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Abstract 

Recently, we proposed a model-driven methodology to support fine-grained access 
control (FGAC) at the database level. More specifically, we defined a model trans-
formation function that inputs SQL queries and generates so-called security-aware 
SQL stored-procedures. As part of the proposal, we developed an application pro-
totype, called SQL Security Injector (SQLSI). In a nutshell, given an FGAC policy 
S, a user u, with role r, and a query q, SQLSI automatically generates a stored-
procedure sp, such that: if the user u is authorized, according to the FGAC policy 
S, to execute the query q, then calling the stored-procedure sp will return the same 
result as executing the query q; otherwise, calling the stored-procedure sp will signal 
an error. 

As expected, there is a performance overhead when executing an (unsecured) 
SQL query via the corresponding (secured) stored-procedure generated by SQLSI. 
The reason is clear: FGAC policies require performing authorization checks on 
the current state of the system, which, in the case of executing SQL queries, will 
translate into performing authorization checks at execution-time on the database. 
SQLSI takes care of generating these checks and makes sure that they are called 
at execution-time when a protected resource is accessed. There are cases, however, 
where these authorization checks are unnecessary, and, therefore, the performance 
overhead can and should be avoided. For example: when the database integrity con-
straints guarantee that these checks will always be successful; or, when the current 
state of the database guarantees that these checks will be successful in this state. 

In this thesis, I propose to develop a formal, model-based methodology for enforc-
ing FGAC policies when executing SQL queries in a smart, efficient way. First of all, 
I identify situations in which performing authorization checks when executing SQL 
queries seem unnecessary, based on the invariants of the underlying data model, or 
based on the known properties of the given scenario, or based on the known proper-
ties of the arguments of the given query. Secondly, I formally prove that performing 
authorization checks when executing SQL queries in these situations is indeed un-
necessary. Thirdly, I develop a tool for detecting unnecessary authorization checks 
when executing SQL queries. 
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Chapter 1 

Introduction 

Software Engineering is the science of engineering software systems [39]. For decades, 
new programming languages have been developed and new software development 
methodologies have been proposed, all with the goal of increasing software’s relia-
bility, maintainability, and cost-efficiency. One characteristic of a well-engineered 
software system, which one cannot take for granted, is security. How to engineer a 
secure software? — this is a longstanding question that is drawing more and more 
attention from the public in recent years. 

1.1 Model-Driven Engineering, Model-Driven Se-

curity, SecureUML 
To engineer a secure software, one promising approach is Model-Driven Engineering 
(MDE) [14], which is a software development methodology that focuses on creating 
models of different views of a system. These models can be created using either 
domain-specific or general-purpose modeling languages, like the Unified Modelling 
Language (UML) [50, 51]. Moreover, exceed the scope of documentation, in MDE, 
system artifacts, like executable code and configuration data, can be automatically 
generated from these models using either code-generators or transformation tools, 
like the Xtext Framework [13] or the Epsilon Generation Language [46]. 

As far as security and reliability are concerned, Model-Driven Security (MDS) 
[11] is a specialization of MDE for developing secure systems. In contrast to the tra-
ditional approaches in which security is classified as a non-functional requirement, 
MDS promotes security-by-design as it integrates security into the software design 
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process at the model level. Informally in MDS, designers (or modelers) specify sys-
tem models along with their security requirements. This approach, on the one hand, 
allows security-related artifacts, such as, the access control infrastructures [12], to 
be automatically generated; and on the other hand, opens room for formal reason-
ing about the security aspects of the system, for example, analyzing the security 
policies [9, 10]. 

SecureUML [32] is the ‘de facto’ modeling language used in MDS for specifying 
fine-grained access control (FGAC) policies. These are policies that depend not only 
on static information, namely the assignments of users and permissions to roles, but 
also on dynamic information, namely the satisfaction of authorization constraints by 
the current state of the system. 

For example, consider a simple eStudent Management System, which 
consists of students and lecturers. In this system, a typical FGAC policy 
is: each lecturer can only access the record of its own students; and 
moreover, to make it more secure: the records can only be accessed in 
the working time. 

1.2 Enforcing FGAC policies on relational 
database 

Recently, we proposed a model-based characterization of FGAC authorization for 
SQL queries [2] and developed a model-driven approach for enforcing FGAC policies 
when executing SQL queries [3]. 

Our approach in [3] consists of defining a function SecQuery() that, given an 
FGAC policy S and an SQL select-statement q, generates an SQL stored-procedure 
SecQuery(S, q), such that: if a user u, with role r, is authorized, according to S, to 
execute q, then calling SecQuery(S, q) with the user u and role r as parameters, i.e. 
SecQuery(S, q)(u, r), returns the same result that when u executes q; otherwise, if 
the user u, with role r, is not authorized, according to S, to execute q, then calling 
SecQuery(S, q)(u, r) signals an error. Informally, we can say that SecQuery(S, q) 
is the secured version of the query q with respect to the FGAC policy S, or that 
SecQuery(S, q) secures the query q with respect to the FGAC policy S. 
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In a nutshell, the stored-procedure SecQuery(S, q) implements the authorization 
checks that are required to comply with the policy S when executing the query 
q. These authorization checks were defined in our model-based characterization of 
FGAC authorization for SQL queries [2]. As mentioned before, FGAC policies de-
pend on the satisfaction of authorization constraints by the current state of the sys-
tem. Thus, unavoidably, executing the aforementioned FGAC authorization checks 
causes a performance overhead at execution-time, which will be greater or lesser 
depending on the “complexity” of the underlying security policy. 

For example, consider the eStudent Management System and the FGAC 
policy as before: each lecturer can read the records of its own students. 
When a user l, with the lecturer role, attempting to read the record of all 
students; then according to the given policy, the database system must 
check, for every student s, whether l is authorized to read the record 
of s. Again, these computations cannot be pre-computed, and must be 
executed in the database at execution-time, i.e. every time any lecturer 
l attempts to read the record of all students. 

As an extension to the work presented in [3], during the first semester of the Master 
studies, I reported on some preliminary experiments that highlighted this execution-
time performance issue of the “secured” stored-procedures generated by the function 
SecQuery() with respect to the execution time of the “unsecured” query. This recent 
work has been accepted and published in the Springer Nature Computer Science 
Journal, Volume 2, Issue 5, September 2021 [4]. As part of the future work in this 
extended version, we have proposed to develop a formal methodology for optimizing 
those “secured” stored-procedures. 

Now, in addition to what has been described in the last example, consider 
the following database integrity constraint that has been observed: every 
lecturer teaches every student. Indeed, with this newly remark, if it holds 
for the current database state, then in this state, for every user l, with the 
lecturer role, and for every student s, l is a lecturer of s, and hence, l is 
authorized to read s. This leads to the fact that the authorization check 
for reading the record of the students, in this database state, becomes 
unnecessary as it will always return satisfied, for any input pair of lecturer 
and student. 

In this thesis, I propose a formal, model-based methodology for optimizing the 
stored-procedures generated by the function SecQuery(). Basically, this methodology 
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consists of “removing” from the stored-procedures generated by SecQuery() those 
authorization checks that can be proven to be unnecessary in a given execution 
context. To perform these proofs, I propose to use Satisfiability Modulo Theories 
(SMT) Solvers [8]. As part of the work presented here, I have developed an open-
source tool, called FGAC-Optimizer, that supports our model-driven methodology 
for detecting unnecessary FGAC authorization checks. Last but not the least, I 
showcase the usage of this tool by conducting a non-trivial case study and evaluating 
its outcome. 

Organization The rest of the thesis is organized as follows. In Chapter 2, I review 
some preliminary knowledge and introduce the running example that will be used 
throughout the thesis. Next, in Chapter 3, I provide the basic context of my previous 
work, including the definition of data models, object models and security models for 
modeling fine-grained access control policies. Also, I recall the important remarks of 
my model-driven approach for enforcing FGAC policies for SQL queries and describe 
the performance overhead that comes with it. Then, in Chapter 4, I define formally 
the methodology for eliminating unnecessary authorization checks. For Chapter 5, I 
showcase my methodology by proving some cases in which the authorization checks 
are unnecessary. In Chapter 6, I introduce the tool support and the typical use-
case of our methodology. In Chapter 7, I evaluate the tool usage by revisiting the 
case study in Chapter 5. Finally, in Chapter 8, I discuss the related work, and in 
Chapter 9, I discuss some limitations of this approach, conclude with some remarks 
and propose the future work. 
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Chapter 2 

Background 

In this chapter, we first give a brief introduction about the Structure Query Lan-
guage (SQL) and the Role-based Access Control (RBAC) in relational database man-
agement systems (RDBMS). Then, we introduce the running example that will be 
used throughout the thesis. Finally, we introduce the Object Constraint Language 
(OCL) [36], which is the language used for specifying authorization constraints in 
our security models. 

2.1 Structure Query Language 
The Structure Query Language (SQL) is a special-purpose programming language 
designed for managing data in relational databases [49]. Originally based upon re-
lational algebra and tuple relational calculus, its scope includes data insert, query, 
update and delete, schema creation and modification, and data access control. Al-
though SQL is to a great extent a declarative language, it also includes procedural 
elements. In particular, the procedural extensions to SQL support stored procedures 
which are routines (like a subprogram in a regular computing language, possibly with 
loops) that are stored in the database. In these stored-procedures, the temporary 
tables, which are tables that created and exists temporarily, are particularly useful 
when one needs to store temporarily a number of records for the next querying/-
computing steps. Nowadays, major commercial RDBMS support SQL as a standard 
language. Specifically, in this thesis, we chose to work with MySQL database man-
agement system (MySQL for short). 
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2.2 Role-Based Access Control vs. Fine-Grained 
Access Control 

The Role-Based Access Control (RBAC) is a security mechanism to assign rights for 
accessing resources to users via the concept of roles [26]. The RBAC was initially 
proposed in [25], then its formalization was defined in [47] and finally standardized 
in [48, 28]. Since then, the RBAC is widely used in most commercial relational 
database systems [42, 44, 41, 43]. Traditionally, in a database-centric application, 
using RBAC, users may be assigned to specific roles depending on their responsibil-
ities in that application. Each role can be seen as a collection of permissions and 
each permission is a restriction of by which actions (e.g. INSERT, SELECT, UPDATE, 
DELETE) and on which resources can be acted, usually on the table- or attribute-level. 
Furthermore, the RBAC allows roles to be organized in a hierarchy, in which a role 
can inherit permissions of its children roles. 

The Fine-Grained Access Control (FGAC), on the other hand, is restricting access 
on a finer granularity, i.e. on the row- and cell-level. Moreover, the FGAC allows 
to define permissions, also known as authorization constraints, based on the current 
system state. For example, consider the FGAC policy in the previous chapter, with 
lecturer l is attempting to access the record of student s, in such case, that autho-
rization check needs to inspect the current system state, to check who is currently 
the students of l and that the access is operated in working hours. Unfortunately, 
the major commercial RDBMS does not natively support FGAC [34, 38, 24, 52]. As 
a consequence, enforcing FGAC policies has been performed at the application layer. 
Although the following opinion deserves a longer discussion, about the importance 
of supporting FGAC at the database level, we basically agree with [30]: 

“Fine-grained access control [on databases] has traditionally been per-
formed at the level of application programs. However, implementing se-
curity at the application level makes management of authorization quite 
difficult, in addition to presenting a large surface area for attackers —any 
breach of security at the application level exposes the entire database to 
damage, Since every part of the application has complete access to the 
data belonging to every application user.” 
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2.3 Running Example 
Consider a simple university data model, namely Uni, in Figure 2.1. It consists 
of two classes, Student and Lecturer, with one association, Enrollment, between 
them. Student and Lecturer have attributes name, email, and age. 1 The class 
Student represents the students of a university, with their names, emails, and ages. 
The class Lecturer represents the lecturers of a university, with their names, emails, 
and ages. The association Enrollment represents the links between the students and 
their lecturers. A student may have none or many lecturers, they are his lecturers. 
And a lecturer may have none or many students, they are his students. 

Figure 2.1: UML diagram: Simple University model 

2.4 Object Constraint Language 
Object Constraint Language (OCL) [36] is a language for specifying constraints and 
queries using a textual notation. It is a part of the Unified Modeling Language 
(UML): in Version 1.1 Specification [50], the OCL appears as the standard for specify-
ing invariants, pre- and post-conditions; however, as in Version 2.0 Specification [51], 
the OCL has been assigned for a broader use, including usage in the definition of 
specific domain metamodels, model transformation, model testing and validation. 

OCL is a strongly-typed language: each expression has either a primitive type, a 
class type, a tuple type, or a collection type. Collections can be sets, bags, ordered 
sets and sequences, and can be parametrized by any type, including other collection 
types. The language provides standard operators on primitive types, tuples, and 

1Typically when designing this system, one creates a super-class, for example Person class, to 
store the common attributes for Student and Lecturer class (name, email, and age). However, 
since our FGAC data model definition, which will be later described in Section 3.1, currently does 
not support generalization, we intend not to create such a super-class. 
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collections. Every OCL expression is written in the context of a data model (the 
so-called contextual model). 

‹ For objects, OCL provides a notational style similar to that of object-oriented 
languages: a dot-operator to access the value of an attribute of the object, or 
the collection of objects linked with another object at the end of an association. 
For example, suppose that the contextual model includes a class c with an 
attribute at and an association-end ase. Then, if o is an object of the class c, 
in the given data model instance, the expression o.at refers to the value of the 
attribute at of the object o, and o.ase refers to the collection of objects linked 
to the object o at the association-end ase. 

‹ For collections, OCL provides an allInstances-operator to collect all ob-
jects of a specific class and an arrow-operator “→” to either access a prop-
erty of the collection or to iterate over the collection and perform some ac-
tions. For example, suppose that the contextual model includes a class c. 
Then, c.allInstances() represents the collection of all objects in class c. 
Now, suppose that source represents a collection. Then, source→size() re-
turns the size of this collection, source→isEmpty() returns whether this collec-
tion is empty, source→forAll(v |body) iterates over this collection and checks 
whether all elements v in this collection satisfy the property stated in body , 
source→exists(v |body) iterates over this collection and checks whether there 
exists at least one element v in this collection satisfies the property stated in 
body and source→includes(o) iterates over this collection and checks whether 
object o is included. 

Finally, to represent undefinedness, OCL provides two constants: null and invalid. 
Intuitively, null represents an unknown or undefined value, whereas invalid represents 
an error or an exception. 

Example 1. Consider the university model above as the underlying data model: 

‹ To know the number of students, in OCL, one can express as follows: 

Student.allInstances()→size() 
(1) (2) 

in which (1) is a subexpression that applies the allInstances-operator on the 
Student class, and (2) is an arrow-operator that applies the size property on 
(1). 
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‹ To know whether there is a student that is taught by no lecturer, in OCL, one 
can express as follows: 

Student.allInstances()→exists(s|s.lecturers→ size() = 0) 
(1) (2) (3) 

in which (1) is as above, and (2) is an operator that iterates over (1) and checks 
whether any student s has a number of lecturers that is equal to 0 — i.e. s has 
no lecturer — which is precisely defined in (3). 

‹ To know whether every lecturer teaches every student, in OCL, one can express 
as follows: 

Student.allInstances()→forAll(s| 
(1) (2) 

Lecturer.allInstances()→forAll(s|s.lecturers → includes(l))) 
(3) (4) (5) 

in which (1) and (3) are sub-expressions that apply the allInstances-operator 
on the Student and Lecturer class, respectively; (2) is an operator that iterates 
over (1) and checks whether for every student s in (1), s satisfies that, for every 
lecturer l in (3), l is a lecturer of s, which is precisely defined in (5). 

△ 

In what follows, we use the following notation. Let D be a data model. Then, 
Exp(D) denotes the set of OCL expressions whose contextual model is D. Let O 
be an instance of D, and let e be an OCL expression in Exp(D). Then, Eval(O, e) 
denotes the result of evaluating e in O, according to the semantics of OCL. 
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Chapter 3 

Previous work 

In [3], we proposed a model-driven approach for enforcing FGAC policies for SQL 
queries. This means, in particular, that in our approach the FGAC policies are 
specified using models and that the corresponding policy-enforcement artifacts are 
generated from these models. In our approach, for modeling FGAC policies, we use 
SecureUML [32], which uses OCL for specifying authorization constraints. 

3.1 Modeling FGAC policies 
SecureUML [32] is an extension of Role-Based Access Control (RBAC) [27]. In 
RBAC, permissions are assigned to roles, and roles are assigned to users. However, 
in SecureUML one can model access control decisions that depend on two kinds of in-
formation: namely, static information, i.e., the assignments of users and permissions 
to roles; and dynamic information, i.e., the satisfaction of authorization constraints 
by the current state of the system. 

SecureUML leaves open the nature of the protected resources, i.e., whether these 
resources are data, business objects, processes, controller states, etc. and, conse-
quently, the nature of the corresponding controlled actions. These are to be declared 
in a so-called SecureUML dialect. Particularly, in [4] we model the data to be pro-
tected using classes and associations, and we consider the read -actions on these class 
attributes and association-ends as the actions to be controlled. Finally, we model 
authorization constraints using OCL boolean expressions. 

In this section, we recall the notions of data model, objects model, and security 
model that we use for modeling fine-grained access control policies. 
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3.1.1 Data models and object models 
Data models specify the resources to be protected. Object models (also called sce-
narios) are instances of data models. 

Definition 1. Let T be a set of predefined types. A data model D is a tuple ⟨C , AT , 
AS ⟩, where: 

‹ C is a set of classes c. 

‹ AT is a set of attributes at , at = ⟨atn, c, t⟩, where: atn is name of the 
attribute; c is the class of the attribute; and t is the type of the values of the 
attribute, with either t ∈ T or t ∈ C. 

‹ AS is a set of associations as, as = ⟨asn, ase l, cl, aser, cr⟩, where: asn is the 
name of the association; ase l and aser are the ends of the association as; cl is 
the class of the objects at the association-end ase l; and cr is the class of the 
objects at the association-end aser. 

Without loss of generality, we assume that every class and every association has a 
unique name, and that, in each class, every attribute also has a unique name. 

Example 2. Consider the Uni data model in Subsection 2.3, it can be formally 
defined as follows: 

C = {Student, Lecturer}, 
AT = {⟨name, Student, String⟩, ⟨age, Student, Integer⟩, 

⟨email, Student, String⟩, ⟨name, Lecturer, String⟩, 
⟨age, Lecturer, Integer⟩, ⟨email, Lecturer, String⟩}

AS = {⟨Enrollment, students, Student, lecturers, Lecturer⟩} 

For the sake of simplicity, in what follows, we denote by Student : name the at-
tribute ⟨name, Student, String⟩, Student : age the attribute ⟨age, Student, Integer⟩, 
and Enrollment the association ⟨Enrollment, students, Student, lecturers, 
Lecturer⟩. △ 

Definition 2. Let D = ⟨C , AT , AS ⟩ be a data model. An object model O of D is 
a tuple ⟨OC , OAT , OAS ⟩ where: 

‹ OC is a set of objects o, o = ⟨oi , c⟩, where: oi is the identifier of the object o, 
and c ∈ C is the class of the object o. 
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‹ OAT is a set of attribute values atv , atv = ⟨⟨atn, c, t⟩, ⟨oi , c⟩, vl⟩, where: 
⟨atn, c, t⟩ ∈ AT , ⟨oi, c⟩ ∈ OC , and vl is a value of the type t. 

‹ OAS is a set of association links asl , asl = ⟨⟨asn, ase l, cl, aser, cr⟩, ⟨oi l, cl⟩, 
⟨oi r, cr⟩⟩, where: ⟨asn, ase l, cl, aser, cr⟩ ∈ AS , ⟨oil, cl⟩ ∈ OC , and ⟨oir, cr⟩ ∈ 
OC . 

Without loss of generality, we assume that every object has a unique identifier and 
that the object identifier is of type Integer. 

Example 3. Consider the scenario where there is only one student—Hoang, and two 
lecturers—Juan and Manuel, with the appropriate age and email. Furthermore, only 
Manuel is teaching Hoang. Assuming the name of the object is its identification, this 
object model can be formally defined as follows: 

OC = {⟨Hoang, Student⟩, ⟨Juan, Lecturer⟩, ⟨Manuel, Lecturer⟩}, 
OAT = {⟨Student : name, ⟨Hoang, Student⟩, Hoang⟩, 

⟨Student : age, ⟨Hoang, Student⟩, 25⟩, 
. . . 
}

OAS = {⟨Enrollment, ⟨Hoang, Student⟩, ⟨Manuel, Lecturer⟩⟩} 

△ 

3.1.2 FGAC security models 
As described in the previous section, FGAC security models specify fine-grained 
access control policies for executing actions on protected resources. In this section, 
we recall the actions whose execution can be controlled, in our approach, by FGAC 
policies. Then, we recall the definition of FGAC security models, and their semantics 
i.e., the actions that are authorized to be executed for which users, with which roles, 
and under which conditions. 

In our approach, the notion of role is defined such that: (i) it is associated with 
a class, i.e. each object of this class is considered as a user, and that (ii) every user 
can have at most one role. 1 In what follows, we extend the definition of FGAC data 
model by adding the definition of users-provider class. 

1A user may have no role. According in our definition, however, this user will not be authorized 
to access any resource. 
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Definition 3. Let D be a data model, D = ⟨C, AT , AS ⟩. Then, we denote by 
Users(C) the users-provider class of D. 

Next, we define the notion of read -actions. 

Definition 4. Let D be a data model, D = ⟨C, AT , AS ⟩. Then, Act(D) denotes the 
following set of read-actions: 

‹ For every attribute at ∈ AT , read(at) ∈ Act(D). 

‹ For every association as ∈ AS , read(as) ∈ Act(D). 

Finally, we define our FGAC security model. 

Definition 5. Let D be a data model. Then, a security model S for D is a tuple 
S = ⟨R, auth⟩, where: R is a set of roles, and auth : R × Act(D) → Exp(D) is a 
function that assigns to each role r ∈ R and each action a ∈ Act(D) an authorization 
constraint e ∈ Exp(D). 

In our approach for modeling fine-grained access control policies, we consider au-
thorization constraints whose satisfaction depends on information related to: (i) the 
users who are attempting to perform a read-action; (ii) the objects whose attributes 
are attempted to be read; (iii) the objects between which the links are attempted 
to be read. By convention, the users referred to in (i) are denoted by the key-
word caller; the objects referred to in (ii) are denoted by the keyword self; and 
the objects referred to in (iii) are denoted by using as keywords the corresponding 
association-ends. 

