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Abstract
Standard approaches to model interaction networks are limited in their capacity to
describe the nuances of real communication.We present a game theoretical framework
to quantify the effect of intermediaries on the interaction between agents. Inspired by
the seminal work Myerson (1977). on cooperative structures in cooperative games,
we set the basis for multidimensional network analysis within game theory. More
specifically, an extension of the point-arc game Feltkamp and van den Nouwe51 land
(1992). is introduced, generalizing the analysis of cooperative games to multigraphs.
An efficient algorithm is proposed for the computation of Shapley value of this game.
Weprove the validity of our approach by applying it to a intermediaries networkmodel.
We are able to recover meaningful results on the dependence of the game outcome on
the intermediaries network. This work contributes to the optimal design of networks
in economic environments and allows the ranking of players in complex networks.

Keywords Cooperative game · Communication game · Games on multigraph ·
Intermediaries

1 Introduction

An intermediary is simply defined as someone mediating an interaction between peo-
ple who are unwilling or unable to communicate directly to reach an agreement. If
two intermediaries can equivalently mediate the communication between two agents,
they are said to be perfect substitutes. If, on the other hand, several intermediaries are
needed for the agents to communicate, each is a perfect complement to all the others.
Two agents can therefore be linked in different ways: through a direct communication
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channel without the need of any intermediaries, through one of the many alternative
intermediaries, by employing chains of connected intermediaries or even through a
combination of the three. The existence, or more precisely co-existence, of different
connection pathways between agents leads to a vast catalog of communication chan-
nels, each reaching an agreement with a different degree of efficiency. Evaluating the
impact of intermediaries in negotiations is the motivation of the present work.

Negotiations in which a group of agents cooperates on a common project with the
objective of maximizing the resulting collective gain can bemodelled by a cooperative
gamewith transferable utility. However, in common economical and political contexts,
restrictions on the communications typically arise, requiring a redefinition of the coop-
erative game. Myerson (1977) examines such cooperation structures by introducing
graphs to model the communication channels between players. In such representation,
players are denoted by graph nodes, which are connected only if a direct communica-
tion between the two corresponding players can be established. The graph induces a
partition on the set of players into one or more subsets that can negotiate effectively
which leads to the so-called graph-restricted game. TheMyerson value, or the Shapley
value of this graph-restricted game, captures the dependence of the game output on the
established cooperations between players. Later works on graph-restricted games are
reviewed in Borm et al. (1994). To the best of our knowledge, none of the established
frameworks to analyze games on networks deals with networks with multiple edges.
However communication channels between two agents can be diverse. They could
communicate directly in a personal meeting, through telephone communication, by
email, by intermediaries and even using more than one channel at a time. And this is
precisely one of the main contributions of this work: a model to study games whose
communications are represented by means of multigraphs.

In the present work, we propose a model to analyze games on multigraphs. We
extend themodel of communicationgame introducedbyFeltkampandvandenNouwe-
land (1992) to the new setting. We then introduce a method to calculate the Shapley
value of this new game using the multilinear extension of a game defined by Owen
(1972) andmodeling the effective work performed bymultiple links through probabil-
ity distributions. Finally, the impact of intermediaries in a negotiation is evaluated by
applying the model for games on multigraphs to intermediaries networks of n agents
where substitutable and complementary mediation might co-exist within the network.
Assuming a network consisting of two nodes, for example, we explicitly show that the
Shapley value of a node (agent) increases with the number of substitutable intermedi-
aries, while it decreases in the case of complementary intermediaries. Moreover, we
illustrate the applicability of ourmodel to concrete problems. In the context of amarket
design, for instance, the optimal number of participant agents on the market is typi-
cally of concern. We address such issue by determining the number of intermediaries
between two nodes that ensures a Shapley value above a given threshold.

This manuscript is organized as follows: In Sect. 2 we introduce some notation
and certain preliminary ideas regarding coalitional games, multilinear extensions, and
multigraphs. In Sect. 3, we introduce the multigraph-restricted game. The main result
(Theorem 1 in this paper) provides a method for calculating the Shapley value of
the multigraph restricted game. In Sect. 4, we apply the developed methodology in
the context of negotiations through intermediaries. Our main result of this section
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(Theorem 2) allow us to quantify the impact of a given intermediaries network on the
outcome of the negotiation. We offer final comments in Sect. 5.

2 Preliminaries

It is assumed that a coalitional game with transferable utilities (T U game) is a pair
(N , v)where N = {1, 2, 3, ..., n} is the set of players and v, the characteristic function,
is a map, v : 2N → R, with v ({∅}) = 0. For each coalition, S ⊆ N , v(S) represents
the transferable utility that S can obtain whenever its members cooperate. The Shapley
value (1953) of v is given by:

�i (v) =
∑

S⊆N\{i}

s! (n − s − 1)!
n! (v(S ∪ {i}) − v(S)), i = 1, . . . , n.

We will assume v is non-negative and super-additive, so that

v(S ∪ T ) ≥ v(S) + v(T ), if S ∩ T = {∅} .

A coalitional game v is simple if its payoffs are either 1 or 0, i.e. coalitions are either
"winning" or "losing".

Myerson (1977) proposed amodel to analyse gameswhenever cooperation between
agents is restricted. In this model, a (simple) graph is considered, in addition to the
game, where the players (of the game) are the graph nodes. The graph therefore
indicates the set of direct communication channels between pairs of players.

In this paper, we tackle a more general problem, since we consider the existence
of several alternative communication channels between agents. Given that we model
such extended communication scheme by means of multigraphs, some concepts of
graph theory will be useful in our development, see for example Bondy and Murty
(1976).

