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Resumen  
En esta tesis tratamos ciertos problemas relacionados con los operadores de composi
ción ponderados. Estudiamos cómo actúan estos operadores en espacios de funciones 
anaĺıticas en D o en un dominio acotado Ω ⊂ C. 

En primer lugar nos centramos en una familia amplia de espacios de Hilbert de fun
ciones anaĺıticas en el disco unidad, los cuales satisfacen solamente un número reducido 
de axiomas y cuyo núcleo reproductor tiene la forma usual. A estos espacios se les llama 
espacios de Hardy con peso. En estos espacios caracterizamos los operadores de com
posición ponderados que son co-isométricos (equivalentemente, unitarios). El resultado 
principal nos revela una dicotoḿıa al identificar una familia especifica de espacios de 
Hardy con peso como los únicos espacios en los cuales existen operadores no triviales de 
este tipo. 

La segunda parte de la tesis está dedicada a explorar una clase de espacios de fun
ciones anaĺıticas los cuales comparten una cierta propiedad de invariancia conforme pon
derada. Para ser más preciso, en esta parte presentamos una aproximación general a los 
espacios que son invariantes bajo los operadores Wϕ

α, definidos por Wϕ
αf = (ϕ')α(f ◦ ϕ) 

con α > 0 y ϕ ∈ Aut(D). Podemos observar que muchos de los espacios de Banach de 
funciones anaĺıticas clásicos como los espacios de crecimiento de Korenblum, los espacios 
de Hardy, los espacios de Bergman con peso y ciertos espacios de Besov son invariantes 
bajo estos operadores. Entre otras cosas, en esta parte identificamos el espacio más 
grande, el más pequeño y el “único” espacio de Hilbert que satisface esta propiedad de 
invariancia ponderada para un α > 0 dado. 

En la última parte consideramos espacios de Banach abstractos de funciones anaĺıti
cas en un dominio acotado general los cuales sólo satisfacen unos pocos axiomas. A 
continuaci´ on ponderados invertibles on, describimos todos los operados de composici´
(equivalentemente, sobreyectivos) que actúan sobre estos espacios. 



Abstract 
This thesis treats a number of problems related to weighted composition operators. We 
study how these operators act on the spaces of analytic functions in D or in a bounded 
domain Ω ⊂ C. 

We first focus on a large family of Hilbert spaces of analytic functions in the unit disc 
which satisfy only a minimum number of axioms and whose reproducing kernels have the 
usual natural form. These spaces are called weighted Hardy spaces. In these spaces, we 
characterize the weighted composition operators which are co-isometric (equivalently, 
unitary). The main result reveals a dichotomy identifying a specific family of weighted 
Hardy spaces as the only ones that support non-trivial operators of this kind. 

The second part of the thesis is devoted to exploring a class of spaces of analytic 
functions which share certain weighted invariant property. More precisely, in this part we 
present a general approach to the spaces which are invariant under the operators Wϕ

α, 
defined by Wϕ

αf = (ϕ ')α(f ◦ ϕ) with α > 0 and ϕ ∈ Aut(D). We observe that many 
common examples of Banach spaces of analytic functions like Korenblum growth classes, 
Hardy spaces, standard weighted Bergman and certain Besov spaces are invariant under 
these operators. Among other things, we identify the largest and the smallest as well as 
the “unique” Hilbert space satisfying this weighted invariant property for a given α > 0. 

In the last part, we consider abstract Banach spaces of analytic functions on general 
bounded domains that satisfy only a minimum number of axioms. Then, we describe 
all invertible (equivalently, surjective) weighted composition operators acting on such 
spaces. 
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Introducción 

En esta tesis trataremos ciertos problemas relacionados con los operadores de composi
ción ponderados. Consideraremos el disco unidad D = {z ∈ C : |z| < 1} y estudiaremos 
cómo actúan estos operadores en espacios de funciones anaĺıticas en el disco unidad. 

Dada f , una función anaĺıtica en D, se define el operador de composición ponderado 
con śımbolos F y φ como 

WF,φf = F (f ◦ φ), 
donde F y φ son funciones anaĺıticas en el disco unidad y φ (D) ⊂ D. Un caso particular 
de estos operadores que aparecerá de manera recurrente en muchos resultados será 
cuando φ es un automorfismo del disco, es decir, cuando φ = ϕ donde ϕ es una aplicación 
fraccional lineal de la forma 

z + a 
ϕ(z) = λ , z ∈ D, a ∈ D, |λ| = 1,1 + az 

que manda el disco unidad en śı mismo. Denotaremos el grupo de todos los automor
fismos del disco por Aut(D). Los operadores de composición ponderados son una gene
ralización natural de los operadores de multiplicación y los operadores de composición, 
los cuales han sido estudiados ámpliamente en el contexto de los espacios de funciones 
anaĺıticas en el disco unidad. 

En general, dada una familia de operadores lineales en un espacio de Banach de 
funciones anaĺıticas en el disco unidad siempre ha interesado conocer cuándo los ope
radores de esta familia cumplen ciertas propiedades como, por ejemplo, qué operadores 
son acotados, sobreyectivos, isométricos... En muchos espacios de Banach de funciones 
anaĺıticas en el disco se conocen todos las isometŕıas o, al menos, todas las isometŕıas 
sobreyectivas (operadores unitarios). Por ejemplo, en analoǵıa con el teorema clásico de 
Banach-Lamperti para los espacios Lp, Forelli en [46] probó que todos los operadores 
lineales isométricos que actúan sobre los espacios de Hardy, Hp, (excluyendo el caso 
p = 2) en śı mismos son precisamente operadores de composición ponderados cuyos 
śımbolos satisfacen ciertas propiedades. 

En los espacios de Hilbert las isometŕıas son mucho más numerosas e incluso existen 
muchos operadores unitarios y, por tanto, una pregunta natural es intentar describir todos 
los operadores unitarios que son de cierto tipo, por ejemplo, operadores de composición 
ponderados. 

En el Caṕıtulo 3 nos centraremos en responder a esta cuestión en una amplia familia 
de espacios de Hilbert de funciones anaĺıticas en el disco unidad que satisfacen los 
siguientes axiomas: 

iii  
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(A1) Las evaluaciones puntuales son acotadas (aśı estamos ante un espacio de Hilbert 
con núcleo reproductor); 

(A2) El núcleo reproductor Kw(z) está normalizado por Kw(0) = 1 para todo w ∈ D; 
n(A3) Los monomios {z : n = 0, 1, 2, . . .} están en nuestro espacio y forman un con

junto ortogonal y completo. 

Estos espacios de Hilbert se denominan espacios de Hardy con peso. Más concretamente, 
en el Caṕıtulo 3 caracterizaremos los operadores de composición ponderadores en los 

∗ ∗espacios de Hardy con peso los cuales son co-isométricos (TT = I donde T denota al 
adjunto del operador T e I denota el operador identidad). Ser co-isométrico a priori es 
más débil que la propiedad de ser unitario (T ∗T = TT ∗ = I). 

En la primera parte del Caṕıtulo 3 se prueba que solamente con los axiomas definidos 

f 

arriba podemos deducir múltiples propiedades para los espacios de Hardy con peso. Esto 
viene recogido en la Proposición 3.1 donde se prueba que si H es un espacio de Hilbert 
de funciones anaĺıticas en el disco unidad que contiene todos los monomios y satisface 
los axiomas (A1) y (A2), entonces las siguientes condiciones son equivalentes: 

n(a) Se satisface el axioma (A3), es decir, los monomios {z : n = 0, 1, 2, . . .} forman 
un conjunto ortogonal y completo en H. 

(b) El núcleo reproductor tiene la forma 
∞

(z) =  γ(n)(wz)n (1) Kw ,  

f 

n=0 

con γ(n) = lznl−2. 
n(c) La norma de una función f ∈ H cuya serie de Taylor en D es f(z) =  ∞ 

n=0 anz
viene dada por 

∞
lfl2 =  

n=0 
|an|2lz nl2 .  

f 

(d) Las rotaciones Rλ inducen operadores de composición isométricos CRλ en H. 

(e) Las rotaciones Rλ inducen operadores de composición unitarios CRλ en H. 

(f) Las constantes de m´ inducen operadores odulo uno (|µ| = 1) y las rotaciones Rλ  
de composición ponderados unitarios Wµ, Rλ en H.  

(g) Kλw(λz) = Kw(z) para todo z, w ∈ D y todo λ con |λ| = 1. 

En la segunda parte del caṕıtulo se probará el resultado principal, el Teorema 3.1. 
En este resultado juega un papel fundamental la familia de espacios de Hardy con peso 
Hγ con γ > 0 cuyo n´ ormula:ucleo reproductor viene dado por la siguiente f´

∞
Kγ 
w(z) =  

1  
(1 − wz)γ =  γ(n)(wz)n ,  z, w ∈ D .  

n=0 
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El Teorema 3.1 muestra que un operador de composición ponderado acotado en un
espacio de Hardy con peso es co-isométrico si, y solo si, este es unitario, si, y solo si, se
cumple uno de los siguientes casos:

• φ es un automorfismo del disco y F está determinada por una f´ ıcitaormula expĺ
que depende del núcleo reproductor y de φ, precisamente cuando H es uno de los
espacios Hγ,

• para todos los demás espacios considerados, el operador de composición ponderado
debe ser trivial, es decir φ es una rotación y F es una función constante de módulo
uno.

Este resultado muestra el contraste que existe entre los espacios Hγ y el resto de espacios
de Hardy con peso.

Debido a la generalidad considerada hay muchas herramientas estándares que no
podremos aplicar en este caso. Además, la prueba se dividirá esencialmente en dos casos
dependiendo si el núcleo reproductor es acotado (ver Teorema 3.2 ) o no acotado sobre
la diagonal del bidisco (ver Teorema 3.3 y Teorema 3.4). Para este segundo caso será
fundamental el uso de composiciones de operadores de composición ponderados con el
fin de “mover puntos en el disco” (ver Lema 3.1).

En el Caṕıtulo 4 estudiaremos cierta invariancia conforme ponderada en los espacios
de Banach de funciones anaĺıticas en el disco unidad. La invariancia conforme juega un
papel crucial en la teoŕıa de los espacios de Banach de las funciones anaĺıticas en D. En
particular, esta invariancia es una poderosa herramienta para entender las funciones con
oscilación media acotada en la frontera [16], o las funciones de Bloch [96]. En los años
90, estas ideas llevaron al desarrollo de la rica teoŕıa de los llamados Qp espacios (ver
el libro de Xiao [94]) y de sus generalizaciones naturales, los espacios QK introducidos
por Essén y Wulan (ver [42] y [43]).

Todos los espacios mencionados arriba pueden ser definidos de manera análoga, esto
es, usando una seminorma conformemente invariante. Para ser más precisos, siguiendo
las ideas en [6], dado un espacio de Banach X de funciones anaĺıticas en D el cual
contiene las constantes y es invariante bajo los operadores de composición con śımbolo
ϕ ∈ Aut(D), definimos

M0(X) = {f ∈ X : ‖f‖0 = sup ‖f ◦ ϕ − f ◦ ϕ(0)‖X < ∞}, (2)
ϕ∈Aut(D)

y ‖f‖M0(X) = |f(0)|+‖f‖0. Aśı tenemos que BMOA = M0(H2), el espacio de Bloch
M0(D2,β),B = M0(A0

2), Qp = β ∈ (0, 1), donde H2 es el espacio de Hardy, A2 el
espacio de Bergman y D2,p denota el espacio de Dirichlet con peso estándar (ver el
Caṕıtulo 1 y la Sección 4.2 para la definición de todos estos espacios). Finalmente, QK

se construye de la misma manera empezando con el espacio de Dirichlet con peso K.
Hay bastantes resultados interesantes acerca de los espacios que son conformemente

invariantes, también llamados espacios invariantes de Möbius. Por ejemplo, Rubel y
Timoney [76] mostraron que el espacio de Bloch es el espacio más grande definido de
esta manera y Arazy, Fisher y Peetre [11] probaron que el más pequeño es el espacio de



vi 

Besov B1 el cual consiste en las funciones anaĺıticas en D cuyas segundas derivadas son 
integrables con respecto a la medida del área. Arazy and Fisher [10] demostraron que, 
salvo equivalencia de normas, el espacio usual de Dirichlet es el único espacio de Hilbert 
conformemente invariante. 

En este caṕıtulo nos basaremos en estas ideas, pero usaremos la invariancia con
forme ponderada en lugar de la invariancia conforme clásica, es decir, estudiaremos la 
invariancia bajo la composición ponderada 

f → (ϕ')α(f ◦ ϕ), 

para α > 0. Debemos notar que la invariancia conforme ponderada es totalmente distinta 
a la invariancia conforme clásica. Esta propiedad se relaciona con el crecimiento de las 
funciones en lugar de con su oscilación. De hecho en la Proposición 4.1 c) se prueba 
que los espacios mencionados arriba, los cuales tienen invariancia conforme, no pueden 
satisfacer nuestra condición para la invariancia conforme ponderada. 

Una motivación para el estudio de este tipo de invariancia es que muchos ejemplos 
comunes de espacios de Banach de funciones anaĺıticas en D, como los espacios de Ko
renblum, los espacios de Bergman y Besov con pesos estándares y los espacios de Hardy, 
satisfacen esta propiedad para un α > 0 fijo, y resulta que este tipo de invariancia con
forme es responsable de varias de sus propiedades comunes. Por ejemplo, los resultados 
recientes en [8] muestran que en los espacios que satisfacen la condición de la invarian
cia conforme ponderada para algún α ∈ (0, 1) la matriz de Hilbert (actuando sobre la 
sucesión de coeficientes de Taylor) induce un operador lineal acotado cuyo espectro está 
totalmente determinado por α. 

Para ser más precisos, si denotamos por Hol(Ω) al espacio localmente convexo de las 
funciones anaĺıticas en el conjunto abierto Ω ⊂ C, diremos que un espacio de Banach X 
de funciones anaĺıticas en D es conformemente invariante de ́ındice α = α(X) si cumple 
las siguientes propiedades: 

1) X está contenido continuamente en Hol(D). 

2) X contiene a Hol(ρD), para todo ρ > 1. 

3) Existen constantes α = α(X) y K = K(X) > 0, tales que para cada ϕ ∈ Aut(D), 
el operador lineal definido por Wϕ

αf = (ϕ')α(f ◦ ϕ), es acotado en X y satisface 
que lWϕ

αl ≤ K. 

En el Caṕıtulo 4 mostraremos algunos ejemplos y métodos de construcción y esta
bleceremos algunas propiedades básicas de estos espacios y de ciertos operadores que 
actúan sobre ellos. 

La Sección 4.2 estará dedicada a enumerar una serie de espacios los cuales cumplen 
los tres axiomas anteriores. 

En la Sección 4.3 empezaremos enfatizando la relación entre algunos objetos natu
rales de los espacios vistos antes, como los multiplicadores puntuales y los productos 
débiles (productos tensoriales proyectivos) con la propiedad de invariancia conforme 
ponderada. Otros objetos interesantes relacionados con estos espacios son dos grupos 
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abelianos de operadores que emergen de 3), tales como el grupo de las composiciones 
itcon rotaciones {Rt : t ∈ [0, 2π)} con Rtf(z) = f(e z) y la representación en B(X) 

del grupo hiperbólico {W α : a ∈ (−1, 1)}, donde ψa(z) = z+a , a ∈ (−1, 1), aśı como ψa 1+az
el semigrupo de las dilataciones definido por Drf(z) = f(rz), para r ∈ [0, 1]. La acota
ción de Dr, r ∈ [0, 1] se sigue directamente de 2). En general, ninguno de estos grupos 
es fuertemente continuo en los espacios en cuestión, mientras que el semigrupo de las 
dilataciones no es necesariamente fuertemente continuo en r = 1. Sin embargo, en la 
Proposición 4.4 se probará que cuando X es un espacio conformemente invariante de 
ı́ndice α > 0, y los polinomios son densos en X, entonces el grupo {W α : ϕ ∈ Aut(D)}ϕ 
es fuertemente continuo con respecto a la topoloǵıa relativa de Hol(D) en Aut(D). 

En la segunda parte de esta sección, asumiendo solamente la acotación uniforme de 
{Rt : t ∈ [0, 2π)} en B(X) en lugar de 3), probaremos un resultado curioso (Teorema 
4.1) el cual nos dice que la densidad de los polinomios en X es equivalente a cualquiera 
de las siguientes condiciones: 

(i) t → Rt es fuertemente continuo en [−π, π], 

(ii) r → Dr en fuertemente continuo acercándonos por la izquierda a r = 1, 

Una condición suficiente para la densidad de los polinomios en X nos la da el Teore
ma 4.2: que las evaluaciones puntuales sean densas en el dual de X. Aśı, este resultado 
implica que los polinomios serán densos en X para cualquier espacio X reflexivo. 

Además en la última parte de esta sección veremos que si X es conformemente inva
riante de ́ ındice α > 0 y los polinomios son densos en X entonces podemos representar 
el dual de X como un espacio conformemente invariante del mismo ́ındice. Esto se logra 
usando el emparejamiento inducido por el espacio de Hilbert Hα determinado por el 
núcleo reproductor kα(z, w) = (1 − wz)−2α (Teorema 4.3). 

En la primera parte de la Sección 4.4, dado un α > 0, determinaremos el espacio 
de Banach conformemente invariante más grande y el m´ no con este ´as peque˜ ındice, lo 
cual extiende los resultados en [76] y [11] a este contexto. El espacio más grande será 
el espacio de Korenblum A−α mientras que el más pequeño será o bien un espacio de 
Bergman con peso o un espacio de Besov con peso (Teorema 4.4). Sin embargo, el 
principal resultado de esta sección, al cual dedicaremos la segunda parte de la misma, es 
la versión del teorema de Arazy y Fisher [10] adecuada a este contexto. En el Teorema 
4.5 se probará que, salvo equivalencia de normas, el espacio de Hilbert Hα definido en el 
párrafo anterior es el único espacio de Hilbert conformemente invariante de ́ındice α > 0. 
Se puede ver que Hα es un espacio de Bergman con peso si α > 1

2 , el espacio de Hardy 
H2 si α = 2

1 y un espacio de Dirichlet (Besov) con peso si α < 1. Podemos observar 
que este resultado está relacionado con el Teorema 3.1 el cual mostraba que bajo ciertas 
hipótesis los únicos espacios de Hilbert que tienen operadores de composición ponderados 
unitarios no triviales son los espacios Hγ , los cuales se relacionan con nuestros espacios 
Hγ con la relación Hγ = H2γ . Además estos operadores serán precisamente los Wϕ

α que 
aparecen en 3). En el Teorema 3.1 trabajamos con operadores unitarios lo cual nos va a 
implicar una identidad para el núcleo reproductor del espacio lo que será una poderosa 
herramienta en nuestra prueba. Sin embargo en el Teorema 4.5, al no tener esta hipótesis, 
la manera de abordarlo será totalmente diferente y en cierto modo estará relacionada 
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con la idea usada en [10] donde el paso clave es la amenabilidad del grupo hiperbólico. 
En nuestra prueba esta propiedad se usa sólo parcialmente ya que el argumento que 
usaremos estará esencialmente basado en estimaciones asintóticas de lWψ

α 
a ζ
nl cuando 

a → 1−. 
En la Sección 4.5 mostraremos dos aplicaciones de los resultados previos. En la 

primera parte estudiaremos el análogo de (2) para nuestro contexto, es decir, dado 
un espacio de Banach X que satisface 1) y 2) consideraremos el subespacio Mα(X) 
formado por las funciones f ∈ X con Wϕ

αf ∈ X, ϕ ∈ Aut(D), 
lflMα = sup lWϕ

αflX < ∞. 
ϕ∈Aut(D) 

A partir de esto veremos que Mα(X) tiene una estructura manejable en caso que 
nuestro espacio inicial X sea conformemente invariante de ı́ndice β > 0. En este caso, 
Mα(X) es o bien trivial, es decir Mα(X) = {0}, o coincide con X, o es un espacio 
de multiplicadores puntuales (Teorema 4.6). Por otra parte, si X no es conformemente 
invariante para ningún ́ındice β > 0, mostraremos mediante el Ejemplo 4.8 que Mα(X) 
puede tener una estructura muy complicada, la cual difiere de los espacios vistos hasta 
el momento. 

El segundo tema que trataremos en la Sección 4.5 será la interpolación compleja. 
Solo consideraremos el par de espacios dado por el espacio conformemente invariante de 
ı́ndice α > 0 más grande y el más pequeño y usaremos la idea clásica de E.M. Stein [88] 
para mostrar que esta cadena de espacios está formada por espacios de Bergman con 
peso y para α < 1, por espacios de Besov con peso (Teorema 4.6). Bastante sorprendente 
resulta que los espacios de Hardy no aparezcan en estas cadenas. 

Por último, la Sección 4.6 estará dedicada a tres tipos de operadores los cuales actúan 
en espacios de Banach conformemente invariantes de ́ındice α > 0: diferenciación, tomar 
anti-derivadas y el operador de integración general de la forma f → Tgf , donde  

Tgf(z) =
z 
f(t)g'(t)dt,

0 

con el śımbolo g ∈ Hol(D) fijado. Para los primeros dos casos consideraremos el rango de 
estos operadores con la norma inducida. La intuición basada en las llamadas identidades 
de Littlewood-Paley en los espacios de Bergman con peso, o H2, sugiere que si X es 
conformemente invariante de ́ ındice α > 0, entonces 

(i) El espacio de las derivadas D(X) = {f ' : f ∈ X} con la norma inducida es 
conformemente invariante de ́ ındice α + 1. 

(ii) Cuando α > 1, el espacio de las anti-derivadas A(X) = {f : f ' ∈ X} con la 
norma inducida es conformemente invariante de ́ ındice α − 1. 

Sin embargo el Teorema 4.7 nos revela que, bajo la hipótesis de que los polinomios son 
densos en X, las afirmaciones anteriores dependen exclusivamente de las propiedades 
del operador que actúa sobre la sucesión de coeficientes de Taylor tomando las medias 
de Cesàro. Para ser más precisos su version modificada ´⎛ ⎞   

n  f f 
ζn+1 1 f z f(t)C ⎝ fnζ

n⎠ = fk ⇔ Cf(z) = dt. 
n + 1 0 1 − t n≥0 n≥0 k=0 



ix ONINTRODUCCI´

El Teorema 4.7 nos mostrará que (i) es cierto si, y solo si, C ∈ B(X). Además, en este
caso se tendrá (ii) si, y solo si, IX − C es invertible en X.

En la segunda parte de la Secci´ on del Teorema 4.7 a loson 4.6 veremos una aplicaci´
operadores de integración. Existe mucha literatura que trata estos operadores (ver, por
ejemplo, [1]). Incluso con la generalidad en la que estamos trabajando, la acotación de
Tg se puede caracterizar en términos de g (ver Proposición 4.8). Siguiendo con la idea de
Pommerenke [73] el cual usa la resolvente de estos operadores para deducir la conocida
desigualdad de John-Nirenberg para las funciones en BMOA, nosotros mostraremos
que una desigualdad similar también se satisface en el contexto general. Para ser más
precisos, probaremos que si Tg es acotado en un espacio de Banach X conformemente
invariante de ı́ndice α > 0, entonces existe δ > 0 tal que

{exp[λ(g ◦ ϕ − g ◦ ϕ(0))] : |λ| ≤ δ, ϕ ∈ Aut(D)}

es un subconjunto acotado de X.
Finalmente, en el Caṕıtulo 5 vamos a considerar espacios generales de Banach de

funciones anaĺıticas en un dominio acotado definidos de forma axiomática. En estos espa-
cios vamos a estudiar ciertas propiedades de los operadores de composición ponderados,
siendo una de ellas su invertibilidad (equivalentemente su sobreyectividad).

Para ser más precisos, en este caṕıtulo vamos a considerar espacios de Banach
X ⊂ Hol(Ω), donde Ω ⊂ C es un dominio acotado, los cuales satisfacen los siguientes
axiomas:

• A1: Todas las evaluaciones puntuales lz están acotadas en X.

• A2: 1 ∈ X, donde 1(z) ≡ 1.

• A3: Para cualquier f ∈ X, la función ζf también está en X, donde ζ(z) = z.

• A4: Para cada f ∈ X y cada u ∈ H∞(Ω) que no se anula en Ω, si fun ∈ X para
todo n ∈ N = {1, 2, 3, . . .} entonces fuα ∈ X para algún valor α > 0 no entero.

• A5: Cada automorfismo de Ω induce un operador de composición acotado en X.

En la segunda parte de la Sección 5.2 veremos una serie de ejemplos de espacios
clásicos de funciones anaĺıticas, los cuales satisfacen nuestros axiomas. Entre ellos se
encuentran los espacios de Hardy, Bergman con peso, Besov con peso, el espacio BMOA
y el de Bloch.

En la última parte de esta sección describiremos todos los operadores de composición
ponderados invertibles que actúan en estos espacios generales de Banach (Teorema 5.1).
Veremos que en un espacio de Banach X ⊂ Hol(Ω), que satisface los axiomas A1 - A4,
si un operador de composición ponderado acotado WF,φ es invertible entonces su śımbolo
de composici´ F.φon φ es un automorfismo de Ω, F no se anula y W −1 es otro operador de
composición ponderado cuyos śımbolos son

1
G = ψ = φ−1.

F ◦ φ−1 ,
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Además, si el espacio X también satisface A5 obtenemos la siguiente caracterizacion.´
Un operador de composición ponderado acotado WF,φ es invertible si y solo si φ es un 
automorfismo de Ω, F no se anula y 1/F ∈ Mult(X). 

Por otro lado, en la Sección 5.3 solo consideraremos espacios de Banach de funciones 
anaĺıticas en el disco unidad satisfaciendo los axiomas A1 - A4 y cuya norma viene dada 
por la fórmula lfl = |f(0)| + ρ(f), donde ρ(f) es una seminorma invariante por 
traslaciones. Por ejemplo, los espacios de Besov con peso, el espacio de Bloch y BMOA 
cumplen estas propiedades. Para estos espacios probaremos que los únicos operadores de 
composici´ etricos son los triviales, es decir, on ponderados que son sobreyectivos e isom´
cuando el śımbolo de multiplicación es una constante de módulo uno y el śımbolo de 
composición es una rotación. Ver Teorema 5.2. 



Introduction 

This thesis treats a number of problems related to weighted composition operators. We 
will consider the unit disc D = {z ∈ C : |z| < 1} and we will study how these operators 
act on the spaces of analytic functions in D. 

Let f be an analytic function in D. The weighted composition operator with symbols 
F and φ is defined by 

WF,φf = F (f ◦ φ), 

where F and φ are analytic functions on D and φ (D) ⊂ D. There is a particular case of 
these operators that will appear repeatedly in many results. It will be when φ is a disc 
automorphism, i.e. when φ = ϕ where ϕ is a linear fractional map of the form 

z + a 
ϕ(z) = λ , z ∈ D, a ∈ D, |λ| = 1,1 + az 

mapping the unit disc onto itself. We will denote by Aut(D) the group of automorphisms 
of the unit disc. The weighted composition operators are a natural generalization of 
the pointwise multiplication operators and the composition operators, which have been 
studied extensively in the context of spaces of analytic functions on the unit disc. 

In general, given a family of linear operators acting on a Banach space of analytic 
functions in the unit disc it is interesting to know when the operators of this family satisfy 
certain properties. For instance, when the operators are bounded, surjective, isometries, 
and so on. In many Banach spaces of analytic functions on the unit disc all the isometries 
are known or, at least, all the surjective isometries (unitary operators). For example, in 
analogy with the classical Banach-Lamperti theorem for Lp spaces, Forelli in [46] proved 
that all the isometric linear operators acting on the Hardy spaces Hp (excluding the case 
p = 2) are weighted composition operators whose symbols satisfy certain properties. 

The Hilbert spaces have plenty of isometric operators; they may even have many 
unitary operators. Therefore, a natural question is to try to characterize the unitary 
operators of a certain type, for instance weighted composition operators. 

In the Chapter 3 we will focus on answering this question in a large family of Hilbert 
spaces of analytic functions on the unit disc which satisfy the following axioms: 

(A1) The point evaluations are bounded (hence our space is a reproducing kernel Hilbert 
space); 

(A2) The reproducing kernel Kw(z) is normalized so that Kw(0) = 1 for all w ∈ D; 

xi  
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n(A3) The monomials {z : n = 0, 1, 2, . . .} belong to H and form a complete orthog
onal set. 

These Hilbert spaces are called weighted Hardy spaces. To be precise, in Chapter 3 
we will characterize the weighted composition operators in the weighted Hardy spaces 

∗ ∗which are co-isometric (TT = I where T denotes the adjoint operator of T and I 
denotes the identity operator). To be co-isometric is a priori weaker than to be unitary 

∗(T ∗T = TT = I). 
In the first part of Chapter 3, it will be proved that only with the axioms defined 

above we can deduce a number of properties that the weighted Hardy spaces satisfy. 
This can be found in Proposition 3.1 where it will be shown that if H is a Hilbert space 
of analytic functions on the unit disc that contains all monomials and satisfies the axioms 
(A1) and (A2), then the following statements are equivalent: 

f 

n(a) Axiom (A3) is fulfilled; that is, the monomials {z : n = 0, 1, 2, . . .} form a 
complete orthogonal set in H. 

(b) The reproducing kernel has the form 

∞
(z) =  γ(n)(wz)n (3) Kw ,  

f 

n=0 

with γ(n) = lznl−2. 
∞ n(c) The norm of a function f ∈ H whose Taylor series in D is f(z) = n=0 anz is 

given by 
∞

lfl2 =  
n=0 

|an|2lz nl2 .  

f 

(d) The rotations Rλ induce isometric composition operators CRλ on H. 

(e) The rotations Rλ induce unitary composition operators CRλ on H. 

(f) The constant multipliers of modulus one (|µ| = 1) and rotations Rλ induce unitary 
weighted composition operators Wµ, Rλ on H. 

(g) Kλw(λz) = Kw(z) for all z, w ∈ D and all λ with |λ| = 1. 

In the second part of this chapter, the main result will be proved, Theorem 3.1. In 
this result an important role is played by the family of weighted Hardy spaces Hγ with 
γ > 0 whose reproducing kernel is given by the formula 

∞1  
Kγ 
w(z) =  γ(n)(wz)n ,  z, w ∈ D . =  (1 − wz)γ 

n=0 

Theorem 3.1 shows that a bounded weighted composition operator in a weighted 
Hardy space is co-isometric if and only if it is unitary, if and only if one of the following 
cases occurs: 
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• φ is a disc automorphism and F is determined by an explicit formula, depending
on φ and the reproducing kernel, precisely when H is one of the spaces Hγ,

• for all the remaining spaces considered, the weighted composition operator must
be of trivial type: φ is a rotation and F is a constant function of modulus one.

This shows a sharp contrast between the spaces Hγ and the remaining weighted Hardy
spaces.

Because of the generality considered here several standard tools will be no longer
available. Hence, the proof will become more involved. Moreover, the proof will be split
essentially into two cases depending on whether the reproducing kernel is bounded (The-
orem 3.2) or unbounded on the diagonal of the bidisc (Theorem 3.3 and Theorem 3.4).
For this second case, we will use compositions of weighted composition operators in
order to “move points around the disc” (Lemma 3.1).

In Chapter 4 we will study certain weighted conformal invariance in the Banach
spaces of analytic functions on the unit disc. Conformal invariance plays a crucial role
in the theory of Banach spaces of analytic functions on D. In particular, it turns out
to be a powerful tool in understanding analytic functions with bounded mean oscillation
on the boundary [16], or Bloch functions [96]. In the 1990s, these ideas led to the rich
theory of the so-called Qp-spaces (see Xiao’s book [94]) and their natural generalization,
the QK-spaces introduced by Essén and Wulan (see [42], [43]).

All of the spaces mentioned here can be defined following a common pattern, that
is, using a conformally invariant seminorm. More precisely, following the ideas in [6], let
X be a Banach space of analytic functions in D which contains the constants and is
invariant under the operators of composition with symbol ϕ ∈ Aut(D), and set

M0(X) = {f ∈ X : ‖f‖0 = sup ‖f ◦ ϕ − f ◦ ϕ(0)‖X < ∞}, (4)
ϕ∈Aut(D)

and ‖f‖M0(X) = |f(0)|+ ‖f‖0. Then it turns out that BMOA = M0(H2), the Bloch
M0(D2,β),space satisfies B = M0(A2

0), Qp = β ∈ (0, 1), where H2 is the Hardy
space, A2 the Bergman space and D2,β denotes the standard weighted Dirichlet space
(see Chapter 1 and Section 4.2 for the definitions of these spaces). Finally, QK is
constructed in the same way starting with the weighted Dirichlet space with weight K.

There are a number of interesting results concerning such conformal invariant spaces
also called Möbius invariant spaces. For example, Rubel and Timoney [76] showed that
the Bloch space is the largest space defined this way and Arazy, Fisher and Peetre [11]
proved that the smallest is the Besov space B1 consisting of analytic functions in D whose
second derivative is integrable with respect to area measure. Arazy and Fisher [10] proved
that, up to equivalence of norms, the unweighted Dirichlet space is the only Hilbert space
which occurs this way.

In this chapter, we will follow this line of investigation, but we will use the weighted
conformal invariance property instead of the classical conformal invariance, that is, we
will study the invariance under the weighted composition

f → (ϕ′)α(f ◦ ϕ),
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where α > 0 is fixed. We should point out from the beginning that weighted conformal 
invariance is completely different from the classical conformal invariance. This type 
of condition is related to the growth rather than to the oscillation of functions. In 
fact, according to 4.1 c), the spaces which have conformal invariance cannot satisfy our 
conditions for weighted conformal invariance. 

One motivation for the study of this invariance is the fact that most common ex
amples of Banach spaces of analytic functions in D like Korenblum spaces, standard 
weighted Bergman and Besov spaces and Hardy spaces satisfy this property for a fixed 
α > 0, and it turns out that this type of conformal invariance is responsible for a number 
of their common properties. For example, the recent results in [8] show that for spaces 
satisfying the weighted conformal invariance condition for some α ∈ (0, 1) the usual 
Hilbert matrix (acting on the sequence of Taylor coefficients) induces a bounded linear 
operator whose spectrum is completely determined by α. 

To be more precise, if we denote Hol(Ω) the locally convex space of analytic functions 
in the open set Ω ⊂ C we will say that a Banach space X consisting of analytic functions 
in the unit disc D is conformally invariant of index α = α(X) if X satisfies the following 
properties: 

1) X is continuously contained in Hol(D). 

2) X contains Hol(ρD), for all ρ > 1. 

3) There exist constants α = α(X), K = K(X) > 0, such that for every ϕ in 
Aut(D), the linear map defined by Wϕ

αf = (ϕ ')α(f ◦ ϕ), is bounded on X and 
satisfies lWϕ

αl ≤ K. 
In Chapter 4 we will show some examples and methods of construction and also 

establish some of the basic properties of such spaces and of some operators acting on 
them. 

Section 4.2 will be devoted to giving a number of examples of natural spaces which 
fulfill the above axioms. 

In Section 4.3 we will begin by emphasizing some natural objects related to such 
spaces, like the pointwise multipliers and their weak products (projective tensor products) 
and their relation with the weighted conformal invariant property. Other interesting 
objects related to these spaces are two Abelian groups of operators emerging from 3), 
namely the group of composition with rotations {Rt : t ∈ [0, 2π)} with Rtf(z) = 

itf(e z), the representation on B(X) of the hyperbolic group {W α : a ∈ (−1, 1)},ψa

where ψa(z) = z+a , a ∈ (−1, 1), together with the semigroup of dilations defined 1+az
for r ∈ [0, 1] by Drf(z) = f(rz). The boundedness of Dr, r ∈ [0, 1] follows directly 
from 2). In general, none of these groups is strongly continuous on the spaces in 
question, while the semigroup is not necessarily strongly continuous at r = 1. However, 
Proposition 4.4 will show that when X is a weighted conformal invariant space of index 
α > 0, and the polynomials are dense in X, then the full group {W α : ϕ ∈ Aut(D)}ϕ 
becomes strongly continuous with respect to the relative topology of Hol(D) on Aut(D). 

In the second part of this section, assuming only the uniform boundedness of {Rt : t ∈ 
[0, 2π)} in B(X) instead of 3), we will arrive at the curious result (Theorem 4.1) that 
the density of the polynomials in X is equivalent to any of the following statements: 
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(i) The strong continuity of t → Rt, t ∈ [0, 2π). 

(ii) The strong continuity of r → Dr at r = 1 (from the left). 

A sufficient condition for the density of polynomials in X is given by Theorem 4.2: the 
point evaluations should be dense in the dual of X. At its turn, this result implies that 
polynomials are dense in X whenever the space is reflexive. 

Moreover, in the last part of this section, we will see that if X is conformally invariant 
with index α > 0 and polynomials are dense in X then we can represent the dual of X as a 
conformally invariant space of the same index. This is achieved using the pairing induced 
by the Hilbert space Hα determined by the reproducing kernel kα(z, w) = (1 − wz)−2α 

(Theorem 4.3). 
In the first part of Section 4.4, we will determine the largest and smallest conformally 

invariant Banach space of a given index α > 0, which extends the results in [76] and [11] 
to this context. The largest space is the Korenblum space A−α while the smallest is 
either a weighted Bergman or a weighted Besov space (Theorem 4.4). However, the 
main result of this section is the appropriate version of the Arazy-Fisher theorem [10] in 
this context. In Theorem 4.5 we will show that, up to equivalence of norms, the Hilbert 
space Hα defined above is the unique conformally invariant Hilbert space of index α > 0. 
It can be seen that Hα is a weighted Bergman space when α > 1

2 , H 1 is the Hardy space 
2 

H2, while for α < 1
2 , Hα is a weighted Dirichlet (Besov) space. We should note that this 

result is related to the Theorem 3.1, which claimed that under certain assumptions the 
unique Hilbert spaces that have no trivial unitary weighted composition operators are the 
spaces Hγ , which are related with our spaces Hγ with the relation Hγ = H2γ . Moreover, 
these operators will be the Wϕ

α that appear in 3). In Theorem 3.1 we work with unitary 
operators. Hence, this implies an identity for the reproducing kernel of the space which 
will become a powerful tool in the proof of this theorem. However, in Theorem 4.5 we do 
not have this assumption so the approach is considerably more involved and is somewhat 
related to the idea in [10] where the key step is the amenability of the hyperbolic group. 
In our proof this property is only partly used, since our argument is essentially based on 
asymptotic estimates of lWψ

α 
a ζ
nl when a → 1−. 

In Section 4.5 we will show two applications of the previous results. In the first 
application, we will focus on the analogue of (4) for our context, i.e. for a given Banach 
space X satisfying 1) and 2) we will consider the subspace Mα(X) consisting of the 
functions f ∈ X with Wϕ

αf ∈ X, ϕ ∈ Aut(D), 

lflMα = sup lWϕ
αflX < ∞. 