Example 4. Consider the data model in Subsection 2.3, let Lecturer be the user 
class, assume that there are two roles, namely: Admin and Lecturer, and that the 
user with the role Admin can always read any student’s age but the user with the role 
Lecturer can only read the age of the students whom it teaches. This security model 
can be formally defined as follows: 

R = {Admin, Lecturer}, 
auth(Admin, Student : age) = true 
auth(Lecturer, Student : age) = caller.students → includes(self) 

△ 

Definition 6. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be an 
FGAC security model for D. Let O = ⟨OC , OAT , OAS ⟩ be an object model of D. 
Then, 
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‹ A user u with role r ∈ R is authorized, according to S, to read the value of an 
attribute at = ⟨atn, c, t⟩, at ∈ AT , of an object o, o ∈ OC , if and only if: 

Eval(O, auth(r, read(at))[self ← o; caller ← u]) = true. 

‹ A user u with role r ∈ R is authorized, according to S, to read whether an 
association as = ⟨asn, ase l, cl, aser, cr⟩, as ∈ AS , links two objects ol and or, 
ol ∈ OC and or ∈ OC , if and only if: 

Eval(O, auth(r, read(as))[asel ← ol; ase ; caller ← u]) = true.r ← or 

Example 5. Consider the Uni data model in Subsection 2.3, with the object model 
O in Example 3 and the FGAC security model in Example 4, let Lecturer be the 
user class. Suppose Juan and Manuel have the role Lecturer, we say that: 

‹ Juan is not authorized, according to the security model in Example 4, to read 
the age of student Hoang, since Hoang is not his student, i.e. � � 

self ← Hoang
Eval(O, auth(Lecturer, read(Student : age)) )

caller ← Juan� � 
self ← Hoang

= Eval(O, caller.students → includes(self) )
caller ← Juan 

= Eval(O, Juan.students → includes(Hoang)) 
= false. 

‹ On the other hand, Manuel is authorized, according to the security model in 
Example 4, to read the age of Hoang, since Hoang is his student, i.e. � � 

self ← Hoang
Eval(O, auth(Lecturer, read(Student : age)) )

caller ← Manuel � � 
self ← Hoang

= Eval(O, caller.students → includes(self) )
caller ← Manuel 

= Eval(O, Manuel.students → includes(Hoang)) 
= true. 

△ 

In the next section, if the FGAC security model is not clear from the context, then 
it will be passed as an extra argument to the function auth(). 
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3.2 Enforcing FGAC security model for SQL queries 
In this section, we recall our approach for secury-ing SQL queries, describe the 
overview of our implementation of this approach and highlight the performance 
penalty incurred if we plainly apply this implementation. 

3.2.1 Secure SQL queries 
In [2], we defined the conditions for a user u, with role r, to be authorized to execute 
an SQL query q according to FGAC security model S. Then, in [3] , we proposed an 
approach for enforcing these conditions when executing SQL queries. Our approach 
consists in defining a function SecQuery() that, given an FGAC security model S 
and an SQL query q, it generates an SQL stored-procedure SecQuery(S, q) that 
implements the authorization checks that are required to comply with the policy S 
when executing the query q. 

More specifically, the stored-procedure SecQuery(S, q) takes two arguments, caller 
and role, representing respectively, the user executing the query q and the role of 
this user when executing this query. The body of stored-procedure SecQuery(S, q) 
comprises a list of temporary tables, corresponding to the list of conditions that need 
to be satisfied for the user caller, with the role role, to be authorized to execute the 
query q, according to S. The definition of each temporary table is such that, when 
attempting to create the table, if the corresponding condition is not satisfied, then 
an error will be signalled and the table will not be created. If all temporary tables 
can be successfully created, then the stored-procedure SecQuery(S, q) will simply 
execute q; otherwise, if any of the temporary tables cannot be created, then an error 
will be signalled. The reason for using temporary tables is to prevent the SQL opti-
mizer from “skipping” (by rewriting the corresponding sub-queries) the authorization 
checks that SecQuery() generates to guarantee that queries are executed securely. 

The definition of the function SecQuery() is included in Appendix B. It assumes 
that data models and object models are implemented in SQL following specific map-
pings, which are included in Appendix A. 

3.2.2 The SQLSI use-case 
As part of previous work presented in [4], we developed an application, namely 
SQLSI, based on the definition of SecQuery(). Figure 3.1 describes the typical use-
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case of the SQLSI tool to enforce FGAC policies on a database-centric application. 
In particular, 

1. the modeller defines (or derives) the data-model D from the application database, 
defines a FGAC security model S and collects all “unsecured” SQL queries Q 
that will be issued in this application, 

2. then, the modeller inputs D, S and Q into the SQLSI tool, which will gener-
ate the set of SQL authorization functions corresponding to S; moreover, for 
every query q ∈ Q, based on function SecQuery(), the SQLSI tool generates a 
“secured” stored-procedure SecQuery(S, q), 

3. finally, the modeller takes these newly generated artifacts and sources them 
into the application database. Furthermore, whenever a query q ∈ Q is is-
sued, the modeller replaces it by calling the corresponding stored-procedure 
SecQuery(S, q) with proper user and role. 

Figure 3.1: The SQLSI use case 

3.2.3 Execution-time overhead for secure SQL queries 
As mentioned above, fine-grained access control policies depend not only on static 
information, namely the assignments of users and permissions to roles, but also on 
dynamic information, namely the satisfaction of authorization constraints on the 
current state of the system. Unavoidably, executing FGAC-related authorization 
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checks will cause a performance overhead, greater or lesser depending on the “size” 
of the database and the “complexity” of the authorization checks. We recall here the 
experiments reported in [4] about the performance-overhead incurred when executing 
securely queries by calling the corresponding stored-procedures generated by the 
function SecQuery(). 

A. Experimental setup 
The experiments were conducted on a MySQL Community Server (version 8.0.16) 
running on a computer with Intel(R) Core(TM), 1.60GHz, and 8 GB RAM. For each 
experiment, the execution-time reported corresponds to the arithmetic mean of 10 
different executions. 

B. Data model 
The experiments consider the Uni data model in Subsection 2.3. Furthermore, let 
Lecturer be the users-provider class. 

C. Object models 
The experiments consider scenarios with equal number of students and lecturers, 
where every student is a student of every lecturer. More specifically, for n > 2, 
Uni(n) denotes an instance of the data model Uni such that: there are exactly n 
students and n lecturers; students and lecturers have unique names; every lecturer 
has every student as his/her student, so that the number of enrollments is exactly n2 . 
Moreover, the experiments consider three distinguished lecturers for all the scenarios 
Uni(n): namely, Trang, Michel and Vinh. They also assume that in all the scenarios 
no other lecturer is older than Michel. 

D. FGAC security models 
The experiments consider the following FGAC security models: 2 

‹ Sec#1. There is only one role, namely Admin. The policy contains the following 
clauses: (i) an admin can know the age of any student ; and (ii) an admin can 
know the students of any lecturer. This policy can be modelled in SecureUML 
as follows: 

roles = {Admin} 
2For the interested readers, the SQL implementation of these FGAC security models can be 

found in Appendix E. 
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auth(Admin, read(Enrollment)) = true 
auth(Admin, read(Student :age)) = true 

‹ Sec#2. There is only one role, namely Lecturer. The policy contains the 
following clauses: (i) a lecturer can know the age of any student, if no other 
lecturer is older than he/she is ; and (ii) a lecturer can know the students of 
any lecturer, if no other lecturer is older than he/she is. This policy can be 
modelled in SecureUML as follows: 

roles = {Lecturer}
auth(Lecturer, read(Student : age)) 

= Lecturer.allInstances()→ select(l|l.age > caller.age)→ isEmpty() 
auth(Lecturer, read(Enrollment)) 

= Lecturer.allInstances()→ select(l|l.age > caller.age)→ isEmpty() 

‹ Sec#3. There is only one role, namely Lecturer. The policy contains the 
following clauses: (i) a lecturer can know the age of any student, if the student 
is his/her student ; and (ii) a lecturer can know the students of any lecturer, if 
the student is his/her student. This policy can be modelled in SecureUML as 
follows: 

roles = {Lecturer}
auth(Lecturer, read(Student :age)) = caller.students → includes(self) 
auth(Lecturer, read(Enrollment)) = caller.students → includes(students) 

E. SQL Queries 
The experiments consider the queries Query#1 and Query#2 shown in Figure 3.2, 
which return, respectively, the number of students whose age is greater than 18, and 
the number of enrollments. 

Query#1 SELECT COUNT(*) FROM Student WHERE age > 18 
Query#2 SELECT COUNT(students) from Enrollment 

Figure 3.2: Experiments: Queries 1–2. 
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F. Experimental Results 
Here we conduct an experiment on the execution-time of the original query compared 
to its security-aware stored-procedure, under different configurations. In particular, 
under 

‹ Security policy Sec#1, user: Trang, role: Admin. 

‹ Security policy Sec#2, user: Michel, role: Lecturer. 

‹ Security policy Sec#3, user: Vinh, role: Lecturer. 

Note that, in the original queries, there is no security enforcement. Note also that, 
in all three configurations, the user with the given role is authorized, according to 
the given security policy, to execute the secured stored-procedures. 

When discussing the experiments, unavoidably, we must make reference to func-
tions — SecQuery(), AuthFunc(), and AuthFuncRole() — whose formal definitions 
are given in Appendix B. Still, we hope that the informal explanation given be-
low is sufficient for understanding the main outcome, for our present purpose, of 
these experiments: namely, that plainly executing the stored procedures generated 
by SecQuery() may cause a non-negligibly performance-overhead. 

Query#1. 
According to the definition of SecQuery() in Appendix B, for a policy S ∈ {Sec#i |
1 ≤ i ≤ 3}, the body of SecQuery(S, Query#1) contains the following statement: 3 

CREATE TEMPORARY TABLE ⌜TempTable(age > 18)⌝ AS ( 
SELECT * FROM Student 
WHERE CASE ⌜AuthFunc(S, age)⌝ (Student_id, caller, role) 

WHEN 1 THEN age ELSE throw_error() END as age > 18 
); 

Notice that, to create the temporary table ⌜TempTable(age > 18)⌝, for every tuple 
contained in the table Student, the function ⌜AuthFunc(S, age)⌝ is called. Logically 

3For the interested readers, the complete SQL implementation of this secured stored-procedure 
can be found in Appendix E. 
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then, as shown in Figure 3.3, the execution-time for SecQuery(S, Query#1) increases 
depending on the “size” of the table Student. 

Notice also that, according to the definition of SecQuery(), depending on the role 
r of the caller, for every student in table Student, the function ⌜AuthFunc(S, age)⌝ 
calls the function ⌜AuthFuncRole(S, age, r)⌝, which in turn calls the function map( 
auth(S, r, read(age))), which returns the query in SQL that implements the autho-
rization constraint auth(S, r, read(age)). Therefore, the execution-time for SecQuery( 
S, Query#1) depends also on the “complexity” of the SQL implementation of the au-
thorization constraint auth(S, r, read(age)), since this query will be executed for 
every student in the table Student. In particular, in the experiments reported in [4], 
the authorization constraint 
auth(Sec#3, Lecturer, read(age)) = caller.students → includes(self) 
is implemented as follows: 

EXISTS ( SELECT 1 FROM Enrollment e 
WHERE e.lecturers = caller (3.1) 
AND e.students = self ) 

Then, in the case of the scenario Uni(103), when executing the stored-procedure 

⌜SecQuery(Sec#3, Query#1)⌝(Vinh, Lecturer), (3.2) 

the Query (3.1) will be executed 103 times, each time with caller replaced by Vinh 
and self replaced by a different student in the table Student. Notice also that, each 
time the Query (3.1) is executed, the clause 

WHERE e.lecturers = caller 
AND e.students = self 

will search in a table Enrollment that contains 106 rows. Not surprisingly, as shown 
in Figure 3.3, the execution of the (secured) stored-procedure depicted in equa-
tion (3.2) in the scenario Uni(103) takes around 2.5 seconds more than the execution 
of the (unsecured) query Query#1. 

Query#2. 
According to the definition of SecQuery() in Appendix B, for a policy S ∈ {Sec#i |
1 ≤ i ≤ 3}, the body of ⌜SecQuery(S, Query#2)⌝ contains the following create-
statements: 4 

4For the interested readers, the complete SQL implementation of this secured stored-procedure 
can be found in Appendix E. 
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Figure 3.3: Query#1 experiments. 
This shows the execution-time 
(measured in seconds) of Query#1 
with its secured version in differ-
ent Uni(n) scenarios, under differ-
ent security models Sec#1, Sec#2 
and Sec#3 with the user and role 
as described above. 

CREATE TEMPORARY TABLE ⌜TempTable(True)⌝ AS ( 
SELECT Student_id AS students, Lecturer_id AS lecturers 
FROM Student, Lecturer 

); 

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS ( 
SELECT * FROM ⌜TempTable(True)⌝ 
WHERE CASE ⌜AuthFunc(S, Enrollment)⌝ (students, 

lecturers, caller, role) 
WHEN 1 THEN TRUE ELSE throw_error() END as students 

); 

Notice that, to create the table ⌜TempTable(students)⌝, for every tuple contained 
in the table ⌜TempTable(True)⌝, which happens to be the Cartesian product of the 
tables Student and Lecturer, the function ⌜AuthFunc(S, Enrollment)⌝ is called. 
Logically then, as shown in Figure 3.4, the execution-time for SecQuery(S, Query#2) 
increases depending on the “size” of the tables Student and Lecturer. 

Notice also that, according to the definition of SecQuery(), depending on the 
role r of the caller, for every pair student-lecturer contained in the temporary table 
⌜TempTable(True)⌝, the function ⌜AuthFunc(S, Enrollment)⌝ calls ⌜AuthFuncRole 
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(S,Enrollment, r)⌝, which in turn calls the function map(auth(S, r, read(Enroll-

ment))), which returns the query in SQL that implements the authorization con-
straint auth(S, r, read(Enrollment)). Therefore, the execution-time for SecQuery 
(S, Query#2) depends also on the “complexity” of the SQL implementation of the 
authorization constraint auth(S, r, read(Enrollment)), since this query will be exe-
cuted for every pair student-lecturer in the Cartesian product of the tables Student 
and Lecturer. In particular, in the experiments reported in [4], the authorization 
constraint 

auth(Sec#3, Lecturer, read(Enrollment)) 
= caller.students → includes(students) 

is implemented as follows: 

EXISTS ( SELECT 1 FROM Enrollment e 
WHERE e.lecturers = caller (3.3) 
AND e.students = students ) 

Then, in the case of the scenario Uni(103), when executing the stored-procedure 

⌜SecQuery(Sec#3, Query#2)⌝(Vinh, Lecturer) (3.4) 

the Query (3.3) will be executed 106 times, each time with caller replaced by Vinh 
and students replaced by a student in a different pair student-lecturer in the table 
Enrollment. Notice also that, each time the Query (3.3) is executed, the clause 

WHERE e.lecturers = caller 
AND e.students = students 

will search in a table Enrollment that contains 106 rows. Not surprisingly, as shown 
in Figure 3.4, the execution of the (secured) stored-procedure depicted in equa-
tion (3.4) in the scenario Uni(103) takes around 8000 seconds more than the execution 
of the (unsecured) query Query#2. 
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Figure 3.4: Query#2 experiments. 
This shows the execution-time 
(measured in seconds) of Query#2 
with its secured version in differ-
ent Uni(n) scenarios, under differ-
ent security models Sec#1, Sec#2 
and Sec#3 with the user and role 
as described above. 

Enforcing FGAC policies for SQL queries implies performing authorization checks 
at execution-time. As the experiments above shown, this enforcement comes with 
the significant loss in performance. Notice that, there are, however, situations in 
which (some of) these authorization checks are in fact unnecessary. For example, in 
the experiments reported, for the case of the policy Sec#3, if any lecturer attempts to 
execute Query#1, it is unnecessary to perform the corresponding authorization checks 
(because every student is a student of every lecturer). Similarly, in the case of the 
policy Sec#2, if the lecturer Michel attempts to execute Query#2, it is unnecessary 
to perform the corresponding authorization checks (because no other lecturer is older 
than Michel). With this in mind, in the next chapter, we present our proposal for 
intelligent enforcement of FGAC policies. 
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Chapter 4 

Intelligently enforcing FGAC 
policies for SQL queries 

In this chapter we present a model-based methodology for optimizing the approach 
proposed in [3, 4]. In a nutshell, the idea is the following: the function SecQuery() 
implements the authorization checks by using case-expressions; if these checks (i) 
can be proved to be trivial, or if they (ii) can be proved to be satisfied given the 
invariants of the underlying data model, or if they (iii) can be proved to be satisfied 
given the properties of the objects involved in the authorization request, then the 
corresponding case-expressions are unnecessary. 

4.1 General approach 
Recall from Figure 3.1 the use-case for enforcing FGAC policies on database-centric 
application, the SQLSI tool automatically generates the secured stored-procedures. 
Here, in Figure 4.1 we extend the use-case with the additional processing step of 
optimizing these generated secured stored-procedures as follows: 

1. for each stored-procedure, for each case-expression, the modeller attempts to 
prove the unncessity of this case-expression: 

‹ if the corresponding authorization check of this case-expression can be 
proven to be trivial (as introduced in (i)), then the case-expression can be 
replaced by the original expression like in the unsecured query. 

‹ if the corresponding authorization check of this case-expression can be 
proven to be satisfied given the invariants of the underlying data model 

31 



Figure 4.1: The extension of the SQLSI use case. In this extension, instead of sourcing the generated 
stored-procedures, the modeller performs an additional processing step, optimizing these stored-
procedures and then sourcing the optimized ones. 

(as introduced in (ii)) or given the properties of the objects involved in the 
authorization request (as introduced in (iii)), then the modeller can man-
ually rewrite the secured stored-procedure in a way that it makes use of 
this new information (for example, using an SQL if-then-else statement). 
Note that, in this case, the invariants or the properties are not automat-
ically derived from the case-statements but rather are introduced in an 
ad-hoc way by the modeller. 

‹ otherwise, if it cannot be proven to be unnecessary, then we must keep 
the case-statement as is. 

2. after the methodology is applied, for each secured stored-procedure, we ob-
tain an “optimized-y-secured ” stored procedure. Then, instead of sourcing the 
SQLSI generated stored-procedure as described in the last use-case, here, the 
modeller sources the newly rewritten one into the application database. 

In the rest of this chapter we introduce step-by-step our approach for proving 
(i)–(iii) using many-sorted first-order logic (MSFOL) theorem-proving tools, in par-
ticular, SMT-solvers. Our approach is based on mappings that have been previously 
proposed: namely, a mapping from data models to MSFOL theories; a mapping from 
object models to MSFOL interpretations; a mapping from OCL boolean expressions 
to MSFOL formulae; a mapping from data models to SQL database schema; and 
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a mapping from object models to SQL database instances. Below we recall these 
mappings along with their key properties. Our approach also assumes that the im-
plementation in SQL of the OCL authorization constraints is correct, in a sense that 
will be also formally defined below. 

4.2 Different mappings and preliminary remarks 

4.2.1 From data models to MSFOL theories 
In [19] Dania and Clavel defined a mapping from data models to MSFOL theories. 
Let D = ⟨C, AT , AS ⟩ be a data model. In what follows we denote by map(D) the 
MSFOL theory corresponding to D. In a nutshell, this mapping contains: 

‹ The sort Classifer, representing objects in an instance of D and two con-
stant symbols, nullClassifer and invalClassifer of sort Classifer, representing 
null and invalid objects, respectively. In addition, an axiom constraining that 
nullClassifer and invalClassifer must have different interpretations. 

‹ For every predefined type t ∈ T , we create a sort t and two constant symbols, 
namely nullt and invalt, representing null and invalid value of type t, respec-
tively. In addition, an axiom constraining that nullt and invalt must have 
different interpretations. 

‹ For each class c ∈ C, a unary predicate c : Classifer → Bool, representing 
the definition of c-object in an instance of D. In addition, axioms constraining 
that nullClassifer and invalClassifer are not of type c and that an object of 
type c are not of other class types. 

‹ For each attribute at ∈ AT , at = ⟨atn, c, t⟩, a function atn_c : Classifer → t, 
representing the values of the attribute at in the objects of an instance of D. In 
addition, axioms constraining that there is no value of at in the nullClassifer 
and invalClassifer and that for every valid object of class c, the value of at in 
that object cannot be invalid. 

‹ For each association as ∈ AS , as = ⟨asn, ase l, cl, aser, cr⟩, a binary predicate 
asn : Classifer × Classifer → Bool, representing the definition of association 
links as between objects in an instance of D. In addition, an axiom constraining 
that for every link of association as , the left- and the right-end object must be 
of type cl and cr, respectively. 
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Example 6. Consider the Uni data model in Subsection 2.3, which is formally de-
fined in Example 2. Then the mapping generates a MSFOL theory that contains: 1 

‹ The sorts Classifer, Int and String, to represent objects, integer values and 
string values, respectively. 

‹ The constant nullClassifer, invalClassifer and an axiom constraining that these 
two constants have different interpretation (and similarly, for sort Int and 
String): 

nullClassifer ̸= invalClassifer 

‹ For class Lecturer, the predicate Lecturer(x : Classifer) and two axioms con-
straining that the nullClassifer and invalClassifer are not of type Lecturer 
(and similarly, for class Student). In addition, an axiom constraining that 
a Lecturer object, cannot be a Student object (and analogously, for class 
Student). 

Lecturer(nullClassifer) = ⊥ 
Lecturer(invalClassifer) = ⊥ 
∀x : Classifer. Lecturer(x) =⇒ ¬ Student(x) 

‹ For attribute age of Lecturer, the function 

age_Lecturer(x : Classifer) : Int 

and three axioms constraining that (i) it is invalid to get the age of a null object, 
(ii) it is invalid to get the age of an invalid object and (iii) the age of a lecturer 
cannot be invalid (and similarly, for other attributes, for other classes). 

age_Lecturer(nullClassifer) = invalInt 
age_Lecturer(invalClassifer) = invalInt 
∀x : Classifer. Lecturer(x) =⇒ age_Lecturer(x) ≠ invalInt 

‹ For association Enrollment, the binary predicate 

Enrollment(x : Classifer, y : Classifer) 
1For the interested readers, the complete theory, written in SMT-LIB language, is depicted in 

Listing F.1. 
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and an axiom constraining the type of two association-ends. 

∀x : Classifer. ∀y : Classifer. 
Enrollment(x, y) =⇒ Lecturer(x) ∧ Student(y) 

△ 

4.2.2 From object models to MSFOL interpretations 
Let D be a data model. Let O be an object model of D. In what follows we denote 
by map(O) the MSFOL interpretation of the theory map(D) that corresponds to the 
object model O according to this mapping. 

