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Resumen (castellano) 
Un aneurisma aórtico es una dilatación de la aorta, la mayor arteria que suministra sangre 
al organismo. Los aneurismas más frecuentes son los de la aorta abdominal (AAA). Los 
AAA tienden a crecer y a romperse, con el consiguiente elevado riesgo de muerte por 
hemorragia interna. El tratamiento quirúrgico más empleado hoy en día es la colocación de 
una endoprótesis aórtica, EVAR (de las siglas en inglés, EndoVascular Aneurysm Repair). 
La EVAR es un dispositivo autoexpandible que se coloca por dentro de la arteria enferma 
para excluir el aneurisma de la circulación, reduciendo la presión que soporta y eliminando 
el riesgo de rotura del AAA. El mejor signo pronóstico de este tratamiento es la reducción 
del tamaño del AAA a lo largo del tiempo, una vez producida la despresurización. 
Llamamos saco aneurismático al AAA correctamente tratado con EVAR que queda 
excluido de la circulación. Sin embargo, el EVAR no está exento de complicaciones, las 
más frecuentes son las llamadas fugas, que son pequeñas entradas de sangre en el AAA 
tratado que condicionan la presurización del saco aneurismático y por tanto la reaparición 
del riesgo de rotura y hemorragia, que siempre se acompaña de una ausencia de reducción 
del tamaño del saco. Hay distintos tipos de fugas dependiendo del lugar por donde entra la 
sangre en el saco. Su detección temprana es fundamental para planificar un tratamiento 
adecuado a tiempo. La prueba diagnóstica actual para realizar el seguimiento de los EVAR 
es el CT (Tomografía Computarizada). Las imágenes obtenidas con esta técnica se 
estudian por los médicos en busca de manchas de contraste dentro del AAA tratado que 
indican la presencia de fugas. Estos picos de contraste pueden ser evidentes en algunos 
casos, pero difíciles de ver en otros, especialmente considerando el gran volumen de 
imágenes por cada CT. El modelo propuesto en este estudio consiste en una red de 
detección, basada en RetinaNet, para localizar el saco en las imágenes del CT y eliminar el 
ruido circundante. Después utilizar un modelo de clasificación binaria basada en redes 
convolucionales, tanto 2D como 3D, para analizar las imágenes y realizar una predicción 
de la evolución del tamaño del aneurisma, lo que permitiría a los médicos realizar una 
vigilancia focalizada en los pacientes con más riesgo de presentar fugas. 
 

Abstract (English) 
An aortic aneurysm is an enlargement of the aorta, the largest artery supplying blood to the 
body. The most common aneurysms are abdominal aortic aneurysms (AAA). AAAs tend 
to grow and rupture, resulting in a high risk of death from internal bleeding. The most 
commonly used surgical treatment today is the placement of an aortic stent graft, EVAR 
(EndoVascular Aneurysm Repair). EVAR is a self-expanding device that is placed inside 
the diseased artery to exclude the aneurysm from circulation, reducing the pressure on the 
aneurysm and eliminating the risk of AAA rupture. The best prognostic sign of this 
treatment is the reduction in size of the AAA over time, once depressurization has 
occurred. An AAA that is correctly treated with EVAR and excluded from circulation is 
called an aneurysmal sac. However, EVAR is not free of complications, the most frequent 
are the so-called leaks, which are small inflows of blood into the treated AAA that 
condition the pressurization of the aneurysmal sac and therefore the reappearance of the 
risk of rupture and bleeding, which is always accompanied by a lack of reduction in the 
size of the sac. There are different types of leaks depending on where blood enters the sac. 
Early detection is essential to plan appropriate treatment in time. The current diagnostic 
test to follow up EVARs is CT (Computed Tomography). The images obtained with this 
technique are studied by physicians looking for contrast spots within the treated AAA that 



 

indicate the presence of leaks. These contrast peaks may be evident in some cases, but 
difficult to see in others, especially considering the large volume of images per CT scan. 
The model proposed in this study consists of a detection network, based on RetinaNet, to 
localize the sac in the CT images and remove the surrounding noise. Then using a binary 
classification model based on convolutional networks, both 2D and 3D, to analyze the 
images and make a prediction of the evolution of the aneurysm size, which would allow 
physicians to perform targeted surveillance on patients at higher risk of leaking. 
 

Palabras clave (castellano) 
Aneurisma de aorta, endoprótesis aórtica, fuga, saco aneurismático, tomografía 
computarizada (CT), aprendizaje automático (ML), aprendizaje profundo (DL). 
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1 Introduction 
1.1 Motivation 

Abdominal aortic aneurism (AAA) is a life-threatening disease consisting in a dilatation 

of the abdominal aorta exceeding the normal vessel diameter by 50% (around 3cm of 

diameter is considered an AAA). The AAA is characterized by a progressive expansion in 

size, although the progression of this growth is variable, remaining stable for some patients 

and other growing rapidly. The continuous expansion of the aneurysm size may end on a 

rupture, a weaken of the wall in the aneurysm sac that leads to internal bleeding. 

Aneurysms are usually asymptomatic until its rupture, which is often lethal with a mortality 

rate of 85 to 90% [1][2]. The objective is to identify and treat aneurysms before they 

rupture. 

The actual procedure to identify if a patient has an AAA is through an axial CT-scan. 

CT scans are large volumetric grayscale images that show the anatomical structures of the 

body region explored, including the path of the aorta. CT scans are x-ray based, although 

these scans output a 3D volume of images instead of the 2D “projectional x-rays”. The 

result encodes the radiodensity of millions of points (approximately a volume of 

512x512x1000 pixels) and measures them in Hounsfield units, where lower values, for 

example air, are shown in black, and higher values, like bones, are shown in white [3][4]. 

Intermediate tissue´s values are shown in Table 1-1. 

Table 1-1-1: Hounsfield scale table [4] 

TISSUE HU 
Bone +1000 
Liver 40 to 60 
Blood 40 
Kidney 30 
Muscle 10 to 40 
Water 0 
Whiter mater -20 to -30 
Grey mater -37 to -45 
Fat -50 to -100 
Air -1000 
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Actual treatment relies on open or endovascular repair. The decision to treat depends on 

the evaluation of the risk of AAA growth and rupture, which can be difficult to assess in 

practice [1]. This decision is not only made based on the characteristics of the AAA but 

also the patient’s operative risk and longevity [2]. 

Open repairs consist of an abdominal or flank incision. The aneurysm sac is opened and 

an interposition of a synthetic graft is sutured to both the healthy edges of the aorta. 

Endovascular repair is a less invasive approach that involves the intraluminal introduction 

of a covered stent graft through the femoral and iliac arteries; the stent graft acts as a sleeve 

that passes through the aneurysm sac landing in the healthy aorta above the aneurysm and 

in the iliac arteries below the aneurysm [1].  

 

Figure 1-1: Abdominal Aortic Aneurysm repair techniques 

For this project we will be focusing on post endovascular repair patients. In some 

series, as much of 20 to 30% of the patients with an EVAR may require a second 

intervention during the following years after the procedure, most of them also endovascular 

[1]. This are usually related to the development of endoleaks, wich are small blood flows 

inside the aneurysm sac that could lead to pressure raising that may led to continued 

aneurysm growth and subsecuent increase the risk of rupture [1][5].  

These endoleaks can be detected in the CT scans as white peaks of contrast into the 

aortic sac. Several factors can reduce the capacity of the technique to detect some of these 

endoleaks, such as patient´s supine position, delay of the time between contrast is injected 
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and CT images obtained, precise moment of the cardiac beating, etc, can make this contrast 

can be difficult to detect for the human eye [6][7][8].  

The main motivation for this master’s thesis is to program a computer aided diagnosis 

system (CAD) focusing on the post-operative evolution for patients with an endovascular 

repair using state-of-the-art deep learning technology in image processing. The future 

utilization for this application can help post-EVAR patients’ surveillance, detecting flaws 

of the stent through the CT output images, helping surgeons to detect and diagnose the 

problem and plan an adequate treatment, increasing the life expectancy of the patient. 