ϕ∈Aut(D) 

It turns out that Mα(X) has a tractable structure in the case when the original space X 
is itself conformally invariant of index β > 0. In this case, Mα(X) is either trivial, i.e. 
Mα(X) = {0}, equal to X, or it is a space of pointwise multipliers (Proposition 4.6). 
On the other hand, if X is not conformally invariant for any β > 0, we will show by the 
Example 4.8 that Mα(X) may have a very complicated structure which differs from the 
examples presented until now. 
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The second topic in Section 4.5 will be the complex interpolation. We only consider
the pair given by the largest and smallest conformally invariant spaces of a given index
α > 0 and use the classical idea of E.M. Stein [88] to show that this chain of spaces
consists of weighted Bergman and for α < 1, weighted Besov spaces (Theorem 4.6).
Surprisingly enough, the Hardy spaces are excluded from the chains.

Finally, Section 4.6 will be devoted to three types of operators acting on conformally
invariant Banach spaces of index α > 0: differentiation, taking the anti-derivative and
general integration operators of the form f → Tgf , where

Tgf(z) =
z

f(t)g′(t)dt,
0

with symbol g ∈ Hol(D) is fixed. In the first two cases we will consider the ranges of
these operators with the induced norm. The common intuition based on the so-called
Littlewood-Paley identity (estimate) in weighted Bergman spaces, or H2, suggests that
if X is conformally invariant of index α > 0, then

′(i) The space of derivatives D(X) = {f : f ∈ X} with the induced norm is
conformally invariant of index α+ 1.

′(ii) When α > 1, the space of anti-derivatives A(X) = {f : f ∈ X} with the
induced norm is conformally invariant of index α − 1.

However, Theorem 4.7 will reveal that under the assumption the polynomials are dense
in X, both assertions above depend entirely on the properties of the linear map which
acts on the sequence of Taylor coefficients by taking the Cesàro means, or more precisely
the modified version⎛ ⎞

n⎝∑ ζn⎠ =∑
ζn+1 1 ∑ z f(t)C fn fk ⇔ Cf(z) = dt.

n+ 1 0 1− tn≥0 n≥0 k=0

Theorem 4.7 will show that (i) holds true if and only if C ∈ B(X). Moreover, in this
case (ii) holds true if and only if IX − C is invertible on X.

In the second part of Section 4.6, we will see an application of Theorem 4.7 regarding
the integration operators defined above. There is a vast literature on the subject (see
for example, [1]). Even in this generality, the boundedness of Tg can be characterized in
terms of g (see Proposition 4.8). Following the idea of of Pommerenke [73] who used
the resolvent of such operators to derive the well-known John-Nirenberg inequality for
BMOA functions. We will show that a similar inequality holds in the general context as
well. More precisely, we prove that if Tg is bounded on the conformally invariant Banach
space X then there exists δ > 0 such that

{exp[λ(g ◦ ϕ − g ◦ ϕ(0))] : |λ| ≤ δ, ϕ ∈ Aut(D)}

is a bounded subset of X.
Finally, in Chapter 5 we will consider general Banach spaces of analytic functions in

a bounded domain defined axiomatically. In these spaces, we are going to study certain
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properties of the weighted composition operators, like their invertibility (equivalently,
their surjectivity).

To be more precise, in this chapter we will consider Banach spaces X ⊂ Hol(Ω),
where Ω ⊂ C is a bounded domain, which satisfy the following axioms:

• A1: All point evaluation functionals lz are bounded on X.

• A2: 1 ∈ X, where 1(z) ≡ 1.

• A3: Whenever f ∈ X, the function ζf is also in X, where ζ(z) = z.

• A4: For every f ∈ X and every u ∈ H∞(Ω) that do not vanish in Ω, if fun ∈ X
for all n ∈ N = {1, 2, 3, . . .} then fuα ∈ X for some non-integer value α > 0.

• A5: Each automorphism of Ω induces a bounded composition operator in X.

In the second part of Section 5.2, we will see some examples of classical spaces of
analytic functions that satisfy our axioms. Between them, we can find the Hardy spaces,
the weighted Bergman and weighted Besov spaces, the Bloch space, and the BMOA
space.

In the last part of this section, we will describe all invertible weighted composition
operators acting on these general Banach spaces (Theorem 5.1). We will see that if
X ⊂ Hol(Ω) is a Banach space that satisfies the Axioms A1 - A4, if a bounded
weighted composition operator WF,φ is invertible, then its composition symbol φ is an
automorphism of Ω, F does not vanish in Ω and W −1 is a weighted composition operatorF.φ

with symbols
1

G = ψ = φ−1.
F ◦ φ−1 ,

Moreover, if the space X also satisfies A5 we will get the following characterization. A
weighted composition operator WF,φ is invertible if and only if φ is an automorphism of
Ω, F does not vanish and 1/F ∈ Mult(X).

On the other hand, in Section 5.3 we will only consider Banach spaces of analytic
functions in the unit disc, which satisfy the Axioms A1 - A4, and whose norm is given by
the formula ‖f‖ = |f(0)|+ ρ(f), where ρ is a seminorm which is translation-invariant.
For instance, the weighted Besov spaces, the Bloch space, and the BMOA space sat-
isfy these properties. For these spaces we will prove that the only surjective isometric
weighted composition operators on X are trivial, i.e. their multiplication symbol is a
unimodular constant and their composition symbol is a rotation. See Theorem 5.2.



1 Function Spaces and Basic Notions 

In this chapter we will introduce some spaces consisting of analytic functions in the 
unit disc, Hol(D), that we will use throughout the thesis. There is a property shared 
by these spaces, the point evaluations are bounded i.e., by a direct application of the 
uniform boundedness principle, the spaces are continuously included in Hol(D). Thanks 
to this property we can use the closed graph theorem to get some interesting relation 
between these spaces. 

1.1 F-spaces. Closed graph theorem 

Usually, the closed graph theorem is used in Banach spaces, but for our purpose, we need 
the general version for F -spaces. The following definitions can be found in [78, Page 9] 
and the closed graph theorem in [78, Page 51]. 

Definition 1.1. A metric d on a vector space X will be called translation invariant if 

d(x + z, y + z) = d(x, y) 

for all x, y, z ∈ X. 

Definition 1.2. Let X be a topological vector space with topology τ . X is an F -space 
if its topology τ is induced by a complete invariant metric d. 

In an F -space, continuity is understood in the usual sense of convergence induced 
by the metric. 

Theorem 1.1 (Closed graph theorem). Suppose X and Y are F -spaces, Λ : X → Y a 
linear map and G = {(x, Λx) : x ∈ X} is closed in X × Y . Then Λ is continuous. 

The following corollary will be useful for us later. In this corollary we will use the fact 
that if a metric space X is continuously contained in Hol(D), then the inclusion map 
is continuous from X to Hol(D). So, the convergence in X implies the convergence in 
Hol(D) (uniform convergence in compact sets of D). 

1  



 

2 1.2. Automorphisms and basic conformal invariance 

Corollary 1.1. If X and Y are F -spaces consisting of analytic functions in the unit disc 
D such that both are continuously contained in Hol(D) and Y ⊂ X then the inclusion 
is continuous. 

Proof. This is a direct consequence of the closed graph theorem. Let 

I : Y → X 
f → I(f) = f 

be the inclusion map. We suppose there exists a sequence {fn} in Y such that fn →Y f 
and I(fn) →X g. If we can prove f = g we are done. Since Y is continuously contained 
in Hol(D), the convergence in Y implies uniform convergence in compact sets of D. In 
the same way in X. Then we have f and g are equals in each compact set of D so 
g = f . 

1.2 Automorphisms and basic conformal invariance 

Another property of a space X of analytic function in the unit disc that will play a 
important role later will be the conformal invariance. We consider Aut(D), the group 
of conformal automorphisms of the unit disc in the complex plane i.e., linear fractional 
maps of the form 

z + a 
ϕ(z) = λ , z ∈ D, a ∈ D, |λ| = 1,1 + az 

mapping the unit disc onto itself. Therefore the space X equipped with a seminorm ρ 
is called conformally invariant if for each f ∈ X we have f ◦ ϕ ∈ X for all ϕ ∈ Aut(D) 
and there exists C > 0 such that 

ρ(f ◦ ϕ) ≤ Cρ(f) for all f ∈ X and ϕ ∈ Aut(D). 

1.3 Poisson kernel 
An important tool when we are working with analytic functions is the Poisson Kernel. 
The Poissson Kernel at r ∈ [0, 1), is given by 

1 − r2 1 − r2 
Pr(e it) = = 

|eit − r|2 1 − 2r cos(t) + r2 . 

1 � πThis kernel satisfies, among other properties, that Pr(eit) dt = 1 for any r ∈ [0, 1).2π −π 
The Poisson kernel is the key to solve the original Dirichlet problem posed for the Laplace 
equation. Given a continuous function u on the unit circle ∂D = {z ∈ C : |z| = 1} the 
Poisson integral, defined by 

1 
P [u](re iθ) = 

π 
Pr(e i(θ−t))u(e it) dt,2π −π 
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is the unique harmonic function on D continuous on D such that P [u]| = u. For our ∂D 
purpose, this result tells us that given an analytic function, f , in the unit disc then, for 
z = reiθ ∈ D(0, R) = {z ∈ C : |z| < R < 1}, it satisfies that 

1 
f(rReiθ) = 

π 
Pr(e i(θ−t))f(Reit) dt.2π −π 

1.4 Hardy spaces 
The study of these spaces started with a question posed by H. Bohr and E. Landau to 
G. H. Hardy about the growth of the integral means. Concretely, Hardy in [52] proved 
that if f is an analytic function on the unit disc then its integral mean 

 1 2π  
p 
1 

Mp(r, f) = |f(re it)|p dt , 0 < p < ∞2π 0 

or 
M∞(r, f) = max |f(re it)|

0≤t<2π 

is an increasing function of r and log Mp(r, f) is a convex function of log r (for the proof 
see [40, Chapter 1]). 

Definition 1.3. An analytic function f on the unit disc is in the Hardy space Hp if 

sup Mp(r, f) < ∞, 0 < p < ∞ 
0<r<1 

and f is in H∞ if sup0<r<1 M∞(r, f) < ∞. 

The Hardy spaces are among the most important spaces of analytic functions and one 
in which many authors have worked in complex analysis, see for example [40] and [60] 
for basic monographs on theses spaces. By a direct aplication of Hölder inequality we 
obtain the following chain of inclusions H∞ s Hp s Hq for p > q > 0. The family of 
functions fa(z) = (1 − z)−a, with a > 0, shows that the inclusions are strict since it is 
well known that fa is in Hp if and only if p < 

a 
1 . Moreover, for 1 ≤ p ≤ ∞ the space 

Hp becomes a Banach space with the norm 

lflHp = sup Mp(f, r) = lim Mp(f, r) when 1 ≤ p < ∞, 
r→1−0<r<1 

and 
lfl∞ = sup |f(z)|. 

z∈D 

We also have that when 0 < p < ∞ the polynomials are dense in Hp and for all z ∈ D 

lflHp 
|f(z)| ≤ , 

p(1 − |z|2)
1 
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(see [40, Exercise 8.4]) i.e. Hp is continuously contained in Hol(D). The particular case 
when p = 2, H2 becomes a Hilbert space with the inner product 

1 2π  
(f, g)H2 = lim f(re it)g(reit) dt  

r→1− 2π 0 

n nand if f(z) = n≥0 anz and g(z) = n≥0 bnz it can be proved that 

∞f 
(f, g)H2 = anbn 

n=0 

so lflH2 = n≥0 |an|2. One of the most important properties of Hardy spaces is 
the behaviour of their functions at the boundary. The existence of radial limits almost 
everywhere was proved in greater generality by Fatou. 

Theorem 1.2. If f ∈ Hp with p > 0, then f̃(eit) := limr→1− f(reit) exists almost 
everywhere and f̃  ∈ Lp(T). Moreover, 

1 2π p 
1 

lflHp = |f̃(e it)|p dt when 1 ≤ p < ∞,2π 0 

and lflHp = lf̃lLp . 

See [40, Chapters 1, 2] for the proof of these facts. Another property of Hardy 
spaces is the canonical factorization, obtained first by F. Riesz and then in a more 
refined form by Smirnov. This factorization shows that every function in a Hardy space 
can be written as a product of a Blaschke product, a singular inner function and an 
outer function (see [40, Theorem 2.8]). 

The following relationship between the mean growth of an analytic function and that 
of its derivative (see [40, Theorem 5.5]) will be very useful. 

Theorem 1.3. Let 0 < p ≤ ∞, β > 0 and f ∈ Hol(D). Then 

1 
Mp(r, f) = O (1 − r)β 

if and only if 
1 

Mp(r, f ') = O .(1 − r)β+1 

1.5 Bergman spaces 
Another family of important spaces of analytic functions in the unit disc are the Bergman 
spaces. The theory has its origin in the study of the reproducing kernel by S. Bergman 
but was only developed later, in the second half of the 20th century by a number of 
authors. Here the main references that we use are [41] and [54]. 
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Definition 1.4. Given a function, f , analytic in D and 0 < p < ∞, it is said to belong 
to the Bergman space Ap if 

|f(z)|p dA(z) < ∞, 
D 

where dA(z) = 
π 
1 dx dy = 

π 
1 dt r dr. 

Thus, we can define the Bergman space as Ap = Hol(D) ∩ Lp(D, dA). When 
1 ≤ p < ∞, Ap becomes a Banach space with the norm lflp = D |f(z)|p dA(z). The Ap 

following identity relates the Bergman norm with integral means used to define Hardy 
spaces: 

1 
lflp = 2 rMp

p(r, f) dr. Ap 
0 

So, with this identity it is clear that Hp ⊂ Ap. In fact, Hardy and Littlewood proved 
that Hp ⊂ A2p (an elementary proof of this fact can be found in [93]). An important 
difference between Hardy and Bergman spaces is the behaviour of their functions on the 
boundary since we can find functions in all Bergaman spaces with a wild behaviour in the 
boundary. If we consider a non-negative integrable function w, a natural generalization 
of these spaces are the spaces called weighted Bergman spaces Ap , where w is called a 
weight and 

w

lflp 
Ap

w 
=  

D 
|f(z)|pw(z) dA(z), 1 ≤ p < ∞. 

If w(z) = (β + 1)(1 − |z|2)β with β > −1 we have the standard weighted Bergman 
spaces Apβ with 

lflp 
Ap

β 
= (β + 1) |f(z)|p(1 − |z|2)β dA(z), 1 ≤ p < ∞. 

D 

The particular case when p = 2, A2 
β becomes a Hilbert space with the inner product 

( )f, g 2A
β

Two basic properties of these spaces are the density of polynomials and the boundedness 
of the point evaluation. 

Theorem 1.4. The polynomials form a dense subset of the Bergman space Apβ where 
0 < p < ∞ and β > −1. 

Theorem 1.5. Given f in Apβ , where 0 < p < ∞ and β > −1, and z ∈ D, then 

= (β + 1) f(z)g(z)(1 − |z|2)β dA(z). 
D 

lflA
|f(z)| ≤ 

p
β 

(1 − |z|2)
2+β . 

p 

On the one hand, a proof of the density of polynomials in the unweighted case can 
be found in [41, Chapter 2, Theorem 2] and the general result can be found in [54, 
Proposition 1.3], but the proof given there requires some corrections. On the other 
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hand, the boundedness of point evaluations can be found in [92] where it is proven that 
this estimate is sharp in the context of a unit ball Cn. 

To work in the theory of the Bergman spaces it is useful to know some estimates for 
some integral operators. A well-known result is the following whose proof can be found 
in [54, Theorem 1.7] or [79, Proposition 1.4.10]. 

Theorem 1.6. Given α > −1 and β ∈ R, if we define 

(1 − |w|2)α 
Iα,β(z) = 

|1 − zw|2+α+β dA(w), z ∈ D 
D 

and 
2π dθ 

Jβ (z) = −iθ|1+β , z ∈ D,
0 |1 − ze

then we have ⎧ ⎪⎪⎪⎪⎨ 
1 if β < 0,  

Iα,β (z) ∼ Jβ(z) ∼ log 1 if β = 0,1−|z|2
  ⎪⎪⎪⎪⎩ 1 if β > 0,(1−|z|2)β 

when |z| → 1−. 

f 

A relationship between functions and their derivatives in the context of the Bergman 
spaces is given by the Littlewood-Paley formula, which is related to Theorem 1.3 in the 
Hardy case. 

Theorem 1.7. Let 0 < p < ∞ and let β > −1. Then, 

|f(z)|p(1 − |z|2)β dA(z) ∼ |f(0)|p + |f '(z)|p(1 − |z|2)β+p dA(z)
D D 

for all f ∈ Hol(D). 

For the proof of this theorem see [44, Theorem 6]. We should note that there 
are some other results about this type of inequalities for more general weights, for 
instance [70] or [86]. 

An important tool in the Bergman spaces is the atomic decomposition, which was 
first proved by Coifman and Rochberg [33] for the Apβ spaces. For more information 
see also [15], [64] and a recent work by Constantin [36], in which a general atomic 
decomposition theorem is proved for weighted vector-valued Bergman spaces. We only 
will need the following case, see [33, Theorem 2]. Here we should note that their 
definition for the weighted Bergman spaces are a little different, see [33, Pages 14-15], 
so with the suitable change of notation we obtain the following result. 

Proposition 1.1. Given f ∈ Apβ with 0 < p < ∞, β > −1, then there exist sequences 
{ck}k≥1 ∈ lp and {ak}k≥1 ⊂ D such that 

2b+2+β ∞ p 

f(z) =  
(1 − |ak|2)

2b+4+2β 
pk=1 (1 − akz)

ck 
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with 
b > 1 + 

β 
2 

max{−1, p − 2}. 

Furthermore, 
∞f 

l{ck}k≥1lp = |ck|p ≤ Clflp .lp Ap 
β 

k=1 

The converse is also true but we will only need this part. 

1.5.1 Bergman projection 
An important tool in the study of the standard weighted Bergman spaces Apβ, with 
β > −1, is the operator called the Bergman projection. This operator, denoted by Pβ , 
is defined originally only in the Hilbert space case by 

f(w)(1 − |w|2)β 
Pβ f(z) = (β + 1) dA(w)

D (1 − zw)2 

for all f ∈ L2(D, dAβ ), where dAβ(z) = (1 − |z|2)β dA(z). To simplify the notation, 
we will denote this Lebesgue space by L2((1 − |ζ|2)β). The Bergman projection is a 
bounded linear operator from L2((1 −|ζ|2)β) onto A2 . The surjectivity of the projection β 
is closely related with the reproducing kernels in the weighted Bergman spaces A2 

β that 
we will see in Section 1.10; see also [54, Proposition 1.4]. 

Moreover, thanks to this integral formula Pβ is a well defined linear operator in the 
space L1((1 − |ζ|2)β ). Thus, we can apply Pβ to any function in Lp((1 − |ζ|2)β) with 
1 ≤ p < ∞ and it can be proved that Pβ is a bounded linear operator from Lp((1−|ζ|2)β ) 
onto Apβ for 1 < p < ∞; see [41, Chapter 2, Theorem 5] for the unweighted case. A 
result that generalizes this claim can be found in [54, Proposition 1.10] and it is the 
following. 

Theorem 1.8. Suppose that −1 < β, γ < ∞ and 1 ≤ p < ∞. Then Pβ is a bounded 
projection from Lp((1 − |ζ|2)γ ) onto Ap if and only if γ + 1 < (β + 1)p.γ 

1.5.2 Mixed norm spaces 
A natural generalization of the standard weighted Bergman spaces are the mixed norm 
spaces H(p, q, β) with p, q, β > 0 that consist of all functions f in Hol(D) for which 

1 1/q
2)βq−1M qlflp,q,β = βq (1 − r p (r, f)2r dr < ∞ ,

0 

for q < ∞, and 
lflp,∞,β = sup (1 − r 2)βMp(r, f) < ∞ . 

0≤r<1

Note that H(p, p, β+1 ) = Ap and we can identify the Hardy space Hp with the limit 
p β 

case H(p, ∞, 0). Moreover, if p ≥ 1 and q ≥ 1 the expressions above define “true” 
norms. 
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These spaces were explicitly defined by Flett in [44] and [45], but later they have 
been studied by many authors; see, for example, [12], [21], [48], [27]. In the mixed norm 
spaces we also have the boundedness of the point evaluations; see [58, Proposition 7.1.1]. 

Proposition 1.2. If f ∈ H(p, q, β), 0 < p, q ≤ ∞, 0 < β < ∞, then 

lflp,q,β |f(z)| ≤ C , 
p(1 − |z|)

β+1 

where C = C(p, q, β). 

Moreover, these spaces are also related to other spaces that we will see in this chapter, 
like Korenblum spaces in Section 1.9. 

1.6 Weighted Besov spaces 

The standard weighted Besov spaces Bp,β , p ≥ 1, β > −1 consist of analytic functions 
in D whose derivative belongs to Apβ and are normed by 

lflp ' lp 
Bp,β = |f(0)|p + lf Ap . 

β 

We should note that we will also use the equivalent norm defined by lfl1 = |f(0)| + 
lf ' lAp . In the literature, these spaces are also called weighted Dirichlet spaces, but we 

β

only use this terminology in the Hilbert case. This means that when p = 2 we will call 
B2,β a weighted Dirichlet space and will denote it by D2,β . We have to differentiate this 
space with the analytic Besov space Bp, 1 < p < ∞, the space of analytic functions in 
the unit disc such that 

lflp 
Bp = |f(0)|p + (p − 1) (1 − |z|2)p−2|f '(z)|p dA(z), 

D

and B1 the space of analytic functions in the unit disc whose second derivatives are in 
A1. Using the properties of Bergman spaces, we can deduce that the polynomials are 
dense in the weighted Besov spaces and the point evaluations are bounded. 

As in the Bergman case, the atomic decomposition for the weighted Besov spaces is 
an important tool and it was proved by Peloso [71, Theorem 3.8]. Here we have to note 
that he uses a more general definition for the analytic Besov space, Bp

s, in the context 
of the unit ball Cn (see [71, Definition 1.1]) and the relation with our spaces in the unit 
disc is the following Bp

s = Bp,p(1−s)−1. We reformulate his result in our notation. 

Proposition 1.3. Given f ∈ Bp,β with 0 < p < ∞ β > −1, then there exist sequences 
{ck}k≥1 ∈ lp and {ak}k≥1 ⊂ D such that 

∞f (1 − |ak|2)b 
f(z) = ck −1(1 − akz)b+ β+2 

pk=1 
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with ⎧ {( }⎨ β+2max
p

− 1 (p − 1), 0 if β > p − 1,{( }b > ⎩ p−1max
p

, 0 if β ≤ p − 1.

Furthermore,
∞∑‖{ck}k≥1‖p = |ck|p ≤ C‖f‖p

lp Bp,β .
k=1

The converse is also true but we will only use this part.

1.7 Basic duality
Before moving on to the next space of analytic functions we need to set some definitions
and notations related to basic duality in Banach spaces.

Given X and Y two normed spaces, the vector space of all bounded operators of X
to Y will be denote by B(X, Y ). Moreover, in this space we can define a norm in the
following natural way:

‖T‖B(X,Y ) = sup {‖T (x)‖Y }.
‖x‖X≤1

In addition, if Y is a Banach space then B(X, Y ) is also a Banach space with the norm
defined above. See, for instance, [78, 4.1 Theorem]. We denote B(X) when X = Y .

The dual space of a Banach space X will be the space consist of continuous linear
functionals on X (i.e. the continuous lineal mapping of X into its scalar field). This

′space will be denoted by X and if it is equipped with the norm:

‖l‖X′ = sup {|l(x)|}
‖x‖X≤1

for each l ∈ X ′, it becomes a Banach space. See [78, 4.3 Theorem].

1.8 Bloch spaces
The Bloch space B contains the analytic functions in the unit disc such that

‖f‖B = |f(0)|+ sup(1− |z|2)|f ′(z)| < ∞.
z∈D

This space has its origin in the classical Bloch theorem and the early discussion of
the Bloch constant by Landau but was first seriously studied in the early 1970s by
Pommerenke and his coauthors. Basic references for the theory of the Bloch function
are [9], [41] and [96]. We will use the notation ρB(f) = supz∈D(1− |z|2)|f ′(z)|, which
is a seminorm. A well-known property of the Bloch space is its invariance under Möbius
transformation i.e. the Bloch space is conformally invariant, in fact the seminorm ρB

a−zsatisfies ρB(f ◦ ϕa) = ρB(f) where ϕa(z) = 1−az
. In the Bloch space we also have the

boundedness of the point evaluations.



 

10 1.9. Korenblum spaces 

Proposition 1.4. Given f ∈ B and z ∈ D we have  

1 1 + |z||f(z) − f(0)| ≤ 2ρB(f) log .1 − |z| 

The proof can be found in [41, Chapter 2, Proposition 1]. The closure of the 
polynomials in the Bloch norm is the little Bloch space, B0. An analytic function f 
belongs to the little Bloch space if lim|z|→1− (1 − |z|2)|f '(z)| = 0, see [41, Chapter 2, 
Proposition 4]. 

We can identify the dual of the Bergman space A1 with the Bloch space (see [41, 
Chapter 2, Theorem 8]) 

Theorem 1.9. The dual space of A1 can be identified with the Bloch space, B. Every 
bounded linear functional l ∈ (A1)' has a unique representation 

l(f) = lg(f) = lim fg dA, f ∈ A1 , 
r→1− rD 

where g ∈ B. Furthermore, the norm lllX1 is equivalent to the norm lglB = |g(0)| + 
supz∈D(1 − |z|2)|g '(z)|. 

1.9 Korenblum spaces 

The Korenblum spaces (also called growth spaces) A−γ , with γ > 0, consist of analytic 
functions in the unit disc such that 

lflA−γ = sup (1 − |z|2)γ |f(z)| < ∞. 
z∈D 

In the 1970s, Korenblum studied the zero sets of the union of all such spaces, which 
coincides with the union of all Bergman spaces of the disc. A basic reference for these 
spaces is [54, Section 4.3]. It is clear, by the definition of the Korenblum spaces, that 
each A−γ contains all the bounded analytic functions and that the point evaluations are 
bounded. 

Remark 1.1. Given f ∈ A−γ , γ > 0 and z ∈ D we have 

lflA−γ 
|f(z)| ≤ .(1 − |z|2)γ 

Analogous to the little Bloch space B0, we will denote A−
0 
γ , with γ > 0, the closure of 

the polynomials in the Korenblum space A−γ . Moreover, an analytic function f belongs 
to A−γ if lim|z|→1− (1 − |z|2)γ |f(z)| = 0.0 
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1.10 Weighted Hardy spaces 
By the basic theorem of Riesz, every Hilbert space H of analytic functions in D on which 
all point evaluations are bounded has reproducing kernels. Given w ∈ D, the reproducing 
kernel Kw : D → C is a function such that f(w) = (f, Kw) for all f ∈ H. Two 
important historical references on reproducing kernels are [14] and [19]. Reproducing 
kernels are often viewed as functions of two complex variables (defined in the bidisc 
D × D) by writing Kw(z) = K(z, w). Clearly, Kw(z) = Kz(w), for all z, w ∈ D. 

Obviously, Kz(z) = (Kz, Kz) = lKzl2 ≥ 0 for all z ∈ D. Actually, the restriction 
Kz(w) to the diagonal {(z, w) : z = w} of the bidisc D × D is often a radial function 
(meaning that it depends on |z| only). Such spaces are of special interest. In what 
follows, we will consider a large family of Hilbert spaces H of analytic functions in the 
disc from which only the following axioms will be required: 

f 

(A1) The point evaluations are bounded (hence H is a reproducing kernel Hilbert space); 

(A2) The reproducing kernel Kw(z) is normalized so that Kw(0) = 1 for all w ∈ D; 

n(A3) The monomials {z : n = 0, 1, 2, . . .} belong to H and form a complete or
thogonal set (in the usual sense of maximal orthogonal sets in spaces with inner 
product). 

The spaces H satisfying these axioms are often called weighted Hardy spaces. These 
spaces and some important operators on them were studied in detail by Shields [81] and 
later by many followers. 

As Proposition 3.1 formulated in the Chapter 3 will show, if the above conditions are 
fulfilled then H will also satisfy several other conditions. Among them is the following 
representation of the reproducing kernel for H: 

∞
(z) =  γ(n)(wz)n (1.1) Kw

f 

n=0 

for certain numbers γ(n) > 0, where γ(0) = 1. Actually, computing the inner product 
nof the monomial z with the kernel easily yields that γ(n) = lznl−2. Note also that the 

restriction Kz(z) = ∞ 
n=0 γ(n)|z|2n is a positive and increasing function of |z|. By our 

normalization (A2), we also have γ(0) = Kw(0) = 1; in view of γ(0) = l1l−2, where 
1 denotes the constant function one, it also follows that l1l = 1. 

As can be seen, the representation of the kernel readily allows for the computation 
of [38, Section 2.1] that gives the norm of a function in H: 

∞f∞
= 

γ(n) |ann=0 

1  lfl2 |2 , whenever f(z) = n anz .  
n=0 

Regarding the notation used, it is worth mentioning that in Chapter 3 we are centered 
on the role played by the kernels and therefore use mainly the numbers γ(n) whereas in 
many other texts the emphasis is on the norm formula in terms of the Taylor coefficients, 
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so these spaces are denoted there by H2(β), where the obvious relationship between the
numbers β(n) and γ(n) is as follows:

1
γ(n) = n ≥ 0 .

β(n)2 ,

We refer the reader to the standard reference [38].

An important family of weighted Hardy spaces

An important family of weighted Hardy spaces H are the spaces Hγ whose reproducing
kernel is given by the formula

1 ∑
Kw

γ (z) = =
∞

γ(n)(wz)n , z, w ∈ D , (1.2)(1− wz)γ n=0

where the sequence (γ(n))∞n=1 is defined as

γ(0) = 1 , γ(1) = γ > 0
γ + n − 1 Γ(n+ γ) 1 (1.3)

γ(n) = = = n ≥ 1 .
n Γ(γ)n! (n+ γ)B(γ, n+ 1) ,

This scale of spaces is formed precisely by the following well-known spaces:

• The standard Hardy space H2, choosing γ = 1, which yields γ(n) = 1 for all
n ≥ 0, with the standard Szegő (Riesz) kernel Kw

1 (z) = (1 − wz)−1. Thus, for
any f ∈ H2

1 2π f(re
if(w) = 〈f, Kw

1 〉H2 = lim 
it)

dt.−itr→1− 2π 0 1− wre

• The (larger) standard weighted Bergman spaces A2
γ−2, when γ > 1, where the

usual Bergman space A2 corresponds to the values γ(n) = n + 1 for n ≥ 0, and
the kernel is the standard Bergman kernel Kw

2 (z) = (1 − wz)−2. Thus, for any
f ∈ A2

γ−2

f(w) = 〈f, Kγ 〉A2 = (γ − 1) f(z) (1− |z|2)γ−2 dA(z).w γ−2 D (1− wz)γ

• The (smaller) weighted Dirichlet spaces D2,γ, when γ < 1.

Note that the standard unweighted Dirichlet spaces D2,0 of the functions with square-
integrable derivative (with respect to the area measure) does not belong to this scale.

To set notation, in Chapter 3 we will use the notation shown above, Hγ is the
1weighted Hardy space with reproducing kernel Kw

γ (z) = (1−wz)γ , this is the standard
notation in the literature. However, in Chapter 4 we will be focus in certain weighted
invariance property for spaces of analytic functions and for this purpose is suitable to
work with the weighted Hardy spaces associate to the kernel kγ (z) = K2γ(z) =w w (1−wz)2γ ,
that we will denote Hγ with the obvious relation Hγ = H2γ.

1
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1.11 Carleson measures 
The Carleson measures were defined by Lennart Carleson with the aim of characterizing 
the interpolating sequences of H∞, and to prove the Corona Theorem, see [29] and [40, 
Chapter 9]. Given a finite positive Borel measure µ on D, we say that µ is a Carleson 
measure if there exists a constant Cµ such that 

µ(Sh(t)) ≤ Cµh 

for any Carleson box (or Carleson square) 

Sh(t) = {re is : 0 < 1 − r ≤ h, |t − s| ≤ h}. 

In the next proposition we note the conformally invariant character of these measures, 
see [49, Lemma 3.3, page 239]. 

Proposition 1.5. A positive measure µ on D is a Carleson measure if and only if 

1 − |a|2 
sup 

|1 − az|2 dµ(z) = M < ∞. 
a∈D D 

This result can be generalized to admit measures on D, see [22, Lemma 2.4]. We 
show this result with a corresponding changes of notation. 

Proposition 1.6. Let µ be a finite, positive Borel measure on D and we denote by 
µD and µT its restrictions to the Borel subsets of D and T, respectively. Then, if 
Ih(t) = {eis : |t − s| ≤ h} and 0 < γ < β we have that 

max{µD(Sh(t)), µT(Ih(t))} ≤ Chγ , 

with h ∈ (0, 1) and t ∈ [0, 2π), if and only if 

(1 − |a|2)β−γ 
sup dµ(z) = M < ∞. 
a∈D D |1 − az|β 
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2.1 Transpose and adjoint operators 
Let X and Y be two normed spaces and let T be an operator in B(X, Y ), then the 

' 'transpose operator (also called conjugate operator) T : Y ' → X of T is the operator 
'that sends any continuous linear functional l ∈ Y ' to the linear functional lT in X . 

Thus 
T ' l(x) = l(Tx), 

for every x ∈ X and l ∈ Y ' . 
Focusing on the Hilbert spaces, let H1 and H2 be two Hilbert spaces and let A be a 

bounded linear operator from H1 to H2 then its adjoint is the bounded linear operator 
A∗ : H2 → H1 such that 

(Ax, y)H2 = (x, A ∗ y)H1 , 

for any x ∈ H1 and y ∈ H2. 
In this case of Hilbert spaces, we can observe that the notion of transpose operator 

is closely related to the notion of adjoint operator through the Riesz representation 
theorem and the antilinear identification between the Hilbert space and its conjugate. 

2.2 Isometries and unitary operators 
Given a Banach space X, a linear isometry of X is a linear operator T such that 

lTxl = lxl 

for all x ∈ X. On a Hilbert space this is equivalent to T ∗T = I, where I is the identity 
operator and T ∗ is the adjoint operator of T . Moreover if the Hilbert space isometry is 
also onto, it is called a unitary operator and is characterized by the property 

T ∗ T = TT ∗ = I. 

In Chapter 3 we will be interested in co-isometric operators that are the linear operators 
∗ ∗in the Hilbert space such that TT = I, i.e. such that T is an isometry. 

15  
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2.3 Invertible operators and resolvent set 

Let X be a Banach space and let T be an operator in B(X). Then T is invertible if 
there exists an operator S in B(X) such that 

ST = I = T S, 

where I is the identity map on X. In this case we write S = T −1; see [78, 4.17 
Definitions]. 

Let T be an injective operator in B(X). By the closed graph theorem (Theorem 1.1) 
or the open mapping theorem [78, Theorem 2.11], T is invertible if and only if it is 
surjective (onto). 

On the other hand, the spectrum σ(T ) of an operator T ∈ B(X) is the set of all 
complex numbers λ such that 

Tλ = I − λT 

is not invertible. We should note that in many references σ(T ) consists of all µ ∈ C 
such that T − µI is invertible, hence we will need to reformulate their results; see, for 
example, [78], [95, Section VIII]. All complex numbers λ not in σ(T ) form a set ρ(T ) 
called the resolvent set of T . These definitions can be extended to a more general 
context of Banach algebras. The following result will be useful for us in Chapter 4 and 
it is a direct consequence of [77, Corollary 18.3]. 

Proposition 2.1. Let T be an operator in B(X). If |λ| < 1 , then λ ∈ ρ(T ).lT lB(X) 

2.4 Interpolation 
The theory of interpolation started in the Lp spaces, with the Riesz-Thorin theorem 
and the Marcinkiewicz theorem. The Riesz-Thorin theorem is also called the Riesz 
convexity theorem and it was proved by Riesz [74]. Later Thorin [91] gave another 
proof using convexity properties of analytic functions. The objective of this theory is, 
given two spaces, to find intermediate spaces that satisfy certain properties. There 
are some methods to achieve this goal, for example, the complex method and the real 
method. Thorin’s proof of the Riesz-Thorin theorem is the starting point for the complex 
interpolation method, which that one we will use. Many influential authors have worked 
on this topic, for instance, Alberto Calderón [28], Elias Stein and Guido Weiss, [88], [89]. 
We will use, one of the basic references for the interpolation theory, the book by Jöran 
Bergh and Jörgen Löfström [18]. 

2.4.1 Interpolation spaces 
Definition 2.1. Given two Banach spaces A0 and A1, we say that A0 and A1 are com
patible (or the couple (A0, A1) is compatible) if there exists Z, a Hausdorff topological 
vector space, such that A0 and A1 are both continuously contained in Z. 
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Thus, we can define A0+A1 to consist of all elements z = a0+a1 for some a0 ∈ A0
and a1 ∈ A1, and A0 ∩ A1, which are subspaces of Z. Moreover, we can equip these
spaces with the norms

‖a‖A0∩A1 = max (‖a‖A0 , ‖a‖A1) , ‖z‖A0+A1 = inf (‖a0‖A0 + ‖a1‖A1)

where the infimum is taken over all representation of z in the form z = a0 + a1. With
these norms we have that A0 ∩ A1 and A0 + A1 are complete; see [18, 2.3.1 Lemma]
for the proof. The following definition can be found in [18, 2.4.1 Definition].

Definition 2.2. Given a compatible couple (A0, A1) we say that A is an intermediate
space between A0 and A1, if

A0 ∩ A1 ⊂ A ⊂ A0 + A1

with continuous inclusions. Moreover, the space A is called an interpolation space be-
tween A0 and A1 (or with respect to (A0, A1)) if it satisfies the two following conditions:

• A is an intermediate space between A0 and A1.

• For any linear operator T from A0 + A1 to A0 + A1, which is bounded from A0
to A0 and from A1 to A1 respectively, we must have that T : A → A is bounded.

2.4.2 Complex method
We consider the following strips

S = {z : 0 ≤ Re z ≤ 1} and S = {z : 0 < Re z < 1}.

So, for a given compatible couple (A0, A1) we define the space F((A0, A1)) that consists
of all function f with values in A0 + A1 such that f is analytic on S, continuous and
bounded on S and the functions t �→ f(j + it), j = 0, 1, are continuous from the real
line into Aj and lim|t|→∞ ‖f(j + it)‖Aj

= 0. Thus, if we consider

‖f‖F((A0,A1)) = max sup ‖f(ti)‖A0 , sup ‖f(1 + ti)‖A1 ,
t∈R t∈R

we have that F((A0, A1)) is a Banach space, see [18, 4.1.1 Lemma].

Definition 2.3. Given a compatible couple (A0, A1), the complex interpolation space,
[A0, A1]θ, for θ ∈ (0, 1), consists of all functions a ∈ A0 + A1 such that a = f(θ) for
some f ∈ F((A0, A1)). The norm in this space is defined by

‖a‖θ = inf{‖f‖F((A0,A1)) : f(θ) = a, f ∈ F},

where the infimum is taken over all f ∈ F((A0, A1)) such that f(θ) = a.