Example 7. Consider the object model O defined in Example 3, denote by ≃ the 
infix notation of our interpretation function, then map(O) consists of: 

‹ The set of Classifer objects: {nullClassifer, invalClassifer, Hoang, Juan, Manuel}. 
Moreover, nullInt ≃ −1, invalInt ≃ 0, nullString ≃ “A” and invalString ≃ 
“”(empty string), 

‹ The functions and predicates: � 
true, if x = Juan or x = Manuel 

– Lecturer(x) ≃ ,
false, otherwise � 
true, if x = Hoang 

– Student(x) ≃ ,
false, otherwise � 

25 if, x = Hoang 
– age_Student(x) ≃ ,

0, otherwise 
– . . . (and other attribute functions),� 

true, if x = Manuel and y = Hoang 
– Enrollment(x, y) ≃ . 

false, otherwise 

△ 

4.2.3 From OCL boolean expressions to MSFOL formulae 
In [19] Dania and Clavel also defined a mapping maptrue() from OCL boolean ex-
pressions to MSFOL formulae. In particular, let D be a data model, O be an object 
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model of D, and exp ∈ Exp(D) be a boolean expression. Then, the following holds: 

map(O) | (exp)= maptrue 

⇕ 
Eval(O, exp) = true 

Note that the mapping maptrue() includes an auxiliary mapping called mapdef () for 
generating additional formulae and constraints (if any) needed by maptrue(). More 
specifically, 

1. if the OCL expression exp contains a literal lit of type t as subexpression, 
then maptrue(exp) includes an additional constraint, generated by mapdef (exp), 
stating that the interpretation of the null value and invalid value of t differ 
from lit . 

2. if the OCL expression exp contains a non-boolean expression exp ′ as subex-
pression, then maptrue(exp) includes a predicate for exp ′ (called temp), and an 
additional formula, generated by mapdef (exp), defines the meaning of newly 
created predicate. 

In what follows, unless explicitly stated, applying maptrue() on an OCL expression 
involves calling mapdef (exp). 

Example 8. Consider the Uni data model in Subsection 2.3, given the OCL expres-
sion exp: 

Student.allInstances() → select(s|s.age ≥ 19) → isEmpty() 

Then, maptrue(exp) generates the following: 2 

‹ Note that, Student.allInstances() → select(s|s.age ≥ 19) is a subexpres-
sion in exp, then mapdef (exp ′ ) includes a predicate temp(x : Classifer) and 
generates the following formula to define temp(): 

∀s : Classifer. temp(s) ⇐⇒ Student(s) ∧ (age_Student(s) ≥ 19) 
∧ ¬ (age_Student(s) = nullInt 
∨ s = nullClassifer ∨ s = invalClassifer) 

follows by maptrue(exp): 

∀x : Classifer. ¬ temp(x) (4.1) 
2For the interested readers, the complete theory generated for this OCL expression, written in 

SMT-LIB language, is depicted in Listing F.2. 
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‹ Note also that, since 19 is an integer literal, then mapdef (exp) includes the 
constraints: 

nullInt ≠ 19 ∧ invalInt ≠ 19 

Now, consider the object model O defined in Example 3. 

‹ In this object model, there is only one Student, namely Hoang with the age of 25. 
Therefore, the result of evaluating exp in O is false, i.e. Eval(O, exp) = false. 

‹ On the other hand, consider the interpretation of this object model shown in 
Example 6. In this interpretation, there are 5 Classifer objects in total, namely 
nullClassifer, invalClassifer, Hoang, Juan and Manuel. Since Student(Hoang) 
= true, age_Student(Hoang) = 25, 25 ̸= nullInt, Hoang ≠ nullClassifer and 
Hoang ≠ invalClassifer, we obtain that temp(Hoang) = true. Indeed, this 
contradicts with the axiom in (4.1), therefore, the interpretation of O cannot 
satisfy the formulae in maptrue(exp), i.e. map(O) ̸| (exp).= maptrue 

△ 

Next, the following remark is a corollary of the maptrue() definition. 

Remark 1. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be an FGAC 
security model for D. Let O = ⟨OC , OAT , OAS ⟩ be an object model of D. Let r ∈ R 
be a role in S. Let users(C) ∈ C be the users-provider class in D. 
Let at = ⟨atn, c, t⟩ be an attribute of D. Let u = ⟨oi , users(C)⟩ ∈ OC be an object 
in O. Let w = ⟨oi , c⟩ ∈ OC be an object in O. Then, 

map(O)[self 7→ w; caller 7→ u] | (auth(r, read(at)))= maptrue 

⇕ 
Eval(O, auth(r, read(at))[self ← w; caller ← u]) = true 

where map(O)[self 7→ w; caller 7→ u] denotes the interpretation map(O) extended 
with the assignments of the objects w and u to the variables self and caller, re-
spectively; and auth(r, read(at)[self ← w; caller ← u]) denotes the expression 
auth(r, read(at)) after substituting the variables self and caller by the objects w 
and u, respectively. 
Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ be an association of D. Let u = ⟨oi , users(C)⟩ 
∈ OC be an object in O. Let wl = ⟨ol , cl⟩ ∈ OC and wr = ⟨or , cr⟩ ∈ OC be objects 
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in O. Then, 

map(O)[ase l 7→ wl; ase l 7→ wr; caller 7→ u] | (auth(r, read(as)))= maptrue 

⇕ 
Eval(O, auth(r, read(at))[ase l ← wl; aser ← wr; caller ← u]) = true 

where, as before, map(O)[ase l 7→ wl; aser 7→ wr; caller 7→ u] denotes the inter-
pretation map(O) extended with the assignments of the objects l, r, and u to the 
variables ase l, aser, and caller, respectively; and auth(r, read(as)[ase l ← wl; aser ← 
wr; caller ← u]) denotes the expression auth(r, read(as)) after substituting the vari-
ables ase l, aser, and caller by the objects wl, wr, and u, respectively. 

In the last remark, we establish a connection between the result of evaluating an 
authorization constraint exp in FGAC security model on a scenario (i.e. an object 
model O with a user and a class-object/association-link to be read) to the satisfia-
bility problem of the interpretation of map(O) on the generated MSFOL formulae 

(exp).of maptrue 

As mentioned before, the SecQuery() implements FGAC authorization constraints 
by using case-expressions. Logically, to securely eliminate the unnecessary case-
expression, we need to prove that the evaluation of the corresponding authorization 
constraint is trivially true. The following remark, which is a corollary of Remark 1, 
is to formally prove the aforementioned by reducing it into a satisfiability problem. 

Remark 2. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security 
model for D. Let users(C) ∈ C be the users-provider class of D. Let r ∈ R be a role. 
Let at = ⟨atn, c, t⟩ be an attribute of D. Then, for every object model O = ⟨OC , OAT , 
OAS ⟩ of D, for every object ⟨self , c⟩ ∈ OC and for every object ⟨caller , users(C)⟩ ∈ 
OC it holds that: 

Eval(O, auth(r, read(at))[self ← self ; caller ← caller ]) = true 

if and only if the following MSFOL theory is unsatisfiable: 

map(D) ∪ map(self, c) ∪ map(caller, users(C)) 
∪ mapdef (auth(r, read(at))) ∪ ¬ maptrue(auth(r, read(at))) 

where map(self, c) and map(caller, users(C)) simply add to the MSFOL theory 
map(D) the constant symbols self and caller, with sorts c and users(C), respec-
tively. 
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Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ be an association of D. Then, for every 
object model O = ⟨OC , OAT , OAS ⟩ of D, for every object ⟨ol , cl⟩ ∈ OC , ⟨or , cr⟩ ∈ 
OC and for every caller ∈ users(C), it holds that: 

Eval(O, auth(r, read(as))[asel ← ol; aser ← or; caller ← caller]) = true 

if and only if the following MSFOL theory is unsatisfiable: 

map(D) ∪ map(asel, cl) ∪ map(aser, cr) ∪ map(caller, users(C)) 
∪ mapdef (auth(r, read(as))) ∪ ¬ maptrue(auth(r, read(as))) 

where map(asel, cl), map(aser, cr) and map(caller, users(C)) simply add to the MS-
FOL theory map(D) the constant symbols asel, aser, caller, with sorts cl, cr, 
users(C), respectively. 

The previous remark is key in our methodology to prove (i) an authorization check 
is trivial. Here, we extend our remark above to prove (ii) an authorization check is 
satisfied given a data invariant and (iii) an authorization check is satisfied given the 
properties of the objects involved in the authorization request. Since data invari-
ants and objects’ properties can be expressed using OCL boolean expressions, we 
then append the generated formulae of that OCL expression to the MSFOL theory 
generated by Remark 2. 

Remark 3. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security 
model for D. Let users(C) ∈ C be the users provider-class of D. Let r ∈ R be a role. 
Let exp ∈ Exp(D) be an OCL boolean expression. 
Let at = ⟨atn, c, t⟩ ∈ AT be an attribute of D. Then, for every object model O = 
⟨OC , OAT , OAS ⟩ of D such that the evaluation of exp returns true, i.e. 

Eval(O, exp[self ← self ; caller ← caller ]) = true, 

for every object ⟨self , c⟩ ∈ OC and for every object ⟨caller , users(C)⟩ ∈ OC it holds 
that: 

Eval(O, auth(r, read(at))[self ← self ; caller ← caller ]) = true 

if and only if the following MSFOL theory is unsatisfiable: 

map(D) ∪ map(self, c) ∪ map(caller, users(C)) 
(exp)∪ mapdef (exp) ∪ maptrue 

∪ mapdef (auth(r, read(at))) ∪ ¬ maptrue(auth(r, read(at))) 
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where as before, map(self, c) and map(caller, users(C)) simply add to the MSFOL 
theory map(D) the constant symbols self and caller, with sorts c and users(C), re-
spectively; and mapdef (exp) and maptrue(exp) then add to the MSFOL theory map(D) 
the predicates/formulae generates by mapping exp to MSFOL. 
Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ ∈ AS be an association of D. Then, for 
every object model O = ⟨OC , OAT , OAS ⟩ of D such that the evaluation of exp 
returns true, i.e. 

Eval(O, exp[asel ← ol; aser ← or; caller ← caller]) = true, 

for every object ⟨ol , cl⟩ ∈ OC , ⟨or , cr⟩ ∈ OC and for every caller ∈ users(C), it holds 
that: 

Eval(O, auth(r, read(as))[asel ← ol; aser ← or; caller ← caller]) = true 

if and only if the following MSFOL theory is unsatisfiable: 

map(D) ∪ map(asel, cl) ∪ map(aser, cr) ∪ map(caller, users(C)) 
(exp)∪ mapdef (exp) ∪ maptrue 

∪ mapdef (auth(r, read(as))) ∪ ¬ (auth(r, read(as)))maptrue 

where as before, map(asel, cl), map(aser, cr), map(asel, aser, as) and map(caller, 
users(C)) simply add to the MSFOL theory map(D) the constant symbols asel, aser, 
caller, with sorts cl, cr, users(C), and the association link as between asel and 
aser, respectively; and mapdef (exp) and maptrue(exp) then add to the MSFOL theory 
map(D) the predicates/formulae generates by mapping exp to MSFOL. 

4.2.4 From data models to SQL database schema 
In [3] we defined a mapping from data models to SQL database schema. Let D be a 
data model. In what follows we denote by D the SQL database schema correspond-
ing to D according to this mapping. The definition of this mapping is recalled in 
Appendix A. 3 

Example 9. Consider the Uni data model in Subsection 2.3, the Listing below shows 
the description of the SQL database schema of Uni, according to the mapping from 
data model to SQL database schema: 

3For the sake of illustration, readers can find Appendix E the example SQL database schemata 
of the data model in Subsection 2.3. 
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mysql> describe Student; 
+------------+--------------+------+-----+---------+-------+ 
| Field | Type | Null | Key | Default | Extra | 
+------------+--------------+------+-----+---------+-------+ 
| Student_id | varchar(100) | NO | PRI | NULL | | 
| name | varchar(100) | YES | | NULL | | 
| age | int(11) | YES | | NULL | | 
| email | varchar(100) | YES | | NULL | | 
+------------+--------------+------+-----+---------+-------+ 

mysql> describe Lecturer; 
+-------------+--------------+------+-----+---------+-------+ 
| Field | Type | Null | Key | Default | Extra | 
+-------------+--------------+------+-----+---------+-------+ 
| Lecturer_id | varchar(100) | NO | PRI | NULL | | 
| name | varchar(100) | YES | | NULL | | 
| age | int(11) | YES | | NULL | | 
| email | varchar(100) | YES | | NULL | | 
+-------------+--------------+------+-----+---------+-------+ 

mysql> describe Enrollment; 
+-----------+--------------+------+-----+---------+-------+ 
| Field | Type | Null | Key | Default | Extra | 
+-----------+--------------+------+-----+---------+-------+ 
| lecturers | varchar(100) | YES | MUL | NULL | | 
| students | varchar(100) | YES | MUL | NULL | | 
+-----------+--------------+------+-----+---------+-------+ 

where Student_id is the primary key and name, age, email are the attributes of the 
table Student. Similarly, Lecturer_id is the primary key and name, age, email 
are the attributes of the table Lecturer. And finally, students and lecturers 
are the foreign keys refers to the primary keys of the table Student and Lecturer, 
respectively. △ 

4.2.5 From object models to SQL database instances 
In [3] we also defined a mapping from object models to SQL database instances. Let 
D be a data model. Let O be an object model of D. In what follows we denote by 
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O the instance of the database schema D that corresponds to O according to this 
mapping. The definition of this mapping is recalled in Appendix A. 

Example 10. Consider the object model in Example 3, the Listing below depicts the 
corresponding database state. 

mysql> SELECT * FROM Student; 
+------------+-------+------+-------------------+ 
| Student_id | name | age | email | 
+------------+-------+------+-------------------+ 
| Hoang | Hoang | 25 | Hoang@student.com | 
+------------+-------+------+-------------------+ 

mysql> SELECT * FROM Lecturer; 
+-------------+--------+------+---------------------+ 
| Lecturer_id | name | age | email | 
+-------------+--------+------+---------------------+ 
| Juan | Juan | NULL | Juan@lecturer.com | 
| Manuel | Manuel | NULL | Manuel@lecturer.com | 
+-------------+--------+------+---------------------+ 

mysql> SELECT * FROM Enrollment; 
+-----------+----------+ 
| lecturers | students | 
+-----------+----------+ 
| Manuel | Hoang | 
+-----------+----------+ 

where there is one tuple in table Student, representing student Hoang. Similarly, 
there are two tuples in table Lecturer, representing lecturer Juan and Manuel, re-
spectively. Finally, there is one tuple in table Enrollment, representing the associa-
tion link between Manuel and Hoang. △ 

Remark 4. Our mapping from object models to SQL database instances has an 
inverse mapping. Let D be a data model. Let Y be an instance of the database 
schema D. In what follows we denote by Y the object model of D that corresponds 
to the database instance Y according to this inverse mapping. 
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4.2.6 From OCL boolean expressions to SQL queries 
In [35] we proposed a mapping from OCL expressions to SQL queries. However, in our 
methodology, we do not assume that authorization constraints are implemented in 
SQL using this mapping. In fact, in terms of execution-time efficiency, the manual 
implementations (i.e. written by experts) typically perform better than the ones 
automatically generated by our mapping, as depicted in [17]. In whatever way the 
implementation is done, our methodology assumes that this implementation is correct 
in the following sense: 

Definition 7. Let D be a data model. Let D be an SQL implementation of D. Let 
exp ∈ Exp(D) be a boolean expression. Let qry be an SQL D-query. Denote by TRUE 
the SQL-value for true. We say that qry is a correct implementation of exp if and 
only if: 

‹ For any object model O of D, and any valid assignment σ of objects in O to 
the free-variables in exp, the following holds: 

Eval(O, exp[σ]) = true ⇐⇒ Execσ(O, qry) = TRUE. 

where exp[σ] is the OCL expression that results from substituting the free-
variables in exp using the assignment σ; and Execσ(O, qry) denotes the ex-
ecution of the query qry in the database instance O of D within an execution-
context where, for each assignment v → o in σ, the variable v has been declared 
and set to the value o. 

‹ For any database instance Y of D, and any valid execution-context τ , the fol-
lowing holds: 

Execτ (Y , qry) = TRUE ⇐⇒ Eval(Y , exp[τ ]) = true. 

where Execτ (Y , qry) denotes the execution of the query qry in the database 
instance Y within the execution-context τ ; and exp[τ ] denotes the OCL expres-
sion that results from substituting the free-variables in exp using the following 
assignment: each variable v that is declared in τ is assigned to the object t in 
Y that corresponds to the value t in Y to which the variable v is set in τ . 

Example 11. Consider the Uni data model in Subsection 2.3 and its corresponding 
SQL database schemata in Example 9. Given an OCL boolean expression exp: 

caller.students → includes(self) 
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and an SQL select-statement qry: 

SELECT EXISTS ( SELECT 1 FROM Enrollment e 
WHERE e.lecturers = caller AND e.students = self ) 

we say that qry correctly implements exp with respect to Definition 7. Consider now 
the object model O in Example 3 and its corresponding SQL database state O in 
Example 10. 

‹ Let σ = [self ← Hoang; caller ← Manuel] be our assignment function. Then, 
σ = [self 7→ Hoang; caller 7→ Manuel], where Hoang and Manuel are the 
primary keys of the tuple representing Hoang in the Student table and Manuel 
in the Lecturer table, respectively. As shown in Example 5, Eval(O, exp[σ]) = 
true. Furthermore, Execσ(O, qry) = TRUE: 

mysql> SELECT EXISTS (SELECT 1 FROM Enrollment e 
-> WHERE e.lecturers = ’Manuel’ 
-> AND e.students = ’Hoang’) AS result; 

+--------+ 
| result | 
+--------+ 
| 1 | 
+--------+ 

‹ Otherwise, let σ = [self ← Hoang; caller ← Juan] be our assignment 
function. Then, σ = [self 7→ Hoang; caller 7→ Juan], where Hoang is 
as above and Juan is the primary key of the tuple representing Juan in the 
Lecturer table. As shown in Example 5, Eval(O, exp[σ]) = false. Further-
more, Execσ(O, qry) = FALSE: 

mysql> SELECT EXISTS (SELECT 1 FROM Enrollment e 
-> WHERE e.lecturers = ’Juan’ 
-> AND e.students = ’Hoang’) AS result; 

+--------+ 
| result | 
+--------+ 
| 0 | 
+--------+ 

△ 
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4.3 Reducing execution-time overhead: Case ex-

pressions 
The function SecQuery() implements the authorization checks by using case-express-
ions. More specifically, the function SecQuery() uses the functions SecAtt() and 
SecAs() to wrap, respectively, any access to a protected attribute at or to a protected 
association as into a case-expression. The value of this case expression is a call to 
a function AuthFunc() that implements those authorization checks required for ac-
cessing the corresponding attribute or association. If the result of this function-call 
is TRUE, then the case-expression will return the requested resource; otherwise, it will 
signal an error. In what follows, ⌜AuthFunc(S, at)⌝ denotes the name of the function 
generated by SecQuery() for a policy S an attribute at ; whereas ⌜AuthFunc(S, as)⌝ 
denotes the name of the function generated by SecQuery() for a policy S an associ-
ation as . When the argument S is clear from the context, it may be omitted. 

The functions SecAtt() and SecAs() use the functions AuthFunc() and AuthFunc-
Role() to check that the access to a specific protected resource is authorized. For 
each protected resource, the required authorization checks depend on the role of 
the user attempting to access this resource. Accordingly, for each role, the func-
tion AuthFunc() calls a function AuthFuncRole() that implements the authorization 
checks required for a user with that role to access a specific protected resource. In 
what follows, ⌜AuthFuncRole(S, at , r)⌝ denotes the name of the function generated 
by SecQuery() for a policy S, an attribute at , and a role r; whereas ⌜AuthFunc-
Role(S, as , r)⌝ denotes the name of the function generated by SecQuery() for a pol-
icy S, an association as . Again, when the argument S is clear from the context, we 
may omit it. 

The function AuthFuncRole() implements the authorization constraints associated 
with the permission for users of a given role for executing a given read-action on a 
specific resource. There are many different ways of implementing in SQL an OCL 
authorization constraint. The definition of the function AuthFuncRole() only as-
sumes that there exists a function map() that, for each OCL constraint of interest, 
it returns a correct implementation in SQL of this constraint, in the precise sense of 
Definition 7. 

The following remark makes explicit the relationship between the functions Auth-
Func() and AuthFuncRole(). 
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Remark 5. Let D = ⟨C , AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security 
model for D. Let users(C) ∈ C be the users provider-class in D. Let r ∈ R be a role 
in S. Let Y be an instance of the database D and denote by TRUE the SQL-value for 
true. 
Let at = ⟨atn, c, t⟩ be an attribute in D. Let self be a key-value identifying a row in 
the table c in Y. Let caller be a key-value identifying a row in the table users(C) in 
Y. Then, the following holds: 

Exec(Y , ⌜AuthFunc(at)⌝(self , caller , r)) = TRUE 
⇕ 

Exec(Y , ⌜AuthFuncRole(at , r)⌝(self , caller)) = TRUE. 

Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ be an association in D. Let ase l and aser 
be key-values identifying, respectively, rows in the tables cl and cr in Y. Let caller be 
a key-value identifying a row in the table users(C) in Y. Then, the following holds: 

Exec(Y , ⌜AuthFunc(as)⌝(ase l, aser, caller , r)) = TRUE 
⇕ 

Exec(Y , ⌜AuthFuncRole(as , r)⌝(ase l, aser, caller)) = TRUE. 

The following remark makes explicit the relationship between the function AuthFunc-
Role() and the function map(). 

Remark 6. Let D = ⟨C , AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security 
model for D. Let users(C) ∈ C be the users provider-class in D. Let r ∈ R be a 
role in S. Let map() be a correct implementation of the authorization constraints in 
S. Let Y be an instance of the database D and denote by TRUE the SQL-value for true. 

Let at = ⟨atn, c, t⟩ be an attribute in D. Let self be a key-value identifying a row in 
the table c in Y. Let caller be a key-value identifying a row in the table users(C) in 
Y. Then, the following holds: 

Exec(Y , ⌜AuthFuncRole(at , r)⌝(self , caller) = TRUE 
⇕ 
Execτ (Y , map(auth(r, read(at)))) = TRUE 
⇕ (by Defnition 7) 
Eval(Y , auth(r, read(at))[τ ]) = true. 
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where τ denotes the execution context, and the variables self and caller have been 
declared and set, respectively, to the key-values self and caller . 
Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ be an association in D. Let Y be an instance 
of the database D. Let ase l and aser be a key identifying a row in the table cl and 
cr in Y. Let caller be a key identifying a row in the table users(C) in Y. Then, the 
following holds: 

Exec(Y , ⌜AuthFuncRole(as , r)⌝(ase l, aser, caller) = TRUE 
⇕ 
Execτ (Y , map(auth(r, read(as)))) = TRUE 
⇕ (by Defnition 7) 
Eval(Y , auth(r, read(as))[τ ]) = true. 

where τ denotes the execution context, and the variables asel, aser, and caller have 
been declared and set, respectively, to the key-values ase l, aser, and caller . 

