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1 | INTRODUCTION

An outbreak of a new coronavirus disease that causes potentially lethal respiratory tract infections in humans was detect-
ed for the first time in China in December 2019. The so-called coronavirus (COVID-19) spread rapidly to other countries. 
The first wave of contagion of COVID-19, hit Europe hard, especially Italy, Spain and several weeks later the United 
Kingdom. In Spain, the first case was confirmed in the Canary Islands on January 31. As shown in Figure 1, the virus 
spread rapidly to other provinces due to human mobility. All the Spanish provinces had already registered cases by 
March 14. Social distancing was encouraged on 9 March. The Governments of Madrid, La Rioja and the Basque Country 
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Abstract
This paper examines the propagation of COVID-19 across the Spanish provinc-
es and assesses the effectiveness of the Spanish lockdown of the population im-
plemented on March 14, 2020 in order to battle this pandemic. To achieve these 
objectives, a standard spatial econometric model used in economics is adapted 
to resemble the popular reproduction models employed in the epidemiological 
literature. In addition, we introduce a counterfactual exercise that allows us to 
examine the Gross domestic product (GDP) gains of bringing forward the date 
of the Spanish Lockdown. We find that the number of COVID-19 cases would 
have been reduced by 70.4% in the absence of spatial propagation between the 
Spanish provinces. We also determine that the lockdown prevented the prop-
agation of the virus within and between provinces. As such, the Spanish lock-
down reduced the number of potential COVID-19 cases by 82.8%. However, the 
number of coronavirus cases would have been reduced by an additional 11.6% 
if the lockdown had been brought forward to March 7, 2020. Finally, an earlier 
lockdown would have saved approximately 26,900,000,000 euros.
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prohibited all in-class teaching in their regions over the following 3 days. Local outbreaks forced the Government of 
Cataluña to quarantine four Catalan municipalities on 12 March. The Spanish government declared a national lockdown 
of the population (or state of alarm) and prohibited public events on 14 March in an attempt to combat COVID-19. All 
shops except pharmacies and stores selling basic necessities were also forced to close. As the pandemic continued to 
spread after this date, it is germane to assess the effectiveness of this dramatic public intervention as well as the impact of 
other control measures. How human mobility explains the initial spread of COVID-19 is also an interesting issue worthy 
of close examination as it might prove helpful in understanding the propagation of the pandemic as well as limiting the 
impact of future waves.1

This paper aims to shed some light on the above issues using a spatial econometric analysis of the coronavirus propa-
gation in Spain. Our empirical model aims to explain the daily evolution of the confirmed cases in the Spanish mainland 
provinces during the period between the onset of the pandemic in each province and April 4, 2020. In line with Giuliani 
et al. (2020), we distinguish between the propagation of the virus within a neighborhood, city or province and the propa-
gation of COVID-19 across provinces. The origin of said spatial dimension of propagation is the high mobility of people 

F I G U R E  1  Geographical distribution of cumulative cases from March 1, 2020 to April 4, 2020 [Colour figure can be viewed at  
wileyonlinelibrary.com]
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across provinces. This feature enables us to test whether the lockdown was effective in both preventing the propagation 
of the coronavirus between provinces and in attenuating the propagation of the virus within each province.

The added value of this study is the following. This is the first paper that examines the effectiveness of the control 
measures in Spain, as well as being one of the first in the recent literature that achieves this objective by controlling for 
spatial propagation effects, an issue that is treated only marginally in the epidemiological literature. Noteworthy excep-
tions are Giuliani et al. (2020), Gross et al. (2020), and Dickson et al. (2020). While most of the previous literature aims to 
estimate reproductive numbers, mortality, and other epidemic features, we apply more standard econometric techniques 
used in economics to carry out our empirical exercise. We show how such a model can be adapted to resemble the popular 
reproduction-based models used in the epidemiological literature, which often ignore the existence of spatial propagation 
effects and unobserved local conditions.

In addition, this paper includes a second major contribution, given that we also examine the economic impact of the 
Spanish lockdown implemented on March 14, 2020 in terms of Gross domestic product (GDP) losses at regional level. 
Based on the annual GDP growth rate forecasts per week of lockdown provided by BBVA Research (2020), using a coun-
terfactual exercise we compute the economic effect of the actual lockdown and the GDP gains of bringing forward the 
date of the Spanish Lockdown.

The paper is structured as follows. Section  2 summarizes the empirical strategy used in this paper to assess the 
effectiveness of sizable public control measures implemented nationwide in Spain aimed at containing the outbreak, 
controlling for (and measuring) expected propagation effects across the Spanish mainland provinces. Section 3 briefly 
describes the data used in the empirical analysis and its sources. Section 4 provides the parameter estimates and discusses 
the main results. Finally, Section 5 presents the conclusions.

2 | MODELING LOCKDOWN IMPACT AND CORONAVIRUS PROPAGATION

This section outlines the main features of the empirical strategy used in this paper to assess both the propagation of 
coronavirus across the Spanish provinces and the effectiveness of the control measures implemented at containing the 
outbreak. We also discuss in two separate sub-sections the drawbacks of our empirical strategy, as well as the choice of 
the most suitable econometric specification for achieving the abovementioned objectives.

2.1 | Epidemic curve specification

This sub-section introduces the functional form of the epidemic curve to be estimated and the set of variables that will be 
used to capture the spread of the virus within and between provinces.

Consider a panel of 1,…,E i n provinces observed on 1,…,E t T  days. Let iE E  denote the onset date of the epidemic, that 
is, the date in which province i reports its first coronavirus case. We then analyze the development of the epidemic in 
each province, that is, the temporal evolution of coronavirus cases once each province reports its first coronavirus case.