In the next theorem, [18, 4.1.2. Theorem], we observe that the complex interpolation
space with the norm defined above is a Banach space and it is an interpolation space in
the sense of Definition 2.2.
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Theorem 2.1. Given a compatible couple (A0, A1) and θ ∈ (0, 1), the complex inter-
polation space [A0, A1]θ is a Banach space and it is an intermediate space with respect
(A0, A1). Moreover, if (A0, A1) and (B0, B1) are two compatible couples and T is an
operator from A0 + A1 to B0 + B1, which is bounded from A0 to B0 and A1 to B1
respectively, then T : [A0, A1]θ → [B0, B1]θ is bounded with

‖T‖B([A0,A1]θ,[B0,B1]θ) ≤ ‖T‖1−θ
B(A1,B1).B(A0,B0)‖T‖θ

For our purpose we will need some basic properties of these complex interpolation
spaces. Some of these properties and others can be seen in [18, 4.2.1. Theorem].

Proposition 2.2. Given two compatible couples (A0, A1) and (B0, B1), they satisfy the
following properties.

a) If A0 ⊂ B0 and A1 ⊂ B1 with continuous inclusions, then [A0, A1]θ ⊂ [B0, B1]θ
for all θ ∈ (0, 1).

b) If A = A0 = A1 then [A, A]θ = A, for all θ ∈ (0, 1).
c) If A1 ⊂ A0 with continuous inclusion, then [A0, A1]θ ⊂ A0, for all θ ∈ (0, 1).

Proof. a) If we can prove that F((A0, A1)) ⊂ F((B0, B1)), then for a ∈ [A0, A1]θ
there exists f ∈ F((B0, B1)) with f(θ) = a, so a ∈ [B0, B1]θ. But if f ∈
F((A0, A1)), then f has values in A0 + A1 and

‖f‖F((A0,A1)) = max sup ‖f(ti)‖A0 , sup ‖f(1 + ti)‖A1 ,
t∈R t∈R

is finite. Thus, using that A0+A1 ⊂ B0+B1 and the continuity of the inclusions
we conclude the desired result.

b) This is obvious since [A, A]θ has to be an intermediate space between A and A.

c) If we consider in a) B0 = A0 and B1 = A0, applying b) we obtain the result.

One of the most important applications of this theory is its use in Lp spaces. Let
(U,Σ, μ) be a σ-finite measure space. We denote by Lp(dμ) (or simply Lp) the Lebesgue
space of all μ-measurable functions f on U , such that

‖f‖p = |f |p dμ < ∞,Lp

U

with 1 ≤ p < ∞. For the limit case, L∞ consist of all μ-measurable functions f on U ,
such that

‖f‖L∞ = ess sup |f(z)|.
z∈U

Thanks to the Theorem 2.1 we can get the Riesz-Thorin interpolation theorem as a
Corollary of this next result, see [18, 5.1.1 Theorem].
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Theorem 2.2. Given θ ∈ (0, 1) and 1 ≤ p0, p1 ≤ ∞. Then, we have 

[Lp0 , Lp1 ]θ = Lp 

1−θ θwith equal norms and 1 = + . 
p p0 p1 

More generally, we consider two different measures, µ0 and µ1 and further we suppose 
that both are absolutely continuous with respect µ. Thus, we have 

dµ0(x) = w0(x)dµ(x) and dµ1(x) = w1(x)dµ(x), 

and we denote by Lp(w0) and Lp(w1) the corresponding Lebesgue spaces. Moreover, we 
denote by L∞(w0) the space of all measurable functions f such that fw0 is essentially 
bounded. With these hypothesis we have the following result, see [18, 5.5.3. Theorem]. 

Theorem 2.3. Given θ ∈ (0, 1) and 1 ≤ p0, p1 < ∞. Then we have with equal norms 

[Lp0 (w0), Lp1 (w1)]θ = Lp(w) 0 < θ < 1, 

where 
p(1−θ) pθ 1 1 − θ θp0 p1w = w0 w1 and = + . 

p p0 p1 

This theorem extends the classical interpolation theorem of Stein [88, Theorem 2], 
but it does not include the case p0 = ∞ that it is what we will need. We have not been 
able to find any explicit reference for this fact, so we include a proof for this case, which 
is analogous to the proof of Theorem 2.3. 

Proposition 2.3. Given θ ∈ (0, 1), 1 ≤ p1 < ∞ and p0 = ∞. Then, we have with 
equal norms 

[L∞(w0), Lp1 (w1)]θ = Lp(w) 0 < θ < 1, 

where 
p1(1−θ) 

θ 
p1 

w = w0 w1 and p = . 
θ 

Proof. For a given f ∈ F((L∞(w0), Lp1 (w1))) we put 

f̃(z, x) = w0(x)(1−z)w1(x)z/p1 f(z, x). 

The mapping f → f̃  is an isometric isomorphism between F((L∞(w0), Lp1 (w1))) and 
F((L∞, Lp1 )). For example, to see the isometric property, since 

lf̃(it)lL∞ = lf(it)lL∞(w0), lf̃(1 + it)lL∞ = lf(1 + it)lL∞(w1) 

we have 

lf̃lF((L∞,Lp1 )) = max sup lf̃(it)lL∞ , sup lf̃(1 + it)lLp1 = lflF((L∞(w0),Lp1 (w1))). 
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Given a ∈ [L∞(w0), Lp1(w1)]θ we want to see that

‖a‖θ = ‖a‖Lp(w).

On the one hand, if a ∈ [L∞(w0), Lp1(w1)]θ then there exists f ∈ F((L∞(w0), Lp1(w1)))
such that f(θ) = a and ‖f‖F((L∞(w0),Lp1 (w1))) < ‖a‖θ+ε. But thanks to the Theorem 2.2
([L∞, Lp1 ]θ = Lp) we have

θ
1−θ p1‖a‖Lp(w) = ‖a w0 w1 ‖Lp ≤ ‖f̃‖F((L∞,Lp1 )) = ‖f‖F((L∞(w0),Lp1 (w1))) < ‖a‖θ + ε.

θ
1−θ p1On the other hand, let b = w0 w1 a, then b ∈ [L∞, Lp1 ]θ. Therefore, there exists

g̃ ∈ F((L∞, Lp1)) such that ‖g̃‖F((L∞,Lp1 )) < ‖b‖[L∞,Lp1 ]θ + ε = ‖a‖Lp(w) + ε. Hence

‖a‖θ ≤ ‖g‖F((L∞(w0),Lp1 (w1))) = ‖g̃‖F((L∞,Lp1 )) < ‖a‖Lp(w) + ε,

and we conclude the proof.

2.5 Composition Operators and Weighted composi-
tion operators

Let φ be an analytic map of D into itself and let X be a Banach space of analytic
functions on D. Then the composition operator Cφ is defined by

Cφf(z) = f(φ(z))

for z ∈ D and f ∈ X. The boundedness of these operators in the classical spaces of
analytic function in the unit disc has been studied by many authors, for example for the
Hardy spaces, see [38, Corollary 3.7].

Proposition 2.4. If φ is an analytic map of the disc into itself, then for f ∈ Hp with
p ≥ 1, we have

1 1
p p1 1 + |φ(0)|‖f‖Hp ≤ ‖Cφf‖Hp ≤ ‖f‖Hp .1− |φ(0)|2 1− |φ(0)|

In this thesis we focus on a generalization of the composition operators. For a
function F analytic in D and an analytic map φ of D into itself, the weighted composition
operator (or simply WCO) WF,φ with symbols F and φ is defined formally by the formula

WF,φf = F (f ◦ φ) = MF Cφf

as the composition followed by multiplication (MF f = Ff). Such operators have been
studied a great deal for various reasons. It is well-known that, in analogy with the classical
theorem of Banach [17, Chapter XI] and Lamperti [61], the surjective linear isometries of
all (non-Hilbert) Hardy and weighted Bergman spaces are operators of this type [46], [59].
Moreover, these operators have connections with some important problems, for example
we should note their connections with Brennan’s conjecture (see [82]), with the Hilbert
matrix (see [39]) and with the Cesàro operator (see [30]).



21 Chapter 2. Further Important Preliminaries 

2.6 Groups and Semigroups 
Let X be a Banach space and {Tt}t∈R a family of operators contained in B(X) then 
{Tt}t∈R forms a one parameter group if it satisfies the following conditions 

1. T0 = I 

2. Ts+t = TsTt for all t, s ∈ R. 

Note that by the second property these groups are always Abelian and with this 
definition we obtain T−tTt = T0 = I so the operator Tt is invertible for all t ∈ R. 
Moreover, we will say that the group {Tt}t∈R is a C0-group or it is strongly continuous 
at 0 (usually in the literature it is said only strongly continuous) if for every x ∈ X we 
have that 

lim = 0. 
t→0 

lTt(x) − xlX 

In general we will said that the group {Tt}t∈R is strongly continuous at a point t1 if 
limt→t1 lTt(x) − Tt1 (x)lX = 0. If limt→0 lTt − IlB(X) = 0 then the group is uniformly 
continuous. 

The definition for the one parameter semigroups is analogous but we only consider 
t ≥ 0. Let X be a Banach space and {Tt}t≥0 a family of operators contained in B(X). 
{Tt}t≥0 forms a one parameter semigroup if it satisfies the following conditions 

1. T0 = I 

2. Ts+t = TsTt for all t, s ≥ 0. 

Analogously, {Tt}t≥0 is strongly continuous from the right at 0 or it is a C0-semigroup 
if for every x ∈ X limt→0+ lTt(x) − xlX = 0 and it is uniformly continuous if 
limt→0+ lTt − IlB(X) = 0. 

The infinitesimal generator of a C0-semigroup (analogously for a C0-group) is an 
operator A , in general unbounded, defined by 

Tt(x) − x d 
A(x) := lim = Ttx|t=0, 

t→0+ t dt 

whose domain is   
Tt(x) − x 

D(A) = x ∈ X : lim exists . 
t→0+ t 

It can be proved that D(A) is dense in X; see [95, Chapter IX, Theorem 1]. Moreover, 
the infinitesimal operator is bounded if and only if {Tt}t≥0 is uniformly continuous; see 
for example [25, Proposition 3.1.1]. The infinitesimal generator is also a closed operator; 
see [95, Chapter IX, Corollary 3]. 

We will be interested in the case when X is a Banach space of analytic functions in the 
unit disc. In this context, Berkson and Porta [20] in 1978 started to study the semigroups 
of composition operators. Later, Siskakis in [83] and [84] studied these semigroups on 
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the Bergman and the Dirichlet spaces. See also the survey [85] by Siskakis about this 
topic. For our purpose, we need to work with a generalized definition of groups. For us 
{Tt}t∈G, a family of operators contained in B(X) with G ⊂ R an interval and (G, *) a 
locally compact Abelian group (with the usual topology), forms a one parameter group 
if it satisfies the following conditions 

1. Te = I, where e is the identity element of (G, *). 

2. Ts*t = TsTt for all t, s ∈ G. 

{Tt}t∈G is strongly continuous at e or it is a C0-group if for every x ∈ X limt→e lTt(x)− 
xlX = 0 and it is uniformly continuous if limt→e lTt − IlB(X) = 0. The definitions are 
analogous for semigruoups. 

Example 2.1. Let D2,0 be the usual Dirichlet space and we consider G = (−1, 1) and 
we define the operation a* b = a+b for a, b ∈ (−1, 1). Then (G, *) is a locally compact 1+ab
Abelian group (with the usual topology). Now consider {Ta}a∈G where Ta = Cψa is the 
composition operator with symbol ψa defined by ψa(z) = z+a . Thus, Ta ∈ B(D2,0)1+az
and {Ta}a∈G is a group in the sense defined above. 

2.7 Bochner integral 
We base this part on [32, Appendix E] with the appropriate change of notation to adapt 
to the content of the thesis. The Bochner integral is defined analogously to the Lebesgue 
integral and it is essentially a vector-valued version of it. Let (Ω, Σ) be a measurable 
space and let X be a real or complex Banach space. Now, we consider the σ-algebra 
of Borel subsets of X denoted by B(X). Then f : Ω → X will be Borel measurable if 
it is measurable with respect to Σ and B(X) and it will be strongly measurable if it is 
Borel measurable and f(Ω) is separable. 

Remark 2.1. In our case the polynomials will be dense in the Banach spaces X of 
analytic functions on the unit disc, so a function f : Ω → X will be Borel measurable if 
and only if it is strongly measurable. 

In the next example we will see a particular case of the relation between the con
tinuous function with strongly measurable functions. We will use this example in Sec
tion 4.3.2. 

Example 2.2. If we consider Ω = [−π, π] with the Lebesgue σ-algebra and X a separa
ble Banach space, then a function f : Ω → X continuous on [−π, π] will be a strongly 
measurable functions since the Lebesgue σ−algebra contain the Borel sets. 

In analogy with Lebesgue integral we define a simple function f as a finite sum of 
the form 

Nf 
f(ω) = χAi (ω)xi 

i=1 

where Ai are pairwise disjoint elements of Σ, χAi is the characteristic function of Ai and 
xi ∈ X. 
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Definition 2.4. Let (Ω, Σ, µ) be a measure space and let X be a real or complex Banach 
space. Then a function f : Ω → X is Bochner integrable if it is strongly measurable 
and 

lflX dµ < ∞. 
Ω 

NAs in the Lebesgue case, the integral of a simple function f(ω) = i=1 χAi (ω)xi 
will be defined as the sum N

i=1 µ(Ai)xi and for a general strongly measurable function 
f : Ω → X, the Bochner integral 

� 
Ω f dµ is defined as following 

f dµ = lim fn dµ 
n→∞Ω Ω 

where {fn}n≥1 ⊂ X is a sequence of simple functions such that for all ω ∈ Ω lfn(ω)lX ≤ 
lf(ω)lX for all n ≥ 1 and f(ω) = limn→∞ fn(ω) (For the existence of this sequence 
see [32, E.2. (Proposition)]). Therefore, we have the following properties of the Bochner 
integral (see [32, E.4. and E.5. (Proposition)]). 

Proposition 2.5. Let (Ω, Σ, µ) be a measure space, let X be a real or complex Banach 
space and f, g : Ω → X Bochner integrable functions. Then 

1. af + bg is an Bochner integrable function for any a, b ∈ C. 

2. l Ω f dµlX ≤ Ω lflX dµ. 

Moreover, next proposition shows that we can interchange the integral and the con
tinuous linear operators (see [32, E.11. (Proposition)]). 

Proposition 2.6. Let (Ω, Σ, µ) be a measure space, let X be a real or complex Banach 
space and let f : Ω → X be Bochner integrable. Then 

l(f) dµ = l f dµ 
Ω Ω 

'for all l ∈ X . 

2.8 Pointwise multipliers 
The pointwise multipliers can be defined in a more general context that which we will 
present below, but for our purpose we will consider spaces of analytic functions in the 
unit disc such that their point evaluations are bounded. 

Definition 2.5. Given two Banach spaces X, Y of analytic functions in the unit disc 
satisfying that the point evaluations are bounded on both spaces, the space Mult(X, Y ) 
consists of all analytic functions u in D with uX ⊂ Y with the norm 

lulMult(X,Y ) = sup luflY . 
f∈X 

�f �X ≤1 

We denote Mult(X) when X = Y .  
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The functions in Mult(X, Y ) are usually called pointwise multipliers from X into Y .
By the closed graph theorem (using a standard argument with normal families) each u ∈
Mult(X, Y ) defines a bounded multiplication operator Mu : X → Y, Muf = uf , and
‖u‖Mult(X,Y ) equals the operator norm of Mu. In particular, it follows that Mult(X, Y )
is a Banach space.

2.9 Weak products of Banach spaces
Definition 2.6. Given two Banach spaces X, Y satisfying that the point evaluations are
bounded on both spaces, their weak product X � Y consists of analytic functions f in
D which can be represented in the form∑ ∑

f = gnhn, gn ∈ X, hn ∈ Y, ‖gn‖X‖hn‖Y < ∞. (2.1)
n≥1 n≥1

The norm of f ∈ X � Y is defined by ∑‖f‖X�Y = inf ‖gn‖X‖hn‖Y ,
n≥1

where the infimum is taken over all representations of f in the form (2.1).

Remark 2.2. Given two Banach spaces X, Y satisfying that the point evaluations are
bounded on both spaces, ‖ · ‖X�Y is a norm.

Proof. It is clear that ‖f‖X�Y ≥ 0 for all f ∈ X � Y .

1. ‖f‖X�Y = 0 if and only if f ≡ 0. If f ≡ 0, taking g ≡ h ≡ 0 we have
f = gh, so ‖f‖X�Y = 0. Conversely, if ‖f‖X�Y = 0 given ε > 0 there exist

ε εhε ε{g }n≥1 ⊂ X, {hε }n≥1 ⊂ Y such that f = and n≥1 ‖g ‖X‖hε ‖Y <n n n≥1 gn n n n

ε. Then, since the point evaluations are bounded on X and Y , using the uniform
boundedness principle for any compact K ⊂ D we have∑ ∑|f(z)| = | gε(z)hε (z)| ≤ CK ‖gε‖X‖hε ‖Y < CKεn n n n

n≥1 n≥1

for all z ∈ K, so f(z) = 0∀z ∈ K, therefore f ≡ 0.

2. Given f ∈ X � Y and λ ∈ C, any representation f = n≥1 gnhn satisfies that
λf = n≥1(λgn)hn, so ‖λf‖X�Y = |λ|‖f‖X�Y .

3. Given f1, f2 ∈ X � Y then ‖f1 + f 2‖ ≤ ‖f 1‖ + ‖f 2‖. Given ε > 0 there exist
i{g }n≥1 ⊂ X, {hi }n≥1 ⊂ Y such thatn n∑ ∑

i if i = gnhi
n and ‖gn‖X‖hi

n‖Y < ‖f i‖X�Y +
ε

2n≥1 n≥1

∞with i = 1, 2. Therefore, f1 + f 2 = k=1 GkHk and

∑‖f 1 + f 2‖X�Y ≤
∞

‖Gk‖X‖Hk‖Y < ‖f 1‖X�Y + ‖f 2‖X�Y + ε.
k=1
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Here we have used the bijection between N and N2 defined in the following way: ⎧ 
k⎨ 1, if 2 ∈ N 

Gk = g ik and Hk = hik with ik = . (2.2) k 
2  k 

2 ⎩ k2, if 2 ∈/ N 

Remark 2.3. Given two Banach spaces X, Y satisfying that the point evaluations are 
bounded on both spaces, their weak product X 8 Y is a Banach space. 

Proof. Given a Cauchy sequence {fn}n≥1 on X 8 Y , we consider the subsequence 
{fnk }k≥1 such that lfnk − fnk+1 l < 2−k for all k ≥ 1. Since fnk ∈ X 8 Y ,− fnk+1 

kgiven ε > 0 there exists {g }i≥1, {hk }i≥1 such that ni ni f f 
k hk k < 2−k + 

ε 
fnk − fnk+1 = gni ni 

and lgni 
lX lhnk 

i 
lY .2k 

i≥1 i≥1 

Now, we define f f f 
f = fn1 + (fnk+1 − fnk ) = fn1 − gn

k 
i 
hkni 

, 
k≥1 k≥1 i≥1 

kwhich is in X 8 Y . To see this assertion we only have to prove that k≥1 i≥1 g hk isni ni

in X 8Y . Taking into account that the union of countable sets is countable, analogously 
to (2.2), k≥1 i≥1 gn

k 
i 
hn
k 

i 
= j≥1 Gj Hj , with Gj ∈ X, Hj ∈ Y and 

f f f f 
k 2−k + 

ε lGj lX lHj lY = lg lX lhk lY < = 1 + ε,ni ni 2k 
j≥1 k≥1 i≥1 k≥1 

so k≥1 i≥1 gn
k 

i 
hkni 

∈ X 8 Y . Therefore, for j ≥ 1 

lf − fnlX8Y ≤ lf − fnj lX8Y + lfnj − fnlX8Y < (1 + ε)2−j+1 + lfnj − fnl. 

Here we have used that 
j−1f f f 

f − fnj = fn1 − fnj + (fnk+1 − fnk ) = − (fnk+1 − fnk ) + (fnk+1 − fnk ) 
k≥1 k=1 k≥1 f ff 

= (fnk+1 − fnk ) = gn
k 

i 
hn
k 

i 
.  

k≥j k≥j i≥1  

Finally, since {fn}n≥1 is a Cauchy sequence, taking j → ∞ we obtain that fn →X8Y f , 
with f ∈ X 8 Y . 

The weak product can be identified with the projective tensor product X⊗̂Y . For 
more information about projective tensor product see, for example, [80]. In the Defini
tion 2.6 we have supposed that the point evaluations are bounded on X and Y . Then, by 
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the uniform boundedness principle, this implies that X 8 Y consist of analytic functions. 
If f ∈ X 8 Y , given ε > 0 there exists {gn}n≥1 ⊂ X, {hn}n≥1 ⊂ Y such that f f 

f = gnhn and lgnlX lhnlY < lflX8Y + ε. 
n≥1 n≥1 

Thus for a compact K ⊂ D, using that the point evaluations are bounded on X and Y 
and the uniform boundedness principle, we have 

Nf−1 f f 
|f(z) − gn(z)hn(z)| ≤ |gn(z)||hn(z)| ≤ Ck lgnlX lhnlY → 0 

n=1 n≥N n≥N 

when N → ∞ and for all z ∈ K. Therefore the sum n≥1 gnhn is uniformly convergent 
to f on the compact subsets of D, so f is analytic. 



3 Co-isometric weighted composition
operators on Hilbert spaces of analytic

functions 

3.1 Introduction 

It is well known that Hilbert spaces have plenty of unitary operators (e.g., permuting 
the elements of an orthonormal basis gives such transformations) so it is of interest to 
know when an operator of some specific type, such as weighted composition operator 
(WCO), is unitary. See Section 2.2 and Section 2.5. Here we study the question of 

∗when a WCO has the (apparently weaker) property of being co-isometric: TT = I. 
This chapter is based on the paper [65] and it is devoted to showing that in this case 
the properties of being co-isometric and being unitary turn out to be equivalent and to 
obtaining a necessary and sufficient condition for a weighted composition operator to be 
co-isometric on a general weighted Hardy space, see Section 1.10. 

3.1.1 Some recent results 
Isometric multiplication operators on the Hardy spaces, weighted Bergman spaces, or 
weighted Besov spaces were characterized in [4]. Characterizations of composition op
erators on the Dirichlet space that are unitary (which is simple) and isometric (which is 
more involved) were given in [66]. Isometric WCOs on weighted Bergman spaces have 
been recently described by Zorboska [97]. Isometric WCOs on non-Hilbert weighted 
Bergman spaces were discussed in Matache’s paper [69], expanding upon the classical 
work [46]. Li et al. [63] studied normal WCOs on weighted Dirichlet spaces. 

Bourdon and Narayan [24] studied the normal WCOs and described the unitary WCOs 
on the Hardy space H2. Le [62] considered the WCOs on a general class of weighted 
Hardy spaces, denoted by Hγ (see Section 1.10), whose reproducing kernel is of the 
form (1 − wz)−γ and which enjoy certain conformal properties. Besides describing when 
an adjoint of such an operator is again of the same type, he characterized the unitary 
operators among them (in the context of the unit ball), showing that this is equivalent 
to the property of being co-isometric. Zorboska [98] proved several related general 
results for Hilbert spaces of holomorphic functions in several variables defined by certain 
properties of their kernels. It should also be mentioned that Hartz [53] obtained several 
closely related results pertaining to the spaces with kernels of the type mentioned. 

27  
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3.1.2 Some remarks 
Since every unitary operator is invertible, results on invertibility of WCOs could in princi
ple be relevant in this context. Most recently, in [13] two different theorems were proved, 
showing that in every functional Banach space in the disc that satisfies one of the two 
sets of five axioms listed there, a WCO is invertible if and only if its symbols F and φ 
have certain properties that one would naturally expect. However, these theorems do 
not apply to every natural space of analytic functions. One example of a Hilbert space 
that satisfies these five axioms but is not included among the spaces considered in [62] 
is the Dirichlet space. Nonetheless, it can be seen that the invertibility results which 
give a lot of information on the symbols, even in this special case of the Dirichlet space, 
still require additional non-trivial work so as to deduce the complete information about 
the exact structure of F and φ. It is precisely this work that will be done here. We will 
make all the proof self-contained although the methods used by Hartz [53] could also 
give alternative proofs of some of our results. 

3.2 A review of weighted Hardy spaces 
In this section we focus on the consequences and restatements of the axioms that define 
a weighted Hardy space. Recall that a Hilbert space H of analytic functions in the unit 
disc is a weighted Hardy space if it satisfies the following axioms (see Section 1.10 for 
more details). 

(A1) The point evaluations are bounded; 

(A2) The reproducing kernel Kw(z) is normalized so that Kw(0) = 1 for all w ∈ D; 
n(A3) The monomials {z : n = 0, 1, 2, . . .} belong to H and form a complete or

thogonal set (in the usual sense of maximal orthogonal sets in spaces with inner 
product). 

To fix the notation, the rotations will be denoted by Rλ; for |λ| = 1, let Rλ(z) = λz, 
for all z ∈ D. The induced composition operator is denoted by CRλ : CRλ f = f ◦ Rλ, 
for f ∈ H. 

The following simple result shows that one does not need to assume any further 
axioms that our spaces should satisfy in order to obtain the results that will be proved 
here. Moreover, it shows that under only a minimum set of assumptions we can produce 
examples of unitary WCOs on our spaces. 

For our purpose it would actually suffice just to note that condition (a) below im
plies all the others (since this is all that is needed in the results that follow). This 
is either simple to prove or easy to find in other places; for example, (a) ⇒ (b) is 
proved in [38, Theorem 2.10]. However, we have chosen to include a detailed proof 
of equivalences between all the conditions (a)–(g) below because this may have some 
independent interest. Since this result is not easy to find in one place and some of the 
implications are non-trivial, for the sake of completeness we also include a detailed proof, 
as self-contained as possible. 
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Proposition 3.1. Let H be a Hilbert space of analytic functions in D that contains all 
monomials and satisfies our axioms (A1) and (A2): the point evaluations are bounded 
on H and the reproducing kernel is normalized so that Kw(0) = 1 for all w ∈ D. Then 
the following statements are equivalent: 

n(a) Axiom (A3) is fulfilled; that is, the monomials {z : n = 0, 1, 2, . . .} form a 
complete orthogonal set in H. 

(b) The reproducing kernel has the form 

n=0 

f∞
2−nl

f 

with γ(n) = lz . 

(c) The norm of a function f ∈ H whose Taylor series in D is f(z) = ∞ n isn=0 anz
given by 

∞

(z) =  γ(n)(wz)n (3.1) Kw ,  

lfl2 |an|2lz nl2=  .  
n=0 

(d) The rotations Rλ induce isometric composition operators CRλ on H. 

(e) The rotations Rλ induce unitary composition operators CRλ on H. 

(f) The constant multipliers of modulus one (|µ| = 1) and rotations Rλ induce unitary 
weighted composition operators Wµ, Rλ on H. 

(g) Kλw(λz) = Kw(z) for all z, w ∈ D and all λ with |λ| = 1. 

Proof. It suffices to prove the following chain of implications: 

(b) ⇒ (a) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (g) ⇒ (b), 

in addition to the easy implications (e) ⇒ (f) ⇒ (d). 

(b) ⇒ (a): 
∞Assume that the kernel can be written as Kw(z) = n=0 γ(n)(wz)n, 

with γ(n) = lznl−2. We first check that the series converges in the norm of the space 
H. To this end, write 

fN
n=0 

for the partial sums of the kernel Kw(z). Note that for a ∈ D we have Ka(a) = 
∞ ∞ ∞ 
n=0 γ(n)|a|2n. Then clearly the infinite series n=0 |w|n and n=0 γ(n)|w|n both 

pw,N (z) = n nγ(n)w z , z, w ∈ D , N ≥ 0 , 
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converge for all w ∈ D. Given ε > 0, let N ∈ N be such that n>N |w|n < ε/2 and 
n>N γ(n)|w|n < ε/2. Then      f 

γ(n)w  n nz  
     ≤  

f 
γ(n)|w|nlz nllKw − pw,N l = 

n>N n>N f f 
γ(n)|w|nlz nl + γ(n)|w|nlz nl=  

n>N, lznl>1 n>N, lznl≤1 f |w|n 

lznl 
f 

γ(n)|w|n+ ≤  
n>N, lznl>1 n>N ff 

γ(n)|w|n≤ |w|n + 
n>N n>N 

< ε .  

f 

Now, using the definition of the reproducing kernel Kw (as a function of z), the following 
operation is justified for all w ∈ D: 

∞ ∞f
(z)) = (z  γ(m)w  n mγ(m)(z , z m)w , n ≥ 0 .w  n = (z n, Kw

n m m) =z,  
m=0 m=0 

mThe uniqueness of the Taylor coefficients implies (z , z  n) = 0 for all m = n. Hence the 
monomials form an orthogonal system. 

It is only left to check that this orthogonal system is complete. To this end, it suffices 
to note that the linear span of the kernels is dense in H: if a function is orthogonal to 
it, in particular it is orthogonal to each Kw and hence vanishes at all w ∈ D, so it must 
be the zero function. We have proved a little earlier that every kernel, and hence every 
function in the linear span of the kernels, can be approximated by polynomials in the 
norm of the space. Thus, the polynomials are dense in H and therefore form a complete 
orthogonal system. 

(a) ⇒ (c): 
∞ nLet f ∈ H, with the Taylor series f(z) = n=0 anz , z ∈ D. By 

assumption, the monomials form a complete orthogonal set in H. As a consequence of 
our Axiom (A1), the development of f in a series with respect to the orthonormal basis 
{zn/lznl : n ≥ 0} must coincide with the Taylor series of f at each point z ∈ D. This 
justifies the following operations: 

lfl2 fffff∞ ∞ ∞ ∞ ∞
= ( amz m , anz n) = aman(z m , z n) = |an

m=0 n=0 m=0 n=0 n=0 
|2lz nl2 .  

f 

(c) ⇒ (d): 
Let λ be a complex number of modulus one. Since CRλ f(z) = f(λz), 

by the norm formula from the assumption (c) we have 
∞

fl2 |λn |2lz nl2 = lfl2 anlCRλ =  .  
n=0 

(d) ⇒ (e):  
It suffices to notice that CRλ CR f = f for all f ∈ H, hence CRλ is 

λ

onto. Being a surjective isometry, it is a unitary operator. 
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(e) ⇒ (g): 
Let |λ| = 1. Since CRλ is unitary, we know that CRλ CR

∗ 
λ 

= I. 
Moreover, 

C ∗ Kw(z) = (C ∗ Kw, Kz) = (Kw, CRλ Kz)Rλ Rλ 

= (CRλ Kz, Kw) = CRλ Kz(w) = Kz(λw) = Kλw(z) . 

Hence 
Kw(z) = CRλ CR

∗ 
λ 
Kw(z) = CRλ Kλw(z) = Kλw(λz). 

(g) ⇒ (b): 
It is a standard Hilbert space fact that the reproducing kernel K(z, w) = 

Kw(z) is a positive definite function (in the usual sense that the corresponding quadratic 
form is positive semi-definite). We also have the normalization condition, Axiom (A2). 
Condition (g) tells us that 

Kλw(λz) = Kw(z) , z, w ∈ D , |λ| = 1 , 

and since the rotations are easily verified to be the only C-linear unitary maps of C. 
Thus, we can apply [53, Lemma 2.2] to conclude that there exists a function h analytic 
in D such that 

∞f 
nKw(z) = h(wz) , h(z) = γ(n)z , z, w ∈ D , γ(0) = 1 , γ(n) ≥ 0. 

n=0 

We still ought to show that γ(n) = lznl−2 for all n, so further work is needed. 
We follow the argument of [51, Proposition 4.1] and include the details for the 

nsake of completeness. Let I = {n ∈ N : γ(n) > 0}, so that h(z) = n∈I γ(n)z . 
Consider the Hilbert space � )H of analytic functions in the disc with orthonormal basis {

nen(z) = γ(n)z : n ∈ I . Our next objective is to show that the spaces H and H 
coincide. 

We first show that H is a reproducing kernel Hilbert space by checking that the 
point evaluation functionals are bounded. Let g ∈ H, with g = n∈I bnen. Then, given 
w ∈ D, the Cauchy-Schwarz inequality yields 

1/2 1/2f 
|2 f  

|g(w)| ≤ |bn |en(w)|2  

n∈I n∈I 
1/2 1/2 �f 

|2 f 
= |bn γ(n)|w|2n = h(|w|2)lglH . 

n∈I n∈I 

Next, we show that all functions in H are analytic in D. Since h is analytic in D and 
has non-negative Taylor coefficients, h(|z|) is an increasing function of |z|. Bounded
ness of point evaluations shows that convergence in H implies uniform convergence on 
compact subsets of D. Since the orthonormal basis of H consists of polynomials, each 
function in H is a uniform limit of polynomials on compact subsets of D and, hence, an 
analytic function in D. 



 

� � 

� 

32 3.3. Characterizations of co-isometric WCOs 

Finally, we check that the reproducing kernels of H and H coincide. Denote by Ew 
the reproducing kernel in H for the point evaluation at w ∈ D: g(w) = (g, Ew)H , for 
g ∈ H. If Ew(z) = n∈I cnen(z), for each m ∈ I we have f 

em(w) = (em, Ew)H = cn(em, en)H = cm , 
n∈I 

hence 
Ew(z) = 

f 
en(w)en(z) = 

f 
γ(n)w n z n = Kw(z) 

n∈I n∈I 

for all z, w ∈ D. 
Finally, both H and H are Hilbert spaces with positive definite kernels that coincide. 

By the uniqueness part of the Moore-Aronszajn theorem [14, p. 344, (4)], we must have 
H = H. 

It is only left to determine the coefficients γ(n) for all n ≥ 0. For all n ∈ I we 
easily compute 1  =  lenl2 

H =  lenl2 
H =  (  nγ(n)z , γ(n)zn)H = γ(n)lznl2 

H, hence  
nl−2γ(n) = lz H , as claimed. 

Finally, it is only left to show that all the Taylor coefficients of h must be non-zero: 
I = N ∪ {0}. Otherwise, there exists an index N such that γ(N) = 0 and, since 
Nz ∈ H = H, we have 

f f 
z N = bnen(z) = bn γ(n)z n , 

n∈I n∈I 

with all the values n ∈ I being different from N , which is clearly impossible. 

(e) ⇒ (f): 
Trivially, multiplication by a constant of modulus one yields a surjective 

isometry (hence a unitary operator) and the product of two unitary operators is unitary. 

(f) ⇒ (d): 
This assertion follows trivially by choosing the constant multiple to be 

one. 

3.3 Characterizations of co-isometric WCOs 

3.3.1 Statement of the main theorem 
We are now ready to formulate our main result of this chapter. 

Theorem 3.1. Let H be a weighted Hardy space that satisfies axioms (A1)–(A3) and 
let WF,φ be a bounded WCO on H, where F is a function analytic in D and φ an 
analytic map of D into itself. Then WF,φ is unitary if and only if it is co-isometric (that 
is, if and only if WF,φW ∗ = I).F,φ 

Moreover, any of these two properties is further equivalent to the following: 
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μ(φ′)γ/2 Ka(a) φ is a disc automorphism and F = = ν ‖Ka‖ , where a = φ−1(0) and μ

and ν are constants such that |μ| = |ν| = 1, in the case when H is one of the
spaces Hγ considered in Section 1.10.

(b) φ is a rotation and F is a constant function of modulus one, whenever H does
not belong to the scale of spaces Hγ.

We shall refer to the operators given in the case (b) as to the trivial ones. It is
interesting to notice that there are results in the literature with a similar flavor, although
in a somewhat different context; cf., for example, Proposition 4.3 and Corollary 9.10
of [53]. The recent paper [98] for a general class of spaces in the context of several
variables (where certain conformal properties of the kernels are again assumed) contains
some related ideas and similar results.

The rest of the sections is devoted to the proof of this result which we split up into a
sequence of auxiliary statements in order to make it easier to follow. We begin by seeing
that the assumption that WF,φ is a co-isometry imposes certain important properties of
the symbols.

3.3.2 Basic information on the symbols of WF,φ

As a preliminary information that will be needed later, we observe the following. Using
the basic properties of the inner product and applying the operator to a reproducing
kernel, we obtain

〈f, W ∗ 〉 = 〈WF,φf, Kw〉 = 〈F (f ◦ φ), Kw〉 = F (w)f(φ(w))F,φKw

= F (w)〈f, Kφ(w)〉 = 〈f, F (w)Kφ(w)〉 , f ∈ H , w ∈ D .

Hence we have the formula for the action of the adjoint of a WCO on reproducing
kernels:

W ∗ Kw = F (w)Kφ(w) , w ∈ D . (3.2)F,φ

Using this, we can show that the assumption that a WCO is co-isometric already provides
some rigid information on the symbols F and φ. As is usual, by a univalent function in
D we mean a function analytic in the disc which is one-to-one there.

Proposition 3.2. Let H be a weighted Hardy space that satisfies axioms (A1)–(A3)
and let WF,φ be a bounded WCO on H. If WF,φ is co-isometric then F is given by

1
F (z) = for all z ∈ D , (3.3)

F (0)Kφ(0)(φ(z))
,

and φ is a univalent function.

Proof. Since by assumption WF,φW ∗ = I, using (3.2), we obtainF,φ

∗Kw = WF,φWF,φKw = WF,φ F (w)Kφ(w) = F (w)WF,φKφ(w) = F (w)F (Kφ(w) ◦ φ) .
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Thus, 
F (z)F (w)Kφ(w)(φ(z)) = Kw(z) , for all z, w ∈ D . (3.4) 

Taking w = 0, the right-hand side is ≡ 1, so (3.3) follows immediately. 

We now show that φ is univalent. To this end, let z1, z2 ∈ D be such that φ(z1) = 
φ(z2). Then it follows that F (z1) = F (z2): indeed, by (3.3) we have 

1 1 
F (z1) = = = F (z2) .  

F (0)Kφ(0)(φ(z1)) F (0)Kφ(0)(φ(z2))  

Next, using (3.4) three times but with different values of z and w, we get 

Kz1 (z1) = |F (z1)|2Kφ(z1)(φ(z1)) , 
Kz2 (z2) = |F (z2)|2Kφ(z2)(φ(z2)) , 
Kz2 (z1) = F (z1)F (z2)Kφ(z2)(φ(z1)) . 

By our choice of z1 and z2, the right-hand sides of the last three equations all coincide, 
hence 

Kz1 (z1) = Kz2 (z2) = Kz2 (z1) . 

Recall that for any kernel given by (3.1) the function Kz(z) is a strictly increasing 
function of |z|, hence from the first equality above it follows that |z1| = |z2|. If z1 = 0, 
it follows that also z2 = 0 and we are done. Thus, we may assume that |z1| > 0. 