Summary 
In conclusion, to securely eliminate a case-expressions generated by the function 
SecQuery(), it is enough to prove that 

(a) the execution of the corresponding authFunc() call will always return 
TRUE (in any instances of the given database schema). 

Furthermore, by the definition of SecQuery(), calling authFunc() involves calling 
authFuncRole(), which in turns calls the SQL correct implementation of the corre-
sponding authorization constraint in the FGAC security model. By Remarks 5–6 
and the Definition 7, in order to prove (a) is enough to prove that 

(b) the OCL authorization constraint under consideration will always 
evaluate to true (in any scenario of the UML/OCL data model corre-
sponding to the given database schema). 

By Remarks 1–3, in order to prove (b) is enough to prove that 
(c) it is unsatisfiable the MSFOL theory that results from adding the 
negation of the formulae returned by applying the mapping maptrue() to 
the authorization constraint under consideration to the theory returned 
by applying the mapping map() to the UML/OCL data model corre-
sponding to the given database schema. 

As shown in our case study below, to prove (c) we can use SMT solvers. 
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4.4 Reducing execution-time overhead: Tempo-

rary tables 
The function SecQuery() implements authorization checks by using case-expressions. 
These case-expressions are executed within create-statements that generate tempo-
rary tables. The reason for using temporary tables (instead of sub-queries), is to pre-
vent the SQL optimizer for “skipping” (by rewriting the corresponding sub-queries) 
the authorization checks generated by SecQuery(). 

The following remarks are corollaries of the definition of the functions SecAtt() 
and SecAs(), and provide a (secure) approach for replacing with the original sub-
queries the temporary tables generated by the function SecQuery(), when these tables 
are proven to be unnecessary. Logically, to allow the SQL optimizer to do its job, 
whenever “secure”, sub-queries should be favoured over temporary tables. 

Notice that, based on the remarks below, we can follow the same approach de-
scribed before (for eliminating unnecessary case-expressions) to prove using SMT 
solvers that a temporary table generated by the function SecQuery() can be securely 
replaced with the original sub-query. 

Remark 7. Let D = ⟨C , AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security 
model for D. Let users(C) ∈ C be the users-provider class in D. Let c ∈ C be a class 
in D. Let Y be an instance of the database D. Given an SQL query: 

SELECT ∗ FROM c WHERE SecAtt(S, exp) 

Suppose that, for every attribute ⟨atn, c, t⟩ ∈ AT occurring in exp, every role r ∈ R, 
every key-value self identifying a row in the table c in Y, and every key-value caller 
identifying a row in the table users(C) in Y, it holds that: 

Exec(Y , ⌜AuthFunc(at)⌝(self , caller , r)) = TRUE 

Then, it holds that: 

Exec(Y , SELECT ∗ FROM c WHERE SecAtt(S, exp)) 
= Exec(Y , SELECT ∗ FROM c WHERE exp) 

Remark 8. Let D = ⟨C , AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security 
model for D. Let users(C) ∈ C be the users-provider class in D. Let c ∈ C be a class 
in D. Let Y be an instance of the database D. Let SubSelectc be an execution result 
that contains tuples of c-object. Given an SQL query: 
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SELECT ∗ FROM SubSelectc WHERE SecAtt(S, exp) 

Suppose that, for every attribute ⟨atn, c, t⟩ ∈ AT occurring in exp, every role r ∈ R, 
every key-value self identifying a row in the returned subselect SubSelectc, and every 
key-value caller identifying a row in the table users(C) in Y, it holds that: 

Exec(Y , ⌜AuthFunc(at)⌝(self , caller , r)) = TRUE 

Then, it holds that: 

Exec(Y , SELECT ∗ FROM SubSelectc WHERE SecAtt(S, exp)) 
= Exec(Y , SELECT ∗ FROM SubSelectc WHERE exp) 

Remark 9. Let D = ⟨C , AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a security 
model for D. Let users(C) ∈ C be the users-provider class in D. Let Y be an 
instance of the database D. Let cl, cr ∈ C be classes in D. Let ol and or be key-values 
identifying, respectively, rows in the tables cl and cr in Y Let caller be a key-value 
identifying a row in the table users(C) in Y. Let CartProd (cartesian product) be 
the returned results of executing the select statement: 

SELECT cl_id, cr_id FROM cl, cr WHERE exp 

where exp is an SQL boolean statement that may contain the attributes in cl and cr. 
Suppose that, for every association as = ⟨asn, ase l, cl, aser, cr⟩, as ∈ AS , given an 
SQL query: 

SELECT ∗ FROM CartProd WHERE SecAs(S, as) 

For every returned tuple ⟨ol, or⟩ ∈ CartProd, every role r ∈ R, and every caller 
in the table users(C) in Y, it holds that 

Exec(Y , ⌜AuthFunc(as)⌝(ol, or, caller , r)) = TRUE 

Then, it holds that: 

Exec(Y , SELECT ∗ FROM CartProd WHERE SecAs(S, as)) 
= Exec(Y , SELECT ∗ FROM CartProd) 

In the next chapter, we provide non-trivial examples in which the generated 
stored-procedures can be optimized. By applying these remarks, we formally prove 
that, indeed, the case-expressions in those stored-procedures are unnecessary. 
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Chapter 5 

Case Study 

In this chapter, we conduct a case study for our methodology described above. Here, 
we revisit the two experiments reported in Subsection 3.2.3 and apply the approach 
introduced in Section 4.3 to identify the unnecessary checks and optimize the stored-
procedures generated by the function SecQuery() and report on the results. For the 
sake of convenience, we recall briefly the experiment setup in Subsection 3.2.3: 

‹ The data model introduced in Subsection 2.3, 

‹ The scenarios Uni(n), for n > 2, in which: there are exactly n students and 
n lectures; students and lectures have unique names; every lecturer has every 
student as his/her student; there are three distinguished lecturers, namely: 
Trang, Michel, and Vinh; and no other lecturer is older than Michel, 

‹ Three different FGAC security models, namely: Sec#1, Sec#2, and Sec#3. In 
particular: 1 

– Sec#1 contains the following clauses: an admin can know the age of any 
student ; and an admin can know the students of any lecturer. 

– Sec#2 contains the following clauses: a lecturer can know the age of any 
student, if he/she is the oldest lecturer ; and a lecturer can know the stu-
dents of any lecturer, if he/she is the oldest lecturer. 

– Sec#3 contains the following clauses: a lecturer can know the age of any 
student, if the student is his/her student ; and a lecturer can know the 
students of any lecturer, if the student is his/her student. 

1For interested readers, the SQL implementation of these FGAC security models can be found 
in Appendix E. 
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‹ Here we consider the three different SQL queries, Query#1, Query#2 and the 
new Query#3, which return, respectively, the number of students whose age is 
greater than 18, the number of enrollments and the average age of students of 
a current user. 

Query#1 SELECT COUNT(*) FROM Student WHERE age > 18 
Query#2 SELECT COUNT(students) FROM Enrollment 
Query#3 SELECT AVG(age) FROM Student 

JOIN (SELECT students FROM Enrollment 
WHERE lecturers = caller) AS TEMP 

ON Student_id = students 

Figure 5.1: Experiments: Queries 1–3. 

In the following sections, we apply our methodology to optimize the generated 
stored-procedures in four different configurations. 

5.1 First example: Trivial authorization constraints 
In this first example, consider the following configuration: 

Data model: Uni (in Subsection 2.3) 
User class: Lecturer 
Scenarios: Uni(n), for n ≥ 2 
Security policy: Sec#1 
Role: There is only one role, namely Admin 
Query: Query#1 

‹ In this case, we recall the corresponding authorization constraint, i.e. An admin 
can know the age of any student : 

auth(Admin, read(Student : age)) = true 

Denote by auth the above OCL authorization constraint. 
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‹ We extend the signature with the symbol constants for caller and self, and 
the corresponding axioms. In this case: caller is a lecturer, and self is a 
student. 

Notice that the following theory is unsatisfiable : 

map(Uni) ∪ ¬ maptrue(auth) 
∪ map(caller, Lecturer) ∪ map(self, Student) 

Therefore, following Remark 2, we can prove that for every object model O of Uni 
data model, for every object self of class Student and for every user caller of user 
class Lecturer: 

Eval(O, auth(Admin, read(Student : age))[σ]) = true 

where σ = [caller ← caller ; self ← self ]. Then, following Remark 6, we can prove 
that for every database instance Y of Uni database schema, given the corresponding 
execution context σ: 

Execσ(Y , map(auth(Admin, read(Student : age)))) = TRUE 

Finally, recall the snippet body of the stored-procedure generated by SecQuery( 
Sec#3,Query#2) (depicted in Figure 3.2.3) that contains the authorization check: 

CREATE TEMPORARY TABLE ⌜TempTable(age > 18)⌝ AS ( 
SELECT * FROM Student 
WHERE CASE ⌜AuthFunc(S, age)⌝ (Student_id, caller, role) 

WHEN 1 THEN age ELSE throw_error() END as age > 18 
); 

following Remark 7, it can be optimized as follows: 

CREATE TEMPORARY TABLE ⌜TempTable(age > 18)⌝ AS ( 
SELECT * FROM Student WHERE age > 18 

); 
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Remarks: Applying the methodology described before, we can in fact prove that, 
in this case where a user has role Admin, the case-statement can be securely removed. 2 

5.2 Second example: Data invariants 
In this second example, consider the following configuration: 

Data model: Uni (in Subsection 2.3) 
User class: Lecturer 
Scenarios: Uni(n), for n ≥ 2 
Security policy: Sec#3 
Role: There is only one role, namely Lecturer 
Query: Query#2 

‹ Firstly, we consider the relevant invariant of the given scenarios. In this case: 
Every lecturer has every student as his/her student. 

Lecturer.allInstances() → forAll(l|
Student.allInstances() → forAll(s|l.students → includes(s))) 

Denote by inv the above OCL invariant. More specifically, we state the for-
mulae returned by maptrue(inv) (as in this case, there is no formula/axiom 
returned by mapdef (inv)). 

‹ Secondly, we recall the corresponding authorization constraint. In this case: A 
lecturer can know the students of any lecturer, if the student is his/her student. 

auth(Lecturer, read(Enrollment)) = 
caller.students → exists(s | s = students) 

Denote by auth the above OCL authorization constraint. More specifically, 
we state the formulae returned by maptrue(auth) (as in this case, there is no 
formula/axiom returned by mapdef (auth)). 

‹ We extend the signature with the symbol constants for caller, students and 
lecturers, and the corresponding axioms. In this case: caller, lecturers 
are lecturers, and students is a student. 

2For interested readers, the complete SQL implementation of this secured stored-procedure as 
well as the optimized version can be found in Appendix E. 
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Notice that the following theory is unsatisfiable : 

map(Uni) ∪ ¬ (auth)maptrue 

∪ map(caller, Lecturer) 
∪ map(students, Student) ∪ map(lecturers, Lecturer) 

(inv)∪ maptrue 

Therefore, following Remark 3, we can prove that for every object model O of Uni 
data model that satisfies the integrity constraint inv , for every object student of class 
Student, lecturer of class Lecturer, and for every user caller of user class Lecturer: 

Eval(O, auth(Lecturer, read(Enrollment))[σ]) = true 

where σ = [caller ← caller ; students ← student ; lecturers ← lecturer ]. Then, 
following Remark 6, we can prove that for every database instance Y of Uni database 
schema that satisfies map(inv), given the corresponding execution context σ: 

Execσ(Y , map(auth(Lecturer, read(Enrollment)))) = TRUE 

Finally, recall the snippet body of the stored-procedure generated by SecQuery( 
Sec#3,Query#2) (depicted in Figure 3.2.3) that contains the authorization check: 

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS ( 
SELECT * FROM ⌜TempTable(True)⌝ 
WHERE CASE ⌜AuthFunc(S, Enrollment)⌝ (students, 

lecturers, caller, role) 
WHEN 1 THEN TRUE ELSE throw_error() END as students 

); 

following Remark 9, it can be optimized as follows: 
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IF (map(inv)) 
THEN 

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS ( 
SELECT * FROM ⌜TempTable(True)⌝ 

); 
ELSE 

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS ( 
SELECT * FROM ⌜TempTable(True)⌝ 
WHERE CASE ⌜AuthFunc(S, Enrollment)⌝ (students, 

lecturers, caller, role) 
WHEN 1 THEN TRUE ELSE throw_error() END as students 

); 
END IF; 

Remarks: Applying the methodology described before, we can in fact prove that, 
in this case where (i) the user has the role Lecturer and (ii) the invariant every 
student is a student of every lecturer holds, the case-statement can be securely re-
moved. Notice that the case-statement cannot be removed, however, for the case of 
the policies Sec#2. Neither can it be removed if the invariant does not hold. 3 

5.3 Third example: User properties 
In this third example, consider the following configuration: 

Data model: Uni (in Subsection 2.3 
User: Michel 
Scenarios: Uni(n), for n ≥ 2 
Security policy: Sec#2 
Role: This is only one role, namely Lecturer 
Query: Query#2 

3In general, the invariant can not be taken for granted and must be proved by formulating the 
invariant using again the OCL expressions to SQL statements map() function introduced in Sub-
section 4.2.6 and the idea of correct implementations of OCL queries/invariants. For the interested 
readers, the complete SQL implementation of this secured stored-procedure as well as the optimized 
version can be found in Appendix E. 
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‹ We recall the corresponding authorization constraint. In this case: A lecturer 
can know the age of any student, if no other lecturer is older than he/she is. 

auth(Lecturer, read(Student : age)) = 
Lecturer.allInstances()→ select(l|l.age > caller.age) 
→ isEmpty(). 

Denote by auth the above OCL authorization constraint. More specifically, 
we state the formulae returned by maptrue(auth) (as in this case, there is no 
formula/axiom returned by mapdef (auth)). 

‹ We extend the signature with the symbol constants for caller, students and 
lecturers, and the corresponding axioms. In this case: caller, lecturers 
are lecturers, and students is a student. 

‹ Furthermore, we acknowledge that the caller, Michel, is the oldest lecturer. 
This property can be manually written as an OCL expression: 

Lecturer.allInstances() → forAll(l|l.age ≤ caller.age) 

Denote by prop the above OCL caller–property. More specifically, we state 
the formulae returned by map (prop) (as in this case, there is no formula/ax-true

iom returned by mapdef (prop)). 

Notice that the following theory is unsatisfiable : 

map(Uni) ∪ ¬ maptrue(auth) 
∪ map(students, Student) ∪ map(lecturers, Lecturer) 

(prop)∪ maptrue 

Therefore, following Remark 3, we can prove that for every object model O of Uni 
data model, for every object student of class Student, lecturer of class Lecturer, 
and for any user caller of user class Lecturer that satisfies the property of being an 
oldest lecturer : 

Eval(O, auth(Lecturer, read(Enrollment))[σ]) = true (5.1) 

where σ = [caller ← caller ; students ← student ; lecturers ← lecturer ]. Then, 
following Remark 6, we can prove that for every database instance Y of Uni database 
schema, given the corresponding execution context σ: 

Execσ(Y , map(auth(Lecturer, read(Enrollment)))) = TRUE (5.2) 
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Under the assumption that the property holds, we can eliminate unnecessary 
authorization checks in SecQuery(Sec#2, Query#2). Recall the snippet body of the 
stored-procedure generated by SecQuery( Sec#2,Query#2) (depicted in Figure 3.2.3) 
that contains the authorization check: 

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS ( 
SELECT * FROM ⌜TempTable(True)⌝ 
WHERE CASE ⌜AuthFunc(S, Enrollment)⌝ (students, 

lecturers, caller, role) 
WHEN 1 THEN TRUE ELSE throw_error() END as students 

); 

can be optimized as follows: 

IF (map(prop)) 
THEN 

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS ( 
SELECT * FROM ⌜TempTable(True)⌝ 

); 
ELSE 

CREATE TEMPORARY TABLE ⌜TempTable(students)⌝ AS ( 
SELECT * FROM ⌜TempTable(True)⌝ 
WHERE CASE ⌜AuthFunc(S, Enrollment)⌝ (students, 

lecturers, caller, role) 
WHEN 1 THEN TRUE ELSE throw_error() END as students 

); 
END IF; 

Remarks: Applying the methodology described before, we can in fact prove that, 
in this case where (i) the user has the role Lecturer and (ii) the user satisfies the 
property of being the oldest lecturer, the case-statement can be securely removed. 
Notice that the case-statement cannot be removed, however, for the case of the poli-
cies Sec#3. Neither can it be removed for any user that is not the oldest lecturer. 4 

4For the interested readers, the complete SQL implementation of this secured stored-procedure 
as well as the optimized version can be found in Appendix E. 
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5.4 Fourth example: Object properties 
In this fourth and final example, consider the following configuration: 

Data model: Uni 
User class: Lecturer 
Scenarios: Uni(n), for n ≥ 2 
Security policy: Sec#3 
Role: Lecturer 
Query: Query#3 

To begin with, we show the create-statements generated by the function call SecQuery( 
Sec#3,Query#3): 

CREATE TEMPORARY TABLE ⌜TempTable(lecturers = caller)⌝ AS ( 
SELECT Student_id AS students, Lecturer_id AS lecturers 
FROM Student, Lecturer 
WHERE Lecturer_id = caller; 

); 

CREATE TEMPORARY TABLE ⌜TempTable(students, lecturers)⌝ AS ( 
SELECT * 
FROM ⌜TempTable(lecturers = caller)⌝ 
WHERE CASE ⌜AuthFunc(S, Enrolment)⌝ (students, lecturers, 

caller, role) WHEN 1 THEN TRUE 
ELSE throw_error() END as students 

); 

CREATE TEMPORARY TABLE ⌜TempTable(Student_id = students)⌝ AS ( 
SELECT * 
FROM Student 
JOIN ⌜TempTable(students, lecturers)⌝ 
ON Student_id = students 

); 

CREATE TEMPORARY TABLE ⌜TempTable(age)⌝ AS ( 
SELECT CASE ⌜AuthFunc(S, age)⌝ (Student_id, caller, role) 

WHEN 1 THEN age ELSE throw_error() END as age 
FROM ⌜TempTable(Student_id = students)⌝ 

); 
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Consider the first case-statement in the temporary table ⌜TempTable(students, lec-
turers)⌝: 

‹ Firstly, we consider the relevant invariant of the given scenarios. In this case: 
Every lecturer has every student as his/her student. 

Lecturer.allInstances() → forAll(l|
Student.allInstances() → forAll(s|l.students → includes(s))) 

Denote by inv the above OCL invariant. More specifically, we state the for-
mulae returned by maptrue(inv) (as in this case, there is no formula/axiom 
returned by mapdef (inv)). 

‹ We recall the corresponding authorization constraint. In this case: A lecturer 
can know the students of any lecturer, if the student is his/her student. 

auth(Lecturer, read(Enrollment)) = 
caller.students → exists(s | s = students) 

Denote by auth the above OCL authorization constraint. More specifically, 
we state the formulae returned by maptrue(auth) (as in this case, there is no 
formula/axiom returned by mapdef (auth)). 

‹ We extend the signature with the symbol constants for caller, students and 
lecturers, and the corresponding axioms. In this case: caller, lecturers 
are lecturers, and students is a student. 

Notice that the following theory is unsatisfiable : 

map(Uni) ∪ ¬ maptrue(auth) 
∪ map(caller, Lecturer) 
∪ map(students, Student) ∪ map(lecturers, Lecturer) 
∪ maptrue(inv) 

Therefore, following Remark 3, we can prove that for every object model O of Uni 
data model that satisfies inv , for every object student of class Student, lecturer of 
class Lecturer, and for any user caller of user class Lecturer: 

Eval(O, auth(Lecturer, read(Enrollment))[σ]) = true 
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where σ = [caller ← caller ; students ← student ; lecturers ← lecturer ]. Then, 
following Remark 6, we can prove that for every database instance Y of Uni database 
schema that satisfies map(inv), given the execution context σ: 

Execσ(Y , map(auth(Lecturer, read(Enrollment)))) = TRUE 

Finally, following Remark 9, we can eliminate this unnecessary authorization check. 
As a result, the temporary table ⌜TempTable(students, lecturers)⌝ can be rewrit-
ten as follows: 

IF (map(inv)) 
THEN 

CREATE TEMPORARY TABLE ⌜TempTable(students, lecturers)⌝ AS ( 
SELECT * FROM ⌜TempTable(lecturers = caller)⌝ 

); 
ELSE 

CREATE TEMPORARY TABLE ⌜TempTable(students, lecturers)⌝ AS ( 
SELECT * 
FROM ⌜TempTable(lecturers = caller)⌝ 
WHERE CASE ⌜AuthFunc(S, Enrolment)⌝ (students, lecturers, 

caller, role) WHEN 1 THEN TRUE 
ELSE throw_error() END as students 

); 
END IF; 

Moreover, consider second case-statement in temporary table ⌜TempTable(age)⌝: 

‹ We recall the corresponding authorization constraint, i.e. A lecturer can know 
the age of any student, if the student is his/her student : 

auth(Lecturer, read(Student : age)) = 
caller.students → exists(s | s = students) 

Denote by auth the above OCL authorization constraint. More specifically, 
we state the formulae returned by maptrue(auth) (as in this case, there is no 
formula/axiom returned by mapdef (auth)). 
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‹ We extend the signature with the constants for caller and self, and the 
corresponding axioms. In this case: caller is a lecturer, and self is a student. 

‹ Furthermore, we acknowledge that the temporary table ⌜TempTable(Stud-
ent_id = students)⌝ only contains the students of the caller. This property 
can be manually written as an OCL expression: 5 

caller.students → includes(self) 

Denote by prop the above OCL students–property. More specifically, we state 
the formulae returned by maptrue(prop) (as in this case, there is no formulae/ax-
iom returned by mapdef (prop)). 

