

UNIVERSIDAD AUTONOMA DE MADRID

ESCUELA POLITECNICA SUPERIOR

TRABAJO FIN DE MÁSTER

Intelligent Enforcement of Fine-Grained
Access Control Policies for SQL Queries

Máster Interuniversitario en Métodos Formales en
Ingeniería Informática

Autor: NGUYEN, PHUOC BAO, HOANG

Tutor: LARA JARAMILLO, JUAN DE
 Tutor: GARCIA CLAVEL, MANUEL

 Departamento de Ingeniería Informática

Septiembre, 2021

(This page intentionally left blank)

Master Thesis

Intelligent Enforcement of
Fine-Grained Access Control

Policies for SQL Queries

Author: Hoang Nguyen Phuoc Bao

1st supervisor: Prof. Dr. Juan de Lara
2nd supervisor: Assoc. Prof. Dr. Manuel Clavel

A thesis submitted in fulfillment of the requirements for the Inter-Master Degree on
Formal Methods in Computer Science and Engineering at Universidad Autónoma,

Complutense and Politécnica de Madrid

September 3, 2021

Acknowledgements

This thesis brings my study at the Inter-Master of Formal Methods in Computer
Science and Engineering to an end. I would like to take this opportunity to send my
gratitude to everyone that has supported me during this period.

First and foremost, I would like to thank Manuel Clavel, for everything he has done
for me: for supporting my decision of taking this master and helping me through the
enrollment process. During the time of this thesis, I thank Manuel for every lesson
he has taught.

Secondly, I would like to thank Juan, for being my thesis advisor, having meetings
with me and giving feedback to improve the thesis artifacts, and for helping me with
all the administrative stuff throughout the year.

Thirdly, I would like to thank all of my classmates and lecturers for their un-
derstanding and encouragement. To Victor and Roland, thanks for helping me to
keep up with the program at the beginning. To Matias and Sajid, for the excellent
teamwork spirit you put up during the group project.

Finally, I thank my family, my friends and colleagues who have always been there
for me. Cảm ơn ông ngoại. Cảm ơn ba Bảo, mẹ Hương và Minh. Cảm ơn chị Trang
đã giúp em ghi danh. Cảm ơn mọi người rất nhiều!

4

5

Abstract

Recently, we proposed a model-driven methodology to support fine-grained access
control (FGAC) at the database level. More specifically, we defined a model trans-
formation function that inputs SQL queries and generates so-called security-aware
SQL stored-procedures. As part of the proposal, we developed an application pro-
totype, called SQL Security Injector (SQLSI). In a nutshell, given an FGAC policy
S, a user u, with role r, and a query q, SQLSI automatically generates a stored-
procedure sp, such that: if the user u is authorized, according to the FGAC policy
S, to execute the query q, then calling the stored-procedure sp will return the same
result as executing the query q; otherwise, calling the stored-procedure sp will signal
an error.

As expected, there is a performance overhead when executing an (unsecured)
SQL query via the corresponding (secured) stored-procedure generated by SQLSI.
The reason is clear: FGAC policies require performing authorization checks on
the current state of the system, which, in the case of executing SQL queries, will
translate into performing authorization checks at execution-time on the database.
SQLSI takes care of generating these checks and makes sure that they are called
at execution-time when a protected resource is accessed. There are cases, however,
where these authorization checks are unnecessary, and, therefore, the performance
overhead can and should be avoided. For example: when the database integrity con-
straints guarantee that these checks will always be successful; or, when the current
state of the database guarantees that these checks will be successful in this state.

In this thesis, I propose to develop a formal, model-based methodology for enforc-
ing FGAC policies when executing SQL queries in a smart, efficient way. First of all,
I identify situations in which performing authorization checks when executing SQL
queries seem unnecessary, based on the invariants of the underlying data model, or
based on the known properties of the given scenario, or based on the known proper-
ties of the arguments of the given query. Secondly, I formally prove that performing
authorization checks when executing SQL queries in these situations is indeed un-
necessary. Thirdly, I develop a tool for detecting unnecessary authorization checks
when executing SQL queries.

Contents

1 Introduction . 8
1.1 Model-Driven Engineering, Model-Driven Security, SecureUML 8
1.2 Enforcing FGAC policies on relational database 9

2 Background . 12
2.1 Structure Query Language . 12
2.2 Role-Based Access Control vs. Fine-Grained Access Control 13
2.3 Running Example . 14
2.4 Object Constraint Language . 14

3 Previous work . 17
3.1 Modeling FGAC policies . 17

3.1.1 Data models and object models 18
3.1.2 FGAC security models . 19

3.2 Enforcing FGAC security model for SQL queries 22
3.2.1 Secure SQL queries . 22
3.2.2 The SQLSI use-case . 22
3.2.3 Execution-time overhead for secure SQL queries 23

4 Intelligently enforcing FGAC policies for SQL queries 31
4.1 General approach . 31
4.2 Different mappings and preliminary remarks 33

4.2.1 From data models to MSFOL theories 33
4.2.2 From object models to MSFOL interpretations 35
4.2.3 From OCL boolean expressions to MSFOL formulae 35
4.2.4 From data models to SQL database schema 40
4.2.5 From object models to SQL database instances 41
4.2.6 From OCL boolean expressions to SQL queries 43

4.3 Reducing execution-time overhead: Case expressions 45

6

4.4 Reducing execution-time overhead: Temporary tables 48

5 Case Study . 50
5.1 First example: Trivial authorization constraints 51
5.2 Second example: Data invariants . 53
5.3 Third example: User properties . 55
5.4 Fourth example: Object properties 58

6 Tool support . 63
6.1 The FGAC-Optimizer tool . 63
6.2 The SQLSI use-case (extended) . 66

7 Evaluation . 68
7.1 Generating and Solving MSFOL theories 68
7.2 Calling the optimized stored-procedures 69

8 Related Work . 71

9 Limitations, Conclusions and Future Work 73

Appendices . 83

Appendix A Mapping data and object models to databases 84

Appendix B Defining secure SQL queries 87

Appendix C SQLSI: representing data models using JSON 98

Appendix D SQLSI: representing security models using JSON 100

Appendix E SQLSI: generated artifacts 102

Appendix F MSFOL: generated theories 121

7

Chapter 1

Introduction

Software Engineering is the science of engineering software systems [39]. For decades,
new programming languages have been developed and new software development
methodologies have been proposed, all with the goal of increasing software’s relia-
bility, maintainability, and cost-efficiency. One characteristic of a well-engineered
software system, which one cannot take for granted, is security. How to engineer a
secure software? — this is a longstanding question that is drawing more and more
attention from the public in recent years.

1.1 Model-Driven Engineering, Model-Driven Se-

curity, SecureUML
To engineer a secure software, one promising approach is Model-Driven Engineering
(MDE) [14], which is a software development methodology that focuses on creating
models of different views of a system. These models can be created using either
domain-specific or general-purpose modeling languages, like the Unified Modelling
Language (UML) [50, 51]. Moreover, exceed the scope of documentation, in MDE,
system artifacts, like executable code and configuration data, can be automatically
generated from these models using either code-generators or transformation tools,
like the Xtext Framework [13] or the Epsilon Generation Language [46].

As far as security and reliability are concerned, Model-Driven Security (MDS)
[11] is a specialization of MDE for developing secure systems. In contrast to the tra-
ditional approaches in which security is classified as a non-functional requirement,
MDS promotes security-by-design as it integrates security into the software design

8

process at the model level. Informally in MDS, designers (or modelers) specify sys-
tem models along with their security requirements. This approach, on the one hand,
allows security-related artifacts, such as, the access control infrastructures [12], to
be automatically generated; and on the other hand, opens room for formal reason-
ing about the security aspects of the system, for example, analyzing the security
policies [9, 10].

SecureUML [32] is the ‘de facto’ modeling language used in MDS for specifying
fine-grained access control (FGAC) policies. These are policies that depend not only
on static information, namely the assignments of users and permissions to roles, but
also on dynamic information, namely the satisfaction of authorization constraints by
the current state of the system.

For example, consider a simple eStudent Management System, which
consists of students and lecturers. In this system, a typical FGAC policy
is: each lecturer can only access the record of its own students; and
moreover, to make it more secure: the records can only be accessed in
the working time.

1.2 Enforcing FGAC policies on relational
database

Recently, we proposed a model-based characterization of FGAC authorization for
SQL queries [2] and developed a model-driven approach for enforcing FGAC policies
when executing SQL queries [3].

Our approach in [3] consists of defining a function SecQuery() that, given an
FGAC policy S and an SQL select-statement q, generates an SQL stored-procedure
SecQuery(S, q), such that: if a user u, with role r, is authorized, according to S, to
execute q, then calling SecQuery(S, q) with the user u and role r as parameters, i.e.
SecQuery(S, q)(u, r), returns the same result that when u executes q; otherwise, if
the user u, with role r, is not authorized, according to S, to execute q, then calling
SecQuery(S, q)(u, r) signals an error. Informally, we can say that SecQuery(S, q)
is the secured version of the query q with respect to the FGAC policy S, or that
SecQuery(S, q) secures the query q with respect to the FGAC policy S.

9

In a nutshell, the stored-procedure SecQuery(S, q) implements the authorization
checks that are required to comply with the policy S when executing the query
q. These authorization checks were defined in our model-based characterization of
FGAC authorization for SQL queries [2]. As mentioned before, FGAC policies de-
pend on the satisfaction of authorization constraints by the current state of the sys-
tem. Thus, unavoidably, executing the aforementioned FGAC authorization checks
causes a performance overhead at execution-time, which will be greater or lesser
depending on the “complexity” of the underlying security policy.

For example, consider the eStudent Management System and the FGAC
policy as before: each lecturer can read the records of its own students.
When a user l, with the lecturer role, attempting to read the record of all
students; then according to the given policy, the database system must
check, for every student s, whether l is authorized to read the record
of s. Again, these computations cannot be pre-computed, and must be
executed in the database at execution-time, i.e. every time any lecturer
l attempts to read the record of all students.

As an extension to the work presented in [3], during the first semester of the Master
studies, I reported on some preliminary experiments that highlighted this execution-
time performance issue of the “secured” stored-procedures generated by the function
SecQuery() with respect to the execution time of the “unsecured” query. This recent
work has been accepted and published in the Springer Nature Computer Science
Journal, Volume 2, Issue 5, September 2021 [4]. As part of the future work in this
extended version, we have proposed to develop a formal methodology for optimizing
those “secured” stored-procedures.

Now, in addition to what has been described in the last example, consider
the following database integrity constraint that has been observed: every
lecturer teaches every student. Indeed, with this newly remark, if it holds
for the current database state, then in this state, for every user l, with the
lecturer role, and for every student s, l is a lecturer of s, and hence, l is
authorized to read s. This leads to the fact that the authorization check
for reading the record of the students, in this database state, becomes
unnecessary as it will always return satisfied, for any input pair of lecturer
and student.

In this thesis, I propose a formal, model-based methodology for optimizing the
stored-procedures generated by the function SecQuery(). Basically, this methodology

10

consists of “removing” from the stored-procedures generated by SecQuery() those
authorization checks that can be proven to be unnecessary in a given execution
context. To perform these proofs, I propose to use Satisfiability Modulo Theories
(SMT) Solvers [8]. As part of the work presented here, I have developed an open-
source tool, called FGAC-Optimizer, that supports our model-driven methodology
for detecting unnecessary FGAC authorization checks. Last but not the least, I
showcase the usage of this tool by conducting a non-trivial case study and evaluating
its outcome.

Organization The rest of the thesis is organized as follows. In Chapter 2, I review
some preliminary knowledge and introduce the running example that will be used
throughout the thesis. Next, in Chapter 3, I provide the basic context of my previous
work, including the definition of data models, object models and security models for
modeling fine-grained access control policies. Also, I recall the important remarks of
my model-driven approach for enforcing FGAC policies for SQL queries and describe
the performance overhead that comes with it. Then, in Chapter 4, I define formally
the methodology for eliminating unnecessary authorization checks. For Chapter 5, I
showcase my methodology by proving some cases in which the authorization checks
are unnecessary. In Chapter 6, I introduce the tool support and the typical use-
case of our methodology. In Chapter 7, I evaluate the tool usage by revisiting the
case study in Chapter 5. Finally, in Chapter 8, I discuss the related work, and in
Chapter 9, I discuss some limitations of this approach, conclude with some remarks
and propose the future work.

11

Chapter 2

Background

In this chapter, we first give a brief introduction about the Structure Query Lan-
guage (SQL) and the Role-based Access Control (RBAC) in relational database man-
agement systems (RDBMS). Then, we introduce the running example that will be
used throughout the thesis. Finally, we introduce the Object Constraint Language
(OCL) [36], which is the language used for specifying authorization constraints in
our security models.

2.1 Structure Query Language
The Structure Query Language (SQL) is a special-purpose programming language
designed for managing data in relational databases [49]. Originally based upon re-
lational algebra and tuple relational calculus, its scope includes data insert, query,
update and delete, schema creation and modification, and data access control. Al-
though SQL is to a great extent a declarative language, it also includes procedural
elements. In particular, the procedural extensions to SQL support stored procedures
which are routines (like a subprogram in a regular computing language, possibly with
loops) that are stored in the database. In these stored-procedures, the temporary
tables, which are tables that created and exists temporarily, are particularly useful
when one needs to store temporarily a number of records for the next querying/-
computing steps. Nowadays, major commercial RDBMS support SQL as a standard
language. Specifically, in this thesis, we chose to work with MySQL database man-
agement system (MySQL for short).

12

2.2 Role-Based Access Control vs. Fine-Grained
Access Control

The Role-Based Access Control (RBAC) is a security mechanism to assign rights for
accessing resources to users via the concept of roles [26]. The RBAC was initially
proposed in [25], then its formalization was defined in [47] and finally standardized
in [48, 28]. Since then, the RBAC is widely used in most commercial relational
database systems [42, 44, 41, 43]. Traditionally, in a database-centric application,
using RBAC, users may be assigned to specific roles depending on their responsibil-
ities in that application. Each role can be seen as a collection of permissions and
each permission is a restriction of by which actions (e.g. INSERT, SELECT, UPDATE,
DELETE) and on which resources can be acted, usually on the table- or attribute-level.
Furthermore, the RBAC allows roles to be organized in a hierarchy, in which a role
can inherit permissions of its children roles.

The Fine-Grained Access Control (FGAC), on the other hand, is restricting access
on a finer granularity, i.e. on the row- and cell-level. Moreover, the FGAC allows
to define permissions, also known as authorization constraints, based on the current
system state. For example, consider the FGAC policy in the previous chapter, with
lecturer l is attempting to access the record of student s, in such case, that autho-
rization check needs to inspect the current system state, to check who is currently
the students of l and that the access is operated in working hours. Unfortunately,
the major commercial RDBMS does not natively support FGAC [34, 38, 24, 52]. As
a consequence, enforcing FGAC policies has been performed at the application layer.
Although the following opinion deserves a longer discussion, about the importance
of supporting FGAC at the database level, we basically agree with [30]:

“Fine-grained access control [on databases] has traditionally been per-
formed at the level of application programs. However, implementing se-
curity at the application level makes management of authorization quite
difficult, in addition to presenting a large surface area for attackers —any
breach of security at the application level exposes the entire database to
damage, Since every part of the application has complete access to the
data belonging to every application user.”

13

2.3 Running Example
Consider a simple university data model, namely Uni, in Figure 2.1. It consists
of two classes, Student and Lecturer, with one association, Enrollment, between
them. Student and Lecturer have attributes name, email, and age. 1 The class
Student represents the students of a university, with their names, emails, and ages.
The class Lecturer represents the lecturers of a university, with their names, emails,
and ages. The association Enrollment represents the links between the students and
their lecturers. A student may have none or many lecturers, they are his lecturers.
And a lecturer may have none or many students, they are his students.

Figure 2.1: UML diagram: Simple University model

2.4 Object Constraint Language
Object Constraint Language (OCL) [36] is a language for specifying constraints and
queries using a textual notation. It is a part of the Unified Modeling Language
(UML): in Version 1.1 Specification [50], the OCL appears as the standard for specify-
ing invariants, pre- and post-conditions; however, as in Version 2.0 Specification [51],
the OCL has been assigned for a broader use, including usage in the definition of
specific domain metamodels, model transformation, model testing and validation.

OCL is a strongly-typed language: each expression has either a primitive type, a
class type, a tuple type, or a collection type. Collections can be sets, bags, ordered
sets and sequences, and can be parametrized by any type, including other collection
types. The language provides standard operators on primitive types, tuples, and

1Typically when designing this system, one creates a super-class, for example Person class, to
store the common attributes for Student and Lecturer class (name, email, and age). However,
since our FGAC data model definition, which will be later described in Section 3.1, currently does
not support generalization, we intend not to create such a super-class.

14

collections. Every OCL expression is written in the context of a data model (the
so-called contextual model).

‹ For objects, OCL provides a notational style similar to that of object-oriented
languages: a dot-operator to access the value of an attribute of the object, or
the collection of objects linked with another object at the end of an association.
For example, suppose that the contextual model includes a class c with an
attribute at and an association-end ase. Then, if o is an object of the class c,
in the given data model instance, the expression o.at refers to the value of the
attribute at of the object o, and o.ase refers to the collection of objects linked
to the object o at the association-end ase.

‹ For collections, OCL provides an allInstances-operator to collect all ob-
jects of a specific class and an arrow-operator “→” to either access a prop-
erty of the collection or to iterate over the collection and perform some ac-
tions. For example, suppose that the contextual model includes a class c.
Then, c.allInstances() represents the collection of all objects in class c.
Now, suppose that source represents a collection. Then, source→size() re-
turns the size of this collection, source→isEmpty() returns whether this collec-
tion is empty, source→forAll(v |body) iterates over this collection and checks
whether all elements v in this collection satisfy the property stated in body ,
source→exists(v |body) iterates over this collection and checks whether there
exists at least one element v in this collection satisfies the property stated in
body and source→includes(o) iterates over this collection and checks whether
object o is included.

Finally, to represent undefinedness, OCL provides two constants: null and invalid.
Intuitively, null represents an unknown or undefined value, whereas invalid represents
an error or an exception.

Example 1. Consider the university model above as the underlying data model:

‹ To know the number of students, in OCL, one can express as follows:

Student.allInstances()→size()
(1) (2)

in which (1) is a subexpression that applies the allInstances-operator on the
Student class, and (2) is an arrow-operator that applies the size property on
(1).

15

‹ To know whether there is a student that is taught by no lecturer, in OCL, one
can express as follows:

Student.allInstances()→exists(s|s.lecturers→ size() = 0)
(1) (2) (3)

in which (1) is as above, and (2) is an operator that iterates over (1) and checks
whether any student s has a number of lecturers that is equal to 0 — i.e. s has
no lecturer — which is precisely defined in (3).

‹ To know whether every lecturer teaches every student, in OCL, one can express
as follows:

Student.allInstances()→forAll(s|
(1) (2)

Lecturer.allInstances()→forAll(s|s.lecturers → includes(l)))
(3) (4) (5)

in which (1) and (3) are sub-expressions that apply the allInstances-operator
on the Student and Lecturer class, respectively; (2) is an operator that iterates
over (1) and checks whether for every student s in (1), s satisfies that, for every
lecturer l in (3), l is a lecturer of s, which is precisely defined in (5).

△

In what follows, we use the following notation. Let D be a data model. Then,
Exp(D) denotes the set of OCL expressions whose contextual model is D. Let O
be an instance of D, and let e be an OCL expression in Exp(D). Then, Eval(O, e)
denotes the result of evaluating e in O, according to the semantics of OCL.

16

Chapter 3

Previous work

In [3], we proposed a model-driven approach for enforcing FGAC policies for SQL
queries. This means, in particular, that in our approach the FGAC policies are
specified using models and that the corresponding policy-enforcement artifacts are
generated from these models. In our approach, for modeling FGAC policies, we use
SecureUML [32], which uses OCL for specifying authorization constraints.

3.1 Modeling FGAC policies
SecureUML [32] is an extension of Role-Based Access Control (RBAC) [27]. In
RBAC, permissions are assigned to roles, and roles are assigned to users. However,
in SecureUML one can model access control decisions that depend on two kinds of in-
formation: namely, static information, i.e., the assignments of users and permissions
to roles; and dynamic information, i.e., the satisfaction of authorization constraints
by the current state of the system.

SecureUML leaves open the nature of the protected resources, i.e., whether these
resources are data, business objects, processes, controller states, etc. and, conse-
quently, the nature of the corresponding controlled actions. These are to be declared
in a so-called SecureUML dialect. Particularly, in [4] we model the data to be pro-
tected using classes and associations, and we consider the read -actions on these class
attributes and association-ends as the actions to be controlled. Finally, we model
authorization constraints using OCL boolean expressions.

In this section, we recall the notions of data model, objects model, and security
model that we use for modeling fine-grained access control policies.

17

3.1.1 Data models and object models
Data models specify the resources to be protected. Object models (also called sce-
narios) are instances of data models.

Definition 1. Let T be a set of predefined types. A data model D is a tuple ⟨C , AT ,
AS ⟩, where:

‹ C is a set of classes c.

‹ AT is a set of attributes at , at = ⟨atn, c, t⟩, where: atn is name of the
attribute; c is the class of the attribute; and t is the type of the values of the
attribute, with either t ∈ T or t ∈ C.

‹ AS is a set of associations as, as = ⟨asn, ase l, cl, aser, cr⟩, where: asn is the
name of the association; ase l and aser are the ends of the association as; cl is
the class of the objects at the association-end ase l; and cr is the class of the
objects at the association-end aser.

Without loss of generality, we assume that every class and every association has a
unique name, and that, in each class, every attribute also has a unique name.

Example 2. Consider the Uni data model in Subsection 2.3, it can be formally
defined as follows:

C = {Student, Lecturer},
AT = {⟨name, Student, String⟩, ⟨age, Student, Integer⟩,

⟨email, Student, String⟩, ⟨name, Lecturer, String⟩,
⟨age, Lecturer, Integer⟩, ⟨email, Lecturer, String⟩}

AS = {⟨Enrollment, students, Student, lecturers, Lecturer⟩}

For the sake of simplicity, in what follows, we denote by Student : name the at-
tribute ⟨name, Student, String⟩, Student : age the attribute ⟨age, Student, Integer⟩,
and Enrollment the association ⟨Enrollment, students, Student, lecturers,
Lecturer⟩. △

Definition 2. Let D = ⟨C , AT , AS ⟩ be a data model. An object model O of D is
a tuple ⟨OC , OAT , OAS ⟩ where:

‹ OC is a set of objects o, o = ⟨oi , c⟩, where: oi is the identifier of the object o,
and c ∈ C is the class of the object o.

18

‹ OAT is a set of attribute values atv , atv = ⟨⟨atn, c, t⟩, ⟨oi , c⟩, vl⟩, where:
⟨atn, c, t⟩ ∈ AT , ⟨oi, c⟩ ∈ OC , and vl is a value of the type t.

‹ OAS is a set of association links asl , asl = ⟨⟨asn, ase l, cl, aser, cr⟩, ⟨oi l, cl⟩,
⟨oi r, cr⟩⟩, where: ⟨asn, ase l, cl, aser, cr⟩ ∈ AS , ⟨oil, cl⟩ ∈ OC , and ⟨oir, cr⟩ ∈
OC .

Without loss of generality, we assume that every object has a unique identifier and
that the object identifier is of type Integer.

