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Resumen 

Actualmente, el aprendizaje automático (AA) se ha convertido en una herramienta muy utilizada en

distintos campos debido a su gran capacidad para aprender a resolver problemas de forma automática

y para analizar grandes cantidades de datos de forma efciente. De hecho, en los últimos años, se han

llegado a resolver problemas del mundo real con muy buenos resultados con métodos de AA. Sin em-

bargo, incluso para los expertos en el ámbito de AA, a veces sus resultados son difíciles de interpretar

debido a que los modelos actúan como cajas negras. Esto puede hacer que estos modelos pierdan

gran parte de su fuerza, sobre todo en el ámbito clínico, donde la interpretabilidad es fundamental

para ser aplicados en la práctica real. Por esta razón, el aprendizaje automático intrepretable está en

continuo crecimiento.

Existen numerosos problemas clínicos en los que es posible hacer uso de métodos de AA para

ayudar al personal sanitario. En concreto, este Trabajo de Fin de Máster se centra en la detección de

hipoxia fetal intraparto, ya que es de gran importancia preservar el bienestar de los fetos durante el

embarazo y durante el parto para evitar posibles daños.

Para ello, en primer lugar, se han estudiado los patrones más utilizados en el ámbito clínico para

detectar sufrimiento fetal. Después, se han estudiado y entrenado tanto modelos interpretables por

sí mismos como modelos más complejos para resolver el problema. En concreto, modelos lineales,

modelos basados en árboles y en métodos de núcleos. Además, para estos últimos, se han utilizado

técnicas de intrepretabilidad externas, como LIME y SHAP, para poder entender su funcionamiento.

De esta forma, ha sido posible estudiar cuáles son las características que los modelos utilizan para

resolver el problema y analizar si son similares a las utilizadas en el ámbito médico, es decir, si los

modelos actuán con sentido clínico.

En este documento se presentan las distintas fases desarrolladas a lo largo del trabajo. A través

de la aproximación realizada, se ha visto que es posible dar interpretabilidad a los modelos de AA

y entender cómo y por qué el modelo realiza las predicciones. El método propuesto proporciona un

primer estudio positivo y los alentadores resultados obtenidos en las tareas de clasifcación demuestran

el interés y la viabilidad de este enfoque para detectar la hipoxia fetal intraparto a través de este camino.

Palabras clave 
Aprendizaje automático interpretable, Interpretabilidad, Sufrimiento fetal, Detección de hipoxia fetal

intraparto
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Abstract 

Nowadays, Machine Learning (ML) has become a widely used tool in different felds due to its great

capacity to learn to solve problems automatically and to analyze large amounts of data effciently. In

fact, in recent years, real-world problems have been solved with very good results using ML methods.

However, even for experts in the ML feld, sometimes their results are diffcult to interpret because the

models act as black boxes. This can cause these models to lose much of their power, especially in

the clinical feld, where interpretability is essential to be applied in real-world practice. For this reason,

interpretable machine learning is continuously growing.

There are many clinical problems where it is possible to make use of ML methods to help healthcare

staff. In particular, this Master Thesis focuses on the detection of intrapartum fetal hypoxia, since it is

of great importance to preserve the well-being of fetuses during pregnancy and during delivery to avoid

possible damages.

For this purpose, frst of all, we have studied the most commonly used patterns in the clinical feld

to detect fetal distress. Then, we have studied and trained both interpretable models by defnition and

more complex models to solve the problem. Specifcally, linear models, tree-based models and kernel-

based models. In addition, for the later ones, external interpretability techniques, such as LIME and

SHAP, have been used to learn about their performance. In this way, it has been possible to study

which are the features that the models use to solve the problem and to analyze if they are similar to

those used in the medical feld, that is, if the models act with clinical sense.

This document presents the different phases developed throughout this work. By the approach

adopted, it has been shown that it is possible to give interpretability to the ML models and to understand

how and why the model makes the predictions. The proposed method provides a frst positive study

and the encouraging results obtained in the classifcation tasks demonstrate the interest and feasibility

of this approach to detect intrapartum fetal hypoxia by this pathway.

Keywords 

Interpretable machine learning, Interpretability, Fetal distress, Intrapartum fetal hypoxia detection
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1
Introduction 

This frst chapter of the master thesis describes the main points of this work. Firstly, the motivation that

has led to the development of the project is detailed, as well as the objectives that have been set up.

Finally, in the last part, the structure of the document is described.

1.1 Motivation

Machine Learning (ML) has become a very useful tool in recent years in our society due to its ability

to learn how to solve problems automatically and to analyze large amounts of data effciently. This has

led to this discipline acquiring a relevant role in healthcare innovation in many applications, such as

medical diagnosis assistance in a fast and accurate way or the reduction of diagnosis time [1]. Despite

its great benefts in the clinical feld, in many cases this technology results in black box models [2] which

are diffcult to interpret for healthcare staff. For this reason, Interpretable Machine Learning (IML) is

currently on the rise, since it attempts to alleviate this drawback.

In particular, this project addresses the clinical problem of detecting intrapartum fetal hypoxia, when

the fetus can suffer irreversible damages during the pregnancy and the delivery. Therefore, it is of great

importance to try to preserve the well-being of the fetus detecting quickly and accurately the possible

fetal distress.

Taken all these facts into account, this work focuses on detecting intrapartum fetal hypoxia through

linear ML models, which are interpretable by defnition, and also with more complex models in which

interpretability is lost. Thanks to different interpretability tools, it will be possible to explain the operation

of these ML models experimentally and to relate them to the medical practice.

1.2 Objectives

As mentioned above, the main goal is to detect intrapartum fetal distress with IML in order to explain

how the models work and relate them to the real clinical area. To this end, the specifc objectives are:
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Introducing the clinical fundamentals of the problem Intrapartum fetal hypoxia context is

explained, as well as the clinical features which defne this pathology and the values that,

currently, are assumed to determine that a fetus suffers hypoxia. Some previous works are

also reviewed and the necessity of interpretability in this feld is shown.

Studying ML models Model reviewing will be performed, covering from classical and easily

interpretable models to more complex ones, where interpretability is lost. Particularly, the

models studied are Logistic Regression (LR), Decision Tree (DT), Random Forest (RF) and

Support Vector Machine (SVM).

Signal preprocessing and correlation feature extraction Interpolate missing values of the

signals in the Cardiotocography (CTG) database and then, extract representative features,

such as correlation, to obtain a dataset to train the models.

IML on fetal hypoxia detection After knowing the problem and analyzing the techniques, ML

models will be built to detect fetal distress through a series of experiments. The performance

and reliability of the models will be evaluated and two of the most widely used techniques

in IML, Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive ex-

Planations (SHAP), will be applied to understand the more complex models. In this way, it

will be possible to provide interpretable knowledge and to test if ML models are based on

the same principles as models based on expert knowledge. Thus, we will see whether the

operation of ML models is related to the rules used by international guidelines for detecting

fetal hypoxia during the delivery.

1.3 Document structure

Following the objectives above, the structure of this work is organized as follows:

Chapter 1 Introduction This chapter shows the reasons that motivate the development of this

project, the proposed objectives and the structure.

Chapter 2 Clinical fundamentals Here a brief description of the basic clinical concepts are

explained. Also, some background in the detection of intrapartum fetal hypoxia is given.

Chapter 3 Interpretable machine learning Theoretical explanation of the methods used in

this work are shown in this chapter. Both simple and complex models are presented, as well

as the interpretability tools.

Chapter 4 Experiments In this chapter the experiments performed and the steps followed

during them are detailed, explaining and analyzing the corresponding results of each model

and tool.

Chapter 5 Conclusions and future work In this chapter the conclusions obtained are pre-

sented and new lines of research are proposed.

Interpretable Machine Learning for Intrapartum Fetal Hypoxia Detection2
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Clinical fundamentals 

This second chapter provides the necessary knowledge to understand and follow the problem tackled

in this project. Basic clinical background associated to the intrapartum fetal hypoxia is detailed in order

to subsequently relate the operation of the ML methods to these concepts of the real clinical feld. In

this way, it will later be possible to compare their working to the clinical practise.

2.1 Fetal distress

Fetal distress produces a quickly decompensation of the fetus due to intermittent compression of the

umbilical cord or by a progressive reduction of uteroplacental circulation because of continuous Uterine

Contractions (UC). When the fetus undergoes hypoxic stress during the delivery, a series of physio-

logical responses occurs to compensate the stress and to prevent hypoxic-ischemic damage. The my-

ocardium of the heart is protected as well as the brain and adrenal glands, i.e., the central and essential

organs are protected at the expense of non-essential organs. Generally, the progressive increase in

basal Fetal Heart Rate (FHR) is caused by the release of adrenaline and noradrenaline. However, when

decompensation occurs, the blood supply through the carotid arteries may be reduced causing acidosis

in the brain, which results in loss of FHR variability. This loss of FHR variability is characterized by a

progressive reduction in the basal fetal heart rate culminating in terminal bradycardia.

