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Abstract
Recommender systems are information filtering systems used in many online applications like music and video broadcasting
and e-commerce platforms. They are also increasingly being applied to facilitate software engineering activities. Following this
trend,we arewitnessing a growing research interest on recommendation approaches that assistwithmodelling tasks andmodel-
based development processes. In this paper, we report on a systematic mapping review (based on the analysis of 66 papers)
that classifies the existing research work on recommender systems for model-driven engineering (MDE). This study aims to
serve as a guide for tool builders and researchers in understanding the MDE tasks that might be subject to recommendations,
the applicable recommendation techniques and evaluation methods, and the open challenges and opportunities in this field of
research.
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1 Introduction

Recommender systems (RSs) [3] are information filtering
systems that aim to predict the preferences of users for a given
set of items, with the purpose of offering a typically priori-
tised list of potentially interesting items. RSs are widely used
by commercial applications such as music and video broad-
casting platforms, e-commerce sites and social networks, and
they are increasingly being used to help developers with soft-
ware engineering activities [113]. For example, we can find
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RSs that help in choosing appropriate third-party program-
ming libraries [95,135], recommendAPImethod invocations
[94], suggest code refactorings [30], propose features for
mobile apps [58] and assist on the evaluation of change
impact analysis [18], to name a few.

Modelling is fundamental in software engineering and
central to some software development approaches like
model-driven engineering (MDE) [19,122]. InMDE,models
are the primary assets of the development process, since they
are used for analysis, validation, simulation and code gener-
ation of the applications to be built, among other activities.
The rationale of MDE is to improve software quality and to
reduce accidental complexity and development times [62].
Following the trend in software engineering, in recent years,
there have been proposals of RSs to assist in modelling tasks
[5,26,100] and other activities in theMDEprocess [111,119].

In the state-of-the-art, we find surveys of RSs and their
associated techniques [65,112], which review fundamen-
tal techniques for constructing RSs. We also find literature
reviews on the use of RSs for software engineering [41,78],
centred on RSs for code-based activities. However, perhaps
because the use of RSs for MDE is an emerging research
topic, to the best of our knowledge, there are no systematic
studies yet analysing howRSs can be designed and employed
to assist in MDE tasks. To fill this gap, this paper presents a
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systematic mapping review that covers publications ranging
from 2004 to 2020 from the main digital libraries. Our study
aims to answer the following research questions (RQs):

RQ1: In which ways can recommender systems assist
in the different tasks within MDE processes?
RQ2:Which recommendation techniques aremost com-
monly used to support MDE tasks, and how are recom-
menders for MDE evaluated?
RQ3: What are the main opportunities in recommender
systems for MDE solutions?

We have selected 66 relevant papers from an initial set
of 1,456 papers and classified them under four dimensions:
domain, tooling, recommendation and evaluation. For RQ1,
we have found that most approaches are directed to complete
and repair artefacts, and work over models. Many RSs are
language-independent, while the language-dependent ones
frequently target UML or process modelling notations. For
RQ2, we have found that most RSs are knowledge-based
followed by content-based, and offline experiments are the
most common evaluation approach. Finally, for RQ3, we
have found that there are hardly any RSs for model trans-
formations or code generators; and few RSs target creating,
reusing or finding artefacts. Moreover, we have identified
several research opportunities including the need for effec-
tive repositories of MDE artefacts that mitigate the current
lack of data; techniques for adapting RSs to the user’s needs;
mechanisms to exploit the crowd knowledge via collabora-
tive filtering; the user-based evaluation of RSs within MDE;
and the investigation of mechanisms for the effective inte-
gration of RSs with MDE tools and low-code platforms.

Given the increasing importance that RSs are gaining in
software engineering [113], we expect a similar trend in rec-
ommenders for modelling and MDE tasks, as the increase
in the number of papers on this topic during the last years
shows (cf. Fig. 2). Hence, our study may be useful for tool
builders and researchers to understand the tasks that can be
subject to recommendations, the applicable recommendation
techniques and their evaluation methods, and the open chal-
lenges in this field of research.

The remainder of this paper is organised as follows. First,
Sect. 2 provides background onRSs, and Section 3 overviews
the main concepts and tasks within MDE. Then, Sect. 4
describes the scope and methodology of our systematic map-
ping review. Next, Sect. 5 reports on existing works that
describe RSs to assist in modelling tasks. Section 6 discusses
the results of our review, answers the research questions,
analyses threats to the validity of the study and describes
open challenges and interesting research directions. Finally,
Sect. 7 concludes with a summary.

2 Recommender systems

In this section,wefirst provide anoverviewofRSs (Sect. 2.1),
then we describe the main types of recommendation tech-
niques (Sect. 2.2), and lastly, we present the most frequent
methodologies and metrics for evaluating RSs (Sect. 2.3).

2.1 Introduction to recommender systems

RSs are software tools and associated techniques that suggest
items considered relevant for a particular user [3], usually in
scenarios or applications where the space of items is very
large and item search and selection are difficult or even over-
whelming to the user. For this purpose, RSs explicitly or
implicitly gather information about the user’s preferences
for a set of items (e.g. movies, songs, books or products) and
subsequently use the collected information to make person-
alised predictions on items relevant to a target user, such as
which movie to watch or which book to read next. Making
use of information retrieval andmachine learning techniques,
RSs facilitate decision-making in domains where there are
many options to choose from. Instead of requiring users to
specify their interests by means of a query, these systems
proactively suggest items of potential relevance to the users.

In general, RSs follow a process that encompasses three
main steps:

1. Collecting relevant user information;
2. Learning from the collected information to build user pro-

files; and
3. Applying a heuristic function or a previously built model

to select and rank the items that the user is most likely to
prefer.

In order to present personalised item suggestions to a user,
RSs build a user profile that captures past choices and pref-
erences of the user. This information can be either explicitly
provided by the user or implicitly inferred by the system.
Explicit feedback refers to preference statementsmade by the
users about items they know, and which are typically stored
as numeric ratings or unary/binary values (e.g. likes and
thumbs up/down). In contrast, implicit feedback is inferred
by observing and mining user interactions within the sys-
tem, such as previous search queries, product purchases and
mouse clicks, among others. Other features that can be used
to model the preferences of users include demographic data,
personality traits, emotional states and trust relationships
[112].

In a similar way, RSs characterise the items that may be
recommended by means of item profiles. These profiles take
different item attributes into account, such as metadata and
text features extracted from item descriptions or textual con-
tents [77].
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2.2 Types of recommender systems

RSs are commonly classified into the following major
categories, depending on how they generate personalised rec-
ommendations:

– Content-based systems, which recommend items that are
similar to other items the target user liked in the past [77];

– Collaborative filtering systems, which base their sugges-
tions on the items liked by “similar” people to the target
user [96,120];

– Knowledge-based systems,which exploit domain knowl-
edge to describe and relate users and items for providing
personalised recommendations [22];

– Context-aware systems,which consider the current user’s
context (e.g. location, time, weather) to enrich person-
alised recommendations [4];

– Social-based systems, which analyse and exploit the
social network connections of the target user to gener-
ate recommendations [46];

– Demographic-based systems, which use demographic
data to represent user and item profiles considered in the
recommendation generation process [102]; and

– Hybrid systems, which combine two or more of the pre-
vious types of RSs [23].

Additionally, RSs can be categorised according to the
algorithmic approach they use to compute the relevance of
items [3]. In this regard, we can distinguish between two
types of systems:

– Memory-based systems, where the relevance of items is
estimated through heuristic formulae [120]; and

– Model-based systems, which predict item relevance by
using a data-basedmodel built viamachine learning tech-
niques, e.g. matrix factorisation [70] or neural networks
[48].

The following subsections explain inmore detail the above
categories and types of RSs, which will be considered in our
review.

2.2.1 Content-based recommenders

Content-based (CB) systems recommend similar items to
those items the target user liked in the past [3]. They use
item attributes or features to represent both user and item pro-
files and establish the corresponding user/item similarities.
In general, they consider textual information (e.g. keywords,
metadata and social tags) to build the user and item profiles
[77].

A CB recommender is able to provide accurate person-
alised suggestions when it has enough information about the

target user’s preferences, since content similarities can be
easily established.Moreover, it is capable of suggesting items
for which no preferences have been expressed yet (i.e. cold
items), since recommendations are generated via content-
based item similarities.

However, this type of RSs has certain disadvantages. One
of them is the overspecialisation problem, in which the user
is exposed to items that are very similar to the ones the
user already knows, limiting the discovery of diverse, rel-
evant items. In this sense, CB recommenders are not suitable
for domains and applications where, at a certain point, the
user has to be suggested novel, fresh or even unexpected
(serendipitous) recommendations, e.g. in the news articles
domain. Another drawback of these systems is the new user
cold-start problem, as a RS needs a considerable amount of
users’ preferences before it can provide well-suited recom-
mendations.

2.2.2 Collaborative filtering recommenders

Collaborative filtering (CF) systemsmake suggestions to the
target user based on items preferred by like-minded people
[3]. They rely on the feedback (commonly ratings) that users
give about the items. Hence, user and item similarities are
established via explicit or implicit rating-based similarities
and patterns [48,120].

Differently to CB approaches, a CF system is able to pro-
vide novel and diverse recommendations for the target user.
Even in situations of rating sparsity, CF has shown better
performance than CB in many real-world applications and
represents the most widely used approach for providing per-
sonalised recommendations [70].

Nonetheless, similarly to CB approaches, CF recom-
menders suffer from the new user cold-start problem, i.e.
they need to have enough ratings to provide accurate recom-
mendations. CF also manifests the so-called item cold-start
problem, since an item can only be recommended after being
rated. Moreover, CF is affected by situations of high spar-
sity, where the number of collected ratings is very small with
respect to the total number of possible ratings given by users
to items.

2.2.3 Knowledge-based recommenders

Knowledge-based (KB) systems recommend items using
domain-specific knowledge about how item attributes and
features could meet the user’s needs and interests [22].
Many recommendation approaches canbe categorised asKB.
Among them, two types of approaches have gained great
interest in the literature: case-based and constraint-based
[112]. Case-based systems address the recommendation task
via case-based reasoning methods, which aim to solve a new
problem (i.e. a new case) by remembering previous similar
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cases and reusing knowledge about them. Constraint-based
systems, on the other hand, predominantly exploit knowl-
edge, commonly expressed by means of explicit rules, on
how user requirements are related to the item attributes and
features.

The main advantage of KB systems is their capability
of providing and explaining accurate recommendations that
entail a deep understanding of the user’s preferences, which
cannot be achieved by CB and CF approaches. Although KB
systems usually do not suffer from cold-start problems, they
are affected by the so-called knowledge acquisition bottle-
neck. This consists on the need of learning models or domain
experts to model and build the used knowledge bases. Addi-
tionally, KB recommenders usually are ad-hoc solutions to
particular problems, and thus their generalisation to other
problems or domains is difficult or not possible.

