

Repositorio Institucional de la Universidad Autónoma de Madrid <u>https://repositorio.uam.es</u>

Esta es la **versión de autor** del artículo publicado en: This is an **author produced version** of a paper published in:

Nanotechnology 31.36 (2020): 365704

DOI: https://doi.org/10.1088/1361-6528/ab96e5

Copyright: © 2020 IOP Publishing Ltd.

El acceso a la versión del editor puede requerir la suscripción del recurso Access to the published version may require subscription

2 3	1	Fabrication and characterization of nanostructured norous silicon-silver composite
4 5	1	
6	2	layers by cyclic deposition: dip-coating vs spin-coating
7 8 9	3	Nelson Naveas ^{1,2} , Miguel Manso-Silván ¹ , Ruth Pulido ^{1,2} , Fernando Agulló-Rueda ³ ,
10 11	4	Vicente Torres-Costa ¹ , Tanya Plaza 4, Héctor Pesenti ⁴ , Gonzalo Recio ^{4,5} , Jacobo
12 13	5	Hernández-Montelongo ^{4,6*}
14 15	6	
16 17	7	Authors' addresses
18 19 20	8	¹ Departamento de Física Aplicada, Centro de Micro-Análisis de Madrid and Instituto de
21 22	9	Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049,
23 24	10	Madrid, Spain.
25 26 27	11	² Departamento de Ingeniería Química y Procesos de Minerales, Universidad de
28 29	12	Antofagasta, Avenida Angamos 601, Antofagasta, Chile.
30 31	13	³ Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049, Madrid, Spain.
32 33 34	14	⁴ Núcleo de Investigación en Bioproductos y Materiales Avanzados, UC Temuco,
35 36	15	47813312, Temuco, Chile.
37 38	16	⁵ Facultad de Ingeniería y Tecnología, Universidad de San Sebastián, 4080871,
39 40 41	17	Concepción, Chile
42 43	18	⁶ Departamento de Ciencias Matemáticas y Físicas, UC Temuco, 4813302, Temuco, Chile.
44 45	19	
46 47 48	20	* To whom correspondence should be addressed:
40 49 50	21	jacobo.hernandez@uct.cl
51 52	22	
53 54	23	
55 56		
57		
58 59		1
60		

25	Composites of nanostructured porous silicon and silver (nPSi-Ag) have attracted great
26	attention due to the wide spectrum of applications in fields such as microelectronics,
27	photonics, photocatalysis and bioengineering, Among the different methods for the
28	fabrication of nanostructured composite materials, dip and spin-coating are simple,
29	versatile, and cost-effective bottom-up technologies to provide functional coatings. In that
30	sense, we aimed at fabricating nPSi-Ag composite layers. Using nPSi layers with pore
31	diameter of 30 nm, two types of thin-film techniques were systematically compared: cyclic
32	dip-coating (CDC) and cyclic spin-coating (CSC). CDC technique formed a mix of
33	granular and flake-like structures of metallic Ag, and CSC method favored the synthesis of
34	flake-like structures with Ag and Ag ₂ O phases. Flakes obtained by CDC and CSC
35	presented a width of 110 nm and 70 nm, respectively. Particles also showed a nanostructure
36	surface with features around 25 nm. According to the results of EDX and RBS, integration
37	of Ag into nPSi was better achieved using the CDC technique. SERS peaks related to
38	chitosan adsorbed on Ag nanostructures were enhanced, especially in the nPSi-Ag
39	composite layers fabricated by CSC compared to CDC, which was confirmed by FTDT
40	simulations. These results show that CDC and CSC produce different nPSi-Ag composite
41	layers for potential applications in bioengineering and photonics.
42	Keywords: cyclic dip-coating; cyclic spin-coating; porous silicon; silver nanoparticles;
43	composite material
44	
45	1. Introduction
46	Currently, there is a huge interest in semiconductor-metal nanocomposites materials due to
47	their interesting functional properties for different disciplines such as microelectronics,

Page 3 of 36

2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
20	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
т 0 /11	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
J2 ⊾	
54	
55	
56	
57	
58	
59	
60	

48	photonics, photocatalysis, bioengineering, among others [1, 2]. When semiconductors are
49	combined with noble metals, their properties can significantly change. For instance,
50	processes such as enhanced charge separation at the semiconductor-metal interface and the
51	enhanced visible light absorption caused by the surface plasmon resonance (SPR) of metals
52	can improve the photocatalytic properties of semiconductors [1]. In particular, composites
53	of nanostructured porous silicon (nPSi) and silver (Ag) have attracted great attention
54	because of their wide spectrum of applications, such as in gas and biological sensors,
55	catalysis and optoelectronics. Their properties come along with the low-cost of material
56	production and the compatibility with complementary metal-oxide-semiconductor
57	technology (CMOS) [3, 4].
58	nPSi is a very attractive semiconductor material which consists of silicon
59	nanocrystals embedded in a porous amorphous matrix [5, 6]. It elicits as an efficient
60	substrate for fabricating semiconductor-metal composites because it shows a large surface
61	area (200-500 m ² ·cm ⁻³) [5], biocompatibility, along with simple fabrication methods.
62	Likewise, nPSi surfaces can be easily modified by using diverse chemical and physical
63	methods. Meanwhile, the interesting properties of Ag nanoparticles make them perfect for
64	the application as an antimicrobial agent, biosensor materials, composite fibers, cryogenic
65	superconducting materials, cosmetic products, and electronic components [7, 8].
66	In that sense, several methods have been performed to obtain nPSi-Ag composites
67	for different applications. Giorgis et al. (2009) [9] achieved nPSi-Ag nanoparticles
68	composite with thermal decomposition of AgNO3 at 500 °C, which presented potential uses
69	as Surface Enhanced Raman Scattering (SERS) substrate. On the other hand, Ensafi et al.
70	(2016) [10] synthetized nPSi-Ag composite by galvanic replacement reaction between Si
71	atoms in the nPSi and Ag cation in aqueous HF solution. The obtained composite was
	2

72	tested as an electrochemical sensor platform of H ₂ O ₂ . Using the same method, Skrabic et al.
73	(2019) [11] reacted nPSi layers with an Ag precursor solution at different concentrations
74	and times. The obtained nPSi-Ag composites were tested as SERS photonic crystals.
75	Regarding the electrochemical deposition, Spivak (2018) [12] used different kinds of nPSi
76	to grow Ag into the pores. Spivak reported that the increase of deposition time led to
77	changes in Ag morphology and proposed these nPSi-Ag composites for catalysis and
78	plasmonic applications. Also, Martín-Palma et al. (2019) [3] have grown Ag particles
79	inside the nPSi structure by electrochemical deposition. The authors obtained a
80	homogeneous distribution of Ag nanoparticles on the surface and inside the nPSi layer.
81	These composites were tested as wideband optical absorbers for photonic and plasmonic
82	applications. Even by metal assisted chemical etching, Ge et al obtained different Ag
83	nanostructure on nPSi layer by changing the AgNO3 concentration in the electrochemical
84	solutions with SERS effects [13]. In general, the selected method to deposit Ag on nPSi
85	layers can directly affect the physicochemical properties of the composite, such as the
86	morphology, thickness, and homogeneity, which can impact the material performance in
87	specific applications.
88	Among the different methods for the fabrication of such nanostructured composites,
89	dip and spin-coating are interesting bottom-up technology to provide functional thin-film

90 coatings. In fact, these techniques are simple, versatile, and cost-effective for this purpose.

