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Abstract: Despite efforts to develop models for extracting medical concepts from clinical notes,
there are still some challenges in particular to be able to relate concepts to dates. The high number
of clinical notes written for each single patient, the use of negation, speculation, and different date
formats cause ambiguity that has to be solved to reconstruct the patient’s natural history. In this
paper, we concentrate on extracting from clinical narratives the cancer diagnosis and relating it to
the diagnosis date. To address this challenge, a hybrid approach that combines deep learning-based
and rule-based methods is proposed. The approach integrates three steps: (i) lung cancer named
entity recognition, (ii) negation and speculation detection, and (iii) relating the cancer diagnosis to a
valid date. In particular, we apply the proposed approach to extract the lung cancer diagnosis and its
diagnosis date from clinical narratives written in Spanish. Results obtained show an F-score of 90% in
the named entity recognition task, and a 89% F-score in the task of relating the cancer diagnosis to the
diagnosis date. Our findings suggest that speculation detection is together with negation detection a
key component to properly extract cancer diagnosis from clinical notes.

Keywords: Natural Language Processing (NLP); information extraction; diagnosis extraction;
lung cancer; deep learning; speculation detection; negation detection

1. Introduction

The steady growth in the adoption of Electronic Health Records (EHR) around
the world has introduced the possibility of extracting hidden information from clinical
notes [1]. These notes contain useful and valuable information to support clinical decision
making [2,3]. However, the information in clinical notes is presented in a narrative form,
which makes the task of structuring the data especially challenging. Extracting this in-
formation manually would not be a viable task because it would be time-consuming and
costly. Although Natural Language Processing (NLP) tools aim to automatically extract
medical concepts, once these concepts are extracted, one must relate them to dates and
ensure they are not speculated or negated.

In recent years, deep learning-based approaches have shown to be effective in im-
proving the extraction of medical concepts from clinical narratives [4,5]. However, there is
still a gap between concept extraction and concept understanding [6]. Extracting medi-
cal concepts is not enough when it comes to understanding events concerning a patient,
additional steps are therefore required [6].

Lung cancer is one of the most common chronic diseases in the world and the leading
cause of cancer death among both men and women (https://www.lung.org/lung-health-
and-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet.
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html). Therefore, the accurate identification of lung cancer information is crucial to sup-
port clinical and epidemiological studies [4,7]. The cancer diagnosis is an important step
for both the effective control of the disease, and the development of treatment plans [8].
Data generated during both clinical care processes and research in oncology have increased
considerably in recent years [9].

In [10] a pipeline to extract lung cancer diagnosis from clinical notes written in Span-
ish was proposed. Although this proposal showed promising results, it has two main
weaknesses: (i) a limitation to relate a cancer concept with a proper diagnosis date, and (ii)
a limitation to properly recognize cancer concepts that have been affected by speculation.

Speculation is a linguistic phenomenon that frequently appears in clinical notes,
and is inherent in many medical decisions [11]. Moreover, in the medical domain,
some authors also refer to speculation as uncertainty [12,13]. Physicians often face uncer-
tain findings when diagnosing or treating patients. Therefore, for text mining applications,
it is important to detect uncertainty because uncertain findings can be incorrectly identified
as real or factual events [14].

In this paper, we propose an approach that extends and improves the proposal pre-
sented in [10]. This approach combines deep learning-based and rule-based methods to
address the previously mentioned limitations. The proposed approach aims to automat-
ically extract the lung cancer diagnosis from clinical notes and consists of three steps:
(i) lung cancer named entity recognition using deep-learning approaches, (ii) speculation
and negation detection and, (iii) relating the cancer diagnosis to a proper date.

The remaining sections of this research paper have been organized as follows: Section 2
reviews the most recent studies on cancer concept extraction from clinical narratives.
Section 3 shows the proposed hybrid approach to extract lung cancer diagnosis. Section 4
describes a deep-learning approach used to extract lung cancer concepts. Section 5 deepens
on the rule-based approach for speculation and negation detection, while in Section 6 the
process to relate the cancer concept to a diagnosis date is explained. Section 7 presents the
validation and results and Sections 8 and 9 present the discussion and final concluding
remarks, as well as an outlook for future studies.

2. Related Work

Clinical concept extraction refers to automatically extracting concepts of interest from
unstructured clinical texts [15]. Concept extraction can also be referred to as Named Entity
Recognition (NER) [16]. In the cancer domain, research to extract cancer concepts from
clinical narratives has increased considerably in recent years due to its benefits associated
to evidence-based research and quality improvement [17]. Clinical concept extraction is
commonly addressed by using rules, machine learning, or deep learning approaches.

One of the first interests in the field of oncology was identifying a patient’s cancer
stage, which is an important prognostic factor in order to understand cancer-survival.
In [18,19], a rule-based method to extract data associated to a tumor’s stage from clinical
documents of lung cancer patients is presented. Meanwhile, in [20], a different rule-
based tool for extracting cancer staging from pathological reports of breast cancer using
the TNM (https://www.cancer.gov/about-cancer/diagnosis-staging/staging) notation is
described. Other studies related to the extraction of a cancer stage are described in [21–23].
Although the stage is an important cancer factor, extracting only this concept is not enough
to fully understand cancer behavior.