This thesis also seeks to remark the advantages of deep learning technology on the 

medical field, especially in diagnosis, and introduce these systems into our hospitals in 

Madrid [9][10]. 

1.2  Objectives 
The main objective of this master’s thesis is to develop a CAD system to help predict 

the evolution of the aneurysm size after an EVAR using CT images and deep learning 

technology.  

There are three secondary objectives. The first objective is to create a dataset of CT-

scans of post-EVAR treated patients from “La Paz” university hospital. Secondly, to detect 

endoleaks as the principal prognostic factor for the aneurysm sac degrowth. Finally, I will 

evaluate the advantages and limitations of Deep learning on medical imaging and the 

development of a CAD system. 

1.3 Structure of the report 
This report has the following chapters: 

• Related work.  An explanation of the state-of-the-art and the last advances on image 

processing for EVAR CT-scans. 

• Design. Evolution of the design of the model and post-processing. 

• Development. Explanation of the process of creating the dataset and training the 

different models evaluated. 

• Integration and experimental results. Presentation of the implementation of the 

models and validation results obtained. 

• Conclusions and future work. Ideas for improvements and for future research on the 

topic.  
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2 Related work 
In this section will be discussed the state of the art used in the design of the model 

proposed in this thesis along with the latest work on deep learning for medical imaging, 

focusing on CT scans and AAA related work. 

2.1 Computer-Aided Diagnosis systems in medicine 
Computer-aided diagnosis (CAD) in medicine is the result of a large amount of effort 

expended in the interface of medicine and computer science. Some CAD systems in 

medicine try to emulate the diagnostic decision-making process of medical experts. These 

systems may process data that can be complicated and/or massive in size and are capable of 

infer knowledge from data, improving future diagnosis, and therefore, their performance 

over time based on their successes and failures [10].  

This CAD systems can contribute immensely to the decision making in clinics and 

hospitals but also must meet some objectives to be successful. These objectives are 

managing large volumes of clinical data, objective and quantitative judgments and 

effectiveness and efficiency.  

2.1.1 Managing large volumes of data 
To provide accurate clinical diagnosis to a patient, medical professionals frequently 

must analyze various types of clinical data. Usually consist of the patient’s clinical 

information, such laboratory test results, physical symptoms, imaging techniques and other 

findings. Other data to consider can be a patient´s medical history with his/her past 

medication records and the history of past diseases, social status, diet, smoking history, 

exercise habits, etc.  

Clinical data keep becoming more sophisticated, complicated and increases 

dramatically in size and becomes too difficult for medical professionals to understand the 

whole spectrum of a patient´s conditions for them to diagnose the problem in time. Is this 

why CAD systems needs the capability to process and analyze the vast volumes of clinical 

data making use of optimized algorithms [10]. 
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2.1.2 Objective and quantitative judgments 
Traditional human-based diagnostic approaches mainly depend on the judgments of the 

healthcare professionals, which sometimes can be subjective [10]. These judgments can be 

affected by many reasons, from the inexperience of some new healthcare professionals to 

fatigue and distractions caused by overwork or night shifts. Moreover, human´s eye might 

be limited to find out pathological data that are already detected by radiological images. In 

our particular area of interest, it´s possible to have CT scans with small amounts of contrast 

within the aneurysm sac which may be missed by a human eye and may be an early but 

relevant endoleak. Under such circumstances, human errors are an unavoidable reality. 

Even under normal conditions, it is very difficult to quantify patients’ information and 

accurately diagnose.  

CAD systems in the other hand do not depend on a single healthcare professional´s 

analysis or skills, but in the knowledge obtained from large amounts of data, being capable 

of making more objective diagnosis consistently [10] and have the capabilities of finding 

said small amounts of contrast to make a more accurate early diagnosis.  

2.1.3 Effectiveness and efficiency 
CAD systems can be cost-effective, especially if a disease is detected in the early stages 

and can be treated before its evolution progresses into a more complex stage when 

treatment is more expensive and perhaps not as effective.  

In the particular case of treated AAA, a close surveillance is mandatory to detect leaks 

and misplacements of the device that may condition the prognosis of the patient. Early 

detection of this complications clearly would facilitate their treatment with less technical 

requirements and fewer risks for the patients [11]. In addition, CAD may improve not only 

the early detection of diseases but increase the workflow of a diagnostic procedure [12]. 

 

Deep learning technology has been of a large importance in CAD systems state of the 

art because its capability to meet these objectives. 

2.2 Deep Learning approaches for AAA classification 
Although the task in hands is an image classification, the differences between typical 

datasets like ImageNet [13] and CT data volumes effects on the model proposed. 
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CT scans are groups of N images with size 512x512, N being the number of slices and 

variable for each patient. The idea behind the models studied is to extract the useful 

information about the aneurysm to reduce the amount of “noise” for our task. Then uses 

this information and evaluates them using a classifier. 

The state of the art in machine learning algorithms for classification analysis of 

abdominal aortic aneurysms is divided into three different approaches. 

First, S. Mohammadi et al [14] proposed an automatic algorithm that detects the aorta 

region along other regions of the abdomen (abdominal inside region, body borders and 

bones) from the CT scan using a patch extraction. This patch extraction is done by 

scanning through the CT slice with a window of 64x64 pixels. Then uses a CNN (table 2-2) 

to classify each patch into its corresponding label. 

Table 2-1: CNN layers and parameters [14] 

 

The second stage of the method proposed in this paper consist in using the Hough 

circles algorithm, detecting the shape of the aorta, defining its borders, and measuring its 

diameter in pixels for later conversion to millimeters. Depending on the output of the 

algorithm, this algorithm prints a risk evaluation message. 

The results obtained by this method reaches high sensitivity, precision and accuracy in 

detecting the aorta border and measuring its diameter (98.41, 98.33, and 98.41% 

respectively). 
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Although this paper focuses on predicting the risk of developing an AAA instead of a 

post-surgery evaluation, the methods used for detecting the aorta and measuring the 

diameter could be of use in our application. 

 

The second approach proposed uses an evaluation of the texture as features for the 

classification of the AAA post-EVAR. This approach classifies the CT scan in 2 labels, 

favorable and unfavorable evolution. 

Texture analysis can be categorized into tree methods: statistical methods, model-based 

methods, and structural methods. Focusing on the statistical texture methods and 

specifically on spatial domain statistical techniques, we can adopt three grey-level matrices 

to extract texture features: the grey-level co-occurrence matrix (GLCM), the grey-level run 

length matrix (GLRLM) and the grey-level difference method (GLDM) [5][15]. 

With these methods we can extract features as the following, shown in Table 2-2. 

Table 2-2: Detailed features in three greyscale matrices. Grey-Level Co-occurrence 
Matrix=GLCM. Grey-Level [15] 

GLCM matrix GLDM matrix GLRLM matrix 
Energy Contrast  Short-run emphasis 

Correlation Angular second moment Long-run emphasis 
Inertia Entropy Grey level nonuniformity 

Entropy Mean Run percentage 
Inverse difference moment 

Inverse difference 
moment 

Run length nonuniformity 
Sum average Low-grey-level run 

emphasis 
High-grey-level run 

emphasis 

Sum variance 
Sum entropy 

Difference average 
Difference entropy 

Two information measures of 
correlation 

Once extracted the features, the authors use a three-layer backpropagation neural 

network with a nonlinear sigmoid function as activation for each neuron. The network is 

trained to give 0.9 output value if the evolution is favorable or 0.1 if is unfavorable [5]. 

The results obtained with this approach shows are shown in table 2-3. 

Table 2-3: AUC results of different texture methods for AAA evolution 

Texture method AUC_mean [5] AUC_mean [15] 
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GLCM 0.977 0.901 
GLDM 0.960 0.831 
GLRLM 0.851 0.861 

 

 

The third approach focuses on using deep learning models for both localization of the 

aorta in the CT volume, and classification of possible endoleaks on each slide. The 

localization scheme uses RetinaNet [16] to localize the aorta with a bounding box for each 

slide of the CT scan. Then the bounding box is extracted and used as a separate image, 

reshaped, and classified by a ResNet50 network [17]. The paper describing this approach 

shows positive results in classification, giving an 0.94±0.03 ROC AUC with data 

augmentation [18]. Although, to obtain these results, uses a big dataset for training and 

testing, reaching a final amount of 760 CT volumes and a total of 239,935 slices [18]. 