Next, writing z2 = λz1 with |λ| = 1 and using the remaining equality and equation 
(3.1), we obtain 

∞f 

n=1 
γ(n)|z1|2n =  

∞f 

n=1 
γ(n)λ n|z1|2n ,  

which yields 
∞f 

n=1 
γ(n) Re (1 − λ n) |z1|2n = 0 . 

Since each term in the sum on the left is non-negative and γ(n) > 0 and |z1| > 0, it 
follows that 

Re (1 − λ n) = 0 

for all n ≥ 1, which implies λ = 1, hence z1 = z2. This proves that φ is univalent. 

It should be noted that formula (3.4) has already appeared before in the literature; 
see Zorboska [98, Proposition 1]. 

3.3.3 Kernels bounded on the diagonal 
Proposition 3.2 proved above will help us to handle the simpler case of the kernel bounded 
on the diagonal. We will refer to {(z, w) ∈ D × D : z = w} as the diagonal of the 
bidisc D × D. It will be relevant to our proofs to distinguish between the kernels that 
are bounded on the diagonal and those that are not. 
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A simple example of the kernel of type (3.1) which is bounded on the diagonal is 

f∞ wz 1 
Kw(z) = 1 + wz + = 1 + 2wz − (1 − wz) log . 

n=2 n(n − 1) 1 − wz 

In relation to an argument mentioned in the proof below, it is convenient to recall 
that reproducing kernels may have zeros in the bidisc (on or off the diagonal); this 
question is relevant in the theory of one and several complex variables. In relation to the 
kernels considered here, we mention the recent reference [72]. 

Theorem 3.2. Let H be a weighted Hardy space that satisfies axioms (A1)–(A3) and 
whose reproducing kernel is bounded on the diagonal of the bidisc, and let WF,φ be a 
bounded WCO on H. Then the following statements are equivalent: 

(a) WF,φ is unitary. 
(b) WF,φ is co-isometric. 
(c) F is a constant function of modulus one and φ is a rotation. 

Proof. Trivially, (a) implies (b). It is clear from Proposition 3.1 that (c) implies (a). 
Thus, it only remains to show that (b) implies (c). 

Suppose that WF,φ is co-isometric. The assumption that the kernel is bounded on 
∞the diagonal of the bidisc is equivalent to saying that n=0 γ(n) < +∞. The Weierstrass 

test and formula (3.1) readily imply that the kernel extends continuously to the closed 
bidisc D × D. Since in principle the kernel could have zeros, in view of (3.3) we need 
an additional argument in order to show that F extends continuously to D. This can be 
seen as follows: for every fixed z ∈ D, the function Kz is continuous in D. Note also 
that 

|F (z)| = |(F, Kz)| ≤ lF llKzl = lF l Kz(z) ≤ lF l max Kζ (ζ) , 
ζ∈D 

for all z ∈ D, hence F is bounded in the disc and therefore also in D. Equation (3.3) 
implies that Kφ(0)(φ(z)) is bounded away from zero in the disc and, since it is continuous 
in D, it is also bounded away from zero in the closed disc. This, together with (3.3), 
shows that F is continuous in D. 

In view of Proposition 3.2, setting w = z in (3.4), we know that 

Kz(z)|F (z)|2 = z ∈ D . (3.5)
Kφ(z)(φ(z)) , 

Let T = {z : |z| = 1} denote the unit circle. Since φ is analytic in D and bounded by 
one, the finite radial limits φ(ζ) = limr→1− φ(rζ) exist and also satisfy |φ(ζ)| ≤ 1 for 
almost every point ζ ∈ T with respect to the normalized Lebesgue arc length measure on 
T [40] [60]. If ζ ∈ T is a point where φ(ζ) exists, since Kz(z) is an increasing bounded 
function of |z|, we see that there exists L < ∞ such that 

lim Krζ (rζ) = L. 
r→1− 
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Moreover, by monotonicity, it is clear that supr<1 Kr(r) = L. Hence, taking into account 
that F is continuous in D and (3.5), we deduce that there exists L ' < ∞ such that 

lim Krφ(ζ)(rφ(ζ)) = L ' 
r→1− 

and L ' ≤ L = supr<1 Kr(r). Therefore, by (3.5), we have 

Llim |F (rζ)|2 = ≥ 1, 
r→1− L' 

so |F (ζ)| ≥ 1. Hence |1/F | ≤ 1 almost everywhere on T and therefore |1/F | ≤ 1 in D 
(by standard Hardy space arguments). On the other hand, from (3.5) we get 

1 |F (0)|2 = 
Kφ(0)(φ(0)) ≤ 1 , 

again because Kz(z) is an increasing function of |z|. The maximum modulus principle 
applied to 1/F implies that F is identically constant and has modulus one. 

In view of (3.5) we have Kz(z) = Kφ(z)(φ(z)) for all z ∈ D. Taking into account 
the form (3.1) of the kernel, this means that 

f f
1 + 

∞
γ(n)|z|2n = 1 + 

∞
γ(n)|φ(z)|2n . 

n=1 n=1 

Since 1 + ∞ 
n=1 γ(n)r2n is a strictly increasing function of r, it follows that equality 

above is possible if and only if |φ(z)| = |z|, for every z ∈ D. But this implies that φ is 
a rotation. 

3.3.4 Kernels unbounded on the diagonal 
For the kernels of the general form (3.1) considered here, the assumption that Kw(z) 
is unbounded on the diagonal obviously means that lim|z|→1− Kz(z) = +∞, which is 

∞easily seen to be equivalent to n=0 γ(n) = +∞. 
It is relevant to note that for any of the spaces Hγ defined in Section 1.10 for which 

γ(0) = 1 , γ(1) = γ > 0 
γ + n − 1 Γ(n + γ) 1 (3.6)

γ(n) = = = n ≥ 1 , 
n Γ(γ)n! (n + γ)B(γ, n + 1) , 

the reproducing kernel is always unbounded on the diagonal since γ(1) > 0. An example 
of a space H not in the family Hγ and whose kernel is unbounded on the diagonal is 
the classical Dirichlet space (renormed) with 

1 1 1 
γ(n) = Kw(z) = log . 

n + 1 
, 

wz 1 − wz 
Indeed, it can be checked that (3.6) is not fulfilled in this case. 

We will see that, unlike in the previous case, for certain kernels of this type non-trivial 
unitary WCOs will exist. 
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Theorem 3.3. Let H be a weighted Hardy space that satisfies axioms (A1)–(A3) and 
whose reproducing kernel is unbounded on the diagonal. If WF,φ is co-isometric on H 
then φ is a disc automorphism. 

In the case when φ(0) = 0 (in particular, whenever φ is a rotation), F must be a 
constant of modulus one and the induced operator WF,φ is unitary on H. 

Proof. We recall that an inner function is a bounded function with radial limits of 
modulus one almost everywhere on the unit circle T. From the basic factorization 
theory of Hardy spaces [40, Chapter 2 and Theorem 3.17], it follows that a univalent 
inner function must be a disc automorphism; note that this can also be concluded 
by post-composing with disc automorphisms and invoking Frostman’s theorem see [47] 
or [40, Chapter 2, Exercise 8]. We already know from Proposition 3.2 that φ is univalent. 
Thus, it suffices to show that it is also an inner function. 

We certainly know that φ is an analytic self-map of D so it must have radial limits 
almost everywhere and these limits have modulus at most one. Consider the set 

E = {ζ ∈ T : |φ(ζ)| < 1} 

and show that its arc length measure is m(E) = 0. Let us look again at formula (3.5). 
If ζ ∈ E, since the kernel is unbounded on the diagonal, we have limz→ζ Kz(z) = +∞. 
On the other hand, φ(ζ) ∈ D by our definition of E, hence the value Kφ(ζ)(φ(ζ)) is 
defined and finite. It follows that F (z) → ∞ as z → ζ. Now in view of (3.3), we obtain 
Kφ(0)(φ(ζ)) = 0. Since ζ ∈ E was arbitrary, this holds for all ζ ∈ E. 

Now assume the contrary to our assumption: m(E) > 0. First note that, by our 
definition of E, the set φ(E) is contained in D and clearly 
 

E ⊂ {ζ ∈ T : φ(ζ) = a} . (3.7) 
a∈φ(E)

Next, we claim that m({ζ ∈ T : φ(ζ) = a}) = 0, for every a ∈ φ(E). We know 
that φ is univalent, hence it cannot be identically constant. And since φ ∈ H∞, it is 
impossible for φ(ζ) = a to hold on a set of positive measure on T by a theorem of 
Privalov (see [40, Theorem 2.2] or [60, Chapter III] for different versions of it). This 
proves the claim. 

Now we can distinguish between two cases, depending on the cardinality of the set 
φ(E). If φ(E) is countable then m(E) = 0 by (3.7), as claimed. And if φ(E) is 
uncountable, we argue as follows. The set φ(E) is contained in D and has at least one 
accumulation point in D. (Otherwise, each compact disc Dn = {z : |z| ≤ 1 − 1 }, 

∪∞ 
n 

n ∈ N, would contain only finitely many points of φ(E) and since D = n=1Dn, the 
set φ(E) would be countable.) But, as we have noticed above, the analytic function 
Kφ(0) vanishes on φ(E) and is therefore identically zero in D by the uniqueness principle, 
which is impossible. 

Thus, we conclude that m(E) = 0, hence φ is an inner function. This completes the 
proof that φ is an automorphism. 

As for the final part of the statement, if φ(0) = 0 the function F must be a 
constant of modulus one: indeed, equation (3.3) together with K0(z) ≡ 1 shows that 
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F ≡ 1/F (0). Writing F ≡ λ, it is immediate that |λ| = 1. Now, it follows directly 
from Proposition 3.1 that the induced operator Wλ,φ is actually unitary. 

In what follows we will rely on the properties of the disc automorphisms. One 
basic type of automorphisms are the rotations Rλ, where |λ| = 1. Since our spaces 
are supposed to satisfy the axioms listed in Lemma 3.1, it follows that the induced 
composition operators CRλ are unitary on H. The other basic type of automorphisms 
are the maps ϕa(z) = (a − z)/(1 − az), a ∈ D; such an automorphism is an involution 
and exchanges the point a and the origin. As is well-known, every disc automorphism φ is 
of the form φ = Rλϕa. To make the notation more compact, we will write ϕλ,a = Rλϕa. 

The following lemma will be fundamental in proving the last theorem of this chapter. 
It will allow us to change from one co-isometric WCO to another operator of the same 
kind (acting on the same space) in a convenient way. We give an elementary proof 
below. However, it is convenient to remark that a stronger version of the statement 
could be derived from [53, Proposition 9.9]. 

Lemma 3.1. Let H be a weighted Hardy space that satisfies axioms (A1)–(A3) and 
let WF,φ be a co-isometric WCO on H such that φ = ϕλ,a, for some λ with |λ| = 1, 
a ∈ D. Then for all b ∈ [0, |a|] there exists a point c ∈ D with |c| = b, a constant µ with 
|µ| = 1, and an analytic function G in the disc such that WG,ϕµ,c is also a co-isometric 
WCO on H. 

Proof. It is easy to check directly that the product of two co-isometric operators is again 
co-isometric. Thus, whenever |τ | = 1 and WF,φ is co-isometric, the operator CRτ WF,λϕa 

is also co-isometric. In view of the simple identity for compositions of automorphisms: 

ϕλ,a(τz) = ϕτλ,τa(z) , 

we obtain the following operator identity: 

,CRτ WF,ϕλ,a = WCRτ F , ϕτλ, τa 

so the latter WCO is a co-isometric operator for every value of τ with |τ | = 1. Thus, 
its square 

WCRτ F , ϕτ λ,τa WCRτ F , ϕτλ,τ a = WG, ϕµ,c 

is also co-isometric, where 

G(z) = F (τz) · F (ϕτ2λ,τa(z)) , ϕµ,c = ϕτλ, τa ◦ ϕτλ, τa . (3.8) 

(Note that the last map must equal some ϕµ,c for some c ∈ D and some µ with |µ| = 1 
since it is again a disc automorphism.) 

Next, let b be an arbitrary number such that 0 < b < |a|. Let F and φ be fixed 
as above. We have the freedom to choose τ arbitrarily in (3.8) and will now show that 
there exists c as above (with τ chosen appropriately) so that |c| = b. In fact, such value 
of c from the conditions above can easily be computed explicitly; indeed, we must have 

(ϕτλ,τa ◦ ϕτλ,τa)(c) = 0 , 
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hence ϕτλ,τa(c) = τa, meaning that 

τa − c 
τλ = τa , 1 − aτc 

which yields 
λτ − 1 

c = τa . 
λτ − |a|2 

Now note that 
|λτ − 1||c| = |a|

|λτ − |a|2| 

is a continuous function of the complex parameter τ . When τ = λ, this function takes 
on value 0 while choosing τ = −λ yields 

2|a| 
> |a|1 + |a|2 

as the value of the function (recall that a = 0 since φ is not a rotation). Since the 
itcomplex parameter τ = e can in turn be viewed as a continuous function of the real 

variable t ∈ [0, 2π], the elementary Bolzano’s intermediate value theorem from Calculus 
implies that there exists a value τ with |τ | = 1 such that |c| = b, as claimed. (Of course, 
the last argument could have been made more explicit.) 

We already know from T. Le’s work [62, Theorem 3.1] that if φ is a disc automorphism 
and F = µ(φ ')γ/2, where γ = γ(1) and µ is a constant such that |µ| = 1, then the 
induced operator WF,φ is unitary (hence, also co-isometric) on the space Hγ . The next 
key statement identifies such spaces as the only ones on which WF,φ can be co-isometric 
if the automorphism φ is not a rotation. It should be remarked that, using the following 
conformal property of the kernel: 

(a)Kw(z)
Kφ(w)(φ(z)) = 

Ka

Ka(z)Kw(a) , 

for all disc automorphisms φ and a = φ−1(0), the theorem below can also be deduced 
from a characterization of the spaces Hγ given by [53, Proposition 4.3]. 

Theorem 3.4. Let H be a weighted Hardy space that satisfies axioms (A1)–(A3) and 
whose reproducing kernel is unbounded on the diagonal, and let WF,φ be a co-isometric 
WCO on H. If the automorphism φ is not a rotation, then there exists a positive γ 
(namely, γ = γ(1) in the formula for the kernel) such that H = Hγ , a space whose 
coefficients γ(n) satisfy (3.6) and whose kernel, thus, is of the form (1.2). Moreover, 

µ(φ ')γ/2 KaF = = ν lKal , where a = φ−1(0) and µ and ν are constants such that 
|µ| = |ν| = 1.  
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Proof. Let φ = ϕλ,a, for some a ∈ D, a = 0, and λ with |λ| = 1. Put w = a in (3.4) 
and recall that φ(a) = 0 to obtain 

(z)
F (z) = 

Ka
. 

F (a) 

'In what follows, we will always write simply Ka(z) instead of ∂Ka (z). After differenti
∂z 

ation with respect to z, we obtain 

a(z)F '(z) = 
K ' 

. 
F (a) 

Also, note that F (0) = 1/F (a). 

f 

On the other hand, recalling that φ(0) = λa and differentiating (3.3) with respect 
to z, we get 

' '(φ(z)) λ(1 − |a|2)K (φ(z))λa λaF '(z) = 
−φ '(z)K = 
F (0)K2 (φ(z)) F (0)(1 − az)2K2 (φ(z)) 

. 
λa λa

Equating the right-hand sides of the last two equations, taking also into account the 
fact that F (0) = 1/F (a), yields 

|F (a)|2(1 − |a|2) ' ' K (φ(z)) = λK2 (φ(z))K (z) .λa λa a(1 − az)2 

Setting z = a, we obtain 
|F (a)|2 

λa(0) = λK a(a) . (3.9)1 − |a|2 K ' ' 

Differentiation of the formula for the kernel (3.1) with respect to z yields 
∞

n−1(z) = γ(1)w +  nγ(n)w K  ' w n z ,  

f 

n=2 

hence ∞
nγ(n)a|a|2(n−1)(a) = γ(1)a +  (0) = γ(1)λa . K  ' a ' , Kλa

n=2 

Bearing in mind that 

f∞
n=1

|F (a)|2 γ(n)|a|2n= Ka(a) = 1 + 

and using (3.9), it follows that 
∞f 
γ(n)|a|2n = (1 − |a|2)1 + 

n=1 

∞f 

n=2 
1 + 

nγ(n) 
γ(1) |a|

2(n−1) 

f∞
n=1 γ(1) 

(n + 1)γ(n + 1)  |a|2n − 
f∞
n=1 

nγ(n) 
γ(1) |a|

2n= 1 +  



 

  

41 Chapter 3. Co-isometric weighted composition operators on Hilbert spaces 

(after regrouping the terms). From here we obtain that 
∞f 

n=1 
γ(n)(n + γ(1))|a|2n =  

∞f 

n=1 
(n + 1)γ(n + 1)|a|2n . (3.10) 

Note that this holds only for one point a, for one given co-isometric operator WF, φλ,a . 
However, an application of Lemma 3.1 allows us to produce other WCOs WG, ϕµ,c that 
are also co-isometric and with different values c instead of a so as to include all possible 
values of |c| with 0 ≤ |c| ≤ |a|, with conclusions analogous to (3.10). Note also an 
important point that, whenever c = 0, the symbol ϕµ,c is not a rotation. By this 
construction, we obtain 

∞f ∞f 
γ(n)(n + γ(1))x  2n =  (n + 1)γ(n + 1)x  2n 

n=1 n=1 

for all x ∈ [0, |a|], the case x = 0 being an obvious equality. The power series in the 
identity above are both even functions of x that converge and coincide in [−|a|, |a|]. 
The uniqueness of the coefficients of a real power series in such an interval implies that 

(n + 1)γ(n + 1) = γ(n)(n + γ(1)) , for all n ≥ 1 . 

This recurrence equation is easily solved: since 

γ(n + 1) = γ(n)n + γ(1) 
, for all n ≥ 1 , 

n + 1 

and the formula trivially also extends to the case n = 0 (by the fact that γ(0) = 1), we 
have 

γ(n) = 
n − 1 + γ(1)

γ(n − 1) , for all n ≥ 1 . 
n 

Using the standard property Γ(x + 1) = xΓ(x) for all x > 0, from here we obtain by 
induction the desired formula (3.6), with γ = γ(1). 

Next, we derive the formula for F in terms of φ ' . From (3.3), for the space is 
H = Hγ (so, Ka = Ka

γ ) and φ = ϕλ,a, we have 

1 1 γ 1 (1 − |a|2)γ 
F (z) = = 1 − φ(0)φ(z) = . 

F (0)Kφ(0)(φ(z)) F (0) F (0) (1 − az)γ 

For z = 0 this shows that |F (0)| = (1 − |a|2)γ/2, hence for appropriately chosen µ and 
ν with |µ| = |ν| = 1 we obtain 

(1 − |a|2)γ/2 Ka(z)
F (z) = ν = ν = µ(φ '(z))γ/2 ,(1 − az)γ lKal 

which completes the proof. 

Finally, putting together Theorem 3.2, Theorem 3.3, and Theorem 3.4 and the com
ments on the results of Le preceding Theorem 3.4, we obtain the complete conclusions 
of Theorem 3.1. 



4 Weighted conformal invariance of
Banach spaces 

4.1 Introduction 
This chapter is devoted to exploring a class of spaces of analytic functions which share 
certain weighted invariant property and it is based on the paper [5]. First of all, we will 
define this property. 

Definition 4.1. Let X be a Banach space consisting of analytic functions in the unit 
disc D with the following properties: 

1) X is continuously contained in Hol(D). 

2) X contains Hol(ρD), for all ρ > 1. 

3) There exist constants α = α(X), K = K(X) > 0, such that for every ϕ ∈ 
Aut(D), the linear map defined by W αϕ f = (ϕ ')α(f ◦ ϕ), is bounded on X and 
satisfies lW αϕ l ≤ K.  

Then we will say that X is conformally invariant of index α. 

Before seeing a list of examples of conformally invariant Banach spaces, we make 
some basic properties which follow directly from the axioms and will be used frequently 
in what follows. 

Proposition 4.1. a) From 2) we have by the closed graph theorem that for every ρ > 1, 
the inclusion map from Hol(ρD) into X is continuous. 
b) All bounded operators as in 3) above are invertible and (W α

ϕ−1 . 
c) The number α(X) in 3) is unique. The same argument that we will see bellow in 
the proof shows that the spaces M0(X), defined by (4) in the Introduction, are not 
conformally invariant of index α > 0 unless they are trivial i.e. unless M0(X) = {0}. 

Proof. a) Given ρ > 1, from 2) we know that Hol(ρD) ⊂ X. Thanks to Corollary 1.1 
we obtain that Hol(ρD) is continuously contained in X. Here we are using that the 
topological vector space Hol(ρD) is an F -space considering the invariant metric defined 
in [37, Page 143]. For the completeness see [37, 2.3 Corollary]. 

α
ϕ )−1 = W 
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b) By hypothesis Wϕ
α

−1 is bounded. Let f ∈ X. Then

Wϕ
α

−1Wϕ
αf = Wϕ

α
−1 ((ϕ′)αf ◦ ϕ) = [(ϕ−1)′]α(ϕ′ ◦ (ϕ−1)′)αf ◦ ϕ ◦ ϕ−1 = f

Wϕ
αWϕ

α
−1f = Wϕ

α [(ϕ−1)′]αf ◦ ϕ−1 = (ϕ′)α((ϕ−1)′ ◦ ϕ′)αf ◦ ϕ−1 ◦ ϕ = f

Therefore, Wϕ
α is an invertible operator with inverse Wϕ

α
−1 .

c) If Wϕ
α, Wϕ

β are uniformly bounded and, say α < β, then by 2) we know that 1 ∈ X,
so Wϕ

αWϕ
β

−11 = (ϕ′)α−β is uniformly bounded on X which leads to a contradiction
since the values at the origin of these functions are unbounded when ϕ ∈ Aut(D). If
ϕ(z) = λ z+a , with a ∈ D and |λ| = 1, then1+az

α−β β−α1− |a|2 1(ϕ′)α−β(z) = λ ⇒ (ϕ′)α−β(0) = .(1 + az)2 λ(1− |a|2)

We now turn to the examples.

4.2 Examples
The purpose of this section is to list a number of examples of conformally invariant
Banach spaces in the unit disc.

Example 4.1. In many cases the operators defined in 3) are isometries on the spaces in
question and this property follows by a change of variable. Such examples are the usual

• Hardy spaces Hp, p ≥ 1, considered in Section 1.4, with α(Hp) = 1
p
. If f ∈ Hp

1
p

Hp Hp .‖Wϕ f‖p = 1 |f ◦ ϕ|p |ϕ′| dm = 1 |f |p dm = ‖f‖p

2π T 2π T

• Korenblum growth classes, A−γ, γ > 0, with α(A−γ) = γ. First of all, as we had
seen in Section 1.9, an analytic function f is in the space A−γ if and only if

‖f‖A−γ = sup(1− |z|2)γ|f(z)| < ∞.
z∈D

If f ∈ A−γ, using the basic identity for disc automorphisms: |ϕ′(z)|(1 − |z|2) =
1− |ϕ(z)|2, we have

‖W γf‖A−γ = sup |f(ϕ(z))||ϕ′(z)|γ(1− |z|2)γϕ
|z|<1

= sup |f(ϕ(z))|(1− |ϕ(z)|2)γ
|z|<1

= sup |f(z)|(1− |z|2)γ
|z|<1

= ‖f‖A−γ .

The same holds for their ”little oh” version A−
0

γ.
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• Standard weighted Bergman spaces Apβ , p ≥ 1, β > −1, considered in Section 1.5, 
with α(Ap ) = 2+β . If f ∈ Ap , using again the identity |ϕ '(z)|(1 − |z|2) = β p β

1 − |ϕ(z)|2, we obtain 

2+β 

= (β + 1) |f ◦ ϕ(z)|p|ϕ '(z)|2+β(1 − |z|2)β dA(z)
D 

lWϕ 
p flp 

Ap
β 

= (β + 1) |f ◦ ϕ(z)|p|ϕ '(z)|2(1 − |ϕ(z)|2)βdA(z)
D 

= (β + 1) |f(z)|p(1 − |z|2)β dA(z)
D 

= lflp 
Ap

β 
.  

Indeed, any Banach space X satisfying 1)-3) can be endowed with the equivalent 
norm 

lflα = sup lWϕ
αfl, 

ϕ∈Aut(D) 

which makes these operators isometric. On the one hand, considering ϕ = I we can see 

lflα = sup lWϕ
αfl ≥ lfl. 

ϕ∈Aut(D) 

On the other hand, by 3) 

lflα = sup lWϕ
αfl ≤ sup lWϕ

αllfl ≤ Klfl. 

a 

ϕ∈Aut(D) ϕ∈Aut(D) 

Moreover, if φ ∈ Aut(D) we have 

lWφ
αflα = sup lWφ

αWϕ
αfl = sup l(ϕ ')α(φ ' ◦ ϕ)αf ◦ φ ◦ ϕl 

ϕ∈Aut(D) ϕ∈Aut(D) 

= sup lWφ
α 
◦ϕfl = sup lWν

αfl = lflα. 
ϕ∈Aut(D) ν∈Aut(D) 

Example 4.2. The Banach space 

1 Alog = {f ∈ Hol(D) : lflAlog = sup |f(z)| < ∞},2 
|z|<1 log 1−|z|2 

satisfies 1) by a direct application of uniform boundedness principle, and 2), but fails to 
satisfy 3) for any α > 0. Indeed, if we consider ψa(z) = z−a , then 1−az 

1 lW α 1lAlog = sup l((ψ−1)')αlAlog = sup |(ψ−1)'(z)|α 
ψ−1 a a 

|z|<1
sup  sup  log 2 

1−|z|2a∈D a∈D a∈D 

1 1 = sup sup |ψ ' (w)|−α ≥ sup2 a 2 
a∈D |w|<1 log 1−|ψa(w)|2 a∈D log 1−|a|2 (1 − |a|2)α 

= ∞. 



 

 

 

 
 

46 4.2. Examples 

Example 4.3. Recall that the standard weighted Besov spaces Bp,β , p ≥ 1, β > −1, 
considered in Section 1.6, consist of all analytic functions in D whose derivative belongs 
to Apβ, in this chapter we will consider the norm 

lflBp,β = |f(0)| + lf ' lAp . 
β 

These spaces satisfy 1)-3) if p < β +2 and in this case α(Bp,β ) = β+2 −1. The assertion 
p

will follow from a more general result, Theorem 4.7 below. The condition p < β + 2, is 
essential here. For example, B2,0 = D2,0, the classical Dirichlet space, does not satisfy 
3) for any α > 0. 

To prove that D2,0 does not satisfy 3) for any α > 0 we use a similar argument 
to the one used in Proposition 4.1 c). As we know, D2,0 is conformally invariant. 
Thus, we have that the composition operator Cϕ is uniformly bounded for ϕ ∈ Aut(D) 
and if we suppose that Wϕ

α is also uniformly bounded, then since 1 ∈ D2,0, we have 
CϕWϕ

α 
−1 1 = (ϕ ')−α is uniformly bounded on D2,0 which leads to a contradiction. 

Example 4.4. Let β > −1, 0 < γ ≤ 1, β − γ + 2 > 0, p ≥ 1, and consider the space 
Qp,β,γ , consisting of all analytic functions f in D such that 

h−γlflp = sup |f(z)|p(1 − |z|2)βdA(z) < ∞,Qp,β,γ 
h∈(0,1) Sh(t) 
t∈[0,2π) 

where Sh is the usual Carleson box Sh(t) = {reis : 0 < 1 − r ≤ h, |t − s| ≤ h}. The 
”little oh” version Q0 consists of all analytic functions f in D such that p,β,γ 

h−γlim sup |f(z)|p(1 − |z|2)βdA(z) = 0, 
h→0 Sh(t)t∈[0,2π) 

β−γ+2and is a closed subspace of Qp,β,γ . Then Qp,β,γ , Q0 satisfy 1)-3) with α = 
p .p,β,γ 

Indeed, applying Proposition 1.6 we have 
|f(z)|p 

lflp ∼ sup(1 − |a|2)γ (1 − |z|2)β dA(z).Qp,β,γ 
a∈D D |1 − az|2γ 

Moreover, for every ϕ ∈ Aut(D) we have 
1 |ϕ '(a)|γ |ϕ '(z)|γ 

= . 
|1 − az|2γ |1 − ϕ(a)ϕ(z)|2γ 

pThus, with α as above we can use the fact that Wϕ
α+ γ 

is an isometry on Apβ to obtain 

|Wϕ
α+ γ 

f(z)|p 
lW αflp ∼ sup(1 − |a|2)γ |ϕ '(a)|γ 

p 

(1 − |z|2)β dA(z)ϕ Qp,β,γ 
a∈D D |1 − ϕ(a)ϕ(z)|2γ 

|f(z)|p 
= sup (1 − |ϕ(a)|2)γ (1 − |z|2)βdA(z) 

a∈D D |1 − ϕ(a)z|2γ 

∼ lflp .Qp,β,γ 

The condition 0 < γ ≤ 1 only ensures that Qp,β,γ is not a growth class. For 0 < β ≤ 1, 
the spaces Q2,β,β consist of derivatives of functions in the standard Qβ -spaces. See [94] 
for more information about these spaces. In particular, Q2,1,1 consists of derivatives of 
BMOA-functions. The norms are equivalent to the original ones modulo constants. 



     
     

  

47 Chapter 4. Weighted conformal invariance of Banach spaces 

4.3 Basic properties 

4.3.1 Standard objects emerging from the definition 

Multipliers and weak products. 

In this section we will relate the notions of multipliers and weak product with the weighted 
conformal invariance property. See Section 2.8 and Section 2.9. Let us first note some 
basic remarks. 

If X, Y are Banach spaces with the properties 1) and 2) then Mult(X, Y ) also 
satisfies 1). Given u ∈ Mult(X, Y ), since by 2) 1 ∈ X, u ∈ Y , so for a compact subset 
K of D we have 

1 |u(z)| ≤ CK lulY = CK l1lX u · � lulMult(X,Y ),l1lX Y 

for all z ∈ K. However, Mult(X, Y ) may not satisfy 2), for example 1 ∈ Mult(X, Y ) 
only if X ⊂ Y . 

As far as weak product concerns, we can observe that if X and Y satisfy the property 
1) then X 8 Y also satisfies 1). To prove this claim we consider f ∈ X 8 Y , then for 

ε ε hεany ε > 0 there exist {gn}n≥1 ⊂ X, {hε }n≥1 ⊂ Y such that f = n≥1 gn andn n 
ε 

n≥1 lgnlX lhεnlY < lflX8Y + ε. Thus, using that X and Y satisfy 1) we obtain that f f 
|f(z)| ≤ |gnε (z)||hnε (z)| ≤ CK lgnε lX lhnε lY < CK (lflX8Y + ε) 

n≥1 n≥1 

for all z in a compact set K ⊂ D. Besides that, if X and Y satisfy 2) then, since 
X, Y ⊂ X 8 Y , it also satisfies 2). 

The following result shows some relations between these spaces with our weighted 
conformal invariance property. 

Proposition 4.2. Let X, Y be conformally invariant Banach spaces of indices α, re
spectively β. 
(i) If α > β, then Mult(X, Y ) = {0}. 
(ii) If α < β, then the space Mult(X, Y ) satisfies 3) with index β − α. In addition, if 
Mult(X, Y ) satisfies 2), then it is conformally invariant of index β − α. 
(iii) X 8 Y is conformally invariant of index α + β. 

Proof. (i) If u ∈ Mult(X, Y ) we have 

sup lWϕ
β uWϕ

α 
−1 1lY ≤ sup lWϕ

β lB(Y )luWϕ
α 

−1 1lY  
ϕ∈Aut(D) ϕ∈Aut(D)  

≤ sup lW β lB(Y )lulMult(X,Y )lWϕ
α 

−1 1lX < ∞,ϕ 
ϕ∈Aut(D) 

hence by 1), 
sup |W β uWϕ

α 
−1 1(0)| < ∞.ϕ 

ϕ∈Aut(D) 
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z+aIn particular, for the choice ϕ(z) = 1+az , a ∈ D, we get 

sup |u(a)|(1 − |a|2)β−α < ∞. 
a∈D 

Then the maximum principle implies that u = 0. 

(ii) A similar computation gives, for f ∈ X and u ∈ Mult(X, Y ), 

W β uf = (ϕ ')β u ◦ ϕf ◦ ϕ = (ϕ ')β−α u ◦ ϕ ((ϕ ')αf ◦ ϕ) = W β−α u W αf .ϕ ϕ ϕ 

Since Wϕ
α is invertible on X, for any g ∈ X we consider f = Wϕ

αg and we obtain 

lW β−α W β−α W β−α W α 
ϕ ulMult(X,Y ) = sup l ϕ u flY = sup l ϕ u ϕ g lY 

f ∈X f ∈X 
�f�X ≤1 �f �X ≤1 

= sup lWϕ
β uglY ≤ lWϕ

βlB(Y ) sup luWϕ
α 

−1 flY 
f ∈X f∈X 

�f�X ≤1 �f �X ≤1 

W α 
ϕ−1 f 

= lWϕ
βlB(Y )lWϕ

α 
−1 lB(X) sup u 

lW α . 
f ∈X ϕ−1 lB(X)

�f�X ≤1 Y 

Now, since lWϕ
α 

−1 flX ≤ lWϕ
α 

−1 lB(X)lflX we have 

lW β−α 
ϕ ulMult(X,Y ) ≤ lWϕ

βlB(Y )lWϕ
α 

−1 lB(X) sup luflY 
f ∈X 

�f�X ≤1 

= lW β lB(Y )lWϕ
α 

−1 lB(X) lulϕ Mult(X,Y ) . 

Using that X, Y are conformally invariant of indices α, respectively β, and taking supre
mum over the automorphisms we obtain the result. 

(iii) If f ∈ X 8 Y , given ε > 0 there exists {gn}n≥1 ⊂ X, {hn}n≥1 ⊂ Y such that f f 
f = gnhn and lgnlX lhnlY < lflX8Y + ε. 

n≥1 n≥1 

Therefore f 
lW α+β flX8Y ≤ lWϕ

α gnlX lW β hnlY < K (lflX8Y + ε) .ϕ ϕ  
n≥1  

Remark 4.1. 1) If X is conformally invariant of index α > 0, Mult(X) is invariant 
under composition with conformal automorphisms. Indeed, if the multiplication operator 
Mu is bounded on X, then Wϕ

αMuWϕ
α 

−1 = Mu◦ϕ. Given f ∈ X 

Wϕ
αMuWϕ

α 
−1 f = (ϕ ')α u ◦ ϕ ϕ−1 ' 

◦ ϕ 
α 
f ◦ ϕ−1 ◦ ϕ = (u ◦ ϕ) f. 
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Therefore if u ∈ Mult(X) then Mu is bounded, so, analogously to Proposition 4.2 (ii) 
we have 

lCϕulMult(X) = sup lMu◦ϕflX = sup lWϕ
αMuWϕ

α 
−1 flX 

f ∈X f∈X  
�f �X ≤1 �f �X ≤1  

≤ lWϕ
αlB(X)lWϕ

α 
−1 lB(X) sup luflX . 

f∈X 
�f �X ≤1 

Using that X is conformally invariant of index α, and taking supremum over the auto
morphisms we obtain the result. 

2) The spaces Mult(Bp,β, Apβ), 1 ≤ p < β + 2, are of particular interest and they 
are not completely understood in full generality, but for example in [2] one can find a 
relation between some of these spaces with the Cauchy-predual of Qp-spaces defined 
above. They consist of analytic functions f with the property that |f |p(1 −|z|2)β dA is a 
Carleson measure for Bp,β. Since Bp,β and Apβ are conformally invariant Banach spaces 
of indices 2+β , respectively 2+β − 1, we have that Mult(Bp,β, Ap ) satisfies 1) and by 

p p β

Proposition 4.2 (ii) also 3) with α = 1. Moreover if g ∈ Hol(ρD) for any ρ > 1 we can 
see that for any f in Bp,β 

lfglp = (β + 1) lflp .Ap |g(z)|p|f(z)|p(1 − |z|2)β dA(z) ≤ Cg Ap 
β D β 

where Cg = supz∈D |g(z)|. Therefore Mult(Bp,β , Ap ) also satisfies 2), thus it is conforβ 
mally invariant of index 1. 

One-parameter Abelian operator groups. 

The group Aut(D) contains several Abelian one-parameter subgroups. The generic 
examples are the group of rotations {ϕt : ϕt(z) = eitz, t ∈ [0, 2π)}, and the hyperbolic 

z+agroup {ψa : ψa(z) = 1+az , a ∈ (−1, 1)}. Of course when X is conformally invariant 
of index α > 0, the corresponding operators {W α : t ∈ [0, 2π)}, {W α : a ∈ϕt ψa 

(−1, 1)} form one-parameter Abelian groups of operators; see Section 2.6. However, in 
general, these groups fail to be strongly continuous. Another important object related 
to approximations is the semigroup of dilations {Dr : r ∈ [0, 1]} defined by 

Drf(z) = f(rz). (4.1) 

Sometimes we shall write Drf = fr. 

Proposition 4.3. Let X be a conformally invariant Banach space of index α, then the 
dilation operator Dr, r > 0, is bounded on X and the semigroup is strongly continuous 
on [0, 1). 

Proof. Since Drf ∈ Hol(D), by 2) we know that Drf ∈ X. Now, if {fn}n≥1 ⊂ X is 
such that fn →X f and Drfn →X g, we know by 1) fn converges to f in compact sets 
of D, then Drfn converges to Drf in compact sets of 1 

r D. Thus, Drfn converges to 
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Drf , so g = Drf and by the the closed graph theorem we obtain that Dr is bounded 
on X. 

To prove the strong continuity we have to see that for any f ∈ X and r1 ∈ [0, 1), we 
get Drf →X Dr1 f , when r → r1. But, since Drf tends to Dr1 f uniformly on compact 
subsets of ρD for some ρ > 1, by 2) we have the convergence on X. 

The question of main interest is whether it is strongly continuous from the left at 
r = 1. Again, this property fails to hold in full generality. 

An example for the above assertions is the space X = A−1. If f(z) = (z − i)−1, 
it follows easily that the functions t → W α f, a → W α f, r → Drf are not normϕt ψa

continuous in A−1 on [0, 2π), (−1, 1), or [0, 1]. Let us see, for example, why the 
function t → Wϕ

α 
t f is not norm-continuous in A−1 on [0, 2π) or, in other words, why 

the group {W α : t ∈ [0, 2π)} is not strongly continuous in A−1.ϕt 

Consider f(ξ) = (ξ − i)−1. Noting that f ∈ A−1, if for some t1 ∈ [0, 2π) we can 
prove that 

lim lW α f − W α flA−1 = 0,ϕt ϕt1t→t1 

we will be done. Considering t1 = 0 we have 

|e  itα| 
ite 1 lW α f − W α flA−1 = sup (1 − |z|2)ϕt ϕ0 

z∈D 

= sup (1 − |z|2) 
z∈D 

−  
eitz − i (z − i) 

it1 − e
it(e z − i) (z − i) 

|1 − eit|≥ sup (1 − r 2) 
it0<|iz|=r<1 (1 − r)|1 − e r|

it|≥ lim sup (1 + r) |1 − e
it

r→1− |1 − e r|
= 2. 

