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Quite often a machine learning problem lends itself to be split in several well-defined subproblems, or
tasks. The goal of Multi-Task Learning (MTL) is to leverage the joint learning of the problem from two
different perspectives: on the one hand, a single, overall model, and on the other hand task-specific mod-
els. In this way, the found solution by MTL may be better than those of either the common or the task-
specific models. Starting with the work of Evgeniou et al., support vector machines (SVMs) have lent
themselves naturally to this approach. This paper proposes a convex formulation of MTL for the L1-,
L2- and LS-SVM models that results in dual problems quite similar to the single-task ones, but with
multi-task kernels; in turn, this makes possible to train the convex MTL models using standard solvers.
As an alternative approach, the direct optimal combination of the already trained common and task-
specific models can also be considered. In this paper, a procedure to compute the optimal combining
parameter with respect to four different error functions is derived. As shown experimentally, the pro-
posed convex MTL approach performs generally better than the alternative optimal convex combination,
and both of them are better than the straight use of either common or task-specific models.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Quite often a Machine Learning (ML) problem can be split in
several subproblems, or tasks, according for instance to different
characteristics of the underlying sample. Two opposing alterna-
tives appear then, namely, to build either a single common model
over the entire sample, or individual, task-specific models for each
subproblem. However, a third and often superior option is to try to
simultaneously learn the common and specific models, in such a
way that they share information during the training process, so
that a better joint solution is found for the overall problem. This
Multi-task Learning (MTL) approach was first proposed by R. Caru-
ana [1], and has been enormously extended since its apparition,
with MTL paradigms being adapted for the main ML algorithms.
Recent surveys are [2,3] and we give a brief overview of MTL in
Section 2.

In the case of support vector machines (SVMs), MTL methods
were first proposed by Evgeniou and Pontil [4] and subsequently
expanded in works such as [5,6]. The starting point of the present
work is the framework proposed by Cai and Cherkassky [7,8],
where additive MTL was introduced for support vector classifica-
tion and regression. Its primal formulation is similar to the stan-
dard SVM primal problem but now the common and task-specific
weights are independently regularized and a hyperparameter
l > 0 balances the contribution of these regularizers. More pre-
cisely, the Cai-Cherkassky extension [8] of the Multi-Task Learning
SVM in [4] considers a SVM framework in which a model is con-
structed for each task t; t ¼ 1; . . . ; T according to the following pri-
mal problem

argminw;vt ;nJ w;v t; nð Þ ¼ C
PT

t¼1

Pmt
i¼1n

t
i þ 1

2

PT
t¼1 jv tj jj2 þ l

2 jwj jj2
s:t: yti w � / xti

� �þ bþ v t � /t xti
� �þ dt

� �
P pt

i � nti ;

nti P 0; i ¼ 1; . . . ;mt ; t ¼ 1; . . . ; T:
ð1Þ

where a common weight w and bias b as well as their task specific
counterparts v t and dt are considered. Observe that the contribution
of the commonmodel to the final MTL is stronger when small l val-
ues are considered and, conversely, high l values result on a stron-
ger presence of the task-specific components in the final joint
model. However, the value of l only influences the strength of
the common or independent models in an indirect way. To over-
come this, a convex formulation of MTL SVMs is proposed in [9],
which makes that influence explicit, as the final model considered
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has the form kwþ 1� kð Þv t , with 0 6 k 6 1, i.e. a convex combina-
tion of the commonw and task-specific v t weights. Here the hyper-
parameter k makes explicit the contribution of the common and
specific models and, on its end points, allows to capture a single
common model when k ¼ 1 or just the task-specific models when
k ¼ 0.

As shown in [9], both formulations are equivalent taking

l ¼ 1�kð Þ2
k2

for 0 < k < 1. Moreover, this equivalence was also
checked experimentally in [9] and, as mentioned there, the convex
formulation has two clear advantages. The first one is the easier
interpretation of the common vs. independent task interplay
which, as mentioned, can be measured through the optimal k�

value. The second one is that it allows a much simpler exploration
of the k hyperparameter space. In fact, while in the additive case it
may be difficult to explore the entire 0;1ð Þ potential range of the l
parameter, the convex formulation naturally constrains k to the
0;1½ � interval, which can be simply explored using, for instance, a
uniform grid including explicitly the common k ¼ 1 and indepen-
dent k ¼ 0 task extremes.

TheMTL SVMs described above are based on the L1-SVM,which is
probably themost relevant one, but it is just one option amongmany
SVM proposals for classification and regression. Specially relevant is
the case of L2-SVMs [10], which use the squared hinge and �-
insensitive losses for classification and regression, respectively. These
are differentiable, in contrast with the hinge and �-insensitive losses,
and open a link towards themore standard squared loss. In fact, this is
done explicitly in Least Squares SVM (LS-SVM; [11]), as it is well
known that LS-SVMmodels are equivalent to kernel ridge regression
ones. These and their substantial extension via Gaussian Processes
[12] yield powerful regressionmodelswhich arewidely used in prac-
ticeand receivegreatattention inresearch.Notice thatkernel regular-
ized logistic regression can also be dealt with in an SVM setting [13],
but it is outside the scope of this paper.

In any case, there is no ML model that can be considered univer-
sally best. This is essentially the content of the famous No Free
Lunch theorem [14] and has been verified experimentally many
times (see [15] for an early paper and, more recently, [16]). In par-
ticular, the same can be said of the previous SVM formulations and,
therefore, of their possible application in an MTL setting. Following
this line, a unified convex MTL approach to L1-SVM, L2-SVM and
LS-SVM models is presented in this work. Note that, although
MTL versions of LS-SVMs have been proposed before [17], they
do not follow a convex setup, but control instead the relative
importance of each task through a double set of common and task
dependent parameters (increasing thus substantially the hyper-
parametrization costs).

It is important to stress that in this approach a k value is first
considered and then the common and task-specific components
are jointly and simultaneously learned for that particular k. Hence,
these k are model hyperparameters, and the optimal one for a
given problem is then found by cross validation. In contrast with
this, a natural alternative could be to build first common and task
specific SVM models and then combine them in a convex way by
selecting an optimal k. More precisely, the loss associated to a con-
crete convex mixing k becomes then a function J kð Þ that one could
try to optimize directly. As shown in this paper, this is rather
straightforward for LS-SVMs but much less so for L2-SVMs and,
particularly, for L1-SVMs, since then the loss J kð Þ is not differen-
tiable; nevertheless an approach to minimize J kð Þ in these cases
can also be derived using subdifferential calculus.