91 Moreover, both techniques can be performed at atmospheric conditions, and interestingly,

92 each technique can produce specific morphologies and phases, even using the same stem-

solutions [14]. The dip-coating technique consists in the substrate immersion into a

94 reservoir of the coating suspension to deposit a layer of material upon withdrawal. This

95 method can provide thin films as required, and this is easily controllable with the

Page 5 of 36

3 4	96	concentration of the suspension used [15]. On the other hand, in the spin-coating technique				
5 6	97	a diluted suspension is placed on the substrate and rotated at high speed, while the fluid				
7 8	98	spins off the edges coating the substrate at the same time that the solvent evaporates. Sp				
9 10 11	99	coating is widely used for the production of very thin films (below 10 μ m) [15].				
12 13	100	In this regard, the novelty of this work is the fabrication of nPSi-Ag composite				
14 15	101	layers by systematically comparing two types of thin-film techniques, namely, cyclic dip				
16 17 18	102	coating (CDC) and cyclic spin-coating (CSC). Both techniques CDC and CSC, consist o				
19 20	103	series of Ag deposition steps on nPSi. The CDC technique is applied by cycling the				
21 22	104	immersion of nPSi substrate into an Ag ⁺ solution, while the CSC method consists in				
23 24 25	105	repeating cycles of centrifugal dispersion of an Ag ⁺ solution on nPSi. Although dip-coating				
25 26 27	106	and spin-coating have been used in diverse substrates, as it was previously explained, the				
28 29	107	have not been used to obtain nPSi-Ag composites. Moreover, our proposals are based or				
30 31 22	108	repetitive cycles. The two nPSi-Ag composite layers obtained by CDC and CSC were				
32 33 34	109	characterized in terms of morphology, infiltration (depth profiling) of Ag into the nPSi,				
35 36	110	crystallinity, chemical composition and optical characteristics. Interestingly, we aim at				
37 38	111	highlighting the structural and functional properties of the different nPSi-Ag composite				
39 40 41	112	layers even if obtained by using the same nPSi substrate and Ag ⁺ stem-solution at room				
42 43	113	temperature. In that sense, the main differences between the composites fabricated with				
44 45	114	both experimental techniques were in detail analyzed.				
46 47 48	115					
49 50	116	2. Experimental Approach				
51 52 53	117	2.1 Fabrication of nPSi				

118 Nanostructured porous silicon (nPSi) substrates (3 cm²) were fabricated galvanostatically
119 by photoassisted electrochemical etching of single-crystalline p-type Si wafers (boron-

120	doped, orientation <100>), resistivity 0.001–0.005 Ω ·cm) in a 1:2 solution of 48% HF and
121	98% ethanol. The applied current density was set to 80 mA·cm ⁻² during 120 under
122	illumination with a 150 W halogen lamp. Light is used just to create pairs electron-holes in
123	the silicon substrate. This effect forms more homogeneous layers because the etching
124	begins when holes reach the silicon surface and react with F ⁻ ions.
125	The as-prepared nPSi layers were stabilized by a chemical oxidation process in
126	H_2O_2 (30% v/v) overnight, as previously reported [16]. Finally, nPSi substrates were dried
127	under nitrogen streamflow and used as the template for Ag deposition. Si wafers were
128	purchased from University Wafer, South Boston, USA, and chemical products were
129	acquired from Merck, Santiago, Chile.
130	
131	2.2 Formation of the nPSi-Ag composite layers
132	In order to fabricate the nPSi-Ag composite layers, a highly diluted chitosan solution, as a
133	stabilizer, was prepared at 1 mg/100 ml adding glacial acetic acid at 100 mM by stirring
134	overnight (chitosan of low molecular weight $\approx 5 \times 104~$ g/mol, 75–85% deacetylated, and
135	ultrapure water Mili-Q system; 18.2 M Ω ·cm). Then, AgNO3 salt was dissolved in this
136	solution at a concentration of 1 mM and adjusted to $pH = 4.0$ using 0.1 M NaOH solution.
137	For the deposition process, one of two thin-film techniques were used: (i) cyclic
138	dip-coating (CDC) or (ii) cyclic spin-coating (CSC), respectively. The standard deposition
139	for the CDC series comprised the immersion of nPSi substrates in the AgNO ₃ solution for
140	10 min and a consecutive cleaning in ultrapure water for an equivalent time. The pH of
141	rinsing water was previously adjusted to 4. Likewise, the deposition was repeated for 3, 6,
142	9, and 12 cycles in a row. On the other hand, the standard deposition for the CSC series

consisted of alternating 500 μ L of AgNO₃ solution and the same quantity of ultrapure water onto the nPSi substrate at 3000 rpm during 60 s. This process was repeated for 3, 6, 9, and 12 cycles in a row. For both techniques, after samples were obtained at different cycles, they were immersed into 1 mM ascorbic acid solution for 3 h in order to reduce the ionic silver and to stabilize the silver nanoparticles. Finally, the samples were washed with ultrapure water and dried at room temperature. All chemical products were acquired from Merck, Santiago, Chile. 2.3 **Characterization techniques** Morphological characterization of nPSi-Ag composites layers has been carried out by field-emission scanning electron microscopy (FESEM; Philips XL-40FEG), operating with an acceleration potential of 10 keV. The size distribution of Ag particles was presented as histograms; data were obtained from the FESEM images that were processed using freely available ImageJ software. In-depth profiling of the Ag particle infiltration into nPSi layers was studied using both semiquantitative chemical information by energy dispersive X-ray analysis (EDX) and

160 3000N scanning electron microscope. RBS experiments were carried out at the standard

Rutherford Backscattering Spectroscopy (RBS). EDX was acquired with a Hitachi S-

161 beamline at the 5 MV Cockroft-Walton tandetron accelerator of the Centro de Micro-

162 Análisis de Materiales (CMAM). For the measurements, 2 MeV He⁺ ions were used. The

163 scattered ions were detected at a scattering angle of 170° with a Si semiconductor particle

165 crystalline substrate. The vacuum was about 5 10–5 Pa. Simulations and spectra fitting was

detector; the samples were oriented in random geometry to avoid channeling through the

166 carried out using the software SIMNRA 7.02.