Taking limits when t → 0 we get the result. 
If X is conformally invariant of index α and under the additional assumption that 

polynomials are dense in the space, the whole group {W α : ϕ ∈ Aut(D)}, as well as ϕ 
the above semigroup, become strongly continuous. For the semigroup {Dr : r ∈ [0, 1]}
the assertion will be proved with some weaker conditions in Theorem 4.1, while for the 
group it is proved below after a well known lemma. 

Lemma 4.1. Given {ϕn}n≥1 a sequence in Aut(D) which converges uniformly on com
pact subsets of D to ϕ ∈ Aut(D), then {ϕn}n≥1 converges to ϕ uniformly in ρD, for 
some ρ > 1. 

Proof. Since ϕn converges to ϕ uniformly on compact subsets of D, {ϕ ' n}n≥1 also 
converges to ϕ ' on compact subsets of D. So ϕn(0) → ϕ(0) and ϕ ' n(0) → ϕ '(0) and if 

z + an z + a 
ϕn(z) = λn and ϕ(z) = λ1 + anz 1 + az 
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we obtain that λn → λ and an → a. Now we know that ϕ ∈ Hol 1 D . Thus, fixing 
ρ ∈ 1, |a

1 
| we can suppose that {ϕn}n≥1 ⊂ Hol(ρD). Therefore if ρ

|a

1 

| 

∈ (1, ρ) we have 

z + an z + a |ϕn(z) − ϕ(z)| =sup  
z∈ρ1D 

sup  λn − λ 1 + anz 1 + az  z∈ρ1D 

λn(z + an)(1 + az) − λ(1 + anz)(z + a) 
(1 + anz)(1 + az) = sup  

z∈ρ1D 

1  
λnan − λa + (λn + λana − λ − λana) z + (λna − λan) z 2≤ sup2

1 − ρ1 
ρ z∈ρ1D 

≤ C (|λnan − λa| + |λn + λana − λ − λana| + |λna − λan|) 

where C only depends on ρ and ρ1. Then taking limits when n → ∞ the result 
follows. 

Proposition 4.4. Assume that X is conformally invariant of index α > 0, and that 
polynomials are dense in X. If (ϕn) is a sequence in Aut(D) which converges uniformly 
on compact subsets of D to ϕ ∈ Aut(D), then Wϕ

α 
n converges strongly to Wϕ

α. 

Proof. By Lemma 4.1, it follows that (ϕn) converges to ϕ uniformly in ρD, for some 
ρ > 1. Then for every polynomial p, W α p → Wϕ

αp uniformly in ρD, hence W α p →ϕn ϕn 

Wϕ
αp in X by 2). Since polynomials are dense in X, given ε > 0 we can choose a 

polynomial p such that 
ε lf − plX < .2 supϕ∈Aut(D) lW αlB(X)ϕ 

Thus, using that the operator norms lWϕ
α 

n lB(X) are bounded above, we obtain 

lW α f − Wϕ
αflX ≤ lW α f − W α plX + lW α p − Wϕ

α plX + lWϕ
αf − Wϕ

α plXϕn ϕn ϕn ϕn 

≤ lW α lB(X)lf − plX + lW α p − Wϕ
α plX + lW αlB(X)lf − plXϕn ϕn ϕ 

< ε + lWϕ
α 

n p − Wϕ
α plX . 

Taking limits when n → ∞ we get the result. 

If polynomials are dense in X, the one-parameter Abelian groups considered above 
have densely defined, closed infinitesimal generators. They are given by 

d 
W αAαf = ϕt f |t=0, Aαf(z) = izf '(z) + iαf(z), (4.2)

dt 

d Dαf = Wψ
α 

a f |a=0, Dαf(z) = (1 − z 2)f '(z) − 2αzf(z). (4.3)
da 

The infinitesimal generator of {Dr : r ∈ [0, 1]} is −iA0. All of these unbounded 
operators are considered on their maximal domain of definition. D 1 plays a crucial role 

2
in the description of the spectrum of the Hilbert matrix on conformally invariant spaces 
of index α ∈ (0, 1) obtained in [8]. 
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4.3.2 Polynomial approximation 
This is a central question regarding Banach spaces of analytic functions in D, and in many 
cases it is addressed with help of the dilation semigroup. In the framework considered 

−iαtW αhere, this is intimately related to the rotation group given by Rt = e ϕt , ϕt(z) =  
eitz, t ∈ [0, 2π]. The results below (partially related to the work of A.E. Taylor [90])  
hold for any Banach space X which satisfies 1), 2) and the weaker condition  
3’) Rt ∈ B(X), and lRtlB(X) is uniformly bounded in t ∈ [−π, π].  
Recall from Proposition 4.3 that the semigroup of dilations {Dr : r ∈ [0, 1]} defined by  
(4.1) is contained in B(X) and is strongly continuous on [0, 1). 

Theorem 4.1. Let X satisfy 1), 2) and 3’). The following are equivalent: 

(i) t → Rt is strongly continuous in [−π, π], 

(ii) r → Dr is strongly continuous from the left at r = 1, 

(iii) Polynomials are dense in X. 

(i) ⇒ (ii): 
it) 1−rProof. For r ∈ (0, 1), let Pr(e = |e

2 be the Poisson kernel at it−r|2 

r ∈ (0, 1); see Section 1.3. Then for f ∈ X, t → Pr(eit)Rtf is a continuous X-valued 
function on [−π, π]. To see this we fix t1 ∈ [−π, π] and we have to prove that 

it)Rtf − Pr it1 )Rt1 fPr(e (e → 0,
X 

when t → t1. First, 

it)Rtf − Pr it1 )Rt1 f 
1 1 

Pr(e (e 
X 

= (1 − r 2) Rtf 
|eit − r|2 − Rt1 f 

|eit1 − r|2  
X  

1 1 1 1= (1 − r 2) Rtf 
it − r|2 − Rt1 f 

it − r|2 + Rt1 f 
it − r|2 − 

it1 − r|2|e |e |e |e
X 

1 1 1 ≤ (1 − r 2) + (1 − r 2) Rt1 f 
|eit − r|2 lRtf − Rt1 flX |eit − r|2 − |eit1 − r|2 

On the one hand by 3’), 

|e 
1 1  

it − r|2 − 
|e it1 − r|2 ≤ KlRt1 flX |e 

1 1  
it − r|2 − 

|e it1 − r|2 lfl X → 0,  

when t → t1. We obtain the conclusion to the other part in the inequality above using 
it)Rtfthat t → Rt is strongly continuous in [−π, π]. Therefore, the function t → Pr(e

is Bochner integrable. See Example 2.2 and Definition 2.4. Indeed, its Bochner integral 
satisfies for all z ∈ D, 

1 
2π 

π 

−π 
Pr(e it)Rtf dt (z) = f(rz) = Drf(z). 

X 
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(See Proposition 2.6). Noting that if z = ρeiθ ∈ D using the Poisson integral we get 

1 1π 
Pr(e it)Rtf(ρeiθ) dt = 

π 
Pr(e it)f(ρei(θ+t)) dt2π −π 2π −π  

1  = 
π 
Pr(e i(θ−t))f(ρeit) dt2π −π 

= f(rρeiθ). 

Thus, 
π1 
Pr(e it)Rtfdt = Drf. 2π −π 

Then from the standard estimates for such integrals (see Proposition 2.5) and the fact � πthat 1 Pr(eit) dt = 1, we obtain for every δ > 0,2π −π 

π1 lDrf − flX ≤ Pr(e it)lRtf − flX dt2π −π 
1 1 = Pr(e it)lRtf − flX dt + Pr(e it)lRtf − flX dt2π |t|<δ 2π δ≤|t|<π 

1 + supt∈[0,2π] lRtlB(X) lflX 
≤ sup lRtf − flX + Pr(e it) dt. 

|t|<δ 2π |t|>δ 

Here we have used that lRtf − flX ≤ (1 + lRtlB(X))lflX . Given ε > 0 we choose, 
by (i), δ > 0 such that sup|t|<δ lRtf − flX < ε and let r → 1− in the above inequality 
to obtain 

lim sup lDrf − flX ≤ ε, 
r→1− 

i.e. Drf → f in X. 

(ii) ⇒ (iii): 
From 2) it follows immediately that for fixed r ∈ (0, 1), fr = Drf can 

be approximated by polynomials in X, which gives (iii). 

(iii) ⇒ (i): 
. Again by 2) we conclude that t → Rtf is strongly continuous in 

[−π, π], whenever f is a polynomial, hence by (iii) this holds true for any f ∈ X. Fix 
f ∈ X and t1 ∈ [−π, π]. Given ε > 0 we can choose a polynomial p in X and, for this 
polynomial, δ > 0 such that 

lf − plX <
ε and lRtp − Rt1 pl <

ε 
4 supt∈[−π,π] lRtlB(X) 2 

for all |t − t1| < δ. Thus 

lRtf − Rt1 flX ≤ lRtf − RtplX + lRtp − Rt1 plX + lRt1 f − Rt1 plX 

≤ 2 sup lRtlB(X)lf − plX + lRtp − Rt1 plX 
t∈[−π,π] 

≤ ε 

for all |t − t1| < δ, so we deduce (i). 
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There is an important sufficient condition for the density of polynomials in such 
spaces. The result is interesting in its own right and also in view of its applications. 

'Throughout in what follows we shall denote by X the dual of the Banach space X and 
'by T the transpose of T ∈ B(X), T ' l(f) = l(Tf), f ∈ X, l ∈ X '; see Section 1.7 and 

Section 2.1.We can observe that if T ∈ B(X) then 

lT ' lB(X1) = sup lT ' llX1 = sup sup |T ' l(f)| = sup sup |l(Tf)|
l∈X1 l∈X1 f ∈X l∈X1 f ∈X 

�l�1 ≤1 �l�1 ≤1 �f �X ≤1 �l�1 ≤1 �f �X ≤1 
X X X (4.4)

≤ sup sup lllX1 lTflX ≤ sup lTflX = lT lB(X). 
l∈X1 f ∈X f ∈X  

�l�1 ≤1 �f�X ≤1 �f�X ≤1  
X 

Theorem 4.2. Let X satisfy 1), 2) and 3’). If the linear span of point evaluations 
lw(f) = f(w), f ∈ X, w ∈ D, is dense in X ', then polynomials are dense in X. 

itProof. Note first that for fixed w ∈ D, we have Rt
' lw = le w, and that t → Rt

' lw is 
continuous on [−π, π], this means that fixing t1 ∈ [−π, π] 

lRt
' lw − Rt

' 
1 
lwlX1 → 0 

it iswhen t → t1. Indeed, using 1) we have, |f(e w) − f(e w)| ≤ |t − s|cwlflX , with 
cw > 0 independent of f . To see this, we suppose t ≥ s and we obtain 

t 
f  '(e iu w)ieiuw du 

t 
it is|f(e w) − f(e w)| = '(e iu w)||w| du.≤ |f 

ss 

Thus, fixing u ∈ [s, t] and let γ be the circle defined by the equation {z(θ) = weiu + 
iθ 1−|w|re , θ ∈ [0, 2π)}, with r = , which ensures that the circle is contained on D.2

So, using the Cauchy’s formula we obtain 

1  f(z)  1 2π f(weiu + reiθ)ireiθ 
|f '(we iu)| = 

iu)2 dz 

1 2π |f(weiu + reiθ)|r ≤ dθ ≤ cw max |f(z)|2π 0 r2 z∈K 

where K is a compact of D, which contains rD. Therefore, by 1) and the uniform 
boundedness principle we obtain |f '(weiu)| ≤ cwlflX . Thus 

it is iu|f(e w) − f(e w)| ≤ 
t 
|f '(e w)||w| du ≤ (t − s)cwlflX . 

s 

In other words, we have proved that 

lR ' lw − R ' lwlX1 = sup |R ' lwf − R ' lwf |t s t s
f ∈X 

�f �X ≤1 (4.5)
it is= sup |f(e w) − f(e w)| ≤ cw|t − s|, 

f ∈X 
�f �X ≤1 

=  dθ 2πi γ (z − we 2πi 0 r2e2iθ 
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'which proves the claim. Now 3’) together with the density of span{lw : w ∈ D} in X 
'implies that t → Rt 

' is strongly continuous on [−π, π]. Given l ∈ X we want to prove 
that fixing t1 ∈ [−π, π], 

lR ' tl − Rt
' 
1 
llX1 → 0 

Nwhen t → t1. Fixing ε > 0, by density there exists lε = i=1 ailwi ∈ X ', with ai ∈ C 
and wi ∈ D, which satisfies 

ll − lεlX1 < 
ε

.4 supt∈[−π,π] lRtlB(X) 

Thus, using (4.4) and (4.5) 

lRt
' l − Rt

' 
1 
llX1 ≤ lRt

' l − Rt
' lεlX1 + lRt

' lε − Rt
' 
1 
lεlX1 + lRt

' 
1 
l − Rt

' 
1 
lεlX1 

Nf 
≤ lR ' lB(X1)ll − lεlX1 + |t − t1| |ai|cwi + lR ' lB(X1)ll − lεlX1t t1 

i=1 

< ε, 

when |t − t1| < ε . Thus, t → Rt 
' is strongly continuous on [−π, π], so the N2 

i=1 |ai|cwi

Bochner integral 
π 

Trl =
1 

Pr(e it)Rt
' l dt, 2π −π 

defines a bounded linear operator on X '. This can be seen using (4.4) and 3’) 

π 
lTrllX1 ≤ 

1 
Pr(e it)lR ' llX1 dt ≤ sup lRtlB(X) lllX1 ≤ KlllX1 .t 2π −π t∈[−π,π]  

This operator also satisfies that for any f ∈ X and w = ρeiθ, 
π π1 

Trlw(f) = 
1 

Pr(e it)R ' tlwf dt = Pr(e it)f(e it w) dt2π −π 2π −π 
1 = 

π 
Pr(e i(t−θ))f(ρeit) dt = f(rρeiθ) = fr(w) = Dr

' lw(f).2π −π 

Therefore, since by definition 

lTrlw − D ' lwlX1 = sup |Trlw(f) − D ' lw(f)|,r r
f ∈X  

�f �X ≤1  

we have Trlw = D ' lw. By density, we get Trl = D ' l for all l ∈ X '. Thus, {D ' : r ∈ [0, 1]}r r r 
is bounded in B(X '). As in Theorem 4.1 using that for δ > 0 

π1 it)lR ' lDr
' l − llX1 ≤ Pr(e tl − llX1 dt2π −π 

1 + supt∈[0,2π] lRtlB(X) lllX1 

≤ sup lRt
' l − llX1 + Pr(e it) dt, 

|t|<δ 2π |t|>δ 
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56 4.3. Basic properties 

we deduce that Dr
' l →X1 l, r → 1−, for any l ∈ X '. This proves that Drf →X f, r → 1−, 

'weakly in X, since for any l ∈ X and f ∈ X 

|l(Drf) − l(f)| = |D ' l(f) − l(f)| ≤ lD ' l − llX1 lflX .r r

Now, by 2) we conclude that polynomials are weakly dense in X. Finally, thanks to 
the Hahn-Banach theorem the result follows. To see this, we denote Y the closure of 
polynomials in X. Therefore, we know that Y is weakly dense in X and if there exists 
f ∈ X such that f /∈ Y , using the Hahn-Banach theorem, see [78, Theorem 3.7], there 
exists l ∈ X ' such that |l(g)| ≤ 1 for all g ∈ Y and l(f) > 1. Thus if W = l−1 D , W 
is a weakly closed subset of X such that Y ⊂ W and f /∈ W , which is impossible. 

In general, the density of polynomials in X does not imply that the linear span of 
point evaluations is dense in X '. The following example shows this. 

Example 4.5. The Bergman space A1 satisfies that the polynomials are dense in A1 

but the linear span of point evaluations is not dense in (A1)' . 
First, by Theorem 1.4 we know the polynomials are dense in A1. Furthermore, using 

Theorem 1.9 we can identify (A1)' with the Bloch space B which is a non-separable 
space. If we suppose the linear span of point evaluations is dense in (A1)' and if we can 
see that any point evaluation lw can be approximated by point evaluations la+ib with 
a, b ∈ Q we will obtain a contradiction with the non-separability of Bloch space. This 
happens since if we use the identification used in Theorem 1.9 with these la+ib we could 
find a countable dense subset of B. 

Let lw be a point evaluation with w ∈ D and q = a + ib with a, b ∈ Q. Then using 
the formula 

1 
f(w) = f(z)kw(z) dA(z), with kw(z) = 

D (1 − zw)2 

for all f ∈ A1, we can deduce 

llw − lqlX1 = sup |lw(f) − lq(f)| = sup f(z)(kw(z) − kq(z)) dA(z) 
f ∈A1 f ∈A1 D 

�f� �f � 
A1 ≤1 

A1 ≤1 

≤ sup lkw(z) − kq(z)l∞lflA1 ≤ lkw(z) − kq(z)l∞ 
f ∈A1  

�f �  
A1 ≤1 

1 1 2z(w − q) + z2(q2 − w2)= sup = sup 
z∈D (1 − zw)2 − (1 − zq)2 

z∈D (1 − zw)2(1 − zq)2 

2|w − q| + |q2 − w2|≤ (1 − |w|)2(1 − |q|2) . 

So, since we can find a sequence {qn}n≥1 such that qn = an + ibn with an, bn ∈ Q for 
all n ≥ 1 and qn → w, we deduce that any lw can be approximated by point evaluations 
la+ib with a, b ∈ Q. 

A direct application of Theorem 4.2 is as follows. 
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Corollary 4.1. Assume that X satisfies 1), 2) and 3’). If X is reflexive then polynomials 
are dense in X. 

''Proof. If Λ ∈ X annihilates all point evaluations, from reflexivity we have Λ(l) = l(f), 
for some f ∈ X, and since Λ(lw) = f(w) = 0, w ∈ D, it follows that f = 0, hence 
Λ = 0. Thus, applying the Hahn-Banach theorem we deduce that the linear span of 

'point evaluations is dense in X and Theorem 4.2 gives the desired result. 

4.3.3 Duality 
It is a well-known fact that if X is a Banach space of analytic functions in D containing 

'the polynomials as a dense subset, then its dual X can be represented as a Banach 
space of analytic functions as well. We are interested in a representation which preserves 
conformal invariance of index α which can be achieved with a suitable pairing. Given 
α > 0, let Hα denote the Hilbert space with reproducing kernel 

kα(z, w) = kα (z) = (1 − wz)−2α , z, w ∈ D.w

It should be noted that here we are using a slightly different notation from Section 1.10. 
The reader should note that Hα = H2α. When α > 2

1 we have Hα = A2
2α−2, H 1 = H2,

2 

and when α < 1
2 , we have Hα = D2,2α. Let (·, ·)α be the scalar product induced by the 

kernel kα. The reason for choosing this kernel (and the corresponding pairing) is the 
identity 

(1 − wz)−2α = ϕ' α (w) ϕ ' α (z)(1 − ϕ(w)ϕ(z))−2α , z, w ∈ D, ϕ ∈ Aut(D), (4.6) 

which says that Wϕ
α is unitary on Hα (see [62, Proposition 3.1]). Note that 

f 2α + n − 1 f 2α · · · (2α + n − 1)n n n nkα(z, w) = 1 + w z = 1 + w z , (4.7) 
n n! n≥1 n≥1 

and that for fixed w ∈ D, the series on the right converges in any Banach space X 
which satisfies 1) and 2). Indeed, 2) implies that Hol(ρD) is continuously contained in 
X, ρ > 1. In particular, if ζ(z) = z, lim supn→∞ lζnl 1 = 1. To see this claim we n 

observe the following, by 1), if we consider the compact K = tD with t < 1 we obtain 
1 
n 1 1 

n nt = sup |z n| ≤ C lζnlt 
z∈K 

where Ct only depends on t. Then, 
1 
n n nt ≤ lim sup Ct lζnl 

1 = lim sup lζnl 
1 

n→∞ n→∞ 

nfor all t < 1, thus lim supn→∞ lζnl 1 ≥ 1. On the other part, by 2) using Proposi
tion 4.1 a), if we consider K = tD with t > 1 we have 

1 
1 1n1 
n nlζnln ≤ C sup |z n| = C tt t 

z∈K 
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where Ct only depends on t and analogously we deduce lim supn→∞ lζnl 1 
n ≤ 1. Conse

quently, using the root test we can deduce that the series on the right in (4.7) converges 
absolutely in X for a fixed w ∈ D. 

Therefore, we obtain that if l ∈ X ', the function 

Ul(w) = l (kα(·, w)) = l (1 − wζ)−2α , w ∈ D, 

is analytic in D. In fact, from (4.7) we have 

f 2α · · · (2α + n − 1)
Ul(w) = l(1) + w nl(ζn), (4.8) 

n≥1 n! 

and from lim sup n→∞ lζnl 1 
n =  1 we see that the series converges uniformly on each  

compact subset of D. Given a compact K in D and w ∈ K we have  

1 
n 

1 
n 
n lllX1 lζnl 

1 
n2α · · · (2α + n − 1)lim sup 

1 1 
n < 1 |w||l(ζn)| |z| lim sup 

n→∞ 
≤ sup  C n

n! n→∞ z∈K 

and applying the root test we obtain the desired result. 
' 'This gives a linear map U : X → Hol(D). We shall denote by Xα its range: 

Xα 
' = UX ' . 

Theorem 4.3. Let X be conformally invariant of index α > 0 and assume that polyno
mials are dense in X. Then with respect to the norm lUllX1 ' = lllX1 , Xα becomes a 

α 

Banach space of analytic functions which is conformally invariant of index α. Moreover, 
' every l ∈ X can be represented in the form 

l(f) = lim (fr, gr)α, f ∈ X, 
r→1− 

' with g = Ul ∈ Xα.  

Proof. If polynomials are dense in X then U is injective, since by (4.8) Ul = 0, implies  
'that l(ζn) = 0, n ≥ 0, i.e. l = 0. Then lUll = lllX1 defines a norm on Xα which 

becomes isometrically isomorphic to X ', in particular, it is a Banach space. The fact that 
' Xα satisfies 1) follows also directly from (4.8). To verify 2), let ρ > 1, let g ∈ Hol(ρ2D), 

∗and set g ∗(z) = g(z). Then the dilation gρ ∈ Hα, since it verifies 2), and by 1), f → f
defines a bounded linear map from X into Hα. Thus 

1 
ρ 

l(f) = (f 1 
ρ
, g ρ∗)α, f ∈ X 

'defines an element l ∈ X since for any f ∈ X we have 

|l(f)| = |(f ∗ ∗ ∗)α| ≤ lg lαlf lα ≤ Clg lαlflX .1 1, g ρ ρ ρ
ρ ρ 

1( ) = n n(l ζ ζ
ρ 

nFurthermore, a direct calculation gives Ul(w) = g(w), if g(z) = n≥0 anz we have for 
all n ≥ 1 

∗ n! 
, g  ρ)α = an 2α · · · (2α + n − 1)  and  l(1) = a0. 
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Thus, we get 
f 2α · · · (2α + n − 1) f 

nUl(w) = l(1) + w nl(ζn) = a0 + anw = g(w). 
n! n≥1 n≥1 

≤ l lC Ul 1Xα 

To see 3), we use the identity (4.6) in the form 

kα(z, w) = ϕ' α (w) ϕ ' α (z)(1 − ϕ(w)ϕ(z))−2α , z, w ∈ D, ϕ ∈ Aut(D). 

If z = ϕ−1(λ), from ϕ '(z)(ϕ−1)'(λ) = 1 and the above equality, for λ, w ∈ D we get 

Wϕ
α 

−1 kα(·, w)(λ) = ϕ−1 ' α 
(λ)kα(ϕ−1(λ), w) 

= ϕ−1 ' α 
(λ) (ϕ ∗)' α (w) (ϕ ')α (z)(1 − ϕ ∗(w)λ)−2α 

= (ϕ ∗)' α (w)(1 − ϕ ∗(w)λ)−2α 

= (ϕ ∗)' α (w)kα(·, ϕ(w)) 

where, as before, ϕ∗(w) = ϕ(w). This leads to 

Wϕ
α 

∗ Ul = U(Wϕ
α 

−1 )' l, 

since 

Wϕ
α 

∗ Ul(w) = (ϕ ∗)' α (w)Ul(ϕ ∗(w)) = (ϕ ∗)' α (w)l(kα(·, ϕ(w))) 
U(Wϕ

α 
−1 )' l(w) = (Wϕ

α 
−1 )' l(kα(·, w)) = l Wϕ

α 
−1 kα(·, w) = (ϕ ∗)' α (w)l (kα(·, ϕ(w))) . 

Now, observing that the map f → f ∗ defines a bijection in the group of automorphisms, 
'3) follows from the fact that X satisfies 3) since for any ϕ∗ ∈ Aut(D) and l ∈ X we 

have 

α lWϕ
α 

∗ UllX1 
α = lU(Wϕ

α 
−1 )' llX1 = l(Wϕ

α 
−1 )' llX1 ≤ lWϕ

α 
−1 lB(X)lllX1 .  

Finally, (4.8), together with another direct computations, gives    f f 2α · · · (2α + n − 1) n(fr, (Ul)r)α = fnr nζn, l(1) + r w nl(ζn)
n! n≥0 n≥1 αf 

= r 2nfnl(ζn)  
n≥0  

= l(fr2 ),  

for f = n≥0 fnζ
n, r ∈ (0, 1). Thus, since polynomials are dense in X, by Theorem 

4.1 we have r → Dr is strongly continuous from the left at r = 1. Thus 

lim (fr, (Ul)r)α = l(f), 
r→1−

since 
lim |l(f) − l(fr2 )| ≤ lllX1 lim lf − fr2 lX = 0. 
r→1− r→1− 

Therefore, the result follows. 
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4.4 The largest and the smallest space. The Hilbert
space case

In this section we show that there is a largest and a smallest Banach space of analytic
functions in D, conformally invariant of a given index α > 0, and that amongst such
spaces there exists a unique Hilbert space.

4.4.1 Largest and smallest space
If X is conformally invariant of index α > 0, it contains the constants, hence by 3)

sup ‖(ϕ′)α‖ = sup ‖Wϕ
α1‖ < K‖1‖. (4.9)

ϕ∈Aut(D) ϕ∈Aut(D)

Thus, a good candidate for the smallest space with this property is
⎧ ⎫⎨ ⎬∑ ∑

Xmin = f ∈ Hol(D) : f = aj(ϕ′ )α, ϕj ∈ Aut(D), aj ∈ C, |aj| < ∞ ,α j⎩ ⎭
j j

(4.10)
with the norm ⎧ ⎫⎨ ⎬∑ ∑‖f‖Xmin = inf |aj| : f = aj(ϕ′ )α . (4.11)

α j⎩ ⎭
j j

Remark 4.2. ‖ · ‖Xα
min is a norm.

Proof. It is clear that ‖f‖Xα
min ≥ 0 for all f ∈ Xα

min.

ε1. If ‖f‖Xmin = 0 then, given ε > 0 there exists {c }j≥1 ∈ l1 and {ϕε}j≥1 ⊂ Aut(D),
α j j

ε εsuch that f = j≥1 cjϕj
ε and ‖{cj}j≥1‖l1 < ε. Then, if K is a compact of D we

have ∑
sup |f(z)| ≤ sup |cε|| ϕε ′ (z)| ≤ CK‖{cε}j≥1‖l1 < CKε,j j j
z∈K z∈K j≥1

therefore, f(z) = 0 for all z ∈ K, so f ≡ 0. The other direction is clear.

2. If λ ∈ C, then j≥1 cj ϕ′
j

α
is a representation of f if and only if j≥1 λcj ϕ′

j

α

is a representation of λf , so ‖λf‖Xα
min = |λ|‖f‖Xα

min .

∈ Xmin i3. Given f 1, f2
α then given ε > 0 there exists {cj}j≥1 ∈ l1, {ϕj

i }j≥1 ⊂
Aut(D) such that

∑ α ε′
f i i ϕi i= cj j and ‖{cj}j≥1‖l1 < ‖f i‖Xmin +

α 2j≥1

∞with i = 1, 2. Therefore, f1 + f 2 = k=1 ck (ϕ′
k)

α and

‖f1 + f 2‖Xmin ≤ ‖{ck}k≥1‖l1 ≤ ‖f1‖Xmin + ‖f 2‖Xmin + ε.
α α α
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Here we have used the bijection between N and N2 in the following way 

ik =  

⎧⎨ ⎩ 

1, if k 
2 ∈ N 
k2, if 2 ∈/ N 

.  (4.12) ik and ϕk = ϕik withkck = c  k 
2 2 

The next step is to prove Xα
min with the norm defined above is a Banach space, 

for this purpose we need the following well-known lemma, see for example [18, Lemma 
2.2.1] or [75, Chapter 6, 5. Proposition]. 
Lemma 4.2. Let X be a normed vector space. Then X is complete if and only if for 
any sequence {fn}n≥1 ⊂ X such that 

∞
lfnlX < ∞ 

n=1 

there exists f ∈ X such that 

f 

f −  
Nf 
fn 

n=1 X 

→ 0 when  N → ∞.  

Remark 4.3. Xα
min with the norm defined in (4.11) is a Banach space.  

Proof. To prove this claim we will use Lemma 4.2, so let {fn}n≥1 be a sequence in X such  
nthat n≥1 lfnlXmin < ∞. For each n there exists {cj }j≥1 ∈ l1 and {ϕnj }j≥1 ⊂ Aut(D) 

such that 
α 

f∞
fn = c 

j=1 

n ' nϕn α 
and l{c }j≥1ll1 < lfnlXmin + 2−n 

j j j α 
.  

f 

But, since the union of countable sets is countable there exists {ĉn}k≥1 ∈ l1 andk 
{ϕk}k≥1 ⊂ Aut(D) with 

∞
ĉn (ϕ ' )α and l{ĉn}k≥1ll1 = l{c n}j≥1ll1 < lfnlXmin + 2−n 
k k k j α 

fn = 
k=1 

Thus, 

.  

f∞
n=1 

nl{ĉk 
f∞

}k≥1ll1 < lfnlXmin 
α 

n=1 
+ 2−n < ∞.  

f 

nTherefore n≥1{ĉ }k≥1 is an absolutely convergent series in l1, so applying Lemma 4.2 k 
nwe have there exists {ĉk}k≥1 in l1 such that n≥1{ĉ }k≥1 converges to {ĉk}k≥1 in l1.k 

Now, we consider 
∞
ĉk (ϕk' )

α
f =  

ff 

k=1 

which is in Xmin since {ĉk}k≥1 ∈ l1 andα 

∞ NfN
f − fn ≤ ĉk − n ĉ = {ĉk}k≥1 −k 

n{ĉ }k≥1 → 0,k 
l1 

fN
n=1n=1 Xmin k=1 n=1 

α 

when N → ∞, which completes the proof.  
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Remark 4.4. The space Xα
min satisfies 1) and 3). Given K compact of D, f ∈ Xα

min 

and a representation f = j aj (ϕ ' j )α we have 

f f 1 f 
sup |f(z)| ≤ sup |aj ||ϕ ' (z)| ≤ |aj | sup |aj |j 
z∈K z∈K z∈K (1 − |z|)2 ≤ CK 

j j j 

and since this is true for all representation of f , we get supz∈K |f(z)| ≤ CK lflXα
min , 

thus Xα
min satisfies 1). Now, given a representation f = j aj (ϕ ' j )α 

f f 
Wϕ

αf = aj (ϕ ' j ◦ ϕ)α (ϕ ')α = aj [(ϕj ◦ ϕ)']α 

j j 

so for any representation of f we can find a representation of Wϕ
αf with the same 

coefficients aj , so the norms of f and Wϕ
α are equal. Therefore, Xα

min satisfies 3). 
Furthermore by (4.9), Xα

min is continuously contained in any conformally invariant 
space of index α. Let X be a Banach space conformally invariant of index α and f ∈ 
Xmin. We can find a representation f = j aj (ϕ ' )α such that j |aj | < lflXmin + ε.α j α

Thus, by (4.9) f f f 
lflX = l aj (ϕ ' j )αlX ≤ |aj|lϕj ' lX ≤ C |aj | ≤ C lflXα

min + ε . 
j j j 

So, we have Xα
min is continuously contained in X. 

It turns out that Xα
min can be identified either with a weighted Bergman space, or a 

weighted Besov space. 

= B1,α−1Lemma 4.3. If α > 1, then Xα
min = Aα1 

−2, and if α ≤ 1, Xα
min . In all cases 

the norms are equivalent. 

Proof. A standard estimate shows that {(ϕ ')α : ϕ ∈ Aut(D)} is bounded in A1 
α−2, 

λ z−awhen α > 1, and in B1,α−1, when α ≤ 1. Given ϕ(z) = λϕa = 1−az we have for 
α > 1 

l(ϕ ')αlA1 = (α − 1) |ϕ '(z)|α(1 − |z|2)α−2 dA(z)
α−2 D 

= (α − 1) (1 − |ϕ(z)|2)α−2|ϕ '(z)|2 dA(z)
D

= (α − 1) (1 − |z|2)α−2 dA(z) = l1lA1 
α−2D

and for α ≤ 1 

l(ϕ ')αlB1,α−1 = |ϕ '(0)|α + α α|ϕ '(z)|α−1|ϕ ''(z)|(1 − |z|2)α−1 dA(z)
D 

(1 − |a|2)α 
= (1 − |a|2)α + 2|a|α2 (1 − |z|2)α−1 dA(z)

D |1 − az|2α+1 

≤ C. 
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In last inequality we have applied Theorem 1.6. Thus Xα
min is continuously contained in 

the space indicated in the statement. The reverse (continuous) inclusion follows directly 
from the atomic decomposition theorems. In the first case, using Proposition 1.1, if 
f ∈ A1 

α−2 with α > 1 then there exist a sequences {ck}k≥1 ∈ l1 and {ak}k≥1 ⊂ D such 
that 

(1 − |ak|2)2b+α∞

k=1 (1 − akz)2b+2α 

with b > −α and l{ck}k≥1ll1 ≤ ClflA1 . Now, choosing b = 0 we obtain 2 α−2 

f 
f(z) =  ck 

f(z) =  
∞

ϕ ' ak 
ck 

k=1 

f α 

with ϕak (z) = z−ak and l{ck}k≥1ll1 ≤ ClflA1 . In the second case, using Proposi1−akz α−2 

tion 1.3, if f ∈ B1,α−1 with α ≤ 1, there exist sequences {ck}k≥1 ∈ l1 and {ak}k≥1 ⊂ D 
such that f∞

k=1 (1 − akz)b+α 

with b > 0 and l{ck}k≥1ll1 ≤ ClflB1,α−1 . Now, choosing b = α we obtain 

(1 − |ak|2)b 
f(z) =  ck 

f(z) =  
f∞

ϕ ' ak 
ck 

k=1 

α 

with ϕak (z) = z−ak and l{ck}k≥1ll1 ≤ ClflB1,α−1 . Thus in each case, the spaces 1−ak z 
indicated in the statement are continuously contained in Xα

min. 

With the lemma in hand we can prove the main result of this section. 

Theorem 4.4. If X is conformally invariant of index α > 0, then X is continuously 
contained in Xα

max = A−α, and Xα
min is continuously contained in X. 

Proof. We have already seen at Lemma 4.3 that Xα
min is continuously contained in X. 

a+zFor the remaining part, let ϕa(z) = 1+az , a, z ∈ D, and use 1) and 3) to conclude that 
there exists K1 > 0, such that for all f ∈ X, 

lflA−α = sup (1 − |a|2)α|f(a)| = sup |W α f(0)| ≤ K sup lW α flX ≤ K1lflX ,ϕa ϕa 
a∈D a∈D a∈D 

which completes the proof. 

4.4.2 The Hilbert space case. 
We shall prove that the only Hilbert space which is conformally invariant of index α > 0 
is the space Hα introduced in Section 4.3.3, i.e. Hα = A2

2α−2 when α > 1
2 , H 1 = H2,

2 

and Hα = D2,2α when α < 1
2 .  

We begin with a useful observation derived from the results in Section 4.3.2.  
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Lemma 4.4. If X is a conformally invariant Hilbert space of index α > 0, then there 
exists a scalar product on X which induces an equivalent norm and has the property 
that monomials form an orthogonal basis in X. 

Proof. X is reflexive, hence polynomials are dense in X, by Corollary 4.1. Consequently, 
by Theorem 4.1 (i), the group {Rt : t ∈ [0, 2π]} is strongly continuous. Set 

lfl2 = 
2π 

lRtfl2 dt.1 X
0 

itFirst, l · l1 is equivalent to the original norm since if f ∈ X and ϕt(z) = e z, using 3) 
we obtain 

2π 2π 2π 
−itαW αlfl2 = lRtfl2 dt = le fl2 dt ≤ lW α l2 dt ≤ Clfl2 

B(X)lfl2 
X ,

0 0 0
1 X ϕt X ϕt X 

2π 2π 2π1 1 lfl2 = lfl2 dt = lW α W α fl2 dt ≤ C1 lW α fl2 dt = C1lfl2 
X X ϕ−t ϕt X ϕt X 1.2π 0 2π 0 0 

The induced scalar product is 

2π 
(f, g)1 = (Rtf, Rtg) dt,

0 

hence for n = m, 
2π 

(ζn, ζm)1 = e i(n−m)t(ζn, ζm) dt = 0,
0 

which completes the proof. 

Using the equivalent norm given by Lemma 4.4, it follows that X consists of all 
analytic functions f = n≥0 fnζ

n in D with 

f 
lfl2 = |fn|2 vn < ∞, (4.13) 

n≥0 

where vn = lζnl2 > 0. From Section 1.10 we have that Hα consists of all analytic 
functions f = n≥0 fnζ

n in D with 
f 

lfl2 = |fn|2 vn,α < ∞,Hα 
n≥0 

where 

v0,α = 1, 
1 Γ(2α)Γ(n + 1) n! (4.14)

vn,α = = = n ≥ 1.2α+n−1 Γ(2α + n) 2α(2α + 1) · · · (2α + n − 1) , 
n 

Here is a simple observation regarding the weights vn, n ≥ 0. 
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Lemma 4.5. There exists c > 0 such that 
nf vk 

2 ≤ c(n + 1)2α , 
vk=0 k,α 

for all n ≥ 0. 

1
2

Proof. With the rotationally invariant norm considered above, we can deduce the esti

0 

mate  
sup l(ϕ ')αl = sup lWϕ

α1l ≤ sup lWϕ
αlv 

ϕ∈Aut(D) ϕ∈Aut(D) ϕ∈Aut(D) 
= c1. 