Example 3. Consider the scenario where there is only one student—Hoang, and two
lecturers—Juan and Manuel, with the appropriate age and email. Furthermore, only
Manuel is teaching Hoang. Assuming the name of the object is its identification, this
object model can be formally defined as follows:

OC = {⟨Hoang, Student⟩, ⟨Juan, Lecturer⟩, ⟨Manuel, Lecturer⟩},
OAT = {⟨Student : name, ⟨Hoang, Student⟩, Hoang⟩,

⟨Student : age, ⟨Hoang, Student⟩, 25⟩,
. . .
}

OAS = {⟨Enrollment, ⟨Hoang, Student⟩, ⟨Manuel, Lecturer⟩⟩}

△

3.1.2 FGAC security models
As described in the previous section, FGAC security models specify fine-grained
access control policies for executing actions on protected resources. In this section,
we recall the actions whose execution can be controlled, in our approach, by FGAC
policies. Then, we recall the definition of FGAC security models, and their semantics
i.e., the actions that are authorized to be executed for which users, with which roles,
and under which conditions.

In our approach, the notion of role is defined such that: (i) it is associated with
a class, i.e. each object of this class is considered as a user, and that (ii) every user
can have at most one role. 1 In what follows, we extend the definition of FGAC data
model by adding the definition of users-provider class.

1A user may have no role. According in our definition, however, this user will not be authorized
to access any resource.

19

Definition 3. Let D be a data model, D = ⟨C, AT , AS ⟩. Then, we denote by
Users(C) the users-provider class of D.

Next, we define the notion of read -actions.

Definition 4. Let D be a data model, D = ⟨C, AT , AS ⟩. Then, Act(D) denotes the
following set of read-actions:

‹ For every attribute at ∈ AT , read(at) ∈ Act(D).

‹ For every association as ∈ AS , read(as) ∈ Act(D).

Finally, we define our FGAC security model.

Definition 5. Let D be a data model. Then, a security model S for D is a tuple
S = ⟨R, auth⟩, where: R is a set of roles, and auth : R × Act(D) → Exp(D) is a
function that assigns to each role r ∈ R and each action a ∈ Act(D) an authorization
constraint e ∈ Exp(D).

In our approach for modeling fine-grained access control policies, we consider au-
thorization constraints whose satisfaction depends on information related to: (i) the
users who are attempting to perform a read-action; (ii) the objects whose attributes
are attempted to be read; (iii) the objects between which the links are attempted
to be read. By convention, the users referred to in (i) are denoted by the key-
word caller; the objects referred to in (ii) are denoted by the keyword self; and
the objects referred to in (iii) are denoted by using as keywords the corresponding
association-ends.

Example 4. Consider the data model in Subsection 2.3, let Lecturer be the user
class, assume that there are two roles, namely: Admin and Lecturer, and that the
user with the role Admin can always read any student’s age but the user with the role
Lecturer can only read the age of the students whom it teaches. This security model
can be formally defined as follows:

R = {Admin, Lecturer},
auth(Admin, Student : age) = true
auth(Lecturer, Student : age) = caller.students → includes(self)

△

Definition 6. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be an
FGAC security model for D. Let O = ⟨OC , OAT , OAS ⟩ be an object model of D.
Then,

20

‹ A user u with role r ∈ R is authorized, according to S, to read the value of an
attribute at = ⟨atn, c, t⟩, at ∈ AT , of an object o, o ∈ OC , if and only if:

Eval(O, auth(r, read(at))[self ← o; caller ← u]) = true.

‹ A user u with role r ∈ R is authorized, according to S, to read whether an
association as = ⟨asn, ase l, cl, aser, cr⟩, as ∈ AS , links two objects ol and or,
ol ∈ OC and or ∈ OC , if and only if:

Eval(O, auth(r, read(as))[asel ← ol; ase ; caller ← u]) = true.r ← or

Example 5. Consider the Uni data model in Subsection 2.3, with the object model
O in Example 3 and the FGAC security model in Example 4, let Lecturer be the
user class. Suppose Juan and Manuel have the role Lecturer, we say that:

‹ Juan is not authorized, according to the security model in Example 4, to read
the age of student Hoang, since Hoang is not his student, i.e. � �

self ← Hoang
Eval(O, auth(Lecturer, read(Student : age)))

caller ← Juan� �
self ← Hoang

= Eval(O, caller.students → includes(self))
caller ← Juan

= Eval(O, Juan.students → includes(Hoang))
= false.

‹ On the other hand, Manuel is authorized, according to the security model in
Example 4, to read the age of Hoang, since Hoang is his student, i.e. � �

self ← Hoang
Eval(O, auth(Lecturer, read(Student : age)))

caller ← Manuel � �
self ← Hoang

= Eval(O, caller.students → includes(self))
caller ← Manuel

= Eval(O, Manuel.students → includes(Hoang))
= true.

△

In the next section, if the FGAC security model is not clear from the context, then
it will be passed as an extra argument to the function auth().

21

3.2 Enforcing FGAC security model for SQL queries
In this section, we recall our approach for secury-ing SQL queries, describe the
overview of our implementation of this approach and highlight the performance
penalty incurred if we plainly apply this implementation.

3.2.1 Secure SQL queries
In [2], we defined the conditions for a user u, with role r, to be authorized to execute
an SQL query q according to FGAC security model S. Then, in [3] , we proposed an
approach for enforcing these conditions when executing SQL queries. Our approach
consists in defining a function SecQuery() that, given an FGAC security model S
and an SQL query q, it generates an SQL stored-procedure SecQuery(S, q) that
implements the authorization checks that are required to comply with the policy S
when executing the query q.

More specifically, the stored-procedure SecQuery(S, q) takes two arguments, caller
and role, representing respectively, the user executing the query q and the role of
this user when executing this query. The body of stored-procedure SecQuery(S, q)
comprises a list of temporary tables, corresponding to the list of conditions that need
to be satisfied for the user caller, with the role role, to be authorized to execute the
query q, according to S. The definition of each temporary table is such that, when
attempting to create the table, if the corresponding condition is not satisfied, then
an error will be signalled and the table will not be created. If all temporary tables
can be successfully created, then the stored-procedure SecQuery(S, q) will simply
execute q; otherwise, if any of the temporary tables cannot be created, then an error
will be signalled. The reason for using temporary tables is to prevent the SQL opti-
mizer from “skipping” (by rewriting the corresponding sub-queries) the authorization
checks that SecQuery() generates to guarantee that queries are executed securely.

The definition of the function SecQuery() is included in Appendix B. It assumes
that data models and object models are implemented in SQL following specific map-
pings, which are included in Appendix A.

3.2.2 The SQLSI use-case
As part of previous work presented in [4], we developed an application, namely
SQLSI, based on the definition of SecQuery(). Figure 3.1 describes the typical use-

22

case of the SQLSI tool to enforce FGAC policies on a database-centric application.
In particular,

1. the modeller defines (or derives) the data-model D from the application database,
defines a FGAC security model S and collects all “unsecured” SQL queries Q
that will be issued in this application,

2. then, the modeller inputs D, S and Q into the SQLSI tool, which will gener-
ate the set of SQL authorization functions corresponding to S; moreover, for
every query q ∈ Q, based on function SecQuery(), the SQLSI tool generates a
“secured” stored-procedure SecQuery(S, q),

3. finally, the modeller takes these newly generated artifacts and sources them
into the application database. Furthermore, whenever a query q ∈ Q is is-
sued, the modeller replaces it by calling the corresponding stored-procedure
SecQuery(S, q) with proper user and role.

Figure 3.1: The SQLSI use case

3.2.3 Execution-time overhead for secure SQL queries
As mentioned above, fine-grained access control policies depend not only on static
information, namely the assignments of users and permissions to roles, but also on
dynamic information, namely the satisfaction of authorization constraints on the
current state of the system. Unavoidably, executing FGAC-related authorization

23

checks will cause a performance overhead, greater or lesser depending on the “size”
of the database and the “complexity” of the authorization checks. We recall here the
experiments reported in [4] about the performance-overhead incurred when executing
securely queries by calling the corresponding stored-procedures generated by the
function SecQuery().

A. Experimental setup
The experiments were conducted on a MySQL Community Server (version 8.0.16)
running on a computer with Intel(R) Core(TM), 1.60GHz, and 8 GB RAM. For each
experiment, the execution-time reported corresponds to the arithmetic mean of 10
different executions.

B. Data model
The experiments consider the Uni data model in Subsection 2.3. Furthermore, let
Lecturer be the users-provider class.

C. Object models
The experiments consider scenarios with equal number of students and lecturers,
where every student is a student of every lecturer. More specifically, for n > 2,
Uni(n) denotes an instance of the data model Uni such that: there are exactly n
students and n lecturers; students and lecturers have unique names; every lecturer
has every student as his/her student, so that the number of enrollments is exactly n2 .
Moreover, the experiments consider three distinguished lecturers for all the scenarios
Uni(n): namely, Trang, Michel and Vinh. They also assume that in all the scenarios
no other lecturer is older than Michel.

D. FGAC security models
The experiments consider the following FGAC security models: 2

‹ Sec#1. There is only one role, namely Admin. The policy contains the following
clauses: (i) an admin can know the age of any student ; and (ii) an admin can
know the students of any lecturer. This policy can be modelled in SecureUML
as follows:

roles = {Admin}
2For the interested readers, the SQL implementation of these FGAC security models can be

found in Appendix E.

24

auth(Admin, read(Enrollment)) = true
auth(Admin, read(Student :age)) = true

‹ Sec#2. There is only one role, namely Lecturer. The policy contains the
following clauses: (i) a lecturer can know the age of any student, if no other
lecturer is older than he/she is ; and (ii) a lecturer can know the students of
any lecturer, if no other lecturer is older than he/she is. This policy can be
modelled in SecureUML as follows:

roles = {Lecturer}
auth(Lecturer, read(Student : age))

= Lecturer.allInstances()→ select(l|l.age > caller.age)→ isEmpty()
auth(Lecturer, read(Enrollment))

= Lecturer.allInstances()→ select(l|l.age > caller.age)→ isEmpty()

‹ Sec#3. There is only one role, namely Lecturer. The policy contains the
following clauses: (i) a lecturer can know the age of any student, if the student
is his/her student ; and (ii) a lecturer can know the students of any lecturer, if
the student is his/her student. This policy can be modelled in SecureUML as
follows:

roles = {Lecturer}
auth(Lecturer, read(Student :age)) = caller.students → includes(self)
auth(Lecturer, read(Enrollment)) = caller.students → includes(students)

E. SQL Queries
The experiments consider the queries Query#1 and Query#2 shown in Figure 3.2,
which return, respectively, the number of students whose age is greater than 18, and
the number of enrollments.

Query#1 SELECT COUNT(*) FROM Student WHERE age > 18
Query#2 SELECT COUNT(students) from Enrollment

Figure 3.2: Experiments: Queries 1–2.

25

F. Experimental Results
Here we conduct an experiment on the execution-time of the original query compared
to its security-aware stored-procedure, under different configurations. In particular,
under

‹ Security policy Sec#1, user: Trang, role: Admin.

‹ Security policy Sec#2, user: Michel, role: Lecturer.

‹ Security policy Sec#3, user: Vinh, role: Lecturer.

Note that, in the original queries, there is no security enforcement. Note also that,
in all three configurations, the user with the given role is authorized, according to
the given security policy, to execute the secured stored-procedures.

When discussing the experiments, unavoidably, we must make reference to func-
tions — SecQuery(), AuthFunc(), and AuthFuncRole() — whose formal definitions
are given in Appendix B. Still, we hope that the informal explanation given be-
low is sufficient for understanding the main outcome, for our present purpose, of
these experiments: namely, that plainly executing the stored procedures generated
by SecQuery() may cause a non-negligibly performance-overhead.

Query#1.
According to the definition of SecQuery() in Appendix B, for a policy S ∈ {Sec#i |
1 ≤ i ≤ 3}, the body of SecQuery(S, Query#1) contains the following statement: 3

CREATE TEMPORARY TABLE ⌜TempTable(age > 18)⌝ AS (
SELECT * FROM Student
WHERE CASE ⌜AuthFunc(S, age)⌝ (Student_id, caller, role)

WHEN 1 THEN age ELSE throw_error() END as age > 18
);

Notice that, to create the temporary table ⌜TempTable(age > 18)⌝, for every tuple
contained in the table Student, the function ⌜AuthFunc(S, age)⌝ is called. Logically

3For the interested readers, the complete SQL implementation of this secured stored-procedure
can be found in Appendix E.

26

then, as shown in Figure 3.3, the execution-time for SecQuery(S, Query#1) increases
depending on the “size” of the table Student.

Notice also that, according to the definition of SecQuery(), depending on the role
r of the caller, for every student in table Student, the function ⌜AuthFunc(S, age)⌝
calls the function ⌜AuthFuncRole(S, age, r)⌝, which in turn calls the function map(
auth(S, r, read(age))), which returns the query in SQL that implements the autho-
rization constraint auth(S, r, read(age)). Therefore, the execution-time for SecQuery(
S, Query#1) depends also on the “complexity” of the SQL implementation of the au-
thorization constraint auth(S, r, read(age)), since this query will be executed for
every student in the table Student. In particular, in the experiments reported in [4],
the authorization constraint
auth(Sec#3, Lecturer, read(age)) = caller.students → includes(self)
is implemented as follows:

EXISTS (SELECT 1 FROM Enrollment e
WHERE e.lecturers = caller (3.1)
AND e.students = self)

Then, in the case of the scenario Uni(103), when executing the stored-procedure

⌜SecQuery(Sec#3, Query#1)⌝(Vinh, Lecturer), (3.2)

the Query (3.1) will be executed 103 times, each time with caller replaced by Vinh
and self replaced by a different student in the table Student. Notice also that, each
time the Query (3.1) is executed, the clause

WHERE e.lecturers = caller
AND e.students = self

will search in a table Enrollment that contains 106 rows. Not surprisingly, as shown
in Figure 3.3, the execution of the (secured) stored-procedure depicted in equa-
tion (3.2) in the scenario Uni(103) takes around 2.5 seconds more than the execution
of the (unsecured) query Query#1.

Query#2.
According to the definition of SecQuery() in Appendix B, for a policy S ∈ {Sec#i |
1 ≤ i ≤ 3}, the body of ⌜SecQuery(S, Query#2)⌝ contains the following create-
statements: 4

4For the interested readers, the complete SQL implementation of this secured stored-procedure
can be found in Appendix E.

27

Figure 3.3: Query#1 experiments.
This shows the execution-time
(measured in seconds) of Query#1
with its secured version in differ-
ent Uni(n) scenarios, under differ-
ent security models Sec#1, Sec#2
and Sec#3 with the user and role
as described above.

CREATE TEMPORARY TABLE ⌜TempTable(True)⌝ AS (
SELECT Student_id AS students, Lecturer_id AS lecturers
FROM Student, Lecturer

);

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS (
SELECT * FROM ⌜TempTable(True)⌝
WHERE CASE ⌜AuthFunc(S, Enrollment)⌝ (students,

lecturers, caller, role)
WHEN 1 THEN TRUE ELSE throw_error() END as students

);

Notice that, to create the table ⌜TempTable(students)⌝, for every tuple contained
in the table ⌜TempTable(True)⌝, which happens to be the Cartesian product of the
tables Student and Lecturer, the function ⌜AuthFunc(S, Enrollment)⌝ is called.
Logically then, as shown in Figure 3.4, the execution-time for SecQuery(S, Query#2)
increases depending on the “size” of the tables Student and Lecturer.

Notice also that, according to the definition of SecQuery(), depending on the
role r of the caller, for every pair student-lecturer contained in the temporary table
⌜TempTable(True)⌝, the function ⌜AuthFunc(S, Enrollment)⌝ calls ⌜AuthFuncRole

28

(S,Enrollment, r)⌝, which in turn calls the function map(auth(S, r, read(Enroll-

ment))), which returns the query in SQL that implements the authorization con-
straint auth(S, r, read(Enrollment)). Therefore, the execution-time for SecQuery
(S, Query#2) depends also on the “complexity” of the SQL implementation of the
authorization constraint auth(S, r, read(Enrollment)), since this query will be exe-
cuted for every pair student-lecturer in the Cartesian product of the tables Student
and Lecturer. In particular, in the experiments reported in [4], the authorization
constraint

auth(Sec#3, Lecturer, read(Enrollment))
= caller.students → includes(students)

is implemented as follows:

EXISTS (SELECT 1 FROM Enrollment e
WHERE e.lecturers = caller (3.3)
AND e.students = students)

Then, in the case of the scenario Uni(103), when executing the stored-procedure

⌜SecQuery(Sec#3, Query#2)⌝(Vinh, Lecturer) (3.4)

the Query (3.3) will be executed 106 times, each time with caller replaced by Vinh
and students replaced by a student in a different pair student-lecturer in the table
Enrollment. Notice also that, each time the Query (3.3) is executed, the clause

WHERE e.lecturers = caller
AND e.students = students

will search in a table Enrollment that contains 106 rows. Not surprisingly, as shown
in Figure 3.4, the execution of the (secured) stored-procedure depicted in equa-
tion (3.4) in the scenario Uni(103) takes around 8000 seconds more than the execution
of the (unsecured) query Query#2.

29

Figure 3.4: Query#2 experiments.
This shows the execution-time
(measured in seconds) of Query#2
with its secured version in differ-
ent Uni(n) scenarios, under differ-
ent security models Sec#1, Sec#2
and Sec#3 with the user and role
as described above.

Enforcing FGAC policies for SQL queries implies performing authorization checks
at execution-time. As the experiments above shown, this enforcement comes with
the significant loss in performance. Notice that, there are, however, situations in
which (some of) these authorization checks are in fact unnecessary. For example, in
the experiments reported, for the case of the policy Sec#3, if any lecturer attempts to
execute Query#1, it is unnecessary to perform the corresponding authorization checks
(because every student is a student of every lecturer). Similarly, in the case of the
policy Sec#2, if the lecturer Michel attempts to execute Query#2, it is unnecessary
to perform the corresponding authorization checks (because no other lecturer is older
than Michel). With this in mind, in the next chapter, we present our proposal for
intelligent enforcement of FGAC policies.

30

Chapter 4

Intelligently enforcing FGAC
policies for SQL queries

In this chapter we present a model-based methodology for optimizing the approach
proposed in [3, 4]. In a nutshell, the idea is the following: the function SecQuery()
implements the authorization checks by using case-expressions; if these checks (i)
can be proved to be trivial, or if they (ii) can be proved to be satisfied given the
invariants of the underlying data model, or if they (iii) can be proved to be satisfied
given the properties of the objects involved in the authorization request, then the
corresponding case-expressions are unnecessary.

4.1 General approach
Recall from Figure 3.1 the use-case for enforcing FGAC policies on database-centric
application, the SQLSI tool automatically generates the secured stored-procedures.
Here, in Figure 4.1 we extend the use-case with the additional processing step of
optimizing these generated secured stored-procedures as follows:

1. for each stored-procedure, for each case-expression, the modeller attempts to
prove the unncessity of this case-expression:

‹ if the corresponding authorization check of this case-expression can be
proven to be trivial (as introduced in (i)), then the case-expression can be
replaced by the original expression like in the unsecured query.

‹ if the corresponding authorization check of this case-expression can be
proven to be satisfied given the invariants of the underlying data model

31

Figure 4.1: The extension of the SQLSI use case. In this extension, instead of sourcing the generated
stored-procedures, the modeller performs an additional processing step, optimizing these stored-
procedures and then sourcing the optimized ones.

(as introduced in (ii)) or given the properties of the objects involved in the
authorization request (as introduced in (iii)), then the modeller can man-
ually rewrite the secured stored-procedure in a way that it makes use of
this new information (for example, using an SQL if-then-else statement).
Note that, in this case, the invariants or the properties are not automat-
ically derived from the case-statements but rather are introduced in an
ad-hoc way by the modeller.

‹ otherwise, if it cannot be proven to be unnecessary, then we must keep
the case-statement as is.

2. after the methodology is applied, for each secured stored-procedure, we ob-
tain an “optimized-y-secured ” stored procedure. Then, instead of sourcing the
SQLSI generated stored-procedure as described in the last use-case, here, the
modeller sources the newly rewritten one into the application database.

In the rest of this chapter we introduce step-by-step our approach for proving
(i)–(iii) using many-sorted first-order logic (MSFOL) theorem-proving tools, in par-
ticular, SMT-solvers. Our approach is based on mappings that have been previously
proposed: namely, a mapping from data models to MSFOL theories; a mapping from
object models to MSFOL interpretations; a mapping from OCL boolean expressions
to MSFOL formulae; a mapping from data models to SQL database schema; and

32

a mapping from object models to SQL database instances. Below we recall these
mappings along with their key properties. Our approach also assumes that the im-
plementation in SQL of the OCL authorization constraints is correct, in a sense that
will be also formally defined below.

4.2 Different mappings and preliminary remarks

4.2.1 From data models to MSFOL theories
In [19] Dania and Clavel defined a mapping from data models to MSFOL theories.
Let D = ⟨C, AT , AS ⟩ be a data model. In what follows we denote by map(D) the
MSFOL theory corresponding to D. In a nutshell, this mapping contains:

‹ The sort Classifer, representing objects in an instance of D and two con-
stant symbols, nullClassifer and invalClassifer of sort Classifer, representing
null and invalid objects, respectively. In addition, an axiom constraining that
nullClassifer and invalClassifer must have different interpretations.

‹ For every predefined type t ∈ T , we create a sort t and two constant symbols,
namely nullt and invalt, representing null and invalid value of type t, respec-
tively. In addition, an axiom constraining that nullt and invalt must have
different interpretations.

‹ For each class c ∈ C, a unary predicate c : Classifer → Bool, representing
the definition of c-object in an instance of D. In addition, axioms constraining
that nullClassifer and invalClassifer are not of type c and that an object of
type c are not of other class types.

‹ For each attribute at ∈ AT , at = ⟨atn, c, t⟩, a function atn_c : Classifer → t,
representing the values of the attribute at in the objects of an instance of D. In
addition, axioms constraining that there is no value of at in the nullClassifer
and invalClassifer and that for every valid object of class c, the value of at in
that object cannot be invalid.

‹ For each association as ∈ AS , as = ⟨asn, ase l, cl, aser, cr⟩, a binary predicate
asn : Classifer × Classifer → Bool, representing the definition of association
links as between objects in an instance of D. In addition, an axiom constraining
that for every link of association as , the left- and the right-end object must be
of type cl and cr, respectively.

33

Example 6. Consider the Uni data model in Subsection 2.3, which is formally de-
fined in Example 2. Then the mapping generates a MSFOL theory that contains: 1

‹ The sorts Classifer, Int and String, to represent objects, integer values and
string values, respectively.

‹ The constant nullClassifer, invalClassifer and an axiom constraining that these
two constants have different interpretation (and similarly, for sort Int and
String):

nullClassifer ̸= invalClassifer

‹ For class Lecturer, the predicate Lecturer(x : Classifer) and two axioms con-
straining that the nullClassifer and invalClassifer are not of type Lecturer
(and similarly, for class Student). In addition, an axiom constraining that
a Lecturer object, cannot be a Student object (and analogously, for class
Student).

Lecturer(nullClassifer) = ⊥
Lecturer(invalClassifer) = ⊥
∀x : Classifer. Lecturer(x) =⇒ ¬ Student(x)

‹ For attribute age of Lecturer, the function

age_Lecturer(x : Classifer) : Int

and three axioms constraining that (i) it is invalid to get the age of a null object,
(ii) it is invalid to get the age of an invalid object and (iii) the age of a lecturer
cannot be invalid (and similarly, for other attributes, for other classes).

age_Lecturer(nullClassifer) = invalInt
age_Lecturer(invalClassifer) = invalInt
∀x : Classifer. Lecturer(x) =⇒ age_Lecturer(x) ≠ invalInt

‹ For association Enrollment, the binary predicate

Enrollment(x : Classifer, y : Classifer)
1For the interested readers, the complete theory, written in SMT-LIB language, is depicted in

Listing F.1.