167	Crystallographic structures of the Ag particles deposited on nPSi by both techniques
168	were examined by X-ray Diffraction (XRD) using a Rigaku X-ray diffractometer Smartlab
169	model, with goniometer Theta-Theta Bragg-Brentano geometry and solid-state detector
170	D/teX Ultra 250 model (Rigaku Corporation, Japan). The instrumental alignment was
171	checked against the NIST SMR 660c LaB6 powder standard and its optic configuration was
172	employed Ni-filtered Cu radiation (30 kV and 40 mA), 0.5° divergence slit, 0.25° anti-
173	scatter slit, and both sides with 5° Soller slits. In preference, patterns were collected in the
174	20-60° range, counting 0.5°/sec per step of 0.01°. PDXL 2 v.2.7.3.0 software and ICDD
175	2018 PDF-4 reference database were used for search match phases. The crystallite size
176	estimation of the Ag nanoparticles was done using the Williamson-Hall plot Method [17].
177	Raman spectra were acquired at room temperature using a Renishaw Ramascope
178	2000 microspectrometer, equipped with point by point spectral mapping (confocal with
179	lateral and depth resolution) and a 514.5 nm excitation wavelength (green) line from an
180	argon-ion laser. Exciting light was focused on the sample surface with a BH-2 Olympus
181	microscope. The objective had a 50 X magnification and a numerical aperture of $NA =$
182	0.85. The laser power on the sample surface was of the order of 1 mW. The integration time
183	for each CCD pixel was 50 s. The error in the Raman shift was smaller than 0.5 cm^{-1} and
184	the spectral resolution of about 3 cm ⁻¹ .
185	Finite Difference Time Domain (FDTD) simulations were carried out using
186	commercial FDTD Solutions software from Lumerical Solutions Inc., (Vancouver,
187	Canada). The final structure PSi-Ag was modelled as a silver nano-flake with a cylindrical
188	shape and a ratio of radius/height set to 0.25 laid on a flat silicon substrate of dimension
189	500 nm x 500 nm x 150 nm. The diameter of Ag nanoflakes was changing from 60 nm to
190	120 nm. In addition, a gap of 1 nm between Ag nanoflakes and Si substrate was added in
	8

2		
3		
4		
5		
6		
7		
, Q		
ი ი		
9 10	`	
10	,	
1		
12	2	
13	3	
14	1	
15	5	
16	5	
17	7	
18	3	
19	9	
20)	
2	I	
22	>	
2:	2	
2.	1	
24	+	
23) -	
20	2	
2	/	
28	3	
29	9	
30)	
31	I	
32	2	
33	3	
34	1	
35	5	
36	5	
37	7	
39	2	
20	2	
л л	י ר	
40	ן ו	
4		
44	2	
4:	5	
44	1	
45	5	
46	5	
47	7	
48	3	
49	9	
50)	
51	I	
52	2	
5:	3	
5/	1	
51	т 5	
50	ן ב	
50	ע 7	
57	/ _	
58	3	
59	9	

60

order to simulate the space for biomolecules, which induced enhanced Raman intensity.
PML (Perfectly matched layer) were used as boundary conditions. The propagation
direction of plane waves (wavelength of 515 nm) was placed along z direction. The local
electrical field was computed for each mesh, and the final field intensity relative to the
excitation field E₀ was evaluated.

196

197 3. Results and discussion

198 In this study, single nPSi layers obtained by electrochemical anodization of silicon wafers 199 were chosen as semiconductor substrates for the deposition of Ag particles, and 200 consequently, the obtention of semiconductor-metal composites. Figure 1 shows a 201 fabrication scheme of the nPSi-Ag composite layers. Figure 1a presents the synthesis of 202 nPSi substrates by photoassisted electrochemical etching, followed by stabilization of its 203 porous structure trough chemical oxidation with H_2O_2 . Additionally, Figure 1b and Figure 204 1c show a schematic representation of the CDC and CSC techniques, respectively. In the 205 CDC method, the obtained nPSi substrate was cyclically dipped into an AgNO₃ solution, 206 where Ag^+ is formed. In the case of the CSC technique, the Ag^+ solution was cyclically 207 deposited on the nPSi substrate by spin-coating. For both techniques, samples were 208 obtained after a different number of cycles and immersed in an ascorbic acid solution in 209 order to reduce Ag^+ ions to Ag^0 .

It has been reported that the deposition of metals onto nPSi layers is strongly influenced by the etching conditions of the nPSi along with the concentration of the metal solution and the duration of the deposition [9, 11, 18]. In that sense, Figures 2a and 2b present the surface and cross-sectional FESEM views, respectively, of a standard nPSi layer used in this work. As can be seen, the nPSi layer is characterized by column-like porous

> morphology with an average pore diameter of 30 nm (black regions of Figure 2a) and a layer thickness of 10 µm (Figure 2b). This type of nPSi material offers the optimal features of porosity and high surface area for proper surface functionalization and/or nucleation of noble metals [19], such as Ag nanoparticle. The mechanism of Ag deposition onto nPSi layers began firstly with the role of chitosan solution (section 2.2). Generally, metal nanoparticles aggregate among themselves and progressively grow into larger clusters, which eventually precipitate. Therefore, the use of stabilizers is necessary [20-22]. Chitosan, as a natural polysaccharide, is an environmentally benign, biodegradable, highly abundant and low cost, which is more favorable to be utilized as a stabilizer for synthesized Ag nanoparticles than synthetic polymers [21]. The stabilization faculty of chitosan is due to its sorption abilities and capacity to form chelate compounds with metal ions, such as Ag⁺ [22]. Afterward, the reduction of Ag^+ ions to Ag^0 was due to the presence of the antioxidative ascorbic acid. Ascorbic acid can reduce and thereby neutralize, reactive species leading to the formation of ascorbate radical and electrons transfer. The reaction involves the transfer of two electrons and the formation of dehydroascorbic acid. These free electrons reduce the 2 Ag⁺ ions to metallic 2 Ag^0 [23, 24]. The mechanism is summarized as follows: (1)

$$AgNO_3 \rightarrow Ag^+ + NO_3^-$$

In our case, the deposition of Ag was performed under dark conditions to avoid Ag formation by photoreduction of metal ions present in the solution, due to the reductive action of nPSi [25].