During pregnancy, it is of great importance to preserve the well-being of the fetus despite the pos-

sible injuries that may happen. In order to monitor fetal health during pregnancy and delivery, car-

diotocography (CTG) is used, which monitors FHR and UC. Therefore, its main purpose is to monitor

fetal comfort and allow early detection of fetal distress [3]. The occurrence of unbalanced Deceleration

(DCC) and Acceleration (ACC) patterns over the FHR are some of the features of CTG that refect

the physiological compensatory mechanism [4] which, as mentioned above, occurs to prevent hypoxic-

ischemic damage.

When the fetus is born, there are some ways to know if the baby has suffered fetal hypoxia. The

umbilical cord pH value is the most common pointer used as a classifcation criterion between healthy

fetuses and pathological ones, although it is sometimes combined with the base defcit in the extracel-

3
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lular fuid (BDecf), the partial pressure of carbon dioxide in arterial blood (PCO2) and the result of the

Apgar test (appearance, pulse, grimace, activity, and respiration) [4]. The umbilical cord pH range can

take any value between 6.55 (acidic) and 7.50 (basic), where the most acidic values indicate that the

fetus has suffered fetal distress and the more basic ones that the fetus has had a healthy delivery.

However, the key is to know if the fetus is suffering from fetal hypoxia before it is born in order to

react accordingly. When the fetus is in distress it is essential to recognize certain patterns in the CTG

recording with the aim of acting quickly and appropriately to prevent the fetus from hypoxia. Traditionally,

four basic signal characteristics are crucial for clinical assessment when interpreting a CTG recording:

basal fetal heart rate (baseline), variability of FHR, and ACC and DCC patterns. However, the detection

of these basic morphological features is based on an abstract visual inspection that may depend on the

clinician personal experience and emotional state [5].

Despite the fact that CTG was at frst developed as a screening device to anticipate fetal hypoxia, it

is suspected that its positive predictive strength for intrapartum fetal hypoxia is low [6]. Also, as it will be

discussed below, international guidelines have been created to characterize blends of features to help

to anticipate intrapartum fetal hypoxia. However, sometimes, these guidelines may not detect that the

fetus has begun labor already compromised or that the fetus has begun to suffer during the labor, so

the false-positive rate of CTG is slightly high [6]. These facts are still under study [7], but the main point

is that when fetal distress signs are missed, the fetus may suffer irreversible damages such as chronic

hypoxia, arrhythmias, or brain damage, among others, so it is important to improve its detection.

As it can be seen, there are some unsolved downsides in the detection of fetal hypoxia that clearly

open the way to ML techniques to help healthcare staff in the detection of this pathology thanks to the

ability of this technology to capture patterns in the data.

2.2 FIGO guideline

Currently, there are different international rules or agreements, such as Swedish (SWE)-09 [8], Interna-

tional Federation of Gynecology and Obstetrics (FIGO)-15 [9] and SWE-17 [10], which propose different

criteria for deciding, based on CTG records, whether or not a fetus is suffering from fetal hypoxia in real

clinical situations. In particular, FIGO rules are internationally accepted by the obstetric community and,

currently, they are used by doctors when analyzing CTGs in real time. These rules are based on the

analysis of the baseline, DCC and ACC patterns, UC and variability of the FHR signal, described as

follows [9]:

Baseline fetal heart rate: Mean of the FHR over a 10 minutes period. It can be classifed into

three types:

Normal: Value between 110 and 160 beats per minute (bpm).

Interpretable Machine Learning for Intrapartum Fetal Hypoxia Detection4



2.2. FIGO guideline 

Tachycardia: Value above 160 bpm for more than 10 minutes.

Bradycardia: Value below 110 bpm for more than 10 minutes. Sometimes, in

healthy fetuses, values between 90 and 110 bpm may occur and they are not

considered pathological.

Contractions: Gradual bell-shaped increases in the signal of uterine activity followed by roughly

symmetrical decreases, with a duration of 45–120 seconds. During normal labor, the am-

plitude of contractions increases from an average of 30 mm Hg (pressure measurement) at

the onset of labor to 50–80 mm Hg in the frst and second stage.

Acceleration (ACC): Abrupt increase in FHR (from onset to peak in less than 30 seconds) of

more than 15 bpm amplitude and lasting more than 15 seconds but less than 10 minutes.

Deceleration (DCC): A decrease in FHR below baseline with an amplitude larger than 15 bpm

for more than 15 seconds. It can be categorized into four types:

Early: The DCC patterns decrease and return to baseline gradually (within 30 sec-

onds or more). As it can be shown in Figure 2.1(a), the DCC patterns coincide

with contractions and preserve variability within the contraction. These patterns

are not indicative of hypoxia.

(a) Early deceleration pattern. 

(b) Late deceleration pattern. 

Figure 2.1: Early and late deceleration patterns in CTG.
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Variable: These DCC are ‘V’ shaped and show a rapid fall (in less than 30 sec-

onds) followed by a rapid retrieval to baseline.

Late: As it can be seen in Figure 2.1(b), it is similar in form to the early DCC,

but begins 20 seconds after the onset of contraction. This pattern of correlation

between the two signals has been shown to be a clear indicator of intrapartum

fetal hypoxia.

Prolonged: Those lasting more than 3 minutes.

Variability: Oscillation of FHR, it corresponds to the bandwidth in a minute segment (the dif-

ference between the maximum and the minimum in that minute). Standard Deviation (std) is

sometimes used as a proxy summary of the FHR signal. Some of the most common types

of variability are the following ones:

Normal: Bandwidth of 5–25 bpm.

Reduced: Bandwidth below 5 bpm for more than 50 minutes at baseline, or more

than 3 minutes during DCC.

Increased: Bandwidth exceeding 25 bpm for more than 30 minutes.

Sinusoidal pattern: Smooth and regular undulation with an amplitude of 5–15

bpm and a frequency of 3–5 cycles in 1 minute.

Pseudo-sinusoidal pattern: Pattern similar to the sinusoidal pattern, but with a

more angled and beaked shape. Its duration rarely exceeds 30 minutes and is

usually preceded and continued with common recording.

Once known the traditional features for the detection of fetal hypoxia, FIGO-15 [9] rules are detailed

in Table 2.1. The criteria for the classifcation of healthy, suspicious and pathological fetuses according

to the values of the characteristics seen above can be observed. Therefore, as it can be seen, the most

important traditional signs to recognize the pathological fetuses are: low baseline (FHR in bradycardia),

changes in variability and DCC patterns. These features are going to be taken into account in order to

check later if ML models consider them as important as they are according to the experts.

Normal CTG Suspicious CTG Pathological CTG

Baseline 110 − 160 bpm < 100 bpm

Variability 5 − 25 bpm Lacking at least one of

normal characteristics, but

Reduced/incrceased variability;

sinusoidal pattern

Decelerations No repetitive decelerations

with no pathological

features

Repetitive, late or prolonged

decelerations for > 30 min (or

> 20 min if reduced variability);

one deceleration > 5 min

Interpretation No hypoxia/acidosis Low probability of hypoxia/acidosis High probability of hypoxia/acidosis

Table 2.1: FIGO-15 classifcation system [9].
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2.3 Related work

In recent years, multiple studies have been done in this feld in order to try to detect intrapartum fetal

hypoxia, such as [11] where new physiological CTG features are explored with the aim of allowing the

clinicians to recognize a fetus that may be suffering from fetal hypoxia.

Moreover, several works have been recently published in the line addressed by this master thesis,

such as [5], where an attempt has been made to detect fetal hypoxia by performing a time-frequency

analysis based on spectrogram images. In this study it was demonstrated that adding new features

such as contrast, correlation, energy or homogeneity allows to improve the performance of classifers

like Least Square Support Vector Machine (LS-SVM). Other more recent works, such as [12], use a

new computer-aided diagnostic model where a combination of conventional features, Common Spatial

Patterns (CSP) and ML techniques such as Artifcial Neural Network (ANN), SVM and k-Nearest Neigh-

bors (k-NN) algorithms were used to solve the problem. Again, adding new features to the conventional

set was found to improve the performance of fetal hypoxia detection.

On the other hand, correlation studies between FHR and UC have shown the relationship between

them, such as in [13] where dynamic of couplings is studied. This work showed that these signals

have a strong link, in particular, a relation between the RR interval of the beats-heart (time between

consecutive R waves of the electrocardiogram signal) and UC. Based on this fact and the correlation

values obtained, the recordings were grouped with high precision into normal and pathological cases.

Finally, a detail to take into consideration is the umbilical cordon pH value used to separate healthy

from pathological fetuses in other studies in this feld. There is no general agreement on the threshold,

so the separation criterion is at the researcher discretion or depending on the amount of data, among

others. In general, when the pH takes values of 7 or lower, the fetus is considered pathological and

even with cerebral palsy. Similarly, when the pH is around 7.10 - 7.20 it is considered pathological and,

from 7.20 or higher, it is considered a healthy fetus. For this reason, many studies, such as [14] use a

separation threshold of 7.15. In [15] can be seen a review of pH threshold criteria comparing different

papers.