In summary, and besides a short and unified review of L1-, L2-
and LS-SVM models, the main contributions here are:

� A unified convex formulation of convex MTL for L1-, L2- and LS-
SVM models.
600
� A theoretical derivation of the optimal mixing k for the combi-
nation of independently learned common and task specific
models.

� An experimental comparative study of these approaches over
several regression and classification problems that demon-
strates the effectiveness of the convex MTL approach against
the individual common and specific SVM models or their direct
convex combination.

The rest of the paper is organized as follows. After a short liter-
ature overview in Section 2 of MTL methods with an emphasis on
SVM related ones, L1-, L2- and LS-SVMs will be briefly reviewed in
Section 3, after which their convex MTL formulation is proposed in
Section 4. As an alternative to this, Section 5 shows the optimal
way to directly combine previously and independently learned
common and task-specific SVM models. All these approaches are
compared in Section 6 over several regression and classification
problems. In most of them the proposed convex MTL approach
gives statistically significant better models both within each SVM
group (L1-, L2- or LS-SVM) and also when all SVM model combina-
tions are considered. The paper ends with a brief discussion as well
as pointers to further work.
2. Related work

While in this work a support vector machine (SVM) approach to
MTL will be considered, MTL proposals have been considered for all
the leading ML paradigms; see [18] for a recent survey. This is par-
ticularly so for deep networks [3,19], where many architectures
and optimizationmethods have appeared in the literature. Possibly
the most straightforward approach to deep MTL is that of hard
parameter sharing networks, where, in a layered network, the first
layers are the same for all tasks and only the final layers specialize
on individual tasks. This architecture organization is often used, for
instance, in multitask computer vision [20], where the initially
shared weights seek to achieve an enhanced feature representation
common to all tasks that they later on take advantage of on the
final layers. The alternative to hard parameter sharing are the so
called soft parameter sharing models. Here weights may not be
directly shared across tasks but, instead, similar models are sought
for related tasks; for instance, this can be achieved [21] by adding
the L2 distances of the task specific weights as part of the regular-
ization penalty. More complex approaches to achieve knowledge
sharing while the task models are being built are neural discrimi-
native dimensionality reduction [22], sluice networks [23] or
cross-stitch networks [24].

A common trait in almost all these deep MTL models is that a
single input is processed to produce multiple outputs, one for each
different task. However, the SVM approach to MTL considered here
differs from the above deep MTL methods in that task specific fea-
tures are used to build the individual models and it is their joint
training with that of the global model which binds them into an
overall MTL model. In other words, the role of the common model
is to connect the task specific ones and to allow a degree of inter-
action among them.

A starting point for the SVM MTL approach in this paper is the
work of Evgeniou and Pontil [4], where SVM primal and dual
MTL problems that combine the common and specific tasks lead
to a minimization problem which is then solved through standard
SVM procedures. On the other hand, in the Learning Using Privi-
leged Information (LUPI) paradigm proposed by Vapnik [25] it is
sought that model predictions are improved using group informa-
tion. Subsequently Vapnik also introduced SVM+, which builds on
the LUPI approach to enhance the overall predictive capacity.
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A connection between SVM + and MTL-SVMs was proposed by
Cai and Cherkasski in [7]; this includes a MTL-SVM model with
task-specific biases. They further extended this in [8], where a Gen-
eralized SMO (GSMO) algorithm is applied to solve a dual problem
involving multiple biases; moreover, GSMO is very flexible as it
considers individual common and task-specific kernels together
with individual biases, with the price to pay being the need to tune
multiple hyperparameters and the impossibility of using efficient,
standard SMO-based SVM solvers such as LIBSVM [26]. In any case,
these two papers are closely related with the proposal here; how-
ever, to alleviate the just mentioned issued, slightly simpler MTL-
SVM models, as described in Section 4, will be used. Another con-
nection between SVM + andMTL-SVMs is proposed in [27] which is
successfully applied in [5] in a biomedical context. Finally, recent
contributions of interest are [28] where a convex MTL approach
is applied to feature learning, or [29], which applies MTL to
enhance the fairness of classifiers.
3. L1-, L2-, and LS-SVMs Review

The standard formulation of L1- and L2-SVMs is reviewed first,
following the approach in [30], which unifies their classification
and regression versions. To do so, consider a sample
S ¼ xi; yi; pið Þ; 1 6 i 6 Nf g, where yi ¼ �1, and the following primal
problem for q 2 1;2f g:

argminw;b;n J w; b; nð Þ ¼ C
PN

i¼1 nið Þq þ 1
2 kwk2

s:t: yi w � xi þ bð Þ P pi � ni; i ¼ 1; . . . ;N;
ni P 0; i ¼ 1; . . . ;N:

ð2Þ

When q ¼ 1 this problem reduces to the L1-SVM primal prob-
lem, and its corresponding dual problem is

argmina H að Þ ¼ a|Qa� p|a

s:t: 0 6 ai 6 C; i ¼ 1; . . . ;N;
PN

i¼1yiai ¼ 0;
ð3Þ

where a| ¼ a1; . . . c;aNð Þ and p| ¼ p1; . . . c;pNð Þ. When q ¼ 2 we have
the L2-SVM unified formulation, and its dual problem is:

argmina H að Þ ¼ a| Q þ 1
C IN

� �
a� p|a

s:t: 0 6 ai; i ¼ 1; . . . ;N;
PN

i¼1yiai ¼ 0;
ð4Þ

where IN is the N � N identity matrix. In both L1- and L2-SVMs, Q
represents the kernel matrix, which for linear SVMs is defined by
the inner products Qij ¼ xi � xj. For kernel SVMs, Q contains the
inner products / xið Þ � / xj

� �
of the data mapped into a Reproducible

Kernel Hilbert Space (RKHS), and the dual problems can be solved
using the kernel trick without having to work with the / transform.
Observe also that the L2-SVM dual problem (4) is very similar to the
L1-SVM one given by (3), with the main difference being that the C
constant no longer appears as an upper bound of the ai, but instead
it moves to the kernel matrix.

Finally, the primal LS-SVM problem is

argminw;b;n J w; b; nð Þ ¼ C
PN

i¼1 nið Þ2 þ 1
2 jwj jj2

s:t: yi w � xi þ bð Þ ¼ 1� ni; i ¼ 1; . . . ;N;
ð5Þ

and its corresponding dual problem can be reduced [11] to solving
the following linear system:

ð6Þ

where Q is again the kernel matrix, y| ¼ y1; . . . ; yNð Þ, and 1N is the
all ones vector of dimension N.
601
4. Convex Multi-Task L1-, L2-, and LS-SVMs

We recall that the Cai-Cherkassky extension [8] of the Multi-
Task Learning SVM proposed in [4] solves the primal Problem 1
where a weight vectorwt and a task specific bias bt are divided into
a common part w and b, and task specific additions v t and dt . We
also recall that the regularization term penalizes independently
the common and task specific deviations adjusting the influence
of each part through the parameter l. In particular, large l values
lead to a smaller common part w and, thus, to stronger task-
independent models; on the other hand, a small l would
strengthen the common model. However, l’s influence is some-
what indirect; moreover, the l range coincides with the entire pos-
itive real numbers 0;1ð Þ, which makes difficult its
hyperparametrization. To overcome this, we have proposed in [9]
a convex formulation which we review next and then extend it
to L2- and LS-SVMs.

