 N0.657 N0.530 N0.287 N0.612 N0.482 4.9 0.052 0.850

Petaling Jaya

Baseline 0.131 0.418 0.274 0.128 0.408 0.270 30.0 0.001 0.917
frnd
seq 0.124 0.402 0.288 0.122 0.394 0.278 30.7 N0.002 N0.939

fdistseq 0.132 0.418 N0.309 †0.130 †0.410 N0.294 N7.4 0.002 0.938

ffeatseq 0.128 0.411 0.298 0.125 0.402 0.269 34.0 0.001 0.918
f itemseq 0.130 †0.419 0.272 0.127 0.409 0.268 18.5 0.001 0.920
frecseq 0.131 0.415 0.279 0.129 0.407 0.273 26.5 0.002 0.924

f lcsseq †0.132 0.416 0.302 0.128 0.405 0.279 13.2 0.002 0.926
fstreeseq 0.131 0.415 0.297 0.128 0.405 0.275 22.1 0.001 0.919

foracleseq N0.144 N0.462 0.275 N0.144 N0.455 0.269 29.0 0.001 0.917
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Table A.12: Performance of the rerankers for the Temporal family of recommenders.
Same notation as in Table 6.7.

Accuracy Seq. Accuracy Non Accuracy
City Reranker P nDCG TFP Ps nDCGs FPs Dist Gini EPC

New York

Baseline 0.145 0.420 0.336 †0.140 †0.404 0.302 42.4 0.003 0.920
frnd
seq 0.127 0.390 0.349 0.125 0.379 0.317 25.3 N0.006 0.945

fdistseq 0.132 0.399 N0.358 0.130 0.389 N0.319 N3.5 0.006 N0.958

ffeatseq 0.134 0.401 0.300 0.130 0.388 0.272 30.6 0.006 0.933
f itemseq 0.142 0.414 0.328 0.137 0.400 0.293 37.2 0.002 0.916
frecseq †0.145 †0.420 0.344 0.139 0.403 0.309 41.5 0.003 0.921

f lcsseq 0.135 0.400 0.346 0.132 0.388 0.314 10.8 0.006 0.940
fstreeseq 0.142 0.412 0.351 0.138 0.398 0.311 29.6 0.004 0.924

foracleseq N0.160 N0.472 0.340 N0.160 N0.462 0.308 39.9 0.003 0.920

Tokyo

Baseline †0.132 †0.389 0.382 †0.129 †0.377 0.365 25.4 0.001 0.866
frnd
seq 0.120 0.372 N0.390 0.118 0.361 N0.372 26.4 0.002 0.910

fdistseq 0.127 0.383 0.389 0.126 0.371 0.367 N6.5 N0.002 N0.914

ffeatseq 0.127 0.386 0.317 0.126 0.374 0.316 26.3 0.001 0.866
f itemseq 0.128 0.385 0.365 0.126 0.374 0.355 18.4 0.001 0.863
frecseq 0.130 0.388 0.373 0.128 0.376 0.359 25.4 0.001 0.868

f lcsseq 0.128 0.383 0.357 0.126 0.370 0.347 9.7 0.002 0.898
fstreeseq 0.130 0.385 0.373 0.128 0.373 0.360 14.5 0.002 0.880

foracleseq N0.144 N0.427 0.384 N0.144 N0.416 0.367 24.5 0.001 0.866

Rome

Baseline 0.227 0.508 0.516 0.201 0.447 †0.469 4.9 0.052 0.849
frnd
seq 0.188 0.453 0.507 0.175 0.409 0.449 6.0 N0.080 N0.887

fdistseq 0.221 0.518 †0.520 0.207 0.464 0.468 N1.4 0.075 0.886

ffeatseq 0.199 0.476 0.431 0.180 0.421 0.375 5.0 0.050 0.874
f itemseq †0.234 †0.535 0.518 †0.214 †0.474 0.465 1.9 0.068 0.871
frecseq 0.207 0.476 0.508 0.187 0.422 0.452 6.1 0.060 0.857

f lcsseq 0.204 0.489 0.488 0.191 0.441 0.447 2.3 0.071 0.880
fstreeseq 0.218 0.501 0.519 0.198 0.445 0.468 3.1 0.065 0.863

foracleseq N0.285 N0.654 N0.529 N0.285 N0.608 N0.482 4.1 0.054 0.851

Petaling Jaya

Baseline †0.135 †0.423 0.296 †0.134 †0.416 0.285 26.6 0.003 0.933
frnd
seq 0.114 0.389 0.325 0.114 0.383 0.308 28.1 0.006 0.952

fdistseq 0.132 0.420 N0.346 0.130 0.412 N0.326 N5.6 N0.006 N0.954

ffeatseq 0.126 0.406 0.327 0.123 0.397 0.291 30.2 0.004 0.932
f itemseq 0.131 0.420 0.294 0.130 0.412 0.283 17.5 0.002 0.928
frecseq 0.131 0.416 0.304 0.129 0.407 0.292 26.1 0.003 0.933

f lcsseq 0.133 0.416 0.330 0.130 0.407 0.311 10.9 0.005 0.946
fstreeseq 0.134 0.419 0.324 0.131 0.411 0.301 17.3 0.004 0.938

foracleseq N0.145 N0.463 0.299 N0.145 N0.457 0.287 25.8 0.003 0.933
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Table A.13: Performance of the rerankers for the Geo family of recommenders. Same
notation as in Table 6.7.

Accuracy Seq. Accuracy Non-Accuracy
City Reranker P nDCG TFP Ps nDCGs FPs Dist Gini EPC

New York

Baseline †0.147 0.420 0.345 †0.143 0.405 0.306 43.9 0.002 0.916
frnd
seq 0.126 0.388 0.346 0.125 0.378 0.307 22.5 N0.004 0.946

fdistseq 0.131 0.397 0.353 0.128 0.385 0.315 N3.6 0.004 N0.959

ffeatseq 0.137 0.406 0.311 0.133 0.393 0.281 32.8 0.004 0.930
f itemseq 0.142 0.416 0.330 0.138 0.402 0.291 37.1 0.002 0.915
frecseq 0.145 †0.421 0.348 0.141 †0.405 0.311 42.0 0.003 0.920

f lcsseq 0.138 0.402 0.346 0.134 0.390 0.311 11.9 0.004 0.938
fstreeseq 0.146 0.416 N0.362 0.142 0.402 N0.321 31.3 0.003 0.921

foracleseq N0.162 N0.475 0.348 N0.162 N0.464 0.314 41.7 0.002 0.917

Tokyo

Baseline †0.131 †0.389 0.376 †0.129 †0.377 0.361 23.7 0.002 0.870
frnd
seq 0.122 0.372 0.394 0.120 0.360 0.374 25.3 0.003 0.910

fdistseq 0.127 0.382 N0.398 0.125 0.370 N0.375 N5.9 N0.003 N0.917

ffeatseq 0.126 0.384 0.319 0.125 0.372 0.317 26.2 0.001 0.866
f itemseq 0.128 0.386 0.366 0.126 0.374 0.354 18.2 0.002 0.866
frecseq 0.130 0.388 0.365 0.128 0.376 0.354 25.2 0.002 0.870

f lcsseq 0.125 0.379 0.355 0.123 0.367 0.346 9.0 0.003 0.902
fstreeseq 0.129 0.383 0.368 0.127 0.372 0.357 12.9 0.002 0.883

foracleseq N0.144 N0.428 0.380 N0.144 N0.417 0.363 23.0 0.002 0.870

Rome

Baseline 0.211 0.486 0.516 0.187 0.427 0.457 5.6 0.082 0.865
frnd
seq 0.178 0.440 0.507 0.167 0.397 0.447 5.9 N0.127 N0.900

fdistseq 0.213 0.507 †0.520 0.201 0.456 †0.468 N1.4 0.114 0.899

ffeatseq 0.189 0.464 0.411 0.174 0.414 0.364 5.3 0.077 0.890
f itemseq †0.225 †0.526 0.519 †0.207 †0.467 0.466 2.1 0.081 0.872
frecseq 0.200 0.469 0.510 0.181 0.417 0.453 6.0 0.073 0.862

f lcsseq 0.189 0.472 0.483 0.178 0.426 0.440 2.2 0.115 0.896
fstreeseq 0.202 0.481 0.514 0.186 0.431 0.458 3.5 0.103 0.880

foracleseq N0.268 N0.630 N0.527 N0.268 N0.586 N0.472 4.6 0.083 0.866

Petaling Jaya

Baseline 0.129 0.415 0.296 0.126 0.406 0.286 30.0 0.008 0.931
frnd
seq 0.121 0.397 0.322 0.119 0.390 0.307 25.1 0.015 0.949

fdistseq 0.127 0.413 N0.337 0.125 0.405 N0.315 N5.8 N0.023 N0.960

ffeatseq 0.126 0.406 0.316 0.123 0.397 0.282 26.8 0.007 0.929
f itemseq 0.131 †0.420 0.279 †0.130 †0.412 0.270 18.8 0.003 0.922
frecseq †0.132 0.416 0.301 0.130 0.407 0.290 25.8 0.003 0.931

f lcsseq 0.128 0.410 0.331 0.126 0.401 0.308 10.5 0.013 0.943
fstreeseq 0.130 0.413 0.326 0.127 0.404 0.302 19.4 0.010 0.934

foracleseq N0.141 N0.456 0.297 N0.141 N0.449 0.287 28.8 0.008 0.931
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Table A.14: Performance of the rerankers for the Tour family of recommenders. Same
notation as in Table 6.7.