In summary, in recent years there has been a growing interest in this feld and numerous works have

been done to introduce new features to detect intrapartum fetal hypoxia and, also, to try to improve the

performance of the classifers as much as possible. However, less attention is paid to the interpretability

of these models, i.e. how they work, why they are making these predictions or which features are really

important, which is essential for clinicians.
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In this third chapter, an explanation of each of the algorithms used in this work is given. First, the im-

portance of interpretability in the ML feld is highlighted and the interpretable models by defnition used

in this project are explained. Next, the complex models used are shown and, fnally, two interpretability

techniques are illustrated.

3.1 Importance of interpretability

In Machine Learning (ML), two main types of tasks are often distinguished: supervised and unsuper-

vised. The goal of supervised ML is the inference of a function from labeled training data. The two

main supervised problems are classifcation and regression, which result in categorical and continuous

outputs, respectively [2]. In this work, supervised ML techniques are going to allow the construction of

different models to solve the intrapartum fetal hypoxia problem.

In recent years, ML has assumed an important role in healthcare innovation and this is one of

the reasons why IML is on the rise. ML systems developed in medical feld must be easily scalable,

accurate, robust and stable. These models have proven to be a powerful tools to assist clinicians in

their daily clinical routine to produce a more consistent and faster detection [1]. However, many do not

provide the physiological basis that allow to understand the results, i.e., their interpretation. On many

occasions, the performance of the ML models is excellent, but also they are black boxes where it is

impossible to know how the model works. This is not enough to solve real-world tasks and therefore,

the interpretability becomes an essential part of the ML development. It is true that sometimes, such

as in movie recommendation systems, the interpretation of the models may not be so relevant because

they work in a low risk environment where the model decision does not cause serious consequences.

However, in most cases and specially in the clinical feld, it is necessary to know how the algorithms

work to learn more about the problem and about the data [16]. In addition, interpretability allows to

know why a prediction was wrong, to know the cause of the error and even to understand how to fx the

system if it fails for certain patterns.
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When it is possible to interpret a model and know the explanation of its decisions, it is possible to

check if it meets the following properties, which are desirable for an ML model as it is explained in [2]:

Fairness: ‘Ensuring that predictions are unbiased and do not implicitly or explicitly discriminate

against underrepresented groups.’

Privacy: ‘Ensuring that sensitive information in the data is protected.’

Reliability or Robustness: ‘Ensuring that small changes in the input do not lead to large

changes in the prediction.’

Causality: ‘Check that only causal relationships are picked up.’

Trust: ‘It is easier to trust a system that explains its decisions compared to a black box.’

In this way, understanding how the models work, it can be ensured that the ML models developed

are robust and, therefore, provide reliable predictions for solving real-world problems. This can facilitate

the inclusion of this technology in the daily routine of professionals from different felds.

3.2 Interpretable models

As it has already been mentioned, there are models that are interpretable by defnition, i.e. do not

require external methods to be able to interpret their operation. This offers great upsides when it comes

to understand how a model is solving a given task, which is of high relevance in the medical feld. In

this section we show two supervised IML models that are easy to interpret and understand: Logistic

Regression (LR) and Decision Tree (DT) models.

3.2.1 Logistic Regression models

LR is a linear parametric method used to solve classifcation problems. This model allows to estimate

the label of each sample as a combination of different independent variables or predictors by multiplying

each of them by its corresponding weight. These weights must be learned during the training phase.

Thus, the construction of an LR model consists in fnding the most appropriate weights of the pre-

dictors to generate a boundary to separate the classes in the most effcient way. The output of the LR

function is not binary, it is the probability that each sample belongs to a class [17]. In these circum-

stances it is necessary to set a threshold to defne the observation as being of one class or another. In

general, this threshold is 0.5 (it can be another), so if the value exceeds this limit, the sample will be of

class 1 and otherwise of class 0. The coeffcients or weights of the model are found by optimizing the

cost function, which allows to obtain a model with the best results:
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N MX� � X 
T Tminimize − yi log(σ(w xi)) + (1 − yi) log(1 − σ(w xi)) + C |wj |, (3.1)

i=1 j=1 

Twhere w = [w1, w2, ..., wM ] is the weight vector to be determined and σ(w xi) is the probability output,

ŷi. These coeffcients describe the size and the direction of the relationship between the predictors and

the response variable [18]. As it can be seen in the last term of Equation 3.1, we can add a regularization

term in the cost function which prevents the model from being over-ftted, allowing better generalization.

In this case, Lasso regularization method has been considered, where C is the regularization coeffcient

(balance between complexity and accuracy) [18]. This penalty parameter controls the regularization for

the error term and the higher this value is, the greater the regularization of the cost function. Thus, an

optimal value of it should be sought for the model.

As mentioned above, it should be noted that this algorithm will allow us to estimate the importance of

the features directly through the value of the weights associated with each of the variables. Therefore,

this algorithm has a great advantage in relation to other ML methods, which is really relevant in the

medical practise.

3.2.2 Decision Tree models

DT model is a nonlinear and nonparametric supervised ML algorithm, which consists in making suc-

cessive decisions to fnally predict the class of the observations [19]. Simple decision rules learned

from training observations are used to predict the value of the output variable. In each decision, this

algorithm separates the set of instances through a condition given by a certain threshold of a particular

variable, which can be represented as a hierarchical tree, as it is shown in Figure 3.1(a). Therefore,

tree-based methods allow to divide the space into rectangles, as it is present in Figure 3.1(b), where it

is easier to observe the interactions between groups of samples and the predicted class.

(a) Decision tree outline. (b) Space separation from decision tree algorithm. 

Figure 3.1: Outline of operation of the DT algorithm obtained from [17].
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The main elements that form a decision tree are: root node, branches, intermediate nodes and

terminal or leaf nodes. The process of constructing a decision tree begins at the root node with the

whole dataset. First, the feature that provides the best purity index (i.e. high probability of obtaining two

samples of the same class in a node) is selected, which is going to take a role of great importance as

it is the frst feature to split all the data into two subsets with a greater number of observations of one

class or another. In other words, to divide the root node into two intermediate homogeneous nodes, the

predictor variable that provides the highest purity index for each descendant node will be selected. At

each split, smaller and smaller sets of cases are obtained until, for example, the maximum tree depth

established or the minimum number of samples to split a node is reached. When the tree stops splitting,

the leaf or terminal nodes are reached, where the fnal class to which each set of observations belongs

is indicated.

Homogeneity or purity of the node can be measure with different criteria, such as the Gini index, the

cross-entropy or the classifcation error, but in this work the Gini index will be used:

KX 
Gn = pbnk(1 − pbnk), 

k=1 

where k are the possible values that the label can take and pbnk is the proportion of observations within

the node n that belong to the class k. When pbnk have values close to 0 or 1, it means that the node

will contain samples mostly of a single class. Therefore, the lower the value of the Gini index (Gn),

the higher the purity of the node. Moreover, Gini index evaluates the frequency with which a randomly

chosen observation from the samples of a node would have been mislabeled by that n node [19].

One of the main advantages of this model is its easy interpretability and similarity with the mental

process performed by a clinical specialist to make decisions. In addition, this algorithm requires little

data preparation and provides great information about the importance of the variables, since the closer

the variables are to the root node, the more discriminating they are. However, there are also some

clearly downsides that are necessary to take into account when using this model, such as the lack

of softness in the predictions, its high variance or its tendency to overftting, among others [17]. For

this reason, it will be necessary to carefully select different hyperparameters of the model, such as the

maximum depth of the tree and the minimum number of samples to split a node, described as follows:

Maximum depth: maximum number of divisions that a single branch can undergo.

Minimum number of samples: the node will only be split if at least the minimum number of

samples remains in both branches.

The lower the maximum depth and the higher the minimum number of samples, the smaller the tree

size. In both cases, the generalization and the interpretability of the model is increased, although it

implies a lower hit rate.
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3.3 Complex models

Sometimes, simple and interpretable models fall short to solve real-world problems, and so more com-

plicated ones must be used to solve these tasks. This section shows Random Forest (RF) and Support

Vector Machine (SVM) algorithms, which cannot be interpreted by themselves, so it will be necessary

to use external tools to understand how they work.

3.3.1 Random Forest

Decision trees allow to capture complex relationships between data and have a low bias error. In con-

trast, they generally tend to have a very high variance error. However, the variance could be reduced by

creating different decision trees (forming a forest) and then averaging them, as it can be seen in Figure

3.2. It can be observed that the fnal prediction of a sample is obtained from the individual predictions

of each decision tree that makes up the forest. Therefore, the main idea of the RF algorithm is based

on building a set of decision trees with a very low bias error (most accurate possible predictions) and

uncorrelated among them (as diverse as possible) to average them and get a fnal prediction model

with low bias and low variance [20].