Notice that the following theory is unsatisfiable : 

map(Uni) ∪ ¬ maptrue(auth) 
∪ map(caller, Lecturer) ∪ map(self, Student) 
∪ maptrue(prop) 

Therefore, following Remark 3, we can prove that for every object model O of Uni 
data model, for every object student of class Student and for every user caller of 
user class Lecturer: 

Eval(O, auth(Admin, read(Student : age))[σ]) = true (5.3) 

where σ = [caller ← caller ; self ← student ]. Then, following Remark 6, we can 
prove that for every database instance Y of Uni database schema, given the execution 
context σ: 

Execσ(Y , map(auth(Lecturer, read(Student : age)))) = TRUE (5.4) 

Finally, following Remark 8, we can eliminate this unnecessary authorization check. 
As a result, the temporary table ⌜AuthFunc(S, age)⌝ can be rewritten as follows: 

CREATE TEMPORARY TABLE ⌜TempTable(age)⌝ AS ( 
SELECT age 
FROM ⌜TempTable(Student_id = students)⌝ 

); 

5Note that, these so-called “coincidental” properties are manually written by the modeller. One 
interesting question arises as: Can these properties be automatically derived?. However, due to the 
time limit, we leave it as part of future work. 
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Remarks Applying the methodology described before, we can in fact prove that, 
in this case where the user has the role Lecturer, the case-statements can be securely 
removed. Notice that neither of the case-statements cannot be removed, however, 
for the case of the policies Sec#2. 6 

6For interested readers, the complete SQL implementation of this secured stored-procedure as 
well as the optimized versions can be found in Appendix E. 
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Chapter 6 

Tool support 

In this thesis, we have shown that, in fact, some of these authorization checks are 
unnecessary and hence can be removed from the stored-procedure to optimize the 
execution performance. As a proof of concept, we have implemented a prototype 
to check for the necessity of the authorization checks based on the formal approach 
described in Chapter 4. In what follows, we will denote this tool by the name FGAC-
Optimizer. 

In this chapter, we introduce the FGAC-Optimizer tool, then describe its typical 
use-case scenario. 

6.1 The FGAC-Optimizer tool 
The FGAC-Optimizer tool is a command-line application implemented using general-
purpose programming languages, namely Java and Python. In general, the FGAC-
Optimizer tool accepts a JSON configuration file as input and performs two tasks: 
firstly, it generates the corresponding many-sorted first-order logic theory, written 
in SMT-LIB language (version 2.0) [6], and then uses an SMT solver of choice to 
determine whether the above theory is satisfiable. 1 The detail implementation of 
this tool can be found on the GitHub repository at https://github.com/npbhoang/ 
FGAC-Optimizer. 

1The SMT-LIB is an international initiative, coordinated by the “gu-ru” of the SMT community, 
with the aim of facilitating research and development in SMT [6]. One of the main contributions 
of the SMT-LIB is to define a common standard input language for SMT-solvers, called SMT-LIB 
language. 
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Input configuration The input configuration stores the vital information for the 
FGAC-Optimizer tool to generate the theory. More specifically, the available setting 
variables are: 

‹ DataModel: Thel filename containing the data model, in JSON-format. 2 

‹ Invariants: The OCL invariants that hold in the data model (for example, 
from the last chapter, every lecturer teaches every student), in text format. 

‹ SecurityModel: The filename containing the security model, in JSON-format. 3 

‹ Role: The considered role, in text format. 

‹ Resource: The target property to be read, it may be either an attribute of a 
class or an association. 

– for the former case, a JSON-object consists of two fields, namely entity 
and attribute containing the class name and the attribute to be read, 
respectively. 

– for the latter case, a JSON-object consists of one field, namely association 
containing the association name to be read. 

‹ Properties: The OCL expressions represent the properties of the user or the 
object to be read (for example, the user is the oldest lecturer), in text format. 

‹ Solvers: The SMT solvers of choice (these solvers must support the SMT-LIB 
language). 

Listing 6.1 displays a sample input configuration for checking the necessity of the 
authorization check described in Example 5.1. In this example, the end-user would 
like to use CVC4 solver to check for the necessity of the authorization check when 
an user with a role Admin attempting to read Enrollment association links, in Uni 
data model, according to the security model Sec#1. 

2For the interested readers, the definition of data model in JSON representation is included in 
Appendix C. 

3For the interested readers, the definition of FGAC security model in JSON representation is 
included in Appendix D. 
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1 

Listing 6.1: A sample configuration input for the FGAC-Optimizer tool 

{ 
2 " DataModel ": " Uni ", 
3 " SecurityModel ": " Sec #1" , 
4 " Role ": " Admin ", 
5 " Resource ": { 
6 " Association ": " Enrollment " 
7 }, 
8 " Solvers ": [" CVC4 "] 
9 } 

Generating MSFOL theories Firstly, the FGAC-Optimizer takes the input con-
figuration and generates the corresponding many-sorted first order logic theory. Fig-
ure 6.1 describes the design of this feature, at the component level. This part is 
implemented using Java and essentially consists of five main components: 

‹ DMParser handles the parsing of data models from JSON representation to 
Java objects. 

‹ SMParser handles the parsing of security models from JSON representation to 
Java objects. 

‹ OCLParser handles the parsing of OCL expressions from string to Java objects. 

‹ DM2MSFOL implements the function map(), generating the MSFOL theory of 
the data model. 

‹ OCL2MSFOL implements the function maptrue() and its auxiliary functions, gen-
erating the MSFOL formulae from the OCL expressions. 4 

Solving MSFOL theories Secondly, the FGAC-Optimizer tool uses SMT-solvers 
to solve the generated MSFOL theory. The result value can only be either SAT 
(satisfiable), UNSAT (unsatisfiable) or UNKNOWN: 

4Note that, for this proof of concept, we currently support maptrue() only for the subset of the 
OCL that the OCLParser is able to parse. The supported subset description can be found at our 
repository at https://github.com/npbhoang/FGAC-Optimizer/wiki/. 
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Figure 6.1: The FGAC-Optimizer component diagram 

‹ if the result returns SAT, then there exists an instance (or a model) where an 
user u, with the given Role, is not authorized to read the given Resource of 
some objects. In this case, the authorization check cannot be removed. 

‹ if the result returns UNSAT, then there exists no instance (model) where an user 
u, with the given Role, is not authorized to read the given Resource of some 
objects. In this case, the authorization check is unnecessary and hence, can be 
removed. 

‹ otherwise, if the result returns UNKNOWN, then it remains unknown whether 
such instance (model) exists. In this case, the authorization check cannot be 
removed. 

6.2 The SQLSI use-case (extended) 
In [3], we proposed a model-driven approach to support enforcing fine-grained access 
control at the database level. As part of our work presented in [4], we have im-
plemented a transformation tool, called SQLSI, that automatically rewrites normal 
SQL queries into stored-procedures which include the authorization checks. In this 
thesis, we propose a model-driven methodology to optimize the generated stored-
procedures. And as part of the work presented here, we include a prototype to 
support our methodology, called FGAC-Optimizer. 
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Figure 6.2: The SQLSI use-case (extended) 

In Figure 6.2 , given an application with the underlying database modelled by a 
data model D, given the FGAC security model S, and given collection of SQL queries 
Q, the typical workflow, to enforce fine-grained access control for Q is the following: 

‹ For each query q ∈ Q, the modeller inputs the data model D, security model 
S and the query q into the SQLSI tool. Then, the SQLSI tool automatically 
generates the corresponding secure stored-procedure SecQuery(S, q). 

‹ Next, the modeller analyzes the stored-procedure SecQuery(S, q) and identifies 
potential unnecessary authorization checks. Then, for each identification, the 
modeller creates a different input configuration, and feeds it into the FGAC-
Optimizer tool. 

– if the result is SAT or UNKNOWN, then the check cannot be removed with 
the given configuration. 

– otherwise, if the result is UNSAT, then the check can be removed with the 
given configuration. In this case, the modeller can rewrite the stored-
procedure in a way that makes use of this new information. 
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Chapter 7 

Evaluation 

In this chapter, we evaluate different criteria of our proposed model-based method-
ology for optimizing secure stored-procedure. Firstly, we revisit the experiments 
in Chapter 5 once more, this time applying the tool and the use-case proposed in 
the previous chapter. Then, we compare the execution-time performance of these 
optimized stored-procedure with the original. 

7.1 Generating and Solving MSFOL theories 
To evaluate the correctness of our generated MSFOL theories, with respect to the 
examples in Chapter 5, we rely on the two state-of-the-art SMT solvers, namely the 
Cooperating Validity Checker 4 (CVC4) [7], version 1.8., and the Microsoft Research 
Z3 [21], version 4.8.12. In this evaluation, for each example in Chapter 5, we generate 
the MSFOL theories using (i) the exact configuration introduced at the beginning 
and (ii) the configuration mentioned in the remarks at the end of each example. The 
interested readers can find in Appendix F the satisfiability problem that corresponds 
to these experiments. 

Table 7.1 shows the output results as well as the solving time of each SMT solver. 1 

For each of the example in Chapter 5, we generate the corresponding MSFOL theory 
using the FGAC-Optimizer tool, then we feed these generated MSFOL theory to the 
SMT-solvers. In Table 7.1, ◦ and — denote that the solver returns SAT and UNKNOWN, 
respectively; whereas • denotes the solver returns UNSAT. The solving time here is 

1The transformation time of the MSFOL theory is another metric that can be included in this 
evaluation. However, since the transformation was implemented without using any transformation 
tool but ad-hoc and the recorded time is not significant, we decided not to report it. 

68 



Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4a Ex. 5.4b 
(1) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) 

CVC4 • 
0.74 

• 
0.18 

— 
0.17 

— 
0.31 

• 
0.11 

— 
0.07 

— 
0.11 

• 
0.06 

— 
0.1 

— 
0.07 

• 
0.15 

— 
0.1 

— 
0.08 

CVC4† • 
0.03 

• 
0.12 

◦ 
0.08 

◦ 
0.11 

• 
0.09 

◦ 
0.08 

◦ 
0.06 

• 
0.06 

◦ 
0.07 

◦ 
0.07 

• 
0.1 

◦ 
0.06 

◦ 
0.07 

Z3 • 
0.47 

• 
0.09 

◦ 
0.15 

◦ 
0.1 

• 
0.07 

◦ 
0.06 

◦ 
0.06 

• 
0.07 

◦ 
0.06 

◦ 
0.06 

• 
0.15 

◦ 
0.07 

◦ 
0.06 

Table 7.1: The experiment results for examples in Chapter 5, under different input configurations, 
solved by different SMT-solvers, namely the CVC4, the CVC4 with –finite-model-find mode 
(denoted by CVC4†), and Z3. 

measured in seconds, and by the arithmetic average of 10 executions. Overall, for 
all input theories, both CVC4 and Z3 solver response in less than 1 second. This 
solving time is acceptable since, as mentioned in our use-case, this proving process 
only happens at compile-time. More importantly, the result returned is as expected, 
i.e. with the configurations in category (i), the solvers always return UNSAT—which 
is as expected, since we have formally proved in Chapter 5 that the authorization 
checks in these examples are indeed unnecessary; with category (ii), the solvers return 
either UNKNOWN or SAT—which is as expected, since the authorization checks in these 
cases cannot be removed. 2 

7.2 Calling the optimized stored-procedures 
Figure 7.1 shows the execution-time of the optimized stored-procedure, calculated 
by the average of 10 executions. The interested readers can find in Appendix E 
the source code of the optimized stored-procedure for these experiments. As ex-
pected, the execution-time of the secured stored-procedure after being rewritten has 
reduced significantly. In Example 5.2 and 5.4, the execution of the optimized stored-
procedures are even on par with the “unsecured” query. In particular, as depicted 
in Table 7.2, given the scenario Uni(103), Example 5.1, 5.2, 5.3 and 5.4, the opti-
mized stored-procedures execute approximately 9, 144, 5 and 50 times faster than 
the generated stored-procedures from SecQuery(). 

2In the case where the solver returns SAT, the end-user can also obtain a counter-example, i.e. the 
scenario where the authorization check returns false, as a proof that the check cannot be removed. 
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Figure 7.1: The execution-time overall comparison of the optimized stored-procedures in Chapter 5. 
In each experiment, the line marked with •, ⋆ and ◁ indicate the execution-time of the original 
query, the generated stored-procedure and the optimized stored-procedure, respectively. 

Ex. 
100 200 300 400 

{n | Uni(n)}
500 600 700 800 900 1000 

5.1 execution-time 
speed-up 

0.007 
4.598 

0.008 
6.214 

0.007 
8.539 

0.011 
6.708 

0.009 
9.204 

0.010 
9.771 

0.011 
10.42 

0.014 
9.190 

0.014 
9.789 

0.018 
8.931 

5.2 execution-time 
speed-up 

0.345 
8.914 

1.989 
8.444 

5.739 
12.91 

10.57 
20.81 

19.39 
26.93 

25.64 
41.06 

31.45 
69.72 

42.57 
78.01 

50.6 
103.8 

61.96 
144.4 

5.3 execution-time 
speed-up 

0.320 
5.941 

2.467 
3.232 

5.368 
3.680 

10.49 
3.796 

19.14 
3.224 

23.53 
4.071 

30.71 
4.305 

41.00 
4.543 

47.64 
5.201 

59.26 
5.465 

5.4 execution-time 
speed-up 

0.017 
6.875 

0.054 
2.377 

0.046 
4.445 

0.062 
4.409 

0.105 
5.259 

0.070 
18.67 

0.072 
27.66 

0.081 
34.47 

0.097 
31.55 

0.074 
50.53 

Table 7.2: The detail execution-time of the optimized secured stored-procedures and the speed-up 
obtained with respect to the execution-time of the generated stored-procedures. 
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Chapter 8 

Related Work 

The work presented in this thesis optimizes a recently proposed, model-driven ap-
proach for enforcing FGAC policies when executing SQL queries [2, 3, 4]. In this 
chapter, we discuss the works that are related to the aforementioned model-driven 
approach for enforcing FGAC policies as well as our model-driven methodology to 
optimize it. 

A key feature of the approach proposed in [3, 4] is that it does not modify the un-
derlying database, except for adding the stored-procedures that configure our FGAC 
enforcement mechanism. This is in clear contrast with the solutions currently offered 
by the major commercial RDBMS and some theoretical research, which recommend 
to manually create appropriate views —like in the case of MySQL or MariaDB [34]— 
or to automatically generates additional policy columns and tables —like in the 
case of [5]—, and then to modify the queries as to referencing these views/tables/-
columns, or request — like Oracle [15], PostgreSQL [38], and IBM [24]— to use 
other non-standard, proprietary enforcement mechanisms. As argued in [2], the so-
lutions currently offered by the major RDBMS are far from ideal: in fact, they are 
time-consuming, error-prone, and scale poorly. 

The second key feature of the model-driven approach proposed in [3, 4] is that 
FGAC policies and SQL queries are kept independent of each other, except for the 
fact that they refer to the same underlying data model. This means, in particular, 
that FGAC policies can be specified without knowing which SQL queries will be 
executed, and vice versa. This is in clear contrast with the solution recently proposed 
in [33] where the FGAC policies must be (re-)written depending on the SQL queries 
that are executed. Nevertheless, the approach proposed in [3, 4] certainly shares 
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with [33], as well as with other previous approaches like [31], the idea of enforcing 
FGAC policies by rewriting the SQL queries, instead of by modifying the underlying 
databases or by using non-standard, proprietary RDBMS features. 

The third key-feature of approach proposed in [3, 4] is that the enforcement mech-
anism can be automatically generated from the FGAC policies, by using available 
mappings from OCL to SQL —for example [23, 22, 35]— in order to implement the 
authorization constraints appearing in the FGAC policies. In practice, however, our 
experiments show that, for the sake of execution-time performance, manually im-
plementing in SQL the authorization constraints appearing in the FGAC policies is 
to be preferred over using the implementations generated by the available mappings 
from OCL to SQL [17]. 

Notice that, in our approach, whenever a user is unauthorized to access a part of 
information which is used to answer the query, we immediately rollback the execu-
tion and return to the user an unauthorization error. This is, in fact, not the only 
approach to enforce fine-grained access control. The Truman Model, the terminol-
ogy introduced in [45], favored in [16, 37], describes the mechanism where FGAC 
enforcement does not return an error but display as many information as the user 
is authorized to see. One major drawback, as described in [45], is that since a user 
is not aware of the enforcement underneath, he/she does not know whether the re-
sult obtained is complete or not. In clear contrast, our approach ensures the above 
consistency, in the sense that the user will either get the expected result or the unau-
thorized error. Consequently, we share the same remark with [45], that: “one major 
concern about using this approach [the Non-Truman model] is the overhead of validity 
checking, especially for queries with a small execution time”. Nevertheless, to opti-
mize the validity checking, the approach proposed in [45] differs from the solution in 
this thesis. 

Finally, it is worthwhile to include in this chapter the work related with the map-
ping from OCL to first-order logic (FOL). To begin with, there have been many 
proposed mapping from OCL to different formalisms, [29, 1, 40] to name a few, but 
OCL2MSFOL [19], to the best of our knowledge, is the current state of the art. Fur-
thermore, in references, this mapping has used in many lines of research that have 
similar context, e.g. formal reasoning about the validity of the data models [18], as 
well as the policy consistency of SecureUML models [20]. 
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Chapter 9 

Limitations, Conclusions and 
Future Work 

Recently, [4] has proposed a model-driven approach for enforcing fine-grained access 
control (FGAC) policies when executing SQL queries. In a nutshell, to enforce FGAC 
policies when executing SQL queries, a function SecQuery() is defined that, given a 
policy S and a select-statement q, generates an SQL stored-procedure, such that: if 
a user is authorized, according to S, to execute q, then calling this stored-procedure 
will return the same result that executing q; otherwise, if a user is not authorized, 
according to S, to execute q, then calling the stored-procedure will signal an error. 

Not surprisingly, since enforcing FGAC policies for SQL queries implies performing 
authorization checks at execution-time, when following the approach proposed [4] 
there is a loss in performance. Clearly, however, there are situations in which the 
required authorization checks are in fact unnecessary, because they will always return 
true. 

In this thesis we have developed a formal, model-based methodology for optimizing 
the stored-procedures generated by the function SecQuery(). In particular, whenever 
“secure”, subqueries are favored over temporary tables, in order to allow the SQL 
optimizer to do its job. The decision of whether it is “secure” or not to use sub-queries 
instead of temporary tables ultimately depends on the underlying security model, 
and more particularly on the authorization constraints responsible in each case of 
the case-statements generated by SecQuery(). If these authorization constraints (i) 
can be proved to be trivial, or if they (ii) can be proved to be always satisfied given 
the invariants of the underlying data model, and/or (iii) can be proved to be satisfied 
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given the known properties of the objects involved in the authorization request, then 
the case-statements do not need to be generated, and the corresponding temporary 
tables can be safely replaced by sub-queries. To illustrate our approach we have 
provided a number of examples, involving different FGAC policies, queries, and 
scenarios, and we have evaluated the performance overhead incurred when executing 
the stored-procedures generated by SecQuery(). Finally, we have also implemented 
our approach as a prototype, which is currently an on-going project. 

As far as the limitation concerned, our approach currently has several limitations. 
The following items describe these limitations and our future work in their regards. 

Firstly, the data model does not support generalizations as well as m-to-n associ-
ations, where m and n are different from 1 or many . In addition, the FGAC security 
model does not consider role-hierarchies and we only consider the read-actions. It is 
part of our future work to extend these considerations. 

Secondly, we define our own mapping from data model to SQL schemata. How-
ever, other mappings from data models to SQL databases are also possible. Of 
course, in this case, the implementation of enforcing FGAC policies must be changed 
accordingly. 

As far as the function SecQuery() is concerned, its current implementation, which 
is described in Appendix B, only works for the MySQL Server. However, since all 
of the major SQL database systems follow the common standard [49], it is feasi-
ble to extend (syntactically) the implementation to support as well other relational 
database management systems. For non-relational databases, the general approach 
underlying is applicable. These are also parts of future work. 

The definition of the function SecQuery(), which takes an SQL query as input, only 
covers the query patterns in [2]. As part of the future work, we plan to extend this 
definition to cover as much as possible of the SQL language, including, in particular, 
left/right-joins, group-by clauses and user-defined functions. 

As mentioned before, ideally, the implementations of the OCL authorization con-
straints used by the function AuthFunc() could be automatically generated from the 
FGAC security models, by using available mappings from OCL to SQL —for exam-
ple [35]. In practice, however, for the sake of execution-time performance, manually 
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implementing in SQL the authorisation constraints is to be preferred over using the 
implementations generated by the available mappings from OCL to SQL. 

And finally, our methodology is not fully automated and requires human intuition. 
Firstly, in some cases, in order to prove a case-expression is unnecessary, a database 
invariant or a property of the user need to be introduced. Since this methodology 
operates at the compile-time, these properties cannot be derived automatically from 
the given resources but rather to be manually inserted by the modeller. Secondly, 
whenever a case-expression is proven to be unnecessary, the modeller is responsible 
to rewrite the stored-procedure in a way that makes use of this information. It is 
our future work to replace some of these ad-hoc steps into automation. 
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Küng, Makoto Takizawa, and Son Ha Bui, editors, Future Data and Security 
Engineering - 6th International Conference, FDSE 2019, Proceedings, volume 
11814 of Lecture Notes in Computer Science, pages 185–203. Springer, 2019. 

[36] Object Constraint Language Specification, version 2.4. Technical report, Object 
Management Group, February 2014. https://www.omg.org/spec/OCL/. 

[37] Lars E. Olson, Carl A. Gunter, and P. Madhusudan. A Formal Framework for 
Reflective Database Access Control Policies. In Peng Ning, Paul F. Syverson, 
and Somesh Jha, editors, Proceedings of the 2008 ACM Conference on Computer 
and Communications Security, CCS 2008, Alexandria, Virginia, USA, October 
27-31, 2008, pages 289–298. ACM, 2008. 

[38] PostgreSQL 12.2, 2017. Part II. SQL The Language. Chapter 5. Data Definition. 
5.8. Row Security Policies. https://www.postgresql.org/docs/10/ddl.html. 

[39] Roger Pressman and Bruce Maxim. Software Engineering: A Practitioner’s 
Approach, Ninth Edition. McGraw Hill Publishers, 9th edition, 2019. 

80 

https://mariadb.com/resources/blog/
https://www.omg.org/spec/OCL/
 https://www.postgresql.org/docs/10/ddl.html


[40] Anna Queralt, Alessandro Artale, Diego Calvanese, and Ernest Teniente. OCL-
Lite: Finite Reasoning on UML/OCL Conceptual Schemas. Data Knowl. Eng., 
73:1–22, 2012. 

[41] MariaDB Server Documentation - User & Server Security - Roles. Technical 
report, 2021. https://mariadb.com/kb/en/roles/. 

[42] MySQL 8.0 Refenrence Manual - 6.2.10 Using Roles. Technical report, Ora-
cle Corporation, 2021. https://dev.mysql.com/doc/refman/8.0/en/roles. 
html. 