2.2.4 Hybrid recommenders

Hybrid systems make use of two or more recommendation
methods, such as CB and CF, to take advantage of their
benefits and avoid some of their limitations [23]. Because
of this, many real-world RSs are hybrid. Without entering
into details, we can identify three main ways to implement a
hybrid system:

– Incorporating some feature of one recommendation
method into another one, e.g. a CF strategy that uses CB
similarities;

– Combining the recommendations generated separately
by two methods, e.g. via ranking aggregation and diver-
sification techniques; and

– Building a unifying recommendation model that incor-
porates characteristics of distinct methods, e.g. a matrix
factorisation model with both collaborative and content-
based features.

2.2.5 Other recommenders

There are other types of RSs that can be considered orthogo-
nal to CB, CF and KB systems, since they exploit particular
data following CB and CF strategies. Special attention can
be drawn to the next recommenders:

– Context-aware recommenders, commonly abbreviated as
CARS, take into consideration contextual information
associated or influencing to user preferences when gen-
erating personalised recommendations [3]. Quoting Dey
[32], “context is any information that can be used to char-
acterise the situation of an entity.” In CARS, context
commonly refers to circumstances in which recommen-
dations are produced, such as the time, the weather and
the user’s current location.

CARS are appropriate for applications where contextual
variables determine or have a high impact on the rele-
vance of the suggested items. For instance, in a RS for
travelling, the vacation recommendations for the winter
season can be very different from those generated for
the summer [4]. Naturally, not all contextual information
available might be relevant, and the fact that contex-
tual factors and data sources differ from application to
applicationmakes CARS difficult to implement and eval-
uate. Moreover, CARS may require extra effort from the
users, who may need to provide information about cer-
tain contextual conditions, such as their currentmood and
companion.

– Social-based recommenders generate personalised rec-
ommendations in social media [46]. A widely explored
approach in these systems is the exploitation of explicit
relationships between users in social networks. In this
sense, many solutions are based on the so-called trust-
basedmodel, where the social influence and trust of users
are established and propagated through the social net-
work. In fact, research supports the theory that social trust
can be used as a positive way to generate explanations of
provided recommendations [133]. Social-based methods
perform well when used together with other recommen-
dation approaches, like CB or CF, since social network
information can help in dealing with the user and item
cold-start problems [112].

– Demographic-based recommenders make use of demo-
graphic data about the users, e.g. age, gender and address
[102]. Taking this information into account, the recom-
mendation algorithms identify users or items that are
demographically compatible with the target user. These
systems assume that users with similar demographic
attributes may rate similarly and have been applied to
alleviate cold-start problems of traditional recommenda-
tion approaches.

2.3 Evaluation of recommender systems

RSs need to be evaluated at different phases of their life-
cycle. At design time, it is necessary to assess the adequacy
of the selected recommendation approach for the application
at hand. This evaluation is done via offline experiments by
running potential recommendation algorithms on the same
dataset of user-item interactions (i.e. the rating matrix) and
comparing their performance by means of several metrics
[45]. This type of evaluation permits measuring the quality
of the algorithms in accomplishing a recommendation task,
but neglects user-centred aspects related to usage satisfaction,
acceptance and experience with the system.

In offline experiments, as commonly done for evaluating
machine learningmethods, the dataset is usually split into two
subsets: the training set, used to build the recommendation
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model, and the test set, used to evaluate the built model.
Sometimes, a third subset, the validation set, is also used for
parameter tuning of the trained model, before testing.

There are two main types of recommendation tasks that
can be evaluated: the item rating prediction (which is in
disuse in the RSs community) and the item ranking genera-
tion (or top-N recommendation). Each of them has specific
metrics, sometimes adopted and adapted from the machine
learning and information retrieval areas. In the rating predic-
tion task, the objective of a RS is to accurately predict the
numeric value of the rating a user would give to an item,
and thus metrics such as the mean absolute error (MAE) and
the root mean square error (RMSE) are considered. In the
ranking generation task, the goal of a RS is to provide the
user with a personalised ranked list of relevant items, with
special interest in the items at the first (top) positions of the
list. In this case, metrics oriented to measure the accuracy
of the ranking are used, e.g. precision, recall, mean recipro-
cal rank (MRR) and normalised discounted cumulative gain
(nDCG) [45]. These accuracy metrics can be complemented
with metrics for other ranking characteristics, such as diver-
sity, novelty and coverage [14].

RSs should also be evaluated after deployment. This can
be done via online experiments, which usually are user-
centric [67]. The built system is deployed in a real environ-
ment and tested by end-users in real-time, commonly online.
In these experiments, a widely used evaluation methodology
is A/B testing, where two versions A and B of the system
are deployed, and one of them implements the recommenda-
tion algorithm or functionality that is being evaluated. After
a period of time, the user feedback and behaviour recorded
in both systems are analysed and compared according to cer-
tain metrics. There is also the possibility of performing a
user study where a prototype of the system is deployed in a
controlled setting and evaluated with a reduced set of users,
maybe recruited by crowd-sourcing. User studies can also
follow the A/B testing methodology and incorporate online
questionnaires to gather the usage satisfaction and opinions
about the system and its functionalities.

3 Model-driven engineering

In this section, we provide a brief overview of the main con-
cepts, artefacts and tasks within MDE solutions. We do not
aim to be exhaustive, but to provide the necessary context
to understand the kind of support needed from RSs in MDE.
The interested reader can see [19] for amore detailed account
of MDE.

3.1 MDE artefacts

Figure 1 shows a schema with the main elements of MDE
solutions. In MDE, models are the main assets, from which

Fig. 1 Main elements of MDE solutions

other artefacts—like code or other models—may be derived
in an automated way. Models conform to a meta-model,
which defines the modelling language syntax and determines
the set of models that are valid. Meta-models comprise a
structural diagram plus additional constraints formulating
restrictions that cannot be expressed diagrammatically. The
structural diagram is defined as a class diagram, frequently
using standards like the Meta-Object Facility (MOF) [85]
and implementations like the Eclipse Modeling Framework
(EMF) and Ecore [131]. Constrains are described using con-
straint languages like the Object Constraint Language (OCL)
[97].

In addition to models, MDE solutions may include model
transformations to modify existing models (e.g. perform-
ing refactorings or optimisations) or to create new models
out of existing ones (e.g. creating a design model from
a requirements model). Model transformations are defined
using either specialised transformation languages like ATL
[59] or QVT [107], general-purpose languages like Java, or
technologies like XSLT [79].

Finally, textual artefacts—like code, configuration files or
documentation—can be produced from models using code
generators. These are typically written in specialised tem-
plate languages, such as Acceleo [2] or EGL [115].

3.2 MDE tasks

Model-based software solutions involve the creation of mod-
els using a modelling language. Modelling languages can
be either general-purpose like the UML, or domain-specific
languages created for a particular domain. Therefore, in
MDE, engineers may need to create the following kinds of
artefacts: models, meta-models (i.e. modelling languages),
model transformations, and code generators.

As in any software engineering process, in MDE, it is
desirable to be able to reuse existing artefacts to avoid their
creation from scratch. This requires the ability to find similar
artefacts, or fragments of them, in existing repositories.
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The syntactic correctness of models is crucial to enable
sound solutions and be able to apply model transformations
and code generators on them. Therefore, it is important to
complete partial models to become conformant to their meta-
model. This completion process applies not only to models,
but also to model transformations, code generators andmeta-
models, as these can be seen as models that have a specific
semantics and conform to their own meta-models.

MDE artefacts may have errors, and so, they may need
to be repaired either syntactically to conform to their
meta-models, or semantically to conform to some specified
requirements. Meta-model/model co-evolution [38] is a par-
ticular case of the latter, whereby a meta-model evolves to
accommodate changing or new requirements, and the bro-
ken models need to be repaired to make them conform to
the new meta-model version. Other tasks related to repairing
artefacts include the creation of input test data (e.g. input
models for testing model transformations) [13], oracles (e.g.
transformation contracts) [44], and fixes [119].

4 Surveymethodology and scope

Following acceptedguidelines for systematicmappings [104,
105,139], we have performed a systematicmapping review to
analyse how pervasive is the use of RSs to support modelling
and MDE, identifying the tasks that have been subject to
recommendations and the recommendation techniques most
frequently applied. The surveyed articles typically introduce
RSs that facilitate some modelling or MDE task.

To collect articles on this topic, we sought into Scopus,
the ACM digital library and the Web of Science using a for-
mal query comprising 23 terms. The query retrieves articles
whose title, abstract or keywords contain at least one term
related to RSs and at least one term related to modelling or
MDE.

Table 1 shows the considered terms, so that the retrieved
articles should contain in their title, abstract or keywords
some term from each column of the table. We included terms
like model completion, model reuse and model repair as
related to RSs, because we detected that some approaches
did not use standard terminology and vocabulary of the RSs
area (cf. Sect. 2). However, they pursue the same goal of
recommending a reduced set of modelling items or actions
among a large set of possible ones. We executed the query in
September 2020, and only considered peer-reviewed papers
written in English and published in journals, conferences,
workshops and book chapters.

Table 2 shows a summary of the search results. The query
initially retrieved 1456 documents: 979 from Scopus, 316
from the ACM digital library and 161 from the Web of Sci-
ence. After removing duplicates, 1175 unique documents
remained.

Table 1 Terms used in the formal search query

Recommender systems/purpose Modelling/MDE

Recommender Model-driven

Recommendation Domain-specific language

Model completion State machine

Model reuse Model transformation

Model repair Code generation

Transformation completion Code generator

Transformation reuse Unified modelling language

Transformation repair UML

Generator completion

Generator reuse

Generator repair

Quick fix

Quick fixes

Assistant

Assistance

Articles must contain in their title, abstract or keywords at least one
term from each column

Table 2 Research papers retrieved per database

Detail Num. papers

Databases queried

Scopus 979

ACM 316

Web of science 161

First revision phase

Total retrieved 1456

Unique 1175

Discarded 1024

First selection 151

Second revision phase

Relevant 53

Not available 9

Not relevant 89

Snowballing

Snowballing papers 13

Total relevant 66

Next, the unique documents were filtered in two subse-
quent phases. In the first phase, four reviewers examined
the abstracts of all documents to identify which ones pro-
posed some kind of recommendation for modelling tasks.
The reviewers were two professors specialised in MDE, one
professorwith expertise inRSs and information retrieval, and
one doctoral student in both research areas. Overall, 151 doc-
umentswere selected by at least oneof the reviewers andwere
moved to the next phase, and 1024 were discarded for being
unrelated to our study. In both phases, we used inclusion
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Fig. 2 Relevant papers per year

criteria based on quality (peer-reviewed papers), language
(papers written in English), and focus (we discarded papers
unrelated to modelling, recommenders or modelling assis-
tants, as well as papers focussing on using MDE techniques
for creating RSs).

In the second phase, the 151 selected paperswere carefully
read. From these papers, 53 were considered relevant for the
study, 9 were unavailable, and 89 were not relevant since
they either proposed RSs for activities not related to models
ormodelling, or did not describe recommenders ormodelling
assistants.

Finally, we conducted a snowballing process [105],
analysing related works in the bibliography of the selected
papers. This resulted in the selection of 13 additional rele-
vant papers. Overall, a final set of 66 relevant papers was
considered, ranging from 2004 to September 2020, covering
almost 16 years of research. These 66 documents account for
51 different approaches, as in some cases, there are several
documents covering the same approach. Figure 2 shows the
distribution of papers over the studied period of time. We
observe an increasing trend that likely suggests a growing
interest in the field. Please note that the query may not fully
cover the year 2020 as it was executed on September 2020.