A later improvement of the algorithm [19] helps not only to find endoleaks but also to 

measure the aneurysm maximum diameter, AAA volume and endoleak volume using a 3D 

U-net [20] for a 3D segmentation of the aneurysm. 

 

Convolutional neural networks are of great importance in image processing systems, 

including the detection and classification of the aorta region in AAA prediction systems. 

Although, in the presented approaches focuses on 2D CNNs, other areas in medical 

imaging uses 3D CNNs for a better understanding of the third dimensional space, and the 

relation of consecutive slices in the data volumes. 

Some of these studies use 3D convolutions in the feature extraction. This scheme focuses 

on these three-dimensional spatial relations. The main problems with this approach are the 

computational power needed for a fast training and the input dimensions, which could 

change between patients. In this paper [21] the authors reshape the input scan to a 

32x32x32 volume using the linear interpolation method, but the volumes sizes treated in 

this master thesis are in the order of 512x512xN, N being between 200-1600, and a reshape 

of this magnitude can represent a great loss of information. 

Another approach is mixing 2D and 3D convolutions in a network as proposed by R. L. 

Draelos et al in their CT-net [22]. Extracting features using a pretrained ResNet18 with 
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ImageNet on to multiple stacks of 3 slices treated as 3 channel images. The features 

extracted are then concatenated and processed with several 3D convolutional layers. 

Finally, a classifier using three fully connected layers to obtain a final prediction. The 

pipeline of this model is represented in figure 2-1 

 

Figure 2-1: CT-Net volume classification architecture [22]
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3 Design 
The Design decided for the architecture of the model follows the idea behind S. Hahn et 

al’s work [18][19]. Dividing the task into 2 different architectures, the first one focusing on 

localizing the aorta section from each slide of the CT volume where an aneurysm is 

present. The second one focuses on the classification task, using different feature extraction 

networks, from multiple ResNet architectures to a custom 3D architecture. 

3.1 Localization Task 
The idea behind this task is to reduce the input size used in training. Because the 

dimensions of each patients CT volume, training will be slow and ineffective, due the large 

number of slices and the existence of slices that don’t contain information about the EVAR 

or the aneurism. The procedure planned is to train a RetinaNet model to localize and set a 

squared bounding box around the aorta region. Then, this detection is going to be used in 

the classification task as the input image. 

The objective on this task is not obtaining perfect results in localization but a clear 

region where the aorta is present for later use. The main intention for this stage is not 

obtaining a precise bounding box but ensuring that all the slices where the aorta is present 

is localized with a bounding box, especially if the AAA is visible too. 

To ensure the correct functioning of the localization module, there is also a post-

processing phase. In this phase there are three modifications to the direct output of the 

RetinaNet module: Padding the results, interpolation between slices and removing isolated 

predictions.  

Padding increases the bounding box by 10 pixels in each direction, ensuring that the 

aorta is fully included in the bounding box. This is effectively adding noisy pixels to the 

detection, but because of the typical localization of the endoleaks, detecting the walls of the 

aneurysm is of grate importance for the later feature extraction. 

Interpolating between detections from consecutive slices is necessary to reduce the 

number of false negatives. To include slices where should be a detection of the aneurysm, 

the system decides the values of the corners of the bounding box by averaging the positions 

of previous and posterior bounding boxes. Because of the possible existence of false 
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positives, we should not interpolate slices without bounding boxes in a range from the 

current.  

To reduce the number of false detections in regions far from the aneurysm, if the 

detection is isolated from other detections of the volume, it is not considered and removed 

from the output. 

3.2 Classification Task 
Classification is the main objective of the system. Deciding if the patient should require 

a second intervention. In this system´s area, the plan is to train a CNN that inputs each 

detection from the localization task and passes through the model deciding if the growth is 

favorable or unfavorable. 

The first approach is to follow S. Hahn et al’s papers [18][19] and use a ResNet model 

to classify each of the slices of the CT volume, and then using a voting mechanism to 

decide the final case predictions. However, their approach had individual labels for each 

slice of the CT scan representing the existence of leaks in said slice, while our dataset count 

with one label for the complete data volume. Further explain the characteristics of the 

dataset in chapter 4.1. 

Another approach is to use 3D CNNs for all the CT volume, obtaining a final case 

prediction directly from the network. This brings the before mentioned problem of variable 

sized volumes present in our dataset. To solve this problem, the input of the network uses a 

fixed size in the three dimensions, using a window to select which slices are selected for 

each iteration, and use a voting algorithm to return a final and unique value to the complete 

CT volume.  

The quantity of non-redundant data available for training a CNN is a concern when 

using data volumes of medical images, being similar between consecutive slices and 

between different patients’ scans. Therefore, is important to use data augmentation 

techniques to increase the variability of the training data, being an instrumental data-

processing step to achieve a more generalizable and accurate performance [23]. The data 

augmentation techniques planned for the classification task are catalogued as basic 

augmentation, performing to the input a series of small random translations, random 

rotations and random flips in the horizontal and/or vertical axis. 
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4 Development  
4.1 Creating the dataset 
The data used in this project was gathered from the hospital “La Paz” university 

hospital, with permission from the ethics committee. The data was downloaded directly 

from the hospital system, one CT scan at a time. The final dataset gathered consisted of 88 

non-labeled CT volumes from 44 different patients. These CT volumes were taken from 

patients operated with an EVAR from 2010 to 2012. For each patient could obtain a CT 

scan from seven days after the surgery and a second scan performed from six to twelve 

months later. 

This dataset needs labels for both the localization and the classification task.  

For localization, a vascular surgeon created a ground truth bounding box around the 

AAA and the aorta region surrounding the aneurysm for 25 patients (49 CT volumes) using 

a labeling open-source software called LabelImg [24] and a modification called Video 

Frame Mode [25] to improve labeling efficiency. 

In the case of classification, obtaining labels is complicated. For some patients who had 

a clear contrast peak in their CT scan, we can obtain their label from the case reports filed 

at the time of the CT scan obtention. Although, for the other patients, in other to know if 

their EVAR is leaking we analyze their evolution measuring the diameter of both CT scans 

in possession and write the corresponding label based on the evolution of the AAA size. 

Six patients were discarded from this stage because lack of information needed to label 

their condition, ending with 38 CT scans for the classification step. 

4.2 Localization 
The CT volumes of the dataset are saved on disk as a number of .DICOM files, one for 

each slice, sorted in a folder and named after their corresponding position on the volume. 

To read these files we make use of the dcmread function implemented in the pydicom 

library [26] for python. Once read the image corresponding to the slice, we start a pre-

processing stage to normalize the image to the range [0,1]. 

To train the model we make use of the 49 CT labeled volumes. 
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Training for this model was based on the intersection over union evaluation between 

the bounding boxes presented in each iteration and the corresponding ground truth. 

RetinaNet not only finds the bounding box around the object but also returns a confidence 

related score of the type of object detected. After a result is given by the model, we filter 

the output to detections with a confidence level over a threshold of 0.9.  

Once trained the model, we develop a script that returns a list with the directories of the 

.DICOM files that present a detection and the position of the 4 corners of the bounding box 

and uses this list for the post-processing phase described in a previous chapter. The post-

processing output is a data frame containing the directories and the position of the final 

detections, which will be used for the classification task. 

The training of this model for twenty epochs lasted eight hours using a personal laptop 

with a NVIDIA GeForce RTX 2060 graphics card.  

4.3 Classification 
 For classification two different approaches were developed. A ResNet network, both 

18 and 50 layers were attempted, and a custom 3D network. 

The first step in developing the classification scheme is to pre-process the output of the 

localization algorithm to adapt to the input of our network.  