2.1 Multigraphs

A multigraph G is an ordered triple (V (G), L(G), ψG); where V (G) is the set of
vertices, L(G) is the edge set, and ψG is an incidence function, that associates each
edge of L(G) with an unordered pair of (not necessarily distinct) vertices of V (G). If
e ∈ L(G), and ψG(e) = {i, j} we say that i and j are adjacent nodes. Set Li j (G) =
ψ−1
G ({i, j}).
A simple graph G = (V (G), L(G)) is a graph where the connection between two

nodes is carried out through a single link and it has no loops.
A graph H is a subgraph of G if V (H) ⊆ V (G), L(H) ⊆ L(G), and ψH is the

restriction ofψG to L(H). Suppose that V
′
is a nonempty subset of V (G). The subgraph

of G whose vertex set is V
′
and whose edge set is the set of those edges of G that have

both ends in V
′
is called the subgraph of G induced by V ′ and is denoted by G [

V ′].
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A (i, j)−path in G is a finite non-null sequence i0e1i1e2, . . . , ekik , whose terms
are alternatively vertices and edges, such that, for 1 ≤ r ≤ k, the ends of er are ir−1
and ir and the vertices i0, i1, ..., ik as well as the edges e0, e1, ..., ek are distinct and
i = i0, j = ik .

Two vertices i, j ∈ V (G) are said to be connected in G if there is a (i, j) − path
in G. A multigraph G is connected if any two vertices i and j are connected in G.

Connection is an equivalence relation on the vertex set V (G). Thus there is a par-
tition of V (G) into non-empty subsets V1, V2, . . . , Vω such that two vertices i and j
are connected if and only if both i and j belong to the same set Vr . The subgraphs
G [V1] ,G [V2] , . . . ,G [Vω] aremaximal connected subgraphs ofG andV1, V2, . . . , Vω

are called connected components of G. Similarly, given S ⊆ V (G) and A ⊆ L(G),
there is a unique partition of S by A into nonempty subsets S1, S2, . . . , Sω such that
two vertices i and j are connected by a subset of links in A if and only if both i and
j belong to the same set Sr . We will denote this partition by S/A.
Let us now consider a game (N , v) and a multigraph G = (N , L, ψ), where the

players (of the game) are the nodes of the multigraph. Following Feltkamp and van
den Nouweland (1992), we define a new gamew, a multigraph-restricted game, whose
players (pseudoplayers) are the players of the game v as well as the links of L . More-
over, the value of a coalition S ∪ A (S ⊆ N , A ⊆ L) equals the sum of the v−values
of the connected components of S/A. As Myerson, we use the Shapley value �(w)

to assess the power of a pseudoplayer in the multigraph-restricted game. How can
one simplify the calculation of �(w), given that the number of pseudoplayers of w

is in general relatively high? Note, on the one hand, that the structure of connected
components generated by the multigraph is the same as the structure generated by
its underlying simple graph (a graph having only a link representing multiple links
between two nodes). On the other hand, the value of a coalition S∪ A will be always the
same, regardless of which link or links are considered in the communication between
pairs of players. Intuitively, we can face the game w as it is played in two steps: first
a link is chosen to establish the communication, i.e., a (so called) connection game is
played between each pair of communicated nodes, then the game on the simple graph
is taking into account. Thus we study w as a compound game as it is defined by Owen
(1995):

Definition 1 Let M1, M2, ...Mn ben disjoint nonempty sets of players. Letv1, v2, ..., vn

be simple games in (0, 1) normalization, with player sets M1, M2, ... Mn , respec-
tively. Let u be a non-negative game over the set N = {1, 2, ..., n}; then the
u-composition of v1, v2, ..., vn , denoted byw = u[v1, v2, ..., vn] is a gamewith player
set M∗ = ∪n

j=1M j and characteristic function

w (S) = u
({

j | v j
(
S ∩ M j

) = 1
})

for S ⊆ M∗.

Once we get to see our game w as a composite game, a natural way to calculate
�(w) is the use of the multilinear extension of a game, which is defined as:
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Definition 2 The multilinear extension (MLE) of a game (N , v) is given by

F (x1, x2, ...xn) =
∑

S⊆N

{∏
i∈S

xi
∏
i /∈S

(1 − xi )

}
v(S),

and the Shapley value can be obtained by

�i (v) =
∫ 1

0
∂i F (t, t, ...t) dt, (1)

where ∂i F is the ith partial derivative of the function F , namely ∂ F
∂xi

.

If one takes into account that the composition of games corresponds to the compo-
sition of their multilinear extensions, one arrives at a first approximation to compute
�(w). One can further simplify the calculation if one observes that the players of one
of the games in the composition ofw are nonsymmetric. In such situations it is natural
to use a weighted Shapley value. Let us recall how to calculate it.

Definition 3 Given a game (N , v) and supposing player i’s time of arrival variable, Xi ,
have the distribution Gi (t) =Prob{Xi ≤ t}, the weighted Shapley value Zi (v) asso-
ciated to the probability distributions, i.e. player i’s expected marginal contribution,
will be given by the Stieltjes integral

Zi (v) =
∫ 1

0
∂i F

(
G1 (t) , . . . , Gn(t)

) · G ′
i (t) dt , (2)

where F is the multilinear extension for game v.

3 Games onmultigraphs

The seminal work on cooperative games in which the restrictions on cooperation are
given by a graph is due to Myerson (1977). He assumed that the nodes in the graph are
the players in the game and that each link represents a direct bilateral communication
channel. However, to the best of our knowledge, none of the established frameworks
to analyze games on networks deals with networks with multiple links. Multiple links
may reflect different types of relationships, different communication channels (courier
companies) or different intermediaries in a negotiation. Therefore,multidimensional
analysis is necessary to distinguish between different types of interactions, or equiv-
alently, to observe interactions from different perspectives.