Other proposals have attempted to extract more concepts associated with cancer.
These approaches focus on the extraction of cancer diagnosis [9,24], treatments [25,26],
or both [4,5]. In [27], the authors proposed a strategy to extract breast cancer diagnosis,
the histology of malignant neoplasm, temporal expressions, and recurrent cancer-related
events. In [25], a machine learning approach to extract cancer treatments, doses, toxicities,
and dates from lung cancer patients is proposed. Other machine learning-based approaches
to extract cancer information are proposed in [28,29].

https://www.lung.org/lung-health-and-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet.html
https://www.lung.org/lung-health-and-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet.html
https://www.cancer.gov/about-cancer/diagnosis-staging/staging
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Recently, Deep neural networks have been shown to improve performance in the pro-
cessing of natural language texts. More specifically, Recurrent neural networks (RNN) [30–32]
and Convolution Neural Networks (CNN) [33] have been used to improve text processing.
Deep learning approaches have also shown their applicability in different domains such
as finance [34], smart cities [35], and security [36]. Besides, word embedding is a useful
tool to create deep learning applications [37–39], and it has gained great popularity in the
biomedical field [40,41].

In [4] a deep learning-based approach to extract lung cancer stages, histology,
tumor grades and therapies (chemotherapy, radiotherapy, surgery) is proposed.
Clinical notes, pathology reports, and surgery reports are used to test the system.
The authors highlight the feasibility of extracting cancer-related information from clinical
narratives and the feasibility of improving the efficiency of humans through NLP tech-
niques. A Bidirectional Long Short-Term Memory (BiLSTM) network is used in [5] to
extract a comprehensive set of breast cancer concepts. This proposal extracts more than
forty concepts which help to understand the behavior of this disease.

Although deep learning-based approaches have improved the ability to extract medi-
cal concepts, there is still a gap between concept extraction and concept understanding [6].
Extracting cancer-related concepts alone is not effective in understanding clinical events
related to patients. New steps are required to go beyond clinical concept extraction in order
to understand relationships between events and concepts in the natural history of a patient.

In addition, most of the proposals mentioned above have focused on the English
language. According to [42], information extraction in the medical domain also represents
its own challenges in languages other than English. In the Spanish language, a rule-based
approach to extract concepts such as stage, performance status, and mutations in the lung
cancer domain is proposed in [8]. To deal with the recognition of time expressions, in [43] a
temporary Tagger Annotator is proposed. This tool aims to identify and normalize time
expressions in clinical texts written in Spanish. However, extracting cancer concepts and
temporal expressions alone is not enough and, these concepts have to be related [44].

Deep learning approaches have also been proposed to extract cancer-related concepts
in clinical texts written in Spanish [45–47]. However, one limitation of these proposals is
that they only extract cancer entities. Cantemist [48], an annotated corpus containing only
one labeled entity (Cancer tumor morphology) is used to extract the cancer concepts. To the
best of our knowledge, there is no approach to extract cancer concepts and relate them to
other concepts such as dates for the case of clinical notes written in the Spanish language.

3. A Hybrid Approach to Extract Lung Cancer Diagnosis

When a patient goes to a hospital, different tests are performed to confirm the fi-
nal diagnosis. This process involves numerous interactions between doctor and patient.
Consequently, different notes are generated in which the doctor reports the patient an-
tecedents, physical status, and the suspected diagnosis. When the patient is finally di-
agnosed, more narratives will be generated with the diagnosis, date, treatments and all
information of the the follow up.

Figure 1 shows fragments of clinical narratives for a patient suffering lung cancer.
In the text one can observe that there are different ways to refer to cancer diagnosis concepts
and distinct ways to mention dates. The correct identification of the diagnosis date is a
challenge since many date annotations can be extracted. Moreover, the following has to be
taken into account for the proper identification of the diagnosis:

• Some cancer concepts are associated with a family member, but not the patient.
• Speculation and negation are two linguistic phenomena that frequently appear in

clinical texts.
• Different events can occur to the patient (begin clinical trial, diagnosis, start treatment,

etc.). All these events will appear with a date and can appear in a sentence in which a
mention to a cancer concept is present. So it is needed to distinguish the events and
the dates. As an example, let’s take the sentence: “Patient diagnosed with lung cancer,
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treated with surgery in March 2017”; in this case the date refers to the surgery and not
to the diagnosis. Thus apart from cancer and date annotations, an approach to find
events and to related dates to events is required.

• A medical record can contain hundreds of clinical notes for the same patient;
this fact represents a challenge to extract the correct diagnosis date automatically.
This problem is enhanced when a hospital is treating thousands of cancer patients,
and therefore the number of clinical notes grows rapidly.

Thus, to deal with this challenging task, we propose a hybrid approach that combines
deep learning-based and rule-based methods. The main goal of this proposal is to improve
the lung cancer diagnosis extraction process. Figure 2 shows the proposed approach
that integrates three steps: (i) Lung cancer named entity recognition, (ii) Negation and
speculation detection, and (iii) Relating cancer diagnosis and dates. In the next sections,
we will describe each step.

Figure 1. Medical history fragments.
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Figure 2. Approach to extract lung cancer diagnosis.

4. Lung Cancer Named Entity Recognition

In this section, a deep learning model to extract lung cancer named entities from
clinical notes written in Spanish is described. The main goal of this model is to improve
lung cancer concept extraction. To create this model, a corpus with the entities to be
extracted was first annotated, followed by a trained BiLSTM (Bidirectional Long Short-
Term Memory) neural net to carry out named entity recognition.

4.1. Corpus Annotation

The corpus has been manually annotated using the Brat (https://brat.nlplab.org/)
tool. It is composed of clinical notes from lung cancer patients from “Hospital Universitario
Puerta de Hierro, Madrid, Spain”, with every clinical note being introduced anonymously.
The corpus contains the following labeled entities:

• Cancer entity: this entity captures both the cancer type (carcinoma, adenocarcinoma,
cancer, etc.) together with the anatomical location (left lung, right lung, right lobe, etc.).
For instance: “Patient diagnosed with right lung adenocarcinoma”. In the annotation
process the more detailed description will be used. Thus in the sentence, “Patient

https://brat.nlplab.org/
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diagnosed with small cell lung cancer”, the concept “Small cell lung cancer” will be
annotated instead of “lung cancer”.