In the linear case, the convex L1-SVM primal problem is the
following:

argminw;vr ;br ;n J w;v r ; br ; nð Þ ¼ C
PT

r¼1

Pnr
i¼1n

r
i þ 1

2 jwj jj2 þ 1
2

PT
r¼1 jv rj jj2

s:t: yri kw � xri þ 1� kð Þv r � xr
i þ br

� �
P pr

i � nri ;

nri P 0; i ¼ 1; . . . ;nr ; r ¼ 1; . . . ; T:

ð7Þ

Here the vector w captures the common part and the vectors vr

do the same with the task-specific ones. Notice that for k ¼ 0 and
k ¼ 1, the problem reduces to the task-specific and common ones
respectively (denoted in what follows as ITL or CTL). In a kernel
setting the constraints become

yri kw � / xri
� �þ 1� kð Þv r � /r xri

� �þ br
� �

P pr
i � nri ; i ¼ 1; . . . ;nr ; r

¼ 1; . . . ; T;

where / xð Þ and /r xð Þ denote the mappings of the original x patterns
into the common and specific RKHS; observe that these may be dif-
ferent for each task, i.e., different kernels can be used on each one.
The dual problem corresponding to (7) is

argmina H að Þ ¼ a| Q
^

a� p|a

s:t: 0 6 ar
i 6 C; i ¼ 1; . . . c;nr ; r ¼ 1; . . . ; T;Pnr
i¼1yiar

i ¼ 0; r ¼ 1; . . . ; T:

ð8Þ

Here bQ ¼ k2Q þ 1� kð Þ2K , where Qrs ¼ k xr ; xsð Þ ¼ / xrð Þ � / xsð Þ is
the common kernel matrix and K is a block diagonal matrix where
each block K t contains the task-specific kernels
kt xr; xsð Þ ¼ /t xrð Þ � /t xsð Þ.

It should be pointed out that the dual problem (8) is essentially
identical to (3) except for the fact that in (8) there are T task-
specific equality constraints (because of the T task-specific biases

of the model) and, also, that bQ is defined in terms of several ker-
nels. While a general SMO algorithm [8] could be used to solve
(8), here a common bias for all tasks will be considered so that
the very efficient SMO implementation in the LIBSVM library
[26] can be used.

Analogously to the L1-SVM above, the primal problem for a con-
vex multi-task L2-SVM can be defined as:

argminw;vr ;br ;n J w;v r ; br ; nð Þ ¼ C
2

PT
r¼1

Pnr
i¼1 nri

� �2 þ 1
2 jwj jj2 þ 1

2

PT
r¼1 jv rj jj2

s:t: yri kw � / xri
� �þ 1� kð Þv r � /r xr

i

� �þ br
� �

P pr
i � nri ;

nri P 0; i ¼ 1; . . . ;nr ; r ¼ 1; . . . ; T;

and its Lagrangian becomes
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L w;v r; br; n;a;bð Þ ¼ C
2

XT

r¼1

Xnr

i¼1
nri
� �2 þ 1

2
wk k2 þ 1

2

XT

r¼1
v rk k2

� b|n�
XT

r¼1

Xnr

i¼1
ar
i yri kw � / xri

� ���
þ 1� kð Þv r � /r xri

� �þ br
�� pr

i þ nri

here a;b P 0 are the Lagrange multiplier vectors. It follows from
this that the dual problem for multi-task L2-SVM is

argmina H að Þ ¼ a| Q
^

þ 1
C IN

� �
a� p|a

s:t: 0 6 ar
i ; i ¼ 1; . . . c;nr ; r ¼ 1; . . . ; T;Pnr

i¼1yiar
i ¼ 0; r ¼ 1; . . . ; T;

ð9Þ

where bQ ¼ k2Q þ 1� kð Þ2K is again the same multi-task kernel
used in (8). Observe that the differences between the dual problems
of convex multi-task L1 and L2-SVMs are the same as those
between the standard single-task L1- and L2-SVM duals.

Finally, to extend the convex MTL approach to the LS-SVM case
the following multi-task primal problem is defined:

argminw;vr ;br ;n J w;v r ; br ; nð Þ ¼ C
2

PT
r¼1

Pnr
i¼1 nri

� �2 þ 1
2 jwj jj2 þ 1

2

PT
r¼1 jv rj jj2

s:t: yri kw � / xr
i

� �þ 1� kð Þv r � /r xri
� �þ br

� � ¼ 1� nri ;

i ¼ 1; . . . ; nr ; r ¼ 1; . . . ; T;

whose corresponding Lagrangian is

L w;v r; br ; n;a;lð Þ ¼ C
2

XT

r¼1

Xnr

i¼1
nri
� �2 þ 1

2
wk k2

þ 1
2

XT

r¼1
v rk k2 �

XT

r¼1

Xnr

i¼1
ar
i yri kw � / xri

� ���
þ 1� kð Þv r � /r xri

� �þ br
�� 1þ nri

Since there are only equality primal constraints, notice that the
Lagrange multipliers ar

i can now be either positive or negative. As
for standard LS-SVMs, the dual problem reduces to the following
system of linear equations:
Here bQ is the same multi-task kernel used in (8). Again, the only
differences between the standard LS-SVM dual problem (6) and the
convex multi-task LS-SVM problem are the use of multiple biases
and of the multi-task kernel.
5. Optimal convex combination of SVMs

In the Convex Multi-Task SVM proposals of Section 4, the k coef-
ficient defines a concrete combination of common and specific
models that are jointly learned once a k is fixed. It thus acts as a
hyperparameter whose optimal value has to be found through
cross validation or a similar procedure, with the corresponding
computational costs. This suggests the alternative of building first
and independently the common and task-specific SVM models and
afterwards combining them with a certain k to be optimal in some
sense.