Figure 3 categorises the relevant papers according to
the publication type. Most papers are from conferences
and workshops, which denotes that the research area is
still young. The most frequent conferences and journals
of publication are the International Conference on Model-
Driven Engineering Languages and Systems (MoDELS) (9
papers), the InternationalConference onModel-DrivenEngi-
neering and Software Development (MODELSWARD) (6
papers), the International Conference on Software Engineer-
ing (ICSE) (4 papers), and the Journal on Software and
Systems Modeling (SoSyM) (3 papers). Hence, the primary
publication venues are devoted to software engineering and
modelling.

Fig. 3 Distribution of works depending on publication type

Fig. 4 Dimensions for analysing the use of RSs in MDE

In the next section,wepropose a classificationof theworks
along four dimensions and analyse the papers with respect
to these categories.

5 Recommender systems inMDE

We organise our review according to the four dimensions of
the feature model [61] depicted in Fig. 4: domain, tooling,
recommendation and evaluation.

The domain dimension encompasses analysis variables
in the context of MDE applications, such as the type of
artefact that is subject of the recommendation and the pur-
pose of the recommendation. The tooling dimension includes
aspects related to the recommendation tool, such as its matu-
rity, its support for the integration with other MDE tools,
and its proactiveness to request or apply recommendations.
The recommendation dimension entails variables used in the
RSs area to characterise how recommendations are gener-
ated [106], such as the recommendation method, the user
preferences used to calculate the recommendation, the rec-
ommended items and the recommendation tasks. Lastly, the
evaluation dimension refers to the methodologies and met-
rics used to evaluate the recommenders.

These dimensions represent assessment criteria from both
the MDE and the RSs perspectives. The dimensions and
variables are orthogonal, although some of them may have
cross-dependencies in some of the surveyed cases. For
instance, the recommendation purpose may influence the
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Fig. 5 Domain dimensions for RSs in MDE

metrics used to evaluate a given recommender. However,
these dependencies have less impact than those between
the variables belonging to a given dimension, which are
addressed in the analysis presented herein.

The next four subsections analyse and classify the selected
papers along the dimensions and inner variables.

5.1 Domain

A fundamental aspect of any RS is its application domain.
This comprises the three orthogonal features that we present
in the feature model of Fig. 5.

First, we consider the type of artefact that is the subject of
recommendation:model,meta-model, model transformation
or code generator. These are the four main elements of most
MDE solutions [19].

Second, we distinguish whether the RS is language-
independent, or on the contrary, it is tied to a particular
language for modelling (e.g. UML [136], Simulink [128]),
meta-modelling (e.g. MOF [85], Ecore [131]), model trans-
formation (e.g. ATL [59], QVT [107]), or code generation
(e.g. Acceleo [2], EGL [115]).

Finally, we look at the purpose of the RS, that is, the kind
of task that the recommender facilitates.1 As we will see
later, the reviewed papers target one or more of the following
six types of tasks, introduced in Sect. 3: complete, create,
find, repair, reuse and other purpose. When the purpose is
complete, the artefact already exists and the RS provides sug-
gestions on how to extend it. When the purpose is create, the
recommender helps in constructing the initial version of a
new artefact from scratch. If the purpose is find, the RS facil-
itates the discovery of relevant elements or artefacts within

1 We use purpose and task interchangeably, though the latter can be
more detailed. For example, for repairing (a purpose) we can find fine-
granular tasks, like creating input test data, oracles and selecting fixes
(cf. Sect. 3).

a repository. Recommenders targeting repair tasks suggest
solutions to fix errors in an existing artefact. These solutions
may imply the creation, deletion or modification of differ-
ent elements inside the artefact. When the purpose is reuse,
the system helps in reusing an existing artefact (or part of
it) within another artefact. This task goes beyond find as the
recommender provides assistance in integrating the reused
artefact in the new context. Finally, in other purpose we col-
lect the tasks with a purpose different from the mentioned
before.

Table 3 classifies the surveyed papers by purpose and arte-
fact type, and marks the language-independent approaches
with an asterisk (*). Since some systems can be used with
various purposes, they can appear in several cells of the table,
sometimes with different language-independent marks.

Overall, we can see that there are virtually no recom-
menders for code generators, and recommenders that help
in creating new artefacts from scratch are also scarce. Most
RSs are for models, especially for model completion and
model repair, and the context in the latter case is sometimes
model/meta-model co-evolution. In the following, we anal-
yse the application domain of the approaches grouped by
their purpose.

Complete. Most approaches whose purpose is completing
an artefact target model completion, and among them,
four are also applicable to meta-models. In addition, two
approaches deal with completing model transformations.
Approaches to model completion can be classified into
two categories. The first one comprises techniques to
recommend how to extend a partially specified model
to make it correct (i.e. the recommended complete
model satisfies every specified domain and meta-model
well-formedness constraint). The proposed model com-
pletions are typically computed using search-based tech-
niques, for example with solvers based on Alloy [54]
(a constraint solver over models), Prolog (a logic-based
programming language) or via rules. DiaGen [82], DIG
MDE [92], IPSE [40], Kermeta [86], Refacola [130] and
the work by Sen et al. [126,127] belong to this category.
DiaGen generates possible completions based on hyper-
graph grammar rules, and the others use Prolog or Alloy
for this task. This search may have a high computational
cost. For this reason, when a partial model cannot be
completed automatically because of its complexity, DIG
MDE identifies the failing constraints and suggests how
to manually change the model to enable its completion.
The second model completion category comprises works
providing step-wise recommendations on how to evolve
a given model. This model does not need to be par-
tial, as in the first category. Suggestions usually come
from repositories of existing models, fragments or pat-
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Table 3 Purpose of recommendation vs. recommended artefacts (approaches marked with * are language-independent)

terns. For example, SimVMA [132] provides step-wise
suggestions to evolve Simulink models based on model
clone analysis; Heinemann [49] recommends elements
defined in model libraries (e.g. blocks from Simulink
libraries) based on data mining existing models; the
approach by Kögel et al. [68,69] recommends model
changes applicable to the same context of the last model

change; DoMoRe [5,6] suggests domain concepts and
names for new model elements; RapMOD [72,73] offers
auto-completion actions for (UML) graphical models,
similarly to the vision paper [121]; Elkamel et al. [37]
recommend UML classes that are similar to the ones in
theUMLclass diagrambeing developed;Li et al. [75] and
Deng et al. [31] recommend activity nodes for process
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models; Rangiha et al. [110] recommend tasks and actor
roles in a social process-modelling tool; Koschmider et
al. [50,51,71] recommend process fragments to complete
a process model; Baya [27] recommends mashup model
patterns based on the context, the user and different expert
recommendations, and helps in weaving the selected
pattern into the partial model under development; and
Hermes [34–36] permits building Eclipse-based RSs that
help in completing models with recommended elements
from other models in a repository.
Instead of profiting from repositories of models, PME’s
recommendations are based on an analysis of the lan-
guage meta-model [99]. PME enables proactive (graph-
ical) modelling, meaning that plausible modifications
according to the models’ meta-model are automatically
applied, and the user is prompted only when several
optional modifications exist. SMART [47] supports the
use of test-driven development to create UML diagrams
(class, use cases, statemachines and sequence diagrams).
It uses an action language to specify behavioural tests,
and when a test fails, it suggests ways to complete the
model to make it pass the test.
Among the previous model completion approaches, four
can also be applied to meta-models. DoMoRe works on
domain models, like UML class diagrams and entity-
relationship diagrams, and therefore can be used to add
concepts of a domain of interest to meta-models. The
approach of Kögel et al. [69] recommends complemen-
tary changes to a user editing action, and can be applied
at the meta-model level, e.g. to recommend general-
isation relations to a core super-class. Refacola is a
refactoring constraint language and framework, extended
to (meta-)model assistance in [130]. It is meta-level
independent, providing assistance for completing partial
(meta-)models to become syntactically correct. Finally,
the Hermes framework can be configured with recom-
mendation strategies. It is applicable to models within
the EMF ecosystem, and hence to meta-models as well.
Regarding the completion of model transformations,
CONVErT [10] synthesises transformation code starting
from examples of source and target models and their cor-
respondences. Correspondences are specified manually,
but there is also a recommender of likely correspondences
based on similarity heuristics such as the name, structure
and neighbourhood of model elements. AXSM [52] is a
mapping recommender integrated in a tool to build data
transformations via declarative mappings, from which
translators written in XSLT, Java or ATL can be synthe-
sised. AXSM recommends potential mappings based on
heuristics grounded on the data schemas and on prior user
selections.

Create. Only two of the analysedworks target the creation of
artefacts, one for meta-models and the other for models.
The first one is DSL-maps [103]. Given the requirements
of a DSL expressed as a mind-map, DSL-maps recom-
mends meta-modelling patterns addressing them. The
designer can select patterns among the ranked sugges-
tions, and the tool combines the patterns to synthesise an
initial meta-model, which the designer can then refine.
The second approach is a modelling assistant for use case
diagrams called UCcheck [9]. This tool has a wizard to
create new use case diagrams using an existing one as a
reference, from which suitable actors and use cases are
recommended.

Find. The analysed papers include approaches to query
repositories and suggest relevant artefacts for models
and meta-models, but not for transformations or code
generators. Extremo [123–125] is an extensible tool-
independent assistant that helps finding relevant informa-
tion for models and meta-models out of heterogeneous
data sources (e.g. ontologies, XML schemas, RDF data,
meta-models), and the results are ranked according to
their suitability for the user. The rest of approaches are
specific for some kind of model: the RS of Cerqueira et
al. [26] finds and recommends sequence diagrams that
match the user preferences; Matikainen et al. [81] tackle
the problem of recommending the state machine from
a library that implements the best policy to control a
robot; and SBPR [63,64] recommends process models
from a repository according to the user business profile
in LinkedIn (e.g. skills, interests and current position).