As it is said, Random Forest (RF) is a prediction algorithm based on the aggregation of different de-

cision trees, in which each tree is constructed independently using a resample with or without replace-

ment from the initial dataset. In this way, each individual tree makes a prediction and the fnal result

is chosen by majority-voting in the case of classifcation tasks and averaging in the case of regression

ones [18]. In the construction of each tree, p predictors are also randomly selected from the total set of

variables. Thus, reducing the features to a random subset, it is achieved that each tree is as different

as possible, and, therefore, the correlation between them is as low as possible, obtaining uncorrelated

predictors with the aim of reducing overftting and improving the generalization performance [20].

Figure 3.2: Outline of operation of the RF algorithm obtained from [21].
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As for the main hyperparameters of the RF algorithm, it has the same as those seen in the previous

section of DT, i.e., the minimum number of samples to split a node and the maximum depth of the tree.

Also, it is necessary to select the number of decision trees that will form the fnal model (forest), i.e., the

number of estimators. The higher the number of trees created, the higher the computational cost and

the lower the interpretability.

One of the most used measures to give interpretability to this model and even to make feature

selection is the feature importance. To obtain it, in each split of each tree, the improvement of the

splitting criterion is the measure of importance of the splitting variable, and it is accumulated in all the

trees of the forest separately for each variable. Finally, it is worth mentioning that, as it will be seen in

Chapter 4, there are some specifc interpretability tools, such as proximity plots that, sometimes, allow

to give some interpretability to RF.

3.3.2 Support Vector Machines (SVM)

SVM models have become one of the most prominent supervised learning methods for solving regres-

sion, classifcation or even domain detection problems. It is worth mentioning that this algorithm is able

to reduce the overftting problems present in other classifers [22].

The idea behind this algorithm for two-class problems is to optimally separate a set of data repre-

sented in the space through a hyperplane. To separate two classes of data there can be many possible

hyperplanes, but SVM tries to fnd the one that is at the greatest distance between the data of both

classes for maximizing the generalization capability of the model, as it can be seen in Figure 3.3.

Figure 3.3: Possible separation hyperplanes in a dataset versus the optimal separation hyperplane

of the SVM algorithm. Obtained from this online source.
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The output of the classifer takes values yi ∈ {1, −1} depending on the class to which the i-th case

belongs and the separation plane is defned as follows:

T w + b ≥ 1 − ζi when yi = 1, 
T w + b ≤ 1 + ζi when yi = −1, (3.2)

ζi ≥ 0, 

where the parameter ζi allows to introduce some slack (sometimes called loss) in the errors made by

the decision maker. The use of this parameter makes the classifer a soft margin classifer and, when no

errors are allowed in the classifcation, the classifer is called a hard margin classifer. The constraints

to which the hyperplane’s Equation 3.2 is subject can be combined as follows:

T yi(w + b) ≥ 1 − ζi, 

ζi ≥ 0. 

In the case where the data are linearly separable, the separation boundary is a linear hyperplane.

The margin between this hyperplane and any sample from the training set is maximized under the

constraint of penalizing the classifcation error by the following optimization problem:

nX 
minimize

1 kwk2 + C ζi, 
w,b,ζ 2 

i=1 

Tsubject to yi(w + b) ≥ 1 − ζi, 

ζi ≥ 0, 

where C is a regularization parameter to be selected by the user in order to increase o decrease in a

controlled way the generalization of the classifer [17]. Among the whole dataset, this algorithm only

considers important some samples to build the classifer and maximize the margin, the ones known

as Support Vectors (SV). This is an advantage when we want to store the models because the whole

training set is not needed.

Due to the limitations of linear learning machines, if the dataset is non-linearly separable, the use of

kernel functions is necessary to provide a solution to this problem. Thanks to the nonlinear transforma-

tion performed by these kernel functions, the data is projected into a higher dimensional space where

the separation of the samples is facilitated by the design of a linear decision maker in the new feature

space. Some popular kernel functions are the polynomial or Gaussian and, in order to have a good

performance, in the case of the Gaussian kernel, it is necessary to choose the kernel width properly.

As mentioned above, this method can be used in regression approaches. The main differences are

that in regression tasks the hyperplane is going to be the line that will help us to predict the continuous

output value and, secondly, that the error is going to be ftted within a certain tolerance, epsilon (�),

which means the width insensitivity of the boundary tube.
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3.4 Model-agnostic interpretable methods

As it has already seen, one way to understand the performance of the models is to use only interpretable

models, such as LR or DT. However, they usually have the main disadvantage of losing predictive per-

formance compared to more complex ML models [2]. For this reason, general interpretable techniques

have been developed.

Model-agnostic interpretable methods allow to give generalized explanations of ML model predic-

tions, i.e., they have great advantages in terms of model, explanations and representation fexibility.

Through these techniques, researchers are free to employ any ML model regardless of whether they

are complex and non-interpretable. Usually, when it comes to solving a problem in the real world, not

only one algorithm is evaluated, which makes these tools play an important role due to their ability to

explain different models independently. Finally, it should be noted that these techniques are not limited

to a particular form of explanation, which allows the type of interpretation to be adapted to each model,

i.e., in some tasks a linear explanation may be useful, and in others a graph of feature importance is

more descriptive [2]. Therefore, the way these algorithms work allows us to explain the predictions of

one particular model.

3.4.1 Local Interpretable Model-agnostic Explanations (LIME)

The main objective of LIME is to use a locally interpretable model, which is faithful to the original

classifer, in order to explain individual instances [23]. Thus, particular explanations can be obtained

and the reasons for the predictions can be understood, which is important for assessing the confdence

of the model.

The original model is a black box, but individual cases can be studied by locally applying an auxiliary

linear and interpretable model around it, as can be seen in Figure 3.4. In this way, LIME can explain

the predictions of any classifer or regressor reliably. The decision function of the nonlinear model, f ,

is shown with the blue-pink background and the red bold cross is the specifc case to be explained,

x [23]. To apply the local linear model, g, we take the neighboring cases of x and weight them by their

proximity, πx. With this set of samples and their predictions obtained through their evaluation with f 

function, we optimize:

ζ(x) = L(f, g, πx) + Ω(g). (3.3)

We locally approximate a complex model, f , around a case, x, and its neighbors using an inter-

pretable model g ∈ G, where G is a class of potentially interpretable models, such as those seen in

Section 3.4. Thus, L(f, g, πx) is a measure of how unfaithful g is in approximating f at the location

defned by πx. The linear model is ftted to this region, but not necessarily globally. The second part of
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Figure 3.4: Drawing of LIME operation obtained from [23]. The blue-pink background represents the

nonlinear model (f ), the bold red cross is the specifc case to be explained (x), and the dashed black

line corresponds to the local linear interpretable model trained over the instance x and its neighbors

(its locality is represented by the size of the symbols, the closer the bigger).

the Equation 3.3, Ω(g), is the complexity factor of the explainable model g ∈ G. For example, in trees

it can be the depth of the tree and in linear models the number of non-zero weights. It can be constant

or variable, but it is important to constrain it. Therefore, the goal is minimizing L(f, g, πx) and, at the

same time, making Ω(g) low enough to be interpretable.

In summary, LIME has great advantages as it allows to evaluate the confdence of the model and

to interpret the predictions on individual cases, which resembles medical diagnosis in the real world.

This tool can be used for different applications, such as selecting the features that the model considers

relevant or being able to choose a model among a set of models with very similar metrics depending

on which features are used to make the predictions. Thanks to the explanations provided by LIME, it is

often possible for the medical staff to select a model with slightly worse metrics, but using features that

are important in the clinical feld. Without LIME this would not be possible and perhaps a model with

better performance, but less clinical sense, would be selected. However, if the model is highly nonlinear

LIME may not be able to explain individual predictions well. Furthermore, another drawback of LIME is

that features that are locally relevant may not necessarily be globally relevant.

3.4.2 SHapley Additive exPlanations (SHAP)

As LIME, SHAP was created to alleviate the interpretability drawback in black box models. The main

goal of this method is to try to maintain a balance between the interpretability of the models and their

performance [24].

SHAP allows us to explain the predictions by means of explanations based on game theory and

SHAP values. It is necessary to know the concepts of coalition game and SHAP values to understand

how SHAP works. A coalition game is defned by the number of players and v, which is a function that

assigns a reward to each combination of players [25]. SHAP values indicate what the contribution of
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Combination Alice (A) Bob (B) Charlie (C)

A, B, C v(A) − v(∅) v(A, B) − v(A) v(A, B, C) − v(A, B) 

A, C, B v(A) − v(∅) v(A, C, B) − v(A, C) v(A, C) − v(A) 

B, A, C v(B, A) − v(B) v(B) − v(∅) v(B, A, C) − v(B, A) 

B, C, A v(B, C, A) − v(B, C) v(B) − v(∅) v(B, C) − v(B) 

C, A, B v(C, A) − v(C) v(C, A, B) − v(C, A) v(C) − v(∅) 

C, B, A v(C, B, A) − v(C, B) v(C, B) − v(C) v(C) − v(∅) 

Mean Final SHAP value of A (φA) Final SHAP value of B (φB ) Final SHAP value of C (φC )

Table 3.1: Toy example to explain the calculation of SHAP values.

each player is in a particular process or application. A toy example might be used to see how much each

person has contributed to one project, as shown in Table 3.1. To obtain the SHAP values it is necessary

to calculate frst the marginal contribution of each participant in each of the different situations. For

example, in the frst line of Table 3.1 the result of the project has been A,B,C. If we want to know the

marginal contribution of B in this result, we will need to know frst what is the result of only A working

on the project, v(A), and then we have to add B to see what is the result when both work together,

v(A, B). The difference between v(A) and v(A, B) is the contribution of B. In this way, the contribution

of each participant in each case would be calculated. Finally, the average of the marginal contributions

of each participant in each situation is calculated and these means will be the fnal SHAP value of

each participant, which will indicate globally how each participant has contributed. In another example,

working with a database with different patterns defned by some variables or predictors, it is possible to

calculate how much each variable contributes to the predictions of the model. The contribution of each

variable differs depending on how many predictors are included and in what order. It can be calculated

for each variable as many times as the number of patterns, but, fnally, they are averaged to calculate

the overall contribution of each variable.