1 ∞ 2α+k−1 k kNow, since = a z we have (1−az)2α k=0 k 

2 21  2α + k − 1 f∞ ∞
a vk a ,2(1 − az)2α k vk,α k=0 k=0 

and therefore, 

f vk2k 2k=  =  

(1 − a2)α (1 − a2)α f∞
vk=0 

vkl(ϕ ')αl2 =  2)2α 2k= (1 − a  a (1 − az)2α ,  . 2(1 − az)2α 
k,α 

Thus, the above estimate reduces to  
f∞

vk=0 

vk2)2α 2k ≤ c 2sup (1 − a 
a∈(0,1)

a  1.2 
k,α 

k
1 − 1 1Then, using the fact that for all k ≤ n we have the inequality  , we can  >  

n+1 e 

f 

1deduce that for a2 = 1 − 
n+1 

∞ 1  k1 1 1fn
k=0 

fn
k=0 

vk vk vk2)2α 2k ≥(1 − a  1 −  ≥ a  . 2 2 2(n + 1)2α n + 1  e  (n + 1)2αv v v k=0 k,α k,α k,α 

Thus, 
1 

(n + 1)2α 

f∞
k,α a∈(0,1) k=0 

fn
k=0 

vk vk2)2α 2k ≤ ec 2≤ e sup (1 − a  a  1,2 2v v k,α 

which completes the proof. 
z+aFor a ∈ (0, 1), let ψa(z) = 1+az , z ∈ D. We shall use some identities and estimates 

for the scalar products 

[ψan(ψa' )α](k)(0)
Cn,k,α(a) = (W α ζn, ζk)Hα = vk,α . (4.15)ψa k! 

Lemma 4.6. (i) Cn,k,α(a) ∈ R, k, n ≥ 0, a ∈ (0, 1), and for fixed n ≥ 0, a ∈ (0, 1), 

d |Cn,k,α(a)|, | Cn,k,α(a)| = o(bk), k → ∞ 
da 

for any b ∈ (a, 1), while for fixed k, n ≥ 0, lima→1− Cn,k,α(a) = 0. 
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(ii) If 1 ≤ n ≤ k, a ∈ (0, 1), we have  

Cn,k+1,α(a) = −aCn,k,α(a) + 
n(1 − a2)

2α 

1
2 
Cn−1,k,α+ 1

2
(a).  

(iii) For k, n ≥ 1, a ∈ (0, 1), 

k + 1 + 2α 1 − a2 d 
Cn,k,α(a) − Cn,k+2,α(a) = − Cn,k+1,α(a). 

k + 1 k + 1 da 

(iv) Consequently, for 1 ≤ n ≤ k, a ∈ (0, 1) 

n
C2 (a) − C2 
n,k,α n,k+2,α(a) ≤ 

2(1 − a2) 
4α2a2 C2 

n−1,k,α+ ( ) + 1 a 
2 

1 d  
a(k + 1)  da 

[(1 − a  2)C2 
n,k+1,α(a)]  

2 4α+ n,k+1,α(a) − 
k + 1C

2 
a(k + 1)Cn,k+1,α(a)Cn,k+2,α(a). 

Proof. (i) For k, n ≥ 0 and a ∈ (0, 1) by definition (4.15) it follows that Cn,k,α(a) ∈ R. 
Now, for fixed n ≥ 0, a ∈ (0, 1), we will see that |Cn,k,α(a)| = o(bk), k → ∞ for 

Γ(k+c)any b ∈ (a, 1). On the one hand, using the identity limk→∞ = 1 for all c ∈ R,Γ(k)kc 

(ψ1 )α](k)(0)a awe have vk,α ≤ Ck1−2α. On the other hand, [ψn 

k! is the k-th coefficient of an 
analytic function in 

a 
1 D. Therefore, by the Cauchy integral formula, we deduce that 

[ψan(ψa' )α](k)(0) 
vk,α = o(bk), k → ∞ 

k! 
dfor any b ∈ (a, 1). The proof is analogous for | d Cn,k,α(a)| since W α ζn, for a fixed 

da da ψa 

n ≥ 0, a ∈ (0, 1), is also an analytic function in 
a 
1 D. 

Finally, we want to see that for fixed k, n ≥ 0, lima→1− Cn,k,α(a) = 0. First, we will 
observe that Wψ

α 
a ζ
n converges weakly to 0 in Hα when a → 1−. Since Hα is a Hilbert 

space satisfying 1), the desired weak convergence is equivalent to proving that Wψ
α 

a ζ
n 

is bounded in Hα and Wψ
α 

a ζ
n converges pointwise to 0. For this equivalence see for 

example [38, Corollary 1.3]. Fixing z ∈ D we obtain 

(1 − a2)α (z + a)n 
W α ζn(z) = (ψ ' (z))α 

ψn(z) = → 0ψa a a (1 + az)n+2α 

when a → 1−. Furthermore, 

lWψ
α 

a ζ
nlHα = lζnlHα . 

Thus, Wψa ζ
n converges weakly to 0 in Hα when a → 1− and therefore 

lim Cn,k,α(a) = lim (W α ζn, ζk)Hα = 0.ψa a→1− a→1−
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(ii) Since ψa(z) = a + (1−a2)z , it follows for any f ∈ Hα,1+az 

n(1 − a2)α (1 − a2)ζ ((ψa' )αψan, f)Hα = a + , f (1 + aζ)2α 1 + aζ 
Hα 

nf n ζj2)j+α= a n−j (1 − a , f . 
j (1 + aζ)j+2α 

j=0 Hα 

Furthermore, 

1 1 
, f = f, = f(−a),(1 + aζ)2α (1 − (−a)ζ)2α 

Hα Hα 

and if j ≥ 1, 

ζj (−1)j dj 1 
, f = , f (1 + aζ)j+2α 2α · · · (2α + j − 1) daj (1 + aζ)2α 

Hα Hα 

(−1)j dj = f(−a)2α · · · (2α + j − 1) daj 
1 = 2α · · · (2α + j − 1)f

(j)(−a). 

Thus for f = ζk, since k ≥ n, we obtain 

n  f n k − l2)j+αCn,k,α(a) = (−1)k−j a n+k−2j (1 − a ,
j 2α + lj=0 0≤l<j 

where, as is usual, we set the product over the empty set to be 1, i.e. the first term in 
the above sum is (−1)kan+k(1 − a2)α. This implies 

nf n   k + 1 − l2)j+αCn,k+1,α(a) = (−1)k+1−j a n+k+1−2j (1 − a 
j 2α + lj=0 0≤l<j 

= −aCn,k,α(a) ⎛ ⎞ fn n   k + 1 − l   k − l2)j+α+ (−1)k+1−j a n+k+1−2j (1 − a ⎝ − ⎠ . 
j 2α + l 2α + lj=1 0≤l<j 0≤l<j 

Now, with the above convention, it can be verified that for j ≥ 1 ⎛ ⎞    k + 1 − l   k − l   1    ⎝− = (k − l)⎠ ((k + 1) − (k − j + 1)) 2α + l 2α + l 2α + l0≤l<j 0≤l<j 0≤l<j 0≤l<j−1 

j   k − l = .2α 2α + 1 + l0≤l<j−1 
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This leads to 

Cn,k+1,α(a) = −aCn,k,α(a) 

+  
n(1 − a2) 1

2 nf n − 1 
2α j − 1j=1 

 k − l(−1)k−j+1 n−1+k−2(j−1)(1 − a 2)j−1+α+a 
1
2

2α + 1 + l 0≤l<j−1 

= −aCn,k,α(a) 
1
2n(1 − a2) n−1f n − 1   k − l(−1)k−m a n−1+k−2m(1 − a 2)m+α+ 1

2+  2α  2α + 1 + l  m=0 m 0≤l<m 

2)= −aCn,k,α(a) + 
n(1 − a

2α 

1
2 
Cn−1,k,α+ 1

2
(a),  

which proves the identity in the statement. 
z+a(iii) Recall that {Wψ

α 
a : a ∈ (−1, 1), ψa = 1+az } is a unitary group on Hα with 

infinitesimal generator Dα given by (4.3). Then iDα is selfadjoint on Hα, i.e. Dα 
∗ = −Dα 

on this space, since for any f, g in the domain of Dα if we consider the equality   
W α(f, g)Hα = f, W α gψa ψa Hα 

and take derivatives with respect a at 0, we obtain 
d d0 = W α f ,W α g + W α f, W α g = (Dαf, g) + (f, Dαg) .ψa ψ0 ψ0 ψada da 

a=0 a=0 

Moreover, by a direct calculation, it follows that 

DαW α f = W α Dαf = (1 − a 2) d W α f, (4.16)ψa ψa ψada 
whenever f is in the domain of Dα, since     ' 
DαW α f = Dα (ψ ' )α (f ◦ ψa) = (1 − ζ2) (ψ ' )α (f ◦ ψa) − 2αζ (ψ ' )α (f ◦ ψa)ψa a a a  

)α−1 
ψ '' )α+1 (f '= (1 − ζ2) α (ψ ' (f ◦ ψa) + (ψ ' ◦ ψa) − 2αζ (ψ ' )α (f ◦ ψa)a a a a  

)α+1 (f ' 
(1 − ζ2)a= (1 − ζ2) (ψa' ◦ ψa) − 2α (ψa' )

α (f ◦ ψa) + ζ1 + aζ 
)α+1 (f '= (1 − ζ2) (ψa' ◦ ψa) − 2α (ψa' )

α 
ψa(f ◦ ψa),   

' ' W α Dαf = W α (1 − ζ2)f − 2αζf = (ψ ' )α(1 − ψ2)(f ◦ ψa) − 2α(ψ ' )αψa(f ◦ ψa)ψa ψa a a a 

)α+1 (f ' )α = (1 − ζ2) (ψa' ◦ ψa) − 2α (ψa' ψa(f ◦ ψa), 

  
(1 − a 2) d Wψ

α 
a f = (1 − a 2) d (ψa' )

α (f ◦ ψa)
da da  

d '= (1 − a 2) α(ψa' )α−1 ψa 
' (f ◦ ψa) + (ψa' )

α (f ◦ ψa) 
d
ψa

da da 

)α−1 (1 − a2)(ζ + a) 1 − a2 
' = −2α(ψa' (f ◦ ψa) + (1 − ζ2) (ψa' )

α (f ◦ ψa)(1 + aζ)3 (1 + aζ)2 

)α+1 (f '= (1 − ζ2) (ψa' ◦ ψa) − 2α (ψa' )
α 
ψa(f ◦ ψa). 
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In particular, we have (4.16) when f is a polynomial. Since 

Dαζ
k+1 = (k + 1)ζk − (k + 1 + 2α)ζk+2 , k ≥ 1, 

we obtain 
k + 1 + 2α k + 1 + 2α 

Cn,k,α(a) − Cn,k+2,α(a) = (W α ζn, ζk)Hα − (W α ζn, ζk+2)Hαψa ψak + 1 k + 1 
1 

, Dαζ
k+1)Hαζn= ψak + 1(W α 

1 = − ζn, ζk+1)Hαψak + 1(DαW α 

1 − a2 d = − ζn, ζk+1)Hαψak + 1 
(
da
W α 

1 − a2 d = − Cn,k+1,α(a). 
k + 1 da 

(iv) By the elementary computation A2 − B2 = 2A(A − B) − (A − B)2 for A, B ∈ R 
we can deduce 

C2 (a) − C2 (a) = 2Cn,k,α(a)(Cn,k,α(a) − Cn,k+2,α(a))n,k,α n,k+2,α

− (Cn,k,α(a) − Cn,k+2,α(a))2 . 

Now, adding and subtracting 
a 
2 Cn,k+1,α(a)(Cn,k,α(a) − Cn,k+2,α(a)) we obtain 

1 
C2 
n,k,α n,k+2,α(a) = 2(Cn,k,α(a) + (a)−C2 Cn,k+1,α(a))(Cn,k,α(a) − Cn,k+2,α(a)) 

a 
2 − Cn,k+1,α(a)(Cn,k,α(a) − Cn,k+2,α(a)) − (Cn,k,α(a) − Cn,k+2,α(a))2 . 
a 

Finally, using the elementary inequality 2AB −C −B2 = −(A−B)2 +A2 −C ≤ A2 −C 
for A, B, C ∈ R we get 

C2 (a) − C2 
n,k,α n,k+2,α(a) ≤ (Cn,k,α(a) + 

1 
Cn,k+1,α(a))2 
a (4.17)2 − Cn,k+1,α(a)(Cn,k,α(a) − Cn,k+2,α(a)). 

a 

By (ii) we have Cn,k,α(a) + 1 Cn,k+1,α(a) = n(1−a2) 2
1 

C (a), and by (iii), 
a 2αa n−1,k,α+ 12 

Cn,k+1,α(a)(Cn,k,α(a) − Cn,k+2,α(a)) 
k + 1 + 2α 2α = Cn,k+1,α(a) Cn,k,α(a) − Cn,k+2,α(a) + 

k + 1Cn,k+1,α(a)Cn,k+2,α(a)
k + 1  

1 − a2 2α  = − 
k + 1 

Cn,k+1,α(a) d Cn,k+1,α(a) + 
k + 1Cn,k+1,α(a)Cn,k+2,α(a)

da  
1 d a  = − [(1 − a n,k+1,α(a)] − n,k+1,α(a)2(k + 1) da

2)C2 
k + 1C

2  

2α + 
k + 1Cn,k+1,α(a)Cn,k+2,α(a). 
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By replacing these expressions in (4.17), we obtain the desired inequality.  

Lemma 4.7. Let X be a Hilbert space with scalar product f 
(f, g) = fn gn vn, 

n≥0 

' ˜with vn > 0 for all n ≥ 0 and v0 = 1. Then Xα = X with equality of norms, where ⎧ ⎫ ⎨ f f 2 ⎬ 
n,αX̃ = f = fnζ

n : lfl2
X̃ = |fn|2 v < ∞ .⎩ ⎭vnn≥0 n≥0 

' 'Proof. Let g ∈ Xα. Then there exists l ∈ X such that Ul = g with lglXα 
1 = lllX1 . See 

Section 4.3.3. By the Riesz representation theorem there exists hl = n≥0 hnζ
n ∈ X 

such that 
l(f) = (hl, f) for all f ∈ X and lhllX = lllX1 . 

Since (hl, ζn) = hnvn we have 

f f1 vn n g(w) = Ul(w) = l(1) + w nl(ζn) = hnw , 
n≥1 n≥0vn,α vn,α 

so f 
lgl2

˜ = |hn|2 vn = lhll2 
X = lll2 

X1 = lgl2 
X1 .X α 

n≥0 

vn,α 'Reciprocally, let g = n≥0 gnζ
n ∈ X̃. Then hl = n≥0 gn vn 

ζn ∈ X. Next, let l ∈ X 
be such that 

l(f) = (hl, f) for all f ∈ X. 
'Then, we have Ul = g. Hence, g ∈ Xα. 

We can now turn to our result about conformally invariant Hilbert spaces. 

Theorem 4.5. Let X be a Hilbert space which is conformally invariant of index α > 0. 
Then X = Hα and the corresponding norms are equivalent. 

Proof. Without loss of generality, we can assume that X is equipped with the norm 
given by Lemma 4.4. As above, let vn = lζnl2, and let vn,α be given by (4.14). It will 
be sufficient to show that there exists η > 0, depending only on X, such that 

vn ≤ ηvn,α, n ≥ 0. (4.18) 

Indeed, Lemma 4.7 shows that Xα 
' consists of all analytic functions f = n≥0 fnζ

n in 
D with 

2f 
|2 vn,αlfl2 = < ∞.X1 |fn

α vnn≥0 
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If (4.18) holds for any space X as in the statement, thanks to Theorem 4.3 we know 
2v'that it also holds for X α, which implies  n,α ≤ η ' 
vn 

vn,α for all n, that is, 

η

1 
' vn,α ≤ vn ≤ ηvn,α, n ≥ 0, 

and the result follows. 
z+aTo verify the claim (4.18), we consider the disc automorphisms ψa(z) = 1+az , 

z ∈ D, a ∈ (0, 1), and use the conformal invariance of X to conclude that for 
a ∈ (0, 1), 

vn = lζnl2 = lW
ψ
α 

−1 Wψ
α 

a ζ
nl2 ≤ c1lWψ

α 
a ζ
nl2 

a 
2 (4.19) [ψan(ψa' )α](k)(0)∞f ∞f 

C2 (a) vk 
n,k,α 2 = c1 vk = c1 , 

k!  v k=0 k=0 k,α 

f 

where Cn,k,α(a) are given by (4.15). For n ≥ 2, a ∈ (0, 1), let 

k∞f vj(C2 (a) − C2 
n,k,α n,k+2,α(a) = (a)) Sn 2 . v j,α k=n j=n 

ff 

For fixed a ∈ (0, 1), by Lemma 4.5 and Lemma 4.6 (i), we can interchange the order 
of summation since by Lemma 4.6 (i) there exits N0 ∈ N such that |Cn,k,α(a)| < bk for 
b ∈ (a, 1) and for all k ≥ N0. Thus, 

k k∞f ∞fvj vj|C2 (a) − C2 
n,k,α n,k+2,α |C2 (a) − C2 

n,k,α n,k+2,α(a)|  (a)| ≤ 2 2v j=0 vj,α j,α j=nk=n k=n 
∞f 

k=n 
|C2 (a) − C2 (a)|(k + 1)2α 

n,k,α n,k+2,α≤ c  

∞f 
|Cn,k,α(a)|2 + |Cn,k+2,α(a)|2 (k + 1)2α 

f 

≤ c 
k=n 
N0

≤ c  
k=n 

< ∞. 

∞f 
|Cn,k,α(a)|2 + |Cn,k+2,α(a)|2 (k + 1)2α + 2c bk(k + 1)2α 

k=N0+1 

With this interchange, we obtain  
∞f fvj (C2 (a) − C2 

n,k,α n,k+2,α(a) =  (a)) Sn 2v j,α j=n k≥j 
∞f vj (C2 (a) + C2 (a))2 n,j,α n,j+1,α=  

v j,α j=n 
∞f fn−1

j,α j=0 

vj vj(C2 (a) + C2 
n,j,α n,j+1,α (C2 (a) + C2 

n,j,α n,j+1,α(a)). (a)) − =  2 2v v j=0 j,α 
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Thus, by another application of Lemma 4.6 (i), we conclude that  
∞

n,k,α
k=0 vk,α 

In order to estimate when , for , let ( ) 1−→ ≥S ka a nn

n( ) = B a 1 +11n,k,α 4 2 2 ( + 1) + n,k ,α− ,k,αnα k daa a

2 ( ) ( )C C C+1 +2a a ,n,k ,α n,k ,α+ 1 ( + 1)k ka

f 

2(1 − a2) 1 d 
C2 (a) + [(1 − a 2)C2 (a)]

2 

2 4α( )+ −a+1n,k ,α

f 

and use the inequality in Lemma 4.6 (iv) to obtain 

∞ ∞k kf 

f 

f 

(a) vk 
2 = lζnl2 ≤ c1 C2 ≤ c1Sn(a) + o(1), a → 1− . (4.20)vn 

vj vj(C2 (a) − C2 
n,k,α n,k+2,α (4.21) (a) =  (a))  Bn,k,α(a)≤ Sn . 2 2v v j,α j,α k=n j=n k=n j=n 

∞ kff 

We want to use the estimate in Lemma 4.5, but at this stage it cannot be applied since 
the numbers Bn,k,α(a) might be negative. However, it turns out that their (weighted) 
averages can be controlled. If a ∈ (0, 1), then 

1 a n2 a (1 − s2) 
2 2 

sBn,k,α(s)ds = 4α2(a − a2) 2 
Cn

2 
−1,k,α+ 12 

(s)ds 
a − a a a s  

1 d + 
a 

[(1 − s 2)C2 (s)]dsn,k+1,α(k + 1)(a − a2) a2 ds
2+ 

a 
sC2 (s)ds2) 2 n,k+1,α(k + 1)(a − a a

a4α − Cn,k+1,α(s)Cn,k+2,α(s)ds.(k + 1)(a − a2) a2 

Note that 
da 

[(1 − s 2)C2 (s)]ds ≤ (1 − a 2)C2 (a),
2 n,k+1,α n,k+1,α
a ds

and a a 
− Cn,k+1,α(s)Cn,k+2,α(s)ds ≤ |Cn,k+1,α(s)Cn,k+2,α(s)|ds. 

a2 a2 

From (4.21) we infer that 

1  1 a avj(s)ds ≤  sBn,k,α(s)ds,sSn 22 2a − a a − a 2 2v a aj,α k=n j=n 

where the interchange of the sum and the integral is also justified by Lemma 4.6 (i) and 
Lemma 4.5. Now use the above estimates in order to replace 1 a 

a2 sBn,k,α(s)ds by a 2a−a
sum of four nonnegative terms, and then apply Lemma 4.5 to arrive at 

a a1 1 
sSn(s)ds ≤ c SI (s) + SII (s) + SIII (s) ds + cSIV (a), (4.22)n n n n2 2 2 2a − a a a − a a
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where c is the constant in Lemma 4.5, and  
2(1 − s2) ∞

s k=0 

f
(s) = 

n (k + 1)2αCn
2 
−1,k,α+ 1

2
(s), SI n 4α2

∞f
(k + 1)2α−1C2 

n,k+1,α

∞f 

(s) = 2s  (s), SII n 
k=0 

(k + 1)2α−1|Cn,k+1,α(s)Cn,k+2,α(s)|, 

∞f 

SIII n (s) = 4α 
k=0 

1 − a2 
(k + 1)2α−1C2 

n,k+1,αSIV 
n (a) =  (a). (a − a2) k=0 

1
2 

Γ(k+b)Using the property limk→∞ = 1 for all b ∈ R, we can observe that there exists a Γ(k)kb 

constant c2 such that, for all k ≥ 0 

−1 Γ(k + 2α) 1 Γ(k + 1 + 2α − 1) 
vk,α = = ≥ c2(k + 1)2α−1 .Γ(2α)Γ(k + 1) Γ(2α) Γ(k + 1) 

−1 −1 −1 
k+1,α, (k +1)vSo, we can deduce the estimate (k +1)2α ≤ c3 min{v 

valid for some fixed constant c3 > 0 and all integers k ≥ 0. Therefore, we conclude that 
∞f 

, (k +1)v  }, k+2,αk,α+

2(1 − s2) 2(1 − s2) 1
2α+n n−1 C2 

n−1,k,α+ ζn−1l2 
H(s) ≤ c3 (s) = c3SI n lW v 1

2
1
24α2s  4α2 ψak,α+ 1

2α+s k=0 

n2(1 − s2) n2(1 − s2)lζn−1l2 
H = c3 = c3 1

2
, vn−1,α+4α2 4α21

2α+s s  
and similarly,  ff 

f 

∞ ∞

k=0 k=0 

≤ 2c3slW α ζnl2 = 2c3slζnl2 = 2c3svn,α,ψa Hα Hα 

∞

(k + 1)2α−1C2 
n,k+1,α

−1 C2 
n,k+1,α(s) = 2s  (s) ≤ 2sc3 (s) SII n v k+1,α

ff 

(k + 1)2α−1|Cn,k+1,α(s)Cn,k+2,α(s)| 

∞ ∞

SIII n (s) = 4α 
k=0 

1
2

1
2 

(k + 1)2α−1C2 
n,k+1,α (k + 1)2α−1C2 

n,k+2,α≤ 4α  (s)  (s)  

ff 

k=0 k=0 

∞ ∞1
2

1
2 

−1 C2 
n,k+1,α

−1 C2 
n,k+2,α≤ 4αc3 (s)  (s) v  v k+1,α k+2,α

k=0 k=0 

≤ 4αc3lW α ζnl2 = 4αc3vn,α,ψa Hα 

where we have used the Cauchy-Schwartz inequality, and 

SIV 
n (a) =  

1 − a2 

(a − a2) 
1 + a ff∞ ∞

ak=0 k=0 

−1(k + 1)2α−1C2 
n,k+1,α C2 

n,k+1,α(a) ≤ c3 (a) v k+1,α

1 + a 1 + a 
ζnl2≤ c3 lWψ

α 
a Hα = c3 vn,α. 

a a 
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In particular, we can see that for all n ≥ 2 and all a ∈ (1
2 , 1) 

2a n v a 2
n−1,α+ 1 1 1 − s

Sn
I (s) ds = c3 

2 ds 
a2 4α2 a − a2 a2 s 

2n v a n−1,α+ 12 2 ≤ c3 1 − s ds 
24α2 a2(a − a2) a

n v2
n−1,α+ 12 (1 − a)(a + 2) = c3 → 04α2 2a

when a → 1−, and there exists c4 > 0 such that 

a a1 1 
SII SIII n (s) ds, n (s) ds, SnIV (a) ≤ c4vn,α. 

a − a2 a2 a − a2 a2 

Thus, from (4.20) and the estimate 

a1 a(1 + a) 3 
s ds = >2 2a − a a 2 8 

for a ∈ (1
2 , 1), we deduce 

vn 3
8 
c1 

1 
2 (s) ds + o(1) ≤ c5vn,α + o(1),= lζnl2 ≤ 

a 
sSn a → 1− ,

2a − a a

and the claim (4.18) follows by letting a → 1−. This completes the proof of the 
theorem. 

4.5 Applications 

4.5.1 Conformally invariant subspaces 
Following the idea in [6] we attempt to construct a conformally invariant space starting 
with an arbitrary Banach space X of analytic functions in D which satisfies 1) and 2). 
We simply set for α > 0, 

Mα(X) = {f ∈ X : (ϕ ')α (f◦ϕ) ∈ X, ϕ ∈ Aut(D), lflMα = sup lWϕ
αflX < ∞}. 

ϕ∈Aut(D) 

Clearly, Mα(X) ⊂ X, with equality if and only if X is conformally invariant of index α. 
Moreover, Mα(X) is a Banach space satisfying 1) and 3), but it is not clear whether it 
satisfies the condition 2) . 

Proposition 4.5. Let X be a Banach space satisfying 1) and 2). Then Mα(X) is 
conformally invariant of index α if and only if supϕ∈Aut(D) l(ϕ ')αlX < ∞. Moreover, if 
A−α ⊂ X then Mα(X) = A−α. 
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Proof. This is a direct application of Theorem 4.4. First, we will prove that the condition 
supϕ∈Aut(D) l(ϕ ')αlX < ∞ is equivalent to Xmin ⊂ Mα(X). On the one hand, if α 
f ∈ Xmin and we assume supϕ∈Aut(D) l(ϕ ')αlX = C < ∞, then given ε > 0 there exist α 
{cj }j≥1 ∈ l1, {ϕj }j≥1 ⊂ Aut(D) such that f α 

f = cj ϕ ' and l{cj }j≥1ll1 < lflXmin + ε.j α 
j≥1 

Therefore, f α 
lflMα(X) = sup lW αflX ≤ |cj | sup W α ϕ ' φ φ j Xφ∈Aut(D) j≥1 φ∈Aut(D) f α f 

= |cj | sup (ϕj ◦ φ)' = |cj | sup (µ ')α 
X X 

j≥1 φ∈Aut(D) j≥1 µ∈Aut(D) 

≤ C lflXα
min + ε . 

On the other hand, if Xα
min ⊂ Mα(X), since both satisfy 1) we conclude, by Corol

lary 1.1, that the inclusion is continuous. Thus, 

sup l(ϕ ')αlX = l1lMα(X) ≤ Cl1lXα
min < ∞. 

ϕ∈Aut(D) 

So, if Xα
min ⊂ Mα(X), then Mα(X) satisfies 2) because Xα

min does. Conversely, if 
Mα(X) satisfies 2), it is conformally invariant of index α, hence it must contain Xα

min. If 
A−α ⊂ X, an application of the closed graph theorem (see Corollary 1.1) gives that the 
inclusion is continuous, hence A−α ⊂ Mα(X). Thus, Mα(X) is conformally invariant 
of index α, and by Theorem 4.4 we have A−α = Mα(X). 

Some interesting examples occur in this way. 

Example 4.6. If p ≥ 1, and α < 
p 
1 , a direct computation based on a change of variable 

reveals that Mα(Hp) consists of f ∈ Hp with 
2π |f(eit)|p 

sup(1 − |a|2)1−αp 
|eit − a|2−2αp dt < ∞. 

a∈D 0 

If f ∈ Mα(Hp) then ⎡ ⎤   12π p 
p 

2πlflp ⎣ |ϕ '(e it)|αp|f(ϕ(e it))|p dt ⎦= supMα(Hp)  
ϕ∈Aut(D) 0  

2π 
= sup |ϕ '(e it)|αp−1|f(ϕ(e it))|p|ϕ '(e it)| dt 

ϕ∈Aut(D) 0 

2π 
= sup | ϕ−1 ' 

(e iw)|1−αp|f(e iw)|p dw 
ϕ∈Aut(D) 0 

2π |f(eiw)|p 
= sup (1 − |a|2)1−αp dw 

|1 − aeiw|2−2αp
a∈D 0 

2π |f(eiw)|p 
= sup (1 − |a|2)1−αp 

0 |eiw − a|2−2αp dw. 
a∈D 
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Moreover, using Proposition 1.6 (in this case the measure µ is only supported on T), we 
deduce that the above condition is equivalent to 

sup hαp−1 |f(z)|p dz < ∞. 
h∈(0,1) Ih(t) 
t∈[0,2π) 

β+1 β+2Example 4.7. In a similar way we can see for p ≥ 1, β > −1, and 
p ≤ α < 

p , 
that Mα(Apβ ) = Qp,β,β+2−αp. If f ∈ Mα(Apβ) then 

1 = sup |ϕ '(z)|αp−2|f(ϕ(z))|p(1 − |z|2)β |ϕ '(z)|2 dzMα(Ap
β ) Dβ + 1lfl

p

ϕ∈Aut(D) 

= sup | ϕ−1 ' 
(w)|2−αp|f(w)|p(1 − |ϕ−1(w)|2)β dw 

ϕ∈Aut(D) D 

= sup | ϕ−1 ' 
(w)|2−αp+β |f(w)|p(1 − |w|2)β dw 

ϕ∈Aut(D) D 

|f(w)|p(1 − |w|2)β 
= sup (1 − |a|2)2−αp+β dw. 

|1 − aw|4−2αp+2β 
a∈D D 

Now, by Proposition 1.6, and from Example 4.4 we conclude that 

lflp 
Mα(Ap ) ∼ sup h−(β+2−αp) |f(z)|p(1 − |z|2)βdA(z) = lflp .Qp,β,β+2−αpβ h∈(0,1) Sh(t)  

t∈[0,2π)  

Let us also note that for γ > 0, we have Mα(A−γ ) = {0}, when α > γ, Mγ (A−γ ) = 
A−γ , and Mα(A−γ ) = A−α, when 0 < α < γ. All these examples are actually 
consequences of a general fact which is proved below and Proposition 4.5. 

Proposition 4.6. Let X be conformally invariant of index γ > 0. Then Mα(X) = {0}, 
when α > γ, Mγ (X) = X, and when 0 < α < γ, Mα(X) = Mult(Xmin, X).γ−α

a−zProof. Let α > γ, and let ϕa(z) = 1−az , a, z ∈ D. If f ∈ Mα(X) and z ∈ K, with K 
a compact subset of D, by 1) and using that ϕ−

a 
1 = ϕa we have 

W αsup(1 − |a|2)γ−α|f(z)| sup |(ϕ ' (z))γ−αf(z)| = sup |W γ f(z)|a ϕa ϕa  
a∈D a∈D a∈D  

sup lWϕ
γ 

a W α flX sup lWϕ
α 

a ≤ lflMα(X).ϕa flX 
a∈D a∈D 

Hence, f ≡ 0. If 0 < α < γ and ϕ ∈ Aut(D), for f analytic in D we have 

Wϕ
γ (f( [ϕ−1] ')γ−α) = Wϕ

αf 

or equivalently 
Wϕ

γ 
−1 (f(ϕ ')γ−α) = Wϕ

α 
−1 f. 

On the one hand, if f ∈ Mult(Xmin 
γ−α, X), then the left hand side is bounded on X, 

uniformly in ϕ ∈ Aut(D) since using that X and Xmin are conformally invariant of index γ−α 
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γ respectively γ − α, we have 

sup lWϕ
γ (f( [ϕ−1] ')γ−α)lX sup lf( [ϕ−1] ')γ−αlX  

ϕ∈Aut(D) ϕ∈Aut(D)  
γ−α ≤ lflMult(Xmin ,X) sup lWϕ−1 1lXmin 

γ−α γ−α 
ϕ∈Aut(D) 

lflMult(Xmin ,X). γ−α

Thus, 

= sup lW αflX = sup lW γ (f( [ϕ−1] ')γ−α)lX 
γ−α

lflMα(X) ϕ ϕ lflMult(Xmin ,X). 
ϕ∈Aut(D) ϕ∈Aut(D) 

Conversely, if f ∈ Mα(X), then the right hand side is bounded in X, uniformly in 
ϕ ∈ Aut(D), and by 3), since 

lf(ϕ ')γ−αlX = lWϕ
γ Wϕ

α 
−1 flX lWϕ

α 
−1 flX ≤ lflMα(X), 

and the same holds for f(ϕ ')γ−α. Therefore, let g be a function in the space Xmin with 
)γ−αg = j aj (ϕ ' and j |aj | < ∞. Then, we have 

γ−α 

j f f 
lfglX ≤ 

j 
|aj |lf(ϕ ' )γ−αlXj lflMα(X) |aj | < ∞, 

j 

which gives f ∈ Mult(Xmin, X), by (4.10). γ−α

The situation is more complicated in the case when X is not conformally invariant. 
We close the paragraph with an example of this type. 

Example 4.8. Let 

A1 
log−2 =  

⎧⎨ ⎩f ∈ Hol(D) : lflA1 = |f(z)|
log−2 D log2 

1  
2 

1−|z|2 

dA(z) < ∞  

⎫⎬ ⎭ .  

Then: 

a) A1 is not conformally invariant of any index α > 0,log−2 

b) Mα(A1 
log−2 ) = A−α when 0 < α ≤ 1,log−2 ) = {0}, when α > 2, and Mα(A1 

c) If 1 < α ≤ 2 we have for every ε > 0, 

Mult(Xmin 
0) ⊂ Mα(A1

2−α+ε, A
1 
ε) 1 < α < 2,2−α, A

1 
log−2 ) ⊂ Mult(Xmin 

A1
0 ⊂ Mα(A1 

ε , A1 
ε α = 2.log−2 ) ⊂ Mult(Xmin ) 

We were not able to relate the formal definition of Mα(A1 
log−2 ) to standard objects 

in this area, for example those considered in Section 4.3.1. It remains a challenging 
question to do so. For this reason, we have appealed to the fact that there exists C > 0, 
and for every ε > 0 there exists Cε > 0, such that for all g ∈ Hol(D), we have 

lglA1 ≤ CεlglA1 and lglA1 ≤ ClglA1 . (4.23)
ε log−2 log−2 0 
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Proof. b) Note that for 0 < α ≤ 1, we have A−α ⊂ A1 thenlog−2 , if f ∈ A−α 

1 1 lflA1 = |f(z)| dA(z) ≤ lflA−α dA(z)
log−2 D Dlog2

1−|
2 
z|2 (1 − |z|2)α log2

1−|
2 
z|2 

1 r= 2lflA−α 2 dr ≤ ClflA−α . 
0 (1 − r2)α log2

1−r2 

Therefore, Proposition 4.5 gives the second part of b). Now, if α > 2 and we 
choose ε < α − 2, by (4.23), we know that A1 ⊂ A1 and A1 is conformally log−2 ε ε 

invariant of index 2 + ε, (see Example 4.1). Thus, Mα(A1 ) andlog−2 ) ⊂ Mα(A1 
ε

by Proposition 4.6, Mα(A1) = {0}.ε

c) By (4.23), we have A1
0 ⊂ A1 ⊂ Aε1. Therefore, Mα(A0

1) ⊂ Mα(A1 
log−2 log−2 ) ⊂ 

Mα(A1 
ε) and if 1 < α < 2, by Proposition 4.6, Mult(X2

min 
−α, A0

1) = Mα(A1
0) and 

Mult(Xmin, A1) = Mα(A1). Note that in the case α = 2, since A0
1 is conformally 2−α ε ε 

invariant of index 2, we have M2(A1
0) = A1

0.  

a) By b) we know A1 is not confomally invariant of order α with α > 2 or log−2 

0 < α ≤ 1. If for any α such that 1 < α ≤ 2, A1 was conformally invariant of log−2 

index α we would have, by Theorem 4.4, A1 ⊆ A−α and this is a contradiction. log−2 

For example, if we consider f(z) = (1−
1 
z)2 log log 2e , which is in Alog

1 
−2 , but not 1−z 

in A−α for 1 < α ≤ 2. On the one hand, 

2e 2elog log log log 1−z 1−rlflA−α = sup (1 − |z|2)α ≥ sup (1 − r 2)α 

z∈D (1 − z)2 
r∈(0,1) (1 − r)2 

log log 1
2
−
e
r ≥ sup = ∞,  

r∈(0,1) (1 − r)2−α  

when 1 < α ≤ 2. On the other hand, 

2e 2e| log log | 1 log | log | + π 11−z 1−zlflA1 = 2 dA(z) ≤ 2 dA(z)
log−2 D |1 − z|2 log2

1−|z|2 D |1 − z|2 log2
1−|z|2 

log log |1
2
−
e
z| + π + π 1 ≤ 2 dA(z)

D |1 − z|2 log2
1−|z|2 

log log 1−|
4e
z|2 + π 1 1 1 ≤ 2 dA(z) + π 2 dA(z). 

D |1 − z|2 log2
1−|z|2 D |1 − z|2 log2

1−|z|2 

We only have to prove that the first integral is finite since the second integral can 
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be controlled by the first. Thus, using Theorem 1.6 we obtain

4e 4elog log + π 1 1 1 r log log + π 2π dt dr1−|z|2 1−r

2 dA(z) = 2
2

it|2D |1− z|2 log2
1−|z|2 π 0 log2

1−r
0 |1− re2

1 r log log + π21 1−
4e

r∼ dr
π 0 (1− r2) log2

1−
2
r2

∞1 log (log(2es) + π)= ds2π 2 s log2 s

< ∞,

where we have used the change of variable s = 2
(1−r2) .

4.5.2 Interpolation
Interpolating between conformally invariant Banach spaces of analytic functions is cer-
tainly meaningful and might lead to interesting examples. In view of 1), any pair of
weighted conformal invariant spaces of index α is compatible, see Definition 2.1. In
general, describing the intermediate spaces is a difficult task. We shall consider the
extreme case, that is, we are going to apply the complex interpolation method to the
couple (Xα

max, Xα
min), α > 0. Our result is essentially based on the following lemma

which is actually a well known result. Given a positive measurable function v on D recall
that we denote by Lp(v) = Lp(vdA), 1 ≤ p < ∞, and L∞(v) = v−1L∞(dA).