Repair. Repair approaches have been proposed for all kinds
of artefacts: models, meta-models, transformations and
code generators.
Regarding model repair, most works aim to recommend
fixes for inconsistencies found in a given model (i.e.
violations of the model’s meta-model cardinality or well-
formedness constraints). These approaches differ either
in the applied technique to compute and rank the repairs,
or in the application domain. In particular, IntellEdit
[93] ranks quick fix solutions to model inconsistency
problems according to the least-change principle; PAR-
MOREL [11,53] determines the model repair actions
based on the user preferences and on the experience
gained from repairing under different personalisation set-
tings; the diagram predicate framework (DPF) [108] and
the approach by Nassar et al. [91] implement repairs
as transformation rules; DiaGen [82] represents models
as hypergraphs and uses hypergraph patches to produce
recommendations for repairing models; Refacola [130]
uses constraint-based rules; BPMoQualAssess [60] pro-
vides guidelines to improve the actual value of quality
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metrics for business process models; B-repair [24] is spe-
cific to the B formal specification language and ranks
the suggested repairs based on their estimated quality;
Revision [98] tracks model inconsistencies to the edit-
ing action originating them in the model history and
fixes this action to obtain a consistent model; MDSafe-
Cer [87] detects missing information for supporting key
evidence in process-based argumentations, and recom-
mends how to resolve such deviations; ASIMOV [38]
assists in the co-evolution of models and meta-models
by proposing model co-evolution actions that a meta-
modeller must have defined previously; and Anguel et
al. [8] also tackle the co-evolution problem, but they
automatically fix resolvable changes and recommend co-
evolution actions to deal with non-resolvable changes.
There are also some model repair approaches that do not
tackle model conformance, but they target other kinds
of model-related problems. In particular, Mani et al.
[79] compute repairs for input test models that make
a code generator produce an incorrect output; in addi-
tion to complete, the suggestions for fixing behavioural
tests in SMART [47] can also be classified as repairs;
the Business ApplicationModeller (BAM) [137] permits
specifying temporal rules for process models and, for
some types of rules, it recommends how to fix their vio-
lations; and AMOR [21] is a model repository for model
versioning that includes a recommender of possible res-
olutions for model conflicts.
With respect to meta-model repair, two of the works tar-
get OCL integrity constraints [12,28]. Batot et al. [12]
tackle the co-evolution of OCL constraints upon meta-
model changes. Their approach recommends a ranked
list of OCL modifications that are correctly typed by
the new meta-model version and minimise the num-
ber of changes and information loss. Clarisó et al. [28]
repair OCL constraints which are too restrictive or too
lax. Their method suggests weaker or stronger candi-
date versions of the problematic constraint, and the user
can select one of them. In addition, two of the model
repair approaches can be used to repair meta-models as
well. PARMOREL allows repairing meta-models having
duplicate attributes in related classes, or properties mod-
elled both as attributes and as references [11]. Refacola
[130], on the other hand, can help repairing syntactically
incorrect meta-models, e.g. with inconsistent opposite or
containment references (typical problems at the model
level that can also happen in meta-models).
We found only one work supporting model transfor-
mation repair. This is anATLyzer [117–119], a tool
integrated with the ATL IDE that identifies errors and
recommends a ranked list of quick fixes to repair the
transformation syntactically. Fixes are ranked taking into

account the number of problems they solve, remaining
errors and newly introduced errors.
Finally, we classify the approach by Mani et al. [79] as
applicable to code generators because even if it suggests
model repairs, these are applied in the context of code
generation with XSLT.

Reuse. Recommenders in MDE have been applied to the
reuse of models and transformations. Regarding model
reuse, SimVMA [132] recommends Simulink mod-
els similar to the one that is being developed, and
which the designer can import or clone for their reuse;
REBUILDER [42] finds UML diagrams similar to a
given query, and supports their full or partial compo-
sition into the given design; Paydar et al. [100,101]
propose a reuse technique whereby the designer provides
an input UML use case diagram, the most similar use
cases are retrieved from a model repository, and then the
activity diagrams associated to these use cases are semi-
automatically adapted to (i.e. reused in) the new usage
context; Koschmider et al. [50,51,71] propose both a rec-
ommender of process model fragments, and an explicit
search facility to retrieve complete process models or
fragments and insert them in the current modelling con-
text, adapting them if needed; and Hermes [34–36] can
incorporate model search strategies to find model ele-
ments suitable for reuse. Being generic, Hermes can also
be applied to meta-models.
As for transformation reuse, it is supported by Refac-
tory [111]. This tool permits defining generic refactorings
over role models, so that developers can reuse the refac-
torings on new languages by binding the role model
elements into elements of the language meta-model.
Refactory includes a recommender that helps in identify-
ing possible bindings, likely starting from somemanually
bound elements to avoid a high number of suggestions.

Other purpose. The remainingpapers havevery specialised
purposes. Bobek et al. [17] propose a recommender
for process modelling, which suggests the elements of
a configurable diagram (i.e. a process with variability)
that should be included in the current modelled process.
MAGNET [16] guides users on the next tutorials to speed
up the learning curve of a modelling tool. Finally, Mod-
Bud [116] is an envisioned framework to build assistants
that educate novice modellers on abstraction. Such assis-
tants may provide recommendations on a constructed
model by comparison with a prescriptive model devised
by the assistant.

In Table 3, the language-independent approaches have an
asterisk (*). We can see that most works are tied to a partic-
ular language, but a substantial amount of those applicable
to models are language-independent. For this purpose, they
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are frequently defined over a meta-modelling framework—
like the EclipseModeling Framework (EMF) [131], Kermeta
[57], GME [74], or DPF [109]—which enables their applica-
tion tomodels of any language definedwithin the framework.
This is the case of [11,34–36,53,68,69,86,91,93,98,99,108,
123–127,130]. In the case of DiaGen [82], language inde-
pendence is achieved by representingmodels as hypergraphs,
and language definitions as hypergraph grammars. Other
approaches are meta-level independent, and since meta-
models are alsomodels, such approaches are suitable for both
meta-models and models [5,6,11,34–36,53,68,69,123–125,
130]; however, when applied tometa-models, the approaches
are dependent on the meta-modelling language used, like
EMF’s Ecore. Finally, language independence can be a grad-
ual term. For example, DoMoRe is language-independent as
it is applicable to arbitrary domain models, but it cannot deal
with other types of models such as behavioural models.

Table 4 summarises the languages that the language-
dependent approaches handle. Most are widely used lan-
guages, like UML diagrams (11 approaches), business pro-
cess models (9 approaches), Ecore (7 approaches), Simulink
(2 approaches), OCL (2 approaches), XSLT (1 approach) and
ATL (1 approach). The rationale is that building a RS gen-
erally involves a high effort and may require from training
data, which may pay off for widespread languages, but the
development may be too expensive for lesser used domain-
specific languages (DSLs). There are some exceptions of RSs
for DSLs though, typically embedded in tools built by the
researchers [10,52,92,111].

5.2 Tooling

Next, we analyse the tool support of the approaches using
the criteria shown in the feature model of Fig. 6.

First, we look at the maturity of the supporting tools.
We distinguish between proposals with no implementation,
prototypes built as proof-of-concepts of the proposed ideas,
and mature tools that make a full implementation available
either as a framework, a plugin or a system. Frameworks
typically offer generic functionality that can be customised
by manually written code (e.g. by subclassing). Plugins
encapsulate functionality that complements other tools, such
as the Eclipse IDE. Systems can be either complete new
applications that incorporate recommendation facilities or
extensions of existing MDE tools with a RS.

Second, we classify the approaches as tool-independent if
they can complement or be integrated into other MDE tools.
The constraint in the featuremodel states that systems cannot
be tool-independent, since the RSs are embedded in the tools
themselves.

Third, RSs may trigger recommendations on demand,
proactively, or both. In the first case, the user needs to explic-
itly start the recommendation process. In the latter case, the

Table 4 Languages targeted by recommender systems

RSmakes recommendations without user intervention, when
certain conditions are met.

Finally, we analyse the support for enacting the recom-
mendations. This can be manual if the RS provides a list of
recommendations and it is up to the user to decide how to
use them; interactive if the RS permits the user to select a
recommendation, which then becomes applied to the given
context; automated if the recommendation is automatically
applied without user intervention; and semiautomated if the
recommendation enactment is automated, but the user may
be prompted during the process, e.g. to input some value or
decide between alternative options.

Table 5 classifies the revised papers according to these fea-
tures. In the following, we discuss the different approaches
attending to their maturity level, tool independence, recom-
mender trigger, and recommendation enactment.

Maturity. The second column of Table 5 displays the matu-
rity level of the approaches. When there are several

123



Recommender systems in model-driven engineering

Table 5 Recommender systems for MDE: tooling

We use NA as abbreviation for not applicable

incremental papers on the same approach, the column
only shows the maturity achieved in the latest one (i.e.
the highest maturity level). Among the 51 approaches,
4 (7.8%) are proposals with no implementation, 19
(37.2%) present prototypes as proof-of-concept, and the
remaining 28 (55%) provide full implementations. Most
full implementations are either plug-ins (13) or sys-
tems/extensions of systems (13), while frameworks (3)

are less pervasive. We categorise the Hermes [34–36]
framework for developing RSs as a plug-in as well, as it
uses a plug-in architecture that exposes and profits from
Eclipse extension points.

Tool independence. This feature applies to approaches that
make a prototype or full implementation available, but
not to proposals that have not been realised in practice
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Fig. 6 Tooling dimensions for RSs in MDE

(even though they may have the potential to become
tool-independent). Most tool-supported RSs in MDE
have been developed either as full software systems
or as extensions of the following existing systems: the
ATL development environment [117–119], some data
mashup tools [27], the Generic Eclipse Modeling Sys-
tem (GEMS) [92], the Ecore Diagram Editor [5,6], DPF
[108], DiaGen [82], Fujaba [40], AutoFOCUS3 [16],
the AMASS platform [87], the AMORmodel versioning
system [21], Kermeta [86], the Generic Modeling Envi-
ronment (GME) [99], Sparx Enterprise Architect [72,73]
and the meta-modelling tool AToM3 [126,127]. All these
approaches built as complete systems or system exten-
sions are tool-dependent (84.31%). In some cases, the
tools are implemented atop EMF to achieve generality.
However, we only consider that an approach is tool-
independent if, in addition, it provides explicit means
to facilitate its integration with other tools. Under this
perspective, only four (7.84%) approaches are truly inde-
pendent from any modelling tool. We comment on these
approaches next.
The framework developed by Batot et al. [12] recom-
mends how to co-evolve OCL invariants upon Ecore
meta-model changes (i.e. it is language-dependent); how-
ever, the framework is not specific for particular editors,
and is extensible with new heuristics to guide the search
of recommendations. Refacola [130] achieves tool inde-
pendence by being based on a constraint-based domain-
specific language to specifymodel-assistance operations.
Extremo [123–125] is a modelling assistant that defines
extension points (the extensibility mechanism provided
by Eclipse) to allow its integration with external mod-
elling and meta-modelling tools within Eclipse. Finally,

Hermes [34–36] is not a concrete RS but a framework
with a plugin-based architecture to develop RSs within
Eclipse. Its extension points allow defining new recom-
mendation strategies and the integration with modelling
editors and heterogeneous data repositories.
Other approaches can be used with several tools, but are
still tool-dependent. This is the case of UCcheck [9],
an assistant for use case diagrams coded in Python that
supports use case diagrams specified with TTool—a free
software from Telecom Paris—and the Cameo Systems
Modeler.

Recommender trigger. As the fourth column of Table 5
shows, most RSs provide recommendations on user
demand (41 approaches out of 51, an 80.39%). Fewer
approaches provide recommendations proactively with-
out user intervention (12 out of 51, a 23.53%), typically
by monitoring the user editing actions to update the rec-
ommendations in return. Only a few tools (3 of them, a
5.88%) can trigger the recommendations both on demand
and proactively: the recommender of domain model ele-
ments DoMoRe [5,6], the envisioned modelling learning
environment ModBud [116] and the generic RS frame-
work Hermes [34–36]. Finally, Savary-Leblanc [121]
does not give enough details on how to access the rec-
ommendations, so we mark it as unknown in the table.