For ResNet architectures we needed to extract from each slice of the multiple volumes 

the directory to the DICOM file and the position of the corresponding bounding box. Then 

extract the detected region and reshape it into a 64x64 image. 

For the 3D CNN architecture, we also need to group these images in packs of a fixed 

number of slices, all from the same CT scan. The output are multiple 64x64x32 data 

volumes. For both 2D and 3D CNNs, data augmentation techniques are applied as specified 

in the design. 

The custom 3D architecture consists of three custom 3D ResNet blocks. These blocks 

are made of two 3D convolutional layers, two 3D batch normalization layers and two 

ReLU activation layer. Organization of the layers in the model is shown in figure 4-1. 
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Figure 4-1: Organization of layers in the 3D custom model 

To implement the voting system, we decided to use a probability pondered voting 

system with the output returned by the network. First, we analyze the output of the model 

by obtaining the mean probability for each label, favorable or unfavorable evolution. This 

means that if a small number of slices present a peak in contrast, alerting the existence of 

an endoleaks, and the model defines that slice with high probability of an unfavorable 

evolution the voting system will consider this as the correct output even if most of the 

slices are classified as the opposite label. We also developed a majority voting system for 

comparison. 

Training each model for 25 epochs lasted fourteen hours each using the same GPU. The 

dataset used in classification counted with 28 CT scans for training and 10 for testing. 

All the algorithms are implemented in python, using the pydicom library [26] for 

reading thee .DICOM files and an extensive use of the pytorch library [27]. 
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5 Integration and experimental results 
5.1 Localization 

Localization task, as mentioned before, has the objective of selecting a rough 

estimation of the localization of the aorta. The exact position of the bounding boxes is not 

as important as the precision, selecting the minimum possible false negatives and detecting 

all the true positives. 

Running the algorithm used for localization and evaluating its output we obtain a 

precision value of 82.015% with 2695 True positives and 591 False positives. This means 

that the system still has a considerably high number of false detections even with the post-

processing applied. This affects future utilization of this data, making more complex the 

training for classification. 

In figure 5-1 and figure 5-2 we can see the evolution of the precision and the loss 

through training. Qualitative results are closer to the expectations, represented in figure 5-2. 

 

Figure 5-1: Localization test precision 
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Figure 5-2: Localization training loss 

 

Figure 5-3:In red final detections made by the system, in green the ground truth. Top row 
true positives, bottom row false positive 
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5.2 Classification 
The training of the classifiers was affected by the small number of available CT scans 

for training and the false detections made in localization, dragging the error to this step. 

Training graphs show the effect of overfitting in training for both architectures. 

 

Figure 5-4: ResNet training losses. Up ResNet18, down ResNet50 
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Figure 5-5: Custom 3D CNN training losses 

 
Figure 5-6: Validation accuracy for ResNet18 

 
Figure 5-7: Validation accuracy for ResNet50 
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Figure 5-8: Validation accuracy for Custom 3D CNN 

The classifier is affected by overfitting, obtaining unvaluable results. Both models learn 

to return the same output for each iteration, either that all the CT scan belongs to a 

favorable evolution or the opposite. This explains why the accuracy graph is surrounding 

the 50% value. 
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6 Conclusions and future work 

6.1 Conclusions 
This Master thesis attempted to develop a CAD system to help detect endoleaks in post-

operative EVAR patients, helping the medical professionals to plan an early correction of 

the stent and reducing the risk of rupture.  

The system was based in a two-step pipeline. The first step consisted in a localization 

DL model using RetinaNet, detecting the aorta in each slice of the CT volume, especially 

the Aneurysm. The second step consist of a classification model, using both a ResNet 

architecture and a 3D custom CNN model. This step is focused in extracting the features of 

the slices and predict between a favorable or unfavorable evolution for the patient. 

Although the idea of using computer algorithms to help medical experts to aid their 

diagnosis is becoming an important research field in the world, this concept is not extended 

in hospitals in Madrid. The use of CAD systems in hospitals is increasing due their 

capability to process large amounts of data, present objective results and presenting a high 

effectiveness. 

The system show a large overfitting between the model and the data used in training, 

obtaining a poor performance when used with a validation set. This overfitting can be led 

by many things, starting by a small dataset available for training, a limited performance in 

the localization step and the high complexity of the input data.  

This study was neither able to develop a system capable of predicting the evolution of 

an AAA, nor the contrast peaks from the CT scan, signaling the existence of an endoleak. 

From the secondary objectives, the creation and labeling of the dataset was a high time-

consuming task and was completed successfully for a small number of patients (44) 

considering the task in hand. The system is not ready yet to detect with sufficient accuracy 

endoleaks. The limitation of this system is the need of larger amount of data from patients 

to be trained enough to be useful in the medical day practice. 

6.2 Future work 
Future research on this topic should start with a better-defined dataset, with more 

accurate labels and more patients to train with. With more data we could train better the 
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models designed, starting from the localization task, focusing on reducing the number of 

false positives returned. 

Classification models used are not optimal for the task considering the limitations of the 

dataset and labels. Researching on new models and investigating their capabilities to 

extract the correct features could be helpful to the classification task. 

The next area of  work is the use of overfitting reduction techniques, as more complex 

data augmentation, pretrain the models with similar datasets or using self-supervised 

learning. 
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	indicate the presence of leaks. These contrast peaks may be evident in some cases, but difficult to see in others, especially considering the large volume of images per CT scan. The model proposed in this study consists of a detection network, based on RetinaNet, to localize the sac in the CT images and remove the surrounding noise. Then using a binary classification model based on convolutional networks, both 2D and 3D, to analyze the images and make a prediction of the evolution of the aneurysm size, whic
	 
	Palabras clave (castellano) 
	Aneurisma de aorta, endoprótesis aórtica, fuga, saco aneurismático, tomografía computarizada (CT), aprendizaje automático (ML), aprendizaje profundo (DL). 
	 
	Keywords (inglés) 
	Aortic aneurysm, Endovascular aortic repair, EVAR, endoleak, leak, aneurysm sac, computerized tomography (CT), machine learning (ML), deep learning (DL). 
	 
	 
	 
	 
	CONTENTS 
	CONTENTS 
	1 Introduction
	1 Introduction
	1 Introduction
	 

	................................................................................................
	........................ 2
	 

	1.1 Motivation
	1.1 Motivation
	1.1 Motivation
	 

	................................................................................................
	................ 2
	 

	1.2 Objectives
	1.2 Objectives
	1.2 Objectives
	 

	................................................................................................
	................. 4
	 

	1.3 Structure of the report
	1.3 Structure of the report
	1.3 Structure of the report
	 

	................................................................
	............................... 4
	 

	2 Related work
	2 Related work
	2 Related work
	 

	................................................................................................
	....................... 6
	 

	2.1 Computer-Aided Diagnosis systems in medicine
	2.1 Computer-Aided Diagnosis systems in medicine
	2.1 Computer-Aided Diagnosis systems in medicine
	 

	................................
	..................... 6
	 

	2.1.1 Managing large volumes of data 
	2.1.1 Managing large volumes of data 
	2.1.1 Managing large volumes of data 

	................................................................
	.... 6
	 

	2.1.2 Objective and quantitative judgments 
	2.1.2 Objective and quantitative judgments 
	2.1.2 Objective and quantitative judgments 

	................................
	............................ 7
	 

	2.1.3 Effectiveness and efficiency 
	2.1.3 Effectiveness and efficiency 
	2.1.3 Effectiveness and efficiency 

	................................................................
	........... 7
	 

	2.2 Deep Learning approaches for AAA classification
	2.2 Deep Learning approaches for AAA classification
	2.2 Deep Learning approaches for AAA classification
	 

	................................
	.................. 7
	 

	3 Design
	3 Design
	3 Design
	 ............................................................................................................................... 14

	 

	3.1 Localization Task
	3.1 Localization Task
	3.1 Localization Task
	 ................................................................................................... 14

	 

	3.2 Classification Task
	3.2 Classification Task
	3.2 Classification Task
	 ................................................................................................. 15

	 