• Cancer stage: staging is the process of finding out how much cancer is in a person’s
body and where it’s located. The cancer stage can be expressed on a scale that ranges
from I to IV. Stage I indicates the initial stage and stage IV, the most advanced stage
of cancer. The cancer staging can also be done using the TNM notation: Tumor (T),
Nearby(N), and Metastasis(M). As a consequence, we have annotated both scales.
On the one hand, entities such as stage II and stage IV are annotated as a stage entity
while expressions such as cT3cN3cM1 and T3 N2 M0 are annotated as TNM entity.

• Dates: Represents dates and time expressions mentioned in clinical notes. Date entity
is a crucial concept to obtain the natural history of the patient. Only explicit dates
are annotated.

• Events: This entity is used to represent events such as being diagnosed, being treated,
treatment start, begin clinical trial, etc.. In the sentence “Patient diagnosed with lung
cancer, begins treatment with chemotherapy on 5 December 2019, there are two events
(shown in bold).

• Family members: represents concepts about family members of a patient.
This entity commonly appears together with cancer concepts in the family antecedents,
(e.g., ”Mother diagnosed with lung cancer in 2007)”. This entity is used to differentiate be-
tween a cancer concept associated to a patient, and one associated to a family member.

• Treatment: The kind of treatment ranging from chemotherapy, radiotherapy, and
surgery will be included. These treatments will be annotated separately. This tag is
only used to annotate generic mentions to treatments, without mentioning the specific
drug, as in the case of sentences such as: “Patient with lung cancer, with chemotherapy
in October 2018”.

• Drug: This entity is used to annotate particular names of drugs related to any kind
of treatment, such as in the sentence: Lung cancer patient, treated with Carboplatin on
October 2018.

Table 1 shows a summary of the number of annotations for each entity. Two domain
experts annotated the corpus previously described. The inter-annotator agreement was
0.89 measured by Cohen’s Kappa.

Table 1. Number of annotations for each entity in the corpus.

Entity Number of Annotations

Cancer entity 4128
Stage 3274
TNM 1152
Date 4312

Family member 883
Events 2703

Treatment 1302
Drug 463

4.2. A Deep Learning Approach to Extract Lung Cancer Entities

The proposed model (see Figure 3) uses a BiLSTM neural net with a sequential CRF
layer. The model is based on the architecture proposed by Lample et al. [32]. The model
takes sentences with a vector representation as the input, and the output is the predicted
label for each word in a sentence. The BIO tagging format is used to represent predicted
entities, labelling each entity with: B (at the beginning of the entity), I (inside the entity),
or O (Outside the entity). Figure 3 depicts this model, which consists of three layers:
(i) Embedding layer, (ii) BiLSTM layer, and (iii) CRF layer.
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Figure 3. Bidirectional Long Short-Term Memory/Conditional Random Field (BiLSTM-CRF) model.

• Embedding layer: this layer makes it possible to represent words and documents
using a dense vector representation. Word embeddings allows words with similar
meanings to have a similar representation. The model that is proposed has been
trained with the inclusion of different biomedical embedding:

– SciELO Full-Text: This word embedding was created using full-text medical
articles from Scielo, a scientific electronic library [41].

– WikiHealth: This embedding was generated using a subset of Wikipedia articles
comprised by the categories of Pharmacology, Medicine and Biology [41].

– Lemma and Part of Speech (POS): We create in-house embeddings with lemmas
and POS tags using as input the sentences in the annotated corpus.

• BiLSTM layer: as the input setting, this layer uses different embeddings and pro-
cesses each vector representation of the text sequence in two ways:

– A forward computation process each sequence from left to right. In Figure 3,
each Li represents the value of left context for the word n in the sequence.

– A backward computation process from right to left. In Figure 3, each Ri repre-
sents the value of the right context for the word n in the sequence.

As an output, this layer produces a vector representation for each word, concatenating
the left and right context values. These vectors contain scores for each label that is
to be predicted. In the BiLSTM model, each input sentence is contextualized both
on the left (L) and on the right (R). Both LSTM (left and right) are independent but
contextualized with the same distribution function.

• CRF layer: This layer decodes the best label in all possible labels using the CRF
(Conditional Random Fields) algorithm proposed by [49]. This algorithm considers
the correlations between other labels and jointly decodes the best chain of labels for
a given input sentence of text. Although the BiLSTM layer produces scores for each
label, these scores are conditionally independent. For sequence labeling tasks, it is
necessary to consider the correlations between labels. Therefore, the CRF layer aims
to model dependencies between these labels to improve the predictions for each label.
As an input setting, the CRF layer takes the output vectors from the BiLSTM layer
and outputs the label sequence with the highest prediction score.



Appl. Sci. 2021, 11, 865 8 of 21

5. Negation and Speculation Detection

The deep learning approach described previously has been able to extract cancer-
related entities. However, many of these entities can be affected by negation or speculation.
Detecting speculation and negation is a crucial step to extract a cancer diagnosis correctly.
This section shows a rule-based approach to detect negation and speculation in clinical
texts written in Spanish. This task is commonly divided into two subtasks: Cue identification
and Scope recognition. Cues are words or terms that express negation (e.g., not, nothing,
negative) or speculation (e.g., possible, probable, suggest) [13]. The scope is the text
fragment affected by a cue in a sentence [50]. In the next example, the cue is shown in bold,
and the scope is underlined.

“Patient with possible lung cancer in July 2014, we recommend a chest test to confirm.”.

Given a text sentence, the cues will first be detected, and later the tokens affected
by these cues will be found. We propose to enrich this process by improving the lexicon
used with popular medical cues. Besides, an analysis of the sentences in which negation or
speculated terms appear is performed to improve scope recognition.