34

and an axiom constraining the type of two association-ends.

∀x : Classifer. ∀y : Classifer.
Enrollment(x, y) =⇒ Lecturer(x) ∧ Student(y)

△

4.2.2 From object models to MSFOL interpretations
Let D be a data model. Let O be an object model of D. In what follows we denote
by map(O) the MSFOL interpretation of the theory map(D) that corresponds to the
object model O according to this mapping.

Example 7. Consider the object model O defined in Example 3, denote by ≃ the
infix notation of our interpretation function, then map(O) consists of:

‹ The set of Classifer objects: {nullClassifer, invalClassifer, Hoang, Juan, Manuel}.
Moreover, nullInt ≃ −1, invalInt ≃ 0, nullString ≃ “A” and invalString ≃
“”(empty string),

‹ The functions and predicates: �
true, if x = Juan or x = Manuel

– Lecturer(x) ≃ ,
false, otherwise �
true, if x = Hoang

– Student(x) ≃ ,
false, otherwise �

25 if, x = Hoang
– age_Student(x) ≃ ,

0, otherwise
– . . . (and other attribute functions),�

true, if x = Manuel and y = Hoang
– Enrollment(x, y) ≃ .

false, otherwise

△

4.2.3 From OCL boolean expressions to MSFOL formulae
In [19] Dania and Clavel also defined a mapping maptrue() from OCL boolean ex-
pressions to MSFOL formulae. In particular, let D be a data model, O be an object

35

model of D, and exp ∈ Exp(D) be a boolean expression. Then, the following holds:

map(O) | (exp)= maptrue

⇕
Eval(O, exp) = true

Note that the mapping maptrue() includes an auxiliary mapping called mapdef () for
generating additional formulae and constraints (if any) needed by maptrue(). More
specifically,

1. if the OCL expression exp contains a literal lit of type t as subexpression,
then maptrue(exp) includes an additional constraint, generated by mapdef (exp),
stating that the interpretation of the null value and invalid value of t differ
from lit .

2. if the OCL expression exp contains a non-boolean expression exp ′ as subex-
pression, then maptrue(exp) includes a predicate for exp ′ (called temp), and an
additional formula, generated by mapdef (exp), defines the meaning of newly
created predicate.

In what follows, unless explicitly stated, applying maptrue() on an OCL expression
involves calling mapdef (exp).

Example 8. Consider the Uni data model in Subsection 2.3, given the OCL expres-
sion exp:

Student.allInstances() → select(s|s.age ≥ 19) → isEmpty()

Then, maptrue(exp) generates the following: 2

‹ Note that, Student.allInstances() → select(s|s.age ≥ 19) is a subexpres-
sion in exp, then mapdef (exp ′) includes a predicate temp(x : Classifer) and
generates the following formula to define temp():

∀s : Classifer. temp(s) ⇐⇒ Student(s) ∧ (age_Student(s) ≥ 19)
∧ ¬ (age_Student(s) = nullInt
∨ s = nullClassifer ∨ s = invalClassifer)

follows by maptrue(exp):

∀x : Classifer. ¬ temp(x) (4.1)
2For the interested readers, the complete theory generated for this OCL expression, written in

SMT-LIB language, is depicted in Listing F.2.

36

‹ Note also that, since 19 is an integer literal, then mapdef (exp) includes the
constraints:

nullInt ≠ 19 ∧ invalInt ≠ 19

Now, consider the object model O defined in Example 3.

‹ In this object model, there is only one Student, namely Hoang with the age of 25.
Therefore, the result of evaluating exp in O is false, i.e. Eval(O, exp) = false.

‹ On the other hand, consider the interpretation of this object model shown in
Example 6. In this interpretation, there are 5 Classifer objects in total, namely
nullClassifer, invalClassifer, Hoang, Juan and Manuel. Since Student(Hoang)
= true, age_Student(Hoang) = 25, 25 ̸= nullInt, Hoang ≠ nullClassifer and
Hoang ≠ invalClassifer, we obtain that temp(Hoang) = true. Indeed, this
contradicts with the axiom in (4.1), therefore, the interpretation of O cannot
satisfy the formulae in maptrue(exp), i.e. map(O) ̸| (exp).= maptrue

△

Next, the following remark is a corollary of the maptrue() definition.

Remark 1. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be an FGAC
security model for D. Let O = ⟨OC , OAT , OAS ⟩ be an object model of D. Let r ∈ R
be a role in S. Let users(C) ∈ C be the users-provider class in D.
Let at = ⟨atn, c, t⟩ be an attribute of D. Let u = ⟨oi , users(C)⟩ ∈ OC be an object
in O. Let w = ⟨oi , c⟩ ∈ OC be an object in O. Then,

map(O)[self 7→ w; caller 7→ u] | (auth(r, read(at)))= maptrue

⇕
Eval(O, auth(r, read(at))[self ← w; caller ← u]) = true

where map(O)[self 7→ w; caller 7→ u] denotes the interpretation map(O) extended
with the assignments of the objects w and u to the variables self and caller, re-
spectively; and auth(r, read(at)[self ← w; caller ← u]) denotes the expression
auth(r, read(at)) after substituting the variables self and caller by the objects w
and u, respectively.
Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ be an association of D. Let u = ⟨oi , users(C)⟩
∈ OC be an object in O. Let wl = ⟨ol , cl⟩ ∈ OC and wr = ⟨or , cr⟩ ∈ OC be objects

37

in O. Then,

map(O)[ase l 7→ wl; ase l 7→ wr; caller 7→ u] | (auth(r, read(as)))= maptrue

⇕
Eval(O, auth(r, read(at))[ase l ← wl; aser ← wr; caller ← u]) = true

where, as before, map(O)[ase l 7→ wl; aser 7→ wr; caller 7→ u] denotes the inter-
pretation map(O) extended with the assignments of the objects l, r, and u to the
variables ase l, aser, and caller, respectively; and auth(r, read(as)[ase l ← wl; aser ←
wr; caller ← u]) denotes the expression auth(r, read(as)) after substituting the vari-
ables ase l, aser, and caller by the objects wl, wr, and u, respectively.

In the last remark, we establish a connection between the result of evaluating an
authorization constraint exp in FGAC security model on a scenario (i.e. an object
model O with a user and a class-object/association-link to be read) to the satisfia-
bility problem of the interpretation of map(O) on the generated MSFOL formulae

(exp).of maptrue

As mentioned before, the SecQuery() implements FGAC authorization constraints
by using case-expressions. Logically, to securely eliminate the unnecessary case-
expression, we need to prove that the evaluation of the corresponding authorization
constraint is trivially true. The following remark, which is a corollary of Remark 1,
is to formally prove the aforementioned by reducing it into a satisfiability problem.

Remark 2. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security
model for D. Let users(C) ∈ C be the users-provider class of D. Let r ∈ R be a role.
Let at = ⟨atn, c, t⟩ be an attribute of D. Then, for every object model O = ⟨OC , OAT ,
OAS ⟩ of D, for every object ⟨self , c⟩ ∈ OC and for every object ⟨caller , users(C)⟩ ∈
OC it holds that:

Eval(O, auth(r, read(at))[self ← self ; caller ← caller]) = true

if and only if the following MSFOL theory is unsatisfiable:

map(D) ∪ map(self, c) ∪ map(caller, users(C))
∪ mapdef (auth(r, read(at))) ∪ ¬ maptrue(auth(r, read(at)))

where map(self, c) and map(caller, users(C)) simply add to the MSFOL theory
map(D) the constant symbols self and caller, with sorts c and users(C), respec-
tively.

38

Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ be an association of D. Then, for every
object model O = ⟨OC , OAT , OAS ⟩ of D, for every object ⟨ol , cl⟩ ∈ OC , ⟨or , cr⟩ ∈
OC and for every caller ∈ users(C), it holds that:

Eval(O, auth(r, read(as))[asel ← ol; aser ← or; caller ← caller]) = true

if and only if the following MSFOL theory is unsatisfiable:

map(D) ∪ map(asel, cl) ∪ map(aser, cr) ∪ map(caller, users(C))
∪ mapdef (auth(r, read(as))) ∪ ¬ maptrue(auth(r, read(as)))

where map(asel, cl), map(aser, cr) and map(caller, users(C)) simply add to the MS-
FOL theory map(D) the constant symbols asel, aser, caller, with sorts cl, cr,
users(C), respectively.

The previous remark is key in our methodology to prove (i) an authorization check
is trivial. Here, we extend our remark above to prove (ii) an authorization check is
satisfied given a data invariant and (iii) an authorization check is satisfied given the
properties of the objects involved in the authorization request. Since data invari-
ants and objects’ properties can be expressed using OCL boolean expressions, we
then append the generated formulae of that OCL expression to the MSFOL theory
generated by Remark 2.

Remark 3. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security
model for D. Let users(C) ∈ C be the users provider-class of D. Let r ∈ R be a role.
Let exp ∈ Exp(D) be an OCL boolean expression.
Let at = ⟨atn, c, t⟩ ∈ AT be an attribute of D. Then, for every object model O =
⟨OC , OAT , OAS ⟩ of D such that the evaluation of exp returns true, i.e.

Eval(O, exp[self ← self ; caller ← caller]) = true,

for every object ⟨self , c⟩ ∈ OC and for every object ⟨caller , users(C)⟩ ∈ OC it holds
that:

Eval(O, auth(r, read(at))[self ← self ; caller ← caller]) = true

if and only if the following MSFOL theory is unsatisfiable:

map(D) ∪ map(self, c) ∪ map(caller, users(C))
(exp)∪ mapdef (exp) ∪ maptrue

∪ mapdef (auth(r, read(at))) ∪ ¬ maptrue(auth(r, read(at)))

39

where as before, map(self, c) and map(caller, users(C)) simply add to the MSFOL
theory map(D) the constant symbols self and caller, with sorts c and users(C), re-
spectively; and mapdef (exp) and maptrue(exp) then add to the MSFOL theory map(D)
the predicates/formulae generates by mapping exp to MSFOL.
Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ ∈ AS be an association of D. Then, for
every object model O = ⟨OC , OAT , OAS ⟩ of D such that the evaluation of exp
returns true, i.e.

Eval(O, exp[asel ← ol; aser ← or; caller ← caller]) = true,

for every object ⟨ol , cl⟩ ∈ OC , ⟨or , cr⟩ ∈ OC and for every caller ∈ users(C), it holds
that:

Eval(O, auth(r, read(as))[asel ← ol; aser ← or; caller ← caller]) = true

if and only if the following MSFOL theory is unsatisfiable:

map(D) ∪ map(asel, cl) ∪ map(aser, cr) ∪ map(caller, users(C))
(exp)∪ mapdef (exp) ∪ maptrue

∪ mapdef (auth(r, read(as))) ∪ ¬ (auth(r, read(as)))maptrue

where as before, map(asel, cl), map(aser, cr), map(asel, aser, as) and map(caller,
users(C)) simply add to the MSFOL theory map(D) the constant symbols asel, aser,
caller, with sorts cl, cr, users(C), and the association link as between asel and
aser, respectively; and mapdef (exp) and maptrue(exp) then add to the MSFOL theory
map(D) the predicates/formulae generates by mapping exp to MSFOL.

4.2.4 From data models to SQL database schema
In [3] we defined a mapping from data models to SQL database schema. Let D be a
data model. In what follows we denote by D the SQL database schema correspond-
ing to D according to this mapping. The definition of this mapping is recalled in
Appendix A. 3

Example 9. Consider the Uni data model in Subsection 2.3, the Listing below shows
the description of the SQL database schema of Uni, according to the mapping from
data model to SQL database schema:

3For the sake of illustration, readers can find Appendix E the example SQL database schemata
of the data model in Subsection 2.3.

40

mysql> describe Student;
+------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
Student_id	varchar(100)	NO	PRI	NULL	
name	varchar(100)	YES		NULL	
age	int(11)	YES		NULL	
email	varchar(100)	YES		NULL	
+------------+--------------+------+-----+---------+-------+

mysql> describe Lecturer;
+-------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+-------+
Lecturer_id	varchar(100)	NO	PRI	NULL	
name	varchar(100)	YES		NULL	
age	int(11)	YES		NULL	
email	varchar(100)	YES		NULL	
+-------------+--------------+------+-----+---------+-------+

mysql> describe Enrollment;
+-----------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+--------------+------+-----+---------+-------+
| lecturers | varchar(100) | YES | MUL | NULL | |
| students | varchar(100) | YES | MUL | NULL | |
+-----------+--------------+------+-----+---------+-------+

where Student_id is the primary key and name, age, email are the attributes of the
table Student. Similarly, Lecturer_id is the primary key and name, age, email
are the attributes of the table Lecturer. And finally, students and lecturers
are the foreign keys refers to the primary keys of the table Student and Lecturer,
respectively. △

4.2.5 From object models to SQL database instances
In [3] we also defined a mapping from object models to SQL database instances. Let
D be a data model. Let O be an object model of D. In what follows we denote by

41

O the instance of the database schema D that corresponds to O according to this
mapping. The definition of this mapping is recalled in Appendix A.

Example 10. Consider the object model in Example 3, the Listing below depicts the
corresponding database state.

mysql> SELECT * FROM Student;
+------------+-------+------+-------------------+
| Student_id | name | age | email |
+------------+-------+------+-------------------+
| Hoang | Hoang | 25 | Hoang@student.com |
+------------+-------+------+-------------------+

mysql> SELECT * FROM Lecturer;
+-------------+--------+------+---------------------+
| Lecturer_id | name | age | email |
+-------------+--------+------+---------------------+
| Juan | Juan | NULL | Juan@lecturer.com |
| Manuel | Manuel | NULL | Manuel@lecturer.com |
+-------------+--------+------+---------------------+

mysql> SELECT * FROM Enrollment;
+-----------+----------+
| lecturers | students |
+-----------+----------+
| Manuel | Hoang |
+-----------+----------+

where there is one tuple in table Student, representing student Hoang. Similarly,
there are two tuples in table Lecturer, representing lecturer Juan and Manuel, re-
spectively. Finally, there is one tuple in table Enrollment, representing the associa-
tion link between Manuel and Hoang. △

Remark 4. Our mapping from object models to SQL database instances has an
inverse mapping. Let D be a data model. Let Y be an instance of the database
schema D. In what follows we denote by Y the object model of D that corresponds
to the database instance Y according to this inverse mapping.

42

mailto:Manuel@lecturer.com
mailto:Juan@lecturer.com
mailto:Hoang@student.com

4.2.6 From OCL boolean expressions to SQL queries
In [35] we proposed a mapping from OCL expressions to SQL queries. However, in our
methodology, we do not assume that authorization constraints are implemented in
SQL using this mapping. In fact, in terms of execution-time efficiency, the manual
implementations (i.e. written by experts) typically perform better than the ones
automatically generated by our mapping, as depicted in [17]. In whatever way the
implementation is done, our methodology assumes that this implementation is correct
in the following sense:

Definition 7. Let D be a data model. Let D be an SQL implementation of D. Let
exp ∈ Exp(D) be a boolean expression. Let qry be an SQL D-query. Denote by TRUE
the SQL-value for true. We say that qry is a correct implementation of exp if and
only if:

‹ For any object model O of D, and any valid assignment σ of objects in O to
the free-variables in exp, the following holds:

Eval(O, exp[σ]) = true ⇐⇒ Execσ(O, qry) = TRUE.

where exp[σ] is the OCL expression that results from substituting the free-
variables in exp using the assignment σ; and Execσ(O, qry) denotes the ex-
ecution of the query qry in the database instance O of D within an execution-
context where, for each assignment v → o in σ, the variable v has been declared
and set to the value o.

‹ For any database instance Y of D, and any valid execution-context τ , the fol-
lowing holds:

Execτ (Y , qry) = TRUE ⇐⇒ Eval(Y , exp[τ]) = true.

where Execτ (Y , qry) denotes the execution of the query qry in the database
instance Y within the execution-context τ ; and exp[τ] denotes the OCL expres-
sion that results from substituting the free-variables in exp using the following
assignment: each variable v that is declared in τ is assigned to the object t in
Y that corresponds to the value t in Y to which the variable v is set in τ .

Example 11. Consider the Uni data model in Subsection 2.3 and its corresponding
SQL database schemata in Example 9. Given an OCL boolean expression exp:

caller.students → includes(self)

43

and an SQL select-statement qry:

SELECT EXISTS (SELECT 1 FROM Enrollment e
WHERE e.lecturers = caller AND e.students = self)

we say that qry correctly implements exp with respect to Definition 7. Consider now
the object model O in Example 3 and its corresponding SQL database state O in
Example 10.

‹ Let σ = [self ← Hoang; caller ← Manuel] be our assignment function. Then,
σ = [self 7→ Hoang; caller 7→ Manuel], where Hoang and Manuel are the
primary keys of the tuple representing Hoang in the Student table and Manuel
in the Lecturer table, respectively. As shown in Example 5, Eval(O, exp[σ]) =
true. Furthermore, Execσ(O, qry) = TRUE:

mysql> SELECT EXISTS (SELECT 1 FROM Enrollment e
-> WHERE e.lecturers = ’Manuel’
-> AND e.students = ’Hoang’) AS result;

+--------+
| result |
+--------+
| 1 |
+--------+

‹ Otherwise, let σ = [self ← Hoang; caller ← Juan] be our assignment
function. Then, σ = [self 7→ Hoang; caller 7→ Juan], where Hoang is
as above and Juan is the primary key of the tuple representing Juan in the
Lecturer table. As shown in Example 5, Eval(O, exp[σ]) = false. Further-
more, Execσ(O, qry) = FALSE:

mysql> SELECT EXISTS (SELECT 1 FROM Enrollment e
-> WHERE e.lecturers = ’Juan’
-> AND e.students = ’Hoang’) AS result;

+--------+
| result |
+--------+
| 0 |
+--------+

△

44

4.3 Reducing execution-time overhead: Case ex-

pressions
The function SecQuery() implements the authorization checks by using case-express-
ions. More specifically, the function SecQuery() uses the functions SecAtt() and
SecAs() to wrap, respectively, any access to a protected attribute at or to a protected
association as into a case-expression. The value of this case expression is a call to
a function AuthFunc() that implements those authorization checks required for ac-
cessing the corresponding attribute or association. If the result of this function-call
is TRUE, then the case-expression will return the requested resource; otherwise, it will
signal an error. In what follows, ⌜AuthFunc(S, at)⌝ denotes the name of the function
generated by SecQuery() for a policy S an attribute at ; whereas ⌜AuthFunc(S, as)⌝
denotes the name of the function generated by SecQuery() for a policy S an associ-
ation as . When the argument S is clear from the context, it may be omitted.

The functions SecAtt() and SecAs() use the functions AuthFunc() and AuthFunc-
Role() to check that the access to a specific protected resource is authorized. For
each protected resource, the required authorization checks depend on the role of
the user attempting to access this resource. Accordingly, for each role, the func-
tion AuthFunc() calls a function AuthFuncRole() that implements the authorization
checks required for a user with that role to access a specific protected resource. In
what follows, ⌜AuthFuncRole(S, at , r)⌝ denotes the name of the function generated
by SecQuery() for a policy S, an attribute at , and a role r; whereas ⌜AuthFunc-
Role(S, as , r)⌝ denotes the name of the function generated by SecQuery() for a pol-
icy S, an association as . Again, when the argument S is clear from the context, we
may omit it.

The function AuthFuncRole() implements the authorization constraints associated
with the permission for users of a given role for executing a given read-action on a
specific resource. There are many different ways of implementing in SQL an OCL
authorization constraint. The definition of the function AuthFuncRole() only as-
sumes that there exists a function map() that, for each OCL constraint of interest,
it returns a correct implementation in SQL of this constraint, in the precise sense of
Definition 7.

The following remark makes explicit the relationship between the functions Auth-
Func() and AuthFuncRole().

45

Remark 5. Let D = ⟨C , AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security
model for D. Let users(C) ∈ C be the users provider-class in D. Let r ∈ R be a role
in S. Let Y be an instance of the database D and denote by TRUE the SQL-value for
true.
Let at = ⟨atn, c, t⟩ be an attribute in D. Let self be a key-value identifying a row in
the table c in Y. Let caller be a key-value identifying a row in the table users(C) in
Y. Then, the following holds:

Exec(Y , ⌜AuthFunc(at)⌝(self , caller , r)) = TRUE
⇕

Exec(Y , ⌜AuthFuncRole(at , r)⌝(self , caller)) = TRUE.

Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ be an association in D. Let ase l and aser
be key-values identifying, respectively, rows in the tables cl and cr in Y. Let caller be
a key-value identifying a row in the table users(C) in Y. Then, the following holds:

Exec(Y , ⌜AuthFunc(as)⌝(ase l, aser, caller , r)) = TRUE
⇕

Exec(Y , ⌜AuthFuncRole(as , r)⌝(ase l, aser, caller)) = TRUE.

The following remark makes explicit the relationship between the function AuthFunc-
Role() and the function map().

Remark 6. Let D = ⟨C , AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security
model for D. Let users(C) ∈ C be the users provider-class in D. Let r ∈ R be a
role in S. Let map() be a correct implementation of the authorization constraints in
S. Let Y be an instance of the database D and denote by TRUE the SQL-value for true.

Let at = ⟨atn, c, t⟩ be an attribute in D. Let self be a key-value identifying a row in
the table c in Y. Let caller be a key-value identifying a row in the table users(C) in
Y. Then, the following holds:

Exec(Y , ⌜AuthFuncRole(at , r)⌝(self , caller) = TRUE
⇕
Execτ (Y , map(auth(r, read(at)))) = TRUE
⇕ (by Defnition 7)
Eval(Y , auth(r, read(at))[τ]) = true.

46

where τ denotes the execution context, and the variables self and caller have been
declared and set, respectively, to the key-values self and caller .
Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ be an association in D. Let Y be an instance
of the database D. Let ase l and aser be a key identifying a row in the table cl and
cr in Y. Let caller be a key identifying a row in the table users(C) in Y. Then, the
following holds:

Exec(Y , ⌜AuthFuncRole(as , r)⌝(ase l, aser, caller) = TRUE
⇕
Execτ (Y , map(auth(r, read(as)))) = TRUE
⇕ (by Defnition 7)
Eval(Y , auth(r, read(as))[τ]) = true.

where τ denotes the execution context, and the variables asel, aser, and caller have
been declared and set, respectively, to the key-values ase l, aser, and caller .

Summary
In conclusion, to securely eliminate a case-expressions generated by the function
SecQuery(), it is enough to prove that

(a) the execution of the corresponding authFunc() call will always return
TRUE (in any instances of the given database schema).

Furthermore, by the definition of SecQuery(), calling authFunc() involves calling
authFuncRole(), which in turns calls the SQL correct implementation of the corre-
sponding authorization constraint in the FGAC security model. By Remarks 5–6
and the Definition 7, in order to prove (a) is enough to prove that

(b) the OCL authorization constraint under consideration will always
evaluate to true (in any scenario of the UML/OCL data model corre-
sponding to the given database schema).

By Remarks 1–3, in order to prove (b) is enough to prove that
(c) it is unsatisfiable the MSFOL theory that results from adding the
negation of the formulae returned by applying the mapping maptrue() to
the authorization constraint under consideration to the theory returned
by applying the mapping map() to the UML/OCL data model corre-
sponding to the given database schema.

As shown in our case study below, to prove (c) we can use SMT solvers.

47

4.4 Reducing execution-time overhead: Tempo-

rary tables
The function SecQuery() implements authorization checks by using case-expressions.
These case-expressions are executed within create-statements that generate tempo-
rary tables. The reason for using temporary tables (instead of sub-queries), is to pre-
vent the SQL optimizer for “skipping” (by rewriting the corresponding sub-queries)
the authorization checks generated by SecQuery().