(2)

Page 11 of 36

239	Figure 3 shows FESEM images of the surface and cross-section of typical nPSi-Ag
240	composite layers fabricated by CDC and CSC after 12 cycles. Both techniques resulted in a
241	homogeneous islands-like deposition (Figure 3a for CDC, and Figure 3e for CSC). Ag
242	particles obtained by CDC (Figures 3b and 3c) exhibited two kinds of morphology:
243	granular and flake-like structure, in a proportion of 44% and 56%, respectively. Moreover,
244	the obtained distribution size of these particles (Figure 3i) presented an average length of
245	0.7 and 1.4 µm for the granular and flakes-like particles, respectively. In the latter, flakes
246	that showed a random orientation had an average width of 110 nm (Figure 3k). In Figure
247	3c, it is possible to observe that both kinds of Ag particles presented surface features of
247	se, it is possible to observe that both kinds of Ag particles presented surface reacties of
248	nanoclusters of around 25 nm. Finally, the Ag deposition performed by CDC reached up an
249	average thickness of 1 μ m (Figure 3d). In the case of the Ag deposition obtained by CSC
250	(Figure 3f and 3g), particles showed a predominant flake-like morphology, and most of
251	them were in a horizontal (#1 of Figure 3g) and vertical (#2 of Figure 3g) orientation. In
252	fact, some flakes in horizontal position were superimposed onto each other. The size of
253	these particles was considerably smaller than the ones obtained by the CDC. According to
254	its corresponding distribution size (Figure 3j), they exhibited an average length of 0.3 μ m,
255	and a smaller width than CDC: an average of 70 nm in its distribution size (Figure 31).
256	Moreover, the deposition led to a thickness lower than with CDC, reaching up just an
257	average of 0.5 µm.
258	In order to get a clearer picture of the Ag distribution, we used SEM-EDX in cross-
259	section and RBS analysis to identify the potential diffusion and nucleation of Ag in-depth.
260	Figure 4 shows SEM images and the relative concentration profile of Ag in the cross-
	239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 255 256 257 258 259 260

261 section of nPSi-Ag composite layer obtained by EDX. The deposition of Ag does not only

262 occur at the nPSi surface but also inside the pores of the column-like porous structure. The

2		
3 4	263	concentration-depth chart for Ag shows the presence of different diffusion profiles for
5 6	264	nPSi-Ag composite layers fabricated by CDC and CSC. In general, CDC (Figure 4a) allows
7 8 0	265	more infiltration of the Ag nanoparticles into the nPSi layers than CSC (Figure 4b). In the
9 10 11	266	case of CDC, Ag concentration was considerably increased with the number of deposition
12 13	267	cycles. For example, in the first micron of depth, Ag% was increased from 3% to 10% by
14 15	268	increasing the number of cycles from 3- to 12-cycles, respectively. Besides, at the bottom
16 17 18	269	of the nPSi layer (at 10 μm), Ag% was increased from 0.6% to 3.3% with 3- and 12-cycles,
19 20	270	respectively. However, for the case of CSC, Ag deposition was more superficial, showing
21 22	271	only slight differences in Ag infiltration with the number of cycles. In the first microns of
23 24 25	272	depth, Ag% increased from 3% to 5% with 3- and 12-cycles, respectively. However, on the
25 26 27	273	bottom of nPSi substrate, Ag% was around 0.5% for both samples.
28 29	274	After assessing the diffusion of Ag inside the porous layer by EDX, RBS
30 31	275	measurements were performed to obtain higher precision compositional profiles of both
32 33 34	276	CDC and CSC samples and study the penetration of Ag inside nPSi in greater detail. Figure
35 36	277	5 shows the experimental and simulated RBS spectra of a typical nPSi-Ag composite layer
37 38	278	fabricated by CDC and CSC after 12 cycles on identical nPSi substrates. In both spectra,
39 40 41	279	the signals corresponding to Ag and Si are clearly differentiated, while that of O appears
42 43	280	superimposed to the Si signal. Both the CDC and CSC samples show an Ag signal that
44 45	281	extends from its surface position to lower energy channels, indicating that Ag is indeed
46 47	282	infiltrated into the nPSi layer. Interestingly, the Ag signal extends further to lower energies
48 49 50	283	in CDC than CSC, suggesting a deeper infiltration of Ag. Figure 6 shows the in-depth
51 52	284	concentration profile determined from the spectra fit. The profiles show a surface Ag
53 54	285	concentration of 0.14 and 0.11 for the CDC and CSC samples, respectively. Silicon is also
55 56	286	detected at its surface energy, indicating that the nPSi surface is not completely covered by
57 58		12

2		
2 3 4	287	Ag, but instead, Ag islands grow on top of the nPSi surface [14], as already revealed by the
5 6	288	FESEM images. In the case of CDC, Ag concentration gradually decreases from 0.14
7 8	289	atomic content down to 0.025 at a depth of 13000×1015 at/cm ² , corresponding to the
9 10 11	290	bottom of the nPSi layer (i.e., the nPSi/Si interface). Conversely, the Ag concentration of
12 13	291	the sample fabricated by CSC decreases below an undetectable level at a depth of
14 15	292	5900×1015 at/cm ² , indicating that in this case, the Ag infiltration did not reach the
16 17	293	nPSi/silicon interface. These results are in good agreement with those obtained by EDX,
18 19 20	294	provided that the lower spatial resolution of EDX is taken into account. Both techniques,
20 21 22	295	EDX and RBS, showed the infiltration of Ag into the nPSi structure and confirmed that the
23 24	296	CDC technique provides a higher and deeper infiltration than CSC. This was because,
25 26	297	according to the deposition method (dipping, spinning, electrodeposition, etc.), different
27 28 29	298	driving forces are playing a key role in the film formation [26]. In our case, a possible
30 31	299	explanation for our results is that CDC was dominated by viscous forces, unlike the CSC
32 33	300	technique, where centrifugal forces play a key role.
34 35 26	301	In order to characterize the crystalline nature of the nPSi-Ag composite layers, we
36 37 38	302	analyzed the samples by XRD. Figure 7 shows the XRD pattern of nPSi-Ag composite
39 40	303	layers using CDC and CSC techniques. For both cases, the peak intensity increased with
41 42	• • •	
43	304	the number of deposition cycles. In the case of CDC (Figure 7a), metallic Ag (fcc structure)
44 45	305	with characteristic (111) plane and low intensity of the (200) plane were detected at 38.11°
46 47 48	306	and 44.29°, respectively. Due to the high intensity of the (111) lattice plane, Ag particles
49 50	307	shall be oriented along this direction parallel to the supporting nPSi substrate. Moreover, as
51 52	308	the obtained peaks were sharp and with high intensity, good crystallinity of the synthesized
53 54	309	Ag particles was confirmed. On the other hand, based on particle size by XRD pattern
55 56 57	310	profile analysis, the Ag presents an average crystallite size of 24 nm, which suggests an
58 59		13