Notice that, in this approach, the common and specific models
are no longer jointly learned and, thus, do not cooperate to solve
602
the problem at hand. On the other side, the overall cost is much
smaller, as just one set of common and specific SVM models is to
be learned and, as shown below, finding the mixing k has a low
computational cost. Thus, one has to balance a possibly worst per-
formance, as there is no joint multitask learning anymore, with the
computational savings of this alternative approach, called the Opti-
mal Convex Combination of SVMs and denoted as cvxCMB.

The procedure to choose the optimal k for cvxCMB is derived
next. Assume that common f and task-specific gr SVM models have
been built. For a pattern xr of task r, their predictions f xrð Þ and
gr xrð Þ are combined to yield

f r xrð Þ ¼ kf xrð Þ þ 1� kð Þgr xrð Þ:
If L by; y� �

is the loss to be minimized, the optimal k can be found
by solving the following optimization problem:

argmin06k61 J kð Þ ¼
XT

r¼1

Xnr

i¼1
L kf xri

� �þ 1� kð Þgr xri
� �

; yri
� �

: ð10Þ
In what follows, simple necessary and sufficient conditions for

optimality are derived, making possible to find the optimal k� with
O N logNð Þ cost for the absolute and squared errors for regression,
and the squared error, hinge and squared hinge losses for classifi-
cation. While each loss L results in a different cost function J and
has to be treated separately, these J also have some elements in
common, so it is useful to rewrite them to make those elements
clearer. Focusing first on the absolute error loss for regression
L1-SVMs, and on the squared error loss for regression L2-SVMs
and classification and regression LS-SVMs, the combination can
be written as:

kf xri
� �þ 1� kð Þgr xri

� �� yri ¼ k f xri
� �� gr xri

� �� �þ gr xri
� �� yri

� �
¼ kcri þ dr

i ;

where

cri ¼ f xri
� �� gr xr

i

� �
; dr

i ¼ gr xri
� �� yri :
Then, for the absolute error loss, (10) becomes:

argmin06k61 J kð Þ ¼
XT

r¼1

Xnr

i¼1
kcri þ dr

i

�� ��; ð11Þ
while for the squared error the problem is:

argmin06k61 J kð Þ ¼
XT

r¼1

Xnr

i¼1
kcri þ dr

i

� �2
: ð12Þ

Similarly, using the hinge and squared hinge losses for classifi-
cation L1- and L2-SVMs, respectively, the combination is written
as:

1� kf xr
i

� �þ 1� kð Þgr xri
� �� �

yri ¼ k yri gr xri
� �� f xri

� �� �� �þ 1

� yri gr xri
� �

¼ kcri þ dr
i ;

where here the cri and dr
i variables are defined as:

cri ¼ yri gr xri
� �� f xri

� �� �
; dr

i ¼ 1� yri gr xri
� �

:
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Now, for the hinge loss, (10) becomes:

argmin06k61 J kð Þ ¼
XT

r¼1

Xnr

i¼1
kcri þ dr

i

	 

þ; ð13Þ

while for the squared hinge loss the resultant problem is:

argmin06k61 J kð Þ ¼
XT

r¼1

Xnr

i¼1
kcri þ dr

i

	 
2
þ: ð14Þ

The simplest case is that of the squared error, as the J function in
(12) is differentiable, and solving J0 kð Þ ¼ 0 results in

k0 ¼ �
PT

r¼1

Pnr
i¼1d

r
i c

r
iPT

r¼1

Pnr
i¼1 cri

� �2 ;
and the optimum is hence k� ¼ max 0;min 1; k0ð Þð Þ. This applies to
LS-SVMs and to regression L2-SVMs.

The J kð Þ function is also differentiable for the squared hinge loss
but only piecewise differentiable for the absolute error and hinge
losses, where differentiability breaks down at the ‘‘elbows”, i.e.,
the points where kcri þ dr

i ¼ 0 or, equivalently,
ki;r ¼ max 0;min 1;�dr

i =c
r
i

� �� �
. There are N such elbows and sorting

them in increasing order and reindexing the pairs
i; rð Þ;1 6 i 6 nr ;1 6 r 6 T, as 1 6 j 6 N, it can be assumed that
0 6 k1 6 k2 6 . . . 6 kN 6 1. Notice also that the cost functions (11)
and (13) are convex, and thus by the generalized Fermat theorem:

k� ¼ argminkJ kð Þ () 0 2 @J k�ð Þ;
where @ denotes the subdifferential operator. Moreover these cost
functions can be written as:

J kð Þ ¼
XT

r¼1

Xnr

i¼1
‘ kcri þ dr

i

� �
;

and since all functions ‘ri kð Þ ¼ ‘ kcri þ dr
i

� �
share the same domain

0;1½ �; @J ¼ P
r

P
i@‘

r
i . Now it is easy to see the following result.

Proposition 1. For the absolute error and hinge losses, @J kð Þ is
single valued and constant between the elbows kj. Moreover, if
@J kð Þ ¼ J0 kð Þ ¼ c for some k between two consecutive distinct
elbows, i.e., kj < k < kjþ1, then c 2 @J kj

� �
and c 2 @J kjþ1

� �
.

An immediate consequence of this is that for these two losses it
is sufficient to search the optimal solution at the elbows kj. More
precisely, next proposition is satisfied for them and the squared
hinge loss.

Proposition 2. With the previous notation:

1. A value k� is optimal for the absolute error loss of problem (11)
iff k� is an elbow, that is, k� ¼ kk for some k ¼ 1; . . . ;N, and
�
Xk�1

j¼1
cj
�� ��þXN

j¼kþ1
cj
�� �� 2 � ckj j; ckj j½ �: ð15Þ

2. A value k� is optimal for the hinge loss of problem (13) iff k� is
an elbow, that is, k� ¼ kk for some k ¼ 1; . . . ;N, and
�
Xk�1

j¼1
max 0; cj

� ��XN

j¼kþ1
min 0; cj

� � 2 min 0; ckð Þ;max 0; ckð Þ½ �: ð16Þ

3. For the squared hinge loss of (14), set first k0 ¼ 0 and kNþ1 ¼ 1,

and for each kk value, 0 6 k 6 N, define bkk as
bkk ¼ �
Pk�1

j¼1 max 0; cj
� �

dj þ
PN

j¼kþ1 min 0; cj
� �

djPk�1
j¼1 max 0; cj

� �2 þPN
j¼kþ1 min 0; cj

� �2 : ð17Þ

Then, when bk0 < 0, problem (14) has a minimum at k� ¼ 0. On

the other hand, if kk 6 bkk 6 kkþ1 for some bkk, then k� ¼ bkk is a
603
minimum of (14). Finally, if neither of the previous conditions
holds, (14) has a minimum at k ¼ 1.
Proof.