Accuracy Seq. Accuracy Non-Accuracy
City Reranker P nDCG TFP Ps nDCGs FPs Dist Gini EPC

New York

Baseline 0.132 0.404 0.295 0.129 0.391 0.279 44.9 0.001 0.911
frnd
seq 0.117 0.374 0.343 0.115 0.364 0.305 23.9 N0.002 0.945

fdistseq 0.126 0.392 N0.350 0.124 0.381 0.311 N4.2 0.002 N0.950

ffeatseq 0.122 0.385 0.312 0.121 0.374 0.277 20.9 0.002 0.942
f itemseq 0.137 0.410 0.316 0.134 0.397 0.283 38.1 0.002 0.912
frecseq †0.143 †0.417 0.316 †0.140 †0.403 0.289 41.4 0.001 0.911

f lcsseq 0.127 0.392 0.349 0.126 0.382 N0.312 12.0 0.002 0.934
fstreeseq 0.131 0.397 0.323 0.129 0.386 0.295 32.4 0.002 0.914

foracleseq N0.149 N0.452 0.301 N0.149 N0.442 0.285 44.4 0.002 0.910

Tokyo

Baseline 0.128 †0.388 0.366 0.127 †0.376 0.351 17.9 0.002 0.878
frnd
seq 0.115 0.365 0.380 0.115 0.355 0.359 25.7 0.002 0.924

fdistseq 0.120 0.374 N0.385 0.119 0.364 N0.364 N6.7 0.002 N0.927

ffeatseq 0.126 0.384 0.319 0.124 0.372 0.318 26.1 0.001 0.869
f itemseq 0.127 0.386 0.369 0.126 0.375 0.352 17.0 N0.002 0.882
frecseq †0.129 0.387 0.353 †0.127 0.375 0.342 24.7 0.001 0.868

f lcsseq 0.123 0.376 0.353 0.121 0.365 0.343 11.4 0.002 0.896
fstreeseq 0.126 0.381 0.365 0.125 0.370 0.353 13.8 0.002 0.884

foracleseq N0.131 N0.406 0.367 N0.131 N0.395 0.352 18.5 0.002 0.878

Rome

Baseline 0.231 †0.537 0.519 0.212 †0.477 0.473 2.0 0.076 0.871
frnd
seq 0.182 0.445 0.507 0.168 0.400 0.448 5.7 N0.100 N0.896

fdistseq 0.221 0.519 †0.521 0.208 0.467 †0.474 N1.4 0.097 0.892

ffeatseq 0.193 0.470 0.402 0.178 0.420 0.359 5.0 0.063 0.888
f itemseq †0.232 0.536 0.521 †0.213 0.477 0.470 1.8 0.081 0.875
frecseq 0.213 0.485 0.509 0.190 0.427 0.451 5.8 0.058 0.856

f lcsseq 0.198 0.487 0.487 0.186 0.438 0.446 2.1 0.097 0.894
fstreeseq 0.215 0.510 0.515 0.201 0.457 0.466 2.4 0.090 0.882

foracleseq N0.279 N0.644 N0.529 N0.279 N0.600 N0.482 3.0 0.076 0.871

Petaling Jaya

Baseline 0.127 0.412 0.244 0.125 0.403 0.240 28.4 0.002 0.918
frnd
seq 0.123 0.399 0.306 0.120 0.390 0.291 30.8 N0.002 N0.941

fdistseq †0.134 †0.422 N0.325 †0.132 †0.412 N0.309 N7.1 0.002 0.938

ffeatseq 0.128 0.411 0.312 0.125 0.401 0.278 31.6 0.001 0.921
f itemseq 0.129 0.416 0.277 0.126 0.406 0.271 16.9 0.002 0.923
frecseq 0.132 0.416 0.280 0.130 0.408 0.273 26.6 0.002 0.923

f lcsseq 0.132 0.417 0.315 0.129 0.406 0.290 13.9 0.002 0.929
fstreeseq 0.128 0.412 0.291 0.126 0.403 0.272 21.5 0.002 0.921

foracleseq N0.143 N0.462 0.250 N0.143 N0.455 0.244 28.0 0.002 0.918
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Table A.15: Performance for all the cities when items already seen by the user are also
allowed in the recommendations. Notation as in Table A.9.

Accuracy Seq. Accuracy Non Accuracy
City Family Rec P nDCG TFP Ps nDCGs FPs Dist Gini EPC

NYC

Basic Pop 0.152 0.431 0.326 0.146 0.414 0.286 47.6 0.001 0.896
Classic UB 0.155 0.433 †0.354 0.148 0.416 †0.320 †27.6 †0.011 †0.939

Temporal BFsUB 0.161 0.444 0.344 0.153 0.425 0.314 39.4 0.004 0.918
Geo IRenMF †0.163 †0.445 0.353 †0.155 †0.427 0.319 37.0 0.003 0.918
Tour ItemMC 0.143 0.422 0.291 0.138 0.406 0.281 48.3 0.001 0.902

Skylines TestOrder N0.497 N0.990 N0.497 N0.497 N0.970 N0.497 N9.3 N0.024 N0.976

TOK

Basic Train 0.166 0.448 †0.403 0.157 0.424 †0.376 22.2 †0.016 †0.940
Classic UB 0.162 0.439 0.371 0.155 0.420 0.359 23.2 0.003 0.864

Temporal BFUB 0.164 0.442 0.373 0.158 0.422 0.359 21.1 0.002 0.858
Geo IRenMF †0.172 †0.449 0.376 †0.162 †0.426 0.364 21.7 0.002 0.855
Tour ItemMC 0.156 0.429 0.386 0.151 0.413 0.375 †12.4 0.002 0.846

Skylines TestOrder N0.518 N0.994 N0.518 N0.518 N0.970 N0.518 N9.1 N0.020 N0.955

ROM

Basic Pop 0.233 0.514 0.532 0.204 0.450 0.477 4.0 0.035 0.819
Classic BPRMF 0.235 0.516 †0.534 0.206 0.452 0.467 4.7 0.035 0.821

Temporal Fossil 0.232 0.515 0.526 0.206 0.453 0.442 5.1 0.036 0.829
Geo RankGeoFM 0.210 0.482 0.513 0.190 0.429 0.458 5.3 0.068 0.841
Tour ItemMC †0.255 †0.567 0.533 †0.234 †0.501 †0.483 N1.3 †0.082 †0.886

Skylines TestOrder N0.546 N1.000 N0.546 N0.546 N0.936 N0.546 2.3 N0.202 N0.907

PJ

Basic Train †0.160 †0.473 0.355 0.151 †0.454 0.325 21.5 †0.029 †0.972
Classic UB 0.158 0.468 0.330 0.150 0.449 0.313 21.5 0.006 0.939

Temporal BFsUB †0.160 0.464 0.288 †0.154 0.450 0.276 22.6 0.003 0.928
Geo IRenMF 0.155 0.457 †0.367 0.149 0.444 0.343 22.0 0.010 0.964
Tour ItemMC 0.143 0.443 0.356 0.141 0.433 †0.345 †11.0 0.002 0.942

Skylines TestOrder N0.436 N0.967 N0.434 N0.436 N0.954 N0.434 N8.5 N0.025 N0.977

A.3.3 Extended analysis on repeated interactions

In this section, we present additional results where recommenders are allowed to return
items previously interacted by the user, a situation very common in the venue recom-
mendation task. In the previous results in Chapter 6 (either those shown in the main
part or in the appendix), we have not processed in any way the routes included in the
test sets, hence, they may include repeated items or items previously visited by the
user; we decided not to do anything with these cases to not “break” the sequentiality
inherent in the routes followed by the users. However, as we show in Table A.15, by
allowing the algorithms to recommend items the user has previously interacted with
– we denote this methodology as “ItemsInTraining” (already shown in Section 4.5.2),
since every candidate item needs to appear in the training set with no further restric-
tions –, the behavior of the recommenders is markedly different, in particular for those
in the Basic, Classic, and Temporal families.

More specifically, in Petaling Jaya and Tokyo, the best recommender from the
Basic family is the one returning just the training set of the user (Train); moreover, in
Petaling Jaya, it is actually the best recommender after the skylines. Thus, this is a
strong baseline to beat, where some of the more complex algorithms such as UB, Caser,
or IRenMF obtain worse performance values or very close to the ones from this method.
Furthermore, in this scenario, the popularity bias found in the TrainItems methodology
and well-known in classical recommendation (Belloǵın et al., 2017) is strongly reduced,
favoring another type of baseline, evidencing that in this domain, well-known, popular
venues are not as important as previously visited venues by each user, confirming that
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these two scenarios (TrainItems against ItemsInTraining) are actually modeling two
different recommendation situations and hypotheses. This change of behavior could be
the reason for the change in the optimal recommenders of the other families, instead of
BPRMF in Tokyo, UB is the best algorithm in the Classic family, as in Petaling Jaya.

At the end, we argue that, by evaluating with items already interacted by the user
we are aiming at a different kind of algorithm than when those items are removed; in
other terms, a recommender system that performs very well with known items (Item-
sInTraining) is expected to distinguish well which of the previously visited venues the
user will visit next, hence, its final goal is to generate recommendations already known
by the user, probably the opposite of a recommender evaluated with only new items
in the test set (TrainItems), thus aiming at recommending new, novel venues for each
particular user – in fact, some authors define explicitly such a task as recommending
new places (Bothorel et al., 2018).

A.4 Information about cities used by N-MCA and C-
MCA strategies

In this section we include the information of the selected cities in Chapter 7 according
to N-MCA and C-MCA strategies (see Section 7.4.4). Here we include the 7 closest
cities (N-MCA strategy) with respect to each target city:

• Istanbul: Kutahya, Bursa, Eskisehir, Tekirdag, Kocaeli, Balikesir, Sakarya.

• Jakarta: Palembang, Tanjungkarang-Telukbetung, Pontianak, Bandung,
Surabaja, Semarang, Yogyakarta.

• Kuala Lumpur: Ipoh, Seremban, Pinang, Kuantan New Port, Shah Alam, Kuala
Terengganu, Melaka.

• Mexico City: Queretaro, Jalapa, Morelia, Puebla, Pachuca, Toluca, Cuernavaca.

• Moscow: Tver, Yaroslavl, Ivanovo, Gor’kiy, Voronezh, Ceboksary, Smolensk.

• Santiago: Valparáıso, Coquimbo, Talca, Córdoba, Concepción, Temuco, La Ser-
ena.

• São Paulo: Florianópolis, Curitiba, Santos, Vitoria, Belo Horizonte, Niteroi, Rio
de Janeiro.

• Tokyo: Sendai, Kawasaki, Osaka, Gifu, Yokohama, Kyoto, Nagoya.

To properly compare the results from N-MCA and C-MCA strategies, we also state
all cities belonging to the same country (C-MCA) with respect to each target city:

• Turkey: Istanbul, Sakarya, Balikesir, Canakkale, Zonguldak, Kutahya, Kayseri,
Ordu, Trabzon, Mersin, Isparta, Mugla, Denizli, Sanhurfa, Aydin, Ankara, Es-
kisehir, Malatya, Kocaeli, Seyhan, Tekirdag, Afyon, Samsun, Rize, Izmir, Bursa,
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Antalya, Giresun, Antioch, Manisa, Kahramanmaras, Bolu, Edirne, Konya,
Aintab.

• Indonesia: Jakarta, Palembang, Tanjungkarang-Telukbetung, Semarang,
Samarinda, Balikpapan, Surabaja, Bandung, Denpasar, Bandjermasin, Mataram,
Yogyakarta, Padang, Pontianak, Medan, Manado, BandaAceh, Pekanbaru.

• Myanmar: Kuala Lumpur Ipoh, Alor Setar, Melaka, Kangar, Kuantan NewPort,
Pinang, Kota Baharu, Kuala Terengganu, Kota Kinabalu, Kuching, Johor Ba-
haru, Seremban, ShahAlam.

• Mexico: Mexico City, Villahermosa, Queretaro, Tampico, Jalapa, Morelia,
Puebla, Pachuca, Toluca, Cuernavaca, Guadalajara, Aguascalientes, La Paz, Oax-
aca, Tuxtla Gutierrez, San Luis Potosi, Campeche, Colima, Veracruz, Mérida,
Monterrey, Hermosillo.