In this section we provide a framework within which we can discuss a wide class of
cooperation structures, those considering TU games in which cooperation is restricted
by means of a multigraph, i.e. those cooperation structures wheremultiple links are
allowed in the graph. In the sequel we only consider multigraphs without loops.
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(a) (b)

Fig. 1 A simple graph versus a multigraph

Table 1 Point-arc games associated to a simple graph (w1) and a multigraph (w2)

w1 w2

w1({∅}) = w1({a}) = 0 w2({∅}) = w2(A) = 0 for A ⊆ L2

w1(S) = 1 if |S ∩ N | = 1 w2(S) = 1 if |S ∩ N | = 1

w1({1, 2}) = v({1}) + v({2}) = 2 w2({1, 2}) = v({1}) + v({2}) = 2

w1({1, 2, a}) = v ({1, 2}) = 4 w2({1, 2} ∪ A) = v ({1, 2}) = 4 for A ⊆ L2

3.1 Multigraph-restricted games

Given a game (N , v) and a simple graphG = (N , L) different types of graph restricted
games (communication games) are defined (Borm et al. 1994). The so called point-arc
game (Feltkamp and van den Nouweland 1992), which incorporates the players of the
game v as well as the links in L as players can be extended in a meaningful way to the
new setting, where restrictions in the communication are modeled by a multigraph.

Definition 4 Given a game (N , v) and a multigraph G = (N , L, ψ), the characteristic
function of the associated point-arc game (N ∪ L, w) is given by

w (S ∪ A) =
∑

T ∈S/A

v(T ), for S ⊆ N , A ⊆ L ,

where S/A is the set of connected components of S in A.

Note that the “coalitions” in this game are of the form S ∪ A, where S ⊆ N and
A ⊆ L . Note also that, if S is connected in A, then w (S ∪ A) = v(S). We compute
the Shapley value �(w) in the usual way.

Example 1 Let N = {1, 2}, with v({1}) = v({2}) = 1, and v({1, 2}) = 4. Let us
consider two different graphs: the simple graph G = (N , L1) defined by L1 = {a}
where a = {1, 2} (Fig. 1a) and a multigraph G = (N , L2, ψ), with L2 = {a1, a2}
where a1 �= a2 and ψ(a1) = ψ(a2) = {1, 2} (Fig. 1b).

Let (N ∪ L1, w1) and (N ∪ L2, w2) be the associated point-arc games. Both games
take into account that, each player (1 or 2) can obtain 1 unit of utility. Together, they
can obtain 4 units, but only if they can coordinate. In the absence of this coordination,
they obtain only 2 units. Thus, w1 and w2 are defined by
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Fig. 2 A multigraph and its underlying simple graph

The Shapley values of w1 and w2are then:

�1(w1) = �2(w1) = 5/3,�a(w1) = 2/3,

�1(w2) = �2(w2) = 11/6,�a1(w2) = �a2(w2) = 1/6.

Observe that if a1 and a2 in L2 represent competing messenger services, the Shapley
value reveals that competition drives down the twomessengers’ expectations (compare
with Shapley value of a in game w1).

3.2 Calculating the Shapley value of gamew: the encapsulation procedure.

Theorem 1 proposes a method of calculating the Shapley value for multigraph-
restricted games. The idea is to analyze a game on a multigraph through the game
on its underlying simple graph (see Fig. 2).

Definition 5 Given a multigraph G = (N , L, ψ), the underlying simple graph G0 =
(N , L0) of G is defined by ai j = {i, j} ∈ L0 if and only if i and j are adjacent nodes
in G (Li j �= {∅}). Set ∣∣Li j

∣∣ = li j .

Lemma 1 Let (N , v) be a TU game, let G = (N , L, ψ) be a multigraph and let
G0 = (N , L0) be its underlying simple graph. Let (N ∪ L, w) and (N ∪ L0, u) be
the corresponding point-arc games. Let f be the multilinear extension of the game
u. Then

�i (w) =
∫ 1

0
∂i f

(−→
t n,

(
1 − (1 − t)llk

)

alk∈L0

)
dt, for i ∈ N, (3)

and for e ∈ Li j

�e(w) =
∫ 1

0
∂ai j f

(−→
t n,

(
1 − (1 − t)llk

)

alk∈L0

)
· (1 − t)li j −1 dt, (4)

Proof Wefirst introduce two families of auxiliary games: for each i ∈ N , the simple 1-
person game vi is defined by vi ({i}) = 1 and for each pair of adjacent nodes i , j ∈ N ,
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the connection game (Li j , ci j ) is given by

ci j (A) =
{
1, if i and j are connected in G by elements of A,
0, otherwise,

for all A ⊆ Li j .
Then it is straighforward to show that w can be seen as the compound game

u
[
(vi )i∈N ,

(
ci j

)
ai j ∈L0

]
.1 Let F , f , hi (i = 1, . . . , n) and gi j be the multilinear

extensions of the games w, u, vi and ci j respectively. Considering that composition
of games corresponds to composition of the MLEs, we have:

F (x) = f (h(x)) , with x = (
(xi )i∈N , (xk)k∈L

)
,

where

h(x) = (
(hi (xi ))i∈N , (glk (xlk))alk∈L0

)
, with xlk =

(
x1lk, ..., xllk

lk

)
and

hi (xi ) = xi , for all i ∈ N .

Applying the chain rule we get the derivatives of F :

∂i F(x) = ∂i f (h(x))h′
i (xi ) = ∂i f (h(x)), for i ∈ N ,

∂e F(x) = ∂ai j f (h(x))
∂gi j (xi j )

∂e
, for e ∈ Li j .