Recommendation enactment. The last four columns in
Table 5 display how the works enact the recommenda-
tions. In most cases, recommendations can be applied
either manually (31.37%) or interactively (49.02%).
Automated enactments typically occur in model com-
pletion and model repair. As an example, DIG MDE
[92] automatically completes a model, and if this is
not possible, it recommends the user how to fix the
model manually. In turn, the tool by Nassar et al. [91]
permits repairing models either automatically or interac-
tively. Three approaches (5.88%) provide semiautomated
enactment of recommendations: two are co-evolution
approaches [8,38] that automatically infer and apply
a migration strategy, but the user may need to select
between alternative solution steps, e.g. in the case of non-
resolvable changes; the other corresponds to the proactive
modelling approach in PME [99], wheremodels are auto-
maticallymodified according to themodels’meta-model,
and the user is only prompted if several optionalmodifica-
tions exist. Finally, since Hermes [34–36] is a framework
to build RSs, it provides mechanisms to support all types
of recommendation enactment.

5.3 Recommendation

MDE researchers have applied diverse recommendation
approaches for a variety of tasks and purposes. In this sec-
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Fig. 7 Recommendation dimensions for RSs in MDE

tion, we characterise, categorise and analyse the works on
MDE recommenders according to the features shown in the
diagram of Fig. 7.

As a first feature of analysis, we consider the recommen-
dation method used. The majority of the RSs apply one of
the four main techniques explained in Sect. 2.2: content-
based, collaborative filtering, knowledge-based and hybrid.
In addition, some works use ad-hoc techniques that do not
fall into the previous categories. They are represented by
OtherMethod in Fig. 7.

Second, RSs collect user information to provide per-
sonalised recommendations (feature UserPreferences in the
diagram). In this respect, we investigate how this informa-
tion is collected (feature AcquisitionType). In some cases,
the user’s preferences are gathered implicitly by monitoring
the user interactions with the system or analysing the current
state of the modelling/MDE activity. In other cases, the user
needs to explicitly provide his/her preferences to the system,
for example via questionnaires. In addition, we examine the
temporality of the collected preferences, which can reflect
recent, likely temporal preferences for the task at hand (i.e.
ShortTerm) or more general and enduring preferences (i.e.
LongTerm).

Third, we analyse the types of items provided as rec-
ommendations (feature RecommendedItem). These can be
complete artefacts (e.g. a model), fragments of an artefact
(e.g. a class), advices that the user can profit from during a
modelling activity, or editing actions (e.g. in the context of

model repair). The diagram includes the OtherItem feature
for items that do not fall in any of the previous categories.

Finally, the feature RecommendationDegree comprises
the amount of recommendations presented to the user (Car-
dinality) and whether they are ranked (Ranking).

Table 6 categorises the surveyed approaches according to
these features. Taking this categorisation into consideration,
we start by analysing the approaches attending to the rec-
ommendation method they use, and then, we analyse them
based on the other features.

Content-based. These approaches use different content
encoding and similarity notions to represent and relate
items for generating personalised recommendations.
First, we comment on the content-based approaches that
recommend complete artefacts. Cerqueira et al. [26] com-
pare two alternative encodings of sequence diagrams
(bag-of-words and a vector encoding structural features)
for the recommendation of sequence diagrams matching
the user’s preferences. The RS uses a content-based fil-
tering algorithm to find the closest sequence diagrams.
The RS proposed by Paydar et al. [100,101] facilitates
the reuse of models with functional requirements of
web applications. For this purpose, the system recom-
mends similar use cases to the one provided by the
user and then adapts the activity diagrams linked to the
selected use case to the provided one. Item similarities
are computed based on name similarity of the use case
elements and on the diagram context. SimVMA [132]
uses clone detectors to estimate similarities. It uses near-
miss clones to recommend similar Simulinkmodels, from
which low-granularity recommendations can also be
extracted.
Similarity has also been exploited to recommend arte-
fact fragments. For example, Elkamel et al. [37] use
similarity metrics to suggest similar classes to newly cre-
ated classes. The developer may accept the suggested
classes with all or some of their attributes and meth-
ods. DoMoRe [5,6] addresses the same problem by
means of semantic similarities. It relies on an extensive
knowledge database—calledSemNet—of severalmillion
domain-specific terms and their relationships to pro-
vide context-sensitive recommendations. In particular,
DoMoRe suggests names for new elements, and possible
related concepts to the selected one (e.g. upon selecting
a class, the system suggests possible sub-/superclasses,
container and aggregated classes, related and associated
classes). Savary-Leblanc [121] envisions a RS that cal-
culates the similarity using semantic distances obtained
from lexical databases likeWordNet [84]. Extremo [123–
125] also employs semantic similarity based onWordNet
to provide a ranked list of recommendedmodel elements,
upon an explicit query of the user.
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Table 6 Recommender systems for MDE: recommendation method
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Content-based similarity has been applied to transfor-
mation development as well. CONVErT [10] helps dis-
covering and specifying transformation correspondences
using concrete visualisations. A RS suggests mappings
between source and target models based on different
similarity heuristics, choosing mappings that resemble
examples provided by the user. In a similar vein, AXSM
[52] recommends mappings based on similarity criteria
(source/target element tag names, element types, struc-
tural similarity, example data item equivalences) and
previous user selections within the Marama Torua tool.
Refactory [111] supports the definition of generic refac-
torings over role models so that developers can reuse the
refactorings on new languages bymapping the rolemodel
elements into elements of the language meta-model. The
tool includes a RS to complete the mapping using struc-
tural similarity and other heuristics, like name similarity.

Collaborative filtering. These approaches exploit informa-
tion about past behaviour or opinions from the user
community [56]. In some cases, users correspond to
developers for which personalised recommendations are
generated, and in other cases, users (and items) are
mapped to elements within the artefacts that are target
of recommendations.
MAGNET [16], PARMOREL [11,53] and ModBud
[116] belong to the first case. MAGNET is a RS within
the AutoFOCUS3 modelling tool to help beginners to
learn using the tool. It monitors user actions and pro-
poses short videos illustrating what to do next. The RS
model is based on data collected during a tutorial with
a previous set of users. PARMOREL uses reinforcement
learning to find a sequence of actions that repairs the
issues present in a model. The algorithm initially reuses
the experience obtained from other users’ repairs and
learns after each repair. ModBud is an envisioned frame-
work to build modelling bots to assist novice users. The
authors foresee using machine learning to predict good
modelling decisions for given design requirements.
Matikainen et al. [81] address the second case. Their RS
selects the best-performing state machine to control a
robotic vacuum cleaner. Room layouts are interpreted as
users, robot state machines as items, and item ratings are
based on the performance of the robot state machines on
the room layouts.

Knowledge-based. Most approaches belong to this cate-
gory. They use techniques that can be generally classi-
fied as constraint-based or case-based. Constraint-based
techniques determine the recommendations by looking
for a set of items that fulfil established domain-dependent
rules. Case-based techniques, in contrast, provide recom-
mendations to a problem by examining past solutions for
alike problems (cases) [56].

Some of the constraint-based recommenders found in the
literature are built upon technologies such as Alloy and
Prolog. Specifically, Sen et al. [126] use Prolog as a back-
end of the AToM3 language workbench [29] to suggest
completions of a partial model. The work was extended
byusingAlloy [127] to recommend the closest valid com-
plete model within a given scope. Kermeta [86] also uses
Alloy to provide completion suggestions. Refacola [130]
provides a constraint-based language to express model-
assistance operations in a declarative way. In the domain
of education, IPSE [40] relies on Prolog to guide users
in creating a class diagram. The guidelines are explicitly
modelled by the teacher by means of constraints suggest-
ing hintswhenevermatched. For the domain of embedded
systems, DIG MDE [92] uses Prolog to guide the user in
completing combinatorially challengingmodelling prob-
lems on the basis of user-defined rules.
RSs for completion and repair are sometimes based
on (graph transformation) rules. DPF [108] computes
completion rules which ensure the satisfaction of well-
formedness predicates. RapMOD [72] matches editing
operations in UML structural diagrams to a catalogue of
modelling activities and ranks the candidate activities by
relevance. Different from model completion, rule-based
model repair may require deleting elements to obtain a
valid model. Hence, Nassar et al. [91] derive graph trans-
formation programs able to fix an invalid model by first
deleting superfluous objects and links and then adding
necessary elements.DiaGen [82] uses hypergraph gram-
mar rules and hypergraph patches (graph modifications)
to propose both model completions and repairs. Sim-
ilarly, ReVision [98] proposes model repairs based on
consistency-preserving editing rules, with heuristics that
avoid undoing former editing steps.
For quality assurance, BPMoQualAssess [60] recom-
mends improvements for process models based on rules
modelling expected quality criteria (e.g. regarding size,
nesting levels and element ratios), and UCcheck [9] pro-
vides advices for improving use case diagrams based on
sets of rules and guidelines.
Recommenders for model/meta-model co-evolution can
also be rule-based. This is the case of ASIMOV [38],
where the language designer specifies the migration
assistance rules, and modellers use them to obtain rec-
ommendations for model migration. In contrast, the
approach by Anguel et al. [8] suggests a migration strat-
egy based on meta-model matching and the use of logic
programming.
Some rule-basedRSs target behaviouralmodels.MDSafe-
Cer [87] recommends how to resolve flaws of safety
argumentations attached to process models. For this pur-
pose, it first identifies the problematic elements, and then
uses rules to provide advices to resolve the deviations.
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Also for process modelling, BAM [137] uses model-
checking to detect errors in process models, and suggests
corrections for the errors in relation to user-defined vali-
dation rules and Dwyer’s temporal specification patterns
[33].
Someworks usepatterns following a case-based approach.
In particular, Baya [27] relies on a knowledge base of
curated patterns, several similarity metrics and ranking
algorithms as a basis for the recommendation of the next
stepswhen buildingmashupmodels.Moreover, it applies
weaving to incorporate the recommended pattern into the
mashup model. The process model recommenders of Li
et al. [75] and Deng et al. [31] extract task relations and
patterns from process models, which are then used to
recommend activity nodes for the current model. The
AMOR [21] model versioning system recommends reso-
lution patterns for conflicts between two model versions.
The patterns can be mined from repositories or specified
manually. DSL-maps [103] uses a catalogue of patterns
to transition from the requirements of a DSL (given as
a mind-map) to its design (given as a meta-model). It
performs a lexical analysis of the requirements to match
them against an ontology-based description of the pat-
terns, and suggests a ranked list of patterns to realise the
requirements. Mani et al. [79] also use patterns to assist
when repairing faults in input models of code genera-
tors. Their approach identifies correct output fragments
that are similar to the incorrect one, and suggests repair
actions based on run-time data.
Finally, probabilistic forms of knowledge representation
are also possible. For example, REBUILDER [42] com-
bines case-based reasoning with WordNet and Bayesian
networks to enable reusing UML diagrams, or part of
them. Bobek et al. [17] also use Bayesian networks to
recommend following tasks when instantiating a config-
urable process model.