• Russia: Moscow, Irkutsk, Kuybyskev, Kaliningrad, Ivanovo, Voronezh, Vladi-
vostok, Gor’kiy, Chelyabinsk, Rostov-on-Don, Omsk, Krasnodar, Perm, Novosi-
birsk, Vyatka, Saint Petersburg, Tver, Ufa, Tomsk, Smolensk, Sverdlovsk, Kras-
noyarsk, Volgograd, Kazan, Izevsk, Ceboksary, Ulyanovsk, Yakutsk, Khabarovsk,
Yaroslavl, Saratov.

• Chile: Santiago, Puerto Montt, Valparáıso, Coquimbo, Talca, Antofagasta, Con-
cepción, Temuco, La Serena, Iquique.

• Brazil: São Paulo, Joao Pessoa, Porto Velho, Natal, Palmas, Belem, Manaus,
Maceio, Aracaju, Boa Vista, Vitoria, Niteroi, Brasilia, Belo Horizonte, Cuiaba,
Sao Luis, Macapa, Curitiba, Rio de Janeiro, Rio Branco, Goiania, Florianópolis,
Teresina, Fortaleza, Santos, Campo Grande, Recife, Porto Alegre, Santarem, Sal-
vador.

• Japan: Tokyo, Hiroshima, Naha, Fukuoka, Kobe, Kawasaki, Sendai, Kawasaki,
Osaka, Gifu, Yokohama, Kyoto, Nagoya, Shimonoseki, Sapporo.
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Appendix B

Introducción

B.1 Motivación

En 2018, la empresa DOMO estimó que durante el año 2020 cada persona del plan-
eta Tierra generaŕıa una media de 1,7MB de datos cada segundo (Ahmad, 2018). En
la actualidad, es muy probable que esta cantidad de datos se haya incrementado sus-
tancialmente debido a que la crisis sanitaria de la COVID-19 ha obligado a un gran
número de personas a pasar más tiempo en casa y a hacer un mayor uso de Internet,
tanto generando como consumiendo contenidos ya sea por motivos de ocio o de trabajo.

En este contexto de crecimiento exponencial de la información disponible en la web,
se hace aún más evidente el problema de la sobrecarga de información (Maes, 1994), en
el que los usuarios pueden dedicar un tiempo excesivo a la búsqueda de la información
que necesitan. Para solucionar este problema surgen los Sistemas de Recomendación
(RS, en inglés). Estas herramientas de software están orientadas a filtrar los innu-
merables art́ıculos disponibles en un sistema para recomendar a los usuarios aquellos
elementos que se adaptan mejor a sus necesidades en función de sus experiencias pre-
vias. Aunque los primeros buscadores y Sistemas de Recomendación surgieron en los
años 90, su uso se ha extendido de forma imparable en los últimos años.

Hoy en d́ıa, empresas como Google, Amazon, Youtube, Netflix, y muchas más hacen
uso de estas tecnoloǵıas para aumentar el número de usuarios de sus plataformas a la
vez que ofrecen contenidos personalizados a los clientes existentes. En concreto, los
Sistemas de Recomendación han demostrado ser un área de investigación muy deman-
dada, especialmente desde la aparición del premio Netflix entre 2006-2009 (Bell and
Koren, 2007), donde se ofrećıa 1M de dólares al grupo de investigación que consiguiera
mejorar la predicción de su algoritmo base en un 10%. Al mismo tiempo, las conferen-
cias internacionales dedicadas a este tema (entre las que destaca la conferencia ACM
on Recommender Systems1) aumentan cada año el número de asistentes, aśı como las
empresas interesadas en patrocinar estos congresos. Sin embargo, los Sistemas de Re-
comendación no son perfectos ni mucho menos. Debido al análisis masivo de datos que
realizan estos algoritmos, los usuarios están cada vez más sensibilizados con aspectos

1ACM Conference on Recommender Systems, RecSys, https://recsys.acm.org/

219

https://recsys.acm.org/


B. INTRODUCCIÓN

como la privacidad, el intrusismo o la explicación de las recomendaciones (Ricci et al.,
2015). Algunos de estos problemas son, de hecho, retos importantes dentro de la co-
munidad de los Sistemas de Recomendación, aunque están fuera del alcance de esta
tesis.

El alto grado de adaptabilidad de los Sistemas de Recomendación permite que se
apliquen en muchos ámbitos diferentes como el cine, los libros, la música, el turismo,
o incluso en las aplicaciones de citas (Ricci et al., 2015). Sin embargo, es importante
mencionar que cada dominio tiene sus propias particularidades. Por ejemplo, la música
y el cine, que son dominios de recomendación muy conocidos, tienen diferencias sus-
tanciales: el catálogo de peĺıculas es normalmente más reducido que el de canciones, el
dominio de la música tiene un fuerte componente secuencial, mientras que fallar una
recomendación en el dominio de la música no es demasiado cŕıtico, ya que las canciones
suelen durar menos de 5 minutos, fallar una recomendación de peĺıculas o v́ıdeos puede
afectar más a los usuarios, ya que tienden a frustrarse más fácilmente, etc. (Schedl
et al., 2018, Jannach et al., 2018). Además, hay dominios que necesitan incorporar
fuentes de información adicionales para hacer recomendaciones útiles. En este sentido,
asistentes como Alexa (Amazon), Google Assistant o Siri (Apple) podŕıan ser especial-
mente útiles ya que almacenan más información sobre los usuarios como sus gustos, su
ubicación actual, la hora o incluso el tiempo, entre otros datos.

Un ejemplo importante en el que se puede aplicar todo este tipo de información es
el ámbito del turismo, que tiene un gran impacto económico tanto en los turistas como
en las regiones que visitan. Por ejemplo, en páıses como España, Islandia o México,
el porcentaje del Producto Interior Bruto (PIB) total asociado al turismo es superior
al 8%2. Hay un gran número de tareas de recomendación relacionadas con el turismo,
incluyendo la recomendación de rutas o trayectorias y de grupos, pero quizás la más
conocida y estudiada sea el problema de recomendación de Puntos de Interés (POI,
del inglés Points-of-Interest), donde los elementos a recomendar son locales o lugares
interesantes para que el usuario visite cuando llegue a una ciudad (hoteles, bares,
restaurantes, museos, etc.) (Ye et al., 2011). En este tipo de recomendación, las Redes
Sociales basadas en localización (LBSNs, del inglés Location-Based Social Networks)
como Foursquare, Yelp, o Gowalla (ver Figura B.1), son especialmente relevantes ya que
en estas redes sociales los usuarios pueden registrar los check-ins que realizan sobre los
locales que visitan e intercambiar información con el resto de usuarios del sistema (Wang
et al., 2013). De hecho, la investigación en este campo se ha incrementado en los
últimos años debido a varias razones, entre ellas el creciente número de personas que
pueden permitirse hacer viajes a diferentes ciudades, la mejora en las infraestructuras
de transporte o la facilidad para acceder a tecnoloǵıa de alto nivel (por ejemplo, redes
de alta velocidad o teléfonos móviles más avanzados).

En un inicio, las primeras estrategias de recomendación sólo utilizaban las interac-
ciones entre los usuarios y los art́ıculos para hacer recomendaciones. Sin embargo, en
los últimos años, el uso de información contextual se ha vuelto especialmente útil, ya

2Organización para la Cooperación y el Desarrollo Económico, OCDE, https://www.oecd.org/cfe/
tourism/OECD-Tourism-Trends-Policies2020-Highlights-ENG.pdf
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Figure B.1: Ejemplo de dos LBSNs. Foursquare (izquierda) y Yelp (derecha).

que permite a los algoritmos adaptarse mejor a los intereses de los usuarios en deter-
minadas situaciones. Esta información contextual puede ser muy variada, incluyendo
información temporal y/o secuencial, meteorológica, tendencias populares, etc. (Ado-
mavicius and Tuzhilin, 2015, Villegas et al., 2018). Es importante tener en cuenta que
los usuarios pueden consumir determinados elementos en función de la situación actual.
Por ejemplo, un usuario puede ver diferentes tipos de peĺıculas dependiendo de si está
solo o acompañado. El mismo razonamiento se aplica en el ámbito de la música, ya que
un usuario puede escuchar diferentes canciones dependiendo de si está en el trabajo o
con amigos un viernes por la noche. En el ámbito del turismo, esta información con-
textual también es importante, ya que los tipos de POIs que visita un usuario pueden
verse afectados por el clima (por ejemplo, en verano es más factible realizar actividades
al aire libre), la hora del d́ıa (por ejemplo, no recomendar un bar a primera hora de la
mañana) o la distancia geográfica (Laß et al., 2017).

Por otra parte, si bien es importante investigar cómo generar mejores recomenda-
ciones, también es esencial diseñar mecanismos para evaluar los modelos. De hecho, la
evaluación de los Sistemas de Recomendación ha cambiado a lo largo de los años. Las
métricas de predicción de error orientadas a medir la diferencia entre las valoraciones
predichas y las reales se utilizaron inicialmente para analizar el rendimiento de los re-
comendadores pero, en los últimos años, la evaluación de los algoritmos ha evolucionado
mediante el uso de métricas de ranking procedentes del área de la Recuperación de In-
formación (IR, del inglés Information Retrieval), donde el objetivo es predecir una lista
de elementos hipotéticamente interesantes para el usuario (Steck, 2013, Gunawardana
and Shani, 2015). Sin embargo, este tipo de análisis, aunque útil, es incompleto, ya
que es importante desde el punto de vista del usuario medir también la calidad de las
recomendaciones en términos de otras dimensiones complementarias como la novedad,
la diversidad o la serendipia (Castells et al., 2015). Además, en los últimos tiempos
ha aumentado la concienciación sobre la necesidad de ofrecer recomendaciones justas
a los usuarios, evitando posibles sesgos contraproducentes en los algoritmos, como por
ejemplo realizar recomendaciones de mayor calidad a grupos sociales espećıficos por
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su edad, género, nacionalidad, etc (Steck, 2018, Abdollahpouri et al., 2019a). Por es-
tas razones, uno de los objetivos de la comunidad es desarrollar algoritmos con un
buen equilibrio entre estas dimensiones y el acierto en el ranking – tratando de obtener
técnicas precisas y a la vez lo más justas posible –, aunque generalmente se asume que
es dif́ıcil, o incluso imposible, desarrollar un algoritmo que pueda superar a cualquier
otra técnica en todos los aspectos posibles. Además, actualmente existe una creciente
preocupación por la reproducibilidad del rendimiento obtenido por los modelos, ya que
a menudo no es posible replicar los resultados comunicados por los autores originales
de los trabajos (Beel et al., 2016, Dacrema et al., 2019). En consecuencia, desde hace
algunos años, se ha intentado promover la publicación del código de los modelos de-
sarrollados y, al mismo tiempo, se ha prestado más atención a diferentes aspectos del
proceso de evaluación.