Lemma 4.8. Let γ > −1, δ > 0, p ∈ [1, ∞). For β > max{γ, δ}, f ∈ L1((1−|ζ|2)β),
and z ∈ D, define

Pβf(z) = (β + 1) f(w) (1− |w|2)β dA(w), Qβf(z) = Pβ((1− |ζ|2)f)(z).
D (1− wz)β+2

Then

a) Pβ is a bounded projection from L∞((1−|ζ|2)δ) onto A−δ, and from Lp ((1− |ζ|2)γ)
onto Ap

γ.

b) Qβ extends to a continuous bijection from A−δ−1 onto A−δ, from Ap onto Ap
γ−p,γ

when γ > p − 1, and from Ap
γ onto Bp,γ, when γ ≤ p − 1.

Proof. a) That Pβ is a bounded projection from Lp ((1− |ζ|2)γ) onto Ap follows byγ

Theorem 1.8 ( [54, Theorem 1.10]). Now, we will see that Pβ is a bounded projection
from L∞((1 − |ζ|2)δ) onto A−δ. Let f be a function in L∞((1 − |ζ|2)δ). Then using
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Theorem 1.6 we obtain  

lPβflA−δ = sup (1 − |z|2)δ|Pβ f(z)|
z∈D 

|f(w)|≤ (β + 1) sup (1 − |z|2)δ (1 − |w|2)β dA(w) 
z∈D D |1 − wz|β+2 

(1 − |w|2)β−δ 
≤ (β + 1)lflL∞((1−|ζ|2)δ ) sup(1 − |z|2)δ dA(w) 

z∈D D |1 − wz|β+2 

∼ lflL∞((1−|ζ|2)δ ) sup(1 − |z|2)δ(1 − |z|2)−δ 

z∈D 

= lflL∞((1−|ζ|2)δ ). 

Thus, we have seen Pβ is bounded. To see that it is also surjective we consider f ∈ A−δ 

nwith f(z) = n≥0 anz . Hence, if we see that Pβ f = f we are done. Given z ∈ K 
where K is a compact subset of D we have 

Pβ f(z) = (β + 1) f(w) (1 − |w|2)β dA(w)
D (1 − wz)β+2 f β + n + 1 n= (β + 1) f(w) w z n(1 − |w|2)β dA(w)
D n n≥0 

β + 1 1
2)β 

2π f 
it) β + n + 1 n −itn= (1 − r r f(re r e z n dt dr 

π 0 0 n n≥0 

1 f 2πβ + 1 n+1 β + n + 1 n it)e= (1 − r 2)β r z f(re −itn dt dr. 
π 0 n 0 n≥0 

The interchange of integration and summations is justified, because for fixed r ∈ (0, 1) 
and for all z ∈ K we can use Fubini’s theorem, since 

2π f 
it)| β + n + 1 |f(re r n|z|n dt < ∞. 

0 n n≥0 

Now, using the Taylor series of f we have 

1 f 
n+1 β + n + 1 n 

2π f 
mPβ f(z) = 

β + 1 (1 − r 2)β r z amr e it(m−n) dt dr 
π 0 n 0 n≥0 m≥0 

β + 1 1 f β + n + 1 f 2π 
n+1 n m= (1 − r 2)β r z amr e it(m−n) dt dr, 

π 0 n 0 n≥0 m≥0 

and noting that if m = n then 
� 

0
2π eit(m−n) dt = 0 and 

� 
0
2π eit(m−n) dt = 1 when m = n, 
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we obtain that  

2n+1 β + n + 1 
Pβ f(z) = 2(β + 1) 

1 f
(1 − r 2)β r anz n dr 

0 n n≥0 f β + n + 1 1 
n= 2(β + 1) (1 − r 2)β r 2n+1 dr anz 

n 0 n≥0 f β + n + 1 n= (β + 1) B(n + 1, β + 1)anz 
n n≥0 f 

= anz n  

n≥0  

= f(z), 

where B(x, y) is the Beta function and the interchanges of integration and summations 
are also justified by Fubini’s theorem. Thus, 

(β + 1) f(w) (1 − |w|2)β dA(w) = f(z), 
D (1 − wz)β+2 

and the integral converges uniformly for z in every compact subset of D. 

b) First, we will prove that 

(Qβ f)' = (β + 1)Pβ+1ζf. (4.24) 

We have 

Qβ f(z) = Pβ((1 − |ζ|2)f)(z) = (β + 1) f(w) (1 − |w|2)β+1 dA(w). 
D (1 − wz)β+2 

Therefore, 

wf(w)(Qβ f)'(z) = (β + 1)(β + 2) (1 − |w|2)β+1 dA(w) = (β + 1)Pβ+1ζf(z). 
D (1 − wz)β+3 

• The next step is to prove that Qβ is a bounded linear operator between the spaces in 
the statement. On the one hand, given f ∈ A−δ−1, we have 

lQβ flA−δ = sup (1 − |z|2)δ|Qβf(z)| = sup (1 − r 2)δM∞(r, Qβf) 
z∈D r∈(0,1)

where 
M∞(r, Qβf) = max |Qβ f(re it)|. 

t∈[0,2π) 

Now, noting that 

M∞(r, Qβ f) ≤ |Qβf(0)| + 
r 
M∞(s, (Qβf)') ds,

0 
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with 

|Qβf(0)| = (β + 1) f(w)(1 − |w|2)β+1 dA(w) |f(0)| ≤ lflA−δ−1 , 
D 

and by (4.24) 

M∞(s, (Qβf)') = max |(Qβf)'(se it)| = (β + 1) max |Pβ+1ζf(se it)|
t∈[0,2π) t∈[0,2π) 

lPβ+1ζflA−δ−1 lζflL∞((1−|ζ|2)δ+1) 
2)δ+1 2)δ+1(1 − s (1 − s

lflL∞((1−|ζ|2)δ+1) lflA−δ−1 = (1 − s2)δ+1 (1 − s2)δ+1 . 

Therefore, it follows that 

lQβ flA−δ ≤ sup (1 − r 2)δ |Qβ f(0)| + 
r 
M∞(s, Qβf) ds 

r∈(0,1) 0 

1 lflA−δ−1 sup (1 − r 2)δ 1 + 
r 

2)δ+1 ds 
r∈(0,1) 0 (1 − s

lflA−δ−1 . 

On the other hand, given f ∈ Apγ , γ ≤ p − 1 and using that 

|Qβf(0)| = (β + 1) f(w)(1 − |w|2)β+1 dA(w) |f(0)| lflAp , 
D γ 

by (4.24), which says that 

l(Qβf)' lAp
γ = (β + 1)lPβ+1ζflAp

γ lζflLp(1−|ζ|2)γ ) 

1 lflLp((1−|ζ|2)γ ) = lflAγ
p , 

p(γ + 1)
1 

we obtain that 

lQβflBp,γ = |Qβf(0)| + l(Qβ f)' lAp lflAp . 
γ γ 

If f ∈ Apγ and γ > p − 1, we will use the Littlewood-Paley formula, Theorem 1.7, to 
conclude that 

lQβ flp ∼ |Qf(0)|p + l(Qf)' lp lflAp .Ap Ap 
γγγ−p 

• We have already proved that Qβ is bounded between the spaces in the statement. 
Its injectivity is clear if we see that for f belongs to the spaces in the statement, and 
Qβf = 0, we have that all Taylor coefficients of f are zero. Given f as above, by (4.24), 
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(Qβ f)' = (β + 1)Pβ+1ζf but 

wf(w)
Pβ+1ζf(z) = (β + 2) (1 − |w|2)β+1 dA(w)

D (1 − wz)β+3 

1 2π f f∞ ∞
= 
β + 2 (1 − r 2)β+1 r 2 amr m e i(m−1)t β + n + 2 

r n e −int z n dt dr 
π 0 0 n m=0 n=0 

∞f β + n + 2 = (β + 2) an+1z nB(n + 2, β + 2) 
n n=0 f n + 1 n= 

∞
, (4.25) 

n=0 n + β + 3an+1z 

where the interchanges of integration and summations are justified by Fubini’s theorem 
as in the above part. Thus, if Qβ f = 0 then f is a constant and noting that 

Qβf(0) = (β + 1) f(w)(1 − |w|2)β+1 dA(w) = Cβf(0), 
D 

we conclude that f ≡ 0. So, Qβ is injective. 

• To see the surjectivity, note that (4.24) implies the following calculation. Whenever 
uζ−1 ∈ L∞((1 − |ζ|2)δ+1), or uζ−1 ∈ Lp ((1 − |ζ|2)γ ), we have 

−1 −1(β + 1)Pβ+1u = (β + 1)Pβ+1ζPβ+1ζ u = (Qβ Pβ+1ζ u)' , (4.26) 

where the second equality is due to (4.24). To prove the first one, given z ∈ K compact 
of D we have 

−1 µPβ+1(ζ 
−1 
u)(µ)(1 − |µ|2)β+1 

Pβ+1ζPβ+1ζ u(z) = (β + 2) dA(µ)
D (1 − µz)β+3 � w−1u(w)µ (1−wµ)β+3 (1 − |w|2)β+1 dA(w)

= (β + 2)2 D (1 − |µ|2)β+1 dA(µ)
D (1 − µz)β+3 ⎛ ⎞ 

(1−µz)β+3 (1 − |µ|2)β+1 

= (β + 2) w −1 u(w)(1 − |w|2)β+1 ⎝(β + 2) 
µ 

dA(µ)⎠ dA(w)
D D (1 − µw)β+3 

w= (β + 2) w −1 u(w)(1 − |w|2)β+1 
(1 − wz)β+3 dA(w)

D 

= Pβ+1u(z). 

wHere we have used that Pβ+1f = f for f(w) = (1−wz) and the interchange of the 
integrals is justified by Fubini’s theorem in the following way. If uζ−1 ∈ L∞((1−|ζ|2)δ+1), 
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using Theorem 1.6 we obtain  

(1 − |µ|2)β+1 |w−1u(w)|(1 − |w|2)β+1 
dA(w) dA(µ)

D |1 − µz|β+3 D |1 − wµ|β+3 

(1 − |w|2)β−δ 
≤ CK luζ−1lL∞((1−|ζ|2)δ+1) (1 − |µ|2)β+1 dA(w) dA(µ)

D D |1 − wµ|β+3 

(1 − |µ|2)β+1  
∼ CK luζ−1lL∞((1−|ζ|2)δ+1) 

D (1 − |µ|2)δ+1 dA(µ)  

< ∞. 

If uζ−1 ∈ Lp((1 − |ζ|2)γ ), using Theorem 1.6 and Hölder’s inequality we obtain 

(1 − |µ|2)β+1 |w−1u(w)|(1 − |w|2)β+1 
dA(w) dA(µ)

D |1 − µz|β+3 D |1 − wµ|β+3 ⎡ ⎤ 1 

p(1 − |w|2)(β+1− γ )q q ⎣ ⎦≤ CK luζ−1lLp((1−|ζ|2)γ ) (1 − |µ|2)β+1 
|1 − wµ|(β+3)q dA(w) dA(µ)

D D 

(1 − |µ|2)β+1 
∼ CK luζ−1lLp((1−|ζ|2)γ ) 2+γ dA(µ)

D p(1 − |µ|2) 
< ∞.  

Here, 1 + 1 = 1 and we have used that β + 1 − 2+γ > −1 for p ≥ 1 and β > γ. 
p q p 

Therefore, if f ∈ A−δ−1, or f ∈ Apγ with f(0) = 0, by (4.26) we have 

(β + 1)f = (QβPβ+1ζ 
−1 
f)' . 

Moreover, by (4.24) and (4.25), for n ≥ 1 we can see that Qβζ
n = cn,β ζ

n, with cn,β = 0 
this follows thanks to 

(Qβ ζ
n)' = (β + 1)Pβ+1ζζ

n = cn,β ζ
n−1 , 

and Qβ ζ
n(0) = 0. In particular, we have that the range of Qβ contains all polynomials 

of degree one. Thus, the range of Qβ contains all anti-derivatives of functions in A−δ−1, 
respectively in Apγ . Note that the range of Qβ also contains the constants since Qβ 1 is 

'a constant different from zero. Therefore, if f ∈ Apγ−p by Theorem 1.7 we have f ∈ Aγp 

zand f(z) = 
� 

0 f '(w) dw + f(0), so f is in the range of Qβ . In the same way, if f ∈ A−δ 

'by Theorem 1.3 we have f ∈ A−δ−1, so f is in the range of Qβ . Then the surjectivity 
of Qβ follows. 

Recall that for a compatible couple of Banach spaces (X, Y ) we denote by [X, Y ]θ, 
θ ∈ (0, 1), the corresponding complex interpolation space, see Section 2.4. 

1 
θTheorem 4.6. For 0 < θ < 1 if α > θ, then [Xα

max, Xα
min]θ = Aα −2, and if α ≤ θ, 

θ
1 α+1 

, Xmin , −2
θ θthen [Xα

max 
α ]θ = B . 
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Proof. We want to find [A−α−1, A1
α−1]θ, θ ∈ (0, 1). By Proposition 2.3, if θ ∈ (0, 1)

[L∞((1− |ζ|2)α+1), L1((1− |ζ|2)α−1)]θ = L θ
1 ((1− |ζ|2) 1−θ (α+1)+α−1)θ

θ
−2).

Since A−α−1 ⊂ L∞((1 − |ζ|2)α+1), Aα
1

−1 ⊂ L1 ((1− |ζ|2)α−1), it follows by Proposi-
tion 2.2 that for θ ∈ (0, 1)

[A−α−1, A1
α−1]θ ⊂ [L∞((1− |ζ|2)α+1), L1((1− |ζ|2)α−1)]θ = L θ

1 ((1− |ζ|2)α+1

= L θ
1 ((1− |ζ|2)α+1

θ
−2).

Moreover, using again Proposition 2.2, since [A−α−1, A1
α−1]θ ⊂ A−α−1, [A−α−1, A1

α−1]θ
1
θconsists of analytic functions in D, hence [A−α−1, A1

α−1]θ ⊂ Aα+1 −2. On the other hand,
α+1by Theorem 2.1 and Lemma 4.8, for β > max{α+ 1, − 2}

θ

we have that
θ

θPβ : [L∞((1− |ζ|2)α+1), L1((1− |ζ|2)α−1)]θ = L θ
1 ((1− |ζ|2)α+1 −2) → [A−α−1, Aα

1
−1]θ,

θθ
−2) → Ais bounded for all θ ∈ (0, 1). Since Pβ : L θ

1 ((1 − |ζ|2)α+1 1
is onto, weα+1 −2

θ
1
θobtain [A−α−1, A1

α−1]θ ⊃ Aα+1 −2. The fact that the norms on these two spaces are
θ

equivalent follows by the closed graph theorem, see Corollary 1.1.
Finally another application of Lemma 4.8 and Theorem 2.1 shows that Qβ is an invertible
linear operator from [A−α−1, A1

α−1]θ onto [Xα
max, Xα

min]θ for all θ ∈ (0, 1), hence the
1
θresult follows from applying Lemma 4.8 b) to the space Aα+1 −2.

θ

4.6 Derivatives, anti-derivatives and integration op-
erators

4.6.1 Spaces of derivatives and anti-derivatives
Let X be a conformally invariant space of index α > 0. We are interested in the spaces

′ ′D(X) = {f : f ∈ X}, A(X) = {f ∈ Hol(D) : f ∈ X}.

They are endowed with the norms

‖g‖D(X) = ‖G‖X , G(z) =
z

g(w) dw, ‖g‖A(X) = |g(0)|+ ‖g′‖X .
0

The norm on D(X) is actually equivalent to the standard one

‖g‖D(X),1 = inf ‖G+ c‖X ,
c∈C

where g, G are related as above. The following result shows some properties about these
spaces related to the conformal invariant property.
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Proposition 4.7. Let X be a conformally invariant space of index α > 0. Then the 
spaces D(X), A(X) satisfy 1), 2) and D(A(X)) = A(D(X)) = X. Moreover, 

α+1 ⊂ D(X) ⊂ Xmax(i) Xmin 
α+1 = A−α−1, and the inclusions are continuous. 

α−1 ⊂ A(X) ⊂ Xmax(ii) For α > 1, Xmin 
α−1 = A−α+1, and the inclusions are continuous. 

Proof. First we will prove that D(X), A(X) satisfy 1), 2). We will only treat the 
case D(X), for A(X) is analogous. By definition, D(X) ⊂ Hol(D). Now, it only 
remain to prove that the inclusion is continuous, but this is direct using the closed graph 
theorem, Theorem 1.1. If {fn}n≥1 ⊂ D(X) such that fn →D(X) f by definition we 

z zhave Fn →X F where Fn(z) = 
� 

0 fn(w) dw and F (z) = 
� 

0 f(w) dw. Thus, since X 
satisfies 1), Fn converges to F uniformly on compact subsets of D, so fn converges to 
f uniformly on compact subsets of D. To prove that D(X) and A(X) satisfy 2) it is 

'enough to observe that X satisfies 2). Then given f ∈ Hol(ρD) with ρ > 1, then f 
and F are in Hol(ρD) where F is as above. Therefore, applying Corollary 1.1 we obtain 
the result. 

z• D(A(X)) = X. Given f ∈ D(A(X)), then if F (z) = 
� 

0 f(w) dw we have 

lflD(A(X)) = lF lA(X) = lF ' lX = lflX . 

• A(D(X)) = X. Given f ∈ D(A(X)), using that X satisfies 1) 

lflA(D(X)) = |f(0)| + lf ' lD(X) = |f(0)| + lf − f(0)lX ∼ lflX . 

(i) First, to prove Xmin lD(X) < ∞;α+1 ⊂ D(X) it suffices to prove supϕ∈Aut(D) l (ϕ ')α+1 

see Section 4.4.1. Given ϕ(z) = λϕa(z) = λ z−a , we consider 1−az 

1 2α+2 
F (z) = 

z 
(ϕ ')α+1(w) dw = λα+1(1 − |a|2)α+1 

z 
dw 

0 0 1 − aw ⎡ ⎤ ⎡ ⎤(1−|a|2)α+1 

−λα+1 − (1 − |a|2)α+1 −λα+1 (ϕ ' )α 1−|a|2 
− (1 − |a|2)α+1 

(1−az)2α+1 a 1−az ⎣ ⎣ ⎦= ⎦ = .2α + 1 a 2α + 1 a 

Thus, given δ ∈ (0, 1) fixed, if |a| ≥ δ using that X satisfies 3) we obtain 

)α 1−|a|2 

l(ϕ ')α+1lD(X) 
(ϕa' 1−aζ − (1 − |a|2)α+1 

= lF lX = Cα 
a 

X 
Cα Cα≤ lWϕ

α 
a (1 + aζ)lX + l1lX

δ δ 
CαK ≤ (l1lX + lζlX ) + 

Cα l1lX . 
δ δ 

Now, if |a| < δ the problem appears when a tends to 0, but if we consider the function 
1 − 1(1−az)2α+1 

Ga(z) = 
a 
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which is in Hol(1 D), in view its Taylor series, Ga tends to (2α + 1)ζ when |a| → 0 in
δ 

Hol(1 
δ D) and by 2) we also have convergence in X. Therefore, there exists M > 0 such 

that if δ is small enough we have 

l(ϕ ')α+1lD(X) 
(1 − |a|2)α+1 

= lGalX < M, 2α + 1 
for all |a| < δ. 

zOn the other hand, if f ∈ D(X) and we define as above F (z) = 0 f(w) dw, then 
F ∈ X, so by Theorem 4.4 F ∈ A−α and, by Theorem 1.3, we obtain that f ∈ A−α−1. 

(ii) Given α > 1, as above, to prove that Xmin 
α−1 ⊂ A(X) we only need to prove that the 

condition supϕ∈Aut(D) l (ϕ ')α−1 lA(X) < ∞ is satisfied. Given ϕ(z) = λϕa(z) = λ z−a 
1−az 

we have 

l (ϕ ')α−1 lA(X) = |ϕ '(0)|α−1 + (α − 1)l(ϕ ')α−2ϕ '' lX 

1 ≤ 1 + C W α .ϕa 1 + aζ 
X 

Now, using that X satisfies 3), Lemma 4.3 and Theorem 1.6, we obtain 

1 1 1 
W α 
ϕa 1 + aζ 1 + aζ 1 + aζ 

X X A1 
α−2 

(1 − |z|2)α−2 
= dA(z) < ∞. 

D |1 + az| 
'Thus, Xmin ∈ X, so by Theorem 4.4 α−1 ⊂ A(X). On the other hand if f ∈ A(X) then f 

' f ∈ A−α and, by Theorem 1.3, we obtain f ∈ A−α+1 and we conclude the proof. 

The purpose of this section is to investigate the conformal invariance of D(X) and 
A(X). For the standard examples we have (see Theorem 1.3 and Theorem 1.7) 

D(A−γ ) = A−γ−1 , D(Apβ) = Apβ+p, p ≥ 1, β > −1, 

and 
A(A−γ ) = A−γ+1 , γ > 1, A(Aβ

p ) = Aβ
p 

−p, p ≥ 1, β > p − 1, 
or A(Apβ ) = Bp,β , p ≥ 1, β ≤ p − 1. In other words (assuming for the moment the 
assertions in Example 4.3), if X is any of the spaces listed above and α > 0 is its index 
of conformal invariance, then D(X) is conformally invariant of index α + 1 and when 
α > 1, A(X) is conformally invariant of index α − 1. 

It turns out that the result continues to hold for many other conformally invariant 
spaces. Surprisingly enough, this property is closely related to the behaviour on the 
spaces in question of the modified Cesàro C, operator, formally defined by 

f(w)Cf(z) = 
z 

dw, f ∈ Hol(D). 
0 1 − w 

Our result is as follows. 
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Theorem 4.7. Let X be a conformally invariant space of index α > 0, such that
polynomials are dense in X.

(i) D(X) is conformally invariant of index β > 0, if and only if β = α + 1 and
C ∈ B(X).

(ii) Assume that C ∈ B(X). Then A(X) is conformally invariant of index β > 0, if
and only if α > 1, β = α − 1, and IX − C is invertible.

Note that part (ii) implies the assertions in Example 4.3. Indeed, it is known that C
is bounded on Ap

β, p ≥ 1, β > −1 (use for example Theorem 1.7), and its resolvent set
consists of points λ ∈ C \ {0}, such that (1 − ζ)− 1 ∈ Ap

β (see [3], Theorem 5.2). Inλ

particular, I − C is invertible on Ap
β if and only if β + 2 > p. In this case, by part (ii) of

the above theorem Bp,β is conformally invariant with index β+2 − 1 (see Theorem 1.6).
p

Our argument involves two families of linear operators formally defined for a ∈ D by

f(w) 1Caf(z) =
z

dw, Taf(z) =
z

f(w)dw, z ∈ D, f ∈ Hol(D).
0 1− aw 1− az 0

(4.27)
Their relation to the modified Cesàro operator C is explained in the next two lemmas.

Lemma 4.9. Let σ ∈ {0, 1} and let X be conformally invariant of index α > σ, such
that polynomials are dense in X. For f ∈ Hol(D) and a ∈ D let

f(w) f(w)
T σf(z) = (1− z)−σ

z

dw, Ta
σf(z) = (1− az)−σ

z

dw.
0 (1− w)1−σ 0 (1− aw)1−σ

Then the following are equivalent:

i) T σ ∈ B(X).
ii) T σ ∈ B(X) for all a ∈ D and supa∈D ‖T σ‖B(X) < ∞.a a

iii) There exists δ ∈ (0, 1) such that T σ ∈ B(X) for all a ∈ D with δ ≤ |a| < 1 anda

supδ≤|a|<1 ‖T σ‖B(X) < ∞.a

i) ⇒ ii) :
Proof. For every f ∈ Hol(D) and a ∈ D we have

π1
Ta

σf(z) = Pa(eit)e−itRtT
σR−tf(z) dt, (4.28)2π −π

1−|a|2where Pa(eit) = |a−e
is the Poisson kernel at a; see Section 1.3. To see this, firstit|2

given z ∈ D, after a change of variable we get
−itz e z itRtf(w) f(μ)e

T σR−tf(z) = (1− z)−σ dw = (1− z)−σ dμ,
it0 (1− w)1−σ 0 (1− e μ)1−σ

so 
it f(μ)

e−itRtT
σR−tf(z) = (1− e z)−σ

z 
dμ.

itμ)1−σ0 (1− e
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Thus, we obtain 

π π z1 it)e 1 it f(µ)(e −itRtT σR−tf(z) dt = (e it)(1 − e z)−σ dµ dt Pa Pa it2π −π 2π −π 0 (1 − e µ)1−σ 

z π it1 it) (1 − e z)−σ 
= f(µ) Pa(e dt dµ

itµ)1−σ0 2π −π (1 − e
z π1 it)g(e= f(µ) Pa(e it) dt dµ,

0 2π −π 

where, the interchange of integrals is justified by Fubini’s theorem, since for fixed z ∈ D 

itπ z |1 − e z|−σ 
|f(µ)| dµ dt < ∞,

it−π 0 |1 − e µ|1−σ 

and fixed z, µ ∈ D g(b) = (1−bz)−σ 
is an analytic function in D. Therefore (1−bµ)1−σ 

π z 1 
Pa(e it)e −itRtT σR−tf(z) dt = f(µ)g(a) dµ 2π −π 0 

f(µ)= (1 − az)−σ
z 

dµ
0 (1 − aµ)1−σ 

= Taσf(z). 

If T σ ∈ B(X), then, since the polynomials are dense by Theorem 4.1, we can deduce 
it)e−itRtT σR−tthat t → Pa(e is strongly continuous on [−π, π]. To see this, let f ∈ X 

and fixing t1 ∈ [−π, π] we have to show that 

it)e −itRtT σR−tf − Pa it1 )e −it1 Rt1 T σR−t1 flXlim lPa(e (e = 0. 
t→t1  

−itRtT σR−t First, if we consider Gt = RtT σR−t and Gt 
1 = e , which are in B(X) and 

2 

lGt 
1lB(X) = lGtlB(X) ≤ sup lRtlB(X) lT σlB(X), 

t∈[−π,π] 

we have 

lPa(e it)G1 
t f − Pa(e it1 )G1 

t1 
flX = (1 − |a|2) Gt 

1f 
|eit − 

1 
a|2 − Gt

1 
1 
f 
|eit1 

1 
− a|2 

X 

1 1 1 ≤ (1 − |a|2)
|eit − a|2 G

1 
t f − G1 

t1 
f 

X 
+ (1 − |a|2) G1 

t1 
f 

|eit − a|2 − |eit1 − a|2 . 
X 

Since G1 
t1 

∈ B(X), the second part tends to 0 when t → t1 (for more details see 
the proof of Theorem 4.1), so we only have to prove that G1 

t f − G1 
t1 
f tends to 

X
0 when t → t1. But, by analogous calculations as above this is equivalent to prove 
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lGtf − Gt1 flX tends to 0 when t → t1. Thus, if we consider g = T σR−t1 f , which is 
in X since T σ and R−t1 are in B(X), we have 

lGtf − Gt1 flX = lRtT σR−tf − Rt1 T σR−t1 flX 

= lRtT σ(R−t − R−t1 )f − (Rt1 − Rt)T σR−t1 flX 

≤ sup lRtlB(X) lT σlB(X)l(R−t − R−t1 )flX + l(Rt − Rt1 )glX . 
t∈[−π,π] 

Moreover, by Theorem 4.1 t → Rt is strongly continuous in [−π, π]. Hence, we have 
that l(R−t − R−t1 )flX and l(Rt − Rt1 )glX tends to 0 when t → t1. Therefore 

it)e−itRtT σR−tt → Pa(e is strongly continuous on [−π, π]. Hence for f ∈ X the right 
hand side of (4.28) becomes a Bochner integral, see Section 2.7. Thus 

π 
Ta
σf = 1 

Pa(e it)e −itRtT σR−tf dt, f ∈ X, a ∈ D,2π −π 

and 
π 

lTaσflX ≤ 
1 

Pa(e it)lRtT σR−tflX dt ≤ ( sup lRtlB(X))2lT σlB(X)lflX ,2π −π t∈[−π,π] 

for all f ∈ X and a ∈ D.  

ii) ⇒ iii) :  

iii) ⇒ i) :  
It is trivial.  

Assume that there exists δ ∈ (0, 1) such that {Taσ : δ ≤ |a| < 1} is 
bounded in B(X). The boundedness of T σ will follow directly from the closed graph 
theorem once we show that T σf ∈ X, whenever f ∈ X. To this end, we verify that 
DT σ = {f ∈ X : T σf ∈ X}, is both closed and dense in X. 
To prove that DT σ is closed, we use the equality 

1 rzf(srz)(T σf)r(z) = (1 − rz)−σ ds = rT rσfr(z). (4.29)
0 (1 − srz)1−σ 

Let {fn}n≥1 be a sequence in DT σ , f ∈ X with lfn − flX → 0. Given ε > 0, choose 
nε ≥ 1, such that lfn − fmlX < ε, n,m > nε. For such m, n use Theorem 4.1 to find 
r = r(m, n) ∈ (δ, 1), with 

lT σfn − (T σfn)rlX < ε, lT σfm − (T σfm)rlX < ε. 

By another application of Theorem 4.1, there exists c > 0, independent of m, n, r such 
that l(fn)r − (fm)rlX ≤ clfn − fmlX < cε. Thus, by (4.29) 

lT σfn − T σfmlX = lT σfn − (T σfn)r + (T σfn)r − (T σfm)r + (T σfm)r − T σfmlX 

< 2ε + l(T σfn)r − (T σfm)rlX = 2ε + rlTrσ(fn)r − Trσ(fm)rlX 

≤ 2ε + c sup lTρσlB(X)lfn − fmlX < (2 + c sup lTρσlB(X))ε, 
ρ∈(δ,1) ρ∈(δ,1) 
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i.e. {T σfn}n≥1 is a Cauchy sequence in X. Since T σfn(z) → T σf(z), z ∈ D, we 
obtain that f ∈ DT σ , that is, DT σ is closed. 
To verify that DT σ is dense in X, set 

  1 
D0 = {f ∈ ∪ρ>1Hol(ρD) : f(1) = 0} , D1 = f ∈ ∪ρ>1Hol(ρD) : f(w) dw = 0 ,

0 

and observe that if f ∈ Dσ, then T σf ∈ ∪ρ>1Hol(ρD) ⊂ X, i.e. f ∈ DT σ . We claim 
that Dσ is a dense subspace of X. Indeed, if l ∈ Dσ 

⊥, and g ∈ ∪ρ>1Hol(ρD), then if 
σ = 0, 

l(g) = l(g(1) + g − g(1)) = l(1)g(1), 

and similarly, if σ = 1, 

1 1 1 
l(g) = l g(w)dw + g − g(w)dw = l(1) g(w)dw. 

0 0 0 

If l(1) = 0 we can see in both cases that the restriction of l to the bounded set 
{(ϕ ')α : ϕ ∈ Aut(D)} ⊂ X is unbounded: if ϕa(z) = z−a we have, for σ = 0 1−az 

(1 − |a|2)α (1 − r2)α 
sup |l(ϕ ' )| = |l(1)| sup ≥ |l(1)| sup = ∞,a |1 − a|2α |1 − r|2α 
a∈D a∈D r∈(0,1) 

and for σ = 1 (recall that α > σ) 

1 (1 − |a|2)α (1 − |a|2)α 1 sup |l(ϕ ' )| = |l(1)| sup dw = |l(1)| supa
a∈D a∈D 0 (1 − aw)2α

a∈D |a|(2α − 1) (1 − a)2α−1 − 1 

(1 − r2)α 1 ≥ |l(1)| sup = ∞, 
r∈( 12 ,1) r(2α − 1) (1 − r)2α−1 − 1 

which is a contradiction (|l ((ϕ ')α) | ≤ lllX1 l(ϕ ')αlX ). Hence l(1) = 0 which implies  
that l = 0 since it annihilates all polynomials which are dense.  
Finally, to see that the graph of T σ is closed, assume lfn −flX → 0, lT σfn −glX → 0,  
with fn, f, g ∈ X. Then, since T σfn(z) → T σf(z), z ∈ D we conclude T σf = g.  

Lemma 4.10. Let X be conformally invariant of index α > 1 and such that polynomials 
are dense in X, and assume that C ∈ B(X). Then IX − C is invertible if and only if 
Ta ∈ B(X) for all a ∈ D and supa∈D lTalB(X) < ∞. 

Proof. With the notation in Lemma 4.9 we have Ta = Ta 
1 , a ∈ D. We will prove the 

identity 
T 1Cf = T 1f − Cf = CT 1f, f ∈ Hol(D). 
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Using integration by parts we obtain 

z z w1 1 f(µ)
T 1Cf(z) = Cf(w) dw = (1 − µ) dµ dw 1 − z 0 1 − z 0 0 

z zz f(w) 1 wf(w)= dw − dw1 − z 0 1 − w 1 − z 0 1 − w 
1 f(w)= 

z 
f(w) dw − 

z 
dw1 − z 0 0 1 − w 

= T 1f(z) − Cf(z), 

and 

1 f(w)
T 1f(z)−Cf(z) = 

z 
f(w) dw − 

z 
dw1 − z 0 0 1 − w 

z z z w1 1 1 = f(w) dw − f(w) dw + f(µ) dµ dw 1 − z 0 1 − z 0 0 (1 − w)2 0 

z 1 w f(µ) dµ1−w 0= 
0 1 − w 

dw  

= CT 1f(z).  

From these identities we deduce 

(IHol(D) + T 1)(IHol(D) − C) = (IHol(D) − C)(IHol(D) + T 1) = IHol(D). (4.30) 

If IX −C is invertible, then by (4.30) it follows that (IX −C)−1 = IX +T 1. In particular, 
T 1 ∈ B(X), and by Lemma 4.9, {Ta : a ∈ D} is bounded in B(X). Conversely, if 
{Ta : a ∈ D} is bounded in B(X), by Lemma 4.9 we have that T 1 ∈ B(X), and by 
(4.30) we obtain IX + T 1 = (IX − C)−1. 

Proof of Theorem 4.7. 
(i) Assume that D(X) is conformally invariant of index β > 0. Then 

sup l(ϕ ')βlD(X) < ∞. 
ϕ∈Aut(D) 

By Proposition 4.7, D(X) is continuously contained in A−α−1, hence 

sup l(ϕ ')β lA−α−1 < ∞, 
ϕ∈Aut(D) 

which implies that β ≤ α + 1. On the other hand, 

sup l((ϕ ')α)' lD(X) = sup l(ϕ ')α − (ϕ ')α(0)lX sup l(ϕ ')αlX < ∞, 
ϕ∈Aut(D) ϕ∈Aut(D) ϕ∈Aut(D) 

and, by Theorem 4.4, D(X) is continuously contained in A−β , hence 

sup l((ϕ ')α)' lA−β < ∞, 
ϕ∈Aut(D) 
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which implies α + 1 ≤ β. To see this, if β < α + 1, we can consider ϕ(z) = λϕa(z) = 
λ a−z 

1−az , hence 

sup l((ϕ ')α)' lA−β = sup sup(1 − |z|2)β|((ϕ ')α)'(z)|
ϕ∈Aut(D) ϕ∈Aut(D) z∈D 

≥ sup sup (1 − r 2)β |((ϕ ' )α)'(r)|a
−1<a<1 0<r<1

≥ sup (1 − r 2)β|((ϕ ' )α)'(r)|r
0<r<1

2αr = sup 2)α+1−β0<r<1 (1 − r
= ∞. 

Therefore, with both inequalities at hand we obtain β = α + 1. 
a−zFor ϕ = λϕa ∈ Aut(D), with ϕa(z) = 1−az , as above, and f ∈ X we have 

= W α+1 ' ' ((ϕ ')α)' 
(W αf)' f + ((ϕ ')α)' f ◦ ϕ = W α+1f + W αf. ϕ ϕ ϕ ϕ(ϕ')α 

2aα ϕ f(z)Now, using that ((
(
ϕ
ϕ

1

1
)
)
α

α
)
(
1

z
(
) 
z) = 1−az and (CaWϕ

αf)'(z) = W 
1

α 

−az the above equality can be 
rewritten as 

W α+1 ' f = (W αf)' − 2aα(CaW αf)' . (4.31)ϕ ϕ ϕ 

Replace f ∈ X by Wϕ
α 

−1 f (recall that Wϕ
α is an invertible operator, see Proposi

tion 4.1 b)) to obtain 

W α+1(W α ' f)' 
ϕ ϕ−1 f)' = f − 2aα(Ca . 

Since D(X) is conformally invariant of index α + 1, 

lW α+1(W α = lW α 
ϕ ϕ−1 f)' lD(X) l(Wϕ

α 
−1 f)' lD(X) ϕ−1 f − Wϕ

α 
−1 f(0)lX lflX , 

the left hand side stays bounded in D(X) when ϕ ∈ Aut(D) and f ∈ X with lflX ≤ 1. 
This implies that, setting δ ∈ (0, 1), l(Caf)' lD(X) stays bounded when ϕ, f are as above 
and δ ≤ |a| < 1. This can be seen as follows 

1 ' − W α+1l(Caf)' lD(X) = lf (Wϕ
α 

−1 f)' lD(X)2α|a| ϕ 

1 ' lD(X) + lW α+1≤ lf (Wϕ
α 

−1 f)' lD(X) lflX .2αδ ϕ 

Hence, 
lCaflX = l(Caf)' lD(X) lflX 

i.e. supδ≤|a|<1 lCalB(X) < ∞. By Lemma 4.9 with σ = 0 we obtain C ∈ B(X). 
Conversely, if C is bounded on X, use again Lemma 4.9 with σ = 0, to conclude 
that the second term on the right hand side of (4.31) stays bounded in D(X) when 
ϕ ∈ Aut(D) and f ∈ X, lfl ≤ 1, which implies that lWϕ

α+1lB(D(X)) stays bounded 
when ϕ ∈ Aut(D). 
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(ii) Assume that A(X) is conformally invariant of index β > 0 and that C ∈ B(X). 
If α ≤ 1, by direct integration we will see that A(X) is continuously contained in 
the growth class Alog from Example 4.2. The proof of this fact is analogous to the 
proof of Theorem 1.3, but this theorem does not include these cases. Let α ≤ 1 and 

' ' iθf ∈ A(X), then f ∈ X, hence by Theorem 4.4 f ∈ A−α, so for z = re ∈ D, using 
Proposition 4.7, we obtain 

|f(z)| = 
z 
f '(w) dw + f(0) ≤ 

r 
|f '(ρeiθ)| dρ + lflA(X)

0 0 
1 ≤ lf ' lA−α 

r 
dρ + lflA(X). 