Hybrid. Some works combine several recommendation
methods to benefit from their strengths and mitigate par-
ticular limitations. The surveyed papers have combined
content-based techniques with collaborative filtering,
social-based and knowledge-based methods.
Three approaches combine collaborative filtering with
content-based recommendations. The first one, by Kögel
et al. [68,69], recommends model changes by looking at
the previous model history (e.g. what other developers
did on previous model versions) and co-occurring model
changes. Heinemann [49] evaluates the use of association
rules and collaborative filtering to recommend Simulink
library elements for the current model. The collaborative
filtering method considers models as users and elements
as items. Finally, the RS of Koschmider et al. [50,51,71]
uses both similarity metrics and frequency of use by the

community to recommend complete process models or
fragments.
For behavioural modelling, B-repair [24] suggests auto-
matic repairs of faulty models written in the B formal
specification language. The approach uses two types of
rules (hence being knowledge-based) to suggest fixes in
state machine transitions. Then, it uses machine learning
(features learnt from state machine transitions, a content-
based approach) to estimate the quality of the repairs and
rank the recommendations.
Finally, SBPR [63,64] combines the traditional content-
based approach with social-based recommendation to
suggest business process models for reuse. For this pur-
pose, it extracts information from the user profile in
LinkedIn.2 Similarly, the approach by Rangiha et al.
[110] profits from social tagging to recommend suitable
actors and roles in a social business process modelling
tool. In addition, it recommends tasks based on similar-
ity metrics.

Other method. A few works use non-traditional recom-
mendation methods based on search and static analysis.
On the one hand, two approaches use model search as the
underlying technique for recommendation, both targeting
OCL. Clarisó et al. [28] generate potential fixes to OCL
constraints by using mutation. Batot et al. [12] tackle
the co-evolution of OCL constraints and meta-models
using multi-objective optimisation guided by criteria like
correctness andminimisation of changes and information
loss.
On the other hand, several works provide recommenda-
tions out of the static analysis of models, meta-models
or OCL expressions. PME [99], which extends the
generic modelling environment (GME) to support proac-
tive modelling, recommends further editing actions (e.g.
connecting an object to another) upon user actions (e.g.
selecting an object). The recommendations are created
by the syntactic analysis of the meta-model and OCL
constraints. IntellEdit [93] recommends quick fixes for
repairing models based on the static analysis of failing
OCL expressions. It ranks the recommended fixes by
the amount of required changes (from lower to higher).
AnATLyzer [117–119] extends the ATL IDE for devel-
oping model transformations with the detection of type
errors and suggestions of quick fixes. Errors are detected
by static analysis and model finders. The proposed quick
fixes are ranked by the number of errors that they correct.
The ranking can be calculated dynamically using spec-
ulative analysis [88] (i.e. the simulated execution of all
possible repairs and the analysis of their consequences),

2 https://www.linkedin.com/.

123

https://www.linkedin.com/


Recommender systems in model-driven engineering

or statically using rankings pre-computed on a set of
transformations with injected faults. Finally, SMART
[47] supports test-driven development of UML models.
It statically analyses the test cases and their execution
logs to report errors. Moreover, it suggests quick fixes
for automatically solving structural errors (e.g. adding a
missing model element) and provides guidance to solve
behavioural errors triggered during the test case execu-
tion (e.g. displaying a sequence diagram with the test
case execution, or a summary of the changes in attribute
values or the model state).

Any method. The framework Hermes [34–36] for the cre-
ation of RSs can be extended with any recommendation
strategy and recommendation method. It provides facil-
ities to define the recommendation context, which can
be obtained either implicitly or explicitly. Developers of
RSs can persist user preferences (long-term temporality)
and set filters and ranks for their strategies.

Once we have classified the works according to the rec-
ommendation method, we characterise how they collect the
user’s preferences (acquisition type), the temporality of those
preferences and the size and ordering of the recommendation
sets (recommendation degree).

Acquisition type. All works but Extremo collect data
implicitly. The most common type of implicit data is the
user’s previous interaction with the system (including the
current selection of elements in the editor) and the in-
progress model. In some cases, like SBPR, this includes
user information from LinkedIn.
In addition, 12 approaches [10,11,26,28,50–53,71,92,
110,116,123–127,132] also collect data explicitly. In
these cases, data is acquired through questionnaires,
parameters, tags or requirement definitions, in combina-
tionwith implicit data acquisitionmethods like analysing
the user’s in-progress model.

Temporality. Most approaches (90%) collect preferences
for their use during a short period of time, typically the
current modelling session or model state. PARMOREL
[11,53] uses long-term preferences by storing the expe-
rience gained from each repair, allowing the algorithm
to improve its performance in consecutive executions.
The process model recommender of Rangiha et al. [110]
exploits persistent social tags to express, e.g. required
skills for tasks and skill-sets of users. Hermes [34–36],
being a framework, enables developers to persist user
preferences as required by the recommendation strategy.
Finally, twoworks [116,121] do not provide detailed tem-
porality information.

Fig. 8 Evaluation dimensions for RSs in MDE

Recommendation degree. When it comes to the rec-
ommended items, most approaches (53%) present all
recommendations found by the method to the user. Since
this might be overwhelming if there are many options,
some approaches (4%) present just one recommendation,
and others (39%) present the top N recommendations.
The filtering criteria vary depending on the recommen-
dation method, and are frequently used to rank the
suggestions. Examples of filtering criteria include the
most similar models (as in [26]), the quick fixes repairing
more errors (as in [119]), or the fixed model or constraint
having the lowest number of modifications with respect
to the original one (as in [28,93]). Sometimes, the qual-
ity of the recommendation is calculated using pre-trained
machine-learning models, as in [24]. In the case of anAT-
Lyzer [119], the user can choose either a fast but less
accurate ranking of recommended quick fixes (based on
a pre-calculated estimation of the repair power of quick
fixes); or a slower but more accurate one (based on a
speculative application of the quick fixes to the current
transformation). As Table 6 shows, some early works do
not provide information about cardinality or ranking.

5.4 Evaluation

In this section,we reviewhow theRSs have been evaluated on
the basis of the two orthogonal features shown in Fig. 8: the
followed evaluationmethods and the used evaluationmetrics.

As the figure shows, we first distinguish three types of
evaluation methods [45]: offline experiments, online experi-
ments, and user studies. Offline experiments correspond to
analytical studies on datasets, online experiments are user-
centric studies that evaluate the system in a real setting, and
user studies consist of experiments planned for small groups
of participants.

In addition, we identify several metrics to assess differ-
ent recommendation goals and quality measures.We classify
the metrics as application-independent and application-
dependent. In turn, application-independent metrics are
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divided into three groups. The first one comprises traditional
metrics used to evaluate RSs regardless of the application
or task for which they have been developed. Here, we distin-
guish between recommendation quality (accuracy)metrics—
i.e. rating prediction metrics (e.g. MAE and RMSE) and
ranking accuracy metrics (e.g. precision, recall, nDCG and
MRR)—and other measures that capture non-accuracy rec-
ommendation characteristics, such as diversity, coverage and
novelty. A second group of domain-independent metrics is
related to system performance, such as consumed time and
required resources to perform a task. The third group of
domain-independent metrics is formed by usage satisfaction
metrics, such as user engagement, perceived usefulness and
trust on the system, as well as system usability, responsive-
ness, security and privacy. As Fig. 8 shows, measuring usage
satisfaction requires performing on-line experiments or user
studies, as offline experiments do not involve users.

Finally, application-dependentmetrics are devised for par-
ticular MDE applications and tasks. They include metrics
such as the average number of constraint violations in model
repair recommendations, or the total number of validmatches
in the recommendation of model transformation mappings.

Table 7 categorises the analysed RSs according to the
method (offline, online and user study) and metrics used for
their evaluation. An approach can appear multiple times in
the table if it was evaluated by means of several methods.
Additionally, Table 8 presents a matrix crossing the meth-
ods and metrics used in the papers. Overall, we can observe
that online experiments are the least used evaluation method,
and that neither rating prediction nor non-accuracy metrics
are used; the former are indeed in disuse in the RS research
field. A total of 19 approaches (37%) have no evaluation.

Offline experiment. This is the most popular evaluation
method, used in 21 of the revised approaches.Making use
of data records with past user behaviour and feedback,
among other information, offline experiments simulate
past and present real conditions without requiring the
participation of users during the evaluation process.
These experiments exploit available datasets to compute
a variety of aspects about a RS, such as its scalability
and performance, the precision and quality of its rec-
ommendations, and the reduction of modelling effort.
However, since data repositories of models are not as
common as, e.g. those for programming languages, a fun-
damental issue about offline experimentation for MDE
recommenders is the availability of artefacts over which
the evaluation can be performed. To address this issue,
we have observed four solutions in the literature. The
first one is the generation of synthetic data. For the case of
repair recommenders, the set of artefacts is typically gen-
erated by applying mutation operators over a set of seed
artefacts to obtain faulty artefact variants. This approach

was used by anATLyzer to evaluate the recommenda-
tion of quick fixes over transformations [117–119]; by
B-repair to evaluate fixes over state machines [24]; by
IntellEdit to evaluate if its content-assistant solves errors
in models [93]; by Matikainen et al. [81] to evaluate the
recommendation of state machines for robotic cleaners;
and by Mani et al. [79] to evaluate the effectiveness of its
model repair recommender. The seed artefacts may come
from third parties (as in the case of anATLyzer and Mani
et al.), be generated synthetically (as in IntellEdit and
Matikainen et al.) or manually (as in B-repair). A second
solution is to locate repository sources of the appropri-
ate type. For example, CONVErT was evaluated through
models from the Illinois Semantic Integration Archive
[10], Extremo gathered heterogeneous information from
several sources such as OMG meta-models or the Atlan-
Mod meta-model Zoo [123], Refacola used the whole
AtlanMod Ecore meta-model Zoo [130], Heinemann
usedmodels of a Simulink repository [49], Matikainen et
al. used floor plans from the Google SketchUp database
of 3D models [81], and the evaluation of SBPR involved
process models from different sources [64]. A third solu-
tion consists of taking example artefacts from published
papers (as in B-repair), or datasets used by other authors
(as in the case of Kögel et al. in 2016 [68,69]). Finally,
another solution is to obtain real-world artefacts from
companies, like Li et al. [75] and Deng et al. [31], who
used a dataset of 221 business processes collected from
a local government in China, in combination with a syn-
thetic dataset. Table 9 shows the public (i.e. available)
datasets and repositories used in the surveyed papers.
In addition to mutating artefacts to introduce faults, we
have found other modifications in artefacts. In RSs for
model completion, the models of the considered dataset
are removed elements to enable triggering the recommen-
dations, and their effects are compared with the original
model. This is the strategy followed by Heinemann [49],
Li et al. [75], Deng et al. [31] and Baya [27]. In the first
case, half of the model elements were removed; in the
second case, the recommendation starts from the second
activity node; and in the two last cases, model portions
of increasing size were systematically removed.
Some approaches require training the recommender. For
this purpose, the dataset is partitioned into sets for train-
ing and validation, as done by Li et al. [75], Deng et
al. [31] and Heinemann [49]. To estimate the gener-
alisability of the method and avoid problems related
to overfitting and selection bias, k-fold cross-validation
is recommended for statistical analysis [25]. This way,
Deng et al. [31] use 5-fold cross-validation: the dataset
is partitioned into five subsets, one is taken for valida-
tion (testing), the rest for training, and the procedure is
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Table 7 Recommender systems for MDE: evaluation

repeated 5 times with each subset. Similarly, Heinemann
[49] used 10-fold cross-validation.
Regardless of the use of datasets, some systems are
empirically compared against baselines, which can be
naive methods as done by Heinemann [49], who used
a RS that suggests the most popular Simulink blocks in
libraries. A few cases use existing recommenders built by
other researchers, like Li et al. [75] and Deng et al. [31],
who compare their approach against two other recom-
menders for process models. In other cases, the system
is evaluated with and without its recommendation com-
ponent enabled [99,111]. Finally, some approaches are

evaluated analytically, like Extremo [124,125], whose
extensibility is assessed via integrationwith several third-
party tools and formats, or PME [99], where the authors
built an analytical model to estimate themodelling effort.