Aśı, en esta tesis analizamos algunas de las cuestiones mencionadas proponiendo
soluciones en forma de algoritmos y métricas para profundizar en el uso de la infor-
mación contextual en las recomendaciones. Aunque las propuestas desarrolladas pueden
ser utilizadas en varios dominios de recomendación, haremos especial hincapié en la re-
comendación de POIs, ya que es un área en crecimiento que puede beneficiarse del uso
de este tipo de información para paliar algunos de sus problemas fundamentales (como
la gran escasez de datos). En nuestro trabajo experimental demostramos la utilidad de
nuestros enfoques propuestos ya que, por un lado, nuestras métricas derivadas nos per-
miten obtener un análisis más completo de por qué los algoritmos hacen determinadas
recomendaciones, y por otro lado, nuestros modelos de recomendación contextual nos
permiten mejorar el rendimiento de los algoritmos tanto en precisión de ranking como
en dimensiones complementarias como la novedad, la diversidad o la frescura.

B.2 Objetivos

Esta tesis tiene dos objetivos principales. Por un lado, afirmamos que el modelado de
la información contextual es importante para mejorar el rendimiento de los algoritmos
y, por lo tanto, investigamos cómo incorporar contextos como la secuencialidad o el
tiempo en los sistemas de recomendación clásicos. Además, argumentamos que estos
contextos también pueden integrarse en la fase de evaluación mediante la creación de
nuevas métricas para detectar posibles sesgos en las recomendaciones producidas. Por
otra parte, nos centramos en el problema de la recomendación de Puntos de Interés,
estudiando los principales problemas y retos del área y proponiendo soluciones para
paliarlos. En este sentido, demostramos que podemos generar rutas coherentes para los
usuarios explotando los enfoques de reranking, mientras que también podemos utilizar
técnicas de dominio cruzado (del inglés cross-domain) para mejorar el rendimiento de
los recomendadores. Por tanto, tomando estas ideas como punto de partida, en esta
tesis proponemos los siguientes objetivos de investigación (OBJ):

OBJ1: Revisar el estado del arte sobre los sistemas de recomendación de
Puntos de Interés con la intención de caracterizar los trabajos más impor-
tantes en el área. La mayoŕıa de las revisiones bibliográficas (o surveys, en inglés)
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en el ámbito de POIs se centran en analizar el tipo de algoritmo que se utiliza en los
modelos y el tipo de información que explotan. Sin embargo, un aspecto importante
que se suele pasar por alto es la metodoloǵıa de evaluación y/o los conjuntos de datos y
métricas utilizados. Por lo tanto, pretendemos realizar una survey para analizar todos
estos aspectos en profundidad con el fin de detectar hasta qué punto son comparables
los algoritmos orientados o enfocados a POI del estado del arte.

OBJ2: Estudiar las métricas de evaluación de la recomendación clásica
para adaptar e integrar dimensiones adicionales más allá de la relevancia.
Cuando se analiza el rendimiento de un recomendador, la mayoŕıa de los investigadores
analizan lo bien que funciona el modelo en términos de precisión de ranking. Aunque se
han tenido en cuenta dimensiones adicionales como la novedad y la diversidad a la hora
de evaluar los recomendadores, creemos que es importante incorporar a las métricas
otras dimensiones como la secuencialidad, el tiempo y la anti-relevancia (elementos que
los usuarios han indicado espećıficamente que no les gustan). Por ello, tenemos previsto
desarrollar diferentes métricas que tengan en cuenta estas dimensiones adicionales y
analizar los resultados de los algoritmos en estas nuevas métricas.

OBJ3: Desarrollar un mecanismo para añadir la secuencialidad en los
sistemas de recomendación basados en vecinos próximos. Actualmente, en el
ámbito de los Sistemas de Recomendación, se han propuesto un gran número de modelos
para incorporar contextos como la secuencialidad o el tiempo en las recomendaciones
producidas. Hoy en d́ıa se utilizan métodos populares, como las redes neuronales y
diferentes derivaciones de las cadenas de Markov, aunque en algunos casos resulta
dif́ıcil interpretar correctamente las recomendaciones que proporcionan. Por lo tanto,
investigamos la viabilidad de incorporar el contexto secuencial en los algoritmos basados
en los vecinos próximos, ya que son más fáciles de entender e interpretar que los modelos
mencionados.

OBJ4: Explorar los datos de las LBSNs utilizados en la recomendación
de POI para explorar nuevas formas de hacer recomendaciones y permitir
la recomendación de rutas completas. La recomendación de POIs se ha modelado
tradicionalmente como una recomendación de lugares al usuario que son relevantes para
él, sin tener en cuenta ningún tipo de relación secuencial entre ellos (por ejemplo, si en
realidad están siguiendo algún tipo de ruta o trayectoria). En este sentido, pretendemos
explotar la información almacenada en las LBSNs e investigar cómo obtener rutas a
partir de los datos del usuario utilizando técnicas sencillas ya exploradas en el ámbito
de los Sistemas de Recomendación.

OBJ5: Mejorar el rendimiento de los algoritmos en la recomendación
de POIs y analizar los posibles sesgos en las recomendaciones. El problema
de la recomendación de POIs tiene consideraciones espećıficas que deben ser tenidas
en cuenta a la hora de realizar recomendaciones. El estudio que realizaremos en el
OBJ1 nos permitirá establecer claramente estas consideraciones para poder proponer
nuevos mecanismos que mejoren las recomendaciones producidas. Al mismo tiempo,
pretendemos estudiar si el problema de la recomendación de POIs se ve afectado por
diferentes tipos de sesgos.

223



B. INTRODUCCIÓN

B.3 Contribuciones

El trabajo realizado en esta tesis ha contribuido al actual estado del arte tanto de la
recomendación clásica como de la recomendación de POIs. Las contribuciones incluyen:
una categorización sistemática de los diferentes tipos de algoritmos de recomendación
de Puntos de Interés, la definición de nuevas métricas para analizar el rendimiento de
los modelos de recomendación en varias dimensiones, la definición de nuevos algoritmos
para la recomendación tradicional, y el análisis de las rutas y los sesgos en los datos
obtenidos en las Redes Sociales basadas en localización.

En primer lugar, en el Caṕıtulo 3 nos centramos en el dominio de la recomendación
de POIs y realizamos una revisión en la que analizamos los algoritmos más importantes
del estado del arte entre 2011 y 2019. En esta revisión, además de analizar el tipo de
información (geográfica, de contenido, colaborativa, etc.) y los algoritmos (sociales,
de aprendizaje profundo, de factorización, etc.) utilizados en este ámbito, también
examinamos los procedimientos más habituales que siguen los investigadores a la hora
de evaluar las propuestas. En este aspecto, determinamos los conjuntos de datos más
utilizados, aśı como las métricas y los tipos de particionamiento de datos, con el fin
de determinar cómo de comparables son todos estos trabajos entre śı. Nuestro análisis
sobre los enfoques actuales de recomendación de POIs se ha presentado en la siguiente
revista:

• Pablo Sánchez and Alejandro Belloǵın. Point-of-Interest Recommender Sys-
tems: A Survey from an Experimental Perspective. Submitted to ACM Comput-
ing Surveys. Under Review (1st round of review). Factor de Impacto 2019:
7.990. JCR 2019: Q1: 4/108. Computer Science Theory & Methods.

En segundo lugar, en el Caṕıtulo 4 proponemos nuevas métricas que incorporan
diferentes contextos para evaluar los recomendadores. Primero, explotamos la infor-
mación temporal para ver si un elemento es novedoso o no en función de los momentos
concretos en los que fue consumido por los usuarios del sistema. Después, adaptamos
el Principio de Ranking Probabiĺıstico (del inglés Probabilistic Ranking Principle) para
definir nuevas métricas que midan cuántas recomendaciones “anti-relevantes” (́ıtems
con una valoración muy baja) hacen los algoritmos. Se trata de una propuesta novedosa
porque, aunque es importante que un recomendador haga buenas recomendaciones, es
igualmente importante que no sugiera art́ıculos que los usuarios hayan categorizado es-
pećıficamente como “malos”. A continuación, también definimos métricas que explotan
los atributos de los usuarios y los art́ıculos. Los atributos de los art́ıculos nos permiten
determinar si una lista de recomendaciones es mejor que otra en función de cómo coin-
ciden los atributos de los art́ıculos recomendados con los del conjunto de test. Por otro
lado, los atributos de los usuarios nos permiten determinar si los recomendadores pro-
porcionan recomendaciones de la misma calidad a diferentes grupos de usuarios. Por
último, también modificamos las métricas de precisión tradicionales basadas en ranking
de la Recuperación de Información para tener en cuenta no sólo la relevancia de las
recomendaciones, sino también el orden con respecto al conjunto de test del usuario,
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para comprobar si los elementos recomendados siguen una secuencia determinada. Las
publicaciones relacionadas con este caṕıtulo son las siguientes:

• Pablo Sánchez and Alejandro Belloǵın. Time-aware novelty metrics for rec-
ommender systems. In Gabriella Pasi, Benjamin Piwowarski, Leif Azzopardi,
and Allan Hanbury, editors, Advances in Information Retrieval - 40th European
Conference on IR Research, ECIR 2018, Grenoble, France, March 26-29, 2018,
Proceedings, volume 10772 of Lecture Notes in Computer Science, pages 357-
370. Springer, 2018. DOI: https://doi.org/10.1007/978-3-319-76941-7_27.
CORE 2018: A. Tasa de aceptación (long papers): 23%

• Pablo Sánchez and Alejandro Belloǵın. Measuring anti-relevance: a study on
when recommendation algorithms produce bad suggestions. In Sole Pera, Michael
D. Ekstrand, Xavier Amatriain, and John O’Donovan, editors, Proceedings of the
12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC,
Canada, October 2-7, 2018, pages 367-371. ACM, 2018. DOI: http://doi.

acm.org/10.1145/3240323.3240382. CORE 2018: B. Tasa de aceptación
(short papers): 25%.

• Pablo Sánchez and Alejandro Belloǵın. Attribute-based evaluation for recom-
mender systems: incorporating user and item attributes in evaluation metrics. In
Toine Bogers, Alan Said, Peter Brusilovsky, and Domonkos Tikk, editors, Pro-
ceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019,
Copenhagen, Denmark, September 16-20, 2019., pages 378-382. ACM, 2019.
DOI: https://doi.org/10.1145/3298689.3347049. CORE 2018: B. Tasa
de aceptación (short papers): 24%.