Then, applying (1) we have

�i (w) =
∫ 1

0
∂i f

(−→
t n,

(
glk

(−→
t llk

))

alk∈L0

)
dt , for i ∈ N

and

�e(w) =
∫ 1

0
∂ai j f

(−→
t n,

(
glk

(−→
t llk

))

alk∈L0

) ∂gi j

(−→
t li j

)

∂xe
dt , for e ∈ Li j .

Finally, we obtain the expressions (3) and (4) for the Shapley value by substituting

in the last two expressions gi j

(−→
t li j

)
by 1− (1 − t)li j and

∂gi j

(−→
t li j

)

∂xe
by (1 − t)li j −1

(see proof of these equivalences in Lemma 4 and Remark 3 in the appendix). � �
To illustrate the ideas we outlined above, let us examine the next example:

1 The characteristic function of w is then given by

w (S ∪ A) = u
({

j ∈ N | v j ({ j} ∩ S) = 1
} ∪ {

ai j ∈ L0 | ci j
(
Li j ∩ A

) = 1
})

for all S ⊆ N , A ⊆ L .
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Fig. 3 A multigraph with multiple parallel links

Example 2 Consider the game (N , v) where N = {1, 2}, with v({1}) = v({2}) = 1,
and v({1, 2}) = 4. Consider also a multigraph G = (N , L, ψ), where L =
{a1, a2, . . . , am} being ai �= a j and ψ(a1) = ψ(a2) = . . . = ψ(am) = {1, 2} as
represented in Fig. 3.

Let w be the corresponding point-arc game to v and G. We are going to calculate
�i (w) and �ak (w) applying last lemma. First note that w can be decomposed as

w = u[v1, v2, c12],

where u is the point arc-game associated to v and G0 = {a12} (the underlying simple
graph of G). The MLE f of u is given by

f (x1, x2, xa12) = x1 + x2 + 2x1x2xa12 .

Now, the derivatives are given by

∂x1 f (x1, x2, xa12) = 1 + 2x2xa12 ,

∂x2 f (x1, x2, xa12) = 1 + 2x1xa12 ,

∂xa12
f (x1, x2, xa12) = 2x1x2,

and applying (3) and (4) we obtain

�i (w) =
∫ 1

0
1 + 2t

(
1 − (1 − t)m)

dt , for i = 1, 2,

�ak (w) =
∫ 1

0
2t2 (1 − t)m−1 dt , for k = 1, 2, ..., m.

After calculating the integrals we have

�i (w) =
∫ 1

0
(1 + 2t) dt −

∫ 1

0
2t (1 − t)m dt = 2 − 2beta (2, m + 1)

= 2 − 2
� (m + 1)

� (m + 3)
= 2

(
1 − 1

(m + 2) (m + 1)

)

and

�ak (w) = 2beta (3, m) = 4
� (m)

� (m + 3)
= 4

1

(m + 2) (m + 1) m
.
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Note that the expressions obtained for the Shapley value, allow us to analyze how
�(w) depends on parameter m. To advance the simplification of Shapley value and
the interpretation of the role of multiple links, let us examine the following example.

As we have seen, the pseudoplayers in the game u are the players in the game v

as well as the sets of multiple links between nodes in the multigraph. Clearly, u is an
asymmetric game and it is natural to use the weighted Shapley value (2) to evaluate
the power of a pseudoplayer in u. How then to calculate the distribution of the variable
arrival time of a link? This is given by the probability of connection between its pair
of adjacent nodes as we can see in following example.

Example 3 Let us consider again the point-arc game (N ∪ L1, w1) associated to game
v and graph G = (N , L1) of example 1. This time let us further assume that player i’s
time of arrival variable, Xi (definition 3), have following distribution

G1(t) = G2(t) = t ; Ga(t) = 1 − (1 − t)2 = 2t − t2.

Then applying (2) we get the value for the game w1 (to avoid confusion we call the
game w∗ instead w1 along this example)

Z1(w
∗) =

∫ 1

0
∂1F(G1(t), G2(t), Ga(t)) · G ′

1(t)dt =
∫ 1

0
(1 + 2G2(t) · Ga(t)) dt

=
∫ 1

0

(
1 + 2t

(
2t − t2

))
dt = 11

6
.

Analogously Z2(w
∗) = 11

6 . For the link a we have

Za(w∗) =
∫ 1

0
∂a F(G1(t), G2(t), Ga(t)) · G ′

a(t)dt = 2
∫ 1

0
G1(t) · G2(t) · G ′

a(t)dt

= 2
∫ 1

0
t2 (2 − 2t) dt = 1

3
.

Thus

Z(w∗) =
(
11

6
,
11

6
,
1

3

)
.

Let us compare this value with a result from example 1, there we have

�1(w2) = �2(w2) = 11/6, �a1(w2) = �a2(w2) = 1/6.

We see then that the Shapley value for the players coincides with its value in game w∗
and that

�a1(w2) + �a2(w2) = Za(w∗)
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This can be interpreted as the following: the probability distribution of the time of
arrival variable of link a represents well the work done by the two different edges in
the multigraph (Fig. 1b) from example 1.

In general, we will prove an equivalence between the Shapley value of the game on
a multigraph G and the weighted Shapley value of the game on its underlying simple
graph G0, where all the communicative strength of links in Li j , described by gi j , is
attributed to each link ai j of the graph G0 by means of a probability distribution.

We will call encapsulation the process of representing the communicative strength
of multiple links between two adjacent nodes i and j through a single link ai j , by
changing the path of integration or, equivalently, considering the link time-of-arrival
distribution the function Gai j (t) = 1 − (1 − t)li j .