	4 Development
	4 Development
	4 Development
	 ..................................................................................................................... 18

	 

	4.1 Creating the dataset
	4.1 Creating the dataset
	4.1 Creating the dataset
	 ................................................................................................ 18

	 

	4.2 Localization
	4.2 Localization
	4.2 Localization
	 ............................................................................................................ 18

	 

	4.3 Classification
	4.3 Classification
	4.3 Classification
	 .......................................................................................................... 19

	 

	5 Integration and experimental results
	5 Integration and experimental results
	5 Integration and experimental results
	................................................................................. 22

	 

	5.1 Localization
	5.1 Localization
	5.1 Localization
	 ............................................................................................................ 22

	 

	5.2 Classification
	5.2 Classification
	5.2 Classification
	 .......................................................................................................... 24

	 

	6 Conclusions and future work
	6 Conclusions and future work
	6 Conclusions and future work
	 ............................................................................................ 28

	 

	6.1 Conclusions
	6.1 Conclusions
	6.1 Conclusions
	 ............................................................................................................ 28

	 

	6.2 Future work
	6.2 Future work
	6.2 Future work
	 ............................................................................................................ 28

	 

	Bibliography
	Bibliography
	Bibliography
	 ........................................................................................................................ 32

	 

	Glossary
	Glossary
	Glossary
	 

	................................................................................................................................
	.. I
	 

	Appendix
	Appendix
	Appendix
	 .............................................................................................................................. II

	 

	A Ethnics committee permission
	A Ethnics committee permission
	A Ethnics committee permission
	 ........................................................................ II

	 

	 

	 
	 
	 
	 
	LIST OF FIGURES 
	 
	 
	FIGURE 1-1: ABDOMINAL AORTIC ANEURYSM REPAIR TECHNIQUES
	FIGURE 1-1: ABDOMINAL AORTIC ANEURYSM REPAIR TECHNIQUES
	FIGURE 1-1: ABDOMINAL AORTIC ANEURYSM REPAIR TECHNIQUES
	 

	................................
	................ 3
	 

	FIGURE 2-1: CT-NET VOLUME CLASSIFICATION ARCHITECTURE [22]
	FIGURE 2-1: CT-NET VOLUME CLASSIFICATION ARCHITECTURE [22]
	FIGURE 2-1: CT-NET VOLUME CLASSIFICATION ARCHITECTURE [22]
	 ............................................. 11

	 

	FIGURE 4-1: ORGANIZATION OF LAYERS IN THE 3D CUSTOM MODEL
	FIGURE 4-1: ORGANIZATION OF LAYERS IN THE 3D CUSTOM MODEL
	FIGURE 4-1: ORGANIZATION OF LAYERS IN THE 3D CUSTOM MODEL
	 .............................................. 20

	 

	FIGURE 5-1: LOCALIZATION TEST PRECISION
	FIGURE 5-1: LOCALIZATION TEST PRECISION
	FIGURE 5-1: LOCALIZATION TEST PRECISION
	 ................................................................................... 22

	 

	FIGURE 5-2: LOCALIZATION TRAINING LOSS
	FIGURE 5-2: LOCALIZATION TRAINING LOSS
	FIGURE 5-2: LOCALIZATION TRAINING LOSS
	 .................................................................................... 23

	 

	FIGURE 5-3:IN RED FINAL DETECTIONS MADE BY THE SYSTEM, IN GREEN THE GROUND TRUTH. TOP ROW TRUE POSITIVES, BOTTOM ROW FALSE POSITIVE
	FIGURE 5-3:IN RED FINAL DETECTIONS MADE BY THE SYSTEM, IN GREEN THE GROUND TRUTH. TOP ROW TRUE POSITIVES, BOTTOM ROW FALSE POSITIVE
	FIGURE 5-3:IN RED FINAL DETECTIONS MADE BY THE SYSTEM, IN GREEN THE GROUND TRUTH. TOP ROW TRUE POSITIVES, BOTTOM ROW FALSE POSITIVE
	 ............................................................. 23

	 

	FIGURE 5-4: RESNET TRAINING LOSSES. UP RESNET18, DOWN RESNET50
	FIGURE 5-4: RESNET TRAINING LOSSES. UP RESNET18, DOWN RESNET50
	FIGURE 5-4: RESNET TRAINING LOSSES. UP RESNET18, DOWN RESNET50
	 .................................... 24

	 

	FIGURE 5-5: CUSTOM 3D CNN TRAINING LOSSES
	FIGURE 5-5: CUSTOM 3D CNN TRAINING LOSSES
	FIGURE 5-5: CUSTOM 3D CNN TRAINING LOSSES
	 ........................................................................... 25

	 

	FIGURE 5-6: VALIDATION ACCURACY FOR RESNET18
	FIGURE 5-6: VALIDATION ACCURACY FOR RESNET18
	FIGURE 5-6: VALIDATION ACCURACY FOR RESNET18
	 .................................................................... 25

	 

	FIGURE 5-7: VALIDATION ACCURACY FOR RESNET50
	FIGURE 5-7: VALIDATION ACCURACY FOR RESNET50
	FIGURE 5-7: VALIDATION ACCURACY FOR RESNET50
	 .................................................................... 25

	 

	FIGURE 5-8: VALIDATION ACCURACY FOR CUSTOM 3D CNN
	FIGURE 5-8: VALIDATION ACCURACY FOR CUSTOM 3D CNN
	FIGURE 5-8: VALIDATION ACCURACY FOR CUSTOM 3D CNN
	 ......................................................... 26

	 

	 

	LIST OF TABLES 
	 
	 
	TABLE 1-1-1: HOUNSFIELD SCALE TABLE [4] .................................................................................... 
	TABLE 1-1-1: HOUNSFIELD SCALE TABLE [4] .................................................................................... 
	2
	 

	TABLE 2-1: CNN LAYERS AND PARAMETERS [14] ............................................................................. 
	TABLE 2-1: CNN LAYERS AND PARAMETERS [14] ............................................................................. 
	8
	 

	TABLE 2-2: DETAILED FEATURES IN THREE GREYSCALE MATRICES. GREY-LEVEL CO-OCCURRENCE MATRIX=GLCM. GREY-LEVEL [15] ......................................................................................... 
	TABLE 2-2: DETAILED FEATURES IN THREE GREYSCALE MATRICES. GREY-LEVEL CO-OCCURRENCE MATRIX=GLCM. GREY-LEVEL [15] ......................................................................................... 
	9
	 

	TABLE 2-3: AUC RESULTS OF DIFFERENT TEXTURE METHODS FOR AAA EVOLUTION ..................... 
	TABLE 2-3: AUC RESULTS OF DIFFERENT TEXTURE METHODS FOR AAA EVOLUTION ..................... 
	9
	 

	 

	 
	1 
	1 
	I
	ntroduc
	tion
	 
	Span

	1.1 Motivation 
	Abdominal aortic aneurism (AAA) is a life-threatening disease consisting in a dilatation of the abdominal aorta exceeding the normal vessel diameter by 50% (around 3cm of diameter is considered an AAA). The AAA is characterized by a progressive expansion in size, although the progression of this growth is variable, remaining stable for some patients and other growing rapidly. The continuous expansion of the aneurysm size may end on a rupture, a weaken of the wall in the aneurysm sac that leads to internal b
	The actual procedure to identify if a patient has an AAA is through an axial CT-scan. CT scans are large volumetric grayscale images that show the anatomical structures of the body region explored, including the path of the aorta. CT scans are x-ray based, although these scans output a 3D volume of images instead of the 2D “projectional x-rays”. The result encodes the radiodensity of millions of points (approximately a volume of 512x512x1000 pixels) and measures them in Hounsfield units, where lower values,
	Table 1-1-1: Hounsfield scale table [4] 
	TISSUE 
	TISSUE 
	TISSUE 
	TISSUE 
	TISSUE 