Después de eso, en el Caṕıtulo 5 adaptamos un algoritmo de comparación de
subsecuencias para medir la similitud entre los usuarios de un sistema e integrar esta
similitud en un modelo de recomendación. Como este algoritmo está diseñado para
trabajar con secuencias, nos permite incorporar tanto información temporal como de
contenido de forma sencilla y también es adecuado para trabajar con interacciones
repetidas (es decir, cuando el usuario consume el mismo elemento más de una vez).
Esto es algo útil en dominios como la música o la recomendación de POIs, donde los
usuarios tienden a consumir o visitar el mismo elemento más de una vez. Además,
hemos propuesto un nuevo algoritmo de recomendación basado en vecinos en el que
los ı́tems candidatos se seleccionan utilizando la última interacción que el vecino tiene
con el usuario objetivo, con el fin de generar recomendaciones que tengan en cuenta
la información temporal y secuencial. La principal publicación relacionada con este
caṕıtulo es:

• Pablo Sánchez and Alejandro Belloǵın. Time and sequence awareness in
similarity metrics for recommendation. Information Processing Management,
57(3):102228, 2020. DOI: https://doi.org/10.1016/j.ipm.2020.102228.
Factor de Impacto 2019: 4.787. JCR 2019: Q1: 22/156. Computer Sci-
ence, Information Systems.
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Este art́ıculo está influenciado y puede entenderse como el trabajo futuro de las
estas publicaciones anteriores:

• Pablo Sánchez and Alejandro Belloǵın. Building user profiles based on se-
quences for content and collaborative filtering. Information Processing Manage-
ment, 56(1):192-211, 2019. DOI: https://doi.org/10.1016/j.ipm.2018.10.
003. Factor de impacto 2019: 4.787. JCR 2019: Q1: 22/156. Computer
Science, Information Systems.

• Alejandro Belloǵın and Pablo Sánchez. Collaborative filtering based on subse-
quence matching: A new approach. Information Sciences, 418:432-446, 2017.
DOI: https://doi.org/10.1016/j.ins.2017.08.016. Factor de Impacto
2017: 4.305. JCR 2017: Q1: 12/148. Computer Science, Information Sys-
tems.

Continuando con el trabajo de las secuencias, en el Caṕıtulo 6 definimos también
mecanismos para obtener rutas o trayectorias de POIs, no sólo independientes, uti-
lizando los datos de LBSNs. Aśı, definimos un método para obtener y filtrar rutas a
partir de interacciones de POIs en estos conjuntos de datos y luego exploramos cómo
recomendar rutas aplicando y adaptando técnicas de IR como reranking en el ámbito
de la recomendación de POIs. La publicación relacionada con este caṕıtulo es:

• Pablo Sánchez and Alejandro Belloǵın. Applying reranking strategies to route
recommendation using sequence-aware evaluation. User Modeling and User-
Adapted Interaction, 30(4):659-725, 2020. DOI: https://doi.org/10.1007/

s11257-020-09258-4. Factor de impacto 2019: 4.682. JCR 2019: Q1:
4/22. Computer Science, Cybernetics.

Por último, debido a la gran dispersión de datos prevalente en el área de recomen-
dación de POIs, en el Caṕıtulo 7 también aplicaremos técnicas basadas en dominio
cruzado para ver si es posible mejorar las recomendaciones producidas por los algo-
ritmos tanto en términos de precisión como en otras dimensiones tales como novedad,
diversidad y cobertura. Al mismo tiempo, clasificamos a los usuarios en dos grupos
diferentes, turistas y locales, y analizamos el efecto de estas técnicas en ambos grupos
por separado. Las publicaciones relacionadas con este caṕıtulo son:

• Pablo Sánchez and Alejandro Belloǵın. On the effects of aggregation strategies
for different groups of users in venue recommendation. Submitted to Information
Processing and Management. Accepted paper. Factor de impacto 2019: 4.787.
JCR 2019: Q1: 22/156. Computer Science, Information Systems.

• Pablo Sánchez and Alejandro Belloǵın. A novel approach for venue recom-
mendation using cross-domain techniques. In the 2nd Workshop on Intelligent
Recommender Systems by Knowledge Transfer & Learning (RecSysKTL), held
in conjunction with the 12th ACM Conference on Recommender Systems, Van-
couver, Canada, Oct, 2018.
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B.4 Estructura de la tesis

Esta tesis está estructurada de la siguiente manera:

• En el Caṕıtulo 2 se presenta el estado del arte de los sistemas de recomendación
clásicos. En primer lugar, definimos el problema de la recomendación y catego-
rizamos los tipos de modelos más populares, destacando sus ventajas, desventa-
jas y los enfoques más representativos. Además, mostramos la evolución de los
métodos y protocolos de evaluación que se han utilizado en el área y definimos
las metodoloǵıas y métricas de evaluación más conocidas actualmente.

• En el Caṕıtulo 3 se analiza el problema de la recomendación de POIs y se clasifican
los enfoques más importantes en este ámbito entre 2011 y 2019. En nuestro
estudio, clasificamos los modelos según el tipo de información utilizada (temporal,
secuencial, de contenido, etc.), el tipo de algoritmo (similitudes, factorización,
redes neuronales, etc.), y también hacemos especial hincapié en el aspecto de la
reproducibilidad, mostrando las principales estrategias de evaluación utilizadas
en el área (métricas, conjuntos de datos, tipo de particiones, etc.).

• En el Caṕıtulo 4 se propone un conjunto de nuevas métricas para incorporar
contextos adicionales a la hora de evaluar los Sistemas de Recomendación. En
primer lugar, ampliamos un framework existente de novedad y diversidad para
incorporar información temporal. En segundo lugar, mostramos cómo tener en
cuenta en la evaluación los art́ıculos que no gustan espećıficamente al usuario.
Posteriormente, mostramos cómo podemos utilizar los atributos de los art́ıculos
en la evaluación y, por último, mostramos cómo incorporar la secuencialidad en
las métricas de clasificación tradicionales.

• En el Caṕıtulo 5 se propone una nueva métrica de similitud basada en el algoritmo
de la subsecuencia común más larga para ser utilizada en los recomendadores
basados en la secuencialidad. Además, también se propone una reformulación de
los algoritmos basados en vecinos aportando ideas de las técnicas de fusión de
ranking.

• En el Caṕıtulo 6 se siguen explorando los datos de las LBSNs y se proponen
mecanismos para obtener rutas completas a partir de ellas. Además, también se
proponen mecanismos para obtener rutas a partir de recomendaciones indepen-
dientes utilizando técnicas de reranking.

• En el Caṕıtulo 7 continuamos investigando el problema de la recomendación de
POIs con especial énfasis en la alta escasez de datos de este dominio. Para tratar
de paliar parcialmente este efecto, se propone el uso de técnicas de agregación
de datos (basadas en el ámbito del dominio cruzado) para mejorar las recomen-
daciones en ciudades independientes utilizando información de otras ciudades en
base a diferentes estrategias. Además, también clasificamos los usuarios en dos
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grupos (turistas y locales) y analizamos el rendimiento de los recomendadores en
cada grupo por separado.

• En el Caṕıtulo 8 se resumen las principales conclusiones de esta tesis y se discuten
sus principales limitaciones y el trabajo futuro de investigación.
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Appendix C

Conclusiones y trabajo futuro

Los Sistemas de Recomendación se han ido integrando progresivamente en un número
cada vez mayor de aplicaciones, hasta el punto de que ya son imprescindibles para mane-
jar la gran cantidad de datos disponibles en un gran número de empresas tecnológicas.
Por ello, la investigación de estos sistemas es crucial para mejorar la experiencia de los
usuarios proporcionándoles mejores recomendaciones, adaptándolas al contexto actual
de los mismos.

Esta tesis se ha centrado en dos temas principales: la integración de la información
temporal y secuencial en los Sistemas de Recomendación (tanto en la etapa de recomen-
dación como en la de evaluación) y el estudio detallado del problema de la recomen-
dación de Puntos de Interés analizando los principales problemas y retos, al tiempo
que se proponen soluciones para paliarlos. Respecto a la recomendación clásica, hemos
presentado el estado del arte actual en el área de los Sistemas de Recomendación,
mostrando tanto los algoritmos clásicos como las métricas más comunes que se siguen
utilizando hoy en d́ıa, analizando algunos de los retos de estos enfoques clásicos para
definir nuevas métricas y algoritmos que utilicen información contextual, especialmente
temporal y secuencial. Estos recomendadores contextuales son actualmente los algorit-
mos que pueden ofrecer una mejor experiencia a los usuarios, ya que pueden adaptarse
más fácilmente a sus gustos y necesidades. Para ello, hemos definido en primer lu-
gar nuevas métricas que incorporan estos contextos para analizar las recomendaciones
producidas por los algoritmos en los siguientes aspectos: frescura, anti-relevancia, se-
cuencialidad, y sesgos en función de los atributos del usuario y del ı́tem, mostrando que
toda esta información puede ser utilizada también para evaluar a los recomendadores.
En segundo lugar, hemos propuesto una nueva similitud entre usuarios basada en el al-
goritmo de la subsecuencia común más larga para integrarlo en los sistemas de recomen-
dación basados en vecinos, que tiene en cuenta tanto la información temporal como la
secuencial. Además, hemos propuesto una redefinición de los algoritmos basados en
vecinos para hacer recomendaciones explotando la última interacción común entre el
usuario objetivo y el resto de sus vecinos, produciendo recomendaciones mejores y más
novedosas temporalmente que otros algoritmos del estado del arte, demostrando que
los modelos simples siguen siendo aplicables en el área.
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Además, hemos analizado en detalle el problema de recomendación de Puntos de
Interés (POI en inglés) clasificando un gran número de propuestas recientes según el
tipo de información, los algoritmos y la metodoloǵıa de evaluación utilizada. Con esta
revisión hemos podido constatar que el problema de la recomendación de POIs sigue
siendo relevante en la actualidad, ya que cada año se proponen un mayor número de
nuevos trabajos. Sin embargo, también hemos detectado un problema en cuanto a
la reproducibilidad de los resultados obtenidos por los modelos, ya que la mayoŕıa de
los algoritmos no son comparables entre śı porque presentan importantes discrepan-
cias en la forma de realizar las recomendaciones y sus evaluaciones. Posteriormente,
también hemos explorado la recomendación de rutas a partir de POIs independientes,
utilizando información categórica y secuencial para generar secuencias a partir de POIs
independientes recomendados explotando técnicas de reranking. Aunque nuestros en-
foques de reranking no han mostrado una superioridad notable con respecto a otros
algoritmos en cuanto al acierto en el ránking de las recomendaciones, śı han mostrado
resultados prometedores en otras dimensiones, como la mejora de la precisión de las
categoŕıas y la reducción de la distancia que deben seguir los usuarios en función de las
recomendaciones recibidas. Por último, dado que en la recomendación de Puntos de
Interés la escasez de información es un problema severo (más que en la recomendación
clásica), hemos aplicado estrategias de agregación de datos basadas en técnicas de do-
minio cruzado para mejorar el rendimiento de los recomendadores de POIs en diferentes
regiones. Utilizando estas sencillas estrategias hemos podido mejorar el rendimiento de
algunos recomendadores en varias dimensiones, como el acierto y la cobertura de usuar-
ios.

En este caṕıtulo presentamos las principales conclusiones obtenidas en esta tesis.
En la Sección C.1 proporcionamos más detalles sobre las contribuciones de esta in-
vestigación y en la Sección C.2 presentamos algunas direcciones de investigación que
podŕıan abordarse en el trabajo futuro.