2		
3 4	311	internal nanostructure in the Ag clusters. Regarding the nPSi-Ag composite layers obtained
5 6	312	by CSC (Figure 7b), they exhibited the same metallic Ag with characteristic (111) plane
7 8	313	and little intensity of (200) plane at 38.11° and 44.29°, respectively. However, an additional
9 10 11	314	peak was detected at 33.02°, which corresponds to (111) plane of silver oxide. As in the
12 13	315	previous case, (111) planes also showed a high intensity suggesting that (111) planes of Ag
14 15	316	and Ag ₂ O particles were dominantly oriented parallel to the supporting nPSi substrate.
16 17 18	317	Based on particle size analysis of XRD pattern, the synthesized Ag and Ag_2O particles
19 20	318	should present an average particle size of 20 nm. It is important to highlight that particle
21 22	319	sizes determined by XRD profile are in the order of the nanostructure pattern previously
23 24 25	320	observed by FESEM on surface Ag particles. In that sense, this can also explain the
25 26 27	321	presence of Ag ₂ O in CSC. As particles obtained by CSC technique were considerable
28 29	322	smaller than CDC (see histograms of Figure 3), this means that the surface area/volume
30 31	323	ratio of particles in CSC was higher than CDC, what made them more reactive with the
32 33 34	324	oxygen from the air, and therefore, generated the Ag ₂ O phase in the silver particles. Finally,
35 36	325	another important issue is the intensity of the peaks related to each Ag nucleation technique
37 38	326	(Figure 7c). Peaks obtained from CDC samples are 8 times more intense than CSC
39 40 41	327	samples. This is directly related to the amount of Ag deposited on samples.
42 43	328	Figure 8 shows the Raman spectra of nPSi-Ag composite layers using CDC and
44 45	329	CSC techniques. All samples exhibited a strong, sharp and asymmetrically broadened peak
46 47 48	330	near to 514 cm ⁻¹ due to the optical phonon mode of silicon nanocrystals in nPSi. Also, two
49 50	331	broad peaks, which are assigned to Ag nanostructures-induced SERS of chitosan, were
51 52	332	found in all nPSi-Ag composite layers. These peaks came from the chitosan used as a
53 54	333	stabilizer in the Ag ⁺ stem-solution. Thus, assignments to scissoring bending vibrations of
55 56 57	334	C–H and –NH ₂ groups of chitosan were detected (δ (C–H) and δ (NH2), respectively. δ (C–
58		14

2		
3 4	335	H) was detected in the peaks at 1380 cm ⁻¹ for CDC, and 1376 cm ⁻¹ for CSC [27, 28].
5 6	336	$\delta(NH_2)$ was identified in the peaks at 1590 cm ⁻¹ and 1589 cm ⁻¹ for CSD and CSC,
7 8	337	respectively [27, 28]. Interestingly, these peaks were enhanced for the samples fabricated at
9 10	338	9 and 12 cycles, especially in the nPSi-Ag composite layers fabricated by CSC. This
11 12 13	339	can be explained by the smaller width of CSC flakes against CDC flakes: 70 nm versus 110
14 15	340	nm; thinner particles enhance the Raman scattering of a molecule situated in the vicinity of
16 17	341	nano-sized metallic structures [29]. Similar peaks have been reported for Ag-porous silicon
18 19 20	342	[30]. In fact, these peaks assigned to Ag-nanostructures-induced SERS were attributed to
20 21 22	343	adsorbed organic molecules on Ag nanoparticles, such as Rhodamine 6G dye [31],
23 24	344	biomolecules [32] and pyridine [33]. Figure 9 shows a detailed view of the Raman spectra
25 26	345	of the silicon one-phonon line of nPSi-Ag composite layers using both techniques: CDC
27 28 20	346	and CSC. Compared to the spectrum of bulk silicon (optical phonon mode at 521 cm ⁻¹), the
29 30 31	347	spectrum of nPSi was shifted and broadened towards lowers frequencies due to the
32 33	348	quantum confinement effect of silicon nanocrystals [34, 35]. To estimate the average size
34 35	349	of the silicon nanocrystals, we have used the formula $\Delta v = -A(a/D)^{\gamma}$ obtained by Zi et al.
36 37 28	350	[36] for spherical nanocrystals using a bond polarizability model. D is the average
39 40	351	diameter $\Delta v = v(D) - v(bulk)$ is the shift of the Raman peak with respect to bulk silicon <i>a</i>
41 42	357	= 0.543 nm is the silicon cell parameter $A = 47.41$ cm ⁻¹ and $y = 1.44$. For CDC samples
43 44	252	the observed neck shift $A_{\rm V} = 6.5 \text{ cm}^{-1}$ corresponds to an average diameter of about 2 nm
45 46	254	The OSC complex shift $\Delta v = -0.5$ cm corresponds to an average diameter of 1.7 mm. The
47 48 40	354	For CSC samples, it is -9.2 cm, which corresponds to an average diameter of 1.7 mil. The
49 50 51	355	reduction of the silicon nanocrystal size for CSC samples can be explained by further
52 53	356	oxidation of the samples. The important point here is the general trend of the average size
54 55	357	of the nanocrystals rather than the absolute values because there are many factors and
56 57		

different models that can affect the precise value of the estimated size, as has beendiscussed before in the literature [37].

In order to get a deeper knowledge about SERS observation, finite difference time-domain (FDTD) simulations were performed. FDTD method allows solving Maxwell's equations on a discrete spatial grid [38]. nPSi-Ag composites were modelled as an Ag nanoflake with different diameters on a flat silicon substrate with a gap of 1 nm between both objects (further details in the experimental section). The propagation direction of light with a wavelength of 515 nm was set along z axis, while the Ag nanoflake was placed parallel to the substrate. Cross-section maps of computed intensity for an Ag nanoflake of 80 nm of diameter are represented in Figures 10a and 10b for z-x and z-y planes, respectively. It can be observed a high enhancement of the EM filed in the gap between Ag nanoflake and Si substrate (Figure 10a), which is more intensive at the ends of the Ag nanoflake (Figure 10b). In particular, in Figure 10a two different "hot sites" placed near the center of the nanoflakes with a high factor enhancement can be observed. Similar results have been reported for other kinds of metal nanostructures [39-41]. These sites can be responsible for SERS effects observed in the nPSi-Ag composites. In Figure 10 c, the intensity distribution in the middle of the gap between Ag nanoflake and Si substrate was plotted as a function of the distance from the middle of the Ag nanoflake. The intensity was explored for 4 different Ag nanoflakes with different diameters. It can be observed the two "hot sites" for all the diameters. These sites presented their maximum enhancement around 5 nm from the center of the nanoflakes, and they totally disappear around 25 nm away from the center. These results indicate that the "hot sites" for SERS are very limited in the composite. This can be the reason because CSC composite shows a higher enhancement of

Page 17 of 36

1	
2	
3	
4	
5	
5	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
J∠ 22	
22	
24 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

381 chitosan Raman signal compared to CDC composite, although CDC composites present a382 higher amount of Ag nanostructures.