The main motivation to enrich the negation and speculation detection is that clinical
records are written by highly skilled physicians and nurses using domain-specific terms.
These records are written under time pressure, the text is short and efficient, and written in
telegraphic style [51]. Consequently, clinical texts can contain sentences shorter than those
found in other domains, and the lexicon to express speculation and negation can be richer
and more complex.

Taking into account the above facts, this approach is composed of the following
steps: (i) developing a cue lexicon focused on the medical domain, (ii) defining regular
expressions for detecting cues in clinical text, (iii) analyzing the sentences where the cues
are detected and finally, (iV) recognizing the scope for each detected cue.

5.1. Developing a Cues Lexicon

This step aims to develop a lexicon that contains negation and speculation cues in
Spanish, enriched with popular cues in the medical domain. The strategy shown in Figure 4
was applied for developing the lexicon. This strategy consists of two steps: Cue Collection
and Semantic Enrichment.

Figure 4. Strategy to generate the cues lexicon.

• Cue Collection: The main goal of this step is to get an initial lexicon containing an
initial set of cues in Spanish. Two public resources are used: BioScope corpus [52],
and ConText [53]. The collected cues are translated to Spanish using Google trans-
late, and later they are manually corrected. Bioscope and ConText are chosen as
these resources are frequently used for negation and uncertainty detection in the
English language.

• Semantic Enrichment: this step aims to enrich the initial lexicon by adding new cues
that are semantically related. For each cue in the initial lexicon, similar words indicat-
ing negation or speculation are found. The semantic enrichment step is performed
using the word embedding technique [38,54]. Since the word embedding technique
generates high-dimensional vectors for each word, the t-distributed stochastic neigh-
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bor embedding (t-SNE) technique [55] was used to visualize the similarity between
words using only two dimensions. Figure 5 shows in a two-dimensional diagram a
set of words (printed in blue) semantically related to the cue “Probable” (printed in red),
and other terms (printed in green) that appear within the context of this cue. The initial
lexicon contains 390 cues, and after the semantic enrichment step, the cue’s lexicon
contains 512 cues.

Figure 5. Related words to the cue “Probable”.

5.2. Cue Detection in Clinical Texts

This step detects speculation and negation cues in a clinical text. Cue detection
receives two inputs: a text sentence and the cues lexicon (Figure 4). To perform this task
four regular expressions (Regex) are used. The first two Regex were adapted from the
Negex proposal [56]. The next two Regex were adapted from [57] to improve multiple
and contiguous cue detection. In our approach, those regular expressions are adapted for
detecting both negation and speculation.

1. <Prefix-cue> * <UMLS terms>
2. <UMLS terms> * <Postfix-cue>

The symbol * represents an unspecified number of tokens in the sentence. UMLS
(Unified Medical Language System, https://www.nlm.nih.gov/research/umls/index.html)
terms represent medical concepts or findings affected by a cue. The cues are divided into
two groups depending on their location with respect to the terms they affect:

• Prefix-cue: is found before the affected tokens. For example: in the sentence:

“Paciente con probable carcinoma pulmonar”. (Patient with probable
lung carcinoma), the cue is the word “probable” and the tokens affected are
underlined. In these cases the tokens affected appear to the right of the cue.

• Postfix-cue: is found after the affected tokens. In the next sentence the cue is “negativa”
and the tokens affected are underlined. In these cases the tokens affected appear to
the left of the cue:

“Biopsia líquida para cáncer: negativa”. (Liquid biopsy for cancer: negative).

The third regular expression is used for detecting multiple contiguous Prefix-cues.
When a cue appears multiple times contiguously is considered a contiguous-cue [58].
For example: the sentence,

https://www.nlm.nih.gov/research/umls/index.html
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“No dolor, no vómitos, ni fiebre, no tos” . (No pain, no vomiting, no fever,
no cough), contains four contiguous cues. The affected tokens are underlined.

3. <Prefix-contiguous-cue> * <UMLS terms>
4. <UMLS terms> * <Postfix-contiguous-cue>

The fourth regular expression is used to detect multiple contiguous Postfix-cues. In the
next example, there are two contiguous cues and the affected tokens are underlined.

“Análisis de orina: Negativo, glóbulos rojos: negativo.” (Urinalysis: Negative,
Red Blood Cells: Negative).

5.3. Sentence Analysis

Previous rule-based approaches [53,56,58] use a stop word to find the negation or
speculation scope. However, it is important to analyze the sentence in which the cue
appears in order to improve rules. In particular, analyzing the sentence’s length and the
presence of contiguous cues in order to define rules for scope recognition is proposed:

• Sentence length: is the number of tokens in the sentence in which speculation or
negation cues were detected. This property aims to analyze the behavior of negation
and speculation according to the sentence’s length. The sentence length is used to
define the short sentence heuristic. This heuristic indicates that a sentence is considered
as a short sentence if its length belongs to the first quartile, and it has only one cue.
Although short sentences are more frequently found in clinical text [51], long sentences
can also be found [57]. Therefore, the short sentence heuristic is used to choose the
proper rule in the scope recognition step according to sentence length.

• Presence of contiguous cues: this aims to analyze the behavior of negation and specula-
tion in the presence of contiguous cues. This step is important as a condition needed
to recognize the scope depending on the number of cues that the sentence contains.

5.4. Scope Recognition

The scope recognition task extracts the tokens affected by a cue. When negation or
speculation is detected using a Prefix-cue, the scope is to the right of that cue (forward in
the sentence). On the other hand, if it was detected with a Postfix-cue, the scope is to the
left of the cue (backward in the sentence).