1. For the absolute error loss, the subdifferential of J kð Þ at an
elbow kk is given by the interval
@J kkð Þ ¼ �
Xk�1

j¼1
cj
�� ��þXN

j¼kþ1
cj
�� ��þ � ckj j; ckj j½ �:

Therefore, kk is optimal iff 0 2 @J kkð Þ, that is

0 2 @J kkð Þ () �
Xk�1

j¼1
cj
�� ��þXN

j¼kþ1
cj
�� �� 2 � ckj j; ckj j½ �:

2. Similarly, for the hinge loss, the subdifferential at an elbow kk is
given by the interval
@J kkð Þ ¼
Xk�1

j¼1
max 0; cj

� �þXN

j¼kþ1
min 0; cj

� �
þ min 0; ckð Þ;max 0; ckð Þ½ �;

that is, the condition for kk to be optimal, 0 2 @J kkð Þ, becomes

�
Xk�1

j¼1
max 0; cj

� ��XN

j¼kþ1
min 0; cj

� � 2 min 0; ckð Þ;max 0; ckð Þ½ �:

3. Finally, the objective function J kð Þ of the squared hinge loss is
differentiable and its continuous and piecewise linear deriva-
tive, for k such that kk 6 k < kkþ1, is given by
J0 kð Þ ¼
Xk�1

j¼1
2max 0; cj

� �
kcj þ dj
� �þXN

j¼kþ1
2min 0; cj

� �
� kcj þ dj
� �

:

Solving J0 kð Þ ¼ 0 in each piece kk 6 k < kkþ1 results in the kk
defined by (17); however, their possible location in the 0;1½ �
interval has to be analyzed. To do so, observe that, since J kð Þ is
strictly convex and differentiable, J0 kð Þ is increasing. If bk0 < 0,
then by (17):Xk�1

j¼1
max 0; cj

� �
dj þ

XN

j¼kþ1
min 0; cj

� �
dj > 0;

in other words, J0 0ð Þ > 0 and the minimum of J kð Þ in the interval
0;1½ � is achieved at k� ¼ 0. Next, if for some k we have

0 6 kk 6 bkk 6 kkþ1 6 1, then J0 bkk

� �
¼ 0, i.e., k� ¼ bkk is a minimum

of J kð Þ in 0;1½ �. Finally, if the two previous conditions are not met,

then bkN > 1, which impliesXk�1

j¼1
max 0; cj

� �
dj þ cj
� �þXN

j¼kþ1
min 0; cj

� �
dj þ cj
� �

< 0;

that is, J0 1ð Þ < 0, and the minimum of J kð Þ in 0;1½ � is achieved at
k� ¼ 1.

As a consequence, Eqs. (15)–(17) characterize the optimal k� for
cvxCMB using the absolute error, hinge and squared hinge losses
with the O N logNð Þ cost of computing the elbow values and sorting
them.

6. Experiments

This section starts with a description of the models to be com-
pared, the classification and regression problems used and the
experimental methodology followed; after that, the obtained
results are shown and briefly discussed.

The following four models are considered:



Table 1
Sample sizes, dimensions and number of tasks of the datasets used.

Dataset Size No. feat. No. tasks Avg. task size Min. t. s. Max. t. s.

majorca 15330 765 14 1095 1095 1095
tenerife 15330 765 14 1095 1095 1095
california 19269 9 5 3853 5 8468
boston 506 12 2 253 35 471
abalone 4177 8 3 1392 1307 1527
crime 1195 127 9 132 60 278
binding 32302 184 47 687 59 3089
landmine 14820 10 28 511 445 690
adult_(G) 48842 106 2 24421 16192 32650
adult_(R) 48842 103 5 9768 406 41762
adult_(G, R) 48842 101 10 4884 155 28735
compas_(G) 3987 11 2 1993 840 3147
compas_(R) 3987 9 4 997 255 1918
compas_(G, R) 3987 7 8 498 50 1525
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� Common Task Learning LX-SVM (CTL-LX): A single LX-SVM
which uses data from all the tasks and does not make use of
the task information.

� Independent Task Learning LX-SVM (ITL-LX): Multiple task-
specific LX-SVMs, each of which only uses the data from its
own task.

� Direct Convex Combination of LX-SVMs (cvxCMB-LX): A combi-
nation of the best CTL-LX and ITL-LX as described in Section 5.

� Convex Multi-Task Learning LX-SVM (cvxMTL-LX): The exten-
sions proposed here of the L1-SVM convex MTL model in [9].

In the preceding, LX stands for either L1, L2 or LS.
The characteristics of the regression and classification datasets

used are given in Table 1. The regression problems used in this
work are majorca, tenerife, boston, california, abalone
and crime. In majorca and tenerife our goal is to predict the
photovoltaic energy produced in parks installed in the islands of
Majorca and Tenerife, respectively, and the tasks are defined as
the energy prediction at each daylight hour. In the boston and
california problems, obtained from the Kaggle repository, the
goal is to predict house prices; here the tasks are defined according
to a geographical division of the corresponding areas. Finally, the
regression problems abalone and crime are taken from the UCI
repository. The goal of the first is to predict the number of rings
of a certain kind of marine molluscs and the three tasks considered
are those predictions for male, female and infant specimens. In the
crime problem the crime rates per 100.000 habitants in different
cities of the U.S.A. are to be predicted. We define the tasks as the
prediction of this crime rate in each state.

The classification problems are landmine, binding, adult and
compas. In landmine the goal is to detect landmines, with differ-
ent mine types defining the different tasks. In binding the goal is
to predict whether a given molecule will bind to a peptide, and
each molecule defines a task. In adult the goal is to predict
whether a person has an income per year larger than $ 50.000.
The compas dataset is derived from the application of the COMPAS
Table 2
Hyperparameters, grids used to select them (when appropriate) and hyperparameter sele

Grid CTL-L1,2 ITL-L1,2 cvx

C 4k : �2 6 k 6 6
n o

CV CV CV

� r
4k : 1 6 k 6 6

n o
CV CV CV

cc 4k

d : �2 6 k 6 3
n o

CV - CT

crs 4k

d : �2 6 k 6 3
n o

- CV ITL

k 0:1k : 0 6 k 6 10f g - - CV
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tool, developed by the Northpointe company, to predict recidivism
of convicted defendants. We consider it as a two class problem,
with the positive class being those defendants to which the COM-
PAS algorithm assigns a ‘‘low” score and, hence, are considered to
have little risk of recidivism. In both adult and compas the tasks
are defined according to a person’s characteristic of gender, race or
both. In the compas problem, we have removed patterns from the
original Native-American and Asian groups, as they are too small to
fit independent models for them. We note that, in order to work
with Gaussian kernels, input features are scaled for all problems
to a 0;1½ � range.