383 The experimental results showed that CDC and CSC can be optimal techniques to 384 produce nPSi-Ag composites for optoelectronic and biosensing applications. Firstly, 385 photoassisted electrochemical etching of silicon wafer allows controlling the final layer of 386 nPSi without the needed of deposited any metal in the top of silicon wafers, as the case of 387 metal assisted chemical etching method [42]. Besides, more homogeneous layers are 388 synthetized. nPSi obtained by photoassisted electrochemical etching is also a faster 389 technique than other techniques, such as laser assisted chemical etching [43], and 390 considerable higher areas of nanostructured Si can be obtained. In comparison with 391 techniques to deposit Ag nanostructure on nPSi, CDC and CSC allow obtaining Ag 392 nanostructures without high energy consumption such as thermal decomposition [9] 393 because CDC and CSC are techniques operated at in room temperature conditions. 394 Although electrochemical deposition [3] is also a room-temperature technique, it usually 395 perfumes a thin layer of silver on the top of nPSi, while CDC and CSC have shown that Ag 396 nanostructured not completely covers the surface of nPSi, with can better fix for some 397 applications such as SERS substrate and biosensing.

398

60

399 4. Conclusion

In the present study, nanoporous silicon (nPSi)-Ag composites layers were fabricated by
two types of thin-film techniques and systematically compared: cyclic dip-coating (CDC)
and cyclic spin-coating (CSC). Firstly, nPSi layers obtained by photoassisted
electrochemical etching of silicon wafers presented pores diameter of 30 nm. Regarding the
cyclic deposition techniques, each process produced specific morphologies and Ag phases

1 2		
2 3 4	405	using the same Ag^+ stem-solution. CDC technique formed a mix of granular and flake-like
5 6	406	structures of metallic Ag. Instead, CSC favored the synthesis of flake-like structures with
7 8	407	Ag and Ag ₂ O phases. Flakes obtained by CDC and CSC presented a width of 110 nm and
9 10 11	408	70 nm, respectively. Particles also showed a nanostructure surface with features around 25
12 13	409	nm. Moreover, according to the results of EDX and RBS, integration of Ag into nPSi
14 15	410	porous structure was better achieved using CDC technique. On the other hand, surface-
16 17 18	411	enhanced Raman scattering (SERS) peaks related to chitosan adsorbed on Ag
19 20	412	nanostructures were enhanced, especially in the nPSi-Ag composite layers fabricated by
21 22	413	CSC. All these differences in the nPSi-Ag composite layers obtained depending on the
23 24 25	414	performed process of synthesis can be of interest for potential applications in
26 27	415	bioengineering and photonics as SERS-based sensors.
28 29	416	
30 31	417	Acknowledgments
32 33 34	418	This work was financially supported by Fondo Nacional de Desarrollo Científico y
35 36	419	Tecnológico FONDECYT-Chile (grant number 11180395), FONDEQUIP-Chile (project
37 38	420	160152), CONICYT PFCHA/DOCTORADO/2017-21172001 (Nelson Naveas)
39 40 41	421	and PFCHA/DOCTORADO/2015-21151648 (Ruth Pulido).
42 43	422	
44 45	423	Authors contributions
46 47	424	NN and JHM conceived and designed experiments; NN and GR synthetized the nPSi
40 49 50	425	substrates; NN, RP and TN synthetized both kind of composites; NN and MMS performed
51 52	426	the FESEM and SEM-EDX characterization; VTC performed the RBS characterization; HP
53 54	427	performed the XRD characterization; FAR performed the Raman characterization; GR
55 56 57	428	performed the FDTD simulations; NN and JHM analyzed the data; NN, MMS and JHM
58 59		18
60		

1 2				
- 3 4	429	contril	outed reagents/materials/analysis tools; NN and JHM wrote the manuscript. All	
5 6	430	author	s revised the manuscript.	
7 8	431	Decla	aration of interest statement	
9 10 11	432	The au	athors declare that they have no competing interests.	
12 13	433			
14 15	434	Refer	ences	
16 17 19	435	[1]	Semenova D, Gernaey K V and Silina Y E 2018 Exploring the potential of	
19 20	436		electroless and electroplated noble metal-semiconductor hybrids within bio- and	
21 22	437		environmental sensing Analyst 143 5646-69	
23 24 25	438	[2]	Fu Y-s, Li J and Li J 2019 Metal/Semiconductor Nanocomposites for	
25 26 27	439		Photocatalysis: Fundamentals, Structures, Applications and Properties	
28 29	440		Nanomaterials 9	
30 31	441	[3]	Martín-Palma R J, McAtee P D, Ramadan R and Lakhtakia A 2019 Hybrid	
32 33 34	442		Nanostructured Porous Silicon-Silver Layers for Wideband Optical Absorption	
35 36	443		Scientific Reports 9 7291	
37 38	444	[4]	Nativ-Roth E, Rechav K and Porat Z e 2016 Deposition of gold and silver on	
39 40	445		porous silicon and inside the pores Thin Solid Films 603 88-96	
41 42 43	446	[5]	Hernández-Montelongo J, Muñoz-Noval A, García-Ruíz J P, Torres-Costa V,	
44 45	447		Martín-Palma R J and Manso-Silván M 2015 Nanostructured porous silicon: the	
46 47	448		winding road from photonics to cell scaffolds - a review Frontiers in	
48 49 50	449		bioengineering and biotechnology 3 60-	
51 52	450	[6]	Zhang T, Wu S, Xu J, Zheng R and Cheng G 2015 High thermoelectric figure-of-	-
53 54	451		merits from large-area porous silicon nanowire arrays Nano Energy 13 433-41	
55 56				
57 58 59				19
60				