This step receives three elements for recognizing the scope: the sentence, the cue,
and the regular expression used in the cue detection task. The sentence has to be previ-
ously tokenized, and POS (Part of speech) tagged. The scope is extracted using five rules:
the first four rules were adapted from [57] proposal in order to recognize the scope for both
speculation and negation cues. Additionally, a fifth rule that uses syntactic parse trees for
scope recognition was added. These rules are detailed as follows:

• Rule 1: if the sentence contains a termination term, the scope is extracted using this
term. A termination term is a word that indicates the end of the scope. Termination
terms are previously created in a lexicon. In the next example the word “pero” (but)
indicates the end of the scope (the scope is underlined).

- “Probable carcinoma de pulmón, pero espero resultados de biopsia.”
(“Probable lung carcinoma, but I will wait for biopsy results.”)

• Rule 2: if a cue C1 is detected in a sentence containing contiguous cues C1, C2, C3, . . . , Cn,
the scope for each Ci will be given by the position of Ci+1. For example in the sentence:

- “No dolor, no inflamación, no dolores articulares, ni fiebre. (No pain, no in-
flammation, no joint pain, no fever.), for each cue, the scope is given by the
position of the next cue.

• Rule 3: if the sentence length corresponds to “a short sentence heuristic”, then the scope
is given by the end of the sentence. The following example shows a short sentence
with their cue and the scope (underlined):
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- “Posible cancer pulmonar.” (“Possible lung cancer.”)

• Rule 4: if the sentence contains a token POS tagged with a conjunction or verb category.
In this case, the scope is determined by the position of this token. The next sentence
contains the token “proponemos”, which is tagged with the Verb category and indicates
the end of the scope (the scope is underlined).

- “Con la sospecha de cancer de pulmón, proponemos reunión del comité
de tumores.”
(Given the possibility of lung cancer, we propose a meeting with the tumor committee.)

• Rule 5: if the sentence does not match the previous rules, the algorithm generates a
sentence parse tree. In this case, the scope is given by the sub-tree that contains the un-
certainty or negation cue, as is shown in the next sentence. (The scope is underlined)

- “Signos sugestivos de nódulos pulmonares, con fiebre alta desde ayer.”
(Signs that suggest pulmonary nodules, with a high fever present since yesterday.)

Figure 6 shows the parse tree generated for the above sentence. In this case, the scope
is extracted from the sub-tree where the cue “sugestivos” is located. We use UDPipe [59],
an open-source NLP tool that performs a dependency parsing tree. The fifth rule is useful
in sentences that do not contain any token that indicates the end of the scope.

Figure 6. Scope using a Parse tree.

6. Relating Cancer Diagnosis and Dates

Once lung cancer named entities have been extracted and negation and speculation
detection has been solved, the only task that rests to extract the cancer diagnosis is relating
cancer entities to dates. This task is performed in two steps: (i) linking dates to cancer
entities, and (ii) choosing from all the previous linkages the proper diagnosis and its date.

6.1. Linking Dates to Cancer Entities

Cancer entities and dates extracted in a previous step have to be correctly linked.
The challenge is how to relate a certain cancer entity to a particular date appearing in the
same sentence. To achieve this task, we propose to analyze the syntactic structure of the
sentence and the entity events that appear in this sentence. Thus the syntactic parse tree
of the sentence is generated, and traversing this tree; it is possible to relate the date to
the cancer entity. In particular, a date is linked to a cancer entity if some of the following
conditions are true:

1. A cancer entity or an event entity is an ancestor of a date in the dependency path of
the sentence.

2. The cancer entity and a date entity appear contiguously or belong to the same predicate
in the sentence.
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3. The sentence contains event entities: in this case, the event, the cancer entity, and the
date are linked if some of the prior conditions are met.

Figure 7 depicts the process to link a cancer entity to a date entity for the sentence:
“Paciente diagnosticado con cáncer de pulmón el 12 October 2016, tratado con cirugía el 21 March
2017”. (Patient diagnosed with lung cancer on 12 October 2016, treated with surgery on
21 March 2017).

As one can see, the date “12 October 2016” is linked to the concept “cancer de pulmón”
because they are in the same predicate. Moreover, the event “diagnosticado” is also linked
to this date. After linking these concepts, a triplet (“cancer de pulmón, 12 October 2016,
diagnosticado”) is created. On the other hand, the date “21 March 2017” is linked to the event

“tratado” because this event is an ancestor of this date.

Figure 7. Parse tree: linking dates and cancer diagnosis.

6.2. Choosing the Proper Linkage

The next challenge to be solved after linking dates to cancer entities is to choose the
appropriate linkage. As for the same patient, different documents are being annotated from
different moments in time; the main challenge is to decide which events refer to diagnosis,
and to then eliminate those linkages in which the diagnosis is not clear. This is a challenge
because for each patient, hundreds of annotations containing cancer concepts and dates
can be extracted. Table 2 shows a possible set of records extracted for the same patient in
which we can see instances of triplets: cancer diagnosis concept, date and event. Observing the
instances one can see that:

• There are different concepts indicating cancer diagnosis entity. Some of them are very
generic (“Cancer”), while others are specific terms (“Small cell lung carcinoma”).

• There are different dates associated to cancer diagnosis entities.
• Not every record contains an event entity.

Consequently, among all the records associated with a patient, some heuristics are
required to find the proper record that matches the diagnosis date. To solve this problem,
we propose: (i) to choose the most specific diagnosis, (ii) if more than one record exists
associated to this diagnose, but with different dates, then we need to discriminate the most
proper date.
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Table 2. A set of extracted records.