Table 2 shows the hyperparameters of each model and the grids
we will use to estimate their best values. The C; c and (for regres-
sion) � hyperparameters for the CTL-LX and ITL-LX models are
selected by CV, as described below. The common cc and specific
crs kernel scales used for the cvxMTL-LX models are the same than
those obtained for the CTL-LX and ITL-LX models, respectively.
Their remaining hyperparameters C; k and possibly �, are then
selected using again CV. Finally, recall that the cvxCMB-LX works
with the already selected CTL-LX and ITL-LX models, and the opti-
mal mixing k� is computed directly using the results from
Section 5.

Data from the years 2013, 2014 and 2015 are used in the ma-

jorca and tenerife problems for training, validation and test,
respectively. The other datasets do not have predefined splits,
and all grid searches are performed using a nested CV with 3 exter-
nal and 3 internal random folds, stratifying the data by task so that
all folds have a similar task distribution. In more detail, we first
randomly obtain three external folds and we cyclically keep one
of them as a test set and apply standard three fold CV on the other
two to estimate optimal model hyperparameters. The correspond-
ing optimal models are then applied on each test fold and we
report the mean (and, for regression, the standard deviation) of
these three test values. Moreover, to have comparable results,
the same folds are used for the CTL-LX, ITL-LX, cvxMTL-LX and
cvxCMB-LX models.
ction method for each model.

MTL-L1,2 CTL-LS ITL-L,S cvxMTL-LS

CV CV CV

- - -

L-L1,2 CV - CTL-LS

-L1,2 - CV ITL-LS

- - CV



Table 3
Test MAE (top) and R2 score (bottom) and Wilcoxon-based ranking for the models selected using the MAE for hyperparametrization. The best models are shown in bold.

maj. ten. boston california abalone crime

MAE
ITL-L1 5.087 (6) 5.743 (3) 2.341 0.229 (1) 36883.582 418.435 (2) 1.481 0.051 (3) 0.078 0.001 (2)
CTL-L1 5.175 (7) 5.891 (5) 2.192 0.244 (1) 41754.337 270.908 (6) 1.482 0.050 (3) 0.078 0.001 (2)
cvxCMB-L1 5.047 (5) 5.340 (1) 2.239 0.255 (1) 36880.238 420.417 (1) 1.470 0.052 (2) 0.077 0.002 (2)
cvxMTL-L1 5.050 (5) 5.535 (2) 2.206 0.292 (1) 36711.383 343.333 (1) 1.454 0.048 (1) 0.074 0.002 (1)
ITL-L2 4.952 (3) 5.629 (3) 2.356 0.300 (1) 37374.618 433.511 (5) 1.498 0.054 (4) 0.079 0.002 (2)
CTL-L2 5.193 (7) 6.107 (8) 2.083 0.136 (1) 42335.612 163.773 (8) 1.503 0.047 (5) 0.080 0.002 (2)
cvxCMB-L2 4.869 (3) 5.963 (6) 2.089 0.128 (1) 37374.618 433.511 (4) 1.494 0.050 (4) 0.077 0.003 (2)
cvxMTL-L2 4.854 (2) 5.784 (4) 2.089 0.134 (1) 37202.603 419.166 (3) 1.482 0.049 (3) 0.077 0.002 (2)
ITL-LS 4.937 (3) 5.649 (3) 2.204 0.116 (1) 37348.347 441.240 (4) 1.496 0.051 (4) 0.079 0.002 (2)
CTL-LS 5.193 (7) 6.005 (7) 2.072 0.143 (1) 42259.492 146.825 (7) 1.502 0.052 (5) 0.079 0.002 (2)
cvxCMB-LS 4.977 (4) 5.593 (3) 2.081 0.146 (1) 37339.179 430.288 (4) 1.486 0.049 (4) 0.079 0.002 (2)
cvxMTL-LS 4.824 (1) 5.754 (4) 2.077 0.152 (1) 37231.043 420.992 (4) 1.478 0.050 (3) 0.076 0.002 (2)

R2
ITL-L1 0.845 (6) 0.901 (7) 0.821 0.041 (2) 0.699 0.009 (7) 0.543 0.022 (8) 0.732 0.021 (3)
CTL-L1 0.837 (9) 0.901 (6) 0.854 0.036 (1) 0.639 0.006 (10) 0.559 0.014 (6) 0.740 0.027 (3)
cvxCMB-L1 0.844 (6) 0.905 (4) 0.845 0.053 (1) 0.699 0.009 (6) 0.555 0.018 (7) 0.741 0.029 (3)
cvxMTL-L1 0.846 (4) 0.908 (2) 0.858 0.057 (1) 0.703 0.007 (6) 0.568 0.012 (5) 0.760 0.024 (2)
ITL-L2 0.846 (5) 0.906 (3) 0.836 0.045 (2) 0.707 0.009 (5) 0.565 0.025 (6) 0.743 0.017 (3)
CTL-L2 0.840 (8) 0.901 (8) 0.889 0.017 (1) 0.645 0.005 (9) 0.574 0.013 (4) 0.744 0.028 (3)
cvxCMB-L2 0.850 (3) 0.900 (9) 0.885 0.013 (1) 0.707 0.009 (4) 0.571 0.018 (4) 0.755 0.024 (3)
cvxMTL-L2 0.863 (2) 0.908 (1) 0.888 0.015 (1) 0.709 0.008 (1) 0.580 0.014 (3) 0.762 0.028 (1)
ITL-LS 0.849 (3) 0.907 (3) 0.856 0.008 (1) 0.707 0.009 (3) 0.573 0.015 (4) 0.743 0.022 (3)
CTL-LS 0.838 (9) 0.904 (5) 0.894 0.015 (1) 0.646 0.005 (8) 0.576 0.016 (4) 0.746 0.032 (3)
cvxCMB-LS 0.843 (7) 0.907 (2) 0.886 0.024 (1) 0.707 0.009 (2) 0.581 0.012 (2) 0.746 0.021 (3)
cvxMTL-LS 0.863 (1) 0.910 (1) 0.890 0.016 (1) 0.709 0.008 (2) 0.581 0.015 (1) 0.763 0.028 (1)
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For classification problems the F1 score is used in CV, as the
imbalance ratio of the landmine dataset is a large 200/13, and test
results for both F1 and accuracy are reported. Notice that the clas-
sification losses do not aim to directly minimize either one of these
scores, in contrast to what happens in regression, where the �-
insensitive loss is close to the mean absolute error (MAE) while
the squared �-insensitive loss is closer to the mean squared error.
This implies that using the MAE as the CV score is likely to favor
the performance of the �-insensitive loss-based regression models
and, to the contrary, using the MSE as the CV score might penalize
Table 4
Test MAE (top) and R2 score (bottom) and Wilcoxon-based ranking for the models selecte