Theorem 1 Let (N , v) be a TU game, G = (N , L, ψ) be a multigraph and G0 =
(N , L0) be the underlying simple graph of G. Let w and u be the corresponding point-
arc games. Suppose that the “time of arrival” variable of the elements of N ∪ L is
uniformly distributed, while the “time of arrival” variable for link ai j ∈ L0 has the
following distribution

Gai j (t) = 1 − (1 − t)li j , for ai j ∈ L0.

Then

�i (w) = Zi (u), for i ∈ N,
∑

e∈Li j
�e(w) = Zai j (u), for ai j ∈ L0,

where Z(u) is the weighted Shapley value of u and it is given by (2).

Proof Let us calculate Zi (u) and Zai j (u) for the point-arc game u associated to (N , v)

and the simple graph G0. Let f be the multilinear extension of u. Applying ( 2) we
obtain

Zi (u) =
∫ 1

0
∂i f

(−→
t n,

(
Galk (t)

)
alk∈L0

)
dt

=
∫ 1

0
∂i f

(−→
t n,

((
1 − (1 − t)llk

))

alk∈L0

)
dt , for i ∈ N .

Comparing last expression with (3) we can conclude that

�i (w) = Zi (u).

On the other hand, for ai j ∈ L0

Zai j (u) =
∫ 1

0
∂ai j f

(−→
t n,

(
Galk (t)

)
alk∈L0

)
G

′
ai j

(t)dt
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=
∫ 1

0
∂ai j f

(−→
t n,

((
1 − (1 − t)llk

))

alk∈L0

)
d

(
1 − (1 − t)li j

)

dt
dt .

Moreover, from (4) we have

�e(w) =
∫ 1

0
∂ai j f

(−→
t n,

((
1 − (1 − t)llk

))

alk∈L0

)
(1 − t)li j −1 dt , for e ∈ Li j ,

then summing over all e ∈ Li j we obtain

∑
e∈Li j

�e(w) =
∫ 1

0
∂ai j f

(−→
t n,

((
1 − (1 − t)llk

))

alk∈L0

) ∑

e∈Li j

(1 − t)li j −1 dt ,

and taking into account that

∑

e∈Li j

(1 − t)li j −1 = d
(
1 − (1 − t)llk

)

dt
,

we finally get

∑
e∈Li j

�e(w) =
∫ 1

0
∂ai j f

(−→
t n,

((
1 − (1 − t)llk

))

alk∈L0

)
d

(
1 − (1 − t)llk

)

dt
dt

= Zai j (u).

�
In short, the work done by the m parallel links can be "represented" or "modeled"

by a single link, by changing the path of integration or equivalently, considering as
the link time-of-arrival distribution the function Gai j (t) = 1 − (1 − t)m .

Remark 1 In the previous theorem, we have worked with the uniform distribution to
describe the time-of-arrival variable of all the players. However, by exploiting the idea
behind the multilinear extension, we can go further, we can even model players of a
different "nature", simply by assuming that the arrival time variable of each link has
a different probability distribution.

4 Intermediaries networks

An intermediary is simply defined as someonemediating an interaction betweenpeople
who are unwilling or unable to communicate directly to reach an agreement. Two
agents can be linked in differentways: through adirect communication channelwithout
the need of any intermediaries, through one of the many alternative intermediaries, by
employing chains of connected intermediaries or even a combination of the three. The
existence, or more precisely coexistence, of different connection pathways between
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Fig. 4 An intermediaries network

agents leads to a vast catalog of communication channels, each reaching an agreement
with a different degree of efficiency.

In Fig. 4 some common situations are represented: agents 1 and 2 can communicate
directly through different communication channels or through an intermediary agent;
agents 2 and 3 need two intermediary agents to find a compromise and agents 3 and
4 can reach an agreement either through intermediary 4 or through 5 (there may be
different communication channels between players and intermediaries).

A network like the one depicted in Fig. 4, and which we will define exactly below,
will be called an intermediaries network for the agents N = {1, 2, 3, 4}. The interests at
stake between the agents can be represented by means of a cooperative game (N , v).
Given a game (N , v) and an intermediaries network for N and supposing that the
intermediaries are given exogenously to the game, in this section we state our main
result on intermediaries network-restricted games (Theorem 2), which allow us to
compute the Shapley value for those games. To start with wewill consider multigraphs
(V , L, ψ) with two kinds of set of vertices: V = N ∪ I , where N is the set of players
and I the set of intermediaries.

Definition 6 Let G = (N ∪ I , L, ψ) be a multigraph and i, j ∈ N . A vertex k ∈ I
is an intermediary between i and j if there exist an (i, j) − path such that k is an
internal vertex and no element of the path belongs to N\ {i, j}. We denote the set of
all intermediaries between i and j as Vi j . Moreover we shall denote by Ei j the set of
edges of G [

Vi j ∪ {i, j}], the subgraph induced by Vi j ∪ {i, j}.
Definition 7 Let G = (N ∪ I , L, ψ) be a multigraph. We will say that G is a network
of intermediaries of N if the following two conditions are satisfied:
1. for each vertex k ∈ I there exist i, j ∈ N such that k ∈ Vi j .
2. Vi j ∩ Vrs = ∅ for {i, j} �= {r , s}.

The second condition of the definition above guarantees that connection games are
defined on disjoint sets, an essential requirement for the construction of the kind of
compound games we have dealt with in this paper. We will denote such a network as
GN .

Remark 2 There may be networks whose agents share intermediaries, that is networks
where an intermediary agent connects distinct pairs of players, but these kind of
intermediaries will not be analyzed in this paper.

Example 4 Let G = (N ∪ I , L, ψ) be the multigraph shown in Fig. 4. We have:

V12 = {I1}, V23 = {I2, I3}, V34 = {I4, I5}.
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Fig. 5 Underlying simple graph of Fig. 4

The idea now is to “modify” the initial game (N , v) considering all their interme-
diaries, expanding the definition of multigraph-restricted game to the new context.