2			
2 3 4	452	[7]	Aboelfetoh E F, El-Shenody R A and Ghobara M M 2017 Eco-friendly synthesis of
5 6	453		silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization,
7 8	454		catalytic and antibacterial activities Environmental Monitoring and Assessment 189
9 10 11	455	[8]	Verma P and Maheshwari S K 2019 Applications of Silver nanoparticles in diverse
12 13	456		sectors International Journal of Nano Dimension 10 18-36
14 15	457	[9]	Giorgis F, Virga A, Descrovi E, Chiodoni A, Rivolo P, Venturello A and Geobaldo
16 17	458		F 2009 SERS-active substrates based on silvered porous silicon physica status solidi
18 19 20	459		<i>c</i> 6 1736-9
21 22	460	[10]	Ensafi A A, Rezaloo F and Rezaei B 2016 Electrochemical sensor based on porous
23 24	461		silicon/silver nanocomposite for the determination of hydrogen peroxide Sensors
25 26 27	462		and Actuators B: Chemical 231 239-44
27 28 29	463	[11]	Škrabić M, Kosović M, Gotić M, Mikac L, Ivanda M and Gamulin O 2019 Near-
30 31	464		Infrared Surface-Enhanced Raman Scattering on Silver-Coated Porous Silicon
32 33	465		Photonic Crystals Nanomaterials 9
34 35 36	466	[12]	Spivak Y 2018 Porous Silicon as a Material for Nanocomposites and the Effect of
37 38	467		its Parameters on the Morphology of Silver Clusters. In: 2018 IEEE International
39 40	468		Conference on Electrical Engineering and Photonics (EExPolytech), pp 244-8
41 42 43	469	[13]	Ge D, Wei J, Ding J, Zhang J, Ma C, Wang M, Zhang L and Zhu S 2020 Silver
44 45	470		Nano-Dendrite-Plated Porous Silicon Substrates Formed by Single-Step
46 47	471		Electrochemical Synthesis for Surface-Enhanced Raman Scattering ACS Applied
48 49	472		Nano Materials 3 3011-8
50 51 52	473	[14]	Hernandez-Montelongo J, Gallach D, Naveas N, Torres-Costa V, Climent-Font A,
53 54	474		Garcia-Ruiz J P and Manso-Silvan M 2014 Calcium phosphate/porous silicon
55 56	475		biocomposites prepared by cyclic deposition methods: Spin coating vs
57 58 59			20
55			

1

2 3	476		electrochemical activation Materials Science & Engineering C-Materials for	
4 5 6	477		Biological Applications 34 245-51	
7 8	478	[15]	Herrera M A, Sirviö J A, Mathew A P and Oksman K 2016 Environmental friend	lly
9 10 11	479		and sustainable gas barrier on porous materials: Nanocellulose coatings prepared	
12 13	480		using spin- and dip-coating Materials & Design 93 19-25	
14 15	481	[16]	Guzmán-Oyarzo D, Plaza T, Recio-Sánchez G, Abdalla S P D, Salazar A L and	
16 17 18	482		Hernández-Montelongo J 2019 Use of nPSi-βCD Composite Microparticles for th	ne
19 20	483		Controlled Release of Caffeic Acid and Pinocembrin, Two Main Polyphenolic	
21 22	484		Compounds Found in a Chilean Propolis Pharmaceutics 11	
23 24 25	485	[17]	Williamson G K and Hall W H 1953 X-ray line broadening from filed aluminium	1
23 26 27	486		and wolfram <i>Acta Metallurgica</i> 1 22-31	
28 29	487	[18]	Alwan A M, Yousif A A and Wali L A 2018 A Study on the Morphology of the	
30 31	488		Silver Nanoparticles Deposited on the n-Type Porous Silicon Prepared Under	
32 33 34	489		Different Illumination Types Plasmonics 13 1191-9	
35 36	490	[19]	Juneau-Fecteau A and Fréchette L G 2018 Tamm plasmon-polaritons in a metal	
37 38	491		coated porous silicon photonic crystal Optical Materials Express 8 2774-81	
39 40 41	492	[20]	Cinteza O L, Scomoroscenco C, Voicu N S, Nistor L C, Nitu G S, Trica B, Jecu M	M-
42 43	493		L and Petcu C 2018 Chitosan-Stabilized Ag Nanoparticles with Superior	
44 45	494		Biocompatibility and Their Synergistic Antibacterial Effect in Mixtures with	
46 47	495		Essential Oils Nanomaterials 8	
48 49 50	496	[21]	Hettiarachchi M and Wickramarachchi S 2012 Synthesis of chitosan stabilized	
51 52	497		silver nanoparticles using gamma ray irradiation and characterization Journal of	
53 54	498		Science of the University of Kelaniya Sri Lanka 6	
55 56 57				
57 58 59				21
60				

3 4	499	[22]	Elbarbary A M and El-Sawy N M 2017 Radiation synthesis and characterization of
5 6	500		polyvinyl alcohol/chitosan/silver nanocomposite membranes: antimicrobial and
7 8	501		blood compatibility studies Polymer Bulletin 74 195-212
9 10 11	502	[23]	Isaac R S R, Sakthivel G and Murthy C 2013 Green Synthesis of Gold and Silver
12 13	503		Nanoparticles Using Averrhoa bilimbi Fruit Extract Journal of Nanotechnology
14 15	504		2013 6
16 17 18	505	[24]	Patra S, Sen D, Pandey A K, Bahadur J, Mazumder S, Ramagiri S V, Bellare J R,
19 20	506		Roth S V, Santoro G, Yu S and Goswami A 2014 Time resolved growth of
21 22	507		membrane stabilized silver NPs and their catalytic activity RSC Advances 4 59379-
23 24 25	508		86
25 26 27	509	[25]	Recio-Sánchez G, Namura K, Suzuki M and Martín-Palma R J 2014 Nanostructured
28 29	510		copper/porous silicon hybrid systems as efficient sound-emitting devices Nanoscale
30 31	511		Research Letters 9 487
32 33 34	512	[26]	Richardson J J, Björnmalm M and Caruso F 2015 Technology-driven layer-by-layer
35 36	513		assembly of nanofilms Science 348 aaa2491
37 38	514	[27]	Zając A, Hanuza J, Wandas M and Dymińska L 2015 Determination of N-
39 40 41	515		acetylation degree in chitosan using Raman spectroscopy Spectrochimica Acta Part
42 43	516		A: Molecular and Biomolecular Spectroscopy 134 114-20
44 45	517	[28]	Ren X D, Liu Q S, Feng H and Yin X Y 2014 The Characterization of Chitosan
46 47 48	518		Nanoparticles by Raman Spectroscopy Applied Mechanics and Materials 665 367-
49 50	519		70
51 52	520	[29]	Hernández-Arteaga A C, Delgado-Nieblas F C, Ojeda-Galván H J, Velázquez-
53 54	521		Salazar J J, Vinogradova E, José-Yacamán M, Guirado-López R A and Navarro-
55 56 57	522		Contreras H R 2017 Surface-Enhanced Raman Spectroscopy of Acetil-neuraminic
58 59			22
60			