[43] PostgreSQL 13 Documentation - Chapter 21. Database Roles. Technical report, 
2021. https://www.postgresql.org/docs/13/user-manag.html. 

[44] Security Center for SQL Server Database Engine and Azure SQL Database. 
Technical report, Microsoft Corporation, September 2017. https://docs. 
microsoft.com/en-us/sql/relational-databases/security. 

[45] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending 
Query Rewriting Techniques for Fine-Grained Access Control. In Proceedings 
of the 2004 ACM SIGMOD International Conference on Management of Data, 
SIGMOD ’04, pages 551–562, New York, NY, USA, 2004. Association for Com-
puting Machinery. 

[46] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona Polack. The 
Epsilon Generation Language. In Ina Schieferdecker and Alan Hartman, edi-
tors, Model Driven Architecture - Foundations and Applications, 4th European 
Conference, ECMDA-FA 2008, Berlin, Germany, June 9-13, 2008. Proceedings, 
volume 5095 of Lecture Notes in Computer Science, pages 1–16. Springer, 2008. 

[47] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. 
Role-Based Access Control Models. Computer, 29(2):38–47, 1996. 

[48] Ravi S. Sandhu, David F. Ferraiolo, and D. Richard Kuhn. The NIST Model for 
Role-Based Access Control: Towards a Unified Standard. In Klaus Rebensburg, 
Charles E. Youman, and Vijay Atluri, editors, Fifth ACM Workshop on Role-
Based Access Control, RBAC 2000, Berlin, Germany, July 26-27, 2000, pages 
47–63. ACM, 2000. 

[49] ISO/IEC 9075-(1–10) Information technology – Database languages – 
SQL. Technical report, International Organization for Standardization, 

81 

https://mariadb.com/kb/en/roles/
https://dev.mysql.com/doc/refman/8.0/en/roles.html
https://dev.mysql.com/doc/refman/8.0/en/roles.html
https://www.postgresql.org/docs/13/user-manag.html
https://docs.microsoft.com/en-us/sql/relational-databases/security
https://docs.microsoft.com/en-us/sql/relational-databases/security


2011. http://www.iso.org/iso/home/store/catalogue_tc/catalogue_ 
detail.htm?csnumber=63555. 

[50] Unified Modeling Language Specification Version 1.1. Technical report, Object 
Management Group, December 1997. https://www.omg.org/spec/UML/1.1/ 
About-UML/. 

[51] Unified Modeling Language Specification Version 2.0 Infrastructure. Technical 
report, Object Management Group, July 2005. https://www.omg.org/spec/ 
UML/2.0/About-UML/. 

[52] Data Security Guide: Using Oracle Virtual Private Database to Control Data 
Access. https://docs.oracle.com/database/121/DBSEG. 

82 

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63555
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63555
https://www.omg.org/spec/UML/1.1/About-UML/
https://www.omg.org/spec/UML/1.1/About-UML/
https://www.omg.org/spec/UML/2.0/About-UML/
https://www.omg.org/spec/UML/2.0/About-UML/
https://docs.oracle.com/database/121/DBSEG


Appendices 

83 



Appendix A 

Mapping data and object models 
to databases 

In this appendix, we recall the specific mappings from data models and object models 
to SQL that are used in this thesis for enforcing FGAC policies when executing SQL 
queries. 

The mapping of data models 
In characterizing access control authorization for SQL queries [2], we assume that 
SQL queries are executed on databases according to the mappings defined below. 

Definition 8. Let D = ⟨C, AT , AS ⟩ be a data model. Our mapping of data model 
D to SQL, denoted by D, is defined as follows: 

‹ For every c ∈ C, a corresponding table c, with a primary key column c_id, is 
created: 

CREATE TABLE c (c_id VARCHAR PRIMARY KEY); 

‹ For every attribute at ∈ AT , at = ⟨atn, c, t⟩, a column atn, with the corre-
sponding SQL type, is added into table c: 

ALTER TABLE c ADD COLUMN atn SqlType(t); 
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where: 

– if t = Integer, then SqlType(t) = INT. 
– if t = String, then SqlType(t) = VARCHAR. 
– if t ∈ C, then SqlType(t) = VARCHAR. 

Moreover, if t ∈ C, then a constraint stating that the value of this column refers 
to the primary key column of class t is included: 

ALTER TABLE c 
ADD FOREIGN KEY fk_c_atn(atn) REFERENCES t(t_id); 

‹ For every association as ∈ AS , as = ⟨asn, ase l, cl, aser, cr⟩, a corresponding 
table asn, with two columns ase l and aser refers to the primary key column of 
class cl and cr, is created: 

CREATE TABLE asn ( 
ase l varchar NOT NULL, 
aser varchar NOT NULL, 
FOREIGN KEY fk_cl_ase l(ase l) REFERENCES cl(cl_id), 
FOREIGN KEY fk_cr_aser(aser) REFERENCES cr(cr_id) 

); 

Moreover, a constraint stating that the tuple in this table is unique, is included: 

ALTER TABLE asn 
ADD UNIQUE unique_link(ase l, aser); 

The mapping of objects models 
Definition 9. Let D = ⟨C , AT , AS ⟩ be a data model. Let O = ⟨OC , OAT , OAS ⟩ 
be an object model of D. Our mapping of object model O to SQL, denoted by O, is 
defined as follows: 
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‹ For every object o ∈ OC , o = ⟨oi , c⟩, a tuple contains only the unique object 
identifier oi is inserted into the primary column c_id of table c: 

INSERT INTO c(c_id) VALUES (oi); 

‹ For every attribute value atv ∈ OAT , atv = ⟨⟨atn, c, t⟩, ⟨oi , c⟩, vl⟩, the value vl 
is updated at the attribute atn of the corresponding tuple of object ⟨oi , c⟩: 

UPDATE c SET atn = vl WHERE c_id = oi; 

‹ For every association link asl ∈ OAS , asl = ⟨⟨asn, ase l, cl, aser, cr⟩, ⟨oi l, cl⟩, 
⟨oi r, cr⟩⟩, a tuple contains the object identifications of the left object ⟨oi l, cl⟩ 
and the right object ⟨oi r, cr⟩ is inserted into the table asn: 

INSERT INTO asn(ase l, aser) VALUES (oi l, oi r); 
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Appendix B 

Defining secure SQL queries 

In this appendix, we recall from [4] the key components introduced in this thesis for 
defining the enforcement of FGAC policies when executing SQL queries. 

The function SecQuery() 
Informally, given an FGAC policy S and an SQL select-statement q, the function 
SecQuery() generates an SQL stored-procedure satisfying the following: if a user is 
authorized, according to S, to execute q, then calling this stored-procedure returns 
the same result as executing q; otherwise, if a user is not authorized, according to S, 
to execute q, then calling this stored-procedure signals an error. 

In the definition below, ⌜SecQuery(S, q)⌝ denotes the name of the stored-procedure 
generated by SecQuery(), for an FGAC policy S and a query q. SecQuery() uses the 
auxiliary function SecQueryAux() that is defined in the next section. 

Definition 10. Let D = ⟨C, AT, AS⟩ be a data model. Let S = ⟨R, auth⟩ be a 
security model for D. Let q be an SQL query in D. Then, SecQuery(S, q) generates 
the following stored-procedure: 
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CREATE PROCEDURE ⌜SecQuery(S, q)⌝ ( 
caller varchar(250), role varchar(250)) 

BEGIN 
DECLARE _rollback int DEFAULT 0; 
DECLARE EXIT HANDLER FOR SQLEXCEPTION 
BEGIN 

% If an error is signalled, then set _rollback to 1 and 
% return the error message. 
SET _rollback = 1; 
GET STACKED DIAGNOSTICS CONDITION 1 

@p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT; 
SELECT @p1, @p2; 
ROLLBACK; 

END; 
START TRANSACTION; 

% For each authorization condition applicable to the original query, 
% create the corresponding temporary table. 

SecQueryAux(S, q) 

% If after creating all the temporary tables, no error has 
% been signalled yet, i.e., _rollback still has value 0, 
% then execute the original query. 

IF _rollback = 0 
THEN q; 

END IF; 
END 
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The function SecQueryAux 
The definition of SecQueryAux() proceeds recursively. In the definition below, 
⌜TempTable(q, exp)⌝ denotes the name of the temporary table generated by SecQuery, 
for a query q and a (sub-)expression exp in q. 

A subtle, but important point in the definition of SecQueryAux() has to do with the 
way of handling read-access authorization for tables representing associations. The 
definition of SecQueryAux() assumes that the policies’ underlying data models, as 
well as its object models, are implemented in SQL following the mapping introduced 
in Appendix A. According to this mapping, the rows in the association-tables only 
represent the links of the given association that exist between objects. In other 
words, if a link does not exist, this information is not stored anywhere. Thus, when 
checking if a user is authorized to know the links of a given association, it should be 
performed not only the appropriate checks on the rows contained in the corresponding 
association-table, but also on the rows contained in its (virtual) complement, i.e., on 
those rows represent the links that do not exist between objects. For this reason, 
in the definition of SecQueryAux() below, when handling read-access authorization 
for tables representing associations, it is considered the Cartesian product of the two 
end-tables involved in the given association, checking read-access authorization for 
every row in the Cartesian product. 

Next, the different cases in the recursive definition of the function SecQueryAux() 
are introduced. For each case, the authorization conditions that need to be satis-
fied are informally introduced as well. As mentioned before, these conditions have 
been formally defined in [2]. According to these conditions, not only the data that 
appears in the final result, but any data that is used when executing a query (in 
particular, data used by sub-queries, where-clauses, and on-clauses) must be checked 
for policy-compliance. To this end, the function SecQueryAux() uses the function 
SecAtt() to add the corresponding authorization checks to any expression accessing 
specific attribute values, and the function SecAs() to add the corresponding autho-
rization checks to access association links. These functions will be introduced in 
the next section. The function SecAttList(), also used by SecQueryAux(), simply 
iteratively applies SecAtt() to each of the expressions in an expression list. Finally, 
in the definitions below, RepExp() denotes the result of replacing, within an ex-
pression, each occurrence of the association’s association-ends by the corresponding 
association-ends’ class-identifier. 
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Case q = SELECT selitems FROM c WHERE exp. 
To execute q, the following conditions must be satisfied: 

‹ The user is authorized to access the information required to evaluate the where-
clause exp. 

‹ The user is authorized to access the information referred to by selitems , but 
only for the objects/rows that satisfy the where-clause exp. 

For this case, SecQueryAux() returns the following create-statements: 

CREATE TEMPORARY TABLE ⌜TempTable(q, exp)⌝ AS ( 
SELECT * FROM c WHERE SecAtt(S, exp) 

); 
CREATE TEMPORARY TABLE ⌜TempTable(q, selitems)⌝ AS ( 

SELECT SecAttList(S, selitems) FROM ⌜TempTable(q, exp)⌝ 
); 

Case q = SELECT selitems FROM as WHERE exp. 
To execute q, the following conditions must be satisfied: 

‹ The user is authorized to access the information referred to by both associati-
on-ends, but only for the rows contained in the Cartesian product between the 
classes involved in the association that satisfy the where-clause exp. 

For this case, SecQueryAux() returns the following create-statements: 

CREATE TEMPORARY TABLE ⌜TempTable(q, exp)⌝ AS ( 
SELECT cl_id as ase l, cr_id as aser FROM cl, cr 

WHERE RepExp(exp, as) 
); 
CREATE TEMPORARY TABLE ⌜TempTable(q, selitems)⌝ AS ( 

SELECT selitems FROM ⌜TempTable(q, exp)⌝ WHERE SecAs(S, as) 
); 
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Case q = SELECT selitems FROM subselect WHERE exp. 
To execute q, the following conditions must be satisfied: 

‹ The user is authorized to execute the sub-query subselect . 

For this case, SecQueryAux() returns the following create-statements: 

SecQueryAux(S, subselect) 

Case q = SELECT selitems FROM c JOIN as ON exp WHERE exp ′ . 
To execute q, the following conditions must be satisfied: 

‹ The user is authorized to access the information referred to by both associa-
tion-ends in as . 

‹ The user is authorized to access the information required to evaluate the on-
clause exp. 

‹ The user is authorized to access the information required to evaluate the where-
clause exp ′ , but only for the objects/rows and links/rows that satisfy the on-
clause exp. 

‹ The user is authorized to access the information referred to by selitems , but 
only for the objects/rows and links/rows that satisfy the on-clause exp and the 
where-clause exp ′ . 

For this case, SecQueryAux() returns the following create-statements: 

SecQueryAux(S, SELECT ∗ FROM as) 
CREATE TEMPORARY TABLE ⌜TempTable(q, exp)⌝ AS ( 

SELECT * FROM c JOIN as ON SecAtt(S, exp) 
); 
CREATE TEMPORARY TABLE ⌜TempTable(q, exp ′ )⌝ AS ( 

SELECT * FROM ⌜TempTable(q, exp⌝) WHERE SecAtt(S, exp ′ ) 
); 
CREATE TEMPORARY TABLE ⌜TempTable(q, selitems)⌝ AS ( 

SELECT SecAttList(S, selitems) FROM ⌜TempTable(q , exp ′ )⌝ 
); 
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Case q = SELECT selitems FROM c JOIN subselect ON exp WHERE exp ′ . 
To execute q, the following conditions must be satisfied: 

‹ The user is authorized to execute the sub-query subselect . 

‹ The user is authorized to access the information required to evaluate the on-
clause exp. 

‹ The user is authorized to access the information required to evaluate the where-
clause exp ′ ; but only for the objects/rows and links/rows that satisfy the on-
clause exp. 

‹ The user is authorized to access the information referred to by selitems , but 
only for the objects/rows and links/rows that satisfy the on-clause exp and the 
where-clause exp ′ . 

For this case, SecQueryAux() returns the following create-statements: 

SecQueryAux(S, subselect) 
CREATE TEMPORARY TABLE ⌜TempTable(q, exp)⌝ AS ( 

SELECT * FROM c JOIN subselect ON SecAtt(S, exp) 
); 
CREATE TEMPORARY TABLE ⌜TempTable(q, exp ′ )⌝ AS ( 

SELECT * FROM ⌜TempTable(q, exp)⌝ WHERE SecAtt(S, exp ′ ) 
); 
CREATE TEMPORARY TABLE ⌜TempTable(q , selitems)⌝ AS ( 

SELECT SecAttList(S, selitems) FROM ⌜TempTable(q , exp ′ )⌝ 
); 

Case q = SELECT selitems FROM as JOIN subselect ON exp WHERE exp ′ . 
Three cases must be considered: 

(i) The case when ase l appears in exp, but aser does not appear in exp. Let col 
be the column in subselect that ase l is related to in exp. To execute q, the following 
conditions must be satisfied: 

‹ The user is authorized to execute the sub-query subselect. 
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‹ The user is authorized to access the information referred to by both associati-
on-ends, but only for the rows contained in the Cartesian product between the 
classes involved in the association that satisfy the where-clause exp. 

For this case, SecQueryAux() returns the following create-statements: 

SecQueryAux(S, subselect) 
CREATE TEMPORARY TABLE ⌜TempTable(q, exp)⌝ AS ( 

SELECT cl_id as ase l, col as aser FROM cl, subselect 
ON RepExp(exp, as) WHERE RepExp(exp ′ , as) 

); 
CREATE TEMPORARY TABLE ⌜TempTable(q, as)⌝ AS ( 

SELECT * FROM ⌜TempTable(q, exp)⌝ WHERE SecAs(S, as) 
); 

(ii) The case when aser appears in exp, but ase l does not appear in exp. This 
case is resolved analogously to the previous case. 

(iii) The case when both aser and ase l appear in exp. To execute q, the following 
conditions must be satisfied: 

‹ The user is authorized to execute the sub-query subselect. 

‹ The user is authorized to access the information referred to by both associa-
tion-ends. 

For this case, SecQueryAux() returns the following create-statements: 

SecQueryAux(S, subselect) 
SecQueryAux(S, SELECT ∗ FROM as) 

Case q = SELECT selitems FROM subselect1 JOIN subselect2 ON exp WHERE exp ′ . 
To execute q, the following conditions must be satisfied: 

‹ The user is authorized to execute the sub-queries subselect1 and subselect2. 
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For this case, SecQueryAux() returns the following create-statements: 

SecQueryAux(S, subselect1) 
SecQueryAux(S, subselect2) 

The function SecAtt() 
The function SecQueryAux() uses SecAtt() to wrap any access to a protected at-
tribute at into a case-expression. The value of this case expression is a call to a 
function AuthFunc() that implements the authorization checks required for access-
ing the corresponding attribute. If the result of this function-call is TRUE, then the 
case-expression will return the requested resource; otherwise, it will signal an er-
ror. The function AuthFunc() is defined in the following section. In what follows, 
⌜AuthFunc(S, at)⌝ denotes the name of the function generated by SecQuery() for a 
policy S an attribute at ; when the argument S is clear from the context, it may be 
omitted. 
Definition 11. Let D = ⟨C, AT, AS⟩ be a data model. Let S = ⟨R, auth⟩ be a 
security model for D. Let exp be an SQL expression in D. SecAtt(S, exp) denotes 
the SQL expression in D that results from replacing each attribute at = ⟨atn, c, t⟩ in 
exp by the following case-expression: 

CASE ⌜AuthFunc(at)⌝ (c_id, caller, role) 
WHEN 1 THEN at 
ELSE throw_error() END as at . 

where the function throw_error() is defined as followed: 

CREATE FUNCTION throw_error() 
RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
SIGNAL SQLSTATE ’45000’ 
SET MESSAGE_TEXT = ’Unauthorized access’; 
RETURN (0); 

END 
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The function SecAs() 
The function SecQueryAux() uses SecAs() to wrap any access to a protected associa-
tion as into a where case-expression. The value of this case expression is a call to the 
function AuthFunc() that, in this case, implements the authorization checks required 
for accessing the corresponding association-ends. If the result of this function-call 
is TRUE, then the case-expression will also return TRUE; otherwise, it will signal an 
error. The function AuthFunc() is defined in the following section. In what follows, 
⌜AuthFunc(S, as)⌝ denotes the name of the function generated by SecQuery() for a 
policy S an association as ; when the argument S is clear from the context, it may 
be omitted. 

Definition 12. Let D = ⟨C, AT, AS⟩ be a data model. Let S = ⟨R, auth⟩ be a 
security model for D. Let as be an association class in D. Let asel and aser be the 
association-ends of as. SecAs(S, as) denotes the SQL expression in D that results 
by the following case-expression: 

CASE ⌜AuthFunc(as)⌝ (ase l, aser, caller, role) 
WHEN 1 THEN TRUE 
ELSE throw_error() END 

where the function throw_error() is defined as before. 

The function AuthFunc() 
The functions SecAtt() and SecAs() use this function to check that the access to a 
specific protected resource is authorized. For each protected resource, the required 
authorization checks depend on the role of the user attempting to access this resource. 
Accordingly, for each role, the function AuthFunc() calls a function AuthFuncRole() 
that implements the authorization checks required for a user with that role to access 
a specific protected resource. The function AuthFuncRole() will be introduced in 
the next section. In what follows, ⌜AuthFuncRole(S, rs , r)⌝ denotes the name of the 
function generated by SecQuery() for a policy S, a resource rs , and a role r; when 
the argument S is clear from the context, we may omit it. 

Definition 13. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a 
security model for D, with R = {r1, r2, . . . , rn}. Let at be an attribute in AT . Then, 
AuthFunc(at) generates the following SQL function: 
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CREATE FUNCTION ⌜AuthFunc(at)⌝ ( self varchar(250), 
caller varchar(250), role varchar(250)) 

RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
IF (role = r1) 

THEN RETURN ⌜AuthFuncRole(at , r1)⌝(self, caller) 
. . . 
ELSE IF (role = rn) 

THEN RETURN ⌜AuthFuncRole(at , rn)⌝(self, caller) 
ELSE RETURN 0 
END IF; 
. . . 
END IF; 

END 

Similarly, let as be an association in AS . Then AuthFunc(as) generates the following 
SQL function: 

CREATE FUNCTION ⌜AuthFunc(as)⌝ ( left varchar(250), 
right varchar(250), caller varchar(250), role varchar(250)) 

RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
IF (role = r1) 

THEN RETURN ⌜AuthFuncRole⌝(as , r1) (left, right, caller) 
. . . 
ELSE IF (role = rn) 

THEN RETURN ⌜AuthFuncRole(as , rn)⌝ (left, right, caller) 
ELSE RETURN 0 
END IF; 
. . . 
END IF; 

END 
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The function AuthFuncRole() 
The function AuthFuncRole() implements the authorization constraints associated 
with the permission for users of a given role for executing a given read-action on a 
specific resource. There are many different ways of implementing in SQL an OCL 
authorization constraint. The definition of the function AuthFuncRole() only as-
sumes that there exists a function map() that, for each authorization constraint of 
interest, it returns its preferred SQL implementation. Without loss of generality, it 
also assumes that this implementation, when executed, will return an SQL Boolean.1 

Definition 14. Let D = ⟨C, AT , AS ⟩ be a data model. Let S = ⟨R, auth⟩ be a 
security model for D. Let r be a role in R. Let at = ⟨atn, c, t⟩ be an attribute in 
AT . Then, AuthFuncRole(at , r) generates the following SQL function: 

CREATE FUNCTION ⌜AuthFuncRole(at , r)⌝ ( self varchar(250), 
caller varchar(250)) 

RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
SELECT * INTO result FROM map(auth(r , read(at))) AS TEMP; 
RETURN result; 

END 

Similarly, let as = ⟨asn, ase l, cl, aser, cr⟩ ∈ AS , be an association in AS . Then, 
AuthFuncRole(as , r) generates the following SQL function: 

CREATE FUNCTION ⌜AuthFuncRole(as , r)⌝ ( left varchar(250), 
right varchar(250), caller varchar(250)) 

RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
SELECT * INTO result FROM map(auth(r , read(as))) AS TEMP; 
RETURN result; 

END 

1Recently, OCL2PSQL [35] was introduced as a mapping which only uses standard SQL sub-
selects and joins for translating OCL iterators. This mapping can certainly be used as map()-
function. However, current experiments in [17] suggest that, for non-trivial authorization con-
straints, manually-written implementations significantly outperforms those automatically generated 
by OCL2PSQL, when checking FGAC authorization in large databases. 
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Appendix C 

SQLSI: representing data models 
using JSON 

In this appendix, we recall the JSON representation of data model. Let D = 
⟨C, AT , AS ⟩ be a data models. 