Cancer Diagnosis Concept Date Event

Lung cancer 25 March 2014
Cancer March 2015 Begins treatment

Adenocarcinoma 17 May 2017
Lung carcinoma 14 January 2014 Begins clinical trial

Small cell lung carcinoma July 2014 Diagnosed
Lung neoplasm 12 July 2016

Cancer 17 May 2014
Adenoca April 2018

Carcinoma 18 September 2017 Begins surgery

• Choosing the cancer diagnosis: A ranked list of UMLS identifiers is used. This list
contains UMLS codes and their respective cancer diagnosis sorted according to those
that more specifically describe the diagnosis. In this list, the concept “Squamous cell
lung carcinoma” is more relevant than the concept “Lung cancer” because the former
describes more specifically the patient’s diagnosis.

• Choosing the diagnosis date: two heuristics are applied to disambiguate the date for the
chosen diagnosis:

– Annotations containing events other than “diagnosed event” are eliminated.
– Clinical notes are first ordered chronologically and then classified according

to their type: (Anamnesis, Clinical Judgment, Medical Evolution, treatment, etc.).
According to this classification, the date is assigned taking into account the
earliest annotation coming from a document classified as Clinical Judgement
or alike.

7. Validation and Results

As explained, the proposed approach is composed of three steps: (i) named entity
recognition; (ii) negation and speculation detection; and (iii) linking dates to cancer en-
tities.The validation methodology that was used will be presented first, followed by the
results that were obtained for each step. For validation purposes, the following standard
measurements were used: Precision (P), Recall (R), and F-score (F1). An implementation
for the proposed approach can be found in GitHub (https://github.com/solarte7/lung_
cancer_diagnosis).

7.1. Validation Methodology

• To evaluate the deep learning model (Figure 3) the corpus described in Section 4.1
was used, this corpus contains 14,750 annotated sentences. The corpus was shuffled
and randomly split into three sets: training (80%), development (10%), and test
(10%). This procedure was independently repeated ten times, while verifying that
each set contained all the labels in the corpus. The test set was used to calculate the
performance metrics, as shown in the Equations (1) and (2). The F-score (Equation (3))
is calculated as a weighted average of the Precision and Recall measurements.
The BiLSTM-CRF model was developed using TensorFlow (https://www.tensorflow.
org/?hl=es-419) and Keras (https://keras.io/) using the following parameters:
learning rate as 0.001, dropout as 0.5, the number of epochs is 30, the BiLSTM hidden
size is 300, and the batch size is 512.

Precision =
Number of entities correctly predicted

Number of predicted entities
(1)

Recall =
Number of entities correctly predicted

Number of entities in the test set
(2)

https://github.com/solarte7/lung_cancer_diagnosis
https://github.com/solarte7/lung_cancer_diagnosis
https://www.tensorflow.org/?hl=es-419
https://www.tensorflow.org/?hl=es-419
https://keras.io/
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F-score = 2 ∗ Precision * Recall
Precision + Recall

(3)

• To validate the negation and speculation detection step, the NUBES corpus proposed
by [12] was used. This public corpus is annotated with speculation and negation
in clinical notes written in Spanish. We analyze the performance for each sub-task:
cue detection and scope recognition.

– A speculation or negation cue is correctly detected when given a sentence,
the rule-based approach is able to recognize the cues indicated by the test corpus.

– A scope is correctly detected when given a sentence and a detected cue,
the approach is able to recognize the scope indicated in the corpus.

Equations (4) and (5) are used to calculate Precision and Recall for the cue detection
sub-task. On the other hand, Equations (6) and (7) are used to calculate Precision
and Recall for the scope detection sub-task. The F-score is calculated as a weighted
average of the Precision and Recall.

Cue Precision =
Number of cues correctly detected

Number of detected cues
(4)

Cue Recall =
Number of cues correctly detected
Number of the cues in the corpus

(5)

Scope Precision =
Number of scopes correctly detected

Number of detected scopes
(6)

Scope Recall =
Number of scopes correctly detected
Number of the scopes in the corpus

(7)

• To validate the diagnosis date extraction, a database containing data from “Hos-
pital Universitario Puerta de Hierro Madrid” was used. It contains around 300,000
clinical notes corresponding to 1000 patients that were diagnosed with lung cancer
in the last ten years. Information of the diagnosis date for each patient is available.
A diagnosis date is correctly extracted when it corresponds to the diagnosis date given
by the hospital dataset. Equations (8) and (9) are used to calculate the Precision and
Recall respectively.

Date Precision =
Number of diagnosis date correctly extracted

Number of diagnosis date extracted
(8)

Date Recall =
Number of diagnosis date correctly extracted

Number of diagnosis date in the hospital dataset
(9)

7.2. Named Entity Recognition Results

For each split in the corpus (training, development, test) we carry out the
following experiments:

1. The BiLSTM-CRF base model proposed by [32] is used.
2. General domain embeddings training by Fast text (https://fasttext.cc/docs/en/

pretrained-vectors.html) on Wikipedia are added to the BiLSTM-CRF model.
3. Spanish medical embeddings proposed by [41] have been added to the

BiLSTM-CRF model.
4. Spanish medical embeddings and char embeddings are added to the model.
5. A combination of medical embeddings, char embeddings, lemmas, and Part of Speech

(POS) tagging features.

Table 3 shows obtained results for every experiment previously described, and the
partition (training, development, test) that obtained the best performance was chosen.
According to this table, one can see that the best results are obtained in the fifth experiment.
This fact indicates that the combination of medical embeddings, char embeddings, lemmas,

https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html
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and POS tagging features considerably improve cancer entity extraction. Moreover, the use
of medical embeddings has the most significant impact on improving the model. This fact
suggests that medical domain embeddings helps the neural network to learn to extract
named entities. In addition, the use of lemmas and POS tagging features also have a
considerable impact on the model, while adding char embeddings seems to have less
impact on the final rate.

On the other hand, (see Table 3), the use of Wikipedia general domain embeddings
does not obtain such effective results. This fact suggests that using general domain embed-
dings to extract entities in specific and specialized domains such as the medical domain
does not produce the best results.