	HU 
	HU 



	Bone 
	Bone 
	Bone 
	Bone 

	+1000 
	+1000 


	Liver 
	Liver 
	Liver 

	40 to 60 
	40 to 60 


	Blood 
	Blood 
	Blood 

	40 
	40 


	Kidney 
	Kidney 
	Kidney 

	30 
	30 


	Muscle 
	Muscle 
	Muscle 

	10 to 40 
	10 to 40 


	Water 
	Water 
	Water 

	0 
	0 


	Whiter mater 
	Whiter mater 
	Whiter mater 

	-20 to -30 
	-20 to -30 


	Grey mater 
	Grey mater 
	Grey mater 

	-37 to -45 
	-37 to -45 


	Fat 
	Fat 
	Fat 

	-50 to -100 
	-50 to -100 


	Air 
	Air 
	Air 

	-1000 
	-1000 




	 
	Actual treatment relies on open or endovascular repair. The decision to treat depends on the evaluation of the risk of AAA growth and rupture, which can be difficult to assess in practice [1]. This decision is not only made based on the characteristics of the AAA but also the patient’s operative risk and longevity [2]. 
	Open repairs consist of an abdominal or flank incision. The aneurysm sac is opened and an interposition of a synthetic graft is sutured to both the healthy edges of the aorta. Endovascular repair is a less invasive approach that involves the intraluminal introduction of a covered stent graft through the femoral and iliac arteries; the stent graft acts as a sleeve that passes through the aneurysm sac landing in the healthy aorta above the aneurysm and in the iliac arteries below the aneurysm [1].  
	 
	 
	InlineShape

	Figure 1-1: Abdominal Aortic Aneurysm repair techniques 
	For this project we will be focusing on post endovascular repair patients. In some series, as much of 20 to 30% of the patients with an EVAR may require a second intervention during the following years after the procedure, most of them also endovascular [1]. This are usually related to the development of endoleaks, wich are small blood flows inside the aneurysm sac that could lead to pressure raising that may led to continued aneurysm growth and subsecuent increase the risk of rupture [1][5].  
	These endoleaks can be detected in the CT scans as white peaks of contrast into the aortic sac. Several factors can reduce the capacity of the technique to detect some of these endoleaks, such as patient´s supine position, delay of the time between contrast is injected 
	and CT images obtained, precise moment of the cardiac beating, etc, can make this contrast can be difficult to detect for the human eye [6][7][8].  
	The main motivation for this master’s thesis is to program a computer aided diagnosis system (CAD) focusing on the post-operative evolution for patients with an endovascular repair using state-of-the-art deep learning technology in image processing. The future utilization for this application can help post-EVAR patients’ surveillance, detecting flaws of the stent through the CT output images, helping surgeons to detect and diagnose the problem and plan an adequate treatment, increasing the life expectancy o
	This thesis also seeks to remark the advantages of deep learning technology on the medical field, especially in diagnosis, and introduce these systems into our hospitals in Madrid [9][10]. 
	1.2  Objectives 
	The main objective of this master’s thesis is to develop a CAD system to help predict the evolution of the aneurysm size after an EVAR using CT images and deep learning technology.  
	There are three secondary objectives. The first objective is to create a dataset of CT-scans of post-EVAR treated patients from “La Paz” university hospital. Secondly, to detect endoleaks as the principal prognostic factor for the aneurysm sac degrowth. Finally, I will evaluate the advantages and limitations of Deep learning on medical imaging and the development of a CAD system. 
	1.3 Structure of the report 
	This report has the following chapters: 
	• Related work.  An explanation of the state-of-the-art and the last advances on image processing for EVAR CT-scans. 
	• Related work.  An explanation of the state-of-the-art and the last advances on image processing for EVAR CT-scans. 
	• Related work.  An explanation of the state-of-the-art and the last advances on image processing for EVAR CT-scans. 

	• Design. Evolution of the design of the model and post-processing. 
	• Design. Evolution of the design of the model and post-processing. 

	• Development. Explanation of the process of creating the dataset and training the different models evaluated. 
	• Development. Explanation of the process of creating the dataset and training the different models evaluated. 

	• Integration and experimental results. Presentation of the implementation of the models and validation results obtained. 
	• Integration and experimental results. Presentation of the implementation of the models and validation results obtained. 

	• Conclusions and future work. Ideas for improvements and for future research on the topic.  
	• Conclusions and future work. Ideas for improvements and for future research on the topic.  


	2 
	2 
	Related work
	 
	Span

	In this section will be discussed the state of the art used in the design of the model proposed in this thesis along with the latest work on deep learning for medical imaging, focusing on CT scans and AAA related work. 
	2.1 Computer-Aided Diagnosis systems in medicine 
	Computer-aided diagnosis (CAD) in medicine is the result of a large amount of effort expended in the interface of medicine and computer science. Some CAD systems in medicine try to emulate the diagnostic decision-making process of medical experts. These systems may process data that can be complicated and/or massive in size and are capable of infer knowledge from data, improving future diagnosis, and therefore, their performance over time based on their successes and failures [10].  
	This CAD systems can contribute immensely to the decision making in clinics and hospitals but also must meet some objectives to be successful. These objectives are managing large volumes of clinical data, objective and quantitative judgments and effectiveness and efficiency.  
	2.1.1 Managing large volumes of data 
	To provide accurate clinical diagnosis to a patient, medical professionals frequently must analyze various types of clinical data. Usually consist of the patient’s clinical information, such laboratory test results, physical symptoms, imaging techniques and other findings. Other data to consider can be a patient´s medical history with his/her past medication records and the history of past diseases, social status, diet, smoking history, exercise habits, etc.  
	Clinical data keep becoming more sophisticated, complicated and increases dramatically in size and becomes too difficult for medical professionals to understand the whole spectrum of a patient´s conditions for them to diagnose the problem in time. Is this why CAD systems needs the capability to process and analyze the vast volumes of clinical data making use of optimized algorithms [10]. 
	2.1.2 Objective and quantitative judgments 
	Traditional human-based diagnostic approaches mainly depend on the judgments of the healthcare professionals, which sometimes can be subjective [10]. These judgments can be affected by many reasons, from the inexperience of some new healthcare professionals to fatigue and distractions caused by overwork or night shifts. Moreover, human´s eye might be limited to find out pathological data that are already detected by radiological images. In our particular area of interest, it´s possible to have CT scans with
	CAD systems in the other hand do not depend on a single healthcare professional´s analysis or skills, but in the knowledge obtained from large amounts of data, being capable of making more objective diagnosis consistently [10] and have the capabilities of finding said small amounts of contrast to make a more accurate early diagnosis.  
	2.1.3 Effectiveness and efficiency 
	CAD systems can be cost-effective, especially if a disease is detected in the early stages and can be treated before its evolution progresses into a more complex stage when treatment is more expensive and perhaps not as effective.  
	In the particular case of treated AAA, a close surveillance is mandatory to detect leaks and misplacements of the device that may condition the prognosis of the patient. Early detection of this complications clearly would facilitate their treatment with less technical requirements and fewer risks for the patients [11]. In addition, CAD may improve not only the early detection of diseases but increase the workflow of a diagnostic procedure [12]. 
	 
	Deep learning technology has been of a large importance in CAD systems state of the art because its capability to meet these objectives. 
	2.2 Deep Learning approaches for AAA classification 
	Although the task in hands is an image classification, the differences between typical datasets like ImageNet [13] and CT data volumes effects on the model proposed. 
	CT scans are groups of N images with size 512x512, N being the number of slices and variable for each patient. The idea behind the models studied is to extract the useful information about the aneurysm to reduce the amount of “noise” for our task. Then uses this information and evaluates them using a classifier. 
	The state of the art in machine learning algorithms for classification analysis of abdominal aortic aneurysms is divided into three different approaches. 
	First, S. Mohammadi et al [14] proposed an automatic algorithm that detects the aorta region along other regions of the abdomen (abdominal inside region, body borders and bones) from the CT scan using a patch extraction. This patch extraction is done by scanning through the CT slice with a window of 64x64 pixels. Then uses a CNN (table 2-2) to classify each patch into its corresponding label. 
	Table 2-1: CNN layers and parameters [14] 
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	The second stage of the method proposed in this paper consist in using the Hough circles algorithm, detecting the shape of the aorta, defining its borders, and measuring its diameter in pixels for later conversion to millimeters. Depending on the output of the algorithm, this algorithm prints a risk evaluation message. 
	The results obtained by this method reaches high sensitivity, precision and accuracy in detecting the aorta border and measuring its diameter (98.41, 98.33, and 98.41% respectively). 
	Although this paper focuses on predicting the risk of developing an AAA instead of a post-surgery evaluation, the methods used for detecting the aorta and measuring the diameter could be of use in our application. 
	 