The following remarks are corollaries of the definition of the functions SecAtt()
and SecAs(), and provide a (secure) approach for replacing with the original sub-
queries the temporary tables generated by the function SecQuery(), when these tables
are proven to be unnecessary. Logically, to allow the SQL optimizer to do its job,
whenever “secure”, sub-queries should be favoured over temporary tables.

Notice that, based on the remarks below, we can follow the same approach de-
scribed before (for eliminating unnecessary case-expressions) to prove using SMT
solvers that a temporary table generated by the function SecQuery() can be securely
replaced with the original sub-query.

Remark 7. Let D = ⟨C , AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security
model for D. Let users(C) ∈ C be the users-provider class in D. Let c ∈ C be a class
in D. Let Y be an instance of the database D. Given an SQL query:

SELECT ∗ FROM c WHERE SecAtt(S, exp)

Suppose that, for every attribute ⟨atn, c, t⟩ ∈ AT occurring in exp, every role r ∈ R,
every key-value self identifying a row in the table c in Y, and every key-value caller
identifying a row in the table users(C) in Y, it holds that:

Exec(Y , ⌜AuthFunc(at)⌝(self , caller , r)) = TRUE

Then, it holds that:

Exec(Y , SELECT ∗ FROM c WHERE SecAtt(S, exp))
= Exec(Y , SELECT ∗ FROM c WHERE exp)

Remark 8. Let D = ⟨C , AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security
model for D. Let users(C) ∈ C be the users-provider class in D. Let c ∈ C be a class
in D. Let Y be an instance of the database D. Let SubSelectc be an execution result
that contains tuples of c-object. Given an SQL query:

48

SELECT ∗ FROM SubSelectc WHERE SecAtt(S, exp)

Suppose that, for every attribute ⟨atn, c, t⟩ ∈ AT occurring in exp, every role r ∈ R,
every key-value self identifying a row in the returned subselect SubSelectc, and every
key-value caller identifying a row in the table users(C) in Y, it holds that:

Exec(Y , ⌜AuthFunc(at)⌝(self , caller , r)) = TRUE

Then, it holds that:

Exec(Y , SELECT ∗ FROM SubSelectc WHERE SecAtt(S, exp))
= Exec(Y , SELECT ∗ FROM SubSelectc WHERE exp)

Remark 9. Let D = ⟨C , AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security
model for D. Let users(C) ∈ C be the users-provider class in D. Let Y be an
instance of the database D. Let cl, cr ∈ C be classes in D. Let ol and or be key-values
identifying, respectively, rows in the tables cl and cr in Y Let caller be a key-value
identifying a row in the table users(C) in Y. Let CartProd (cartesian product) be
the returned results of executing the select statement:

SELECT cl_id, cr_id FROM cl, cr WHERE exp

where exp is an SQL boolean statement that may contain the attributes in cl and cr.
Suppose that, for every association as = ⟨asn, ase l, cl, aser, cr⟩, as ∈ AS , given an
SQL query:

SELECT ∗ FROM CartProd WHERE SecAs(S, as)

For every returned tuple ⟨ol, or⟩ ∈ CartProd, every role r ∈ R, and every caller
in the table users(C) in Y, it holds that

Exec(Y , ⌜AuthFunc(as)⌝(ol, or, caller , r)) = TRUE

Then, it holds that:

Exec(Y , SELECT ∗ FROM CartProd WHERE SecAs(S, as))
= Exec(Y , SELECT ∗ FROM CartProd)

In the next chapter, we provide non-trivial examples in which the generated
stored-procedures can be optimized. By applying these remarks, we formally prove
that, indeed, the case-expressions in those stored-procedures are unnecessary.

49

Chapter 5

Case Study

In this chapter, we conduct a case study for our methodology described above. Here,
we revisit the two experiments reported in Subsection 3.2.3 and apply the approach
introduced in Section 4.3 to identify the unnecessary checks and optimize the stored-
procedures generated by the function SecQuery() and report on the results. For the
sake of convenience, we recall briefly the experiment setup in Subsection 3.2.3:

‹ The data model introduced in Subsection 2.3,

‹ The scenarios Uni(n), for n > 2, in which: there are exactly n students and
n lectures; students and lectures have unique names; every lecturer has every
student as his/her student; there are three distinguished lecturers, namely:
Trang, Michel, and Vinh; and no other lecturer is older than Michel,

‹ Three different FGAC security models, namely: Sec#1, Sec#2, and Sec#3. In
particular: 1

– Sec#1 contains the following clauses: an admin can know the age of any
student ; and an admin can know the students of any lecturer.

– Sec#2 contains the following clauses: a lecturer can know the age of any
student, if he/she is the oldest lecturer ; and a lecturer can know the stu-
dents of any lecturer, if he/she is the oldest lecturer.

– Sec#3 contains the following clauses: a lecturer can know the age of any
student, if the student is his/her student ; and a lecturer can know the
students of any lecturer, if the student is his/her student.

1For interested readers, the SQL implementation of these FGAC security models can be found
in Appendix E.

50

‹ Here we consider the three different SQL queries, Query#1, Query#2 and the
new Query#3, which return, respectively, the number of students whose age is
greater than 18, the number of enrollments and the average age of students of
a current user.

Query#1 SELECT COUNT(*) FROM Student WHERE age > 18
Query#2 SELECT COUNT(students) FROM Enrollment
Query#3 SELECT AVG(age) FROM Student

JOIN (SELECT students FROM Enrollment
WHERE lecturers = caller) AS TEMP

ON Student_id = students

Figure 5.1: Experiments: Queries 1–3.

In the following sections, we apply our methodology to optimize the generated
stored-procedures in four different configurations.

5.1 First example: Trivial authorization constraints
In this first example, consider the following configuration:

Data model: Uni (in Subsection 2.3)
User class: Lecturer
Scenarios: Uni(n), for n ≥ 2
Security policy: Sec#1
Role: There is only one role, namely Admin
Query: Query#1

‹ In this case, we recall the corresponding authorization constraint, i.e. An admin
can know the age of any student :

auth(Admin, read(Student : age)) = true

Denote by auth the above OCL authorization constraint.

51

‹ We extend the signature with the symbol constants for caller and self, and
the corresponding axioms. In this case: caller is a lecturer, and self is a
student.

Notice that the following theory is unsatisfiable :

map(Uni) ∪ ¬ maptrue(auth)
∪ map(caller, Lecturer) ∪ map(self, Student)

Therefore, following Remark 2, we can prove that for every object model O of Uni
data model, for every object self of class Student and for every user caller of user
class Lecturer:

Eval(O, auth(Admin, read(Student : age))[σ]) = true

where σ = [caller ← caller ; self ← self]. Then, following Remark 6, we can prove
that for every database instance Y of Uni database schema, given the corresponding
execution context σ:

Execσ(Y , map(auth(Admin, read(Student : age)))) = TRUE

Finally, recall the snippet body of the stored-procedure generated by SecQuery(
Sec#3,Query#2) (depicted in Figure 3.2.3) that contains the authorization check:

CREATE TEMPORARY TABLE ⌜TempTable(age > 18)⌝ AS (
SELECT * FROM Student
WHERE CASE ⌜AuthFunc(S, age)⌝ (Student_id, caller, role)

WHEN 1 THEN age ELSE throw_error() END as age > 18
);

following Remark 7, it can be optimized as follows:

CREATE TEMPORARY TABLE ⌜TempTable(age > 18)⌝ AS (
SELECT * FROM Student WHERE age > 18

);

52

Remarks: Applying the methodology described before, we can in fact prove that,
in this case where a user has role Admin, the case-statement can be securely removed. 2

5.2 Second example: Data invariants
In this second example, consider the following configuration:

Data model: Uni (in Subsection 2.3)
User class: Lecturer
Scenarios: Uni(n), for n ≥ 2
Security policy: Sec#3
Role: There is only one role, namely Lecturer
Query: Query#2

‹ Firstly, we consider the relevant invariant of the given scenarios. In this case:
Every lecturer has every student as his/her student.

Lecturer.allInstances() → forAll(l|
Student.allInstances() → forAll(s|l.students → includes(s)))

Denote by inv the above OCL invariant. More specifically, we state the for-
mulae returned by maptrue(inv) (as in this case, there is no formula/axiom
returned by mapdef (inv)).

‹ Secondly, we recall the corresponding authorization constraint. In this case: A
lecturer can know the students of any lecturer, if the student is his/her student.

auth(Lecturer, read(Enrollment)) =
caller.students → exists(s | s = students)

Denote by auth the above OCL authorization constraint. More specifically,
we state the formulae returned by maptrue(auth) (as in this case, there is no
formula/axiom returned by mapdef (auth)).

‹ We extend the signature with the symbol constants for caller, students and
lecturers, and the corresponding axioms. In this case: caller, lecturers
are lecturers, and students is a student.

2For interested readers, the complete SQL implementation of this secured stored-procedure as
well as the optimized version can be found in Appendix E.

53

Notice that the following theory is unsatisfiable :

map(Uni) ∪ ¬ (auth)maptrue

∪ map(caller, Lecturer)
∪ map(students, Student) ∪ map(lecturers, Lecturer)

(inv)∪ maptrue

Therefore, following Remark 3, we can prove that for every object model O of Uni
data model that satisfies the integrity constraint inv , for every object student of class
Student, lecturer of class Lecturer, and for every user caller of user class Lecturer:

Eval(O, auth(Lecturer, read(Enrollment))[σ]) = true

where σ = [caller ← caller ; students ← student ; lecturers ← lecturer]. Then,
following Remark 6, we can prove that for every database instance Y of Uni database
schema that satisfies map(inv), given the corresponding execution context σ:

Execσ(Y , map(auth(Lecturer, read(Enrollment)))) = TRUE

Finally, recall the snippet body of the stored-procedure generated by SecQuery(
Sec#3,Query#2) (depicted in Figure 3.2.3) that contains the authorization check:

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS (
SELECT * FROM ⌜TempTable(True)⌝
WHERE CASE ⌜AuthFunc(S, Enrollment)⌝ (students,

lecturers, caller, role)
WHEN 1 THEN TRUE ELSE throw_error() END as students

);

following Remark 9, it can be optimized as follows:

54

IF (map(inv))
THEN

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS (
SELECT * FROM ⌜TempTable(True)⌝

);
ELSE

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS (
SELECT * FROM ⌜TempTable(True)⌝
WHERE CASE ⌜AuthFunc(S, Enrollment)⌝ (students,

lecturers, caller, role)
WHEN 1 THEN TRUE ELSE throw_error() END as students

);
END IF;

Remarks: Applying the methodology described before, we can in fact prove that,
in this case where (i) the user has the role Lecturer and (ii) the invariant every
student is a student of every lecturer holds, the case-statement can be securely re-
moved. Notice that the case-statement cannot be removed, however, for the case of
the policies Sec#2. Neither can it be removed if the invariant does not hold. 3

5.3 Third example: User properties
In this third example, consider the following configuration:

Data model: Uni (in Subsection 2.3
User: Michel
Scenarios: Uni(n), for n ≥ 2
Security policy: Sec#2
Role: This is only one role, namely Lecturer
Query: Query#2

3In general, the invariant can not be taken for granted and must be proved by formulating the
invariant using again the OCL expressions to SQL statements map() function introduced in Sub-
section 4.2.6 and the idea of correct implementations of OCL queries/invariants. For the interested
readers, the complete SQL implementation of this secured stored-procedure as well as the optimized
version can be found in Appendix E.

55

‹ We recall the corresponding authorization constraint. In this case: A lecturer
can know the age of any student, if no other lecturer is older than he/she is.

auth(Lecturer, read(Student : age)) =
Lecturer.allInstances()→ select(l|l.age > caller.age)
→ isEmpty().

Denote by auth the above OCL authorization constraint. More specifically,
we state the formulae returned by maptrue(auth) (as in this case, there is no
formula/axiom returned by mapdef (auth)).

‹ We extend the signature with the symbol constants for caller, students and
lecturers, and the corresponding axioms. In this case: caller, lecturers
are lecturers, and students is a student.

‹ Furthermore, we acknowledge that the caller, Michel, is the oldest lecturer.
This property can be manually written as an OCL expression:

Lecturer.allInstances() → forAll(l|l.age ≤ caller.age)

Denote by prop the above OCL caller–property. More specifically, we state
the formulae returned by map (prop) (as in this case, there is no formula/ax-true

iom returned by mapdef (prop)).

Notice that the following theory is unsatisfiable :

map(Uni) ∪ ¬ maptrue(auth)
∪ map(students, Student) ∪ map(lecturers, Lecturer)

(prop)∪ maptrue

Therefore, following Remark 3, we can prove that for every object model O of Uni
data model, for every object student of class Student, lecturer of class Lecturer,
and for any user caller of user class Lecturer that satisfies the property of being an
oldest lecturer :

Eval(O, auth(Lecturer, read(Enrollment))[σ]) = true (5.1)

where σ = [caller ← caller ; students ← student ; lecturers ← lecturer]. Then,
following Remark 6, we can prove that for every database instance Y of Uni database
schema, given the corresponding execution context σ:

Execσ(Y , map(auth(Lecturer, read(Enrollment)))) = TRUE (5.2)

56

Under the assumption that the property holds, we can eliminate unnecessary
authorization checks in SecQuery(Sec#2, Query#2). Recall the snippet body of the
stored-procedure generated by SecQuery(Sec#2,Query#2) (depicted in Figure 3.2.3)
that contains the authorization check:

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS (
SELECT * FROM ⌜TempTable(True)⌝
WHERE CASE ⌜AuthFunc(S, Enrollment)⌝ (students,

lecturers, caller, role)
WHEN 1 THEN TRUE ELSE throw_error() END as students

);

can be optimized as follows:

IF (map(prop))
THEN

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS (
SELECT * FROM ⌜TempTable(True)⌝

);
ELSE

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS (
SELECT * FROM ⌜TempTable(True)⌝
WHERE CASE ⌜AuthFunc(S, Enrollment)⌝ (students,

lecturers, caller, role)
WHEN 1 THEN TRUE ELSE throw_error() END as students

);
END IF;

Remarks: Applying the methodology described before, we can in fact prove that,
in this case where (i) the user has the role Lecturer and (ii) the user satisfies the
property of being the oldest lecturer, the case-statement can be securely removed.
Notice that the case-statement cannot be removed, however, for the case of the poli-
cies Sec#3. Neither can it be removed for any user that is not the oldest lecturer. 4

4For the interested readers, the complete SQL implementation of this secured stored-procedure
as well as the optimized version can be found in Appendix E.

57

5.4 Fourth example: Object properties
In this fourth and final example, consider the following configuration:

Data model: Uni
User class: Lecturer
Scenarios: Uni(n), for n ≥ 2
Security policy: Sec#3
Role: Lecturer
Query: Query#3

To begin with, we show the create-statements generated by the function call SecQuery(
Sec#3,Query#3):

CREATE TEMPORARY TABLE ⌜TempTable(lecturers = caller)⌝ AS (
SELECT Student_id AS students, Lecturer_id AS lecturers
FROM Student, Lecturer
WHERE Lecturer_id = caller;

);

CREATE TEMPORARY TABLE ⌜TempTable(students, lecturers)⌝ AS (
SELECT *
FROM ⌜TempTable(lecturers = caller)⌝
WHERE CASE ⌜AuthFunc(S, Enrolment)⌝ (students, lecturers,

caller, role) WHEN 1 THEN TRUE
ELSE throw_error() END as students

);

CREATE TEMPORARY TABLE ⌜TempTable(Student_id = students)⌝ AS (
SELECT *
FROM Student
JOIN ⌜TempTable(students, lecturers)⌝
ON Student_id = students

);

CREATE TEMPORARY TABLE ⌜TempTable(age)⌝ AS (
SELECT CASE ⌜AuthFunc(S, age)⌝ (Student_id, caller, role)

WHEN 1 THEN age ELSE throw_error() END as age
FROM ⌜TempTable(Student_id = students)⌝

);

58

Consider the first case-statement in the temporary table ⌜TempTable(students, lec-
turers)⌝:

‹ Firstly, we consider the relevant invariant of the given scenarios. In this case:
Every lecturer has every student as his/her student.

Lecturer.allInstances() → forAll(l|
Student.allInstances() → forAll(s|l.students → includes(s)))

Denote by inv the above OCL invariant. More specifically, we state the for-
mulae returned by maptrue(inv) (as in this case, there is no formula/axiom
returned by mapdef (inv)).

‹ We recall the corresponding authorization constraint. In this case: A lecturer
can know the students of any lecturer, if the student is his/her student.

auth(Lecturer, read(Enrollment)) =
caller.students → exists(s | s = students)

Denote by auth the above OCL authorization constraint. More specifically,
we state the formulae returned by maptrue(auth) (as in this case, there is no
formula/axiom returned by mapdef (auth)).

‹ We extend the signature with the symbol constants for caller, students and
lecturers, and the corresponding axioms. In this case: caller, lecturers
are lecturers, and students is a student.

Notice that the following theory is unsatisfiable :

map(Uni) ∪ ¬ maptrue(auth)
∪ map(caller, Lecturer)
∪ map(students, Student) ∪ map(lecturers, Lecturer)
∪ maptrue(inv)

Therefore, following Remark 3, we can prove that for every object model O of Uni
data model that satisfies inv , for every object student of class Student, lecturer of
class Lecturer, and for any user caller of user class Lecturer:

Eval(O, auth(Lecturer, read(Enrollment))[σ]) = true

59

where σ = [caller ← caller ; students ← student ; lecturers ← lecturer]. Then,
following Remark 6, we can prove that for every database instance Y of Uni database
schema that satisfies map(inv), given the execution context σ:

Execσ(Y , map(auth(Lecturer, read(Enrollment)))) = TRUE

Finally, following Remark 9, we can eliminate this unnecessary authorization check.
As a result, the temporary table ⌜TempTable(students, lecturers)⌝ can be rewrit-
ten as follows:

IF (map(inv))
THEN

CREATE TEMPORARY TABLE ⌜TempTable(students, lecturers)⌝ AS (
SELECT * FROM ⌜TempTable(lecturers = caller)⌝

);
ELSE

CREATE TEMPORARY TABLE ⌜TempTable(students, lecturers)⌝ AS (
SELECT *
FROM ⌜TempTable(lecturers = caller)⌝
WHERE CASE ⌜AuthFunc(S, Enrolment)⌝ (students, lecturers,

caller, role) WHEN 1 THEN TRUE
ELSE throw_error() END as students

);
END IF;

Moreover, consider second case-statement in temporary table ⌜TempTable(age)⌝:

‹ We recall the corresponding authorization constraint, i.e. A lecturer can know
the age of any student, if the student is his/her student :

auth(Lecturer, read(Student : age)) =
caller.students → exists(s | s = students)

Denote by auth the above OCL authorization constraint. More specifically,
we state the formulae returned by maptrue(auth) (as in this case, there is no
formula/axiom returned by mapdef (auth)).

60

‹ We extend the signature with the constants for caller and self, and the
corresponding axioms. In this case: caller is a lecturer, and self is a student.

‹ Furthermore, we acknowledge that the temporary table ⌜TempTable(Stud-
ent_id = students)⌝ only contains the students of the caller. This property
can be manually written as an OCL expression: 5

caller.students → includes(self)

Denote by prop the above OCL students–property. More specifically, we state
the formulae returned by maptrue(prop) (as in this case, there is no formulae/ax-
iom returned by mapdef (prop)).

Notice that the following theory is unsatisfiable :

map(Uni) ∪ ¬ maptrue(auth)
∪ map(caller, Lecturer) ∪ map(self, Student)
∪ maptrue(prop)

Therefore, following Remark 3, we can prove that for every object model O of Uni
data model, for every object student of class Student and for every user caller of
user class Lecturer:

Eval(O, auth(Admin, read(Student : age))[σ]) = true (5.3)

where σ = [caller ← caller ; self ← student]. Then, following Remark 6, we can
prove that for every database instance Y of Uni database schema, given the execution
context σ:

Execσ(Y , map(auth(Lecturer, read(Student : age)))) = TRUE (5.4)

Finally, following Remark 8, we can eliminate this unnecessary authorization check.
As a result, the temporary table ⌜AuthFunc(S, age)⌝ can be rewritten as follows:

CREATE TEMPORARY TABLE ⌜TempTable(age)⌝ AS (
SELECT age
FROM ⌜TempTable(Student_id = students)⌝

);

5Note that, these so-called “coincidental” properties are manually written by the modeller. One
interesting question arises as: Can these properties be automatically derived?. However, due to the
time limit, we leave it as part of future work.

61

Remarks Applying the methodology described before, we can in fact prove that,
in this case where the user has the role Lecturer, the case-statements can be securely
removed. Notice that neither of the case-statements cannot be removed, however,
for the case of the policies Sec#2. 6

6For interested readers, the complete SQL implementation of this secured stored-procedure as
well as the optimized versions can be found in Appendix E.

62

Chapter 6

Tool support

In this thesis, we have shown that, in fact, some of these authorization checks are
unnecessary and hence can be removed from the stored-procedure to optimize the
execution performance. As a proof of concept, we have implemented a prototype
to check for the necessity of the authorization checks based on the formal approach
described in Chapter 4. In what follows, we will denote this tool by the name FGAC-
Optimizer.

In this chapter, we introduce the FGAC-Optimizer tool, then describe its typical
use-case scenario.

6.1 The FGAC-Optimizer tool
The FGAC-Optimizer tool is a command-line application implemented using general-
purpose programming languages, namely Java and Python. In general, the FGAC-
Optimizer tool accepts a JSON configuration file as input and performs two tasks:
firstly, it generates the corresponding many-sorted first-order logic theory, written
in SMT-LIB language (version 2.0) [6], and then uses an SMT solver of choice to
determine whether the above theory is satisfiable. 1 The detail implementation of
this tool can be found on the GitHub repository at https://github.com/npbhoang/
FGAC-Optimizer.

1The SMT-LIB is an international initiative, coordinated by the “gu-ru” of the SMT community,
with the aim of facilitating research and development in SMT [6]. One of the main contributions
of the SMT-LIB is to define a common standard input language for SMT-solvers, called SMT-LIB
language.

63

https://github.com/npbhoang/FGAC-Optimizer
https://github.com/npbhoang/FGAC-Optimizer

Input configuration The input configuration stores the vital information for the
FGAC-Optimizer tool to generate the theory. More specifically, the available setting
variables are:

‹ DataModel: Thel filename containing the data model, in JSON-format. 2

‹ Invariants: The OCL invariants that hold in the data model (for example,
from the last chapter, every lecturer teaches every student), in text format.

‹ SecurityModel: The filename containing the security model, in JSON-format. 3

‹ Role: The considered role, in text format.

‹ Resource: The target property to be read, it may be either an attribute of a
class or an association.

– for the former case, a JSON-object consists of two fields, namely entity
and attribute containing the class name and the attribute to be read,
respectively.

– for the latter case, a JSON-object consists of one field, namely association
containing the association name to be read.

‹ Properties: The OCL expressions represent the properties of the user or the
object to be read (for example, the user is the oldest lecturer), in text format.

‹ Solvers: The SMT solvers of choice (these solvers must support the SMT-LIB
language).

Listing 6.1 displays a sample input configuration for checking the necessity of the
authorization check described in Example 5.1. In this example, the end-user would
like to use CVC4 solver to check for the necessity of the authorization check when
an user with a role Admin attempting to read Enrollment association links, in Uni
data model, according to the security model Sec#1.

2For the interested readers, the definition of data model in JSON representation is included in
Appendix C.