0 (1 − ρ)α 

Thus, as α ≤ 1 we have f ∈ Alog. But then, we can verify that 

sup l(ϕ ')β lA(X) = ∞, 
ϕ∈Aut(D) 

which is a contradiction, see Example 4.2. Thus, α > 1. The proof of the equality 
β = α − 1 is analogous to the corresponding argument in the proof of (i). Assume that 
A(X) is conformally invariant of index β > 0. Then by Proposition 4.7 

sup l(ϕ ')β lA−α−1 ≤ sup l(ϕ ')β lA(X) < ∞, 
ϕ∈Aut(D) ϕ∈Aut(D) 

zwhich implies that β ≤ α − 1. On the other hand, if Φϕ(z) = 
� 

0 (ϕ ')α(w) dw, we have 

sup lΦϕlA(X) = sup l(ϕ ')αlX < ∞, 
ϕ∈Aut(D) ϕ∈Aut(D) 

and, by Theorem 4.4, A(X) is continuously contained in A−β , hence 

sup lΦϕlA−β < ∞, 
ϕ∈Aut(D) 

which implies α − 1 ≤ β. To see this, if β < α − 1, we can consider ϕ(z) = λϕa(z) = 
λ a−z 

1−az , hence 

sup lΦϕlA−β = sup sup(1 − |z|2)β|Φϕ(z)| 
ϕ∈Aut(D) ϕ∈Aut(D) z∈D  

≥ sup sup (1 − r 2)β|Φϕa (r)|
−1<a<1 0<r<1

≥ sup (1 − r 2)β|Φϕr (r)|
1 
2 <r<1 

≥ 2α 
1 
− 1 

sup (1 − r 2)β+α 1 
1 (1 − r2)2α−1 − 1 
2 <r<1 

= ∞. 

Therefore, from these inequalities we obtain β = α − 1. 
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The remaining part of the proof is similar to the above as well. For a function f ∈ A(X), 
a−zϕ = λϕa ∈ Aut(D), with ϕa(z) = 1−az and ϕ−1 = µϕb, we write 

(W α−1f)' = W α ' f + ((ϕ ')α−1)'[f ◦ ϕ − f(0)] + f(0)[(ϕ ')α−1]' ϕ ϕ . 

(ϕ−
1 

1)1 , ϕ '' −(ϕ−1)11 2bUsing that ϕ ' ◦ ϕ−1 = ◦ ϕ−1 = and (ϕ−1)11(z) = we obtain [(ϕ−1)1]3 (ϕ−1)1(z) 1−bz 

W α ◦ ϕ−1)α−2(ϕ '' ϕ−1 ((ϕ ')α−1)'(f ◦ ϕ − f(0)) = (α − 1)[(ϕ−1)']α(ϕ ' ◦ ϕ−1)(f − f(0)) 
(ϕ−1)'' 

= −(α − 1) (f − f(0))(ϕ−1)' 

= −2b(α − 1)f − f(0) 
1 − bζ 

' = −2b(α − 1)Tbf . 

Hence, using Wϕ
αWϕ

α 
−1 f = f , for all f ∈ A(X), the above equality becomes 

(W α−1f)' = W α ' ' 
ϕ ϕ f − 2b(α − 1)Wϕ

αTbf + f(0)((ϕ ')α−1)' . (4.32) 

Let f(0) = 0 and apply Wϕ
α 

−1 on both sides to obtain 

' ' Wϕ
α 

−1 (Wϕ
α−1f)' = f − 2b(α − 1)Tbf . 

By assumption A(X) is conformally invariant of index α − 1 so 

lWϕ
α 

−1 (W α−1f)' lX l(W α−1f)' lX = lW α−1flA(X) lflA(X).ϕ ϕ ϕ 

Hence, the left hand side stays bounded in X when ϕ ∈ Aut(D), and lflA(X) ≤ 1, 
f(0) = 0, and so does the first term on the right. Since the condition on f is equivalent 
to lf ' lX ≤ 1 it follows that setting δ ∈ (0, 1), Tb ∈ B(X), δ ≤ |b| < 1. To see 

zthis claim, let g ∈ X and G(z) = 0 g(w) dw, then G ∈ A(X) with G(0) = 0 and 
lGlA(X) = lglX . Thus 

1 lTbglX = lTbG ' lX = − Wϕ
α 

−1 (Wϕ
α−1G)' lX2b(α − 1)lG ' 

≤ 
1 lGlA(X) + lWϕ

α 
−1 (Wϕ

α−1G‘)' lX2δ(α − 1) 
lglX . 

Therefore, supδ≤|b|<1 lTblB(X) < ∞. Thus by Lemma 4.9 with σ = 1 and Lemma 4.10, 
IX − C is invertible on X. To see the converse, first we can use Proposition 4.7 (ii) 
to conclude that |Wϕ

α−1f(0)| and |f(0)|l((ϕ ')α−1)' lX stay bounded when ϕ ∈ Aut(D) 
and lflA(X) ≤ 1 since 

|W α−1f(0)| = (1 − |ϕ(0)|2)α−1|f(ϕ(0))| ≤ lflA−α+1 lflA(X),ϕ 
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and 

|f(0)|l((ϕ ')α−1)' lX ≤ lflA(X)l(ϕ ')α−1lA(X) lflA(X)l(ϕ ')α−1lXmin lflA(X). 
α−1 

If C ∈ B(X), and IX −C is invertible, then by Lemma 4.10 we have supa∈D lTalB(X) < ∞ 
and we conclude that the right hand side of (4.32) stays bounded in X when ϕ ∈ Aut(D) 
and lflA(X) ≤ 1, this can be seen as following 

' ' l(W α−1f)' lX = lW αf − 2b(α − 1)W αTbf + f(0)((ϕ ')α−1)' lXϕ ϕ ϕ 

≤ lWϕ
αf ' lX + 2(α − 1)lW αTbf ' lX + |f(0)|l((ϕ ')α−1)' lXϕ 

lf ' lX + 2(α − 1)lTbf ' lX + lflA(X) 

lflA(X). 

Thus for f ∈ A(X) 

lWϕ
α−1flA(X) = |Wϕ

α−1f(0)| + l(W α−1f)' lX lflA(X).ϕ 

Hence Wϕ
α−1 ∈ B(A(X)) and supϕ∈Aut(D) lWϕ

α−1lB(A(X)) < ∞, which completes the 
proof. � 

4.6.2 Integration operators 
We shall apply our results to investigate a class of integration operators containing the 
modified Cesàro operator from the previous paragraph. These operators are formally 
defined by 

Tgf(z) = 
z 
f(w)g '(w)dw, f ∈ Hol(D),

0 

where the symbol g ∈ Hol(D) is fixed. There is a vast literature on the subject con
cerning boundedness and compactness of such operators, for instance in [7] it is proved 
that for a large class of weights, Tg is bounded on Ap if and only if g is in the Bloch w 
space. More recently, even their spectral properties have been studied (see for exam
ple, [1], [3] and the references therein). Here we shall only discuss boundedness in the 
general context of conformal invariant Banach spaces of analytic functions. We start 
with a simple result whose statement is self-explanatory. However, in many cases it 
turns out to be an important observation related to the characterization of the symbols 
g which generate bounded operators Tg. We shall use the notations from the previous 
paragraph for arbitrary Banach spaces satisfying 1) and 2). 

Proposition 4.8. Let X, Y be Banach spaces satisfying 1) and 2). Then Tg : X → Y is 
'bounded if and only if g ∈ Mult(X, D(Y )), and the norms lTglB(X,Y ), lg ' lMult(X,D(Y ))

are equal. 

Proof. By the closed graph theorem Tg ∈ B(X, Y ) if and only if Tgf ∈ Y whenever 
f ∈ X, or equivalently, g ' f ∈ D(Y ) whenever f ∈ X, in fact 

lTglB(X,Y ) = sup lTgflY = sup lg ' flD(Y ) = lg ' lMult(X,D(Y )). 
lflX ≤1 lflX ≤1 
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Remark 4.5. If X, D(Y ) are conformally invariant of indices α > 0, respectively β > α 
and Tg ∈ B(X, Y ), then by Proposition 4.2 it follows that the integration operators 

zgenerated by gϕ = 0 Wϕ
β−αg '(w)dw, ϕ ∈ Aut(D) are uniformly bounded in B(X, Y ) 

' lTgϕ lB(X,Y ) = lgϕlMult(X,D(Y )) = lWϕ
β−α g ' lMult(X,D(Y )) 

lg ' lMult(X,D(Y )) = lTglB(X,Y ). 

We shall be concerned with the case when X = Y . The following result provides a 
necessary condition for boundedness of such operators. 

Corollary 4.2. Let X be conformally invariant of index α > 0 such that polynomials 
are dense in X. Assume also that C ∈ B(X). If Tg ∈ B(X), then there exist c, δ > 0 
such that for all λ ∈ C, |λ| ≤ δ, and all ϕ ∈ Aut(D), exp(λ(g ◦ ϕ − g ◦ ϕ(0))) ∈ X, 
with 

l exp(λ(g ◦ ϕ − g ◦ ϕ(0)))lX ≤ c. 

Proof. By Theorem 4.7, D(X) is conformally invariant of index α+1. Then Remark 4.5 
applies and we obtain that the family {Tgϕ : ϕ ∈ Aut(D)} is bounded in B(X), where 

Tgϕ f(z) = 
z 
f(w)Wϕ

1 g '(w)dw = 
z 
f(w)(g ◦ ϕ)'(w)dw, z ∈ D, f ∈ X. 

0 0 

Choose δ > 0 such that 

1 
δlTgϕ lB(X) < ϕ ∈ Aut(D).2 , 

Differentiating and solving an ordinary linear differential equation of first order we obtain 
that the unique solution fλ of 

f − λTgϕ f = 1, 

is given by fλ = exp(λ(g ◦ ϕ − g ◦ ϕ(0))). Now for |λ| < δ, IX − λTgϕ is invertible (see 
Proposition 2.1) with l(IX − λTgϕ )−1lB(X) < 2, so that, 

lfλlX = l(IX − λTgϕ )−11lX < 2l1lX , 

and the result follows. 

The idea of exponentiating via the resolvents of Tg is due to Pommerenke [73]. When 
X = H2, one can use it to prove the John-Nirenberg inequality for BMO (see [49]). In 
the general context considered here, necessary condition for boundedness of Tg provided 
by Corollary 4.2 is probably not sufficient. It would be a problem of interest (but probably 
difficult) to find a condition that is necessary and sufficient for boundedness of Tg in this 
context. 



5 Invertible and isometric weighted
composition operators 

5.1 Introduction 

In this chapter, we focus on abstract Banach spaces of analytic functions on general 
bounded domains that satisfy certain axioms. The chapter is based on the reference [68]. 
Our goal is to study the properties of weighted composition operators in a unified way 
by working with general Banach spaces of analytic functions that satisfy only a handful 
of axioms while still obtaining that same conclusions as in the known special situations, 
thus covering many cases in one stroke. Recall that a weighted composition operator 
(WCO) WF,φ is defined formally by the formula 

WF,φf = F (f ◦ φ) = MF Cφf. 

See Section 2.5. We should note several papers that have guided by a similar philosophy, 
for example, [13], [23], [35], [57]. 

The first step towards understanding the spectrum of an operator consists in un
derstanding its invertibility. Since a non-trivial weighted composition operator (one for 
which φ  ≡ const and F  ≡ 0) is injective, as was noted in Section 2.3, it is an invertible 
operator if and only if it is surjective. Two general theorems regarding invertibility were 
proved in [13], assuming different sets of five axioms that the space should satisfy. The 
main result of this chapter, Theorem 5.1, proves a more general result under slightly 
modified axioms that seem easier to verify than those in [13]. 

Isometries of various spaces defined in terms of derivatives were characterized in 
[56]. This had been done earlier in [31] for the quotient Bloch space, identified with 
{f ∈ B : f(0) = 0}, and all isometries turn out to be WCO. However, in the true Bloch 
space B there are more isometries so it is still a question of interest to characterize all 
isometric WCO on B. In the special case when WF,φ is a composition operator (F ≡ 1) 
the isometries were characterized in two different ways in [34] and [67]. The case 
of isometric multipliers (φ(z) = z) is simpler and was covered in [4]. Theorem 5.2 
bellow characterizes the surjective isometries among the WCOs on a rather general class 
of functional Banach spaces with a translation-invariant seminorm. The results include 
various cases that, to the best of our knowledge, were not covered before in the literature. 

99  



1005.2. Surjective WCOs on functional Banach spaces

5.2 Surjective WCOs on functional Banach spaces

5.2.1 A set of axioms
The axioms considered in this chapter will be slightly changed with respect to [13] in
order to include some new spaces, notably the Bloch space, BMOA, and Korenblum-
type spaces. For instance, in [13] one axiom considered in the conditions of Theorem 5 is
the density of the polynomials that here will be not assumed. This change is fundamental
since the class of admissible spaces will be much wider, yet at the same time the proofs
will be notably shorter.

Here we will consider general Banach spaces of analytic functions on a bounded
domain Ω ⊂ C. We shall write Hol(Ω) for the algebra of functions analytic in Ω. Of
course, the case of main interest is Ω = D, the unit disc.

We will consider arbitrary Banach spaces X ⊂ Hol(Ω) that satisfy the following
axioms:

• A1: All point evaluation functionals lz are bounded on X.

• A2: 1 ∈ X, where 1(z) ≡ 1.

• A3: Whenever f ∈ X, the function ζf is also in X, where ζ(z) = z.

• A4: For every u ∈ H∞(Ω) that does not vanish in Ω and every f ∈ X, if fun ∈ X
for all n ∈ N = {1, 2, 3, . . .}, then fuα ∈ X for some positive non-integer value α.

• A5: Each automorphism of Ω induces a bounded composition operator in X.

The first axiom is essentially equivalent to the requirement that the space be Banach as
it shows that convergence in norm implies uniform convergence on compact subsets of
Ω. Also, this allows the use of the closed graph theorem to show that Axiom A3 implies
that the shift operator is bounded on X.

Recall that a function u is said to be a pointwise multiplier of X if uf ∈ X for all
f ∈ X; we write u ∈ Mult(X) to denote this. See Section 2.8. Thus, A3 can be
rephrased by saying that the identity function ζ ∈ Mult(X). Together with Axiom A2,
this shows that the space X contains the polynomials.

Axiom A4 may not look so natural at first sight but can be explained as follows.
Axiom A1 implies that each pointwise multiplier is a bounded function analytic in Ω.
However, the converse is false in many spaces. For example, for the Bloch space B of
the disc, it is well known that u ∈ Mult(B) if and only if u ∈ H∞ and

2sup(1− |z|2) log ′(z)| < ∞ . (5.1)
z∈D 1− |z|2 |u

This was proved in several papers by different authors around 1990; see, for exam-
ple, [26]. The situation is more complicated in the Dirichlet space where other conditions
have to be added to the boundedness assumption on u; we refer the reader to [87]. The
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spaces of the disc for which Mult(X) = H∞ have been characterized in [13] in terms
of a domination property.

In view of the above, assuming the condition Mult(X) = H∞(Ω) (that is: every
bounded analytic function in Ω is a multiplier of X into itself) would not provide a
remedy as this would not cover the Bloch or the Dirichlet space. The next step would
be to think of a weaker condition, assuming that every bounded non-vanishing function
could be “compressed” in order to be made into a multiplier:

• For every u ∈ H∞(Ω) that does not vanish in the disc, fuα ∈ X for some
non-integer value α > 0.

However, we can check that again this property is not satisfied in the Bloch space.
Indeed, let v ∈ H∞ such that

1sup(1− |z|2) log ′(z)| = ∞,
z∈D 1− |z|2 |v

i.e. v /∈ Mult(B). Then, there exists f ∈ B such that

sup(1− |z|2)|(vf)′(z)| = ∞.
z∈D

Thus, if we consider u = v + 2‖v‖H∞ , we observe that the function u ∈ H∞ does not
vanish in the unit disc. Indeed,

3‖v‖H∞ ≥ |u(z)| ≥ 2‖v‖H∞ − |v(z)| ≥ ‖v‖H∞ , z ∈ D.

Therefore, for all α > 0

|(fuα)′(z)| = αuα−1(z)u′(z)f(z) + uα(z)f ′(z)
1≥ 3‖v‖α−1 |αv′(z)f(z) + v(z)f ′(z) + 2‖v‖H∞f ′(z)|H∞

1= 3‖v‖α−1 |αv′(z)f(z) + αv(z)f ′(z) + 2‖v‖H∞f ′(z)|H∞
′(z) + (1− α)v(z)f

1≥ 3‖v‖H
α−

∞
1 (α|(fv)′(z)| − |α − 1||v(z)||f ′(z)| − 2‖v‖H∞ |f ′(z)|)

1 1≥ 3α‖v‖α−1 |(fv)′(z)| − (|α − 1|+ 2)‖v‖α ′(z)|.H∞ |fH∞ 3
Thus,

sup(1− |z|2)|(fuα)′(z)| = ∞.
z∈D

Therefore, we have that fuα does not belong to B for any α > 0.
Nevertheless, the condition above can be weakened further:

• For every u ∈ H∞(Ω) that does not vanish in the disc and for every f ∈ X, if
fu ∈ X then fuα ∈ X for some non-integer value α > 0.

It turns out that this property is satisfied in B but it is not obvious how to verify it for
the minimal analytic Besov space B1. However, one can weaken the above requirement
a little more, thus formulating our Axiom A4. It turns out that it is fulfilled in most
“reasonable” spaces of the disc.
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5.2.2 Spaces that satisfy our axioms
We first review a partial list of spaces that satisfy all of the above axioms:

• H∞, the (Hardy) space of all bounded analytic functions in D, equipped with the
norm ‖f‖∞ = supz∈D |f(z)|, and the disc algebra A = H∞ ∩ C(D), its subspace
with the same norm.

• The standard Hardy spaces Hp, 1 ≤ p < ∞; see Section 1.4.

• The weighted Bergman spaces Ap
β, 1 ≤ p < ∞, −1 < β < ∞; see Section 1.5.

• The general mixed norm spaces H(p, q, β), 0 < p, q ≤ ∞, 0 < β < ∞; see
Section 1.5.2.

• The Korenblum spaces (growth spaces) A−γ, γ > 0; see Section 1.9.

• The weighted Bloch spaces Bβ, β > 0, defined as the set of all f ∈ Hol(D) such
that

‖f‖Bβ = |f(0)|+ sup(1− |z|2)β|f ′(z)| < ∞.
z∈D

Of course, this scale includes the standard Bloch space (see Section 1.8), obtained
for the value β = 1.

• The logarithmic Bloch spaces Blogγ , γ ∈ R, where

2‖f‖Blogγ = |f(0)|+ sup(1− |z|2) logγ |f ′(z)| < ∞.
z∈D 1− |z|2

(For γ = 1, the reader will recognize the familiar condition (5.1), which is part of
the motivating for studying these spaces while the value γ = 0 gives the standard
Bloch space.)

• The weighted Besov spaces Bp,β with 1 ≤ p < ∞ and −1 < β < ∞ with the
norm

‖f‖Bp,α = |f(0)|+ ‖f ′‖Ap , f ∈ Hol(D);
β

see Section 1.6. This includes the conformally invariant analytic (diagonal) Besov
spaces Bp,p−2, 1 < p < ∞; a further special case p = 2 yields the Dirichlet space.

• The minimal Besov space B1 which can be defined in terms of atomic decom-
position (infinite sums of disc automorphisms with �1 coefficients) but it is more

′′conveniently seen as the space of all analytic functions in D such that f ∈ A1,
equipped with the norm

‖f‖B1 = |f(0)|+ |f ′(0)|+ |f ′′(z)| dA(z) .
D
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• The space BMOA of analytic functions of bounded mean oscillation, defined by 

lflBMOA = |f(0)| + sup lf ◦ ϕa − f(a)lH2 < ∞, 
a∈D 

a−zwhere ϕa(z) = 1−az is the standard disc automorphism which is an involution. It 
is convenient to use the following equivalent norm in BMOA 

1 

lfl* = |f(0)| + sup |f '(z)|2(1 − |ϕa(z)|2) dA(z) 
2 

; 
a∈D D 

see [50, Theorem 6.2]. 

Now, we check, or give several indications to show, that the spaces from the above 
list fulfill the five axioms A1-A5. 

For all of the spaces listed, Axiom A1 is satisfied in view of the appropriate and 
well-known pointwise estimates (actually, they are required in order to show that the 
space in question is complete). For Hardy and Bergman spaces, as well as for the Bloch 
space, see Section 1.4, Theorem 1.5 and Proposition 1.4. For analytic Besov spaces, 
see [55]. Just to illustrate some arguments, for f ∈ Bβ and z = reit ∈ D, the standard 
pointwise estimate: 

1 |f(z) − f(0)| ≤ 
r 
f '(ρeit) dρ ≤ lflBβ 

r 
dρ 

0 0 (1 − ρ2)β ⎧ 
ClflBβ if β < 1,⎪⎪⎪⎨ 
1 1+r≤ 2 log 1−r lflBβ if β = 1,⎪⎪⎪⎩ C if β > 1,(1−r2)β−1 lflBβ 

shows that Axiom A1 is satisfied. 
Since BMOA and analytic Besov spaces are contained in B and the inclusion is 

continuous, the above estimate for β = 1 can be used. 
For the logarithmic Bloch space, one can actually produce a unified estimate, because 

an associated integral is convergent independently of γ: 

1 lflBlogγ |f(z) − f(0)| ≤ lflBlogγ 

r 
dρ ,

0 (1 − ρ2) logγ 
1−

2 
ρ2 

(1 − r2)ε 

for f ∈ Blogγ , z = reit ∈ D, and ε > 0. 
Axiom A2 holds trivially in all spaces from our list. 
Axiom A3 is trivially verified in Hardy, weighted Bergman, and Korenblum spaces. 

In Bloch-type and Besov-type spaces, essentially, one has to use the fact that a function 
has better properties than its derivative (in terms of boundedness and integrability). In 
order to estimate |(ζf)'(z)| = |f(z) + zf '(z)|, it then suffices to add up the obvious 
estimates for the derivative and the function. 
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In BMOA, we can argue as follows: 

lζfl2 = sup |zf '(z) + f(z)|2(1 − |ϕa(z)|2) dA(z)* 
a∈D D 

sup |f '(z)|2(1 − |ϕa(z)|2) dA(z) + sup |f(z)|2(1 − |ϕa(z)|2) dA(z) 
a∈D D a∈D D ⎛ ⎞ 

1 1 + |z| 2 ⎝1 + sup 1 + log (1 − |ϕa(z)|2) dA(z)⎠ lfl2 

a∈D D 2 1 − |z| * ⎛ ⎞ 
1 1 + |z| 2 

≤ ⎝1 + 1 + log dA(z)⎠ lfl* 
2 , 

D 2 1 − |z| 

where the integral in the last line is convergent. 
In B1, it is convenient to use the Littlewood-Paley formula to check that the axiom 

is satisfied. See Theorem 1.7. 
The main issue is, of course, checking our Axiom A4. This is quite clear for the disc 

algebra, Hardy spaces, weighted Bergman spaces or Korenblum spaces. 
Given f ∈ Bβ and a non-vanishing function u ∈ H∞ such that fun ∈ Bβ for all 

n ∈ N, if α > 1 then 

lfuαlBβ = |f(0)u α(0)| + sup (1 − |z|2)β |f '(z)u α(z) + αuα−1(z)u '(z)f(z)|. 
z∈D 

Since |f(0)uα(0)| ≤ lflBβ lulα andH∞ 

|f '(z)u α(z)+αuα−1(z)u '(z)f(z)|
= |(1 − α)f '(z)u α(z) + αuα−1(z) (f '(z)u(z) + u '(z)f(z)) |
≤ (α − 1)|f '(z)u α(z)| + αlulHα−

∞ 
1|(fu)'(z)|, 

we have 

lfuαlBβ ≤ lulα + αlulα−1 + (α − 1)lulα 
H∞ lflBβ H∞ lfulBβ H∞ lflBβ . 

A similar argument works for logarithmic Bloch spaces and BMOA. 
It is the case of B1 that requires most work. It also explains why we may need values 

n > 1 in Axiom A4. Given f ∈ B1 and a non-vanishing function u ∈ H∞ such that 
fun ∈ B1 for all n ∈ N, if α > 2 then 

|(u αf)''(z)| = |α(α − 1)u α−2(z)(u '(z))2f(z) + αuα−1(z)u ''(z)f(z) 
+2αuα−1(z)u '(z)f '(z) + u α(z)f ''(z)|. 

Therefore 

α(α − 1) 1 ''(z)f(z)|(u αf)''(z)| ≤ lulα−2 (fu2)''(z) − 2 1 − u(z)u2 H∞ 
α − 1 

1 2 ''(z)− 4 1 − u(z)u '(z)f '(z) − 1 − u 2(z)f . 
α − 1 α(α − 1) 
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Hence,

H∞ |(fu2)′′(z)|+ ‖u‖α−2|(uαf)′′(z)| ‖u‖α−2 
H∞ |g(z)| ,

where
1 ′′(z)f(z)− 4 1

g(z) = −2 1− u(z)u 1− u(z)u′(z)f ′(z)
α − 1 α − 1

2 ′′(z).− 1− u2(z)f
α(α − 1)

A direct computation yields

|g(z)| ‖u‖H∞ |u′′(z)f(z) + 2u′(z)f ′(z) + u(z)f ′′(z)|+ ‖u‖H
2

∞ |f ′′(z)|
= ‖u‖H∞ |(uf)′′(z)|+ ‖u‖2 ′′(z)|.H∞ |f

Therefore

|(uαf)′′(z)| dA(z) H∞ ‖fu2‖B1 + ‖u‖α−1
H∞‖f‖B1 .‖u‖α−2 

H∞ ‖fu‖B1 + ‖u‖α

D

In Hardy and weighted Bergman spaces, Axiom A5 relies on the Littlewood sub-
ordination principle. In the growth spaces and the Bloch space, this follows from the
Schwarz-Pick lemma. In weighted Besov spaces one also has to use the fact that the
derivative of a fixed disc automorphism is bounded from above and bounded away from
zero. The Bloch space, BMOA, B1, and the disc algebra are conformally invariant; see
Section 1.2.

5.2.3 Invertible weighted composition operators
We now prove the main result of this chapter. It should be noted that the assumption
in Axiom A4 that α be a non-integer is relevant in the proof (in order to produce a
non-analytic function and obtain a contradiction).

Theorem 5.1. Let X ⊂ Hol(Ω) be any functional Banach space on a bounded planar
domain Ω in which the Axioms A1 - A4 are satisfied, and suppose that a weighted
composition operator WF,φ is bounded in X.

(a) If WF,φ is invertible in X then its composition symbol φ is an automorphism of
Ω, the multiplication symbol F does not vanish in Ω, and the inverse operator W −1

F,φ

is another weighted composition operator WG,ψ, whose symbols are:
1

G = ψ = φ−1. (5.2)
F ◦ φ−1 ,

(b) Assuming that all Axioms A1 - A5 hold, we have the following characterization.
The weighted composition operator WF,φ is invertible on X if and only if its

composition symbol φ is an automorphism of Ω, the multiplication symbol F does
not vanish in Ω, and 1/F ∈ Mult(X).

If this is the case, then F is also a self-multiplier of X and the inverse operator is
WG,ψ whose symbols are given by (5.2).
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Proof. We first prove part (a), using only Axioms A1 - A4. 
Since 1 ∈ X by Axiom A2 and WF,φ is onto by assumption, F (f ◦ φ) = 1 must hold 

for some f ∈ X, hence F cannot vanish in Ω. We now show that φ is an automorphism 
of Ω. 

Since F = WF,φ1 ∈ X, we know that ζF ∈ X by Axiom A3. Since the operator 
WF,φ is onto, there exists a function f ∈ X such that ζF = F (f ◦ φ). It follows 
that f ◦ φ ≡ ζ and from here it is immediate that φ is univalent: if φ(a) = φ(b) then 
a = f(φ(a)) = f(φ(b)) = b. 

We next show that φ(Ω) = Ω. Suppose that, on the contrary, φ omits some value 
w ∈ Ω. Then the function φ(z) − w is bounded and does not vanish in Ω. (This is 
where we use the assumption about boundedness of Ω.) Note that by Axiom A2 and 
Axiom A3, the function ζk ∈ X, hence 

nf n 
F ∈ X, F (φ − w)n = w n−kWF,φ(ζk) ∈ X, n ∈ N . 

kk=0 

Hence, by Axiom A4, there exists a non-integer value α > 0 such that F (φ − w)α ∈ X. 
The operator WF,φ is onto, hence for some f ∈ X we have F (f ◦ φ) = F (φ − w)α. 

But φ is univalent, hence not constant. Therefore the equality f(z) = (z − w)α holds on 
the non-empty open set φ(Ω), hence in all of Ω, by the uniqueness principle. However, 
the function on the right is not analytic in Ω, hence f /∈ X, which is absurd. 

We have, thus, shown that φ is an automorphism of Ω. 
Given g ∈ X , from the assumption that the operator is invertible and solving the 

equation F (f ◦ φ) = g for f yield by straightforward computation that formulas (5.2) 
hold. 

(b) This part is similar to the proof given in [13] but we can still simplify the arguments 
given there. 

We first prove the forward implication, starting from the assumption that WF,φ is 
invertible. By the first part of the theorem, we know that φ is an automorphism of Ω. 

To see that 1/F ∈ Mult(X), let g ∈ X be arbitrary. Since WF,φ is onto, there 
exists a function f ∈ X such that F (f ◦ φ) = g. But f ◦ φ ∈ X by Axiom A5, hence 
g/F is analytic in Ω and g/F ∈ X. 

Now for the reverse implication. Assuming that all five axioms are satisfied and that φ 
is an automorphism of Ω, F does not vanish, and 1/F ∈ Mult(X), we argue as follows. 
Since φ is an automorphism of Ω, so is its inverse function φ−1. Given an arbitrary 
function f ∈ X, we also have f/F ∈ X and therefore also (f ◦ φ−1)/(F ◦ φ−1) ∈ X. 
Thus, the operator WG,ψ where 

1 
G = ψ = φ−1 

F ◦ φ−1 , 

maps X into itself. By an application of the closed graph theorem, which is possible 
thanks to Axiom A1 and the principle of uniform boundedness, WG,ψ is a bounded 
operator on X. Now one easily checks directly that 

WG,ψWF,φf = WF,φWG,ψf = f 

for all f ∈ X, hence the operator WF,φ has bounded inverse WG,ψ. 
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5.3 Surjective isometries among WCOs on spaces with
translation-invariant seminorm

The result of this section focuses on the spaces of Bloch or Besov type. We show that in
such spaces the only onto linear isometries among the weighted composition operators
are the most obvious ones. This was not explicitly stated, even for the Bloch space and
the usual composition operators, in [34] or [67], though in this particular case it can be
deduced from the results obtained there after some discussion.

Specifically, we consider function spaces of the disc with a seminorm ρ that is
translation-invariant and also has the additional property that ρ(f) = 0 implies that
f is a constant function. This is precisely the case with the Bloch type spaces, weighted
Besov spaces or the BMOA space where the seminorm involves expressions like

sup(1− |z|2)|f ′(z)|, |f ′(z)|p(1− |z|2)β dA(z)
z∈D D

or
sup ‖f ◦ ϕa − f(a)‖H2 .
a∈D

It is convenient to observe that if the norm is given by the formula ‖f‖ = |f(0)| +
ρ(f), where ρ(f) is a seminorm which is translation-invariant: ρ(f +C) = ρ(f), for all
f ∈ X and all C ∈ C, then ρ(f) = 0 implies that f is a constant function. Indeed,
the function f − f(0) vanishes at the origin, hence in view of the norm formula and
translation invariance we have

‖f − f(0)‖ = ρ(f − f(0)) = ρ(f) = 0

which implies that f = f(0), a constant function.

Theorem 5.2. Let X ⊂ Hol(D) be a functional Banach space in which the Axioms
A1 - A4 are satisfied and in which the norm is given by the formula ‖f‖ = |f(0)|+ρ(f),
where ρ(f) is a seminorm which is translation-invariant. If WF,φ is a surjective isometric
weighted composition operator on X, then F is a unimodular constant and φ is a
rotation.

Proof. By assumption, our operator is onto, hence there exists a function f0 ∈ X such
that F (f0 ◦ φ) ≡ 1, so trivially F does not vanish in D.

Next, we show that φ(0) = 0. To this end, consider the function fλ given by
fλ(z) = 1 + λz, with |λ| = 1. By our assumptions on the space, fλ ∈ X and, by the
translation invariance and homogeneity of the seminorm and the assumption that WF,φ

is an isometry, we have

1 + ‖ζ‖ = 1 + ρ(ζ) = 1 + ρ(fλ) = ‖fλ‖ = ‖F + λFφ‖
≤ ‖F‖+ ‖Fφ‖ = ‖1‖+ ‖ζ‖ = 1 + ‖ζ‖.

Thus, equality must hold throughout, meaning that ‖F +λFφ‖ = ‖F‖+ ‖Fφ‖. Hence
|(F + λFφ)(0)|+ ρ (F + λFφ) = |F (0)|+ ρ(F ) + |(Fφ)(0)|+ ρ(Fφ).
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Since ρ (F + λF φ) ≤ ρ(F ) + ρ(Fφ), it follows that 

|(F + λF φ)(0)| ≥ |F (0)| + |(Fφ)(0)| . 

We know that F (0) = 0, hence 

|(1 + λφ)(0)| ≥ 1 + |φ(0)| , 

for all λ with |λ| = 1, which is only possible when φ(0) = 0. On the other hand, by 
Theorem 5.1, φ must be a disc automorphism. Hence, it is a rotation. 

Now, recalling that the function f0 ∈ X chosen earlier has the property F (f0◦φ) ≡ 1, 
we obtain F (0)f0(0) = 1. On the other hand, the same property implies that 

|f0(0)| ≤ lf0l = lWF,φ(f0)l = l1l = 1. 

Also, |F (0)| ≤ lF l = lWF,φ(1)l = l1l = 1, hence we must have |F (0)| = |f0(0)| = 1. 
Therefore ρ(F ) = 0, hence F is a constant of modulus one. This proves the state
ment. 



Conclusiones

Los resultados de esta tesis se pueden encontrar en los art́ıculos de investigación:

• A. Aleman and A. Mas. Weighted conformal invariance of Banach spaces of
analytic functions. J. Funct. Anal., 280(9):108946, 2021

• M. J. Mart́ın, A. Mas, and D. Vukotić. Co-Isometric Weighted Composition Ope-
rators on Hilbert Spaces of Analytic Functions. Results Math., 75(3):128, 2020

• A. Mas and D. Vukotić. Invertible and isometric weighted composition operators.
Preprint

El trabajo desarrollado en esta tesis puede servir como base para una futura inves-
tigación. Por ejemplo, una cuestión que surge de manera natural del Caṕıtulo 3 seŕıa
intentar entender los operadores de composición ponderados que son isométricos sobre
los espacios considerados en dicho caṕıtulo. Esta cuestión es obviamente mas complicada
de responder. Por ejemplo, no parece claro cómo se podŕıa conseguir en este caso una
fórmula como (3.3); ver Proposición 3.2 en la página 33. Trabajando con la hipótesis

∗de una isometŕıa usual en espacios de Hilbert: WF,φWF,φ = I, no parece que se pueda
obtener mucho más que la fórmula

W ∗
F,φKw = F (w)Kφ(w)

probada en el Caṕıtulo 3. Pero esto no parece implicar ninguna fórmula general obvia
parecida a (3.3) para W ∗ f , f ∈ H.F,φ

Aun m´ ás dif́ ıa intentar describir los operadores de composici´ıcil seŕ on ponderados
normales que actúan en un espacio de Hilbert general de funciones anaĺıticas. En [24]
han sido estudiados estos operadores pero no se han descrito en su totalidad, incluso en el
espacio H2, excepto en el caso cuando el punto fijo del śımbolo de composición pertenece
al disco. Debemos notar que en esta ĺınea de trabajo existen resultados interesantes
como [62] para los espacios Hγ o [98] para espacios más generales. Hasta lo que sabemos,
incluso en una variable, la respuesta completa está lejos de ser conocida para la familia
general de espacios considerada en este caṕıtulo de la tesis.

Por otra parte, una pregunta que podŕıa ser interesante seŕıa si los resultados obte-
nidos en el Caṕıtulo 4 pueden generalizarse a la bola unidad en varias variables. Otra
cuestión que queda por responder en este caṕıtulo seŕıa entender los espacios que surgen
al considerar el subespacio Mα(X) cuando X es un espacio de Banach de funciones
anaĺıticas no conformemente invariante para ningún ı́ndice β > 0. Por último, siguiendo
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las ideas desarrolladas en la Secci´ on podŕon 4.6, otra futura linea de investigaci´ ıa ser 
estudiar cómo otros tipos de operadores actúan sobre los espacios de Banach conforme
mente invariantes de ́ ındice α > 0. 

Finalmente, siguiendo con los resultados vistos en el Caṕıtulo 5, podŕıamos intentar 
describir todos los operadores de composición ponderados isométricos en espacios de 
Banach de funciones anaĺıticas que satisfacen ciertos axiomas. Particularmente, podŕıa 
ser interesante caracterizar estos operadores en el espacio de Bloch. 



Conclusions

The results of this thesis are contained in the following research papers:

• A. Aleman and A. Mas. Weighted conformal invariance of Banach spaces of
analytic functions. J. Funct. Anal., 280(9):108946, 2021

• M. J. Mart́ın, A. Mas, and D. Vukotić. Co-Isometric Weighted Composition Op-
erators on Hilbert Spaces of Analytic Functions. Results Math., 75(3):128, 2020

• A. Mas and D. Vukotić. Invertible and isometric weighted composition operators.
Preprint

The work developed in this thesis could provide a basis for further research. For
instance, a natural question that may arise from Chapter 3 would be to understand the
isometric weighted composition operators on the spaces considered in this chapter. This
is obviously a more difficult question. For example, it does not seem clear how one could
obtain a formula like (3.3) in this case; see Proposition 3.2 on page 33. Working with
the typical assumption of the isometries: W ∗ = I, one does not seem to getF,φWF,φ

much more than the formula

W ∗
F,φKw = F (w)Kφ(w)

already proved here. But this does not seem to imply in any obvious way a general
∗formula for WF,φf , f ∈ H, nor a formula like (3.3).

Still a harder question would be to describe the normal weighted composition op-
erators on the general Hilbert spaces of analytic functions. Such operators have been
studied but not fully described even on H2 in [24], except in the case when the fixed
point of the composition symbol belongs to the disc. Interesting general results have
been obtained for the spaces Hγ in [62] and also for general spaces in [98]. To the best
of our knowledge, even in one variable, a complete answer is far from being known for
the general family of spaces considered in Chapter 3.

On the other hand, a question of interest would be if the results obtained in Chapter 4
could be generalized for the unit ball in several variables. Another question that remained
regarding this chapter would be to understand the spaces that arise from considering
the subspace Mα(X) when X is a Banach space of analytic functions not conformally
invariant for any β > 0. Finally, another line of further investigation may be, following
the ideas developed in Section 4.6, to study how some other types of operators acting
on conformally invariant Banach spaces of index α > 0.
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Finally, following the results seen in Chapter 5, we could try to describe all the isomet
ric weighted composition operators, acting on Banach spaces of analytic functions in the 
unit disc which satisfy certain axioms. It would be of particular interest to characterize 
these operators on the Bloch space. 
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