Therefore, the SHAP values allow us to calculate the effect of each predictor individually on the

output target, which makes SHAP an additive feature method [24]:

NX 
0 g(z 0) = φ0 + φizi, 

i=1 

where φ0 indicates the average prediction of the model if no feature is introduced, N is the number

of features considered, φi are the SHAP values and z0 ∈ {0, 1}N is the coalition vector, which means

the presence or absence of a particular feature [24].

Each SHAP value, φi, corresponds to the importance of feature i in those predictions containing that

feature. Therefore, when calculating the SHAP values in a given model, M , it is necessary to evaluate

it in all feature subsets, S ⊆ Mi, in the presence and absence of i and compare the results:
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X |S|!(Ni − |S| − 1)!
φi(M) = (M(S ∪ i) − M(S)), (3.4)

Ni! 
S⊆Ni\i 

where the average of the values of all possible subsets is performed in order to obtain the SHAP

value for that feature. In Equation 3.4, M(S ∪ i) − M(S) refers to the difference in the model results in

the presence or absence of a particular variable.

Finally, it should be emphasized that this method is still under development for ML applications and

in spite of its documentation is still incomplete [26], its interpretation is so meaningful because it offers

many ways to explain the operation of a model.
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This chapter presents the experiments carried out and the results obtained. Beforehand, the used

database is described and once the data is known, a correlation study has been done. For the signal

preprocessing and the experiments, Python programming language has been used. In the experi-

ments, the interpretability of the models is examined to see if information about the clinical problem is

obtained. First, simple interpretable models are proven and, then, more complex ones. Finally, different

interpretable techniques are used in order to understand how these models work.

4.1 CTG Database and preprocessing

Intrapartum CTG database from [15] has been used in this work. This database was collected at

the obstetrics ward of the University Hospital in Brno, Czech Republic (April 2010 - August 2012). It

consists of 552 intrapartum recordings which were stocked in electronic format, at a frequency sample

of 4 Hz, and were chosen from 9164 intrapartum recordings with clinical and technical contemplations.

All recordings consist of two signals: FHR and UC, which are at least 30 minutes in length and at most

one hour and a half. Most of the records (everyone except 46 cesarean sections) are, intentionally,

from vaginal deliveries. All of them have accessible biochemical markers, and also some more general

clinical features like the mother age or the type of pregnancy, among others. Full description of the

dataset and the criteria to select the recordings are presented in [15].

In Figure 4.1 it can be seen an example from the CTG database, in particular the FHR and UC

from subject 1014. As it can be noticed, there are several missing values, marked as zeros because

this value is not a possible value for FHR in this context. That is why it has been necessary to imple-

ment an interpolation routine, which, in this case, consists of a cubic spline interpolation. In particular,

PchipInterpolator 1 from scipy library has been selected to create the interpolation routine ap-

plied to all the recordings. This tool uses monotonic cubic splines to fnd the value of new points [27]

and it has been selected due to the excellent ftting to the points and, also, because its calculation is

not excessively complex.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html 
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Figure 4.1: Original FHR and UC signals of subject 1014 from CTG database.

Figure 4.2: Interpolated FHR and UC signals of subject 1014 from CTG database.
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In spite of obtaining a good interpolation in general, as it can be seen in Figure 4.2, no interpolation

was performed at the missing ends, because it does not returns values within the common range of

FHR and UC. In the case of missing values at the extremes, this part of the record has been deleted

because there is not signifcant information in it.

4.2 Methodology

In the development of this project, information from FHR and UC signals is going to be used in order to

extract features that allow to detect the intrapartum fetal hypoxia. Also, to split the data in two classes,

only one biochemical marker is going to be the key to label the fetuses, the umbilical artery pH values.

In this work, the selected separation threshold is 7.20, so when the pH value is lower or equal to 7.20

the subject is considered as pathological and when it is higher the subject is considered healthy.

As mentioned above, all code has been developed in Python programming language due to its

adaptability, and its libraries suited for ML, such as scikit-learn. In this section, frstly, the feature

extraction from the signals is explained and secondly, the model implementation details are shown.

4.2.1 Feature extraction

In this section, it is shown how to process the interpolated signals seen in Section 4.1 in order to extract

informative features to train the models.

First, a traditional set of features has been extracted to describe the FHR signal in a powerful way.

As Table 4.1 shows, this set consists of 3 morphological features and 4 linear time-domain ones. The

morphological features selected are the baseline, and the number of acceleration (ACC) and deceler-

ation (DCC) patterns, and the linear characteristics are the mean and the std of the signal, the Short

Term Variability (STV) and the Long Term Variability (LTV), which are usually some of the main predic-

tors to determine fetal well-being in clinical practice, as it has been shown in Chapter 2. To extract this

set of features, we followed the procedure shown in [5] which is inspired by FIGO guidelines [9].

However, these features formed a little dataset to train the models. For this reason, as it will be

seen below, more features are included in the training set. Based on FIGO criterion [9], correlation

between FHR and UC has been demonstrated to be a signifcant characteristic to suspect fetal hypoxia

in the clinical feld. Correlation is the linear relationship between two variables or sequences and gives

information about the similarity between them [28].

That is why, additionally to traditional features from [5], this characteristic has been extracted in

this project. As it can be seen in Figure 4.3, the correlation obtained between FHR and UC signals is

normalized, where 1 and −1 indicate that there is high correlation (positive or negative, respectively)
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Figure 4.3: Normalized correlation between FHR and UC of subject 1014.

Extended set

Traditional set

Morphological

features

baseline
Mean of FHR values within the band:

√ stdmean ± (std + )
nº observations

ACC Number of times that the signal is above the

baseline more than 15 bpm for more than

15 seconds

DCC Number of times that the signal is below the

baseline more than 15 bpm for more than

15 seconds

Linear time-domain

features

mean Arithmetic average of the whole FHR signal

std Standard deviation of the whole FHR signal

STV Sum of the difference between ‘average val-

ues of 2.5-s blocks in the FHR signal’ [5] di-

vided by the total number of minutes of the

signal

LTV ‘Sum of the difference between the max-

imum and minimum values of the one-

minute blocks of the FHR signal’ [5] divided

by the total number of minutes of the signal

Correlation features

Maximum correlation Value of maximum correlation between

FHR and UC

Lag of maximum correlation Time frame in which the maximum correla-

tion value occurs

Minimum correlation Value of minimum correlation between FHR

and UC

Lag of minimum correlation Time frame in which the minimum correla-

tion value occurs

Table 4.1: Sets of features.
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between the signals and 0 indicates that the signals are uncorrelated. As it can be observed in this ex-

ample, generally the correlation reaches 20%-30% in some sections and, although it may not seem like

much, since it is a real and complex problem, this data provides a great deal of information. However,

the whole correlation curve has not been used because it is diffcult to handle with the complete signal,

so only 4 characteristics have been selected from it: the maximum and minimum correlation and the

time lags at which each of them occurs. In summary, to train the models, 3 morphological and 4 linear

time-domain features from [5] and these 4 extracted correlation features are going to be used, as they

are described in Table 4.1.

4.2.2 Model defnition

For each algorithm seen in Chapter 3, a two-step pipeline has been built: standardization of the data

and model specifcation. For the frst one, the data has been standardized with mean (µ) 0 and deviation

(σ) 1, and for the second step, scikit-learn tools are been used.

In Code A.1 it is possible to consult the implementation followed to build the models. In each

of them, as external cross-validation, results of 10 models have been averaged. To do this, a loop

was performed and for each iteration a different random partition is generated. These partitions have

been done with 75% of the data for training and the remaining 25% for testing purposes. In this way,

the differences between the scores are more robust and make them depend as little as possible on

the patterns intended for testing. For obtaining the best classifcation model with the optimal set of

hyperparameters, an internal 5-fold cross-validation was performed in a stratifed way. The scoring

used in the parameter search is the balanced accuracy, but later, the Area Under the ROC Curve

(ROC-AUC) score is also obtained to compare the models. This later score represents the behavior

of the sensitivity and specifcity of the model and allows to evaluate the ability of the model to classify

between the two classes. The closer this value is to 1, the less error the model will have in classifying.