Let c ∈ C be a class in D. We denote by Atts(c, AT ) the attributes of the class 
c in D. Let at = ⟨atn, c, t⟩, at ∈ Atts(c, AT ) be an attribute in D. Then, the 
corresponding JSON-object json(at) is defined as follows: 

{ 
name : atn, 
type : t 

} 

Also, we denote by json(Atts(c, AT )) the JSON-array containing the JSON-objects 
corresponding to the attributes in Atts(c, AT ). 

Moreover, let c ∈ C be a class in D. We denote by Ends(c, AS ) the associations 
in D that have the class c at one of their ends. Let as = ⟨asn, ase l, c, aser, cr⟩, as ∈ 
Ends(c, AS ) be an association in D. Then, the corresponding JSON-object json(as) 
is defined as follows: 

{ 
association : asn, 
name : aser, 
target : cr, 
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opp : ase l, 
mult : ∗ 

} 

Analogously, let ⟨asn, ase l, cl, aser, c⟩ ∈ Ends(c, AS ) be an association in D. Then, 
the corresponding JSON-object json(as) is defined as follows: 

{ 
association : asn, 
name : ase l, 
target : cl, 
opp : aser, 
mult : ∗ 

} 

Also, we denote by json(Ends(c, AS )) the JSON-array containing the JSON-objects 
corresponding to the associations in Ends(c, AS). 

Next, let c ∈ C be a class in D. Then, the corresponding JSON-object json(c) is 
defined as follows: 

{ 
class : c, 
attributes : json(Atts(c, AT )), 
ends : json(Ends(c, AS )) 

} 

Finally, we denote by json(D) the JSON-array containing the JSON-objects cor-
responding to the classes in D. 
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Appendix D 

SQLSI: representing security 
models using JSON 

In this appendix, we recall the JSON representation of our FGAC security model. 
Let D = ⟨C, AT , AS ⟩ be a data models. Let c ∈ C be a class in D. We denote 
by Res(c) the resources of the class c, i.e., the union of the sets Atts(c, AT ) and 
Ends(c, AT ). 

Let S = ⟨R, auth⟩ be a security model of D. Let r ∈ R a role in S. Notice 
that the function auth() together with the role r define an equivalence relationship 
Res(c), as follows: let rsc, rsc ′ in Res(c), then [r, c, rsc] ≡ [r, c, rsc ′ ] if and only if 
auth(r, read(rsc)) = auth(r, read(rsc ′ )). 

We denote by Auths(r, c) the authorization constraints corresponding to the dif-
ferent equivalence classes defined by the function auth(), together with the role r, in 
Res(c). 

Let rsc ∈ Res(c) be a resource of the class c. Then, the corresponding JSON-object 
json(rsc) is defined as follows: 

‹ if rsc = ⟨atn, c, t⟩, then json(rsc) is the following object: 

{ 
entity : c, 
attribute : atn 

} 
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‹ if rsc is either ⟨asn, ase l, cl, aser, c⟩ or ⟨asn, ase l, c, aser, cr⟩, then json(rsc) is 
the following object: 

{ 
association : asn 

} 

Let auth be an authorization constraint in Auths(r, c). Then, we denote by 
json(auth) the following JSON-object: 

{ 
role : r, 
action: read, 
resources : json([r, c, auth]), 
auth : auth 

} 
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Appendix E 

SQLSI: generated artifacts 

In this appendix, we display the SQL statements, functions and stored-procedures related to 
the examples of this thesis. 

SQLSI implementation of the Uni data model 

Listing E.1: Uni data model: The SQLSI implementation 
1 /* create Lecturer table */ 
2 CREATE TABLE Lecturer ( Lecturer_id VARCHAR (100) PRIMARY KEY ); 
3 ALTER TABLE Lecturer ADD COLUMN email VARCHAR (100) ; 
4 ALTER TABLE Lecturer ADD COLUMN age INT (11) ; 
5 ALTER TABLE Lecturer ADD COLUMN name VARCHAR (100) ; 
6 
7 /* create Student table */ 
8 CREATE TABLE Student ( Student_id VARCHAR (100) PRIMARY KEY ); 
9 ALTER TABLE Student ADD COLUMN email VARCHAR (100) ; 

10 ALTER TABLE Student ADD COLUMN age INT (11) ; 
11 ALTER TABLE Student ADD COLUMN name VARCHAR (100) ; 
12 
13 /* create Enrollment association */ 
14 CREATE TABLE Enrollment ( 
15 lecturers VARCHAR (100) , students VARCHAR (100) , 
16 FOREIGN KEY ( lecturers ) REFERENCES Lecturer ( Lecturer_id ) , 
17 FOREIGN KEY ( students ) REFERENCES Student ( Student_id ) 
18 ); 
19 ALTER TABLE Enrollment 
20 ADD UNIQUE unique_link ( lecturers , students ); 
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SQLSI implementation of the security model 

Listing E.2: Sec#1 security model: The SQLSI implementation 
DROP FUNCTION IF EXISTS auth_READ_Lecturer_age; 
/* FUNC: auth_READ_Lecturer_age */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Lecturer_age( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Lecturer_email; 
/* FUNC: auth_READ_Lecturer_email */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Lecturer_email( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Lecturer_name; 
/* FUNC: auth_READ_Lecturer_name */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Lecturer_name( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Student_age; 
/* FUNC: auth_READ_Student_age */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_age( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 
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DECLARE result INT DEFAULT 0; 
IF (krole = ‘Admin ‘) 

THEN IF (auth_READ_Student_age_Admin(kself , kcaller)) 
THEN RETURN (1); 
ELSE RETURN (0); 

END IF ; 
ELSE RETURN 0; 
END IF ; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Student_age_Admin; 
/* FUNC: auth_READ_Student_age_Admin */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_age_Admin( 

kself varchar (100) , kcaller varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
SELECT res INTO result FROM 
(SELECT (TRUE) AS res) AS TEMP; 
RETURN (result); 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Student_email; 
/* FUNC: auth_READ_Student_email */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_email( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Student_name; 
/* FUNC: auth_READ_Student_name */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_name( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 
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END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Enrollment; 
/* FUNC: auth_READ_Enrollment */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Enrollment( 

kcaller varchar (100), krole varchar (100) , 
klecturers varchar (100), kstudents varchar (100) 

) RETURNS INT DETERMINISTIC 
BEGIN 
DECLARE result INT DEFAULT 0; 

IF (krole = ‘Admin ‘) 
THEN IF (auth_READ_Enrollment_Admin(klecturers , 

kstudents , kcaller)) 
THEN RETURN (1); 
ELSE RETURN (0); 

END IF ; 
ELSE RETURN 0; 
END IF ; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Enrollment_Admin; 
/* FUNC: auth_READ_Enrollment_Admin */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Enrollment_Admin( 

klecturers varchar (100), kstudents varchar (100), kcaller 
varchar (100) 

) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
SELECT res INTO result FROM 
(SELECT (TRUE) AS res) AS TEMP; 
RETURN (result); 

END // 
DELIMITER ; 
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Listing E.3: Sec#2 security model: The SQLSI implementation 
DROP FUNCTION IF EXISTS auth_READ_Lecturer_age; 
/* FUNC: auth_READ_Lecturer_age */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Lecturer_age( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Lecturer_email; 
/* FUNC: auth_READ_Lecturer_email */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Lecturer_email( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Lecturer_name; 
/* FUNC: auth_READ_Lecturer_name */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Lecturer_name( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Student_age; 
/* FUNC: auth_READ_Student_age */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_age( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
IF (krole = ‘Lecturer ‘) 
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THEN IF (auth_READ_Student_age_Lecturer(kself , kcaller)) 
THEN RETURN (1); 
ELSE RETURN (0); 

END IF ; 
ELSE RETURN 0; 
END IF ; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Student_age_Lecturer; 
/* FUNC: auth_READ_Student_age_Lecturer */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_age_Lecturer( 

kself varchar (100) , kcaller varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
SELECT res INTO result 
FROM (SELECT (( SELECT MAX(age) FROM Lecturer) 

= (SELECT age FROM Lecturer 
WHERE Lecturer_id = kcaller)) AS res) AS TEMP; 

RETURN (result); 
END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Student_email; 
/* FUNC: auth_READ_Student_email */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_email( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Student_name; 
/* FUNC: auth_READ_Student_name */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_name( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) 
RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
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RETURN 0; 
END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Enrollment; 
/* FUNC: auth_READ_Enrollment */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Enrollment( 

kcaller varchar (100), krole varchar (100) , 
klecturers varchar (100), kstudents varchar (100) 

) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
IF (krole = ‘Lecturer ‘) 

THEN IF (auth_READ_Enrollment_Lecturer(klecturers , 
kstudents , kcaller)) 
THEN RETURN (1); 
ELSE RETURN (0); 

END IF ; 
ELSE RETURN 0; 
END IF ; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Enrollment_Lecturer; 
/* FUNC: auth_READ_Enrollment_Lecturer */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Enrollment_Lecturer( 

klecturers varchar (100), kstudents varchar (100), 
kcaller varchar (100) 
) RETURNS INT DETERMINISTIC 

BEGIN 
DECLARE result INT DEFAULT 0; 
SELECT res INTO result 
FROM (SELECT (( SELECT MAX(age) FROM Lecturer) 

= (SELECT age FROM Lecturer 
WHERE Lecturer_id = kcaller)) AS res) AS TEMP; 

RETURN (result); 
END // 
DELIMITER ; 
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Listing E.4: Sec#3 security model: The SQLSI implementation 
DROP FUNCTION IF EXISTS auth_READ_Lecturer_age; 
/* FUNC: auth_READ_Lecturer_age */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Lecturer_age( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Lecturer_email; 
/* FUNC: auth_READ_Lecturer_email */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Lecturer_email( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Lecturer_name; 
/* FUNC: auth_READ_Lecturer_name */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Lecturer_name( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Student_age; 
/* FUNC: auth_READ_Student_age */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_age( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
IF (krole = ‘Lecturer ‘) 
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_ _ _

THEN IF (auth 
THEN RETURN 
ELSE RETURN 

END IF ; 
ELSE RETURN 0; 
END IF ; 

END // 
DELIMITER ; 

DROP FUNCTION IF 

_READ_Student_age_Lecturer(kself , kcaller)) 
(1); 
(0); 

EXISTS auth_READ_Student_age_Lecturer; 
/* FUNC: auth_READ_Student_age_Lecturer */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_age_Lecturer( 

kself varchar (100) , kcaller 
) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 
SELECT res INTO result 
FROM (SELECT (EXISTS ( 

SELECT 1 FROM Enrollment 
WHERE lecturers = kcaller 
)as res 

) AS TEMP; 
RETURN (result); 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth 

varchar (100) 

0; 

AND kself = students) 

READ Student email; 
/* FUNC: auth_READ_Student_email */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_email( 

kcaller 
) RETURNS 
BEGIN 

DECLARE 
RETURN 

END // 
DELIMITER 

varchar (100), krole varchar (100) , kself varchar (100) 
INT DETERMINISTIC 

result INT DEFAULT 0; 
0; 

; 

DROP FUNCTION IF EXISTS auth_READ_Student_name; 
/* FUNC: auth_READ_Student_name */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Student_name( 

kcaller varchar (100), krole varchar (100) , kself varchar (100) 
) RETURNS INT DETERMINISTIC 
BEGIN 
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DECLARE result INT DEFAULT 0; 
RETURN 0; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Enrollment; 
/* FUNC: auth_READ_Enrollment */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Enrollment( 

kcaller varchar (100), krole varchar (100) , 
klecturers varchar (100), kstudents varchar (100) 

) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
IF (krole = ‘Lecturer ‘) 

THEN IF (auth_READ_Enrollment_Lecturer(klecturers , 
kstudents , kcaller)) 
THEN RETURN (1); 
ELSE RETURN (0); 

END IF ; 
ELSE RETURN 0; 
END IF ; 

END // 
DELIMITER ; 

DROP FUNCTION IF EXISTS auth_READ_Enrollment_Lecturer; 
/* FUNC: auth_READ_Enrollment_Lecturer */ 
DELIMITER // 
CREATE FUNCTION auth_READ_Enrollment_Lecturer( 

klecturers varchar (100), kstudents varchar (100), kcaller 
varchar (100) 

) RETURNS INT DETERMINISTIC 
BEGIN 

DECLARE result INT DEFAULT 0; 
SELECT res INTO result FROM 
(SELECT (EXISTS (SELECT 1 FROM Enrollment 

WHERE lecturers = kcaller AND kstudents = students) 
)as res 

) AS TEMP; 
RETURN (result); 

END // 
DELIMITER ; 
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SQLSI implementation of the secure stored-procedure of Query#1 

Listing E.5: Query#1: The generated SQL stored-procedure. 
DROP PROCEDURE IF EXISTS Query1; 
DELIMITER // 
CREATE PROCEDURE Query1( 

in kcaller varchar (250) , 
in krole varchar (250) 

) 
BEGIN 

DECLARE _rollback int DEFAULT 0; 
DECLARE EXIT HANDLER FOR SQLEXCEPTION 
BEGIN 

SET _rollback = 1; 
GET STACKED DIAGNOSTICS CONDITION 1 

@p1 = RETURNED_SQLSTATE , 
@p2 = MESSAGE_TEXT ; 

SELECT @p1 , @p2; 
ROLLBACK ; 
END ; 
START TRANSACTION ; 
DROP TEMPORARY TABLE IF EXISTS TEMP1 ; 
CREATE TEMPORARY TABLE TEMP1 AS ( 

SELECT * FROM Student 
WHERE CASE auth_READ_Student_age(kcaller , 

krole , Student_id) WHEN 1 THEN age 
ELSE throw_error () END > 18 

); 
DROP TEMPORARY TABLE IF EXISTS TEMP2 ; 
CREATE TEMPORARY TABLE TEMP2 AS ( 

SELECT Student_id AS Student_id FROM TEMP1 
); 
IF _rollback = 0 
THEN SELECT COUNT (*) FROM TEMP2 ; 
END IF ; 

END // 
DELIMITER ; 
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SQLSI implementation of the optimized stored-procedure of Query#1 

Listing E.6: Query#1: The optimized SQL stored-procedure. 
1 DROP PROCEDURE IF EXISTS Query1Opt ; 
2 DELIMITER // 
3 CREATE PROCEDURE Query1Opt ( 
4 in kcaller varchar (250) , 

in krole varchar (250) 
6 ) 
7 BEGIN 
8 DECLARE _rollback int DEFAULT 0; 
9 DECLARE EXIT HANDLER FOR SQLEXCEPTION 

BEGIN 
11 SET _rollback = 1; 
12 GET STACKED DIAGNOSTICS CONDITION 1 
13 @p1 = RETURNED_SQLSTATE , 
14 @p2 = MESSAGE_TEXT ; 

SELECT @p1 , @p2 ; 
16 ROLLBACK ; 
17 END ; 
18 START TRANSACTION ; 
19 DROP TEMPORARY TABLE IF EXISTS TEMP1 ; 

CREATE TEMPORARY TABLE TEMP1 AS ( 
21 SELECT * FROM Student WHERE age > 18 
22 ); 
23 DROP TEMPORARY TABLE IF EXISTS TEMP2 ; 
24 CREATE TEMPORARY TABLE TEMP2 AS ( 

SELECT Student_id AS Student_id FROM TEMP1 
26 ); 
27 IF _rollback = 0 
28 THEN SELECT COUNT (*) FROM TEMP2 ; 
29 END IF ; 

END // 
31 DELIMITER ; 
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SQLSI implementation of the secure stored-procedure of Query#2 

Listing E.7: Query#2: The generated SQL stored-procedure. 
1 DROP PROCEDURE IF EXISTS Query2 ; 
2 DELIMITER // 
3 CREATE PROCEDURE Query2 ( 
4 in kcaller varchar (250) , 

in krole varchar (250) 
6 ) 
7 BEGIN 
8 DECLARE _rollback int DEFAULT 0; 
9 DECLARE EXIT HANDLER FOR SQLEXCEPTION 

BEGIN 
11 SET _rollback = 1; 
12 GET STACKED DIAGNOSTICS CONDITION 1 
13 @p1 = RETURNED_SQLSTATE , 
14 @p2 = MESSAGE_TEXT ; 

SELECT @p1 , @p2 ; 
16 ROLLBACK ; 
17 END ; 
18 START TRANSACTION ; 
19 DROP TEMPORARY TABLE IF EXISTS TEMP1 ; 

CREATE TEMPORARY TABLE TEMP1 AS ( 
21 SELECT Lecturer_id AS lecturers , Student_id AS students 
22 FROM Lecturer , Student 
23 ); 
24 DROP TEMPORARY TABLE IF EXISTS TEMP2 ; 

CREATE TEMPORARY TABLE TEMP2 AS ( 
26 SELECT * FROM TEMP1 
27 WHERE CASE auth_READ_Enrollment ( kcaller , krole , 
28 lecturers , students ) WHEN TRUE THEN TRUE 
29 ELSE throw_error () END 

); 
31 DROP TEMPORARY TABLE IF EXISTS TEMP3 ; 
32 CREATE TEMPORARY TABLE TEMP3 AS ( 
33 SELECT students FROM Enrollment 
34 ); 

IF _rollback = 0 
36 THEN SELECT COUNT (*) FROM TEMP3 ; 
37 END IF ; 
38 END // 
39 DELIMITER ; 
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SQLSI implementation of the optimized stored-procedure of Query#2 

Listing E.8: Query#2: The optimized SQL stored-procedure. 
DROP PROCEDURE IF EXISTS Query2Opt; 
DELIMITER // 
CREATE PROCEDURE Query2Opt( 

in kcaller varchar (250) , 
in krole varchar (250) 

) 
BEGIN 

DECLARE _rollback int DEFAULT 0; 
DECLARE EXIT HANDLER FOR SQLEXCEPTION 
BEGIN 

SET _rollback = 1; 
GET STACKED DIAGNOSTICS CONDITION 1 

@p1 = RETURNED_SQLSTATE , 
@p2 = MESSAGE_TEXT ; 

SELECT @p1 , @p2; 
ROLLBACK ; 

END ; 
START TRANSACTION ; 
DROP TEMPORARY TABLE IF EXISTS TEMP1 ; 
CREATE TEMPORARY TABLE TEMP1 AS ( 

SELECT Student_id AS students , Lecturer_id AS lecturers 
FROM Student , Lecturer WHERE TRUE 

); 
IF (SELECT (SELECT COUNT (*) FROM Student) 

= (SELECT COUNT (*) 
FROM (SELECT COUNT (*) AS size FROM Enrollment 

GROUP BY students) AS TEMP 
WHERE TEMP.size = (SELECT COUNT (*) FROM Lecturer))) 

THEN 
DROP TEMPORARY TABLE IF EXISTS TEMP2 ; 
CREATE TEMPORARY TABLE TEMP2 AS ( 

SELECT * FROM TEMP1 WHERE TRUE 
); 

ELSE 
DROP TEMPORARY TABLE IF EXISTS TEMP2 ; 
CREATE TEMPORARY TABLE TEMP2 AS ( 

SELECT * FROM TEMP1 
WHERE CASE auth_READ_Enrollment(kcaller , krole , 

lecturers , students) WHEN TRUE THEN TRUE 
ELSE throw_error () END 

); 
END IF ; 
DROP TEMPORARY TABLE IF EXISTS TEMP3 ; 
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CREATE TEMPORARY TABLE TEMP3 AS ( 
SELECT students FROM Enrollment 

); 
IF _rollback = 0 
THEN SELECT COUNT (*) FROM TEMP3 ; 
END IF ; 

END // 
DELIMITER ; 
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SQLSI implementation of the secure stored-procedure of Query#3 

Listing E.9: Query#3: The generated SQL stored-procedure. 
DROP PROCEDURE IF EXISTS Query3; 
DELIMITER // 
CREATE PROCEDURE Query3( 

in kcaller varchar (250) , 
in krole varchar (250) 

) 
BEGIN 

DECLARE _rollback int DEFAULT 0; 
DECLARE EXIT HANDLER FOR SQLEXCEPTION 
BEGIN 

SET _rollback = 1; 
GET STACKED DIAGNOSTICS CONDITION 1 

@p1 = RETURNED_SQLSTATE , 
@p2 = MESSAGE_TEXT ; 

SELECT @p1 , @p2; 
ROLLBACK ; 

END ; 
START TRANSACTION ; 
DROP TEMPORARY TABLE IF EXISTS TEMP1 ; 
CREATE TEMPORARY TABLE TEMP1 AS ( 

SELECT Student_id AS students , Lecturer_id AS lecturers 
FROM Student , Lecturer WHERE Lecturer_id = kcaller 

); 
DROP TEMPORARY TABLE IF EXISTS TEMP2 ; 
CREATE TEMPORARY TABLE TEMP2 AS ( 

SELECT * FROM TEMP1 
WHERE CASE auth_READ_Enrollment(kcaller , krole , 

lecturers , students) WHEN TRUE THEN TRUE 
ELSE throw_error () END 

); 
DROP TEMPORARY TABLE IF EXISTS TEMP3 ; 
CREATE TEMPORARY TABLE TEMP3 AS ( 

SELECT * FROM Student JOIN TEMP2 
ON Student_id = students 

); 
DROP TEMPORARY TABLE IF EXISTS TEMP4 ; 
CREATE TEMPORARY TABLE TEMP4 AS ( 

SELECT CASE auth_READ_Student_age(kcaller , 
krole , Student_id) WHEN 1 THEN age 
ELSE throw_error () END as age 

FROM TEMP3 
); 
IF _rollback = 0 
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44 THEN SELECT AVG ( age ) FROM TEMP4 ; 
45 END IF ; 
46 END // 
47 DELIMITER ; 
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SQLSI implementation of the optimized stored-procedure of Query#3 

Listing E.10: Query#3: The optimized SQL stored-procedure. 
DROP PROCEDURE IF EXISTS Query3Opt; 
DELIMITER // 
CREATE PROCEDURE Query3Opt( 

in kcaller varchar (250) , 
in krole varchar (250) 

) 
BEGIN 
DECLARE _rollback int DEFAULT 0; 
DECLARE EXIT HANDLER FOR SQLEXCEPTION 
BEGIN 

SET _rollback = 1; 
GET STACKED DIAGNOSTICS CONDITION 1 

@p1 = RETURNED_SQLSTATE , 
@p2 = MESSAGE_TEXT ; 

SELECT @p1 , @p2; 
ROLLBACK ; 

END ; 
START TRANSACTION ; 
DROP TEMPORARY TABLE IF EXISTS TEMP1 ; 
CREATE TEMPORARY TABLE TEMP1 AS ( 

SELECT Student_id AS students , Lecturer_id AS lecturers 
FROM Student , Lecturer WHERE Lecturer_id = kcaller 

); 
IF (SELECT (SELECT COUNT (*) FROM Student) 

= (SELECT COUNT (*) 
FROM (SELECT COUNT (*) AS size FROM Enrollment 

GROUP BY students) AS TEMP 
WHERE TEMP.size = (SELECT COUNT (*) FROM Lecturer))) 

THEN 
DROP TEMPORARY TABLE IF EXISTS TEMP2 ; 
CREATE TEMPORARY TABLE TEMP2 AS ( 

SELECT * FROM TEMP1 WHERE TRUE 
); 

ELSE 
DROP TEMPORARY TABLE IF EXISTS TEMP2 ; 
CREATE TEMPORARY TABLE TEMP2 AS ( 

SELECT * FROM TEMP1 
WHERE CASE auth_READ_Enrollment(kcaller , krole , 

lecturers , students) WHEN TRUE THEN TRUE 
ELSE throw_error () END 

); 
END IF ; 
DROP TEMPORARY TABLE IF EXISTS TEMP3 ; 
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CREATE TEMPORARY TABLE TEMP3 AS ( 
SELECT * FROM Student JOIN TEMP2 
ON Student_id = students 

); 
DROP TEMPORARY TABLE IF EXISTS TEMP4 ; 
CREATE TEMPORARY TABLE TEMP4 AS ( 

SELECT age FROM TEMP3 
); 
IF _rollback = 0 
THEN SELECT AVG(age) FROM TEMP4 ; 
END IF ; 

END // 
DELIMITER ; 
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Appendix F 

MSFOL: generated theories 

In this appendix, we display the generated MSFOL formulae, theories related to the case 
study in Chapter 5 and other examples in the thesis. 