C.1 Resumen de contribuciones

En las siguientes subsecciones discutimos y resumimos las principales contribuciones
de esta tesis abordando los objetivos de investigación expuestos en el Apéndice B. En
primer lugar, para el OBJ1, revisamos el estado del arte de los enfoques de recomen-
dación de POIs y los caracterizamos en términos de información, tipo de algoritmos y
metodoloǵıas de evaluación utilizadas. Con respecto al OBJ2, desarrollamos un con-
junto de métricas que incorporan información adicional como el tiempo, las secuencias
y los atributos de usuarios y art́ıculos, y las probamos en dos conocidos conjuntos de
datos. Para el OBJ3, definimos una métrica de similitud entre usuarios explotando la
subsecuencia común más larga entre sus interacciones; también redefinimos la formu-
lación de los sistemas de recomendación basados en vecinos generando un ranking para
el usuario objetivo explotando sus últimas interacciones con otros usuarios en el sistema.
Para el OBJ4, demostramos que podemos generar trayectorias completas a partir de los
datos de Redes Sociales basadas en localización utilizando técnicas de reranking. Por
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último, para el OBJ5 estudiamos cómo las técnicas de agregación derivadas del área de
dominio cruzado nos ayudan a mejorar el rendimiento y la cobertura de usuarios de los
recomendadores de Puntos de Interés.

C.1.1 Métricas alternativas para los Sistemas de Recomendación

En el Caṕıtulo 4 presentamos un conjunto de nuevas métricas para ser utilizadas en
los Sistemas de Recomendación que explotan la información temporal, secuencial y
categórica. También proponemos variaciones de las métricas para tener en cuenta los
casos en los que se recomiendan art́ıculos con puntuaciones bajas. Demostramos la
importancia de utilizar este tipo de información en la etapa de evaluación para seguir
analizando los resultados de los recomendadores.

Con nuestras métricas de novedad temporal, hemos demostrado que existe una clara
relación entre los elementos relevantes y su novedad temporal. Esto es realmente útil,
ya que estas métricas nos permiten detectar posibles sesgos y estallidos temporales de
las interacciones dentro del sistema. Además, nuestras métricas de novedad temporal
nos permiten construir perfiles de art́ıculos con repeticiones, lo que las hace aptas para
otros dominios de recomendación como la música.

Utilizando nuestros modelos de anti-relevancia hemos determinado que, a veces,
aunque los recomendadores sugieran art́ıculos relevantes a los usuarios, también de-
vuelven art́ıculos que los usuarios han valorado negativamente. Por ello, creemos que
cuando se dispone de esta información (es decir, cuando se utilizan conjuntos de datos
con calificaciones expĺıcitas), los art́ıculos recomendados con una calificación muy baja
debeŕıan ser penalizados aún más al evaluar los recomendadores. Además, consideramos
que es un aspecto importante a tener en cuenta, ya que en ocasiones una recomendación
realmente mala puede provocar una gran desconfianza en los usuarios del sistema. De
hecho, aunque pensamos que este aspecto debeŕıa ser analizado con mayor profundidad,
no hemos encontrado muchos estudios que analicen las “malas” recomendaciones pro-
ducidas por los algoritmos, por lo que consideramos que es una dimensión novedosa que
este trabajo ha aportado al campo de la evaluación de los Sistemas de Recomendación.

En cuanto a los atributos de los usuarios y los art́ıculos en las recomendaciones,
hemos observado que los usuarios suelen clasificarse en grupos, que a su vez pueden
obtener resultados muy diferentes según los grupos a los que pertenezcan. Esta ob-
servación conecta con el análisis de la equidad en la recomendación (ya que en esos
casos, algunos usuarios obtendrán mejores o peores recomendaciones sólo por poseer
algunas caracteŕısticas inherentes), lo que implica que algunos modelos pueden no es-
tar devolviendo recomendaciones justas. Con los atributos de los art́ıculos podemos
distinguir mejor los resultados devueltos por los algoritmos y aumentar el rendimiento
obtenido por los algoritmos en conjuntos de datos muy dispersos. Sin embargo, creemos
que permitir la evaluación con atributos debe hacerse con cuidado, ya que podemos
acabar aumentando de forma poco realista el rendimiento de los recomendadores si no
aplicamos las penalizaciones adecuadas.

Las métricas desarrolladas en el Caṕıtulo 4 nos han permitido, por tanto, obtener
una visión más completa de los resultados obtenidos por los recomendadores. Hemos
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comprobado la utilidad de nuestras métricas en dos conjuntos de datos conocidos:
Movielens1M y Foursquare, con el fin de analizar las diferencias y similitudes en ambos
dominios utilizando dos metodoloǵıas de evaluación diferentes (particiones aleatorias y
temporales). Por último, aunque se trata de un resultado ya conocido por la comunidad,
hemos encontrado, de acuerdo con otros investigadores en la materia, diferencias en los
resultados obtenidos por los algoritmos en función del escenario de recomendación o de
la metodoloǵıa de evaluación utilizada (tipo de partición de datos, ajuste de parámetros,
optimización de los algoritmos, etc.), véase (Beel et al., 2016, Dacrema et al., 2019).
Por este motivo, volvemos a insistir en la importancia de ser lo más transparente posible
a la hora de evaluar un algoritmo de recomendación – o, de hecho, cualquier algoritmo
de aprendizaje automático.

C.1.2 Información secuencial en sistemas de recomendación k-NN

En el Caṕıtulo 5 presentamos dos propuestas complementarias para los sistemas de
recomendación basados en vecinos. En primer lugar, propusimos adaptar el uso del
algoritmo de la subsecuencia común más larga para considerarlo como una métrica
de similitud clásica, como la similitud del coseno o la correlación de Pearson. Esta
similitud, aunque es computacionalmente más costosa que las anteriores, tiene dos
grandes ventajas. Por un lado, permite tener en cuenta los componentes secuenciales
y, por otro, es lo suficientemente flexible como para operar con información adicional
de los elementos, como sus atributos, para crear un algoritmo h́ıbrido (con la ventaja
adicional de que es fácil de explicar e implementar).

En segundo lugar, redefinimos los algoritmos de vecinos próximos para generar un
ranking para el usuario objetivo basado en las últimas interacciones que tienen en
común con sus vecinos correspondientes. Nuestra principal propuesta aqúı fue utilizar
técnicas de fusión de rankings, lo que nos permitió generar recomendaciones que in-
tegran información secuencial. Además, esta nueva formulación es capaz de operar
con cualquier métrica de similitud, tanto las clásicas como Pearson o coseno, como
la métrica de similitud secuencial propuesta anteriormente en nuestro trabajo. Estas
propuestas han sido evaluadas frente a otros algoritmos del estado del arte mostrando
que en algunas circunstancias nuestra propuesta es más competitiva que el resto de los
algoritmos, mientras que en otras situaciones siguen siendo eficaces. Con esta nueva
formulación de los algoritmos más cercanos, demostramos que este tipo de propuestas
siguen siendo aplicables y adaptables en el campo porque son más interpretables, efi-
cientes (ya que se pueden paralelizar fácilmente) y más simples que otros algoritmos
como las redes neuronales. Hemos probado nuestros recomendadores en dos conjuntos
de datos diferentes con marcas de tiempo realistas: un subconjunto de MovieTweetings
(del dominio de las peĺıculas) y un subconjunto del conjunto de datos Foursquare (del
dominio de los Puntos de Interés) bajo dos metodoloǵıas de evaluación sensibles al
tiempo, una más realista que considera una división temporal a nivel de sistema y otra
división temporal por usuario para demostrar que nuestra propuesta puede obtener
resultados competitivos en ambas metodoloǵıas.
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C.1.3 Nuevas perspectivas relativas a los sistemas de recomendación
de Puntos de Interés

En el Caṕıtulo 3 hemos realizado un estudio sobre el problema Puntos de Interés,
mostrando que esta área sigue siendo relevante para los investigadores. Aunque hemos
podido identificar que los algoritmos que explotan la información geográfica y temporal
son ampliamente utilizados, también hemos detectado que no existe un protocolo de
evaluación común para analizar el rendimiento de los recomendadores. En este sentido,
hemos observado que la mayoŕıa de los modelos trabajan con conjuntos de datos muy
diferentes y utilizan metodoloǵıas de evaluación diversas (diferentes tipos de divisiones,
diferencias en el filtrado de los datos, etc.), por lo que la comparación entre ellos resulta
a veces inviable.

En el Caṕıtulo 6 hemos explorado el problema de la recomendación de rutas o
trayectorias a partir de la recomendación de POIs independientes de acuerdo a difer-
entes condiciones (por ejemplo, distancia, probabilidad del ı́tem o probabilidad de las
categoŕıas). En primer lugar, definimos un framework para generar rutas a partir de los
datos de las LBSNs y, a continuación, proponemos el uso de técnicas de reranking para
generar rutas a partir de las recomendaciones producidas por los algoritmos de recomen-
dación clásicos. En concreto, utilizamos tres técnicas diferentes de reranking: indepen-
diente, donde la puntuación de los ı́tems rerankeados sólo depende del par usuario-́ıtem,
dependiente del último ı́tem, donde la puntuación de cada ı́tem rerankeado depende del
ı́tem anterior, y finalmente los rerankers que dependen de toda la secuencia, donde los
ı́tems son rerankeados para optimizar la ruta recomendada completa en función de las
categoŕıas de POIs visitadas previamente por el usuario. Aunque nuestras técnicas de
reranking no obtienen mejoras sustanciales en términos de relevancia, śı permiten mejo-
ras en términos de aciertos de categoŕıas de POIs al tiempo que consiguen niveles de
precisión similares partiendo de métodos muy sencillos. Esto demuestra, en particular,
que a veces se pueden generar rutas de forma sencilla aprovechando las recomenda-
ciones producidas previamente por otros algoritmos. Para evaluar nuestras propuestas,
hemos utilizado cuatro conjuntos de datos diferentes del mundo real. Nuestros métodos
funcionaron bien en todos los casos, especialmente en el que conteńıa más información
tuŕıstica.

Por último, en el Caṕıtulo 7 hemos desarrollado un conjunto de técnicas de agre-
gación de varias ciudades con el fin de mejorar el rendimiento de los algoritmos de
recomendación tanto clásicos como espećıficos de POIs. En concreto, hemos realizado
recomendaciones a un subconjunto de ciudades independientes con más check-ins del
conjunto de datos de Foursquare utilizando tres estrategias diferentes: seleccionando
las ciudades geográficamente más cercanas de cada una de ellas, seleccionando el resto
de ciudades de cada páıs de cada ciudad objetivo, y utilizando la información de las
ciudades con más check-ins para realizar recomendaciones en cada ciudad de forma
independiente. A través de nuestros experimentos, hemos podido comprobar que la
precisión y la cobertura a nivel de usuario de la mayoŕıa de los modelos puede mejo-
rarse más utilizando las estrategias basadas en la proximidad o por páıs que utilizando
las ciudades más populares, demostrando que los algoritmos dependen más de la cali-
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dad que de la cantidad de los datos. Además, hemos podido comprobar que mientras
que el componente geográfico es útil si realizamos recomendaciones para cada ciudad
de forma independiente, cuando se utilizan estrategias de agregación el rendimiento no
siempre mejora.