As it has seen in Sections 3.2 and 3.3, the compared models in this project are Logistic Regression

(LR), Decision Tree (DT), Random Forest (RF) and Support Vector Machine (SVM). The search grids

of the different parameters for each algorithm can be seen in Table 4.2.

After building and training the models, two of the most commonly used techniques in the ML in-

terpretation models, LIME and SHAP, will be applied to provide interpretable knowledge about them.

Something to keep in mind is that, as seen in Section 3.4, these interpretability techniques are used

to explain one particular model. Therefore, the model with the intermediate score was selected among

the 10 built models to be interpreted.

Finally, as it will be seen in the results, the main score obtained to evaluate and compare the

performance of each algorithm is the ROC-AUC. It should be remarked that the main goal of this

master thesis is not to try to obtain the best possible performance, but to be able to interpret and

know the decision rules of each algorithm.
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Hyperparameter Range Description Models

C C ∈ {10i : i ∈ [−3, 5]} 
Regularization parameter

for the error term
LR, SVM

Gamma γ ∈ {10i : i ∈ [−6, 3]} Kernel width SVM

Maximum depth max_depth ∈ {10i : i ∈ [1, 30]} Maximum tree depth DT, RF

Minimum samples leaf min_samples_leaf ∈ {10i : i ∈ [10, 80]} 
Minimum number of samples

per leaf on the tree
DT, RF

Table 4.2: Search grids of the different parameters for each algorithm.

4.3 Results

Following the previous methodology, the two sets of features shown in Table 4.1 will be used. As it can

be seen, the traditional set consists of a total of 7 features (morphological and time-domain) and the

second set consists of a total of 11 features (morphological, time-domain and correlation-based). These

two sets of features will be compared for the different models indicated in the previous section. Table

4.3 compares the obtained results of the mean ROC-AUC score showing also the deviation (across the

10 models). Although for LR the results worsen a bit when including the correlation features, in general

taking into account the correlation improves or ties the results and, as previously mentioned, these

characteristics have a strong clinical meaning. Because of these reasons, we have done the majority of

our experiments using the extended dataset. In the following sections, we will tackle the interpretation

of the results seen in Table 4.3 and we will be able to know for each model which characteristics are

more relevant to make decisions and, therefore, to determine the class prediction for each subject.

The implementation of all models has been done with tools from scikit-learn and the models

predefned by this library, as it can be seen in more detail in Appendix B.

Finally, it is necessary to emphasize that, as it can be seen in Table 4.3, the results are not very

satisfactory (it is a low ROC-AUC), so there is a lot of scope for future work to improve these results

and try more powerful approaches.

Traditional set Extended set

Logistic Regression 0.669 ± 0.028 0.657 ± 0.035 

Decision Tree 0.621 ± 0.030 0.624 ± 0.041 

Random Forest 0.645 ± 0.022 0.663 ± 0.027 

SVC 0.657 ± 0.026 0.656 ± 0.027 

Table 4.3: General ROC-AUC results of traning models with two different sets of features. Mean over

the 10 models and its deviation.
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4.3.1 Logistic Regression

In this case, LR model has been built using the ` 1 norm (Lasso) of the weights as a regularizer, and

to cope with the unbalance of the dataset, the classes are weighted inversely proportionally to their

frequency. Moreover, as it is explained in Table 4.2, for LR model we have optimized the regularization

parameter, C, in order to get a better performance. Table 4.3 shows that the results obtained with

this model were among the best and, as it has seen in Section 3.2.1, one of the great advantages

of this model is its easy interpretability due to the fact that it is a linear model and directly provides

the coeffcients or weights associated to each feature. This makes it easy to decide if the features

considered relevant by the model make clinical sense.

Once the model has been built and trained, these coeffcients have been extracted, as it can be

observed in Figure 4.4. It can be noted that the greatest signifcance is obtained by the mean, baseline

and LTV features (see Table 4.1). It is true that the baseline is an important feature to detect intrapartum

fetal hypoxia because when it is low it is a clear sign of fetal distress, but the interpretation of the

coeffcients of this model falls short of what is needed. In addition, as already suspected by the results

obtained from the ROC-AUC score, LR does not consider the correlation characteristics to be relevant,

which reduces the clinical sense of this model. Since this is a linear model with regularization, perhaps

this could be due to the fact that the hyperparameter search has not been too exhaustive, which will

have to be fxed in future works.

Figure 4.4: Feature importance from Logistic Regression model.
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4.3.2 Decision Tree Classifer

For this model, class balancing has also been used and, as it has been seen in Table 4.2, the maximum

depth of the tree and the minimum number of samples to split at a node have been optimized.

Models based on decision trees are the simplest models to be interpreted by medical staff because

of their logical reasoning, which makes the decisions closely related to the medical reasoning, as it can

be seen in Figure 4.5, where one of the resulting trees is depicted. The sample separation criteria used

by the model can be seen in each branch, as well as the node impurity. As it can be observed, when

the condition is true the branch always goes to the left and when it is false to the right. On the other

hand, the impurity can be seen in the value list, where the frst value refers to the probability that the

cases in the node belong to the healthy class and the probability on the right to the pathological one.

In addition, as it can be noted in Figure 4.5, this model considers std and correlation-related features

to be relevant. Results from Table 4.3 showed that the correlation features bring signifcant information

to the problem and improved the predictions. As FIGO rules indicate, both the variability of the FHR

and the relationship between the decreases in FHR and increases in UC are very relevant when de-

tecting pathological cases, so it makes clinical sense that the features considered by the DT model are

determinant.

To sum things up, we have frst started with two models, LR and DT, that are directly interpretable

and allow to understand how the model makes decisions according to feature weights and Gini impurity

criterion, respectively. As it has been seen, the characteristics that these models consider relevant are

quite different, so more complex classifers are going to be studied. As it will be seen below, in order to

be able to interpret these following models, it is necessary to use other extra tools, like LIME.

Figure 4.5: Display of a Decision Tree model.
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4.3.3 Random Forest Classifer

As the theory explained in Section 3.3.1, this model uses a set of trees to form the forest and, for each

of them, the Gini impurity criterion is used to split the nodes. That is why this model is more complex

and the majority voting from the 99 trees used in this work complicates its interpretability. As before in

DT, the maximum depth of the tree and the minimum number of samples to split at a node have been

optimized (see Table 4.2).

In a frst approximation to interpret this model, the feature importance is used. As it was explained

in Section 3.3.1, the importance of each variable is calculated as the mean of impurity decrease accu-

mulation in each tree. Figure 4.6(a) shows the feature importance obtained from our trained RF model

and, as it is noted, the greatest importance is attached to the std and ACC features, which complies

with FIGO standards.

In another attempt to interpret this model, proximity plot graph has been used. This graph tries to

give an approximation of which observations the model considers to be close together within the RF.

Firstly, to obtain the graph it is necessary to perform the proximity matrix between the samples, which

is a N × N matrix, where N is the number of instances, and proximities between them are calculated

for each pair of observations in the following way: if two cases occupy the same terminal node in a

tree, their proximity increases by one (see Code A.2). Then, it is necessary to apply a dimensionality

reduction to two dimensions with multidimensional scaling [29] in order to visualize which cases are

close together for the RF classifer [17]. In Figure 4.6(b) it can be observed the proximity plot of our

trained RF classifer. Cases that are in pure regions are at the extremes, while cases closer to the

center are at the decision boundaries, as it is explained in [17]: ‘This is not surprising when we consider

the construction of the proximity matrices. Neighboring points in pure regions will often end up sharing

a bucket, since when a terminal node is pure, it is no longer split by a random forest tree-growing

algorithm. On the other hand, pairs of points that are close but belong to different classes will sometimes

share a terminal node, but not always.’. However, it is often diffcult to get a good interpretation with

this method, especially in real problems where the cases may be very similar, which casts doubt on its

usefulness. As it can be seen in Figure 4.6(b), the separation of classes is not straightforward in our

case.

Therefore, LIME has been applied in order to understand how the model works on a particular case.

Figure 4.7 shows the output layout provided by LIME, where it can be seen how confdent the model is

to the prediction it has made over this example, what are the decision criteria for each feature (decision

thresholds) and which features have encourage one class over another. As it can be observed in Figure

4.7, the most relevant features for this subject are std, Lag min correlation and maximum correlation.

Again, just like the reasoning done in the DT model, this indicates that the correlation characteristics

add value to the problem and to the performance of the model. In the same way, the reasoning behind

this algorithm makes clinical sense.
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(a) Feature importance. (b) Proximity plot. 

Figure 4.6: Feature importance and proximity plot for Random Forest classifer.

Figure 4.7: Interpretability of Random Forest classifer with LIME over the extended features set.