The proposed model’s performance is similar to other proposals dealing with ex-
tracting cancer entities from clinical notes written in Spanish [45–47]. However, the main
limitation with those proposals is that they are only able to extract cancer entities and do
not consider other entities required to correctly extract the cancer diagnosis, such as dates,
events, family members, or tumor stage.

Table 3. Results for Named Entity Recognition.

Model P R F1

BiLSTM-CRF 0.83 0.78 0.80
BiLSTM-CRF + General domain embeddings 0.80 0.73 0.76
BiLSTM-CRF + Medical embeddings 0.87 0.84 0.85
BiLSTM-CRF + Medical Embeddings + Char embeddings 0.87 0.85 0.86
BiLSTM-CRF + Medical Embeddings + Char embeddings + Lemmas + POS 0.91 0.89 0.90

7.3. Negation and Speculation Results
7.3.1. Cue Detection Results

Three experiments were performed to measure the impact of regular expressions
(Regex) to detect both negation and speculation cues:

1. Only the first and second Regex are used for cue detection (See Section 5.2).
These Regex were adapted to Spanish from the popular rule-based Negex [56] pro-
posal. The Negex adaptation to Spanish is used as baseline.

2. The third Regex is added to measure the contiguous cues behavior.
3. The fourth Regex was added, this experiment includes all Regex proposed in

Section 5.2.

Table 4 shows the results obtained in the cue detection task. The best performance
using all the Regex proposed in Section 5.2, for both negation and speculation cue de-
tection was obtained. In the case of negation detection, adding the third Regex has a
significant improvement in the F-score, as evidenced in Table 4. This fact suggests that
detecting contiguous cues improves negation detection in clinical notes written in Spanish.
Adding the fourth Regex also improves performance but to a lesser improvement rate.

On the other hand, for speculation detection, using the first two Regex an F-score of
89% is obtained. When adding the third and fourth Regex, the improvement rate is not as
significant as in negation detection. This fact suggests that contiguous cues do not have an
important impact on speculation detection.

Table 4. Results for the cue detection task.

Negation Speculation

Regex P R F1 P R F1

Regex 1,2 0.84 0.81 0.82 0.91 0.88 0.89
Regex 1,2,3 0.93 0.91 0.92 0.92 0.89 0.90

Regex 1,2,3,4 0.96 0.94 0.95 0.92 0.89 0.90



Appl. Sci. 2021, 11, 865 16 of 21

7.3.2. Scope Recognition Results

Five experiments were performed in order to analyze the impact for each rule pro-
posed for scope recognition (see Section 5.4):

1. The first rule is used to recognize the scope. As mentioned in Section 5.4, this rule
searches for a termination term in the sentence which indicates the end of the scope.
This approach is commonly used by previous rule-based approaches [53,60,61].

2. The second rule is added to take into account contiguous cues for recognizing
the scope.

3. The short sentence heuristic is used by adding the third rule.
4. Adding the fourth rule to include POS tagging features.
5. The fifth rule is added to include the parse tree analysis for extracting the scope.

Table 5 shows the results obtained in the scope recognition task. According to this
table, the best results were obtained when all the proposed rules were included in the
fifth experiment. An 89% F-score in the negation scope, and an 85% F-score in speculation
scope detection were obtained. This fact indicates that the proposed approach outperforms
previous rule-based approaches that use only termination terms for scope recognition in
Spanish [60,61]. In fact, when using only termination terms, a mere 70% in F-score for
negation and an 71% in F-score for speculation detection were obtained. This is due to the
fact that not all sentences have termination terms.

For the particular case of negation detection, Table 5 depicts that the use of contiguous
negation, short sentence heuristic, POS tagging, and sentence parse tree (Rules 2 to 5) shows
to be useful to improve the scope recognition task. All these rules have similar improvement
rates. This proposal improves previous rule-based approaches which recognize the scope
using only termination terms [60,61].

In speculation scope detection, the behavior of the rules were found to be different.
Specifically, the contiguous cues and the short sentence heuristic do not have a significant
improvement rate (See Table 5). This situation suggests that contiguous cues and short
sentences are not so related to speculation as they are for negation. On the contrary,
POS tagging and sentence parse tree features result in a significant improvement for
speculation scope detection.

In addition, speculation detection has not yet been fully addressed for Spanish clinical
narratives. We found only the [12] proposal dealing with this issue. Obtained results in our
approach show similar performance rates than those reported by [12].

Table 5. Results for the scope recognition task.

Negation Speculation

Rules P R F1 P R F1

Rule 1 0.72 0.70 0.71 0.72 0.69 0.70
Rules 1,2 0.78 0.75 0.76 0.72 0.69 0.70

Rules 1, 2, 3 0.81 0.79 0.80 0.73 0.71 0.72
Rules 1, 2, 3, 4 0.86 0.82 0.84 0.82 0.79 0.80

Rules 1, 2, 3, 4, 5 0.91 0.87 0.89 0.87 0.84 0.85

7.4. Relating Cancer Diagnosis and Date Results

The impact of negation and speculation to extract correctly the diagnosis date will be
evaluated as it is shown in the planned experiments:

1. The diagnosis date is chosen from all extracted named entities which belong to
the patient.

2. The diagnosis date is chosen after filtering entities affected by negation.
3. The diagnosis date is chosen after filtering entities affected by negation

and speculation.
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Table 6 shows obtained results for linking the proper date to the lung cancer diagnosis.
According to this table, the best result was obtained in the third experiment with an 89%
F-score. This fact suggests that detecting negation and speculation is a crucial step needed
to extract a diagnosis date correctly. In fact, if the diagnosis date is extracted using only
results from named entity recognition, a 64% F-score is obtained.