The MSFOL theory for the Uni data model 

Listing F.1: Uni data model: The generated MSFOL theory in SMT-LIB 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

; sort declaration 
(declare-sort Classifier 0) 

; null and invalid object and its axiom 
(declare-const nullClassifier Classifier) 
(declare-const invalClassifier Classifier) 
(assert (distinct nullClassifier invalClassifier)) 

; null and invalid integer and its axiom 
(declare-const nullInt Int) 
(declare-const invalInt Int) 
(assert (distinct nullInt invalInt)) 

; null and invalid string and its axiom 
(declare-const nullString String) 
(declare-const invalString String) 
(assert (distinct nullString invalString)) 

; unary predicate Lecturer(x) and its axiom 
(declare-fun Lecturer (Classifier) Bool) 
(assert (not (Lecturer nullClassifier))) 
(assert (not (Lecturer invalClassifier))) 
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; unary predicate Student(x) and its axiom 
(declare-fun Student (Classifier) Bool) 
(assert (not (Student nullClassifier))) 
(assert (not (Student invalClassifier))) 

; axiom: disjoint set of objects of different classes 
(assert (forall ((x Classifier)) 

(=> (Lecturer x) (not (Student x))))) 
(assert (forall ((x Classifier)) 

(=> (Student x) (not (Lecturer x))))) 

; function get the age of lecturer and its axiom 
(declare-fun age_Lecturer (Classifier) Int) 
(assert (= (age_Lecturer nullClassifier) invalInt)) 
(assert (= (age_Lecturer invalClassifier) invalInt)) 
(assert (forall ((x Classifier)) 

(=> (Lecturer x) 
(distinct (age_Lecturer x) invalInt)))) 

; function get the email of lecturer and its axiom 
(declare-fun email_Lecturer (Classifier) String) 
(assert (= (email_Lecturer nullClassifier) invalString)) 
(assert (= (email_Lecturer invalClassifier) invalString)) 
(assert (forall ((x Classifier)) 

(=> (Lecturer x) 
(distinct (email_Lecturer x) invalString)))) 

; function get the name of lecturer and its axiom 
(declare-fun name_Lecturer (Classifier) String) 
(assert (= (name_Lecturer nullClassifier) invalString)) 
(assert (= (name_Lecturer invalClassifier) invalString)) 
(assert (forall ((x Classifier)) 

(=> (Lecturer x) 
(distinct (name_Lecturer x) invalString)))) 

; function get the age of student and its axiom 
(declare-fun age_Student (Classifier) Int) 
(assert (= (age_Student nullClassifier) invalInt)) 
(assert (= (age_Student invalClassifier) invalInt)) 
(assert (forall ((x Classifier)) 

(=> (Student x) 
(distinct (age_Student x) invalInt)))) 

; function get the name of student and its axiom 
(declare-fun name_Student (Classifier) String) 
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(assert (= (name_Student nullClassifier) invalString)) 
(assert (= (name_Student invalClassifier) invalString)) 
(assert (forall ((x Classifier)) 

(=> (Student x) 
(distinct (name_Student x) invalString)))) 

; function get the email of student and its axiom 
(declare-fun email_Student (Classifier) String) 
(assert (= (email_Student nullClassifier) invalString)) 
(assert (= (email_Student invalClassifier) invalString)) 
(assert (forall ((x Classifier)) 

(=> (Student x) 
(distinct (email_Student x) invalString)))) 

; binary predicate of the Enrollment association 
; and its axiom 
(declare-fun Enrollment (Classifier Classifier) Bool) 
(assert (forall ((x Classifier)) 

(forall ((y Classifier)) 
(=> (Enrollment x y) 

(and (Lecturer x) (Student y)))))) 
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OCL expression: Sample generated MSFOL formula 

Listing F.2: OCL expression: The generated MSFOL formulae 
Student.allInstances() → select(s|s.age ≥ 19) → isEmpty() 

1 ; function repr. of non-boolean expression 
2 ; exp ’ = Student .allInstances () ->select(s|s.age > 19) 
3 (declare-fun temp (Classifier) Bool) 
4 
5 ; definition of predicate temp 
6 (assert (forall ((s Classifier)) 
7 (= (temp s) 
8 (and (Student s) 
9 (and (> (age_Student s) 19) 

10 (not (or (= (age_Student s) nullInt) 
11 (or (= s nullClassifier) 
12 (= s invalClassifier)) 
13 false false))))))) 
14 
15 ; 19 cannot be interpreted by nullInt constant symbol 
16 (assert (distinct nullInt 19)) 
17 
18 ; 19 cannot be interpreted by invalIn constant symbol 
19 (assert (distinct invalInt 19)) 
20 
21 ; map from exp ’->isEmpty 
22 (assert (forall ((x Classifier)) 
23 (and (not (temp x)) (not false)))) 
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Example 5.1 generated theory 

Listing F.3: Example 5.1: The generated MSFOL formulae. 
1 ; the generated MSFOL theory for data model 
2 ; is removed due to its length 
3 
4 ; constant symbol of caller and its axiom 
5 (declare-const kcaller Classifier) 
6 (assert (Lecturer kcaller)) 
7 
8 ; constant symbol of self and its axiom 
9 (declare-const kself Classifier) 

10 (assert (Student kself)) 
11 
12 ; authorization constraint: Admin can read student age 
13 (assert (not true)) 
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Example 5.2 generated theories 

Listing F.4: Example 5.2: The generated MSFOL formulae. 
1 ; the generated MSFOL theory for data model 
2 ; is removed due to its length 
3 
4 ; invariant : Every lecturer is lecturer of every student 

( assert ( forall (( l Classifier )) 
6 ( and ( => ( Lecturer l) 
7 ( forall (( s Classifier )) 
8 ( and ( => ( Student s) 
9 ( exists (( temp Classifier )) 

( and ( Enrollment l temp ) 
11 (= temp s) 
12 ( not ( or (= l nullClassifier ) 
13 (= l invalidClassifier ))) 
14 ( not (= s invalidClassifier ))))) 

( not false )))) 
16 ( not false )))) 
17 
18 ; constant symbol of caller and its axiom 
19 ( declare-const kcaller Classifier ) 

( assert ( Lecturer kcaller )) 
21 
22 ; constant symbol of lecturers and its axiom 
23 ( declare-const klecturers Classifier ) 
24 ( assert ( Lecturer klecturers )) 

26 ; constant symbol of students and its axiom 
27 (declare-const kstudents Classifier) 
28 (assert (Student kstudents)) 
29 

; authorization constraint: a lecturer can know the 
31 ; students of any lecturer, if the student is his 
32 ; or her student 
33 (assert (not (exists ((temp Classifier)) 
34 (and (Enrollment temp kstudents) 

(= temp kcaller) 
36 (not (or (= kstudents nullClassifier) 
37 (= kstudents invalidClassifier))) 
38 (not (= kcaller invalidClassifier)))))) 

126 



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Listing F.5: Example 5.2: The generated MSFOL formulae, without the data invariant. 
; the generated MSFOL theory for data model 
; is removed due to its length 

; constant symbol of caller and its axiom 
(declare-const kcaller Classifier) 
(assert (Lecturer kcaller)) 

; constant symbol of lecturers and its axiom 
(declare-const klecturers Classifier) 
(assert (Lecturer klecturers)) 

; constant symbol of students and its axiom 
(declare-const kstudents Classifier) 
(assert (Student kstudents)) 

; authorization constraint: a lecturer can know the 
; students of any lecturer, if the student is his 
; or her student 
(assert (not (exists ((temp Classifier)) 

(and (Enrollment temp kstudents) 
(= temp kcaller) 
(not (or (= kstudents nullClassifier) 

(= kstudents invalidClassifier))) 
(not (= kcaller invalidClassifier)))))) 
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Listing F.6: Example 5.2: The generated MSFOL formulae, under security model Sec#2 
1 ; the generated MSFOL theory for data model 
2 ; is removed due to its length 
3 
4 ; constant symbol of caller and its axiom 

(declare-const kcaller Classifier) 
6 (assert (Lecturer kcaller)) 
7 
8 ; constant symbol of lecturers and its axiom 
9 (declare-const klecturers Classifier) 

(assert (Lecturer klecturers)) 
11 
12 ; constant symbol of students and its axiom 
13 (declare-const kstudents Classifier) 
14 (assert (Student kstudents)) 

16 ; this TEMP0 function is the OCL expression 
17 ; Lecturer .allInstances () ->select(l|l.age > caller .age) 
18 (declare-fun TEMP0 (Classifier) Bool) 
19 (assert (forall ((l Classifier)) 

(= (TEMP0 l) 
21 (and (Lecturer l) 
22 (and (> (age_Lecturer l) 
23 (age_Lecturer kcaller)) 
24 (not (or (= (age_Lecturer l) nullInt) 

(or (= l nullClassifier) 
26 (= l invalidClassifier)) 
27 (= (age_Lecturer kcaller) nullInt) 
28 (or (= kcaller nullClassifier) 
29 (= kcaller invalidClassifier))))))) 

)) 

31 ; authorization constraint: caller is the oldest lecturer 
32 (assert (not (forall ((x Classifier)) 
33 (and (not (TEMP0 x)) 
34 (not false))))) 
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Example 5.3 theories 

Listing F.7: Example 5.3: The generated MSFOL formulae. 
; the generated MSFOL theory for data model 
; is removed due to its length 

; constant symbol of caller and its axiom 
(declare-const kcaller Classifier) 
(assert (Lecturer kcaller)) 

; constant symbol of lecturers and its axiom 
(declare-const klecturers Classifier) 
(assert (Lecturer klecturers)) 

; constant symbol of students and its axiom 
(declare-const kstudents Classifier) 
(assert (Student kstudents)) 

; caller property: caller is indeed the oldest lecturer 
(assert (forall ((l Classifier)) 

(and (=> (Lecturer l) 
(and (<= (age_Lecturer l) (age_Lecturer kcaller)) 

(not (or (= (age_Lecturer l) nullInt) 
(or (= l nullClassifier) 

(= l invalidClassifier)) 
(= (age_Lecturer kcaller) nullInt) 
(or (= kcaller nullClassifier) 

(= kcaller invalidClassifier)))))) 
(not false)))) 

; this TEMP0 function is the OCL expression 
; Lecturer .allInstances () ->select(l|l.age > caller .age) 
(declare-fun TEMP0 (Classifier) Bool) 
(assert (forall ((l Classifier)) 

(= (TEMP0 l) 
(and (Lecturer l) 

(and (> (age_Lecturer l) (age_Lecturer kcaller)) 
(not (or (= (age_Lecturer l) nullInt) 

(or (= l nullClassifier) 
(= l invalidClassifier)) 

(= (age_Lecturer kcaller) nullInt) 
(or (= kcaller nullClassifier) 

(= kcaller invalidClassifier))))))))) 

; authorization constraint: caller is the oldest lecturer 
(assert (not (forall ((x Classifier)) 

(and (not (TEMP0 x)) (not false))))) 
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Listing F.8: Example 5.3: The generated MSFOL formulae, without caller properties 
; the generated MSFOL theory for data model 
; is removed due to its length 

; constant symbol of caller and its axiom 
(declare-const kcaller Classifier) 
(assert (Lecturer kcaller)) 

; constant symbol of lecturers and its axiom 
(declare-const klecturers Classifier) 
(assert (Lecturer klecturers)) 

; constant symbol of students and its axiom 
(declare-const kstudents Classifier) 
(assert (Student kstudents)) 

; this TEMP0 function is the OCL expression 
; Lecturer .allInstances () ->select(l|l.age > caller .age) 
(declare-fun TEMP0 (Classifier) Bool) 
(assert (forall ((l Classifier)) 

(= (TEMP0 l) 
(and (Lecturer l) 

(and (> (age_Lecturer l) (age_Lecturer kcaller)) 
(not (or (= (age_Lecturer l) nullInt) 

(or (= l nullClassifier) 
(= l invalidClassifier)) 

(= (age_Lecturer kcaller) nullInt) 
(or (= kcaller nullClassifier) 

(= kcaller invalidClassifier))))))))) 

; authorization constraint: caller is the oldest lecturer 
(assert (not (forall ((x Classifier)) 

(and (not (TEMP0 x)) (not false))))) 
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Listing F.9: Example 5.3: The generated MSFOL formulae, under security model Sec#3 
; the generated MSFOL theory for data model 
; is removed due to its length 

; constant symbol of caller and its axiom 
(declare-const kcaller Classifier) 
(assert (Lecturer kcaller)) 

; constant symbol of lecturers and its axiom 
(declare-const klecturers Classifier) 
(assert (Lecturer klecturers)) 

; constant symbol of students and its axiom 
(declare-const kstudents Classifier) 
(assert (Student kstudents)) 

; caller property: caller is indeed the oldest lecturer 
(assert (forall ((l Classifier)) 

(and (=> (Lecturer l) 
(and (<= (age_Lecturer l) (age_Lecturer kcaller)) 

(not (or (= (age_Lecturer l) nullInt) 
(or (= l nullClassifier) 

(= l invalidClassifier)) 
(= (age_Lecturer kcaller) nullInt) 
(or (= kcaller nullClassifier) 

(= kcaller invalidClassifier)))))) 
(not false)))) 

; authorization constraint: a lecturer can know the 
; students of any lecturer, if the student is his 
; or her student 
(assert (not (exists ((temp Classifier)) 

(and (Enrollment temp kstudents) 
(= temp kcaller) 
(not (or (= kstudents nullClassifier) 

(= kstudents invalidClassifier))) 
(not (= kcaller invalidClassifier)))))) 
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Example 5.4 theories 

Listing F.10: Example 5.4: The generated MSFOL formulae for the first authorization checks 
1 ; the generated MSFOL theory for data model 
2 ; is removed due to its length 
3 
4 ; constant symbol of caller and its axiom 

(declare-const kcaller Classifier) 
6 (assert (Lecturer kcaller)) 
7 
8 ; constant symbol of lecturers and its axiom 
9 (declare-const klecturers Classifier) 

(assert (Lecturer klecturers)) 
11 
12 ; constant symbol of students and its axiom 
13 (declare-const kstudents Classifier) 
14 (assert (Student kstudents)) 

16 ; invariant : Every lecturer is lecturer of every student 
17 ( assert ( forall (( l Classifier )) 
18 ( and ( => ( Lecturer l) 
19 ( forall (( s Classifier )) 

( and ( => ( Student s) 
21 ( exists (( temp Classifier )) 
22 ( and ( Enrollment l temp ) 
23 (= temp s) 
24 ( not ( or (= l nullClassifier ) 

(= l invalidClassifier ))) 
26 ( not (= s invalidClassifier ))))) 
27 ( not false )))) 
28 ( not false )))) 
29 

; authorization constraint : a lecturer can know the 
31 ; students of any lecturer, if the student is his 
32 ; or her student 
33 ( assert ( not ( exists (( temp Classifier )) 
34 ( and ( Enrollment temp kstudents ) 

(= temp kcaller ) 
36 ( not ( or (= kstudents nullClassifier ) 
37 (= kstudents invalidClassifier ))) 
38 ( not (= kcaller invalidClassifier )))))) 
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Listing F.11: Example 5.4: The generated MSFOL formulae for the first authorization checks, without 
the data invariant 

1 ; the generated MSFOL theory for data model 
2 ; is removed due to its length 
3 
4 ; constant symbol of caller and its axiom 
5 (declare-const kcaller Classifier) 
6 (assert (Lecturer kcaller)) 
7 
8 ; constant symbol of lecturers and its axiom 
9 (declare-const klecturers Classifier) 

10 (assert (Lecturer klecturers)) 
11 
12 ; constant symbol of students and its axiom 
13 (declare-const kstudents Classifier) 
14 (assert (Student kstudents)) 
15 
16 ; authorization constraint: a lecturer can know the 
17 ; students of any lecturer, if the student is his 
18 ; or her student 
19 (assert (not (exists ((temp Classifier)) 
20 (and (Enrollment temp kstudents) 
21 (= temp kcaller) 
22 (not (or (= kstudents nullClassifier) 
23 (= kstudents invalidClassifier))) 
24 (not (= kcaller invalidClassifier)))))) 
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Listing F.12: Example 5.4: The generated MSFOL formulae for the first authorization checks, under 
security model Sec#2 
; the generated MSFOL theory for data model 
; is removed due to its length 

; constant symbol of caller and its axiom 
(declare-const kcaller Classifier) 
(assert (Lecturer kcaller)) 

; constant symbol of lecturers and its axiom 
(declare-const klecturers Classifier) 
(assert (Lecturer klecturers)) 

; constant symbol of students and its axiom 
(declare-const kstudents Classifier) 
(assert (Student kstudents)) 

; invariant: Every lecturer is lecturer of every student 
(assert (forall ((l Classifier)) 

(and (=> (Lecturer l) 
(forall ((s Classifier)) 

(and (=> (Student s) 
(exists ((temp Classifier)) 

(and (Enrollment l temp) 
(= temp s) 

(not (or (= l nullClassifier) 
(= l invalidClassifier))) 

(not (= s invalidClassifier))))) 
(not false)))) 

(not false)))) 

; this TEMP0 function is the OCL expression 
; Lecturer .allInstances () ->select(l|l.age > caller .age) 
(declare-fun TEMP0 (Classifier) Bool) 
(assert (forall ((l Classifier)) 

(= (TEMP0 l) 
(and (Lecturer l) 

(and (> (age_Lecturer l) (age_Lecturer kcaller)) 
(not (or (= (age_Lecturer l) nullInt) 

(or (= l nullClassifier) 
(= l invalidClassifier)) 

(= (age_Lecturer kcaller) nullInt) 
(or (= kcaller nullClassifier) 

(= kcaller invalidClassifier))))))))) 

; authorization constraint: caller is the oldest lecturer 
(assert (not (forall ((x Classifier)) 

(and (not (TEMP0 x)) (not false))))) 
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Listing F.13: Example 5.4: The generated MSFOL formulae for the second authorization checks 
; the generated MSFOL theory for data model 
; is removed due to its length 

; constant symbol of caller and its axiom 
(declare-const kcaller Classifier) 
(assert (Lecturer kcaller)) 

; constant symbol of self and its axiom 
(declare-const kself Classifier) 
(assert (Student kself)) 

; self property: self is a student of lecturer 
(assert (exists ((temp Classifier)) 

(and (Enrollment kcaller temp) 
(= temp kself) 
(not (or (= kcaller nullClassifier) 

(= kcaller invalidClassifier))) 
(not (= kself invalidClassifier))))) 

; authorization constraint: a lecturer can know the 
; students of any lecturer, if the student is his 
; or her student 
(assert (not (exists ((temp Classifier)) 

(and (Enrollment kcaller temp) 
(= temp kself) 
(not (or (= kcaller nullClassifier) 

(= kcaller invalidClassifier))) 
(not (= kself invalidClassifier)))))) 
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Listing F.14: Example 5.4: The generated MSFOL formulae for the second authorization checks, without 
the self properties 

1 ; the generated MSFOL theory for data model 
2 ; is removed due to its length 
3 
4 ; constant symbol of caller and its axiom 
5 (declare-const kcaller Classifier) 
6 (assert (Lecturer kcaller)) 
7 
8 ; constant symbol of self and its axiom 
9 (declare-const kself Classifier) 

10 (assert (Student kself)) 
11 
12 ; authorization constraint: a lecturer can know the 
13 ; students of any lecturer, if the student is his 
14 ; or her student 
15 (assert (not (exists ((temp Classifier)) 
16 (and (Enrollment kcaller temp) 
17 (= temp kself) 
18 (not (or (= kcaller nullClassifier) 
19 (= kcaller invalidClassifier))) 
20 (not (= kself invalidClassifier)))))) 
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Listing F.15: Example 5.4: The generated MSFOL formulae for the second authorization checks, under 
security model Sec#2 
; the generated MSFOL theory for data model 
; is removed due to its length 

; constant symbol of caller and its axiom 
(declare-const kcaller Classifier) 
(assert (Lecturer kcaller)) 

; constant symbol of self and its axiom 
(declare-const kself Classifier) 
(assert (Student kself)) 

; self property: self is a student of lecturer 
(assert (exists ((temp Classifier)) 

(and (Enrollment kcaller temp) 
(= temp kself) 
(not (or (= kcaller nullClassifier) 

(= kcaller invalidClassifier))) 
(not (= kself invalidClassifier))))) 

; this TEMP0 function is the OCL expression 
; Lecturer .allInstances () ->select(l|l.age > caller .age) 
(declare-fun TEMP0 (Classifier) Bool) 
(assert (forall ((l Classifier)) 

(= (TEMP0 l) 
(and (Lecturer l) 

(and (> (age_Lecturer l) (age_Lecturer kcaller)) 
(not (or (= (age_Lecturer l) nullInt) 

(or (= l nullClassifier) 
(= l invalidClassifier)) 

(= (age_Lecturer kcaller) nullInt) 
(or (= kcaller nullClassifier) 

(= kcaller invalidClassifier))))))))) 

; authorization constraint: caller is the oldest lecturer 
(assert (not (forall ((x Classifier)) 

(and (not (TEMP0 x)) (not false))))) 
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(This is the end of the thesis) 
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