Definition 8 Given a game (N , v) and a network of intermediaries of N , GN = (N ∪
I , L, ψ), the intermediaries game (N ∪ I ∪ L, w) is defined by

w (S ∪ J ∪ A) =
∑

T ∈(S∪J )/A

v(T ) =
∑

T ∈S/A

v(T ), for all S ⊆ N , J ⊆ I , A ⊆ L,

where (S ∪ J ) /A is the set of the connected components of (S ∪ J ) in A.

Our main effort, next, is to simplify the calculation of the Shapley value, by using
the encapsulation procedure defined in previous section, so that the network in Fig. 4
can be analyzed thought its underlying simple graph represented in Fig. 5.

In order to do so, first, the definition of connection game between two players of
N must be modified. Given a game (N , v) and a network of intermediaries of N ,
(N ∪ I , L, ψ), the modified connection game (Vi j ∪ Ei j , ci j ) is then defined by

ci j (J ∪ A) =
{
1, if i and j are connected in G by elements of J ∪ A,
0, else,

for all J ⊆ Vi j , A ⊆ Ei j .
The next theorem gives the way to calculate the Shapley value of the players of the

initial game (N , v) taking into account any intermediaries network.

Theorem 2 Let v a game with player set N = {1, 2, ..., n}. Consider two different
networks of N: the first one is an intermediaries network GN = (V , L, ψ) where
V = N ∪ (∪i, j∈N Vi j

)
and L = ∪i, j∈N Ei j whereas the second one is the simple

graph G0 (N , L0) where {i, j} ∈ L0 if and only if Vi j ∪ Ei j �= ∅. Let w and u be
the corresponding point-arc games. Suppose that the “time of arrival” variable of the
elements of V ∪ L is uniformly distributed, while the “time of arrival” variable of link
ai j ∈ L0 has the following distribution

Gai j (t) = gi j

(
t|Vi j ∪Ei j |

)
,

where gi j is the multilinear extension of the connection game (Vi j ∪ Ei j , ci j ). Then

�i (w) = Zi (u), for i ∈ N,
∑

k∈Vi j ∪Ei j
�k(w) = Zai j (u), for ai j ∈ L0,

where Z(u) is the weighted Shapley value of game u.
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Fig. 6 Chain of connected intermediaries between two adjacent nodes

We omit the proof of Theorem 2. We point out merely that this proof is similar
to—but lengthier than—the proof of Theorem 1. There are two key ideas: the first one
is that w can be represented as a compound game as follows:

w = u
[
(vi )i∈N ,

(
ci j

)
ai j ∈L0

]
,

where vi is the simple 1-person game defined by vi ({i}) = 1 and ci j is the connection
game (Vi j ∪ Ei j , ci j ). The fact that the games have disjoint carriers is due to the second
condition of definition 7. The second key idea is that the work done by intermediaries
can be represented by probability distributions, for which it is essential to know the
multilinear extension of each connection game. Let us then explain how to calculate
the multilinear extension gi j of many connection games ci j . We start with two basic
networks between two players: the network consisting in m parallel links (Fig. 3) and
the network formed by m interrelated intermediaries (Fig. 6). In the case of m parallel

links we have found that the multilinear extension is gi j

(−→
t li j

)
= 1 − (1 − t)li j

(Lemma 4). We calculate below the multilinear extension for the case where there are
m interrelated intermediaries.

Lemma 2 Let GN = (N ∪ I , L, ψ) be a network of intermediaries of N and i , j ∈ N
two adjacent nodes. Suppose that there is one and only one (i, j) − path (Fig. 6)

Let also gi j be the multilinear extension of the connection game (Vi j ∪ Ei j , ci j ).
Then

gi j

(−→
t 2|Vi j |+1

)
= t2|Vi j |+1,

where t ∈ [0, 1].

Proof The multilinear extension of the connection game ci j is given by

gi j

(
x1, x2, . . . , x2|Vi j |+1

)
= ∏

k∈Vi j ∪Ei j

xk ,

then

gi j

(−→
t 2|Vi j |+1

)
= t2|Vi j |+1.

�
Once it is understood how to deal with these two cases (m parallel links and m

interrelated intermediaries), the multilinear extension of the gameci j determined by
many networks of intermediaries is obtained by applying the following results. It is a
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Fig. 7 Alternative intermediaries between two adjacent nodes

matter of applying successive reductions to the set of links and intermediaries in such a
way as to simplify the network by appropriately combining the two basic results. This
again can be modelled using compound games for which their multilinear extensions
is achieved as a composition of multilinear extensions of simpler games.

Lemma 3 Let GN = (N ∪ I , L, ψ) be a network of intermediaries of N = {1, 2} such
that the intersection between every two (1, 2)−paths is empty. Let GP = (N , L P )

be the multigraph, where each link ei ∈ L P represents a (1, 2) −path in GN . The
connection game c12 can be represented as a compound game as follows

c12 = cP
12

[(
cr
(1,2)−path

)

r∈P

]
, with P = |(1, 2) − paths| ,

where cP
12 is the connection game defined on multigraph GP and cr

(1,2)−path is a
connection game defined on the elements of each (1, 2)−path. Moreover, if g12, f
and h are the multilinear extensions of games c12, cP

12 and cr
(1,2)−path respectively, we

have that

g12
(−→x |I∪L|

) = f (h(x)) , with x = (
(xi )i∈I , (xk)k∈L

)
, (5)

being

h(x) = ((
hr
12 (xs)

)
r∈P

)
, with −→x s = (

xr
1, ..., xr

s

)
,

where s is the number of elements in thecorresponding (1, 2) −path.