Figure 4.8: Linear check of Random Forest classifer with LIME (ACC = 5) over the extended fea-

tures set.
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On the other hand, to check whether the model is really using these rules to make the predictions,

a linear check has been performed, i.e., we are going to change, for example, the value of the ACC

number (abrupt increase in FHR) because according to FIGO the variability of these patterns is relevant

for the detection of fetal hypoxia and in the feature importance graph has been shown to be relevant. In

this way, as seen in Figure 4.8, we could check how the predictions change. As it can be seen, if there

had been one more ACC, the model would have considered this fetus as pathological. This allows to

see not only which features the model considers important, but also how the predictions change with

small perturbations in the value of the features.

4.3.4 Support Vector Classifer

For this model, as discussed in the explanation of Section 3.3.2, it is important to determine quite well

some parameters. In this case, a Gaussian kernel with Radial Basis Function (RBF) has been used

where the kernel width, γ, and the regularization parameter, C, have been optimized, as it has been

pointed in Table 4.2.

In this model it is not possible to obtain a graph of the feature importance directly so, as for the

previous classifer, LIME is used to interpret individual examples of predictions made by this model. In

this approach, we wanted to observe not only the importance of the features such as correlation-related

ones, which have already been seen to add value to the problem, but also to observe the behavior of

the model when working with the traditional feature set (see Table 4.1).

In the example shown in Figure 4.9, we have chosen the same fetus as in RF classifer in order

to make comparisons. When the baseline is lowered from 130 to 123, the probability of hypoxia is

greatly increased, which is in agreement with FIGO guidelines [9]. Despite this, it could be observed

that this model has a strong dependence on the baseline feature when working with the traditional set.

When performing the linear check and slightly reducing the value of this feature, the pathological class

is excessively triggered, i.e., the model classifes the instances basically according to the value of this

feature. Then, as it can be observed in see Figure 4.10, we introduce the correlation-based features

over the same subject and we perform the same linear check. When reducing, as before, the baseline

from 130 to 123, it is seen that the baseline loses importance and it is necessary to modify also other

features, such as the maximum correlation or DCC patterns to change the model output, which makes

more clinical sense.

Finally, it is worth mentioning that the characteristics considered relevant by this model are quite

different from the features considered by tree-based models, since the baseline or the LTV features

were not important and now for Support Vector Classifer (SVC) they are. However, others, such as

maximum correlation or DCC patterns, continue to have great relevance, which gives medical sense to

the operation of the models.
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(a) Interpretability of SVC over the traditional feature set. 

(b) Linear check of SVC (baseline = 123). 

Figure 4.9: Interpretability of Support Vector classifer with LIME and linear check over the traditional

feature set.
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(a) Interpretability of SVC over the the extended feature set. 

(b) Linear check of SVC (baseline = 123) 

Figure 4.10: Interpretability of Support Vector classifer with LIME and linear check over the extended

features set.
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4.4 First regression trials

A frst approximation of regression models interpreted with the SHAP technique has been done following

a similar methodology to the one described in Section 4.2.2. The main difference in these experiments

is that the model output is the pH value, so subjects are not separated in two classes, instead for each

of them the pH value is predicted in a continuous range.

In general, in the frst attempts made with RF and SVM regressors, the results obtained have been

poor, it seems that the models are not learning well since the problem to be solved is more complex

and the database is limited. The outcomes obtained are not yet good enough to conclude anything

clearly, but as an example of this type of approach, the analysis of the best models obtained are shown

in Appendix C. It would be necessary to extend the work on this approach in more detail in order to

obtain better performance.

It is necessary to emphasize that the interpretability provided by SHAP technique on the models is

very complete. A detail to take into account is that SHAP is an algorithm that is still under development

for ML applications and, as it was seen in Section 3.4.2, it calculates the marginal contribution of each

variable taking into account all possible combinations, so it is a slow algorithm. However, despite this,

it is already optimized to work with trees quickly and effciently.
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This last chapter presents the conclusions reached during this master thesis and the possible future

lines of work on the detection of intrapartum fetal hypoxia and its interpretability.

5.1 Conclusions

To date, many contributions have been made in the clinical feld with ML, but less attention has been

paid to the interpretation of the models, which is essential in this feld. In the development of this project,

we had intentionally sought to address a real clinical problem, the detection of intrapartum fetal hypoxia,

while making model performance visual and interpretable.

First, the fetal distress problem was reviewed with the intention of fnding out what were the patterns

or signs that currently allow the clinicians to detect it. As a result, it was found that, apart from a set of

traditional features from FHR signal, the correlation between FHR and UC signals was one of the most

relevant features for the detection of fetal hypoxia. For this reason, it was decided to study it in depth

and to extract it in order to introduce correlation-based features in the training of the models.

Then, we studied the importance of the IML and different models interpretable by defnition and other

more complex ones. By interpreting the operation of the trained models, it was possible to analyze if the

features used by the models to decide if, for example, a fetus was healthy were really important or not.

It was seen that tree-based models, both DT and RF models, consider important features with clinical

sense and very similar to each other. Similarly, another complex model, SVM, also consider relevant

some features used in the clinical feld, although slightly different from those considered by tree-based

models. It is worth mentioning that the interpretability methods used, LIME and SHAP, have proven to

be really useful tools to understand the operation of complex models and to test how model predictions

change with small perturbations in the predictor variables.

As it is seen throughout this work, the interpretability and the encouraging results obtained in the

classifcation tasks demonstrate the interest and feasibility of this approach to detect intrapartum fetal

hypoxia in this way.
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5.2 Future Work

In spite of the promising results, there is still great potential for further progress in this research on

detection of intrapartum fetal hypoxia.

The approach used in this project to solve the missing values problem present in the signals was

to apply a previous interpolation routine. This step allowed later on to extract the correlation between

FHR and UC signals. However, it is possible to fnd in the literature, other ways to handle this problem.

For example, it could be performed through a time lag propagation approach. This method consists of

applying different time lags steps to the signals, and eliminate the missing values of both signals before

calculating the correlation over them at each time lag. This process will be repeated for all the different

time lags defned.

On the other hand, with respect to the pH threshold, the same or similar studies could be carried

out by changing this threshold to check how the results obtained change and what effect it has on the

model’s accuracy and on the interpretability. In addition, it would be necessary to try to perform the

experiments on a larger database with greater patient variability, since the database used is limited. If

it is not possible to work with another database, data augmentation techniques could be considered to

increase the number of instances of the database.

Finally, as it has been seen in the development of this work, the priority has not been to build mod-

els with high performance and excellent metrics. Therefore, once it has been seen that it is possible

to interpret the ML models, with which tools it is possible to do it and how this interpretability can be

analyzed, it is necessary to go deeper into improving the performance of the models. It would be desir-

able to improve the parameter search, increase the number of models and improve their construction to

make them more robust and accurate. Once the performance of the classifcation models is improved,

it would be very interesting to re-examine the regression models tested in this work. Similarly, it would

be interesting to study more complex models, such as neural networks, and add new features to try to

improve fetal distress detection.

Interpretable Machine Learning for Intrapartum Fetal Hypoxia Detection36



Bibliography 

[1] S. Yeasmin, “Benefts of artifcial intelligence in medicine,” in 2019 2nd International Conference

on Computer Applications Information Security, 2019.

[2] C. Molnar, Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.

2019. Book online source.

[3] A. Sbrollini, A. Agostinelli, L. Burattini, M. Morettini, F. Di Nardo, S. Fioretti, and L. Burattini, “CTG

Analyzer: A graphical user interface for cardiotocography,” in 2017 39th Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2606–2609, 2017.

[4] D. Hutter, J. Kingdom, and E. Jaeggi, “Causes and mechanisms of intrauterine hypoxia and its

impact on the fetal cardiovascular system: A review,” International Journal of Pediatrics, vol. 2010,

pp. 1–9, 2010.

[5] Z. Cömert, A. F. Kocamaz, and V. Subha, “Prognostic model based on image-based time-

frequency features and genetic algorithm for fetal hypoxia assessment,” Computers in Biology

and Medicine, vol. 99, pp. 85–97, 2018.

[6] A. Pinas and E. Chandraharan, “Continuous cardiotocography during labour: Analysis, classif-

cation and management,” Best Practice & Research Clinical Obstetrics & Gynaecology, vol. 30,

pp. 33–47, 2016.

[7] F. Ekengård, M. Cardell, and A. Herbst, “Impaired validity of the new FIGO and swedish CTG

classifcation templates to identify fetal acidosis in the frst stage of labor,” The Journal of Maternal-

Fetal & Neonatal Medicine, pp. 1–8, 2021.

[8] SFOG, “CTG kort slutversion Sweden: SFOG,” 2009. Online source.

[9] D. Ayres-de Campos, C. Y. Spong, E. Chandraharan, and FIGO Intrapartum Fetal Monitoring Ex-

pert Consensus Panel, “FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocog-

raphy,” International Journal of Gynecology & Obstetrics, vol. 131, no. 1, pp. 13–24, 2015.

[10] DSOG, “Fosterovervågning under fødslen - indikationer Denmark: DSOG,” 2017. Online source.

[11] S. Pereira and E. Chandraharan, “Recognition of chronic hypoxia and pre-existing foetal injury on

the cardiotocograph (CTG): Urgent need to think beyond the guidelines,” Porto Biomedical Journal,

vol. 2, no. 4, pp. 124–129, 2017.