Online experiment. Only two of the revised approaches
were evaluated using online experiments, both in the con-
text of external projects. ASIMOV [38] was evaluated
using a real commercial scenario named Alps Furniture.
Two groups of users were asked to co-evolve mod-
els either using ASIMOV or manually, and the results
were analysed to assess the effort and time reduction
achieved when using the tool. The domain modelling
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Table 8 Recommender systems
for MDE: evaluation vs metrics

recommender DoMoRe [5,6] was used in various indus-
trial and research environments, and the user feedback
and experience allowed identifying potential aspects for
improvement.

User study. There are 12 approaches evaluated with user
studies. These typically involve a small group of users
that perform some tasks,making it possible to analyse the
effectiveness of the users on completing the tasks with
and without the recommender, as well as to gather infor-
mation about user experience via questionnaires [112].
We have identified 3 types of user studies, in which: (i)
users perform tasks using the proposed recommender; (ii)
users utilise the recommender in an A/B testing setting
(i.e. some users perform taskswith the recommender, and
some others without it); and (iii) the recommendations

are compared to the decisions an expert user would make
(i.e. the expert user plays the role of oracle function).
The first type of user studies was applied to AXSM [52]
to evaluate usage satisfaction; to the RS proposed by
Cerqueira et al. [26] to evaluate the usage satisfaction and
the accuracy of its sequence diagram recommendations;
to CONVErT [10] to get user feedback on the usefulness
and usability of the tool to develop transformations aided
by interactive recommendations; to DSL-maps [103] to
assess the perceived usability and usefulness of its pattern
assistant to build meta-models; to IPSE [40] to measure
usage satisfaction about its support to help learningUML
skills; to MAGNET [16] to get user feedback on the
usefulness of the recommendations to learn using Auto-
FOCUS3; and toRapMOD[72,73] tomeasure the quality
of its graphicalmodel auto-completion recommendations
and the reduction of modelling effort.

123



Recommender systems in model-driven engineering

Table 9 Public datasets used in the evaluations

The second study type was used by Baya [27] to evaluate
(in a crowdsourced user study) whether recommending
andweavingmashupmodel patterns reduces the develop-
ment time, the number of user interactions and the time
between user interactions. In addition, the participants
filled-in a questionnaire to evaluate their satisfactionwith
the tool. Also in this category, Elkamel et al. [37] evaluate
the relevance and accuracy of the recommended elements
for UML diagrams, and Koschmider et al. [50,51,71]
asked two sets of students to create process models with
and without recommenders. In the latter case, the authors
measured the time spent, the quality of the results and the
usage satisfaction.
Finally, two approaches compare their recommendations
with the a-priori choices of expert users. The authors of
anATLyzer [119] evaluated the usefulness of its quick
fixes and the utility of its ranking with respect to the free
choices made by two independent developers. Paydar et
al. [100,101] used the opinion of experts as the golden
standard to evaluate the accuracy of their algorithms to
detect behaviour/concepts in use cases, annotate activity
diagrams with entities from class diagrams and recom-
mend use cases based on similarity metrics.

Application-independent metrics. The most used ranking
accuracy metrics are precision, recall and F-measure [10,
26,27,31,49,64,68,69,72,73,93,100,101]. Some papers
consider additionalmetrics to evaluate the accuracy of the
recommendations, such as mean reciprocal rank (MRR)
[100,101]; 11-point interpolated average precision [100,
101]; the average number of recommended alternative

solutions per successful recommendation [130]; the hit
rate, which is the fraction of correct recommendations in
the recommendation list [31]; or relevance and accuracy
rates [37].
Several authors measure the performance of their
approaches, being timemetrics themost common, in par-
ticular, the time to compute recommendations [11,27,53,
63,73,82,99,123,130], and the time spent by the user to
perform a task [27,38,72].
Finally, usage satisfaction metrics include mostly feed-
back from the users after using the system. The feedback
is collected informally [5,6,52], by means of question-
naires [10,16,27,40,103] or asking the users to rank the
provided recommendations using a Likert scale [26].

Application-dependent metrics. These are metrics specific
to MDE activities, such as the number of model editing
operations [38,72,79,99], the edit distance between con-
flict pairs [21], the average number of properties changed
per applied quick fix [130], the number of attempts to
co-evolve a model [38], the lines of code needed to inte-
grate a meta-modelling tool with the RS [124,125], the
number ofmeta-model constraints fixed in a co-evolution
scenario [12], the amount of constraint violations [93],
the coverage of a room layout model [81], or the number
of valid meta-model/role model matches [111].
Additionally, some metrics are related to the complete-
ness or correctness of the recommendation approach,
such as how complete a set of quick fixes is [79,119], the
validity of quick fixes or co-evolution actions (they com-
pletely remove an error) [38,79,119,130], or the impact of
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quick fixes (number of problems removed or introduced
by their application) [93,119].

6 Discussion

This section discusses the results of our systematic mapping
in relation to the three RQs posed in the introduction. Sec-
tion 6.1 answers RQ1 (“In which ways can recommender
systemsassist in the different taskswithinMDEprocesses?”),
Section 6.2 answers RQ2 (“Which recommendation tech-
niques are most commonly used to support MDE tasks,
and how are recommenders for MDE evaluated?”), and
Section 6.3 answers RQ3 (“What are the main opportuni-
ties in recommender systems for MDE solutions?”). Finally,
Sect. 6.4 discusses the threats to the validity of our study.

6.1 RQ1: In which ways can recommender systems
assist in the different tasks within MDE
processes?

As discussed in Sect. 5.1, existing RSs for MDE target five
main purposes: complete, create, find, repair and reuse. These
tasks can be performed over models, meta-models, transfor-
mations or code generators.

The graphic in Fig. 9 shows the number of approaches per
purpose, stratified by the artefact type. It can be observed
that the majority of approaches focus on completion and
repair (together, 73.4% of the approaches), followed by
reuse (10.9%), find (7.8%), other purposes (4.7%) and create
(3.2%).

As Fig. 10 shows, most recommenders work over models
(76.5%), followed bymeta-models (15.6%), transformations
(6.2%) and code generators (1.6%).

Recommenders with the purpose of completing artefacts
typically help in the development ofmodels. For this purpose,
some approaches transform partial models into a constraint
satisfaction problem or logic programming to obtain a syn-
tactically correct model conformant to its meta-model and
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integrity constraints [40,82,86,92,126,127,130]. This may
involve adding many elements to the partial model. Instead,
other approaches provide finer-grained recommendations for
a step-by-step construction of a model. These recommen-
dations are based on similar existing models [34–37,132],
model libraries [49], model histories [68,69], knowledge
bases [5,6], or a static analysis of the language meta-model
[99]. Since meta-models are also models, some approaches
can be applied on both of them. Recommenders to complete
transformations suggest mappings between source and target
elements [10,52].

Recommenders in repair approaches mainly consider
models as well. These recommendations assist in repairing
inconsistent models using a variety of techniques, such as
rules [38,91,108], guidelines [60] or reinforcement learning
[11,53]. Sometimes, model repair occurs on specific con-
texts, like meta-model/model co-evolution [8,38] or conflict
resolution in model versioning [21]. There is less support
to repair meta-models and OCL constraints [12,28], trans-
formations [117–119], and models within code-generation
activities [79].

In our study, we have identified numerous language-
independent approaches [11,34–36,53,68,69,82,86,91,93,98,
99,108,123–127,130], but most RSs are specific for a mod-
elling language. Figure 11 shows the targeted languages for
the language-dependent cases. Most are widely used lan-
guages, like UML or process modelling notations, and there
are RSs for both structural models (e.g. class diagrams) and
behavioural ones (e.g. process models, sequence diagrams
and state machines).

It is worth mentioning that there is tool support for 99.2%
of the approaches, though some of them (37.2%) are proto-
types. This demonstrates the feasibility of developing RSs
for MDE tasks, but more effort may be needed to increase
the number of mature, fully developed tools. As Section 5.2
mentions, most recommenders help in the modelling activity
on user demand, but proactive approaches that monitor the
user activity to update the recommendations are not uncom-
mon.
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6.2 RQ2:Which recommendation techniques are
most commonly used to support MDE tasks, and
how are recommenders for MDE evaluated?

Figure 12 shows the recommendation methods used by the
studied approaches.MostRSs forMDEare knowledge-based
(47%), followed by content-based (19.6%), hybrid (11.8%)
and based on collaborative filtering (7.8%). Among the
hybrid approaches, two are content-based and social-based,
one is content-based and knowledge-based, and three com-
bine content-based techniques with collaborative filtering.
The bar Other Methods refers to ad-hoc methods differ-
ent from the previous classical recommendation algorithms.
Interestingly, there are more RSs applying ad-hoc meth-
ods (11.8%) than collaborative filtering (7.8%). Only one
approach is extensible on the recommendation methods and
therefore it may potentially support any of them [34–36].

Most of the information to build personalised recom-
mendations is collected implicitly. Only 13 works consider
explicit preferences of users, and all but one of those cases
use implicit information as well.

An interesting question concerns the relation between rec-
ommendation methods and modelling purposes. Table 10
classifies the approaches along these two dimensions (cf.
Tables 3 and 6). We can see that content-based methods have
been used mostly to complete artefacts, but also to find and
reuse them; collaborative filtering has been applied to find,

Table 10 Number of
approaches grouped by
recommendation purpose and
method

Complete 6 0 10 4 2 1

Create 0 0 2 0 0 0

Find 2 1 0 1 0 0

Repair 0 1 12 1 4 0

Reuse 3 0 1 1 0 1

Other 0 2 1 0 0 0

repair and other purposes; knowledge-based RSs have been
extensively used to complete and repair artefacts, as well
as for every recommendation purpose in our classification
except finding; and other ad-hoc methods have targeted com-
plete and repair.

If we look at the recommendation purpose, we observe
that recommenders for completion have used all consid-
ered recommendation methods (especially knowledge- and
content-based) but collaborativefiltering.Creation tasks have
only been approached using knowledge-basedmethods. Rec-
ommenders for finding artefacts use collaborative filtering,
content-based or hybrid algorithms, but not knowledge-
based. Repair has been resolved mostly using knowledge-
based methods, but also using collaborative filtering, ad-hoc
and hybrid (content-based plus knowledge-based) methods.
Finally, reuse has been tackled by content-based, knowledge-
based and hybrid (content-based plus collaborative-filtering)
methods.