3For the interested readers, the definition of FGAC security model in JSON representation is
included in Appendix D.

64

1

Listing 6.1: A sample configuration input for the FGAC-Optimizer tool

{
2 " DataModel ": " Uni ",
3 " SecurityModel ": " Sec #1" ,
4 " Role ": " Admin ",
5 " Resource ": {
6 " Association ": " Enrollment "
7 },
8 " Solvers ": [" CVC4 "]
9 }

Generating MSFOL theories Firstly, the FGAC-Optimizer takes the input con-
figuration and generates the corresponding many-sorted first order logic theory. Fig-
ure 6.1 describes the design of this feature, at the component level. This part is
implemented using Java and essentially consists of five main components:

‹ DMParser handles the parsing of data models from JSON representation to
Java objects.

‹ SMParser handles the parsing of security models from JSON representation to
Java objects.

‹ OCLParser handles the parsing of OCL expressions from string to Java objects.

‹ DM2MSFOL implements the function map(), generating the MSFOL theory of
the data model.

‹ OCL2MSFOL implements the function maptrue() and its auxiliary functions, gen-
erating the MSFOL formulae from the OCL expressions. 4

Solving MSFOL theories Secondly, the FGAC-Optimizer tool uses SMT-solvers
to solve the generated MSFOL theory. The result value can only be either SAT
(satisfiable), UNSAT (unsatisfiable) or UNKNOWN:

4Note that, for this proof of concept, we currently support maptrue() only for the subset of the
OCL that the OCLParser is able to parse. The supported subset description can be found at our
repository at https://github.com/npbhoang/FGAC-Optimizer/wiki/.

65

https://github.com/npbhoang/FGAC-Optimizer/wiki/

Figure 6.1: The FGAC-Optimizer component diagram

‹ if the result returns SAT, then there exists an instance (or a model) where an
user u, with the given Role, is not authorized to read the given Resource of
some objects. In this case, the authorization check cannot be removed.

‹ if the result returns UNSAT, then there exists no instance (model) where an user
u, with the given Role, is not authorized to read the given Resource of some
objects. In this case, the authorization check is unnecessary and hence, can be
removed.

‹ otherwise, if the result returns UNKNOWN, then it remains unknown whether
such instance (model) exists. In this case, the authorization check cannot be
removed.

6.2 The SQLSI use-case (extended)
In [3], we proposed a model-driven approach to support enforcing fine-grained access
control at the database level. As part of our work presented in [4], we have im-
plemented a transformation tool, called SQLSI, that automatically rewrites normal
SQL queries into stored-procedures which include the authorization checks. In this
thesis, we propose a model-driven methodology to optimize the generated stored-
procedures. And as part of the work presented here, we include a prototype to
support our methodology, called FGAC-Optimizer.

66

Figure 6.2: The SQLSI use-case (extended)

In Figure 6.2 , given an application with the underlying database modelled by a
data model D, given the FGAC security model S, and given collection of SQL queries
Q, the typical workflow, to enforce fine-grained access control for Q is the following:

‹ For each query q ∈ Q, the modeller inputs the data model D, security model
S and the query q into the SQLSI tool. Then, the SQLSI tool automatically
generates the corresponding secure stored-procedure SecQuery(S, q).

‹ Next, the modeller analyzes the stored-procedure SecQuery(S, q) and identifies
potential unnecessary authorization checks. Then, for each identification, the
modeller creates a different input configuration, and feeds it into the FGAC-
Optimizer tool.

– if the result is SAT or UNKNOWN, then the check cannot be removed with
the given configuration.

– otherwise, if the result is UNSAT, then the check can be removed with the
given configuration. In this case, the modeller can rewrite the stored-
procedure in a way that makes use of this new information.

67

Chapter 7

Evaluation

In this chapter, we evaluate different criteria of our proposed model-based method-
ology for optimizing secure stored-procedure. Firstly, we revisit the experiments
in Chapter 5 once more, this time applying the tool and the use-case proposed in
the previous chapter. Then, we compare the execution-time performance of these
optimized stored-procedure with the original.

7.1 Generating and Solving MSFOL theories
To evaluate the correctness of our generated MSFOL theories, with respect to the
examples in Chapter 5, we rely on the two state-of-the-art SMT solvers, namely the
Cooperating Validity Checker 4 (CVC4) [7], version 1.8., and the Microsoft Research
Z3 [21], version 4.8.12. In this evaluation, for each example in Chapter 5, we generate
the MSFOL theories using (i) the exact configuration introduced at the beginning
and (ii) the configuration mentioned in the remarks at the end of each example. The
interested readers can find in Appendix F the satisfiability problem that corresponds
to these experiments.

Table 7.1 shows the output results as well as the solving time of each SMT solver. 1

For each of the example in Chapter 5, we generate the corresponding MSFOL theory
using the FGAC-Optimizer tool, then we feed these generated MSFOL theory to the
SMT-solvers. In Table 7.1, ◦ and — denote that the solver returns SAT and UNKNOWN,
respectively; whereas • denotes the solver returns UNSAT. The solving time here is

1The transformation time of the MSFOL theory is another metric that can be included in this
evaluation. However, since the transformation was implemented without using any transformation
tool but ad-hoc and the recorded time is not significant, we decided not to report it.

68

Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4a Ex. 5.4b
(1) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

CVC4 •
0.74

•
0.18

—
0.17

—
0.31

•
0.11

—
0.07

—
0.11

•
0.06

—
0.1

—
0.07

•
0.15

—
0.1

—
0.08

CVC4† •
0.03

•
0.12

◦
0.08

◦
0.11

•
0.09

◦
0.08

◦
0.06

•
0.06

◦
0.07

◦
0.07

•
0.1

◦
0.06

◦
0.07

Z3 •
0.47

•
0.09

◦
0.15

◦
0.1

•
0.07

◦
0.06

◦
0.06

•
0.07

◦
0.06

◦
0.06

•
0.15

◦
0.07

◦
0.06

Table 7.1: The experiment results for examples in Chapter 5, under different input configurations,
solved by different SMT-solvers, namely the CVC4, the CVC4 with –finite-model-find mode
(denoted by CVC4†), and Z3.

measured in seconds, and by the arithmetic average of 10 executions. Overall, for
all input theories, both CVC4 and Z3 solver response in less than 1 second. This
solving time is acceptable since, as mentioned in our use-case, this proving process
only happens at compile-time. More importantly, the result returned is as expected,
i.e. with the configurations in category (i), the solvers always return UNSAT—which
is as expected, since we have formally proved in Chapter 5 that the authorization
checks in these examples are indeed unnecessary; with category (ii), the solvers return
either UNKNOWN or SAT—which is as expected, since the authorization checks in these
cases cannot be removed. 2

7.2 Calling the optimized stored-procedures
Figure 7.1 shows the execution-time of the optimized stored-procedure, calculated
by the average of 10 executions. The interested readers can find in Appendix E
the source code of the optimized stored-procedure for these experiments. As ex-
pected, the execution-time of the secured stored-procedure after being rewritten has
reduced significantly. In Example 5.2 and 5.4, the execution of the optimized stored-
procedures are even on par with the “unsecured” query. In particular, as depicted
in Table 7.2, given the scenario Uni(103), Example 5.1, 5.2, 5.3 and 5.4, the opti-
mized stored-procedures execute approximately 9, 144, 5 and 50 times faster than
the generated stored-procedures from SecQuery().

2In the case where the solver returns SAT, the end-user can also obtain a counter-example, i.e. the
scenario where the authorization check returns false, as a proof that the check cannot be removed.

69

0 200 400 600 800 1000
Scenario

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

se
co

nd
s

call OptimizedSecQuery(Trang, Admin)
call SecQuery(Trang, Admin)
exec Query1

0 200 400 600 800 1000
Scenario

0

2000

4000

6000

8000

se
co

nd
s

call OptimizedSecQuery(Vinh, Lecturer)
call SecQuery(Vinh, Lecturer)
exec Query2

(a) Example 5.1 (b) Example 5.2

0 200 400 600 800 1000
Scenario

0

50

100

150

200

250

300

se
co

nd
s

call OptimizedSecQuery(Michel, Lecturer)
call SecQuery(Michel, Lecturer)
exec Query2

0 200 400 600 800 1000
Scenario

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

se
co

nd
s

call OptimizedSecQuery(Vinh, Lecturer)
call SecQuery(Vinh, Lecturer)
exec Query3

(c) Example 5.3 (d) Example 5.4

Figure 7.1: The execution-time overall comparison of the optimized stored-procedures in Chapter 5.
In each experiment, the line marked with •, ⋆ and ◁ indicate the execution-time of the original
query, the generated stored-procedure and the optimized stored-procedure, respectively.

Ex.
100 200 300 400

{n | Uni(n)}
500 600 700 800 900 1000

5.1 execution-time
speed-up

0.007
4.598

0.008
6.214

0.007
8.539

0.011
6.708

0.009
9.204

0.010
9.771

0.011
10.42

0.014
9.190

0.014
9.789

0.018
8.931

5.2 execution-time
speed-up

0.345
8.914

1.989
8.444

5.739
12.91

10.57
20.81

19.39
26.93

25.64
41.06

31.45
69.72

42.57
78.01

50.6
103.8

61.96
144.4

5.3 execution-time
speed-up

0.320
5.941

2.467
3.232

5.368
3.680

10.49
3.796

19.14
3.224

23.53
4.071

30.71
4.305

41.00
4.543

47.64
5.201

59.26
5.465

5.4 execution-time
speed-up

0.017
6.875

0.054
2.377

0.046
4.445

0.062
4.409

0.105
5.259

0.070
18.67

0.072
27.66

0.081
34.47

0.097
31.55

0.074
50.53

Table 7.2: The detail execution-time of the optimized secured stored-procedures and the speed-up
obtained with respect to the execution-time of the generated stored-procedures.

70

Chapter 8

Related Work

The work presented in this thesis optimizes a recently proposed, model-driven ap-
proach for enforcing FGAC policies when executing SQL queries [2, 3, 4]. In this
chapter, we discuss the works that are related to the aforementioned model-driven
approach for enforcing FGAC policies as well as our model-driven methodology to
optimize it.

A key feature of the approach proposed in [3, 4] is that it does not modify the un-
derlying database, except for adding the stored-procedures that configure our FGAC
enforcement mechanism. This is in clear contrast with the solutions currently offered
by the major commercial RDBMS and some theoretical research, which recommend
to manually create appropriate views —like in the case of MySQL or MariaDB [34]—
or to automatically generates additional policy columns and tables —like in the
case of [5]—, and then to modify the queries as to referencing these views/tables/-
columns, or request — like Oracle [15], PostgreSQL [38], and IBM [24]— to use
other non-standard, proprietary enforcement mechanisms. As argued in [2], the so-
lutions currently offered by the major RDBMS are far from ideal: in fact, they are
time-consuming, error-prone, and scale poorly.

The second key feature of the model-driven approach proposed in [3, 4] is that
FGAC policies and SQL queries are kept independent of each other, except for the
fact that they refer to the same underlying data model. This means, in particular,
that FGAC policies can be specified without knowing which SQL queries will be
executed, and vice versa. This is in clear contrast with the solution recently proposed
in [33] where the FGAC policies must be (re-)written depending on the SQL queries
that are executed. Nevertheless, the approach proposed in [3, 4] certainly shares

71

with [33], as well as with other previous approaches like [31], the idea of enforcing
FGAC policies by rewriting the SQL queries, instead of by modifying the underlying
databases or by using non-standard, proprietary RDBMS features.

The third key-feature of approach proposed in [3, 4] is that the enforcement mech-
anism can be automatically generated from the FGAC policies, by using available
mappings from OCL to SQL —for example [23, 22, 35]— in order to implement the
authorization constraints appearing in the FGAC policies. In practice, however, our
experiments show that, for the sake of execution-time performance, manually im-
plementing in SQL the authorization constraints appearing in the FGAC policies is
to be preferred over using the implementations generated by the available mappings
from OCL to SQL [17].

Notice that, in our approach, whenever a user is unauthorized to access a part of
information which is used to answer the query, we immediately rollback the execu-
tion and return to the user an unauthorization error. This is, in fact, not the only
approach to enforce fine-grained access control. The Truman Model, the terminol-
ogy introduced in [45], favored in [16, 37], describes the mechanism where FGAC
enforcement does not return an error but display as many information as the user
is authorized to see. One major drawback, as described in [45], is that since a user
is not aware of the enforcement underneath, he/she does not know whether the re-
sult obtained is complete or not. In clear contrast, our approach ensures the above
consistency, in the sense that the user will either get the expected result or the unau-
thorized error. Consequently, we share the same remark with [45], that: “one major
concern about using this approach [the Non-Truman model] is the overhead of validity
checking, especially for queries with a small execution time”. Nevertheless, to opti-
mize the validity checking, the approach proposed in [45] differs from the solution in
this thesis.

Finally, it is worthwhile to include in this chapter the work related with the map-
ping from OCL to first-order logic (FOL). To begin with, there have been many
proposed mapping from OCL to different formalisms, [29, 1, 40] to name a few, but
OCL2MSFOL [19], to the best of our knowledge, is the current state of the art. Fur-
thermore, in references, this mapping has used in many lines of research that have
similar context, e.g. formal reasoning about the validity of the data models [18], as
well as the policy consistency of SecureUML models [20].

72

Chapter 9

Limitations, Conclusions and
Future Work

Recently, [4] has proposed a model-driven approach for enforcing fine-grained access
control (FGAC) policies when executing SQL queries. In a nutshell, to enforce FGAC
policies when executing SQL queries, a function SecQuery() is defined that, given a
policy S and a select-statement q, generates an SQL stored-procedure, such that: if
a user is authorized, according to S, to execute q, then calling this stored-procedure
will return the same result that executing q; otherwise, if a user is not authorized,
according to S, to execute q, then calling the stored-procedure will signal an error.

Not surprisingly, since enforcing FGAC policies for SQL queries implies performing
authorization checks at execution-time, when following the approach proposed [4]
there is a loss in performance. Clearly, however, there are situations in which the
required authorization checks are in fact unnecessary, because they will always return
true.

In this thesis we have developed a formal, model-based methodology for optimizing
the stored-procedures generated by the function SecQuery(). In particular, whenever
“secure”, subqueries are favored over temporary tables, in order to allow the SQL
optimizer to do its job. The decision of whether it is “secure” or not to use sub-queries
instead of temporary tables ultimately depends on the underlying security model,
and more particularly on the authorization constraints responsible in each case of
the case-statements generated by SecQuery(). If these authorization constraints (i)
can be proved to be trivial, or if they (ii) can be proved to be always satisfied given
the invariants of the underlying data model, and/or (iii) can be proved to be satisfied

73

given the known properties of the objects involved in the authorization request, then
the case-statements do not need to be generated, and the corresponding temporary
tables can be safely replaced by sub-queries. To illustrate our approach we have
provided a number of examples, involving different FGAC policies, queries, and
scenarios, and we have evaluated the performance overhead incurred when executing
the stored-procedures generated by SecQuery(). Finally, we have also implemented
our approach as a prototype, which is currently an on-going project.

As far as the limitation concerned, our approach currently has several limitations.
The following items describe these limitations and our future work in their regards.

Firstly, the data model does not support generalizations as well as m-to-n associ-
ations, where m and n are different from 1 or many . In addition, the FGAC security
model does not consider role-hierarchies and we only consider the read-actions. It is
part of our future work to extend these considerations.

Secondly, we define our own mapping from data model to SQL schemata. How-
ever, other mappings from data models to SQL databases are also possible. Of
course, in this case, the implementation of enforcing FGAC policies must be changed
accordingly.

As far as the function SecQuery() is concerned, its current implementation, which
is described in Appendix B, only works for the MySQL Server. However, since all
of the major SQL database systems follow the common standard [49], it is feasi-
ble to extend (syntactically) the implementation to support as well other relational
database management systems. For non-relational databases, the general approach
underlying is applicable. These are also parts of future work.

The definition of the function SecQuery(), which takes an SQL query as input, only
covers the query patterns in [2]. As part of the future work, we plan to extend this
definition to cover as much as possible of the SQL language, including, in particular,
left/right-joins, group-by clauses and user-defined functions.

As mentioned before, ideally, the implementations of the OCL authorization con-
straints used by the function AuthFunc() could be automatically generated from the
FGAC security models, by using available mappings from OCL to SQL —for exam-
ple [35]. In practice, however, for the sake of execution-time performance, manually

74

implementing in SQL the authorisation constraints is to be preferred over using the
implementations generated by the available mappings from OCL to SQL.

And finally, our methodology is not fully automated and requires human intuition.
Firstly, in some cases, in order to prove a case-expression is unnecessary, a database
invariant or a property of the user need to be introduced. Since this methodology
operates at the compile-time, these properties cannot be derived automatically from
the given resources but rather to be manually inserted by the modeller. Secondly,
whenever a case-expression is proven to be unnecessary, the modeller is responsible
to rewrite the stored-procedure in a way that makes use of this information. It is
our future work to replace some of these ad-hoc steps into automation.

75

References

[1] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On
Challenges of Model Transformation from UML to Alloy. Journal of Software
and Systems Modeling, 9(1):69–86, 2010.

[2] Hoang Nguyen Phuoc Bao and Manuel Clavel. Model-based Characterization of
Fine-Grained Access Control authorization for SQL Queries. Journal of Object
Technology, 19(3):3:1–13, 2020.

[3] Hoang Nguyen Phuoc Bao and Manuel Clavel. A Model-Driven Approach for
Enforcing Fine-Grained Access Control for SQL Queries. In Tran Khanh Dang,
Josef Küng, Makoto Takizawa, and Tai M. Chung, editors, Future Data and
Security Engineering - 7th International Conference, FDSE 2020, Quy Nhon,
Vietnam, November 25-27, 2020, Proceedings, volume 12466 of Lecture Notes in
Computer Science, pages 67–86. Springer, 2020.

[4] Hoang Nguyen Phuoc Bao and Manuel Clavel. A Model-Driven Approach for
Enforcing Fine-Grained Access Control for SQL Queries. Springer Nature Com-
puter Science, 2(5):370, 2021.

[5] Steve Barker. Dynamic Meta-level Access Control in SQL. In Vijay Atluri, edi-
tor, Data and Applications Security XXII, 22nd Annual IFIP WG 11.3 Working
Conference on Data and Applications Security, London, UK, July 13-16, 2008,
Proceedings, volume 5094 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2008.

[6] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. Technical report, Department of Computer Science, The University
of Iowa, 2010. Available at www.SMT-LIB.org.

[7] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In

76

www.SMT-LIB.org

Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification
- 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages
171–177. Springer, 2011.

[8] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability Modulo Theories. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 825–885. IOS Press, 2009.

[9] David Basin, Manuel Clavel, Jürgen Doser, and Marina Egea. A Metamodel-
Based Approach for Analyzing Security-Design Models. In Gregor Engels, Bill
Opdyke, Douglas C. Schmidt, and Frank Weil, editors, Model Driven Engi-
neering Languages and Systems (MODELS), volume 4735 of Lecture Notes in
Computer Science, pages 420–435. Springer, 2007.

[10] David Basin, Manuel Clavel, Jürgen Doser, and Marina Egea. Automated Anal-
ysis of Security-design Models. Information and Software Technology, 51(5):815–
831, 2009.

[11] David Basin, Manuel Clavel, and Marina Egea. A decade of Model-Driven Se-
curity. In Ruth Breu, Jason Crampton, and Jorge Lobo, editors, 16th ACM
Symposium on Access Control Models and Technologies, SACMAT 2011, Inns-
bruck, Austria, June 15-17, 2011, Proceedings, pages 1–10. ACM, 2011.

[12] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model-Driven Security:
From UML models to access control infrastructures. ACM Transactions on
Software Engineering and Methodology, 15(1):39–91, 2006.

[13] Lorenzo Bettini. Implementing Domain Specific Languages with Xtext and Xtend
- Second Edition. Packt Publishing, 2nd edition, 2016.

[14] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice, Second Edition. Synthesis Lectures on Software Engi-
neering. Morgan & Claypool Publishers, 2017.

[15] Kristy Browder and Mary Ann Davidson. The Virtual Private Database
in Oracle9iR2. Technical report, Oracle Corporation, 2002. https://www.
cgisecurity.com/database/oracle/pdf/VPD9ir2twp.pdf.

77

https://www.cgisecurity.com/database/oracle/pdf/VPD9ir2twp.pdf
https://www.cgisecurity.com/database/oracle/pdf/VPD9ir2twp.pdf

[16] Surajit Chaudhuri, Tanmoy Dutta, and S. Sudarshan. Fine-Grained Authoriza-
tion through Predicated Grants. In Rada Chirkova, Asuman Dogac, M. Tamer
¨ Ozsu, and Timos K. Sellis, editors, Proceedings of the 23rd International Confer-
ence on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey,
April 15-20, 2007, pages 1174–1183. IEEE Computer Society, 2007.

[17] Manuel Clavel and Hoang Nguyen Phuoc Bao. Mapping OCL into SQL: Chal-
lenges and Opportunities Ahead. In A. D. Brucker, G. Daniel, and F. Jouault,
editors, 19th International Workshop in OCL and Textual Modeling (OCL 2019)
co-located with MODELS 2019, volume 2513 of CEUR Workshop Proceedings,
pages 3–16. CEUR-WS.org, 2019.

[18] Carolina Dania and Manuel Clavel. Model-Based Formal Reasoning about Data-
Management Applications. In Alexander Egyed and Ina Schaefer, editors, Fun-
damental Approaches to Software Engineering (FASE), Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software (ETAPS), volume
9033 of LNCS, pages 218–232. Springer, 2015.

[19] Carolina Dania and Manuel Clavel. OCL2MSFOL: A Mapping to Many-
Sorted First-Order Logic for Efficiently Checking the Satisfiability of OCL Con-
straints. In Benoit Baudry and Benôıt Combemale, editors, Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Lan-
guages and Systems, Saint-Malo, France, October 2-7, 2016, pages 65–75. ACM,
2016.

[20] Miguel Angel García de Dios, Carolina Dania, and Manuel Clavel. Formal
Reasoning about Fine-Grained Access Control Policies. In Motoshi Saeki and
Henning Köhler, editors, Asia-Pacific Conference on Conceptual Modelling
(APCCM), volume 165 of CRPIT, pages 91–100. Australian Computer Soci-
ety, 2015.

[21] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer, 2008.

[22] Marina Egea and Carolina Dania. SQL-PL4OCL: An Automatic Code Genera-
tor from OCL to SQL Procedural Language. In 20th ACM/IEEE International

78

https://CEUR-WS.org

Conference on Model Driven Engineering Languages and Systems, MODELS
2017, Austin, TX, USA, September 17-22, 2017, page 54. IEEE Computer So-
ciety, 2017.

[23] Marina Egea, Carolina Dania, and Manuel Clavel. MySQL4OCL: A Stored
Procedure-based MySQL Code Generator for OCL. Electronic Communication
of the European Association of Software Science and Technology, 36, 2010.

[24] Jim Bainbridge et. al. Row and Column Access Control Support in IBM DB2
for i. Technical report, International Business Machines Corporation, 2014.
https://www.redbooks.ibm.com/redpapers/pdfs/redp5110.pdf.

[25] David Ferraiolo and Richard Kuhn. Role-Based Access Control. In In 15th
NIST-NCSC National Computer Security Conference, pages 554–563, 1992.

[26] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-
Based Access Control. Artech House, Inc., USA, 2nd edition, 2007.

[27] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-
maswamy Chandramouli. Proposed NIST Standard for Role-Based Access Con-
trol. ACM Transactions on Information and System Security, 4(3):224–274,
August 2001.

[28] David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST Standard for Role-Based Access
Control. ACM Transactions on Information and System Security, 4(3):224–274,
2001.