	The second approach proposed uses an evaluation of the texture as features for the classification of the AAA post-EVAR. This approach classifies the CT scan in 2 labels, favorable and unfavorable evolution. 
	Texture analysis can be categorized into tree methods: statistical methods, model-based methods, and structural methods. Focusing on the statistical texture methods and specifically on spatial domain statistical techniques, we can adopt three grey-level matrices to extract texture features: the grey-level co-occurrence matrix (GLCM), the grey-level run length matrix (GLRLM) and the grey-level difference method (GLDM) [5][15]. 
	With these methods we can extract features as the following, shown in Table 2-2. 
	Table 2-2: Detailed features in three greyscale matrices. Grey-Level Co-occurrence Matrix=GLCM. Grey-Level [15] 
	GLCM matrix 
	GLCM matrix 
	GLCM matrix 
	GLCM matrix 
	GLCM matrix 

	GLDM matrix 
	GLDM matrix 

	GLRLM matrix 
	GLRLM matrix 



	Energy 
	Energy 
	Energy 
	Energy 

	Contrast  
	Contrast  

	Short-run emphasis 
	Short-run emphasis 


	Correlation 
	Correlation 
	Correlation 

	Angular second moment 
	Angular second moment 

	Long-run emphasis 
	Long-run emphasis 


	Inertia 
	Inertia 
	Inertia 

	Entropy 
	Entropy 

	Grey level nonuniformity 
	Grey level nonuniformity 


	Entropy 
	Entropy 
	Entropy 

	Mean 
	Mean 

	Run percentage 
	Run percentage 


	Inverse difference moment 
	Inverse difference moment 
	Inverse difference moment 

	Inverse difference moment 
	Inverse difference moment 

	Run length nonuniformity 
	Run length nonuniformity 


	TR
	Sum average 
	Sum average 

	Low-grey-level run emphasis 
	Low-grey-level run emphasis 
	High-grey-level run emphasis 


	TR
	Sum variance 
	Sum variance 


	TR
	Sum entropy 
	Sum entropy 


	TR
	Difference average 
	Difference average 


	TR
	Difference entropy 
	Difference entropy 


	TR
	Two information measures of correlation 
	Two information measures of correlation 




	Once extracted the features, the authors use a three-layer backpropagation neural network with a nonlinear sigmoid function as activation for each neuron. The network is trained to give 0.9 output value if the evolution is favorable or 0.1 if is unfavorable [5]. 
	The results obtained with this approach shows are shown in table 2-3. 
	Table 2-3: AUC results of different texture methods for AAA evolution 
	Texture method 
	Texture method 
	Texture method 
	Texture method 
	Texture method 

	AUC_mean [5] 
	AUC_mean [5] 

	AUC_mean [15] 
	AUC_mean [15] 




	GLCM 
	GLCM 
	GLCM 
	GLCM 
	GLCM 

	0.977 
	0.977 

	0.901 
	0.901 


	GLDM 
	GLDM 
	GLDM 

	0.960 
	0.960 

	0.831 
	0.831 


	GLRLM 
	GLRLM 
	GLRLM 

	0.851 
	0.851 

	0.861 
	0.861 




	 
	 
	The third approach focuses on using deep learning models for both localization of the aorta in the CT volume, and classification of possible endoleaks on each slide. The localization scheme uses RetinaNet [16] to localize the aorta with a bounding box for each slide of the CT scan. Then the bounding box is extracted and used as a separate image, reshaped, and classified by a ResNet50 network [17]. The paper describing this approach shows positive results in classification, giving an 0.94±0.03 ROC AUC with d
	A later improvement of the algorithm [19] helps not only to find endoleaks but also to measure the aneurysm maximum diameter, AAA volume and endoleak volume using a 3D U-net [20] for a 3D segmentation of the aneurysm. 
	 