We omit the proof of lemma 3, which relays on the fact that composition of games
corresponds to composition of their multilinear extensions. Through next examples
we will show how to apply the last lemma.

Example 5 Suppose that the intermediaries network of N = {1, 2} consists in m alter-
native intermediaries between 1 and 2 (Fig. 7).

To calculate the multilinear extension of game c12, we first calculate the multilinear
extension of each path connection game, which in this case is the same for all m paths
and applying the lemma 2 is hr

12(t, t, t) = t3 for r = 1, . . . , m. Then the multilinear
extension of c12 is given by

g12(
−→
t ) = f

(
h1
12(t, t, t), . . . , hm

12(t, t, t)
)

= f
(

t3, t3, t3
)

= 1 − (1 − t3)m ,

where f (t, t, t) = 1 − (1 − t)m .
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Example 6 Consider the intermediaries network represented in Fig. 4. To see what
happens between agents 1 and 2, firstwe observe that there are 3 paths connecting 1 and
2, the multilinear extension of the path connection game going through intermediary
1 is h12(t, t, t) = t3, then

g12(
−→
t ) = f

(
h1
12(t), h2

12(t), h3
12(t, t, t)

)
= f

(
t, t, t3

)
= 1 − (1 − t)2(1 − t3).

To calculate the multilinear extension of many connection games you would also
need a result in which the pieces we reduce first are the multiple links that are part of
a chain of interrelated intermediaries. In any case we would also have a composition
but now the roles of the games in the compound game of the previous lemma would
be reversed. Let us see how it works with the following example.

Example 7 Consider again the intermediaries network represented in Fig. 4. Note that
between agents 2 and 3 there is a chain of interrelated intermediaries and that there
are multiple channels between the intermediaries. First we reduce the multiple links
and then we apply the result of lemma 3:

g23(
−→
t ) = h23(g

P
2I2(t, t), t, gP

I2 I3(t, t, t), t, gP
I33(t, t)), (6)

where

gP
2I2(t, t) = 1 − (1 − t)2, gP

I2 I3(t, t, t) = 1 − (1 − t)3, gP
I33(t, t) = 1 − (1 − t)2.

Substituting in (6) and applying h23 we obtain

g23(
−→
t ) = t2

(
1 − (1 − t)2

)2
((1 − (1 − t)3) = t5 (t − 2)2

(
t2 − 3t + 3

)
.

4.1 Properties of intermediaries

A model about intermediaries in a game should be calibrated with the following two
properties: the Shapley value of the players increases with the number of alternative
intermediaries (agents’ negotiation power is greater than having only one interme-
diary), while it decreases as the number of complementary intermediaries (a large
number of intermediaries in series decreases the agents’ negotiation power). This
follows immediately from the corollaries 1 and 2.

Corollary 1 Let N = {1, 2}, v = u12 and GN = (N ∪ I , L, ψ) be the network with m
alternative intermediaries (Fig. 7). Then

�1(w) = �2(w) =
∫ 1

0
t(1 − (1 − t3)m)dt = 1

2
−

⎛

⎝1

3

� (m + 1)

�
(

m + 5
3

)�

(
2

3

)⎞

⎠ ,

where w is the corresponding point-arc game to u12 and GN .
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Fig. 8 Diagram of multiigraph GN of example 8

Corollary 2 Let N = {1, 2}, v = u12 and let GN = (N ∪ I , L, ψ) be the network of
m −1 intermediaries of N be a chain where players 1 and 2 are the end nodes depicted
by Fig. 6. Then

�1(w) = �2(w) =
∫ 1

0
t · t2m−1dt =

∫ 1

0
t2m dt = 1

2m + 1
,

where w is the corresponding point arc-game to u12 and GN .

4.2 The impact of the intermediaries

In the context of a market design, for instance, the optimal number of participant
agents on the market is typically of concern. We address such issue by determining
the number of intermediaries between two nodes that ensures a Shapley value above
a given threshold.

4.2.1 Optimal design of networks in an economic environment

In the process of defining the intermediaries or the different communication channels
between two nodes proposed in this paper, the role of the game v is essential. The
characteristic function, v, measures the actors economic possibilities. In this way, v(S)

represents the profit of s players when there are no restricted relations. We modify
the economic position of coalition S so as to reflect the environmental restrictions
introduced by the intermediaries network and therefore we are able to optimally design
networks in an economic environment. We can solve problems such as: What is the
maximum number of interrelated intermediaries between each two players that allows
players to retain a given proportion α of their Shapley value in the game? This question
can be easily answered by solving following equation: Zi (u) = α�i (w). More insight
on how both intermediaries and possible communication channels between nodes
affect the results of a game, can be obtained through the following numerical example.

Example 8 Let N = {1, 2, 3} be the set of players, I = {4} the set of intermediaries and
GN = (N ∪ I , L, ψ) an intermediaries network of N (Fig. 8), where L = {a, b, c, d}
and ψ(a) = ψ(b) = {1, 2}, ψ(c) = {2, 4} and ψ(d) = {3, 4}.

Consider the voting game v = u{1,2} + u{2,3} − u{1,2,3}, (where uS is the unanimity
game), where N may be considered as a committee of three members, of whom 2 is a
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Fig. 9 Underlying simple graph of multigraph in 8

veto-holding chairman. Applying this last theorem, we can obtain the Shapley value
of w, the intermediaries game to v and GN , by considering the game u corresponding
to v and GN0 = (N , L0) where L0 = {a12, a23} (Fig. 8).

The distributions of the “time of arrival” variable for the arcs a12 and a23 are given
by

Ga12 (t) = 1 − (1 − t)2 and
Ga23 (t) = t3.