[29] Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-based Spec-
ification Environment for Validating UML and OCL. Journal of Science of
Computer Programming, 69(1-3):27–34, 2007.

[30] Govind Kabra, Ravishankar Ramamurthy, and S. Sudarshan. Redundancy and
Information Leakage in Fine-Grained Access Control. In Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data, SIGMOD
’06, pages 133–144, New York, NY, USA, 2006. Association for Computing
Machinery.

[31] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan,
Yirong Xu, and David J. DeWitt. Limiting Disclosure in Hippocratic Databases.

¨ In Mario A. Nascimento, M. Tamer Ozsu, Donald Kossmann, Renée J. Miller,

79

https://www.redbooks.ibm.com/redpapers/pdfs/redp5110.pdf

José A. Blakeley, and K. Bernhard Schiefer, editors, Proceedings of the Thirti-
eth International Conference on Very Large Data Bases, VLDB 2004, Toronto,
Canada, August 31 - September 3 2004, pages 108–119. Morgan Kaufmann,
2004.

[32] Torsten Lodderstedt, David Basin, and Jürgen Doser. SecureUML: A UML-
Based Modeling Language for Model-Driven Security. In Jean-Marc Jézéquel,
Heinrich Hußmann, and Stephen Cook, editors, UML 2002 - The Unified Mod-
eling Language, 5th International Conference, Dresden, Germany, September
30 - October 4, 2002, Proceedings, volume 2460 of Lecture Notes in Computer
Science, pages 426–441. Springer, 2002.

[33] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter Dr-
uschel. Qapla: Policy compliance for Database-backed Systems. In Engin Kirda
and Thomas Ristenpart, editors, 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017, pages 1463–1479.
USENIX Association, 2017.

[34] Geoff Montee. Row-Level Security in MariaDB 10: Protect Your Data, 2015.
https://mariadb.com/resources/blog/.

[35] Hoang Phuoc Bao Nguyen and Manuel Clavel. OCL2PSQL: An OCL-to-SQL
Code-Generator for Model-Driven Engineering. In Tran Khanh Dang, Josef
Küng, Makoto Takizawa, and Son Ha Bui, editors, Future Data and Security
Engineering - 6th International Conference, FDSE 2019, Proceedings, volume
11814 of Lecture Notes in Computer Science, pages 185–203. Springer, 2019.

[36] Object Constraint Language Specification, version 2.4. Technical report, Object
Management Group, February 2014. https://www.omg.org/spec/OCL/.

[37] Lars E. Olson, Carl A. Gunter, and P. Madhusudan. A Formal Framework for
Reflective Database Access Control Policies. In Peng Ning, Paul F. Syverson,
and Somesh Jha, editors, Proceedings of the 2008 ACM Conference on Computer
and Communications Security, CCS 2008, Alexandria, Virginia, USA, October
27-31, 2008, pages 289–298. ACM, 2008.

[38] PostgreSQL 12.2, 2017. Part II. SQL The Language. Chapter 5. Data Definition.
5.8. Row Security Policies. https://www.postgresql.org/docs/10/ddl.html.

[39] Roger Pressman and Bruce Maxim. Software Engineering: A Practitioner’s
Approach, Ninth Edition. McGraw Hill Publishers, 9th edition, 2019.

80

https://mariadb.com/resources/blog/
https://www.omg.org/spec/OCL/
 https://www.postgresql.org/docs/10/ddl.html

[40] Anna Queralt, Alessandro Artale, Diego Calvanese, and Ernest Teniente. OCL-
Lite: Finite Reasoning on UML/OCL Conceptual Schemas. Data Knowl. Eng.,
73:1–22, 2012.

[41] MariaDB Server Documentation - User & Server Security - Roles. Technical
report, 2021. https://mariadb.com/kb/en/roles/.

[42] MySQL 8.0 Refenrence Manual - 6.2.10 Using Roles. Technical report, Ora-
cle Corporation, 2021. https://dev.mysql.com/doc/refman/8.0/en/roles.
html.

[43] PostgreSQL 13 Documentation - Chapter 21. Database Roles. Technical report,
2021. https://www.postgresql.org/docs/13/user-manag.html.

[44] Security Center for SQL Server Database Engine and Azure SQL Database.
Technical report, Microsoft Corporation, September 2017. https://docs.
microsoft.com/en-us/sql/relational-databases/security.

[45] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending
Query Rewriting Techniques for Fine-Grained Access Control. In Proceedings
of the 2004 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’04, pages 551–562, New York, NY, USA, 2004. Association for Com-
puting Machinery.

[46] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona Polack. The
Epsilon Generation Language. In Ina Schieferdecker and Alan Hartman, edi-
tors, Model Driven Architecture - Foundations and Applications, 4th European
Conference, ECMDA-FA 2008, Berlin, Germany, June 9-13, 2008. Proceedings,
volume 5095 of Lecture Notes in Computer Science, pages 1–16. Springer, 2008.

[47] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-Based Access Control Models. Computer, 29(2):38–47, 1996.

[48] Ravi S. Sandhu, David F. Ferraiolo, and D. Richard Kuhn. The NIST Model for
Role-Based Access Control: Towards a Unified Standard. In Klaus Rebensburg,
Charles E. Youman, and Vijay Atluri, editors, Fifth ACM Workshop on Role-
Based Access Control, RBAC 2000, Berlin, Germany, July 26-27, 2000, pages
47–63. ACM, 2000.

[49] ISO/IEC 9075-(1–10) Information technology – Database languages –
SQL. Technical report, International Organization for Standardization,

81

https://mariadb.com/kb/en/roles/
https://dev.mysql.com/doc/refman/8.0/en/roles.html
https://dev.mysql.com/doc/refman/8.0/en/roles.html
https://www.postgresql.org/docs/13/user-manag.html
https://docs.microsoft.com/en-us/sql/relational-databases/security
https://docs.microsoft.com/en-us/sql/relational-databases/security

2011. http://www.iso.org/iso/home/store/catalogue_tc/catalogue_
detail.htm?csnumber=63555.

[50] Unified Modeling Language Specification Version 1.1. Technical report, Object
Management Group, December 1997. https://www.omg.org/spec/UML/1.1/
About-UML/.

[51] Unified Modeling Language Specification Version 2.0 Infrastructure. Technical
report, Object Management Group, July 2005. https://www.omg.org/spec/
UML/2.0/About-UML/.

[52] Data Security Guide: Using Oracle Virtual Private Database to Control Data
Access. https://docs.oracle.com/database/121/DBSEG.

82

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63555
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63555
https://www.omg.org/spec/UML/1.1/About-UML/
https://www.omg.org/spec/UML/1.1/About-UML/
https://www.omg.org/spec/UML/2.0/About-UML/
https://www.omg.org/spec/UML/2.0/About-UML/
https://docs.oracle.com/database/121/DBSEG

Appendices

83

Appendix A

Mapping data and object models
to databases

In this appendix, we recall the specific mappings from data models and object models
to SQL that are used in this thesis for enforcing FGAC policies when executing SQL
queries.

The mapping of data models
In characterizing access control authorization for SQL queries [2], we assume that
SQL queries are executed on databases according to the mappings defined below.

Definition 8. Let D = ⟨C, AT , AS ⟩ be a data model. Our mapping of data model
D to SQL, denoted by D, is defined as follows:

‹ For every c ∈ C, a corresponding table c, with a primary key column c_id, is
created:

CREATE TABLE c (c_id VARCHAR PRIMARY KEY);

‹ For every attribute at ∈ AT , at = ⟨atn, c, t⟩, a column atn, with the corre-
sponding SQL type, is added into table c:

ALTER TABLE c ADD COLUMN atn SqlType(t);

84

where:

– if t = Integer, then SqlType(t) = INT.
– if t = String, then SqlType(t) = VARCHAR.
– if t ∈ C, then SqlType(t) = VARCHAR.

Moreover, if t ∈ C, then a constraint stating that the value of this column refers
to the primary key column of class t is included:

ALTER TABLE c
ADD FOREIGN KEY fk_c_atn(atn) REFERENCES t(t_id);

‹ For every association as ∈ AS , as = ⟨asn, ase l, cl, aser, cr⟩, a corresponding
table asn, with two columns ase l and aser refers to the primary key column of
class cl and cr, is created:

CREATE TABLE asn (
ase l varchar NOT NULL,
aser varchar NOT NULL,
FOREIGN KEY fk_cl_ase l(ase l) REFERENCES cl(cl_id),
FOREIGN KEY fk_cr_aser(aser) REFERENCES cr(cr_id)

);

Moreover, a constraint stating that the tuple in this table is unique, is included:

ALTER TABLE asn
ADD UNIQUE unique_link(ase l, aser);

The mapping of objects models
Definition 9. Let D = ⟨C , AT , AS ⟩ be a data model. Let O = ⟨OC , OAT , OAS ⟩
be an object model of D. Our mapping of object model O to SQL, denoted by O, is
defined as follows:

85

‹ For every object o ∈ OC , o = ⟨oi , c⟩, a tuple contains only the unique object
identifier oi is inserted into the primary column c_id of table c:

INSERT INTO c(c_id) VALUES (oi);

‹ For every attribute value atv ∈ OAT , atv = ⟨⟨atn, c, t⟩, ⟨oi , c⟩, vl⟩, the value vl
is updated at the attribute atn of the corresponding tuple of object ⟨oi , c⟩:

UPDATE c SET atn = vl WHERE c_id = oi;

‹ For every association link asl ∈ OAS , asl = ⟨⟨asn, ase l, cl, aser, cr⟩, ⟨oi l, cl⟩,
⟨oi r, cr⟩⟩, a tuple contains the object identifications of the left object ⟨oi l, cl⟩
and the right object ⟨oi r, cr⟩ is inserted into the table asn:

INSERT INTO asn(ase l, aser) VALUES (oi l, oi r);

86

Appendix B

Defining secure SQL queries

In this appendix, we recall from [4] the key components introduced in this thesis for
defining the enforcement of FGAC policies when executing SQL queries.

The function SecQuery()
Informally, given an FGAC policy S and an SQL select-statement q, the function
SecQuery() generates an SQL stored-procedure satisfying the following: if a user is
authorized, according to S, to execute q, then calling this stored-procedure returns
the same result as executing q; otherwise, if a user is not authorized, according to S,
to execute q, then calling this stored-procedure signals an error.

In the definition below, ⌜SecQuery(S, q)⌝ denotes the name of the stored-procedure
generated by SecQuery(), for an FGAC policy S and a query q. SecQuery() uses the
auxiliary function SecQueryAux() that is defined in the next section.

Definition 10. Let D = ⟨C, AT, AS⟩ be a data model. Let S = ⟨R, auth⟩ be a
security model for D. Let q be an SQL query in D. Then, SecQuery(S, q) generates
the following stored-procedure:

87

CREATE PROCEDURE ⌜SecQuery(S, q)⌝ (
caller varchar(250), role varchar(250))

BEGIN
DECLARE _rollback int DEFAULT 0;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN

% If an error is signalled, then set _rollback to 1 and
% return the error message.
SET _rollback = 1;
GET STACKED DIAGNOSTICS CONDITION 1

@p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT;
SELECT @p1, @p2;
ROLLBACK;

END;
START TRANSACTION;

% For each authorization condition applicable to the original query,
% create the corresponding temporary table.

SecQueryAux(S, q)

% If after creating all the temporary tables, no error has
% been signalled yet, i.e., _rollback still has value 0,
% then execute the original query.

IF _rollback = 0
THEN q;

END IF;
END

88

The function SecQueryAux
The definition of SecQueryAux() proceeds recursively. In the definition below,
⌜TempTable(q, exp)⌝ denotes the name of the temporary table generated by SecQuery,
for a query q and a (sub-)expression exp in q.

A subtle, but important point in the definition of SecQueryAux() has to do with the
way of handling read-access authorization for tables representing associations. The
definition of SecQueryAux() assumes that the policies’ underlying data models, as
well as its object models, are implemented in SQL following the mapping introduced
in Appendix A. According to this mapping, the rows in the association-tables only
represent the links of the given association that exist between objects. In other
words, if a link does not exist, this information is not stored anywhere. Thus, when
checking if a user is authorized to know the links of a given association, it should be
performed not only the appropriate checks on the rows contained in the corresponding
association-table, but also on the rows contained in its (virtual) complement, i.e., on
those rows represent the links that do not exist between objects. For this reason,
in the definition of SecQueryAux() below, when handling read-access authorization
for tables representing associations, it is considered the Cartesian product of the two
end-tables involved in the given association, checking read-access authorization for
every row in the Cartesian product.

Next, the different cases in the recursive definition of the function SecQueryAux()
are introduced. For each case, the authorization conditions that need to be satis-
fied are informally introduced as well. As mentioned before, these conditions have
been formally defined in [2]. According to these conditions, not only the data that
appears in the final result, but any data that is used when executing a query (in
particular, data used by sub-queries, where-clauses, and on-clauses) must be checked
for policy-compliance. To this end, the function SecQueryAux() uses the function
SecAtt() to add the corresponding authorization checks to any expression accessing
specific attribute values, and the function SecAs() to add the corresponding autho-
rization checks to access association links. These functions will be introduced in
the next section. The function SecAttList(), also used by SecQueryAux(), simply
iteratively applies SecAtt() to each of the expressions in an expression list. Finally,
in the definitions below, RepExp() denotes the result of replacing, within an ex-
pression, each occurrence of the association’s association-ends by the corresponding
association-ends’ class-identifier.

89

Case q = SELECT selitems FROM c WHERE exp.
To execute q, the following conditions must be satisfied:

‹ The user is authorized to access the information required to evaluate the where-
clause exp.

‹ The user is authorized to access the information referred to by selitems , but
only for the objects/rows that satisfy the where-clause exp.

For this case, SecQueryAux() returns the following create-statements:

CREATE TEMPORARY TABLE ⌜TempTable(q, exp)⌝ AS (
SELECT * FROM c WHERE SecAtt(S, exp)

);
CREATE TEMPORARY TABLE ⌜TempTable(q, selitems)⌝ AS (

SELECT SecAttList(S, selitems) FROM ⌜TempTable(q, exp)⌝
);

Case q = SELECT selitems FROM as WHERE exp.
To execute q, the following conditions must be satisfied:

‹ The user is authorized to access the information referred to by both associati-
on-ends, but only for the rows contained in the Cartesian product between the
classes involved in the association that satisfy the where-clause exp.

For this case, SecQueryAux() returns the following create-statements:

CREATE TEMPORARY TABLE ⌜TempTable(q, exp)⌝ AS (
SELECT cl_id as ase l, cr_id as aser FROM cl, cr

WHERE RepExp(exp, as)
);
CREATE TEMPORARY TABLE ⌜TempTable(q, selitems)⌝ AS (

SELECT selitems FROM ⌜TempTable(q, exp)⌝ WHERE SecAs(S, as)
);

90

Case q = SELECT selitems FROM subselect WHERE exp.
To execute q, the following conditions must be satisfied:

‹ The user is authorized to execute the sub-query subselect .

For this case, SecQueryAux() returns the following create-statements:

SecQueryAux(S, subselect)

Case q = SELECT selitems FROM c JOIN as ON exp WHERE exp ′ .
To execute q, the following conditions must be satisfied:

‹ The user is authorized to access the information referred to by both associa-
tion-ends in as .

‹ The user is authorized to access the information required to evaluate the on-
clause exp.

‹ The user is authorized to access the information required to evaluate the where-
clause exp ′ , but only for the objects/rows and links/rows that satisfy the on-
clause exp.

‹ The user is authorized to access the information referred to by selitems , but
only for the objects/rows and links/rows that satisfy the on-clause exp and the
where-clause exp ′ .

For this case, SecQueryAux() returns the following create-statements:

SecQueryAux(S, SELECT ∗ FROM as)
CREATE TEMPORARY TABLE ⌜TempTable(q, exp)⌝ AS (

SELECT * FROM c JOIN as ON SecAtt(S, exp)
);
CREATE TEMPORARY TABLE ⌜TempTable(q, exp ′)⌝ AS (

SELECT * FROM ⌜TempTable(q, exp⌝) WHERE SecAtt(S, exp ′)
);
CREATE TEMPORARY TABLE ⌜TempTable(q, selitems)⌝ AS (

SELECT SecAttList(S, selitems) FROM ⌜TempTable(q , exp ′)⌝
);

91

Case q = SELECT selitems FROM c JOIN subselect ON exp WHERE exp ′ .
To execute q, the following conditions must be satisfied:

‹ The user is authorized to execute the sub-query subselect .

‹ The user is authorized to access the information required to evaluate the on-
clause exp.

‹ The user is authorized to access the information required to evaluate the where-
clause exp ′ ; but only for the objects/rows and links/rows that satisfy the on-
clause exp.

‹ The user is authorized to access the information referred to by selitems , but
only for the objects/rows and links/rows that satisfy the on-clause exp and the
where-clause exp ′ .

For this case, SecQueryAux() returns the following create-statements:

SecQueryAux(S, subselect)
CREATE TEMPORARY TABLE ⌜TempTable(q, exp)⌝ AS (

SELECT * FROM c JOIN subselect ON SecAtt(S, exp)
);
CREATE TEMPORARY TABLE ⌜TempTable(q, exp ′)⌝ AS (

SELECT * FROM ⌜TempTable(q, exp)⌝ WHERE SecAtt(S, exp ′)
);
CREATE TEMPORARY TABLE ⌜TempTable(q , selitems)⌝ AS (

SELECT SecAttList(S, selitems) FROM ⌜TempTable(q , exp ′)⌝
);

Case q = SELECT selitems FROM as JOIN subselect ON exp WHERE exp ′ .
Three cases must be considered:

(i) The case when ase l appears in exp, but aser does not appear in exp. Let col
be the column in subselect that ase l is related to in exp. To execute q, the following
conditions must be satisfied:

‹ The user is authorized to execute the sub-query subselect.

92

‹ The user is authorized to access the information referred to by both associati-
on-ends, but only for the rows contained in the Cartesian product between the
classes involved in the association that satisfy the where-clause exp.

For this case, SecQueryAux() returns the following create-statements:

SecQueryAux(S, subselect)
CREATE TEMPORARY TABLE ⌜TempTable(q, exp)⌝ AS (

SELECT cl_id as ase l, col as aser FROM cl, subselect
ON RepExp(exp, as) WHERE RepExp(exp ′ , as)

);
CREATE TEMPORARY TABLE ⌜TempTable(q, as)⌝ AS (

SELECT * FROM ⌜TempTable(q, exp)⌝ WHERE SecAs(S, as)
);

(ii) The case when aser appears in exp, but ase l does not appear in exp. This
case is resolved analogously to the previous case.

(iii) The case when both aser and ase l appear in exp. To execute q, the following
conditions must be satisfied:

‹ The user is authorized to execute the sub-query subselect.

‹ The user is authorized to access the information referred to by both associa-
tion-ends.

For this case, SecQueryAux() returns the following create-statements:

SecQueryAux(S, subselect)
SecQueryAux(S, SELECT ∗ FROM as)

Case q = SELECT selitems FROM subselect1 JOIN subselect2 ON exp WHERE exp ′ .
To execute q, the following conditions must be satisfied:

‹ The user is authorized to execute the sub-queries subselect1 and subselect2.

93

For this case, SecQueryAux() returns the following create-statements:

SecQueryAux(S, subselect1)
SecQueryAux(S, subselect2)

The function SecAtt()
The function SecQueryAux() uses SecAtt() to wrap any access to a protected at-
tribute at into a case-expression. The value of this case expression is a call to a
function AuthFunc() that implements the authorization checks required for access-
ing the corresponding attribute. If the result of this function-call is TRUE, then the
case-expression will return the requested resource; otherwise, it will signal an er-
ror. The function AuthFunc() is defined in the following section. In what follows,
⌜AuthFunc(S, at)⌝ denotes the name of the function generated by SecQuery() for a
policy S an attribute at ; when the argument S is clear from the context, it may be
omitted.
Definition 11. Let D = ⟨C, AT, AS⟩ be a data model. Let S = ⟨R, auth⟩ be a
security model for D. Let exp be an SQL expression in D. SecAtt(S, exp) denotes
the SQL expression in D that results from replacing each attribute at = ⟨atn, c, t⟩ in
exp by the following case-expression:

CASE ⌜AuthFunc(at)⌝ (c_id, caller, role)
WHEN 1 THEN at
ELSE throw_error() END as at .

where the function throw_error() is defined as followed:

CREATE FUNCTION throw_error()
RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
SIGNAL SQLSTATE ’45000’
SET MESSAGE_TEXT = ’Unauthorized access’;
RETURN (0);

END

94

The function SecAs()
The function SecQueryAux() uses SecAs() to wrap any access to a protected associa-
tion as into a where case-expression. The value of this case expression is a call to the
function AuthFunc() that, in this case, implements the authorization checks required
for accessing the corresponding association-ends. If the result of this function-call
is TRUE, then the case-expression will also return TRUE; otherwise, it will signal an
error. The function AuthFunc() is defined in the following section. In what follows,
⌜AuthFunc(S, as)⌝ denotes the name of the function generated by SecQuery() for a
policy S an association as ; when the argument S is clear from the context, it may
be omitted.

Definition 12. Let D = ⟨C, AT, AS⟩ be a data model. Let S = ⟨R, auth⟩ be a
security model for D. Let as be an association class in D. Let asel and aser be the
association-ends of as. SecAs(S, as) denotes the SQL expression in D that results
by the following case-expression:

CASE ⌜AuthFunc(as)⌝ (ase l, aser, caller, role)
WHEN 1 THEN TRUE
ELSE throw_error() END

where the function throw_error() is defined as before.

The function AuthFunc()
The functions SecAtt() and SecAs() use this function to check that the access to a
specific protected resource is authorized. For each protected resource, the required
authorization checks depend on the role of the user attempting to access this resource.
Accordingly, for each role, the function AuthFunc() calls a function AuthFuncRole()
that implements the authorization checks required for a user with that role to access
a specific protected resource. The function AuthFuncRole() will be introduced in
the next section. In what follows, ⌜AuthFuncRole(S, rs , r)⌝ denotes the name of the
function generated by SecQuery() for a policy S, a resource rs , and a role r; when
the argument S is clear from the context, we may omit it.

Definition 13. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a
security model for D, with R = {r1, r2, . . . , rn}. Let at be an attribute in AT . Then,
AuthFunc(at) generates the following SQL function:

95

CREATE FUNCTION ⌜AuthFunc(at)⌝ (self varchar(250),
caller varchar(250), role varchar(250))

RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
IF (role = r1)

THEN RETURN ⌜AuthFuncRole(at , r1)⌝(self, caller)
. . .
ELSE IF (role = rn)

THEN RETURN ⌜AuthFuncRole(at , rn)⌝(self, caller)
ELSE RETURN 0
END IF;
. . .
END IF;

END

Similarly, let as be an association in AS . Then AuthFunc(as) generates the following
SQL function:

CREATE FUNCTION ⌜AuthFunc(as)⌝ (left varchar(250),
right varchar(250), caller varchar(250), role varchar(250))

RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
IF (role = r1)

THEN RETURN ⌜AuthFuncRole⌝(as , r1) (left, right, caller)
. . .
ELSE IF (role = rn)

THEN RETURN ⌜AuthFuncRole(as , rn)⌝ (left, right, caller)
ELSE RETURN 0
END IF;
. . .
END IF;

END

96

The function AuthFuncRole()
The function AuthFuncRole() implements the authorization constraints associated
with the permission for users of a given role for executing a given read-action on a
specific resource. There are many different ways of implementing in SQL an OCL
authorization constraint. The definition of the function AuthFuncRole() only as-
sumes that there exists a function map() that, for each authorization constraint of
interest, it returns its preferred SQL implementation. Without loss of generality, it
also assumes that this implementation, when executed, will return an SQL Boolean.1

Definition 14. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a
security model for D. Let r be a role in R. Let at = ⟨atn, c, t⟩ be an attribute in
AT . Then, AuthFuncRole(at , r) generates the following SQL function:

CREATE FUNCTION ⌜AuthFuncRole(at , r)⌝ (self varchar(250),
caller varchar(250))

RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
SELECT * INTO result FROM map(auth(r , read(at))) AS TEMP;
RETURN result;

END

Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ ∈ AS , be an association in AS . Then,
AuthFuncRole(as , r) generates the following SQL function:

CREATE FUNCTION ⌜AuthFuncRole(as , r)⌝ (left varchar(250),
right varchar(250), caller varchar(250))

RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
SELECT * INTO result FROM map(auth(r , read(as))) AS TEMP;
RETURN result;

END

1Recently, OCL2PSQL [35] was introduced as a mapping which only uses standard SQL sub-
selects and joins for translating OCL iterators. This mapping can certainly be used as map()-
function. However, current experiments in [17] suggest that, for non-trivial authorization con-
straints, manually-written implementations significantly outperforms those automatically generated
by OCL2PSQL, when checking FGAC authorization in large databases.