C.2 Trabajo futuro

A lo largo de esta tesis hemos mostrado sólo una pequeña fracción del área de los
Sistemas de Recomendación. De hecho, aunque hemos propuesto soluciones y avanzado
en el estado del arte tanto en la recomendación clásica como en la de Puntos de Interés,
creemos que algunas de estas aportaciones pueden ser ampliadas en el futuro. Por
ello, en esta sección resumimos las principales ĺıneas de investigación que pueden seguir
desarrollándose.

C.2.1 Sobre la evaluación en los Sistemas de Recomendación

En primer lugar, creemos que las métricas desarrolladas que se muestran en el
Caṕıtulo 4 tienen suficiente potencial para ser aplicadas en otras áreas de recomen-
dación. Por ejemplo, creemos que las métricas de novedad dependientes del tiempo
tienen un interés especial en los sistemas de recomendación de streaming, donde el
modelo temporal del recomendador podŕıa no ser el mismo que el de la métrica: por
ejemplo, mientras que la métrica podŕıa recalcularse cada d́ıa, ya que la novedad tempo-
ral es crucial en este dominio, el recomendador podŕıa entrenarse una vez a la semana.
De este modo, se puede realizar un análisis más detallado para, por ejemplo, calcular
el periodo óptimo para entrenar al recomendador, o explorar la sensibilidad d́ıa a d́ıa
de diferentes recomendadores. Vale la pena mencionar que, aunque esto también es
posible lograrlo con datos offline, las conclusiones no serán tan significativas porque
la mayoŕıa de los conjuntos de datos son muy escasos, por lo que es necesario utilizar
datos reales y de forma online.

En el caso del framework de anti-relevancia, nos proponemos ampliar el análisis de
estas métricas a más familias de algoritmos y también en tareas de recomendación espe-
cialmente dif́ıciles, como el arranque en fŕıo o los dominios cruzados, para comprender
el comportamiento de las técnicas de recomendación en esos escenarios. Y lo que es
más importante, nos gustaŕıa analizar cómo extender nuestro framework a situaciones
en las que no se dispone de valoraciones expĺıcitas, pero donde se puedan inferir otras
formas de anti-relevancia, ya sea directamente o a través de la interacción del usuario
con el sistema.

En cuanto a las caracteŕısticas de los usuarios y los art́ıculos, explotando los atrib-
utos de los usuarios podemos extender el análisis realizado en esta tesis a otros experi-
mentos, como discriminar entre usuarios activos o influyentes, o entre bots o cualquier
otro tipo de atacante o diferentes grupos de usuarios más allá de los turistas y los
locales en el ámbito del turismo. Por otro lado, el análisis de los atributos de los ı́tems
puede ser interesante para detectar sesgos en las recomendaciones (por ejemplo, si las
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recomendaciones están sesgadas hacia categoŕıas espećıficas de los ı́tems o si los usuar-
ios que pertenecen a un grupo concreto tienden a consumir ı́tems con una categoŕıa
distinta), aśı como para aplicar métricas de relevancia para emparejar las categoŕıas
de los ı́tems recomendados con los ı́tems de prueba, en dominios donde hay un gran
número de ı́tems, como en POI o la recomendación de música.

C.2.2 Sobre la secuencialidad en los sistemas de recomendación k-NN

Los resultados obtenidos por nuestra novedosa métrica de similitud basada en la sub-
secuencia común más larga y los resultados de nuestra reformulación de los algoritmos
basados en vecinos próximos muestran que estos modelos simples siguen siendo com-
petitivos y pueden adaptarse para incluir información temporal y/o secuencial. Como
trabajo futuro, hemos planeado explorar el uso de funciones de agregación alternativas –
como las basadas en la distribución de puntuación (Manmatha et al., 2001) – cuando se
integren en nuestra propuesta. Además, debeŕıa realizarse un análisis exhaustivo – con
más conjuntos de datos, algoritmos base como SVD++ con información temporal (Ko-
ren and Bell, 2015) u otras técnicas de redes neuronales (Hidasi et al., 2016, Donkers
et al., 2017, He et al., 2017b), y otras metodoloǵıas de evaluación – para comprender
mejor cada componente de los modelos propuestos. Por ejemplo, el número de elemen-
tos que se permite seleccionar antes y después de la última interacción común, junto
con definiciones alternativas para las métricas de similitud sensibles a las secuencia.
Como ejemplo, pretendemos ampliar la similitud propuesta basada en LCS explotando
otras dimensiones sobre las que construir la secuencia (como las caracteŕısticas de los
ı́tems, las valoraciones, o combinaciones de las mismas) o incluso aplicando filtros para
seleccionar aquellos ı́tems que han sido valorados con un valor superior a un umbral
espećıfico para crear las secuencias de usuario, como hemos analizado recientemente
en Sánchez and Belloǵın (2019). Sin embargo, para el dominio de POIs esto podŕıa ser
contraproducente, ya que podŕıamos acabar añadiendo más dispersión en los datos al
filtrar demasiada información.

Además, seŕıa interesante observar el impacto en el comportamiento online de los
usuarios una vez que reciben las recomendaciones, como se analizó recientemente para
las redes sociales en Falavarjani et al. (2019). También se podŕıa realizar un análisis
completo sobre el impacto de la optimización de los parámetros utilizando (o no)
un subconjunto de validación. De hecho, hemos observado lo dif́ıcil que fue encon-
trar resultados consistentes (desde el subconjunto de validación hasta el conjunto de
datos completo) en el Caṕıtulo 4. Por ello, nos proponemos analizar estas cuestiones
con más detalle en el futuro para obtener directrices o garant́ıas teóricas de que los
parámetros aprendidos utilizando una división temporal de validación se ajustaŕıan
bien utilizando los datos completos, ya que creemos que es la forma más realista de
ajustar los parámetros, como si se hiciera en un sistema del mundo real.
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C.2.3 Sobre el problema de recomendación de Puntos de Interés

En cuanto al problema de la recomendación de POIs, gracias a la revisión bibliográfica
realizada en el Caṕıtulo 3, hemos podido identificar un gran número de propuestas que
no son comparables entre śı, sobre todo porque la metodoloǵıa de evaluación llevada a
cabo en la mayoŕıa de esos trabajos vaŕıa sustancialmente (por ejemplo, diferentes tipos
de particiones de datos, datasets, ajuste de parámetros, etc.). Por esta razón, como
trabajo futuro, creemos que es necesario llevar a cabo más estudios experimentales
(como en Liu et al. (2017)) comparando los enfoques más recientes y más citados de
la recomendación POIs mientras se realizan diferentes tipos de splits en al menos las
siguientes condiciones: recomendación en la misma ciudad, recomendación en diferentes
ciudades del mundo, y recomendación en regiones espećıficas. Esto nos ayudará a
identificar si los algoritmos pueden explotar correctamente la influencia geográfica en
cada una de estas situaciones. Además, este análisis puede servir para entender con más
detalle si hay más algoritmos que puedan beneficiarse de las estrategias entre dominios
mencionadas en el Caṕıtulo 7.

Con respecto a estas estrategias, consideramos que es importante utilizar otras es-
trategias de agregación que, en lugar de maximizar el número de usuarios coincidentes,
se basen en el establecimiento de similitudes entre elementos. En este aspecto, con-
sideramos que podŕıa ser interesante ver cómo se comportan algoritmos como SLIM,
FISM o embeddings de ı́tems en estas circunstancias.

Por último, nos gustaŕıa insistir una vez más en que cualquier trabajo de investi-
gación que se lleve a cabo debeŕıa publicar también el framework utilizado para re-
alizar los experimentos, ya que es generalmente reconocido que el mismo modelo en
diferentes frameworks podŕıa producir resultados completamente diferentes (Said and
Belloǵın, 2014). Del mismo modo, todos los algoritmos básicos utilizados debeŕıan ajus-
tarse adecuadamente para encontrar un rendimiento competitivo frente a los algoritmos
propuestos.
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editors, 11th IEEE International Conference on Data Min-
ing, ICDM 2011, Vancouver, BC, Canada, December 11-
14, 2011, pages 497–506. IEEE Computer Society, 2011.
doi: 10.1109/ICDM.2011.134. URL https://doi.org/10.

1109/ICDM.2011.134. 176

Santosh Kabbur, Xia Ning, and George Karypis. FISM:
factored item similarity models for top-n recommender
systems. In Inderjit S. Dhillon, Yehuda Koren, Rayid
Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh,
Jingrui He, Robert L. Grossman, and Ramasamy Uthu-
rusamy, editors, The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD
2013, Chicago, IL, USA, August 11-14, 2013, pages 659–
667. ACM, 2013. doi: 10.1145/2487575.2487589. URL
https://doi.org/10.1145/2487575.2487589. 176

Ludovico Boratto, Gianni Fenu, and Mirko Marras. Connect-
ing user and item perspectives in popularity debiasing for
collaborative recommendation. Inf. Process. Manag., 58
(1):102387, 2021. doi: 10.1016/j.ipm.2020.102387. URL
https://doi.org/10.1016/j.ipm.2020.102387. 186

R. Manmatha, Toni M. Rath, and Fangfang Feng. Modeling
score distributions for combining the outputs of search en-
gines. In W. Bruce Croft, David J. Harper, Donald H.
Kraft, and Justin Zobel, editors, SIGIR 2001: Proceed-
ings of the 24th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval,
September 9-13, 2001, New Orleans, Louisiana, USA, pages
267–275. ACM, 2001. doi: 10.1145/383952.384005. URL
http://doi.acm.org/10.1145/383952.384005. 196, 235

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia
Hu, and Tat-Seng Chua. Neural collaborative filtering. In
Rick Barrett, Rick Cummings, Eugene Agichtein, and Ev-
geniy Gabrilovich, editors, Proceedings of the 26th Interna-
tional Conference on World Wide Web, WWW 2017, Perth,
Australia, April 3-7, 2017, pages 173–182. ACM, 2017b.
doi: 10.1145/3038912.3052569. URL https://doi.org/10.