[12] W. Alsaggaf, Z. Cömert, M. Nour, K. Polat, H. Brdesee, and M. Toğaçar, “Predicting fetal hy-
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Acronyms 

ACC Acceleration.

ANN Artifcial Neural Network.

bpm beats per minute.

CSP Common Spatial Patterns.

CTG Cardiotocography.

DCC Deceleration.

DT Decision Tree.

FHR Fetal Heart Rate.

FIGO International Federation of Gynecology and Obstetrics.

IML Interpretable Machine Learning.

k-NN k-Nearest Neighbors.

LIME Local Interpretable Model-agnostic Explanations.

LR Logistic Regression.

LS-SVM Least Square Support Vector Machine.

LTV Long Term Variability.

ML Machine Learning.

RBF Radial Basis Function.

RF Random Forest.

RFR Random Forest Regressor.

ROC-AUC Area Under the ROC Curve.

SHAP SHapley Additive exPlanations.

std Standard Deviation.

STV Short Term Variability.

SV Support Vectors.

SVC Support Vector Classifer.

SVM Support Vector Machine.

SVR Support Vector Regressor.

SWE Swedish.

UC Uterine Contractions.
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Code A.1: Model defnition.
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def model(N_models, X, y, estimator, param_grid): 

roc_auc = [] 
acc = [] 

# Create dictionary to save the best hyperparameters 
best_param_dict = param_grid.copy() 
for key in best_param_dict: 

best_param_dict[key] = [] 

for iteration in range(N_models): 

# Internal cross-validation and GridSearch 
val_int = StratifedKFold(n_splits=5, random_state=iteration, shu˜e=True) 
cv_estimator = GridSearchCV(estimator, 

param_grid=param_grid, 
cv=val_int, 
scoring='balanced_accuracy', 
return_train_score = True) 

# Train-test split 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, stratify=y, 

random_state=iteration) 

# Fit and save or load the model 
print('Model ',str(iteration)) 
path = base_path + str(iteration) + '.pkl' 
cv_estimator = read_or_new_pickle(path, cv_estimator, X_train, y_train) 

best_model = cv_estimator.best_estimator_ 
best_param = cv_estimator.best_params_ 
for key in best_param_dict: 

best_param_dict[key].append(best_param[key]) 

# Predictions 
predict_proba_pred = best_model.predict_proba(X_test)[:, cv_estimator.classes_==1] 
predict = best_model.predict(X_test) 
roc_auc.append(roc_auc_score(y_test, predict_proba_pred)) 
acc.append(accuracy_score(y_test, predict)) 

# Choose the intermediate score model 
rounds = [round(num, 2) for num in roc_auc] 
idx = rounds.index(statistics.mode(rounds)) 

# Load again the idx model and its partitions in order to return them 
# ... 

return X_train, X_test, y_train, y_test, roc_auc, acc, best_param_dict, best_model, cv_estimator 
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Code A.2: Proximity matrix function to perform proximity plot graph.

def proximityMatrix(model, X, normalize=True): 

terminals = model.apply(X) 
nTrees = terminals.shape[1] 
a = terminals[:,0] 
proxMat = 1*np.equal.outer(a, a) 

for i in range(1, nTrees): 
a = terminals[:,i] 
proxMat += 1*np.equal.outer(a, a) 

if normalize: 
proxMat = proxMat / nTrees 

return corr 
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B
Functions 

The following are the functions used from the scikit-learn library to build the models:

• Pipeline 1

• StandardScaler 2

• GridSearchCV 3

• LogisticRegression 4.

• DecisionTreeClassifier 5

• RandomForestClassifier 6.

• SVC 7

• Random Forest Regressor (RFR) 8

• Support Vector Regressor (SVR) 9

This source 10 has been used for LIME development and the functions shown below have been

used to obtain the SHAP graphs from Appendix C:

• shap.plots.force 11 to obtain individual interpretation of the instances.

• TreeExplainer 12 for SHAP interpretability.

• KernelExplainer 13

1https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html 
2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html 
3https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html 
4https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html 
5https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html 
6https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
7https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html 
8https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html 
9https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html 

10https://github.com/marcotcr/lime 
11https://shap.readthedocs.io/en/latest/generated/shap.plots.force.html 
12https://shap-lrjball.readthedocs.io/en/docs_update/generated/shap.TreeExplainer.html 
13https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html 

47

 https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://github.com/marcotcr/lime
https://shap.readthedocs.io/en/latest/generated/shap.plots.force.html
https://shap-lrjball.readthedocs.io/en/docs_update/generated/shap.TreeExplainer.html
https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html




C
First regression trials 

As mentioned above, in this appendix is shown an example of the regression approach to detect intra-

partum fetal hypoxia through the umbilical pH value and the analysis of the best models obtained. The

SHAP functions used to obtain the graphs shown below can be found in Appendix B.

C.1 Random Forest Regressor

The model is almost the same as in classifcation tasks, so this embedded model is built also with 99

estimators and the maximum depth of the tree and the minimum number of samples to split at a node

have been optimized. The performance of this approach was 0.147 of R2 for the best model, but the

most important aspect of this section is the interpretability offered by SHAP.

SHAP allows to extract not only the importance of features such as the scikit-learn library

over Random Forest models, but also provides more detailed information, as it can be seen in Figure

C.1. Figure C.1(a) shows the common feature importance, while Figure C.1(b), on the right, shows the

summary plot, which presents how the value of each individual variable affects the output predicted by

the model. For example, the higher the std values, the lower the SHAP value and, therefore,

(a) Feature importance. (b) Summary plot. 

Figure C.1: Feature importance and summary plot of Random Forest regressor with SHAP.
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First regression trials 

(a) Interpretability of healthy subject with SHAP. 

(b) Interpretability of pathological subject with SHAP. 

Figure C.2: Interpretability of individual cases of Random Forest regressor with SHAP.

the lower the predicted pH value. As it can be seen, this visualization gives great interpretability to the

performance of the model.

In addition to that, SHAP has other functionalities, such as correlation graphs between features or

being able to interpret each of the individual predictions. This later application can be seen in Figure

C.2, which allows us to obtain an interpretation similar to the one seen with LIME, since it shows how

the value of each variable push the output of that particular case from the base value, which is the

average output over the training set. In Figures C.2(a) and C.2(b) it is possible to see the interpretation

of healthy and pathological cases respectively, where features marked in blue have made the subject

more pathological while those shaded in red have made the fetus healthier. For example, as it can be

seen in this graphs, when the FHR variability (std) is higher the fetus has a lower pH. This is a clearly

sign of fetal distress that makes clinical sense (see Section 2.1) and concordance with FIGO rules.

If the individual explanations of the whole set are grouped, rotated 90 degrees and joined together,

the graph in Figure C.3(a) is obtained. The X-axis shows the number of the fetus and the Y-axis shows

the predicted pH values for each of them. In addition, by placing the pointer over one subject, we can

see how each feature affects the prediction, i.e., for the fetus of the example shows in Figure C.3(a),

the ACC patterns, the value of maximum correlation, the time lags and the std have made its predicted

pH value lower (7.161). If we were to select a subject further to the left of the X-axis, its pH prediction

would be higher and possibly these feature values would be different. SHAP allows to get this overview

directly and so that, the operation of the model over the whole dataset can be seen together. This

information could be used for other applications such as clustering tasks by grouping similar instances

together [2], among others. For these kind of purposes, SHAP allows to select different visualizations

according to the desired layout (see Figure C.3(b)). For example, the effect of a single feature on the

whole set can be seen or the cases can be ordered according to their similarity over the output, among

others. In our application, this allows us to directly relate the model working to the FIGO rules, we can

see if, for example, more DCC patterns makes the pH predictions lower or not.
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C.1. Random Forest Regressor 

(a) Interpretability of all cases with SHAP. 

(b) Options to visualize the interpretation of all cases with SHAP. 

Figure C.3: Interpretability of all cases of Random Forest regressor with SHAP.
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First regression trials 

C.2 Support Vector Regressor

In this last model, the only methodology difference from SVC is that the epsilon (�) parameter is

searched, � ∈ {10i : i ∈ [−4, −2]}, in order to improve the model performance. This parameter is

related to the errors that the loss function ignores. The kernel width, γ, and the regularization parame-

ter, C, have been optimized in the same way as in the classifcation tasks.

SHAP is not optimized for kernel models, so the computation time is longer. In spite of this, SHAP

offers, as already seen in RFR, very good interpretability as it gives very detailed information. In fact,

applying SHAP on kernel models, provides a great interpretability that cannot be obtained with other

libraries such as scikit-learn. For example, this later library does not allow to obtain directly the

importance of the features on kernel models.

In Figure C.4 is shown the importance of each feature and how their values affects the output target.

As it can be seen in the Figure C.4, unlike what was seen in the previous section, this model does not

give importance to the correlation features. It may be that this model does not consider them important

or that it is not learning adequately as it is indicated by its R2 metric of 0.155.

Figure C.4: Summary plot of Support Vetor regressor from SHAP.
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