97

Appendix C

SQLSI: representing data models
using JSON

In this appendix, we recall the JSON representation of data model. Let D =
⟨C, AT , AS ⟩ be a data models.

Let c ∈ C be a class in D. We denote by Atts(c, AT) the attributes of the class
c in D. Let at = ⟨atn, c, t⟩, at ∈ Atts(c, AT) be an attribute in D. Then, the
corresponding JSON-object json(at) is defined as follows:

{
name : atn,
type : t

}

Also, we denote by json(Atts(c, AT)) the JSON-array containing the JSON-objects
corresponding to the attributes in Atts(c, AT).

Moreover, let c ∈ C be a class in D. We denote by Ends(c, AS) the associations
in D that have the class c at one of their ends. Let as = ⟨asn, ase l, c, aser, cr⟩, as ∈
Ends(c, AS) be an association in D. Then, the corresponding JSON-object json(as)
is defined as follows:

{
association : asn,
name : aser,
target : cr,

98

opp : ase l,
mult : ∗

}

Analogously, let ⟨asn, ase l, cl, aser, c⟩ ∈ Ends(c, AS) be an association in D. Then,
the corresponding JSON-object json(as) is defined as follows:

{
association : asn,
name : ase l,
target : cl,
opp : aser,
mult : ∗

}

Also, we denote by json(Ends(c, AS)) the JSON-array containing the JSON-objects
corresponding to the associations in Ends(c, AS).

Next, let c ∈ C be a class in D. Then, the corresponding JSON-object json(c) is
defined as follows:

{
class : c,
attributes : json(Atts(c, AT)),
ends : json(Ends(c, AS))

}

Finally, we denote by json(D) the JSON-array containing the JSON-objects cor-
responding to the classes in D.

99

Appendix D

SQLSI: representing security
models using JSON

In this appendix, we recall the JSON representation of our FGAC security model.
Let D = ⟨C, AT , AS ⟩ be a data models. Let c ∈ C be a class in D. We denote
by Res(c) the resources of the class c, i.e., the union of the sets Atts(c, AT) and
Ends(c, AT).

Let S = ⟨R, auth⟩ be a security model of D. Let r ∈ R a role in S. Notice
that the function auth() together with the role r define an equivalence relationship
Res(c), as follows: let rsc, rsc ′ in Res(c), then [r, c, rsc] ≡ [r, c, rsc ′] if and only if
auth(r, read(rsc)) = auth(r, read(rsc ′)).

We denote by Auths(r, c) the authorization constraints corresponding to the dif-
ferent equivalence classes defined by the function auth(), together with the role r, in
Res(c).

Let rsc ∈ Res(c) be a resource of the class c. Then, the corresponding JSON-object
json(rsc) is defined as follows:

‹ if rsc = ⟨atn, c, t⟩, then json(rsc) is the following object:

{
entity : c,
attribute : atn

}

100

‹ if rsc is either ⟨asn, ase l, cl, aser, c⟩ or ⟨asn, ase l, c, aser, cr⟩, then json(rsc) is
the following object:

{
association : asn

}

Let auth be an authorization constraint in Auths(r, c). Then, we denote by
json(auth) the following JSON-object:

{
role : r,
action: read,
resources : json([r, c, auth]),
auth : auth

}

101

Appendix E

SQLSI: generated artifacts

In this appendix, we display the SQL statements, functions and stored-procedures related to
the examples of this thesis.

SQLSI implementation of the Uni data model

Listing E.1: Uni data model: The SQLSI implementation
1 /* create Lecturer table */
2 CREATE TABLE Lecturer (Lecturer_id VARCHAR (100) PRIMARY KEY);
3 ALTER TABLE Lecturer ADD COLUMN email VARCHAR (100) ;
4 ALTER TABLE Lecturer ADD COLUMN age INT (11) ;
5 ALTER TABLE Lecturer ADD COLUMN name VARCHAR (100) ;
6
7 /* create Student table */
8 CREATE TABLE Student (Student_id VARCHAR (100) PRIMARY KEY);
9 ALTER TABLE Student ADD COLUMN email VARCHAR (100) ;

10 ALTER TABLE Student ADD COLUMN age INT (11) ;
11 ALTER TABLE Student ADD COLUMN name VARCHAR (100) ;
12
13 /* create Enrollment association */
14 CREATE TABLE Enrollment (
15 lecturers VARCHAR (100) , students VARCHAR (100) ,
16 FOREIGN KEY (lecturers) REFERENCES Lecturer (Lecturer_id) ,
17 FOREIGN KEY (students) REFERENCES Student (Student_id)
18);
19 ALTER TABLE Enrollment
20 ADD UNIQUE unique_link (lecturers , students);

102

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

SQLSI implementation of the security model

Listing E.2: Sec#1 security model: The SQLSI implementation
DROP FUNCTION IF EXISTS auth_READ_Lecturer_age;
/* FUNC: auth_READ_Lecturer_age */
DELIMITER //
CREATE FUNCTION auth_READ_Lecturer_age(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Lecturer_email;
/* FUNC: auth_READ_Lecturer_email */
DELIMITER //
CREATE FUNCTION auth_READ_Lecturer_email(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Lecturer_name;
/* FUNC: auth_READ_Lecturer_name */
DELIMITER //
CREATE FUNCTION auth_READ_Lecturer_name(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Student_age;
/* FUNC: auth_READ_Student_age */
DELIMITER //
CREATE FUNCTION auth_READ_Student_age(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

103

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

DECLARE result INT DEFAULT 0;
IF (krole = ‘Admin ‘)

THEN IF (auth_READ_Student_age_Admin(kself , kcaller))
THEN RETURN (1);
ELSE RETURN (0);

END IF ;
ELSE RETURN 0;
END IF ;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Student_age_Admin;
/* FUNC: auth_READ_Student_age_Admin */
DELIMITER //
CREATE FUNCTION auth_READ_Student_age_Admin(

kself varchar (100) , kcaller varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
SELECT res INTO result FROM
(SELECT (TRUE) AS res) AS TEMP;
RETURN (result);

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Student_email;
/* FUNC: auth_READ_Student_email */
DELIMITER //
CREATE FUNCTION auth_READ_Student_email(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Student_name;
/* FUNC: auth_READ_Student_name */
DELIMITER //
CREATE FUNCTION auth_READ_Student_name(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

104

90

95

100

105

110

115

120

125

91
92
93
94

96
97
98
99

101
102
103
104

106
107
108
109

111
112
113
114

116
117

118
119

121
122
123
124

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Enrollment;
/* FUNC: auth_READ_Enrollment */
DELIMITER //
CREATE FUNCTION auth_READ_Enrollment(

kcaller varchar (100), krole varchar (100) ,
klecturers varchar (100), kstudents varchar (100)

) RETURNS INT DETERMINISTIC
BEGIN
DECLARE result INT DEFAULT 0;

IF (krole = ‘Admin ‘)
THEN IF (auth_READ_Enrollment_Admin(klecturers ,

kstudents , kcaller))
THEN RETURN (1);
ELSE RETURN (0);

END IF ;
ELSE RETURN 0;
END IF ;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Enrollment_Admin;
/* FUNC: auth_READ_Enrollment_Admin */
DELIMITER //
CREATE FUNCTION auth_READ_Enrollment_Admin(

klecturers varchar (100), kstudents varchar (100), kcaller
varchar (100)

) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
SELECT res INTO result FROM
(SELECT (TRUE) AS res) AS TEMP;
RETURN (result);

END //
DELIMITER ;

105

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Listing E.3: Sec#2 security model: The SQLSI implementation
DROP FUNCTION IF EXISTS auth_READ_Lecturer_age;
/* FUNC: auth_READ_Lecturer_age */
DELIMITER //
CREATE FUNCTION auth_READ_Lecturer_age(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Lecturer_email;
/* FUNC: auth_READ_Lecturer_email */
DELIMITER //
CREATE FUNCTION auth_READ_Lecturer_email(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Lecturer_name;
/* FUNC: auth_READ_Lecturer_name */
DELIMITER //
CREATE FUNCTION auth_READ_Lecturer_name(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Student_age;
/* FUNC: auth_READ_Student_age */
DELIMITER //
CREATE FUNCTION auth_READ_Student_age(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
IF (krole = ‘Lecturer ‘)

106

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

THEN IF (auth_READ_Student_age_Lecturer(kself , kcaller))
THEN RETURN (1);
ELSE RETURN (0);

END IF ;
ELSE RETURN 0;
END IF ;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Student_age_Lecturer;
/* FUNC: auth_READ_Student_age_Lecturer */
DELIMITER //
CREATE FUNCTION auth_READ_Student_age_Lecturer(

kself varchar (100) , kcaller varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
SELECT res INTO result
FROM (SELECT ((SELECT MAX(age) FROM Lecturer)

= (SELECT age FROM Lecturer
WHERE Lecturer_id = kcaller)) AS res) AS TEMP;

RETURN (result);
END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Student_email;
/* FUNC: auth_READ_Student_email */
DELIMITER //
CREATE FUNCTION auth_READ_Student_email(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Student_name;
/* FUNC: auth_READ_Student_name */
DELIMITER //
CREATE FUNCTION auth_READ_Student_name(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
)
RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;

107

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

RETURN 0;
END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Enrollment;
/* FUNC: auth_READ_Enrollment */
DELIMITER //
CREATE FUNCTION auth_READ_Enrollment(

kcaller varchar (100), krole varchar (100) ,
klecturers varchar (100), kstudents varchar (100)

) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
IF (krole = ‘Lecturer ‘)

THEN IF (auth_READ_Enrollment_Lecturer(klecturers ,
kstudents , kcaller))
THEN RETURN (1);
ELSE RETURN (0);

END IF ;
ELSE RETURN 0;
END IF ;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Enrollment_Lecturer;
/* FUNC: auth_READ_Enrollment_Lecturer */
DELIMITER //
CREATE FUNCTION auth_READ_Enrollment_Lecturer(

klecturers varchar (100), kstudents varchar (100),
kcaller varchar (100)
) RETURNS INT DETERMINISTIC

BEGIN
DECLARE result INT DEFAULT 0;
SELECT res INTO result
FROM (SELECT ((SELECT MAX(age) FROM Lecturer)

= (SELECT age FROM Lecturer
WHERE Lecturer_id = kcaller)) AS res) AS TEMP;

RETURN (result);
END //
DELIMITER ;

108

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Listing E.4: Sec#3 security model: The SQLSI implementation
DROP FUNCTION IF EXISTS auth_READ_Lecturer_age;
/* FUNC: auth_READ_Lecturer_age */
DELIMITER //
CREATE FUNCTION auth_READ_Lecturer_age(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Lecturer_email;
/* FUNC: auth_READ_Lecturer_email */
DELIMITER //
CREATE FUNCTION auth_READ_Lecturer_email(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Lecturer_name;
/* FUNC: auth_READ_Lecturer_name */
DELIMITER //
CREATE FUNCTION auth_READ_Lecturer_name(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Student_age;
/* FUNC: auth_READ_Student_age */
DELIMITER //
CREATE FUNCTION auth_READ_Student_age(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
IF (krole = ‘Lecturer ‘)

109

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

_ _ _

THEN IF (auth
THEN RETURN
ELSE RETURN

END IF ;
ELSE RETURN 0;
END IF ;

END //
DELIMITER ;

DROP FUNCTION IF

_READ_Student_age_Lecturer(kself , kcaller))
(1);
(0);

EXISTS auth_READ_Student_age_Lecturer;
/* FUNC: auth_READ_Student_age_Lecturer */
DELIMITER //
CREATE FUNCTION auth_READ_Student_age_Lecturer(

kself varchar (100) , kcaller
) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT
SELECT res INTO result
FROM (SELECT (EXISTS (

SELECT 1 FROM Enrollment
WHERE lecturers = kcaller
)as res

) AS TEMP;
RETURN (result);

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth

varchar (100)

0;

AND kself = students)

READ Student email;
/* FUNC: auth_READ_Student_email */
DELIMITER //
CREATE FUNCTION auth_READ_Student_email(

kcaller
) RETURNS
BEGIN

DECLARE
RETURN

END //
DELIMITER

varchar (100), krole varchar (100) , kself varchar (100)
INT DETERMINISTIC

result INT DEFAULT 0;
0;

;

DROP FUNCTION IF EXISTS auth_READ_Student_name;
/* FUNC: auth_READ_Student_name */
DELIMITER //
CREATE FUNCTION auth_READ_Student_name(

kcaller varchar (100), krole varchar (100) , kself varchar (100)
) RETURNS INT DETERMINISTIC
BEGIN

110

95

100

105

110

115

120

125

130

92
93
94

96
97
98
99

101
102
103
104

106
107
108
109

111
112
113
114

116
117
118
119

121

122
123
124

126
127
128
129

131
132

DECLARE result INT DEFAULT 0;
RETURN 0;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Enrollment;
/* FUNC: auth_READ_Enrollment */
DELIMITER //
CREATE FUNCTION auth_READ_Enrollment(

kcaller varchar (100), krole varchar (100) ,
klecturers varchar (100), kstudents varchar (100)

) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
IF (krole = ‘Lecturer ‘)

THEN IF (auth_READ_Enrollment_Lecturer(klecturers ,
kstudents , kcaller))
THEN RETURN (1);
ELSE RETURN (0);

END IF ;
ELSE RETURN 0;
END IF ;

END //
DELIMITER ;

DROP FUNCTION IF EXISTS auth_READ_Enrollment_Lecturer;
/* FUNC: auth_READ_Enrollment_Lecturer */
DELIMITER //
CREATE FUNCTION auth_READ_Enrollment_Lecturer(

klecturers varchar (100), kstudents varchar (100), kcaller
varchar (100)

) RETURNS INT DETERMINISTIC
BEGIN

DECLARE result INT DEFAULT 0;
SELECT res INTO result FROM
(SELECT (EXISTS (SELECT 1 FROM Enrollment

WHERE lecturers = kcaller AND kstudents = students)
)as res

) AS TEMP;
RETURN (result);

END //
DELIMITER ;

111

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

SQLSI implementation of the secure stored-procedure of Query#1

Listing E.5: Query#1: The generated SQL stored-procedure.
DROP PROCEDURE IF EXISTS Query1;
DELIMITER //
CREATE PROCEDURE Query1(

in kcaller varchar (250) ,
in krole varchar (250)

)
BEGIN

DECLARE _rollback int DEFAULT 0;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN

SET _rollback = 1;
GET STACKED DIAGNOSTICS CONDITION 1

@p1 = RETURNED_SQLSTATE ,
@p2 = MESSAGE_TEXT ;

SELECT @p1 , @p2;
ROLLBACK ;
END ;
START TRANSACTION ;
DROP TEMPORARY TABLE IF EXISTS TEMP1 ;
CREATE TEMPORARY TABLE TEMP1 AS (

SELECT * FROM Student
WHERE CASE auth_READ_Student_age(kcaller ,

krole , Student_id) WHEN 1 THEN age
ELSE throw_error () END > 18

);
DROP TEMPORARY TABLE IF EXISTS TEMP2 ;
CREATE TEMPORARY TABLE TEMP2 AS (

SELECT Student_id AS Student_id FROM TEMP1
);
IF _rollback = 0
THEN SELECT COUNT (*) FROM TEMP2 ;
END IF ;

END //
DELIMITER ;

112

5

10

15

20

25

30

SQLSI implementation of the optimized stored-procedure of Query#1

Listing E.6: Query#1: The optimized SQL stored-procedure.
1 DROP PROCEDURE IF EXISTS Query1Opt ;
2 DELIMITER //
3 CREATE PROCEDURE Query1Opt (
4 in kcaller varchar (250) ,

in krole varchar (250)
6)
7 BEGIN
8 DECLARE _rollback int DEFAULT 0;
9 DECLARE EXIT HANDLER FOR SQLEXCEPTION

BEGIN
11 SET _rollback = 1;
12 GET STACKED DIAGNOSTICS CONDITION 1
13 @p1 = RETURNED_SQLSTATE ,
14 @p2 = MESSAGE_TEXT ;

SELECT @p1 , @p2 ;
16 ROLLBACK ;
17 END ;
18 START TRANSACTION ;
19 DROP TEMPORARY TABLE IF EXISTS TEMP1 ;

CREATE TEMPORARY TABLE TEMP1 AS (
21 SELECT * FROM Student WHERE age > 18
22);
23 DROP TEMPORARY TABLE IF EXISTS TEMP2 ;
24 CREATE TEMPORARY TABLE TEMP2 AS (

SELECT Student_id AS Student_id FROM TEMP1
26);
27 IF _rollback = 0
28 THEN SELECT COUNT (*) FROM TEMP2 ;
29 END IF ;

END //
31 DELIMITER ;

113

5

10

15

20

25

30

35

SQLSI implementation of the secure stored-procedure of Query#2

Listing E.7: Query#2: The generated SQL stored-procedure.
1 DROP PROCEDURE IF EXISTS Query2 ;
2 DELIMITER //
3 CREATE PROCEDURE Query2 (
4 in kcaller varchar (250) ,

in krole varchar (250)
6)
7 BEGIN
8 DECLARE _rollback int DEFAULT 0;
9 DECLARE EXIT HANDLER FOR SQLEXCEPTION

BEGIN
11 SET _rollback = 1;
12 GET STACKED DIAGNOSTICS CONDITION 1
13 @p1 = RETURNED_SQLSTATE ,
14 @p2 = MESSAGE_TEXT ;

SELECT @p1 , @p2 ;
16 ROLLBACK ;
17 END ;
18 START TRANSACTION ;
19 DROP TEMPORARY TABLE IF EXISTS TEMP1 ;

CREATE TEMPORARY TABLE TEMP1 AS (
21 SELECT Lecturer_id AS lecturers , Student_id AS students
22 FROM Lecturer , Student
23);
24 DROP TEMPORARY TABLE IF EXISTS TEMP2 ;

CREATE TEMPORARY TABLE TEMP2 AS (
26 SELECT * FROM TEMP1
27 WHERE CASE auth_READ_Enrollment (kcaller , krole ,
28 lecturers , students) WHEN TRUE THEN TRUE
29 ELSE throw_error () END

);
31 DROP TEMPORARY TABLE IF EXISTS TEMP3 ;
32 CREATE TEMPORARY TABLE TEMP3 AS (
33 SELECT students FROM Enrollment
34);

IF _rollback = 0
36 THEN SELECT COUNT (*) FROM TEMP3 ;
37 END IF ;
38 END //
39 DELIMITER ;

114

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

SQLSI implementation of the optimized stored-procedure of Query#2

Listing E.8: Query#2: The optimized SQL stored-procedure.
DROP PROCEDURE IF EXISTS Query2Opt;
DELIMITER //
CREATE PROCEDURE Query2Opt(

in kcaller varchar (250) ,
in krole varchar (250)

)
BEGIN

DECLARE _rollback int DEFAULT 0;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN

SET _rollback = 1;
GET STACKED DIAGNOSTICS CONDITION 1

@p1 = RETURNED_SQLSTATE ,
@p2 = MESSAGE_TEXT ;

SELECT @p1 , @p2;
ROLLBACK ;

END ;
START TRANSACTION ;
DROP TEMPORARY TABLE IF EXISTS TEMP1 ;
CREATE TEMPORARY TABLE TEMP1 AS (

SELECT Student_id AS students , Lecturer_id AS lecturers
FROM Student , Lecturer WHERE TRUE

);
IF (SELECT (SELECT COUNT (*) FROM Student)

= (SELECT COUNT (*)
FROM (SELECT COUNT (*) AS size FROM Enrollment

GROUP BY students) AS TEMP
WHERE TEMP.size = (SELECT COUNT (*) FROM Lecturer)))

THEN
DROP TEMPORARY TABLE IF EXISTS TEMP2 ;
CREATE TEMPORARY TABLE TEMP2 AS (

SELECT * FROM TEMP1 WHERE TRUE
);

ELSE
DROP TEMPORARY TABLE IF EXISTS TEMP2 ;
CREATE TEMPORARY TABLE TEMP2 AS (

SELECT * FROM TEMP1
WHERE CASE auth_READ_Enrollment(kcaller , krole ,

lecturers , students) WHEN TRUE THEN TRUE
ELSE throw_error () END

);
END IF ;
DROP TEMPORARY TABLE IF EXISTS TEMP3 ;

115

44

45

46

47

48

49

50

51

CREATE TEMPORARY TABLE TEMP3 AS (
SELECT students FROM Enrollment

);
IF _rollback = 0
THEN SELECT COUNT (*) FROM TEMP3 ;
END IF ;

END //
DELIMITER ;

116

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

SQLSI implementation of the secure stored-procedure of Query#3

Listing E.9: Query#3: The generated SQL stored-procedure.
DROP PROCEDURE IF EXISTS Query3;
DELIMITER //
CREATE PROCEDURE Query3(

in kcaller varchar (250) ,
in krole varchar (250)

)
BEGIN

DECLARE _rollback int DEFAULT 0;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN

SET _rollback = 1;
GET STACKED DIAGNOSTICS CONDITION 1

@p1 = RETURNED_SQLSTATE ,
@p2 = MESSAGE_TEXT ;

SELECT @p1 , @p2;
ROLLBACK ;

END ;
START TRANSACTION ;
DROP TEMPORARY TABLE IF EXISTS TEMP1 ;
CREATE TEMPORARY TABLE TEMP1 AS (

SELECT Student_id AS students , Lecturer_id AS lecturers
FROM Student , Lecturer WHERE Lecturer_id = kcaller

);
DROP TEMPORARY TABLE IF EXISTS TEMP2 ;
CREATE TEMPORARY TABLE TEMP2 AS (

SELECT * FROM TEMP1
WHERE CASE auth_READ_Enrollment(kcaller , krole ,

lecturers , students) WHEN TRUE THEN TRUE
ELSE throw_error () END

);
DROP TEMPORARY TABLE IF EXISTS TEMP3 ;
CREATE TEMPORARY TABLE TEMP3 AS (

SELECT * FROM Student JOIN TEMP2
ON Student_id = students

);
DROP TEMPORARY TABLE IF EXISTS TEMP4 ;
CREATE TEMPORARY TABLE TEMP4 AS (

SELECT CASE auth_READ_Student_age(kcaller ,
krole , Student_id) WHEN 1 THEN age
ELSE throw_error () END as age

FROM TEMP3
);
IF _rollback = 0

117

44 THEN SELECT AVG (age) FROM TEMP4 ;
45 END IF ;
46 END //
47 DELIMITER ;

118

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

SQLSI implementation of the optimized stored-procedure of Query#3

Listing E.10: Query#3: The optimized SQL stored-procedure.
DROP PROCEDURE IF EXISTS Query3Opt;
DELIMITER //
CREATE PROCEDURE Query3Opt(

in kcaller varchar (250) ,
in krole varchar (250)

)
BEGIN
DECLARE _rollback int DEFAULT 0;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN

SET _rollback = 1;
GET STACKED DIAGNOSTICS CONDITION 1

@p1 = RETURNED_SQLSTATE ,
@p2 = MESSAGE_TEXT ;

SELECT @p1 , @p2;
ROLLBACK ;

END ;
START TRANSACTION ;
DROP TEMPORARY TABLE IF EXISTS TEMP1 ;
CREATE TEMPORARY TABLE TEMP1 AS (

SELECT Student_id AS students , Lecturer_id AS lecturers
FROM Student , Lecturer WHERE Lecturer_id = kcaller

);
IF (SELECT (SELECT COUNT (*) FROM Student)

= (SELECT COUNT (*)
FROM (SELECT COUNT (*) AS size FROM Enrollment

GROUP BY students) AS TEMP
WHERE TEMP.size = (SELECT COUNT (*) FROM Lecturer)))

THEN
DROP TEMPORARY TABLE IF EXISTS TEMP2 ;
CREATE TEMPORARY TABLE TEMP2 AS (

SELECT * FROM TEMP1 WHERE TRUE
);

ELSE
DROP TEMPORARY TABLE IF EXISTS TEMP2 ;
CREATE TEMPORARY TABLE TEMP2 AS (

SELECT * FROM TEMP1
WHERE CASE auth_READ_Enrollment(kcaller , krole ,

lecturers , students) WHEN TRUE THEN TRUE
ELSE throw_error () END

);
END IF ;
DROP TEMPORARY TABLE IF EXISTS TEMP3 ;

119

44

45

46

47

48

49

50

51

52

53

54

55

56

CREATE TEMPORARY TABLE TEMP3 AS (
SELECT * FROM Student JOIN TEMP2
ON Student_id = students

);
DROP TEMPORARY TABLE IF EXISTS TEMP4 ;
CREATE TEMPORARY TABLE TEMP4 AS (

SELECT age FROM TEMP3
);
IF _rollback = 0
THEN SELECT AVG(age) FROM TEMP4 ;
END IF ;

END //
DELIMITER ;

120

Appendix F

MSFOL: generated theories

In this appendix, we display the generated MSFOL formulae, theories related to the case
study in Chapter 5 and other examples in the thesis.