In addition, according to Table 6, filtering entities affected by negation improves the
F-score by 7%. Meanwhile, filtering entities affected by speculation improves the F-score
by 18%. This indicates that the diagnosis date extraction is more sensitive to speculation
than to negation. Moreover, when comparing the results of the proposed approach to those
presented in [10], the F-score performance rate is improved by 5%, which is mainly due to
the improving of cancer concept extraction and speculation detection.

Table 6. Results for extracting the diagnosis date.

Experiment P R F1

Using all Named Entities 0.67 0.62 0.64
Filtering negated entities 0.72 0.71 0.71
Filtering negated and speculated entities 0.92 0.87 0.89

8. Discussion

Automatically extracting lung cancer diagnosis from clinical notes can be useful to
support clinical research as establishing the diagnosis is crucial to understand factors
occurring prior and after the disease. The approach proposed in this paper contributes to
automatically extract diagnosis and dates from clinical narratives written in Spanish.

The use of deep learning methods was effective for named entity recognition in the
cancer domain. The performance of the BiLSTM-CRF model has shown promising results
as it can see in Table 3. Specifically, including the Event entity was useful to disambiguate
sentences containing several date mentions. Thus our approach outperforms the proposal
presented in [10] as the latter does not take into account event extraction. Besides, it is
important to note that once a neural network has been trained with lung cancer-related
data it can be used to learn not only on lung cancer notes but also on other kind of tumors.

On the other hand, the rule-based approach presented has shown to return competitive
results for speculation and negation detection tasks. In particular, the following facts should
be stressed:

• The proposed approach uses a lexicon that has been adapted to Spanish from two
different resources specialized in negation and speculation in the biomedical domain.
Additionally, the lexicon was semantically extended with a word embeddings tech-
nique that helped obtain new cues with similar meanings. Moreover, this lexicon was
manually reviewed and evaluated. The resulting lexicon offers high precision in the
cue detection task.

• Some weaknesses reported in [12], such as post-scope recognition are addressed in this
proposal by using Regex 2 (see Section 5.2). When a cue is detected using this Regex,
the scope is searched to the left of the cue.

• The rules proposed for scope recognition are adapted according to the analysis that
has been performed on how speculation and negation are expressed in clinical notes
written in Spanish (see Section 5.3).

Despite the promising results, still some limitations have to be addressed. In particular,
one of the main challenges for using deep learning approaches is that one must have an
annotated corpus. In this paper, a manually annotated corpus to support lung cancer
diagnosis extraction was proposed. However, a larger corpus containing more annota-
tions should be addressed in future experiments. Moreover, to extract more information
regarding lung cancer disease, a more comprehensive set of entities would be needed.

In the speculation cue detection, one of the challenges to be solved relates to the
detecting of syntactic speculation cues, specifically the token ”o” (or). This token does
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not behave as a speculation cue in more than 99% of cases. In order to illustrate this,
consider the following sentences:

1. “Causas de sangrado: una complicación de la cirugía o una patología asociada al cancer de
pulmón.” (Causes of bleeding: a surgery-related complication or a lung cancer-related
pathology)

2. “Si acude a alguna consulta o servicio sanitario debe ser acompañado. ” (Patients must be
accompanied when going to general appointments or when using the health service.))

In the first sentence, the token “o” acts as a speculation cue, while in the second one,
it acts as a disjunction element. As the second case is the most frequent, in our approach
we decided not to include the token “o” in the cue lexicon (Figure 4) in order to reduce
false positives detection. However this should be improved in a future research .

In the scope recognition task, the main limitation of the presented approach is related
to discontinuous scopes detection. Although this situation is infrequent, it should be solved.
In the NUBES corpus [12] discontinuous scope represents less than 5% of the cases.
Two cases where a discontinuous scope can appear were identified:

• Sentences containing a sequence of contiguous cues where some part of the text is
not affected by any cue. In the next sentence the scope is underlined and the text

“sangrado pulmonar” is out the scope.

“No vómitos, sangrado pulmonar desde ayer, no tos, no dolor.”

(No vomiting, lung bleeding since yesterday, no cough, no pain.)
• When the scope of a cue is in both directions, to the left and to the right of the cue.

In the next sentence, the cue is the word “Versus”, and the scope is underlined.

Cancer de pulmón Versus Infección en lóbulo derecho.

(Lung cancer Versus right lobe infection).

These cases should be further analyzed in the future. Another challenge can be found
in the fact that the variability of speculation cues is higher than when dealing with negation
cues. This fact increases the complexity of the speculation detection task.

9. Conclusions and Future Work

Automatically extracting lung cancer diagnosis and its diagnosis date from clinical
narratives written in Spanish has been approached in this paper through a process divided
into three steps: Named entity recognition (NER), negation and speculation detection, and
linking the proper date to the cancer diagnosis. This approach improves the lung cancer
diagnosis extraction process by properly relating a cancer concept to the diagnosis date.

Deep learning-based approaches have shown to be useful to improve named entity
recognition in the medical domain. Specifically, a BiLSTM-CRF model to extract lung
cancer entities from clinical narratives written in Spanish was implemented, and the results
that were obtained are encouraging.

Speculation and negation detection is a crucial step to improve information extraction
in the medical domain. In particular, speculation detection highly impacts the accuracy of
diagnosis extraction. For this reason, properly filtering speculative cancer concepts is an
important factor for correctly extracting the diagnosis date.

Extracting useful information from clinical notes, and in particular, accurate cancer
information, is a promising task to improve clinical decision support systems. The ability
to analyze clinical texts written in Spanish opens important opportunities to develop
more clinical applications. The presented approach contributes to this line of research.
Approaches to improve negation and speculation detection and named entity recognition
will be explored in future studies.
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