maj. ten. boston c

ITL-L1 5.087 (7) 5.743 (3) 2.437 0.281 (3) 36941.51
CTL-L1 5.175 (8) 5.891 (7) 2.315 0.192 (2) 41857.60
cvxCMB-L1 4.920 (4) 5.743 (4) 2.315 0.192 (3) 36941.47
cvxMTL-L1 5.050 (6) 5.535 (1) 2.244 0.150 (1) 36999.00
ITL-L2 4.924 (5) 5.752 (5) 2.437 0.324 (3) 37407.92
CTL-L2 5.193 (8) 6.107 (9) 2.096 0.112 (1) 42335.61
cvxCMB-L2 4.813 (1) 5.623 (3) 2.116 0.131 (1) 37398.94
cvxMTL-L2 4.854 (4) 5.784 (6) 2.082 0.130 (1) 37356.59
ITL-LS 4.937 (5) 5.649 (3) 2.326 0.231 (3) 37385.24
CTL-LS 5.193 (8) 6.005 (8) 2.072 0.143 (1) 42339.06
cvxCMB-LS 4.820 (2) 5.578 (2) 2.136 0.106 (1) 37377.00
cvxMTL-LS 4.824 (3) 5.754 (6) 2.090 0.090 (1) 37232.91

ITL-L1 0.845 (6) 0.901 (9) 0.800 0.050 (3) 0.703
CTL-L1 0.837 (7) 0.901 (8) 0.860 0.026 (2) 0.642
cvxCMB-L1 0.852 (4) 0.901 (10) 0.860 0.026 (3) 0.703
cvxMTL-L1 0.846 (5) 0.908 (5) 0.871 0.019 (1) 0.705
ITL-L2 0.850 (4) 0.906 (6) 0.819 0.053 (3) 0.707
CTL-L2 0.840 (6) 0.901 (11) 0.886 0.014 (1) 0.645
cvxCMB-L2 0.857 (3) 0.910 (1) 0.883 0.016 (1) 0.707
cvxMTL-L2 0.863 (2) 0.908 (4) 0.887 0.015 (1) 0.708
ITL-LS 0.849 (4) 0.907 (5) 0.841 0.028 (3) 0.707
CTL-LS 0.838 (7) 0.904 (7) 0.894 0.015 (1) 0.645
cvxCMB-LS 0.856 (3) 0.909 (3) 0.877 0.009 (1) 0.707
cvxMTL-LS 0.863 (1) 0.910 (2) 0.890 0.014 (1) 0.710
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them and favor the squared loss models. Because of this, the results
are reported using both the MAE and the MSE as different CV
scores and test performances are given in terms of both the MAE
and the R2 score, which is very closely related to the MSE.

Starting with regression, Table 3 gives the test MAE and R2 val-
ues when the hyperparameters are chosen using the MAE as the CV
score, and Table 4 shows the same test measures when MSE is the
CV score. When nested 3-fold CV has been used, the tables give the
mean test values and their standard deviation. The tables are split
in three blocks, one for each of the L1-, L2- and LS-SVM models. To
d using the MSE for hyperparametrization. The best models are shown in bold.

alifornia abalone crime

MAE
6 450.767 (1) 1.480 0.058 (3) 0.079 0.002 (3)
2 235.021 (6) 1.479 0.047 (3) 0.078 0.000 (2)
6 450.711 (1) 1.471 0.057 (2) 0.079 0.002 (2)
3 360.445 (2) 1.455 0.046 (1) 0.074 0.001 (1)
9 461.878 (5) 1.497 0.050 (5) 0.079 0.002 (2)
2 163.773 (7) 1.504 0.048 (6) 0.079 0.002 (2)
0 449.498 (5) 1.495 0.051 (5) 0.078 0.003 (2)
9 390.629 (4) 1.481 0.041 (4) 0.076 0.000 (2)
4 403.331 (4) 1.495 0.045 (5) 0.079 0.002 (2)
3 156.624 (7) 1.504 0.043 (6) 0.078 0.002 (2)
5 391.694 (4) 1.491 0.048 (5) 0.078 0.002 (2)
8 397.866 (3) 1.478 0.042 (3) 0.076 0.000 (2)
R2

0.009 (8) 0.534 0.053 (10) 0.732 0.017 (4)
0.006 (10) 0.564 0.011 (8) 0.748 0.017 (3)
0.009 (7) 0.550 0.036 (9) 0.733 0.018 (3)
0.008 (6) 0.573 0.011 (7) 0.764 0.019 (1)
0.009 (4) 0.573 0.020 (6) 0.744 0.018 (3)
0.005 (9) 0.574 0.013 (6) 0.747 0.025 (3)
0.009 (2) 0.574 0.021 (5) 0.751 0.029 (3)
0.007 (2) 0.581 0.011 (2) 0.768 0.020 (1)
0.009 (5) 0.577 0.012 (4) 0.743 0.021 (3)
0.005 (9) 0.575 0.012 (4) 0.754 0.022 (3)
0.009 (3) 0.580 0.013 (3) 0.750 0.024 (3)
0.008 (1) 0.582 0.011 (1) 0.763 0.019 (2)



Table 5
Test F1 (top) and accuracy (bottom) scores, global and block-wise Wilcoxon-based rankings for classification problems. The best models in each block are shown in bold.

comp_(G) comp_(R) comp_(G,R) ad_(G) ad_(R) ad_(G,R) landmine binding mean rank Wil.

F1
ITL-L1 0.625 0.639 0.630 0.659 0.653 0.657 0.231 0.867 0.620 10 1
CTL-L1 0.623 0.638 0.638 0.657 0.650 0.653 0.255 0.901 0.627 7 1
cvxCMB-L1 0.616 0.638 0.638 0.658 0.650 0.653 0.270 0.901 0.628 6 1
cvxMTL-L1 0.627 0.636 0.640 0.659 0.655 0.659 0.242 0.907 0.628 5 1
ITL-L2 0.636 0.623 0.607 0.668 0.666 0.668 0.256 0.867 0.624 8 3
CTL-L2 0.640 0.647 0.651 0.665 0.661 0.659 0.270 0.903 0.637 2 2
cvxCMB-L2 0.629 0.640 0.645 0.666 0.662 0.661 0.270 0.903 0.634 3 2
cvxMTL-L2 0.634 0.651 0.650 0.668 0.666 0.668 0.263 0.909 0.639 1 1
ITL-LS 0.631 0.622 0.608 0.659 0.659 0.660 0.243 0.867 0.619 12 2
CTL-LS 0.628 0.644 0.649 0.650 0.653 0.647 0.230 0.853 0.619 11 2
cvxCMB-LS 0.630 0.635 0.642 0.657 0.658 0.654 0.238 0.873 0.623 9 2
cvxMTL-LS 0.630 0.641 0.648 0.659 0.659 0.659 0.257 0.906 0.632 4 1