1145/3038912.3052569. 196, 235

Pablo Sánchez and Alejandro Belloǵın. Building user pro-
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Jean-Benôıt Griesner, Talel Abdessalem, and Hubert Naacke.
POI recommendation: Towards fused matrix factorization
with geographical and temporal influences. In Hannes
Werthner, Markus Zanker, Jennifer Golbeck, and Giovanni
Semeraro, editors, Proceedings of the 9th ACM Confer-
ence on Recommender Systems, RecSys 2015, Vienna, Aus-
tria, September 16-20, 2015, pages 301–304. ACM, 2015.
doi: 10.1145/2792838.2799679. URL http://doi.acm.org/

10.1145/2792838.2799679. 204

Kunhui Lin, Jingjin Wang, Zhongnan Zhang, Yating Chen,
and Zhentuan Xu. Adaptive location recommendation al-
gorithm based on location-based social networks. In 2015
10th International Conference on Computer Science Educa-
tion (ICCSE), pages 137–142, July 2015. doi: 10.1109/
ICCSE.2015.7250231. 204

Ziyu Lu, Hao Wang, Nikos Mamoulis, Wenting Tu, and
David W. Cheung. Personalized location recommenda-
tion by aggregating multiple recommenders in diversity. In
Panagiotis Bouros, Neal Lathia, Matthias Renz, Francesco
Ricci, and Dimitris Sacharidis, editors, Proceedings of the
Workshop on Location-Aware Recommendations, LocalRec
2015, co-located with the 9th ACM Conference on Recom-
mender Systems (RecSys 2015), Vienna, Austria, Septem-
ber 19, 2015, volume 1405 of CEUR Workshop Proceed-
ings, pages 28–35. CEUR-WS.org, 2015b. URL http:

//ceur-ws.org/Vol-1405/paper-05.pdf. 204

Xiangyu Wang, Yi-Liang Zhao, Liqiang Nie, Yue Gao, Weizhi
Nie, Zheng-Jun Zha, and Tat-Seng Chua. Semantic-
based location recommendation with multimodal venue se-
mantics. IEEE Trans. Multimedia, 17(3):409–419, 2015.
doi: 10.1109/TMM.2014.2385473. URL https://doi.org/

10.1109/TMM.2014.2385473. 204

Meng Qi, Xin Li, Lejian Liao, Dandan Song, and William K.
Cheung. Deriving an effective hypergraph model for
point of interest recommendation. In Songmao Zhang,
Martin Wirsing, and Zili Zhang, editors, Knowledge Sci-
ence, Engineering and Management - 8th International
Conference, KSEM 2015, Chongqing, China, October 28-
30, 2015, Proceedings, volume 9403 of Lecture Notes in
Computer Science, pages 771–777. Springer, 2015. doi:
10.1007/978-3-319-25159-2\ 71. URL https://doi.org/10.

1007/978-3-319-25159-2_71. 204

Xin Li, Guandong Xu, Enhong Chen, and Lin Li. MARS:
A multi-aspect recommender system for point-of-interest.
In Johannes Gehrke, Wolfgang Lehner, Kyuseok Shim,
Sang Kyun Cha, and Guy M. Lohman, editors, 31st IEEE
International Conference on Data Engineering, ICDE 2015,
Seoul, South Korea, April 13-17, 2015, pages 1436–1439.
IEEE Computer Society, 2015c. doi: 10.1109/ICDE.2015.
7113395. URL https://doi.org/10.1109/ICDE.2015.7113395.
204

Xinqiang Zhao, Xin Li, Lejian Liao, Dandan Song, and
William K. Cheung. Crafting a time-aware point-of-
interest recommendation via pairwise interaction tensor
factorization. In Songmao Zhang, Martin Wirsing, and
Zili Zhang, editors, Knowledge Science, Engineering and
Management - 8th International Conference, KSEM 2015,
Chongqing, China, October 28-30, 2015, Proceedings, vol-
ume 9403 of Lecture Notes in Computer Science, pages 458–
470. Springer, 2015. doi: 10.1007/978-3-319-25159-2\ 41.
URL https://doi.org/10.1007/978-3-319-25159-2_41. 204

252

https://doi.org/10.1145/2505515.2505637
https://doi.org/10.1145/2505515.2505637
http://ceur-ws.org/Vol-1165/salad2014-3.pdf
http://doi.acm.org/10.1145/2532439
https://doi.org/10.1109/LAWeb.2014.22
https://doi.org/10.1109/LAWeb.2014.22
https://doi.org/10.1007/978-3-319-11116-2_7
https://doi.org/10.1007/978-3-319-11116-2_7
https://doi.org/10.1007/978-3-319-14717-8_18
https://doi.org/10.1007/978-3-319-14717-8_18
https://doi.org/10.1145/2837185.2837270
https://doi.org/10.1145/2837185.2837270
https://doi.org/10.1007/s10115-014-0776-5
https://doi.org/10.1109/TMM.2015.2480007
https://doi.org/10.1109/TMM.2015.2480007
https://doi.org/10.1145/2833165.2833172
http://doi.acm.org/10.1145/2792838.2799679
http://doi.acm.org/10.1145/2792838.2799679
http://ceur-ws.org/Vol-1405/paper-05.pdf
http://ceur-ws.org/Vol-1405/paper-05.pdf
https://doi.org/10.1109/TMM.2014.2385473
https://doi.org/10.1109/TMM.2014.2385473
https://doi.org/10.1007/978-3-319-25159-2_71
https://doi.org/10.1007/978-3-319-25159-2_71
https://doi.org/10.1109/ICDE.2015.7113395
https://doi.org/10.1007/978-3-319-25159-2_41


REFERENCES

Jia-Dong Zhang, Chi-Yin Chow, and Yu Zheng. Orec: An
opinion-based point-of-interest recommendation frame-
work. In James Bailey, Alistair Moffat, Charu C. Ag-
garwal, Maarten de Rijke, Ravi Kumar, Vanessa Mur-
dock, Timos K. Sellis, and Jeffrey Xu Yu, editors, Pro-
ceedings of the 24th ACM International Conference on In-
formation and Knowledge Management, CIKM 2015, Mel-
bourne, VIC, Australia, October 19 - 23, 2015, pages 1641–
1650. ACM, 2015b. doi: 10.1145/2806416.2806516. URL
https://doi.org/10.1145/2806416.2806516. 204

Huayu Li, Richang Hong, Shiai Zhu, and Yong Ge. Point-of-
interest recommender systems: A separate-space perspec-
tive. In Charu C. Aggarwal, Zhi-Hua Zhou, Alexander
Tuzhilin, Hui Xiong, and Xindong Wu, editors, 2015 IEEE
International Conference on Data Mining, ICDM 2015, At-
lantic City, NJ, USA, November 14-17, 2015, pages 231–
240. IEEE Computer Society, 2015d. doi: 10.1109/ICDM.
2015.27. URL https://doi.org/10.1109/ICDM.2015.27. 205

Ming Li, Günther Sagl, Lucy W. Mburu, and Hongchao Fan.
A contextualized and personalized model to predict user
interest using location-based social networks. Comput-
ers, Environment and Urban Systems, 58:97–106, 2016b.
doi: 10.1016/j.compenvurbsys.2016.03.006. URL https:

//doi.org/10.1016/j.compenvurbsys.2016.03.006. 205

Khadija Vakeel and Sanjog Ray. A motivation-aware approach
for point of interest recommendations. In Daniel R. Fes-
enmaier, Tsvi Kuflik, and Julia Neidhardt, editors, Pro-
ceedings of the Workshop on Recommenders in Tourism co-
located with 10th ACM Conference on Recommender Systems
(RecSys 2016), Boston, MA, USA, September 15, 2016, vol-
ume 1685 of CEUR Workshop Proceedings, pages 24–29.
CEUR-WS.org, 2016. URL http://ceur-ws.org/Vol-1685/

paper4.pdf. 205

Joan Capdevila, Marta Arias, and Argimiro Arratia. Geosrs:
A hybrid social recommender system for geolocated data.
Inf. Syst., 57:111–128, 2016. doi: 10.1016/j.is.2015.10.003.
URL https://doi.org/10.1016/j.is.2015.10.003. 205

Jian Li, Guanjun Liu, Changjun Jiang, and ChunGang Yan.
A hybrid method of recommending pois based on context
and personal preference confidence. In Ashiq Anjum and
Xinghui Zhao, editors, Proceedings of the 3rd IEEE/ACM
International Conference on Big Data Computing, Appli-
cations and Technologies, BDCAT 2016, Shanghai, China,
December 6-9, 2016, pages 287–292. ACM, 2016c. doi:
10.1145/3006299.3006330. URL https://doi.org/10.1145/

3006299.3006330. 205

Md. Ahsan Habib, Md. Abdur Rakib, and Muhammad Abdul
Hasan. Location, time, and preference aware restaurant
recommendation method. In 2016 19th International Con-
ference on Computer and Information Technology (ICCIT),
pages 315–320, Dec 2016. doi: 10.1109/ICCITECHN.2016.
7860216. 205

Zijun Yao, Yanjie Fu, Bin Liu, Yanchi Liu, and Hui Xiong.
POI recommendation: A temporal matching between POI
popularity and user regularity. In Francesco Bonchi,
Josep Domingo-Ferrer, Ricardo A. Baeza-Yates, Zhi-Hua
Zhou, and Xindong Wu, editors, IEEE 16th International
Conference on Data Mining, ICDM 2016, December 12-15,
2016, Barcelona, Spain, pages 549–558. IEEE, 2016. doi:
10.1109/ICDM.2016.0066. URL https://doi.org/10.1109/

ICDM.2016.0066. 205

Basma H. Albanna, Mahmoud Attia Sakr, Sherin M. Moussa,
and Ibrahim F. Moawad. Interest aware location-
based recommender system using geo-tagged social me-
dia. ISPRS Int. J. Geo-Information, 5(12):245, 2016.
doi: 10.3390/ijgi5120245. URL https://doi.org/10.3390/

ijgi5120245. 205

Xiaoyan Zhu and Ripei Hao. Context-aware location recom-
mendations with tensor factorization. In 2016 IEEE/CIC
International Conference on Communications in China,
ICCC 2016, Chengdu, China, July 27-29, 2016, pages 1–6.
IEEE, 2016. doi: 10.1109/ICCChina.2016.7636832. URL
https://doi.org/10.1109/ICCChina.2016.7636832. 205

Jialiang Chen, Xin Li, William K. Cheung, and Kan Li. Ef-
fective successive POI recommendation inferred with in-
dividual behavior and group preference. Neurocomputing,
210:174–184, 2016c. doi: 10.1016/j.neucom.2015.10.146.
URL https://doi.org/10.1016/j.neucom.2015.10.146. 205

Zhengwu Yuan and Haiguang Li. Location recommendation
algorithm based on temporal and geographical similarity
in location-based social networks. In 2016 12th World
Congress on Intelligent Control and Automation (WCICA),
pages 1697–1702, June 2016. doi: 10.1109/WCICA.2016.
7578804. 205

Luepol Pipanmaekaporn and Suwatchai Kamonsantiroj. Min-
ing semantic location history for collaborative POI rec-
ommendation in online social networks. In Irfan Awan
and Muhammad Younas, editors, 2nd International Con-
ference on Open and Big Data, OBD 2016, Vienna, Aus-
tria, August 22-24, 2016, pages 31–38. IEEE Computer
Society, 2016. doi: 10.1109/OBD.2016.12. URL https:

//doi.org/10.1109/OBD.2016.12. 205

Budsabawan Jueajan, Kanittha Naleg, Luepol Pipanmeka-
porn, and Suwatchai Kamolsantiroj. Development of
location-aware place recommendation system on android
smart phones. In 2016 Fifth ICT International Student
Project Conference (ICT-ISPC), pages 125–128, May 2016.
doi: 10.1109/ICT-ISPC.2016.7519252. 205

Bahaeddin Eravci, Neslihan Bulut, Çagri Etemoglu, and
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