2			
3 4	523		Acid on Silver Nanoparticles: Role of the Passivating Agent on the Adsorption
5 6	524		Efficiency and Amplification of the Raman Signal The Journal of Physical
7 8	525		<i>Chemistry C</i> 121 21045-56
9 10 11	526	[30]	Naddaf M, Al-Mariri A and Haj-Mhmoud N 2017 Characterization of Ag-porous
12 13	527		silicon nanostructured layer formed by an electrochemical etching of p-type silicon
14 15	528		surface for bio-application Materials Research Express 4 065013
16 17 19	529	[31]	Zhong F, Wu Z, Guo J and Jia D 2018 Porous Silicon Photonic Crystals Coated
19 20	530		with Ag Nanoparticles as Efficient Substrates for Detecting Trace Explosives Using
21 22	531		SERS Nanomaterials 8
23 24	532	[32]	Yang W, Li Z, Lu Z, Yu J, Huo Y, Man B, Pan J, Si H, Jiang S and Zhang C 2019
25 26 27	533		Graphene-Ag nanoparticles-cicada wings hybrid system for obvious SERS
28 29	534		performance and DNA molecular detection Optics Express 27 3000
30 31	535	[33]	Hara R, Fukuoka T, Takahashi R, Utsumi Y and Yamaguchi A 2015 Surface-
32 33 34	536		enhanced Raman spectroscopy using a coffee-ring-type three-dimensional silver
35 36	537		nanostructure RSC Advances 5 1378-84
37 38	538	[34]	Ivanda M 2018 Handbook of Porous Silicon, ed L Canham (Cham: Springer
39 40	539		International Publishing) pp 611-20
41 42 43	540	[35]	Wolf I D 1999 Stress measurements in Si microelectronics devices using Raman
44 45	541		spectroscopy Journal of Raman Spectroscopy 30 877-83
46 47	542	[36]	Zi J, Büscher H, Falter C, Ludwig W, Zhang K and Xie X 1996 Raman shifts in Si
48 49 50	543		nanocrystals Applied Physics Letters 69 200-2
50 51 52	544	[37]	Mavi H, Shukla A K, Kumar R, Rath S, Joshi B and Islam S s 2006 Quantum
53 54	545		confinement effects in silicon nanocrystals produced by laser-induced etching and
55 56	546		cw laser annealing Semiconductor Science and Technology 21 1627-32
57 58 59			23
60			

3 4	547	[38]	Sullivan D 2013 Electromagnetic Simulation Using the FDTD Method, Second
5 6	548		Edition IEEE Microwave Theory Tech Soc
7 8 0	549	[39]	Kim K, Shin D, Kim K L and Shin K S 2012 Surface-enhanced Raman scattering of
9 10 11	550		4,4'-dimercaptoazobenzene trapped in Au nanogaps Physical Chemistry Chemical
12 13	551		<i>Physics</i> 14 4095-100
14 15	552	[40]	Kim K, Lee H B and Shin K S 2013 Surface-enhanced Raman scattering
16 17 18	553		characteristics of nanogaps formed by a flat Ag substrate and spherical Pt
19 20	554		nanoparticles Spectrochimica Acta Part A: Molecular and Biomolecular
21 22	555		Spectroscopy 100 10-4
23 24 25	556	[41]	Kim M, Ko S M, Kim J-M, Son J, Lee C, Rhim W-K and Nam J-M 2018 Dealloyed
26 27	557		Intra-Nanogap Particles with Highly Robust, Quantifiable Surface-Enhanced Raman
28 29	558		Scattering Signals for Biosensing and Bioimaging Applications ACS Central
30 31 32	559		Science 4 277-87
32 33 34	560	[42]	Han H, Huang Z and Lee W 2014 Metal-assisted chemical etching of silicon and
35 36	561		nanotechnology applications Nano Today 9 271-304
37 38	562	[43]	Kumar R, Shukla A K, Mavi H S and Vankar V D 2008 Size-dependent Fano
39 40 41	563		Interaction in the Laser-etched Silicon Nanostructures Nanoscale Research Letters
42 43	564		3 105
44 45	565		
46 47 48	566	Figur	e captions
49 50	567	Figur	re 1. Schematic representation of the nPSi-Ag composite layers: a) synthesis of nPSi
51 52	568	substr	rate by photoassisted electrochemical etching and stabilization by chemical oxidation
53 54	569	b) Ag	deposition onto nPSi by cyclic din-coating (CDC) and c) Ag deposition onto nPSi
55 56 57	507	U) Ag	, deposition onto in 51 by eyene dip-coating (CDC), and c) Ag deposition onto in 51
57 58 59			24

60

2 3	570	by cyclic spin-coating (CSC). For both techniques, the same Ag stem-solution was used	
4 5	570		,
6 7	5/1	and after the required cycles deposition performed, samples were immersed into an	
8 9	572	ascorbic acid solution.	
10 11	573	Figure 2. FESEM images of the typical nPSi layer used in this study: a) surface and b)	
12 13	574	cross-sectional view.	
14 15 16	575	Figure 3. Surface and cross-sectional FESEM images of a typical nPSi-Ag composite	
10 17 18	576	layer after 12-cycles deposition using CDC (a-d), and CSC (e-h). Histograms of particle	
19 20	577	size distribution: i) length in CDC, j) length in CSC, k) width in CDC, and l) width in CSC	SC.
21 22	578	Figure 4. Relative concentration profile of Ag in the cross-section of nPSi-Ag composit	e
23 24 25	579	layers obtained by SEM-EDX: a) CDC and b) CSC.	
25 26 27	580	Figure 5. RBS spectrum of typical nPSi-Ag composite 471 layers fabricated by CDC an	ıd
28 29	581	CSC after 12 cycles.	
30 31	582	Figure 6. In-depth concentration profile of obtained by simulation of nPSi-Ag composit	e
32 33 34	583	layers fabricated by (a) CDC and (b) CSC after 12 cycles.	
35 36	584	Figure 7. XRD pattern of nPSi-Ag composite layers after 3, 6, 9, and 12 Ag deposition	
37 38	585	cycles using a) CDC and b) CSC. c) The difference in the intensity of the Ag (111) peak	-
39 40 41	586	between CDC and CSC after 12 cycles of Ag deposition.	
42 43	587	Figure 8. Raman spectra for the nPSi-Ag composite layers after 3, 6, 9 and 12 Ag	
44 45	588	deposition cycles using a) CDC and b) CSC.	
46 47 48	589	Figure 9. Raman shift of the silicon one-phonon line for the nPSi-Ag composite layers	
40 49 50	590	after 3, 6, 9 and 12 Ag deposition cycles using a) CDC and b) CSC.	
51 52	591	Figure 10. Intensity distribution ($ E/E0 4$) of induced electrical field determined by FD	Г
53 54	592	calculations of a) x - z plane and b) y - z plane. c) Intensity distribution in the middle of the	5
55 56			
57 58			25
59			

630 cycles using a) CDC and b) CSC. c) The difference in the intensity of the Ag (111) peak

631 between CDC and CSC after 12 cycles of Ag deposition.

1			
2	(()		
4	663	nanogap as a function of the distance from the center of Ag nanoflake, for different	
5	664	diamaters	
6	004	diameters.	
7 o	665		
0 9	005		
10			
11			
12			
13			
14			
16			
17			
18			
19 20			
20 21			
22			
23			
24			
25			
26 27			
27			
29			
30			
31			
32			
33 34			
35			
36			
37			
38			
39 40			
40 41			
42			
43			
44			
45 46			
40 47			
48			
49			
50			
51 52			
52 53			
54			
55			
56			
57			26
58 50			36
60			