The MSFOL theory for the Uni data model

Listing F.1: Uni data model: The generated MSFOL theory in SMT-LIB
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

; sort declaration
(declare-sort Classifier 0)

; null and invalid object and its axiom
(declare-const nullClassifier Classifier)
(declare-const invalClassifier Classifier)
(assert (distinct nullClassifier invalClassifier))

; null and invalid integer and its axiom
(declare-const nullInt Int)
(declare-const invalInt Int)
(assert (distinct nullInt invalInt))

; null and invalid string and its axiom
(declare-const nullString String)
(declare-const invalString String)
(assert (distinct nullString invalString))

; unary predicate Lecturer(x) and its axiom
(declare-fun Lecturer (Classifier) Bool)
(assert (not (Lecturer nullClassifier)))
(assert (not (Lecturer invalClassifier)))

121

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

; unary predicate Student(x) and its axiom
(declare-fun Student (Classifier) Bool)
(assert (not (Student nullClassifier)))
(assert (not (Student invalClassifier)))

; axiom: disjoint set of objects of different classes
(assert (forall ((x Classifier))

(=> (Lecturer x) (not (Student x)))))
(assert (forall ((x Classifier))

(=> (Student x) (not (Lecturer x)))))

; function get the age of lecturer and its axiom
(declare-fun age_Lecturer (Classifier) Int)
(assert (= (age_Lecturer nullClassifier) invalInt))
(assert (= (age_Lecturer invalClassifier) invalInt))
(assert (forall ((x Classifier))

(=> (Lecturer x)
(distinct (age_Lecturer x) invalInt))))

; function get the email of lecturer and its axiom
(declare-fun email_Lecturer (Classifier) String)
(assert (= (email_Lecturer nullClassifier) invalString))
(assert (= (email_Lecturer invalClassifier) invalString))
(assert (forall ((x Classifier))

(=> (Lecturer x)
(distinct (email_Lecturer x) invalString))))

; function get the name of lecturer and its axiom
(declare-fun name_Lecturer (Classifier) String)
(assert (= (name_Lecturer nullClassifier) invalString))
(assert (= (name_Lecturer invalClassifier) invalString))
(assert (forall ((x Classifier))

(=> (Lecturer x)
(distinct (name_Lecturer x) invalString))))

; function get the age of student and its axiom
(declare-fun age_Student (Classifier) Int)
(assert (= (age_Student nullClassifier) invalInt))
(assert (= (age_Student invalClassifier) invalInt))
(assert (forall ((x Classifier))

(=> (Student x)
(distinct (age_Student x) invalInt))))

; function get the name of student and its axiom
(declare-fun name_Student (Classifier) String)

122

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

(assert (= (name_Student nullClassifier) invalString))
(assert (= (name_Student invalClassifier) invalString))
(assert (forall ((x Classifier))

(=> (Student x)
(distinct (name_Student x) invalString))))

; function get the email of student and its axiom
(declare-fun email_Student (Classifier) String)
(assert (= (email_Student nullClassifier) invalString))
(assert (= (email_Student invalClassifier) invalString))
(assert (forall ((x Classifier))

(=> (Student x)
(distinct (email_Student x) invalString))))

; binary predicate of the Enrollment association
; and its axiom
(declare-fun Enrollment (Classifier Classifier) Bool)
(assert (forall ((x Classifier))

(forall ((y Classifier))
(=> (Enrollment x y)

(and (Lecturer x) (Student y))))))

123

OCL expression: Sample generated MSFOL formula

Listing F.2: OCL expression: The generated MSFOL formulae
Student.allInstances() → select(s|s.age ≥ 19) → isEmpty()

1 ; function repr. of non-boolean expression
2 ; exp ’ = Student .allInstances () ->select(s|s.age > 19)
3 (declare-fun temp (Classifier) Bool)
4
5 ; definition of predicate temp
6 (assert (forall ((s Classifier))
7 (= (temp s)
8 (and (Student s)
9 (and (> (age_Student s) 19)

10 (not (or (= (age_Student s) nullInt)
11 (or (= s nullClassifier)
12 (= s invalClassifier))
13 false false)))))))
14
15 ; 19 cannot be interpreted by nullInt constant symbol
16 (assert (distinct nullInt 19))
17
18 ; 19 cannot be interpreted by invalIn constant symbol
19 (assert (distinct invalInt 19))
20
21 ; map from exp ’->isEmpty
22 (assert (forall ((x Classifier))
23 (and (not (temp x)) (not false))))

124

Example 5.1 generated theory

Listing F.3: Example 5.1: The generated MSFOL formulae.
1 ; the generated MSFOL theory for data model
2 ; is removed due to its length
3
4 ; constant symbol of caller and its axiom
5 (declare-const kcaller Classifier)
6 (assert (Lecturer kcaller))
7
8 ; constant symbol of self and its axiom
9 (declare-const kself Classifier)

10 (assert (Student kself))
11
12 ; authorization constraint: Admin can read student age
13 (assert (not true))

125

5

10

15

20

25

30

35

Example 5.2 generated theories

Listing F.4: Example 5.2: The generated MSFOL formulae.
1 ; the generated MSFOL theory for data model
2 ; is removed due to its length
3
4 ; invariant : Every lecturer is lecturer of every student

(assert (forall ((l Classifier))
6 (and (=> (Lecturer l)
7 (forall ((s Classifier))
8 (and (=> (Student s)
9 (exists ((temp Classifier))

(and (Enrollment l temp)
11 (= temp s)
12 (not (or (= l nullClassifier)
13 (= l invalidClassifier)))
14 (not (= s invalidClassifier)))))

(not false))))
16 (not false))))
17
18 ; constant symbol of caller and its axiom
19 (declare-const kcaller Classifier)

(assert (Lecturer kcaller))
21
22 ; constant symbol of lecturers and its axiom
23 (declare-const klecturers Classifier)
24 (assert (Lecturer klecturers))

26 ; constant symbol of students and its axiom
27 (declare-const kstudents Classifier)
28 (assert (Student kstudents))
29

; authorization constraint: a lecturer can know the
31 ; students of any lecturer, if the student is his
32 ; or her student
33 (assert (not (exists ((temp Classifier))
34 (and (Enrollment temp kstudents)

(= temp kcaller)
36 (not (or (= kstudents nullClassifier)
37 (= kstudents invalidClassifier)))
38 (not (= kcaller invalidClassifier))))))

126

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Listing F.5: Example 5.2: The generated MSFOL formulae, without the data invariant.
; the generated MSFOL theory for data model
; is removed due to its length

; constant symbol of caller and its axiom
(declare-const kcaller Classifier)
(assert (Lecturer kcaller))

; constant symbol of lecturers and its axiom
(declare-const klecturers Classifier)
(assert (Lecturer klecturers))

; constant symbol of students and its axiom
(declare-const kstudents Classifier)
(assert (Student kstudents))

; authorization constraint: a lecturer can know the
; students of any lecturer, if the student is his
; or her student
(assert (not (exists ((temp Classifier))

(and (Enrollment temp kstudents)
(= temp kcaller)
(not (or (= kstudents nullClassifier)

(= kstudents invalidClassifier)))
(not (= kcaller invalidClassifier))))))

127

5

10

15

20

25

30

Listing F.6: Example 5.2: The generated MSFOL formulae, under security model Sec#2
1 ; the generated MSFOL theory for data model
2 ; is removed due to its length
3
4 ; constant symbol of caller and its axiom

(declare-const kcaller Classifier)
6 (assert (Lecturer kcaller))
7
8 ; constant symbol of lecturers and its axiom
9 (declare-const klecturers Classifier)

(assert (Lecturer klecturers))
11
12 ; constant symbol of students and its axiom
13 (declare-const kstudents Classifier)
14 (assert (Student kstudents))

16 ; this TEMP0 function is the OCL expression
17 ; Lecturer .allInstances () ->select(l|l.age > caller .age)
18 (declare-fun TEMP0 (Classifier) Bool)
19 (assert (forall ((l Classifier))

(= (TEMP0 l)
21 (and (Lecturer l)
22 (and (> (age_Lecturer l)
23 (age_Lecturer kcaller))
24 (not (or (= (age_Lecturer l) nullInt)

(or (= l nullClassifier)
26 (= l invalidClassifier))
27 (= (age_Lecturer kcaller) nullInt)
28 (or (= kcaller nullClassifier)
29 (= kcaller invalidClassifier)))))))

))

31 ; authorization constraint: caller is the oldest lecturer
32 (assert (not (forall ((x Classifier))
33 (and (not (TEMP0 x))
34 (not false)))))

128

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Example 5.3 theories

Listing F.7: Example 5.3: The generated MSFOL formulae.
; the generated MSFOL theory for data model
; is removed due to its length

; constant symbol of caller and its axiom
(declare-const kcaller Classifier)
(assert (Lecturer kcaller))

; constant symbol of lecturers and its axiom
(declare-const klecturers Classifier)
(assert (Lecturer klecturers))

; constant symbol of students and its axiom
(declare-const kstudents Classifier)
(assert (Student kstudents))

; caller property: caller is indeed the oldest lecturer
(assert (forall ((l Classifier))

(and (=> (Lecturer l)
(and (<= (age_Lecturer l) (age_Lecturer kcaller))

(not (or (= (age_Lecturer l) nullInt)
(or (= l nullClassifier)

(= l invalidClassifier))
(= (age_Lecturer kcaller) nullInt)
(or (= kcaller nullClassifier)

(= kcaller invalidClassifier))))))
(not false))))

; this TEMP0 function is the OCL expression
; Lecturer .allInstances () ->select(l|l.age > caller .age)
(declare-fun TEMP0 (Classifier) Bool)
(assert (forall ((l Classifier))

(= (TEMP0 l)
(and (Lecturer l)

(and (> (age_Lecturer l) (age_Lecturer kcaller))
(not (or (= (age_Lecturer l) nullInt)

(or (= l nullClassifier)
(= l invalidClassifier))

(= (age_Lecturer kcaller) nullInt)
(or (= kcaller nullClassifier)

(= kcaller invalidClassifier)))))))))

; authorization constraint: caller is the oldest lecturer
(assert (not (forall ((x Classifier))

(and (not (TEMP0 x)) (not false)))))

129

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Listing F.8: Example 5.3: The generated MSFOL formulae, without caller properties
; the generated MSFOL theory for data model
; is removed due to its length

; constant symbol of caller and its axiom
(declare-const kcaller Classifier)
(assert (Lecturer kcaller))

; constant symbol of lecturers and its axiom
(declare-const klecturers Classifier)
(assert (Lecturer klecturers))

; constant symbol of students and its axiom
(declare-const kstudents Classifier)
(assert (Student kstudents))

; this TEMP0 function is the OCL expression
; Lecturer .allInstances () ->select(l|l.age > caller .age)
(declare-fun TEMP0 (Classifier) Bool)
(assert (forall ((l Classifier))

(= (TEMP0 l)
(and (Lecturer l)

(and (> (age_Lecturer l) (age_Lecturer kcaller))
(not (or (= (age_Lecturer l) nullInt)

(or (= l nullClassifier)
(= l invalidClassifier))

(= (age_Lecturer kcaller) nullInt)
(or (= kcaller nullClassifier)

(= kcaller invalidClassifier)))))))))

; authorization constraint: caller is the oldest lecturer
(assert (not (forall ((x Classifier))

(and (not (TEMP0 x)) (not false)))))

130

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Listing F.9: Example 5.3: The generated MSFOL formulae, under security model Sec#3
; the generated MSFOL theory for data model
; is removed due to its length

; constant symbol of caller and its axiom
(declare-const kcaller Classifier)
(assert (Lecturer kcaller))

; constant symbol of lecturers and its axiom
(declare-const klecturers Classifier)
(assert (Lecturer klecturers))

; constant symbol of students and its axiom
(declare-const kstudents Classifier)
(assert (Student kstudents))

; caller property: caller is indeed the oldest lecturer
(assert (forall ((l Classifier))

(and (=> (Lecturer l)
(and (<= (age_Lecturer l) (age_Lecturer kcaller))

(not (or (= (age_Lecturer l) nullInt)
(or (= l nullClassifier)

(= l invalidClassifier))
(= (age_Lecturer kcaller) nullInt)
(or (= kcaller nullClassifier)

(= kcaller invalidClassifier))))))
(not false))))

; authorization constraint: a lecturer can know the
; students of any lecturer, if the student is his
; or her student
(assert (not (exists ((temp Classifier))

(and (Enrollment temp kstudents)
(= temp kcaller)
(not (or (= kstudents nullClassifier)

(= kstudents invalidClassifier)))
(not (= kcaller invalidClassifier))))))

131

5

10

15

20

25

30

35

Example 5.4 theories

Listing F.10: Example 5.4: The generated MSFOL formulae for the first authorization checks
1 ; the generated MSFOL theory for data model
2 ; is removed due to its length
3
4 ; constant symbol of caller and its axiom

(declare-const kcaller Classifier)
6 (assert (Lecturer kcaller))
7
8 ; constant symbol of lecturers and its axiom
9 (declare-const klecturers Classifier)

(assert (Lecturer klecturers))
11
12 ; constant symbol of students and its axiom
13 (declare-const kstudents Classifier)
14 (assert (Student kstudents))

16 ; invariant : Every lecturer is lecturer of every student
17 (assert (forall ((l Classifier))
18 (and (=> (Lecturer l)
19 (forall ((s Classifier))

(and (=> (Student s)
21 (exists ((temp Classifier))
22 (and (Enrollment l temp)
23 (= temp s)
24 (not (or (= l nullClassifier)

(= l invalidClassifier)))
26 (not (= s invalidClassifier)))))
27 (not false))))
28 (not false))))
29

; authorization constraint : a lecturer can know the
31 ; students of any lecturer, if the student is his
32 ; or her student
33 (assert (not (exists ((temp Classifier))
34 (and (Enrollment temp kstudents)

(= temp kcaller)
36 (not (or (= kstudents nullClassifier)
37 (= kstudents invalidClassifier)))
38 (not (= kcaller invalidClassifier))))))

132

Listing F.11: Example 5.4: The generated MSFOL formulae for the first authorization checks, without
the data invariant

1 ; the generated MSFOL theory for data model
2 ; is removed due to its length
3
4 ; constant symbol of caller and its axiom
5 (declare-const kcaller Classifier)
6 (assert (Lecturer kcaller))
7
8 ; constant symbol of lecturers and its axiom
9 (declare-const klecturers Classifier)

10 (assert (Lecturer klecturers))
11
12 ; constant symbol of students and its axiom
13 (declare-const kstudents Classifier)
14 (assert (Student kstudents))
15
16 ; authorization constraint: a lecturer can know the
17 ; students of any lecturer, if the student is his
18 ; or her student
19 (assert (not (exists ((temp Classifier))
20 (and (Enrollment temp kstudents)
21 (= temp kcaller)
22 (not (or (= kstudents nullClassifier)
23 (= kstudents invalidClassifier)))
24 (not (= kcaller invalidClassifier))))))

133

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Listing F.12: Example 5.4: The generated MSFOL formulae for the first authorization checks, under
security model Sec#2
; the generated MSFOL theory for data model
; is removed due to its length

; constant symbol of caller and its axiom
(declare-const kcaller Classifier)
(assert (Lecturer kcaller))

; constant symbol of lecturers and its axiom
(declare-const klecturers Classifier)
(assert (Lecturer klecturers))

; constant symbol of students and its axiom
(declare-const kstudents Classifier)
(assert (Student kstudents))

; invariant: Every lecturer is lecturer of every student
(assert (forall ((l Classifier))

(and (=> (Lecturer l)
(forall ((s Classifier))

(and (=> (Student s)
(exists ((temp Classifier))

(and (Enrollment l temp)
(= temp s)

(not (or (= l nullClassifier)
(= l invalidClassifier)))

(not (= s invalidClassifier)))))
(not false))))

(not false))))

; this TEMP0 function is the OCL expression
; Lecturer .allInstances () ->select(l|l.age > caller .age)
(declare-fun TEMP0 (Classifier) Bool)
(assert (forall ((l Classifier))

(= (TEMP0 l)
(and (Lecturer l)

(and (> (age_Lecturer l) (age_Lecturer kcaller))
(not (or (= (age_Lecturer l) nullInt)

(or (= l nullClassifier)
(= l invalidClassifier))

(= (age_Lecturer kcaller) nullInt)
(or (= kcaller nullClassifier)

(= kcaller invalidClassifier)))))))))

; authorization constraint: caller is the oldest lecturer
(assert (not (forall ((x Classifier))

(and (not (TEMP0 x)) (not false)))))

134

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Listing F.13: Example 5.4: The generated MSFOL formulae for the second authorization checks
; the generated MSFOL theory for data model
; is removed due to its length

; constant symbol of caller and its axiom
(declare-const kcaller Classifier)
(assert (Lecturer kcaller))

; constant symbol of self and its axiom
(declare-const kself Classifier)
(assert (Student kself))

; self property: self is a student of lecturer
(assert (exists ((temp Classifier))

(and (Enrollment kcaller temp)
(= temp kself)
(not (or (= kcaller nullClassifier)

(= kcaller invalidClassifier)))
(not (= kself invalidClassifier)))))

; authorization constraint: a lecturer can know the
; students of any lecturer, if the student is his
; or her student
(assert (not (exists ((temp Classifier))

(and (Enrollment kcaller temp)
(= temp kself)
(not (or (= kcaller nullClassifier)

(= kcaller invalidClassifier)))
(not (= kself invalidClassifier))))))

135

Listing F.14: Example 5.4: The generated MSFOL formulae for the second authorization checks, without
the self properties

1 ; the generated MSFOL theory for data model
2 ; is removed due to its length
3
4 ; constant symbol of caller and its axiom
5 (declare-const kcaller Classifier)
6 (assert (Lecturer kcaller))
7
8 ; constant symbol of self and its axiom
9 (declare-const kself Classifier)

10 (assert (Student kself))
11
12 ; authorization constraint: a lecturer can know the
13 ; students of any lecturer, if the student is his
14 ; or her student
15 (assert (not (exists ((temp Classifier))
16 (and (Enrollment kcaller temp)
17 (= temp kself)
18 (not (or (= kcaller nullClassifier)
19 (= kcaller invalidClassifier)))
20 (not (= kself invalidClassifier))))))

136

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Listing F.15: Example 5.4: The generated MSFOL formulae for the second authorization checks, under
security model Sec#2
; the generated MSFOL theory for data model
; is removed due to its length

; constant symbol of caller and its axiom
(declare-const kcaller Classifier)
(assert (Lecturer kcaller))

; constant symbol of self and its axiom
(declare-const kself Classifier)
(assert (Student kself))

; self property: self is a student of lecturer
(assert (exists ((temp Classifier))

(and (Enrollment kcaller temp)
(= temp kself)
(not (or (= kcaller nullClassifier)

(= kcaller invalidClassifier)))
(not (= kself invalidClassifier)))))

; this TEMP0 function is the OCL expression
; Lecturer .allInstances () ->select(l|l.age > caller .age)
(declare-fun TEMP0 (Classifier) Bool)
(assert (forall ((l Classifier))

(= (TEMP0 l)
(and (Lecturer l)

(and (> (age_Lecturer l) (age_Lecturer kcaller))
(not (or (= (age_Lecturer l) nullInt)

(or (= l nullClassifier)
(= l invalidClassifier))

(= (age_Lecturer kcaller) nullInt)
(or (= kcaller nullClassifier)

(= kcaller invalidClassifier)))))))))

; authorization constraint: caller is the oldest lecturer
(assert (not (forall ((x Classifier))

(and (not (TEMP0 x)) (not false)))))

137

(This is the end of the thesis)

	Introduction
	Model-Driven Engineering, Model-Driven Security, SecureUML
	Enforcing FGAC policies on relational database

	Background
	Structure Query Language
	Role-Based Access Control vs. Fine-Grained Access Control
	Running Example
	Object Constraint Language

	Previous work
	Modeling FGAC policies
	Data models and object models
	FGAC security models

	Enforcing FGAC security model for SQL queries
	Secure SQL queries
	The SQLSI use-case
	Execution-time overhead for secure SQL queries

	Intelligently enforcing FGAC policies for SQL queries
	General approach
	Different mappings and preliminary remarks
	From data models to MSFOL theories
	From object models to MSFOL interpretations
	From OCL boolean expressions to MSFOL formulae
	From data models to SQL database schema
	From object models to SQL database instances
	From OCL boolean expressions to SQL queries

	Reducing execution-time overhead: Case expressions
	Reducing execution-time overhead: Temporary tables

	Case Study
	First example: Trivial authorization constraints
	Second example: Data invariants
	Third example: User properties
	Fourth example: Object properties

	Tool support
	The FGAC-Optimizer tool
	The SQLSI use-case (extended)

	Evaluation
	Generating and Solving MSFOL theories
	Calling the optimized stored-procedures

	Related Work
	Limitations, Conclusions and Future Work
	Appendices
	Appendix Mapping data and object models to databases
	Appendix Defining secure SQL queries
	Appendix SQLSI: representing data models using JSON
	Appendix SQLSI: representing security models using JSON
	Appendix SQLSI: generated artifacts
	Appendix MSFOL: generated theories