	Convolutional neural networks are of great importance in image processing systems, including the detection and classification of the aorta region in AAA prediction systems. Although, in the presented approaches focuses on 2D CNNs, other areas in medical imaging uses 3D CNNs for a better understanding of the third dimensional space, and the relation of consecutive slices in the data volumes. 
	Some of these studies use 3D convolutions in the feature extraction. This scheme focuses on these three-dimensional spatial relations. The main problems with this approach are the computational power needed for a fast training and the input dimensions, which could change between patients. In this paper [21] the authors reshape the input scan to a 32x32x32 volume using the linear interpolation method, but the volumes sizes treated in this master thesis are in the order of 512x512xN, N being between 200-1600,
	Another approach is mixing 2D and 3D convolutions in a network as proposed by R. L. Draelos et al in their CT-net [22]. Extracting features using a pretrained ResNet18 with 
	ImageNet on to multiple stacks of 3 slices treated as 3 channel images. The features extracted are then concatenated and processed with several 3D convolutional layers. Finally, a classifier using three fully connected layers to obtain a final prediction. The pipeline of this model is represented in figure 2-1 
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	Figure 2-1: CT-Net volume classification architecture [22]
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	The Design decided for the architecture of the model follows the idea behind S. Hahn et al’s work [18][19]. Dividing the task into 2 different architectures, the first one focusing on localizing the aorta section from each slide of the CT volume where an aneurysm is present. The second one focuses on the classification task, using different feature extraction networks, from multiple ResNet architectures to a custom 3D architecture. 
	3.1 Localization Task 
	The idea behind this task is to reduce the input size used in training. Because the dimensions of each patients CT volume, training will be slow and ineffective, due the large number of slices and the existence of slices that don’t contain information about the EVAR or the aneurism. The procedure planned is to train a RetinaNet model to localize and set a squared bounding box around the aorta region. Then, this detection is going to be used in the classification task as the input image. 
	The objective on this task is not obtaining perfect results in localization but a clear region where the aorta is present for later use. The main intention for this stage is not obtaining a precise bounding box but ensuring that all the slices where the aorta is present is localized with a bounding box, especially if the AAA is visible too. 
	To ensure the correct functioning of the localization module, there is also a post-processing phase. In this phase there are three modifications to the direct output of the RetinaNet module: Padding the results, interpolation between slices and removing isolated predictions.  
	Padding increases the bounding box by 10 pixels in each direction, ensuring that the aorta is fully included in the bounding box. This is effectively adding noisy pixels to the detection, but because of the typical localization of the endoleaks, detecting the walls of the aneurysm is of grate importance for the later feature extraction. 
	Interpolating between detections from consecutive slices is necessary to reduce the number of false negatives. To include slices where should be a detection of the aneurysm, the system decides the values of the corners of the bounding box by averaging the positions of previous and posterior bounding boxes. Because of the possible existence of false 
	positives, we should not interpolate slices without bounding boxes in a range from the current.  
	To reduce the number of false detections in regions far from the aneurysm, if the detection is isolated from other detections of the volume, it is not considered and removed from the output. 
	3.2 Classification Task 
	Classification is the main objective of the system. Deciding if the patient should require a second intervention. In this system´s area, the plan is to train a CNN that inputs each detection from the localization task and passes through the model deciding if the growth is favorable or unfavorable. 
	The first approach is to follow S. Hahn et al’s papers [18][19] and use a ResNet model to classify each of the slices of the CT volume, and then using a voting mechanism to decide the final case predictions. However, their approach had individual labels for each slice of the CT scan representing the existence of leaks in said slice, while our dataset count with one label for the complete data volume. Further explain the characteristics of the dataset in chapter 4.1. 
	Another approach is to use 3D CNNs for all the CT volume, obtaining a final case prediction directly from the network. This brings the before mentioned problem of variable sized volumes present in our dataset. To solve this problem, the input of the network uses a fixed size in the three dimensions, using a window to select which slices are selected for each iteration, and use a voting algorithm to return a final and unique value to the complete CT volume.  
	The quantity of non-redundant data available for training a CNN is a concern when using data volumes of medical images, being similar between consecutive slices and between different patients’ scans. Therefore, is important to use data augmentation techniques to increase the variability of the training data, being an instrumental data-processing step to achieve a more generalizable and accurate performance [23]. The data augmentation techniques planned for the classification task are catalogued as basic aug
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	4.1 Creating the dataset 
	The data used in this project was gathered from the hospital “La Paz” university hospital, with permission from the ethics committee. The data was downloaded directly from the hospital system, one CT scan at a time. The final dataset gathered consisted of 88 non-labeled CT volumes from 44 different patients. These CT volumes were taken from patients operated with an EVAR from 2010 to 2012. For each patient could obtain a CT scan from seven days after the surgery and a second scan performed from six to twelv
	This dataset needs labels for both the localization and the classification task.  
	For localization, a vascular surgeon created a ground truth bounding box around the AAA and the aorta region surrounding the aneurysm for 25 patients (49 CT volumes) using a labeling open-source software called LabelImg [24] and a modification called Video Frame Mode [25] to improve labeling efficiency. 
	In the case of classification, obtaining labels is complicated. For some patients who had a clear contrast peak in their CT scan, we can obtain their label from the case reports filed at the time of the CT scan obtention. Although, for the other patients, in other to know if their EVAR is leaking we analyze their evolution measuring the diameter of both CT scans in possession and write the corresponding label based on the evolution of the AAA size. Six patients were discarded from this stage because lack of
	4.2 Localization 
	The CT volumes of the dataset are saved on disk as a number of .DICOM files, one for each slice, sorted in a folder and named after their corresponding position on the volume. 
	To read these files we make use of the dcmread function implemented in the pydicom library [26] for python. Once read the image corresponding to the slice, we start a pre-processing stage to normalize the image to the range [0,1]. 
	To train the model we make use of the 49 CT labeled volumes. 
	Training for this model was based on the intersection over union evaluation between the bounding boxes presented in each iteration and the corresponding ground truth. RetinaNet not only finds the bounding box around the object but also returns a confidence related score of the type of object detected. After a result is given by the model, we filter the output to detections with a confidence level over a threshold of 0.9.  
	Once trained the model, we develop a script that returns a list with the directories of the .DICOM files that present a detection and the position of the 4 corners of the bounding box and uses this list for the post-processing phase described in a previous chapter. The post-processing output is a data frame containing the directories and the position of the final detections, which will be used for the classification task. 
	The training of this model for twenty epochs lasted eight hours using a personal laptop with a NVIDIA GeForce RTX 2060 graphics card.  
	4.3 Classification 
	 For classification two different approaches were developed. A ResNet network, both 18 and 50 layers were attempted, and a custom 3D network. 
	The first step in developing the classification scheme is to pre-process the output of the localization algorithm to adapt to the input of our network.  
	For ResNet architectures we needed to extract from each slice of the multiple volumes the directory to the DICOM file and the position of the corresponding bounding box. Then extract the detected region and reshape it into a 64x64 image. 
	For the 3D CNN architecture, we also need to group these images in packs of a fixed number of slices, all from the same CT scan. The output are multiple 64x64x32 data volumes. For both 2D and 3D CNNs, data augmentation techniques are applied as specified in the design. 
	The custom 3D architecture consists of three custom 3D ResNet blocks. These blocks are made of two 3D convolutional layers, two 3D batch normalization layers and two ReLU activation layer. Organization of the layers in the model is shown in figure 4-1. 
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	Figure 4-1: Organization of layers in the 3D custom model 
	To implement the voting system, we decided to use a probability pondered voting system with the output returned by the network. First, we analyze the output of the model by obtaining the mean probability for each label, favorable or unfavorable evolution. This means that if a small number of slices present a peak in contrast, alerting the existence of an endoleaks, and the model defines that slice with high probability of an unfavorable evolution the voting system will consider this as the correct output ev
	Training each model for 25 epochs lasted fourteen hours each using the same GPU. The dataset used in classification counted with 28 CT scans for training and 10 for testing. 
	All the algorithms are implemented in python, using the pydicom library [26] for reading thee .DICOM files and an extensive use of the pytorch library [27]. 
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	5.1 Localization 
	Localization task, as mentioned before, has the objective of selecting a rough estimation of the localization of the aorta. The exact position of the bounding boxes is not as important as the precision, selecting the minimum possible false negatives and detecting all the true positives. 
	Running the algorithm used for localization and evaluating its output we obtain a precision value of 82.015% with 2695 True positives and 591 False positives. This means that the system still has a considerably high number of false detections even with the post-processing applied. This affects future utilization of this data, making more complex the training for classification. 
	In figure 5-1 and figure 5-2 we can see the evolution of the precision and the loss through training. Qualitative results are closer to the expectations, represented in figure 5-2. 
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	Figure 5-1: Localization test precision 
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	Figure 5-2: Localization training loss 
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	Figure 5-3:In red final detections made by the system, in green the ground truth. Top row true positives, bottom row false positive 
	 
	 
	5.2 Classification 
	The training of the classifiers was affected by the small number of available CT scans for training and the false detections made in localization, dragging the error to this step. Training graphs show the effect of overfitting in training for both architectures. 
	 
	 
	InlineShape
	InlineShape

	Figure 5-4: ResNet training losses. Up ResNet18, down ResNet50 
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	Figure 5-5: Custom 3D CNN training losses 
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	Figure 5-6: Validation accuracy for ResNet18 
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	Figure 5-7: Validation accuracy for ResNet50 
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	Figure 5-8: Validation accuracy for Custom 3D CNN 
	The classifier is affected by overfitting, obtaining unvaluable results. Both models learn to return the same output for each iteration, either that all the CT scan belongs to a favorable evolution or the opposite. This explains why the accuracy graph is surrounding the 50% value. 
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	6.1 Conclusions 
	This Master thesis attempted to develop a CAD system to help detect endoleaks in post-operative EVAR patients, helping the medical professionals to plan an early correction of the stent and reducing the risk of rupture.  
	The system was based in a two-step pipeline. The first step consisted in a localization DL model using RetinaNet, detecting the aorta in each slice of the CT volume, especially the Aneurysm. The second step consist of a classification model, using both a ResNet architecture and a 3D custom CNN model. This step is focused in extracting the features of the slices and predict between a favorable or unfavorable evolution for the patient. 
	Although the idea of using computer algorithms to help medical experts to aid their diagnosis is becoming an important research field in the world, this concept is not extended in hospitals in Madrid. The use of CAD systems in hospitals is increasing due their capability to process large amounts of data, present objective results and presenting a high effectiveness. 
	The system show a large overfitting between the model and the data used in training, obtaining a poor performance when used with a validation set. This overfitting can be led by many things, starting by a small dataset available for training, a limited performance in the localization step and the high complexity of the input data.  
	This study was neither able to develop a system capable of predicting the evolution of an AAA, nor the contrast peaks from the CT scan, signaling the existence of an endoleak. 
	From the secondary objectives, the creation and labeling of the dataset was a high time-consuming task and was completed successfully for a small number of patients (44) considering the task in hand. The system is not ready yet to detect with sufficient accuracy endoleaks. The limitation of this system is the need of larger amount of data from patients to be trained enough to be useful in the medical day practice. 
	6.2 Future work 
	Future research on this topic should start with a better-defined dataset, with more accurate labels and more patients to train with. With more data we could train better the 
	models designed, starting from the localization task, focusing on reducing the number of false positives returned. 
	Classification models used are not optimal for the task considering the limitations of the dataset and labels. Researching on new models and investigating their capabilities to extract the correct features could be helpful to the classification task. 
	The next area of  work is the use of overfitting reduction techniques, as more complex data augmentation, pretrain the models with similar datasets or using self-supervised learning. 
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