The multilinear extension f of game u is

f (x1, x2, x3, a12, a23) = x2 (a12x1 + a23x3 − a12a23x1x3) .

Then

�1 (w) =
∫ 1

0
∂1 f

(
t, t, t, 1 − (1 − t)2 , t3

)
dt = 43

168
.

In a similar way we obtain

�2 (w) = 383

840
and �3 (w) = 11

280
.

The results are intuitive. The symmetry given by the game between player 1 and player
3 is broken in favor of player 1 because clearly their connections are better than those of
player 3. We cannot calculate the Myerson value of this network game, since Myerson
only considers simple links. However, the Myerson value of the closest situation (the
graph would correspond to graph GN0 = (N , L0)) would be μ (v) = ( 1

6 ,
2
3 ,

1
6

)
, which

in this case also coincides with the Shapley value of the game v. Clearly μ (v) do not
capture the asymmetry of the link connections. Thus, our treatment of the situation
allows us to analyze successfully this kind of asymmetries.

4.2.2 Times of negotiation

Another application of the theorem is analyzing the impact of the network of interme-
diaries on the economic performance of a coalition, taking into account the times of the
negotiation. Working with probability distributions allows the following parametric
analysis.

Example 9 Consider the network of N = {1, 2} consisting in m parallel links. The
mean of the probability distribution Ga(t) = 1 − (1 − t)m which encapsulates the
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Fig. 10 Diagram of multigraph GN of example 10

work of the different communication channels is given by

E [X ] = 1 −
∫ 1

0
1 − (1 − t)m dt = beta (1, m + 1) = 1

m + 1
.

Thus

lim
m→∞ E [X ] = 0.

Then the average time of arrival of the information through multiple parallel channels
decreases as the number of channels increases. In this situation we see that the more
the channels are, the smaller is the average time of arrival of the information through
the channels. Expressing differently this idea: the more channels the more reliable the
network will be.

Example 10 Consider m − 1 intermediaries interrelated for N = {1, 2}. The mean
of the probability distribution Ga(t) = t2m−1 which encapsulates the work of the
intermediaries is given by

E [X ] = 1 −
∫ 1

0
t2m−1dt = 1 − 1

2m
= 2m − 1

2m
.

Thus

lim
m→∞ E [X ] = 1.

Once again we see that the model reflects well the essence of the work done by
intermediaries. In this case, the average time of arrival of the information through the
channels increases as the chain of intermediaries is made longer, or in an equivalent
way, it is shown that the more intermediaries the less reliable the network will be.

Example 11 Consider v a game, whose player set is N = {1, 2} and let GN be the
network of intermediaries represented in following figure, being ki = k for all i =
1, . . . , m.

Then the probability distribution encapsulating the work of the network is

Ga (t) = tm−1
(
1 − (1 − t)k

)m
, 0 ≤ t ≤ 1.
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The mean of the distribution Ga (t) is given by

E [X ] = 1 −
∫ 1

0
tm−1

(
1 − (1 − t)k

)m
dt

= 1 −
m∑

j=0

(−1) j
(

m

j

)
beta (m, k j + 1) .

Note that for j ≥ 1

(
m

j

)
= m!

j ! (m − j)! = 1

j

m!
( j − 1)! (m − j)! = 1

j

1

beta ( j, m − j + 1)
.

Finally we get following expression of E [X ]

E [X ] = 1 − 1

m
−

m∑

j=1

(−1) j 1

j

beta (m, k j + 1)

beta ( j, m − j + 1)
.

As can be seen, the average time of arrival decreases with communication channels
but increases with intermediaries.

5 Final comments

In thismanuscriptwepropose a novel approach to computeShapley values for games in
which players are represented in graphs that describe several possible communication
channels. Unlike the basic Myerson model, the graph is allowed to have multiple links
between the same two nodes, and it is allowed to have nodes that do not correspond
to players.

This work represents a methodological contribution to the analysis of games in
multigraph settings. As such, it could be employed to study centrality measures in
multigraphs, as it has been previously developed for simple graphs in the work of
Gómez et al. (2003).

Moreover, this method represents a powerful tool in the growing field of networks
economies, where the Shapley value plays a key role in modeling decision making.
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Appendix

Lemma 4 Let G = (N , L, ψ) be a multigraph and i , j ∈ N two adjacent nodes. Let
also gi j be the multilinear extension of the connection game (Li j , ci j ). Then

gi j

(−→
t li j

)
= 1 − (1 − t)li j ,

where
−→
t li j = (t, t, ..., t)︸ ︷︷ ︸

li j times

.

Proof By definition 2 the multilinear extension of the connection game ci j is given
by

gi j
(
x1, x2, . . . , xli j

) =
∑

A⊆Li j
A �=∅

∏
k∈A

xk
∏

k /∈A
(1 − xk) ci j (A)

=
∑

A⊆Li j
A �=∅

∏
k∈A

xk
∏

k /∈A
(1 − xk) . (7)

Then

gi j

(−→
t li j

)
=

li j∑

k=1

(
li j

k

)
tk (1 − t)li j −k

=
li j∑

k=0

(
li j

k

)
tk (1 − t)li j −k − (1 − t)li j

= (t + (1 − t))li j − (1 − t)li j = 1 − (1 − t)li j .

F (x1, x2, ...xn) =
∑

S⊆N

{∏
i∈S

xi
∏
i /∈S

(1 − xi )

}
v(S),

�
Remark 3 The expression (7) can be rewritten as 1 − ∏

k∈Li j
(1 − xk). Therefore

∂gi j (xi j )

∂xe
= ∏

k∈Li j
k �=e

(1 − xk) and
∂gi j

(−→
t li j

)

∂xe
= (1 − t)li j .
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