Accuracy
ITL-L1 0.750 0.749 0.746 0.852 0.851 0.853 0.941 0.790 0.817 11 3
CTL-L1 0.757 0.759 0.763 0.852 0.847 0.849 0.938 0.850 0.827 6 2
cvxCMB-L1 0.754 0.759 0.763 0.852 0.847 0.849 0.935 0.850 0.826 7 2
cvxMTL-L1 0.753 0.760 0.763 0.853 0.852 0.853 0.933 0.861 0.829 5 1
ITL-L2 0.754 0.762 0.751 0.856 0.855 0.856 0.942 0.791 0.821 8 2
CTL-L2 0.762 0.765 0.767 0.854 0.853 0.851 0.933 0.853 0.830 3 1
cvxCMB-L2 0.757 0.764 0.766 0.854 0.853 0.853 0.934 0.853 0.829 4 1
cvxMTL-L2 0.753 0.766 0.766 0.856 0.855 0.856 0.933 0.864 0.831 1 1
ITL-LS 0.754 0.761 0.750 0.851 0.850 0.851 0.943 0.791 0.819 9 2
CTL-LS 0.757 0.764 0.766 0.845 0.847 0.842 0.914 0.750 0.811 12 3
cvxCMB-LS 0.754 0.764 0.765 0.849 0.850 0.848 0.925 0.793 0.818 10 3
cvxMTL-LS 0.757 0.764 0.767 0.851 0.850 0.851 0.944 0.858 0.830 2 1

C. Ruiz, C.M. Alaíz and José R. Dorronsoro Neurocomputing 456 (2021) 599–608
test for statistical significance, a Wilcoxon signed rank test is
applied to the absolute test error distributions of the models. Doing
so over all possible model pairs would result in a hard to represent
12� 12 (symmetric) table. Because of this, the test results are first
sorted for each problem in ascending order for MAE and in
descending order for R2, and then Wilcoxon test is applied for each
consecutive model pair. The rankings in parenthesis of the figures
represent these results, so a model precedes immediately another
if the null hypothesis of both error distributions being the same is
rejected at the 5% level. For instance, the MAE results in Table 3
show that for the majorca dataset, the best model is the convex
cvxMTL-LS proposal and the second best is the cvxMTL-L2 model,
while the cvxMTL-L1 ties for fifth place with cvxCMB-L1.

While the tables do not show a single model as the overall win-
ner, it is clear that convex MTL models usually perform better. For
instance, the MAE results in Table 3 show that a convex MTL model
is best in four of the six datasets, ties for first place for the boston

problem and only for tenerife the first convex model, cvxMTL-L1,
occupies the second place. The situation is similar for the R2 results
in Table 3, as well as for MAE and R2 scores in Table 4.

Table 5 shows the F1 and accuracy scores of the classification
problems computed by the nested three fold CV described above.
Here we omit the standard deviations, first to make the
Table easier to read and, also, as their values are rather small.
The Table also gives for each model the means across all problems
of the F1 and accuracy scores as well as a ranking of all models
according to these mean values. This ranking is given basically
for illustration purposes, as it does not have a statistical signifi-
cance. In any case, it can be observed than, for both F1 and accu-
racy, the best mean score in each of the L1, L2 and LS groups is
obtained by the multi-task model. Moreover the best mean scores
overall are those of the cvxMTL-L2 model.

In contrast with the situation in regression, where we applied
Wilcoxon tests on the absolute error distribution of each model,
such an approach cannot be used here. In order to provide some
significance related results, we have proceed as follows. Recall that
the scores are computed as the mean of the three test folds consid-
ered in our nested CV approach. When these are considered for the
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eight classification problems considered, we have for each model a
sample of twenty-four F1 or accuracy scores. We have applied a
Wilcoxon test within each model group over these samples, pairing
consecutively the models’ scores according to previous ranking as
considered on each group (that is, for the F1 score in the L1 group,
we pair first the samples of cvxMTL-L1 and cvxCMB-L1, then those
of cvxCMB-L1 and CTL-L1 and, finally, those CTL-L1 and ITL-L1). As
it can be seen in Table 5, cvxMTL models always appear in the first
position, sometimes tied with another model. In any case, and
again, this must be taken as an illustration, as here the application
of the Wilcoxon test is not completely justified.
7. Conclusions

In this work, a convex multi-task L1-SVM approach has been
extended to consider also two other widely used SVM models,
the L2-SVM and the LS-SVM. As it was the case with the L1-SVM,
both multi-task models can be reduced to single-task ones with a
special multi-task kernel (provided that only a common bias is
used); hence they can be directly solved with the state-of-the-art
approaches for L1-, L2- and LS-SVMs. On the other side, a baseline
multi-task model has been proposed: the optimal convex combina-
tion of the prediction of a common SVM, trained over all the task at
the same time, with those of independent task-specific models. In
particular, a procedure to optimize the parameter to combine any
two models is defined to minimize the L1, L2, hinge and squared-
hinge error functions.

The three proposed multi-task SVMs have been compared with
the optimal convex combination, and the common and the inde-
pendent models, over both regression and classification datasets.
These experiments show how the multi-task approach performs
generally better than the other methods.

In any case, there is room for further work. For instance, one of
the drawbacks of these MTL models is the number of hyperparam-
eters to be tuned. Indeed, although in this work a single mixing
hyperparameter k is used for the multi-task model, different values
kr could be used for the different tasks, hence allowing for more
flexible models, at the expense of adjusting all these hyperparam-
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eters. Therefore, an immediate line of extension of this work con-
sists in finding alternative ways to explore these task-specific
hyperparameters in such a way that doesn’t make the cross valida-
tion effort too expensive. As a first approach, using the optimal
combining parameter k�r as the hyperparameter of the multi-task
models should be studied for which it could be interesting to use
other black-box optimization methods to determine all these
hyperparameters, such as Bayesian searches or evolutionary algo-
rithms. As a more elaborated alternative, a way of optimizing the
mixing hyperparameter jointly with the model, hence converting
it into a standard model parameter, could be explored. Finally,
and as mentioned for the soft sharing approach to deep MTL mod-
els, the distances between each task weights could be added to the
regularization term so that more direct interactions between task
models can be achieved.
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