Regarding evaluation, only 32 out of the 51 approaches
(62.7%) have been evaluated. Offline experiments are the
most frequent kind of evaluation [10–12,21,24,27,31,49,53,
64,68,69,75,79,81,82,92,93,99,111,119,123–125,130]. This
may be due to the difficulty to find a relevant number of
users with the required level of expertise in modelling and
willing to participate in online experiments or user studies.
Moreover, some recommenders are implemented for very
specific tools developed within research labs, sometimes
prototypically, and therefore the tools are neither main-
stream nor have a vast number of users. Therefore, while
some approaches have been evaluated by means of user
studies [10,16,26,27,37,40,50–52,71–73,100,101,103,119],
they involve small groups of participants (ranging from 2
to 44), typically students [10,26,37,40,73,100,101], devel-
opers/modellers [52,103,119] or more rarely employees
[16,27]. Online experiments are very scarce [5,6,38].

Offline experiments require data, which sometimes come
frompublic repositories [10,49,64,81,123,130] or companies
[31,75]. However, in contrast to the programming field, it
is difficult to have access to modelling artefacts, especially
from industrial projects. For this reason, many authors resort
to synthetic datasets created, e.g. via mutation or systematic
generation [24,79,81,93,117–119]. In other cases, the authors
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evaluate their proposal using artefacts from other papers [24,
68,69] or analytically via case studies.

Some of the revised RSs have been evaluated using
domain-independent metrics applicable to general RSs,
specifically ranking accuracy metrics (mainly precision,
recall and F-measure), time metrics and usage satisfaction
collected via questionnaires. The advantage is that these
metrics are standard and well accepted. As an example, to
measure usability (a dimension of usage satisfaction), one
could use de-facto standard questionnaires like the System
Usability Scale (SUS) [20]. Instead, or in addition, some eval-
uations have considered metrics specific toMDE tasks—like
the number of fixed/violated OCL constraints in a model—
or domain-specific notions of completeness or correctness.
These metrics are defined ad-hoc for each case.

Finally, we discuss whether some kinds of recommen-
dation tasks are evaluated more than others. We have found
that all RSswith the purpose of finding artefacts or fragments
have been evaluated (100%), followed by completion tasks
(73.9% of the RSs helping in completion tasks have been
evaluated), repair tasks (61.1%), and create (50%) and reuse
tasks (50%). RSs targeting repair have been mostly evalu-
ated offline, while recommenders for other purposes have
been evaluated using a wider variety of methods.

6.3 RQ3:What are themain opportunities in
recommender systems for MDE solutions?

This section analyses gaps in the current research, resulting
from an analysis of the coverage of the feature model by
the proposals. Then, we identify opportunities based on an
analysis of the different dimensions of the classification we
propose, using both insights from the reviewed papers and
our own experience.

Our analysis of the state-of-the-art reveals some gaps in
the targeted tasks and artefacts. Most approaches focus on
models, a handful on meta-models, very few on transforma-
tions, and hardly any on code generators. However, given
that MDE fosters the automated processing of models, RSs
for transformations and code generators (e.g. recommend-
ing completions of the code generation template; suggesting
template fragments; or helping to repair faulty generators)
would be very useful for the community. Similarly, the
purpose of most RSs is completing and repairing mod-
els; however, there are few recommendation approaches
for finding relevant artefacts, reusing them in a given con-
text and creating artefacts from scratch. For the latter case,
we envision RSs proposing initial artefact templates out
of higher-level descriptions, maybe defined using natural
language. Finally, RSs for structural diagrams are more
numerous than those for behavioural diagrams. Developing
further RSs for behavioural diagrams would reveal whether
behaviour and structure may require different recommenda-

tion methods, whether similarity-based recommendation is
enough for behavioural diagrams, or whether behavioural
diagrams would benefit from semantic comparison (e.g.
based on execution) to generate recommendations.

Many of the studied papers present RSs for a specific
language or tool (cf. Tables 4 and 5). Such recommenders
tackle a single problem and are “hard-wired” into the sys-
tems they were designed for. Hence, an open line of research
is devising solutions that allow adapting the recommendation
algorithms, the users’ preferences or the evaluation metrics
to the users’ needs. In this respect, a reference architecture
for intelligentmodelling assistancewas proposed in [90], and
one step in this direction is Hermes [34–36], since this frame-
work permits integrating RSs into tools as well extending the
framework with new recommendation methods.

In contrast to the field of programming, one of the main
barriers when building RSs for MDE activities is the lack
of data that can be used for training the recommenders.
There are several initiatives to create repositories of mod-
elling artefacts, both in the MDE [39,76,114] (some listed
in Table 9) and BPMN communities [43]. Moreover, ded-
icated model search engines have been recently proposed
[76], which can be used to create datasets of modelling arte-
facts. However, more efforts to make artefacts public and
accessible are required.

Related to the previous point, we are recently witnessing
the proposal of low-code development platforms for spe-
cific domains, like the creation of data analysis workflows
(e.g. RapidMiner,3) chatbots (e.g. Dialogflow4) or event-
driven applications (e.g. Node-Red).5 These platforms are
cloud-based, making it easier for users without a technical
background to construct applications by means of graphical
languages and forms. Low-code platforms free the user from
installing the development tool and deploying the defined
applications, since they are used in a web browser. Fre-
quently, low-code platforms form ecosystems where the
models created by all users are stored in the platform’s repos-
itory. This availability of data and users makes low-code
platforms the ideal scenario for creating recommender sys-
tems, as shown in [55].

As we discussed in Sect. 6.2, a large percentage of the
RSs in MDE are knowledge-based or content-based. This
differs from the predominance of collaborative filtering and
hybrid approaches in the RSs research field [15], where
e-commerce (e.g. Amazon, Zalando), leisure (e.g. Netflix,
Spotify), tourism (e.g. Booking, Yelp) and social networks
(e.g. Facebook, Twitter) are the most widely addressed
domains. It is in these domains where large communities
of users provide feedback— mainly in the form of numeric

3 https://rapidminer.com/.
4 https://cloud.google.com/dialogflow.
5 https://nodered.org/.
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ratings and textual reviews—which is exploited to find user
similarities valuable for generating effective personalised
recommendations. Following this trend, there are plenty of
opportunities to research on how to exploit further collab-
orative filtering in MDE, for instance, via model and code
sharing platforms. Moreover, the few revised works that
apply collaborative filtering toMDEneglect long-term users’
preferences, hence this stands as a problem worth investigat-
ing as well.

Regarding the evaluation of recommendations, Sect. 6.2
shows that only two approaches [5,6,38] report online exper-
iments in real settings, and only one of them [38] uses A/B
testing, as commonly done in the online evaluation of infor-
mation retrieval and filtering approaches. This evaluation
methodology not only allows assessing the performance of
certain recommendation functionality with users at a large
scale, but also its real effectiveness in a non-controlled sce-
nario where contextual conditions arise. In contrast, most
approaches were evaluated via offline experiments. In these
cases, using public datasets and following standard evalu-
ation methodologies are essential to ensure reproducibility
and ease advances in the field. Except for a few cases
[27,119,123], we have observed a general lack of repro-
ducibility of the reported experiments. In linewith the current
open sciencemovement [83],webelieve that disclosing repli-
cation packages (containing the raw data and all necessary
scripts for their analysis) is the way forward in this area. By
making datasets available, the creation of new RSs as well
as their comparison and improvement is facilitated.

In addition to generic recommendation accuracy and sys-
temperformancemetrics (cf. Table 7),we envision the formal
definition and generalisation of metrics oriented to particular
MDE tasks (i.e. complete, create, find, repair and reuse) as
a relevant research challenge. As our study reveals, the lit-
erature already presents ad-hoc metrics, such as the number
of model editing operations to evaluate model completion
[72,99] or the number of constraint violations to assess the
correctness of model repair [93]. However, there is room
for designing and reporting more general, well established
task-specific measures that would allow comparing distinct
recommendation methods.

Related to user experience, an important success factor of
RSs is how they integrate within theMDE tool [1,89,90]. For
notations in the business process modelling domain, some
studies investigate how topresent recommendations [66], and
surveys on the preferred ways to display recommendations
in graphical modelling have been conducted as well [36].
However, more usability studies are required to understand
the most effective, user-friendly ways to present recommen-
dations for different styles of modelling languages and tasks.

With respect to other research trends on RSs, we highlight
recommendation explainability [133] and group-oriented
recommendation [80] as two directions of potential interest

which, according to our review, have not been addressed yet
in theMDEarea, but are being extensively investigated by the
RS community. On the one hand, explaining to the user the
reasons for which recommendations are presented, as well as
the potential benefits of the recommendations for the task at
hand, can increase the user engagement and trust on the sys-
tem, among other aspects [133]. On the other hand, there are
cooperative tasks and environments that provide recommen-
dations to a group of people, and consequently have to take
individual preferences and constraints into account. In this
context, the chosenmethods for aggregating user models and
generating consensus recommendations have to be comple-
mented with an appropriate (collaborative) evaluation [80].

Lastly, although it is out of the scope of this study, we
want to mention an open research issue related to the devel-
opment process of RSs. We have observed that most RSs
have been developed by hand from scratch, and very few
works have investigated the application of MDE to assist in
the design, implementation and evaluation of a RS for a given
problem. The development of a RS and its integration into
a tool undoubtedly requires a high effort, as noted in [90].
This makes the construction of RSs for DSLs—which typ-
ically have a smaller user community than languages like
UML—less cost-effective. Therefore, methods for automat-
ing the construction of RSs for modelling languages, like
those proposed in [7,129], could be very useful for the MDE
community.

6.4 Threats to validity

Some factors may threat the validity of our study. First, we
might have missed some papers due to the query we have
used. To mitigate this threat, we tested several versions of
the query, confirming that papers we knew were relevant
appeared in the query results.

A related threat is that some relevant papers might not be
indexed in the databases considered for our query. Tomitigate
this risk, we performed a final process of snowballing [138]
to consider further relevant papers not included in the query
results.

In the screening process, we might have erroneously left
some relevant papers out. To mitigate this risk, each paper
was independently checked by the four authors of the study
and was added to the second screening phase if one of them
considered it relevant. In this second phase, it was read in
full detail.

Finally, there is a thin line dividing the systems that can
be considered to provide recommendations, with respect to
others that just offer some kind of automated analysis. This
situation is exacerbated by the fact that some systems rely
on highly specialised algorithms which are non-standard in
the RS literature. In our review, we included those systems
that provide recommendations and assistance to the user to
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choose a small set of items over a large set of possibilities, or
which consider implicit or explicit users’ preferences. When
in doubt, we included the system in the study.

7 Summary

In this paper, we have presented a systematicmapping review
of existing research works on RSs for MDE. We have clas-
sified those works along four main dimensions (domain,
tooling, recommendation and evaluation) characterised by
means of feature models.

The review has allowed answering three research ques-
tions. First, we have seen that current RSs mainly target
model completion and repair. Second, the most used rec-
ommendation methods in MDE are knowledge-based and
content-based. Finally, we have identified research gaps and
opportunities in the area, like implementing RSs to help
in developing transformations and code generators, finding
and reusing artefacts and creating artefacts from scratch. We
encourage the community to pick these challenges to improve
the current MDE practice and tooling.
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