Let itE Y  denote the cumulative number of confirmed (reported) coronavirus cases until day t in province i . As is custom-
ary in panel data settings, we next assume that the number of cases in day  can be expressed as a function of the number 
of cases on a previous day as follows:

  1it it itY Y (1)

where itE  can be interpreted as a heteroskedastic autoregressive parameter. For ease of notation, we have chosen a single 
temporal lag of itE Y  to represent this relationship. The autoregressive model (1) can be viewed as a reduced-form model that 
simply aims to fit the observed epidemic curve of cumulative cases. Therefore, our model does not make assumptions on 
the underlying parameters that determine the contagion of COVID-19. In this sense, we later show that a linear specifi-
cation of Equation (1) can fit the epidemic curve of several epidemiological models, which differ in their assumptions on 
the incubation period, and other critical parameters. For instance, the popular Susceptible, Infected and Recovered (SIR) 
and Susceptible, Exposed, Infectious and Recovered (SEIR) epidemiological models yield time-varying growth rates of 
cumulative cases, regardless of whether daily or longer temporal lags are used.

In this sense, a key variable to carry out this analysis is the epidemic time  it iE K t E  , which denotes the number of 
days relative to the onset date. We expect that the rate of growth of coronavirus cases varies with itE K  as the traditional 
epidemic curve for a single wave has an S-shaped form.
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The key aim of the coronavirus control measures is to reduce itE  . If itE  is equal to one, there are no new infections, 
and the pandemic has therefore been controlled. If itE  is greater than unity, new infections have been reported and the 
coronavirus pandemic is still spreading among the population despite the efforts to prevent the propagation of the virus. 
Our beta parameter (i.e., the rate of growth of cumulative cases) thus plays the same role as the so-called “reproductive 
number of the infection” ( E R ), a fundamental epidemiological quantity, representing the average number of infections per 
infected case over the course of their infection. As we will show later, our beta parameter is also related to another com-
monly used epidemiological quantity: the so-called “growth rate,” which is often defined as the proportional (per capita) 
change in number of new cases per unit of time.

In order to obtain a simple empirical specification of Equation (1), we take natural logarithms and perform a first 
differentiation of the model. This yields the following expression:

    
  1

Z W Xi it i t
it it itlnY lnY ln e (2)

where  iE  is a set of province-specific but time-invariant fixed effects, itE ln  is an exponential function of a set of covariates 
in order to impose the theoretical restriction  1itE  ,   1 2, ,…,t t t NtE X X X X  is a 1E Nx  vector of explanatory variables of the 
Spanish provinces, and   1 2, ,…,i i i iNE W W W W  is a spatial weight vector where the weights (   0,inE W i n ) measures the 
degree of human mobility (connectivity) between provinces. The E  parameter is the spatial autoregressive coefficient that 
measures the degree of spatial correlation between provinces. In our application, it can be interpreted as the propagation 
effect caused by the mobility of people across provinces.

The vector of covariates itE Z  includes two sets of variables. itE Z  firstly includes a third-order function of itE lnK  in order to 
capture the temporal pattern of the virus epidemic, conditional on the set of control measures.2 The growth rate of cumu-
lative cases in a simple SIR epidemiological model changes (decreases) with itE K  either in levels or logs (see the temporal 
evolution of the growth rate of cumulative cases provided in Figure A1 of Appendix A that can be obtained replicating 
the same simulation of Chudik et al., 2020). The decline in growth rates for this model is not linear over time, which in 
turn explains why the epidemic curve of cumulative cases is S-shaped. Similar comments can be made if we introduce 
an incubation period into the SIR model obtaining an SEIR model (see, e.g., Institute for Disease Modelling, 2020). More-
over, if the model is deterministic, the simulated growth rates of cumulative cases can be predicted accurately using a 
third-order function of itE lnK  (see again Figure A1 in Appendix A).

As pointed out by a referee, the time-varying growth rate of cumulative cases decreases in an SIR model probably 
because, in this model, a higher percentage of the population is no longer susceptible to the virus as time passes. Obvi-
ously, in a more realistic model, the growth rate of cumulative cases might also change over time due to the importation 
of cases (from other provinces or geographical areas) and the introduction of non-pharmaceutical interventions. On the 
one hand, these phenomena might explain why the S-shape of the epidemic curve cannot be perceived visually and on 
the other hand, justifies the inclusion of other explanatory variables such as spatially lagged indicators of the pandemic 
in neighboring provinces and dummy variables to capture the Spanish lockdown.

Second, itE Z  includes a dummy variable 14 tE M  that takes the value 1 from March 14, 2020, the day marking the impo-
sition of most of the coronavirus control measures by the Spanish Government. We also include 1- and 2-week lags of 
this dummy variable (i.e., 21tE M  and 28tE M  ) in order to capture larger effects attributable to the lockdown as time passes. 
This is an expected result due to the gap, which exists between when a person becomes infected and when they might 
subsequently infect another person, which is on average about 6 or 7 days (see, Flaxman et al., 2020, p. 18). Moreover, as 
pointed out by a referee, this result might also be caused by the lag between infection and the onset of symptoms and the 
existence of a large proportion of under-reported cases due to testing in March being saved and prioritized for only the 
most severe hospital cases.

Notice that our model specification looks like a Difference-in-Difference (DiD) model where we compare an out-
come variable before and after treatment (a policy measure), having controlled for unobserved differences across units 
(provinces). Although the lockdown of the population in Spain was implemented in all provinces on March 14, 2020, the 
advance of the pandemic in each province was rather different at that time. Therefore, our identification strategy is based 
on the relatively large dispersion of pandemic developments (i.e., onset dates) across provinces, and that the onset dates 
are orthogonal to the lockdown implementation date.

We estimate the above model after taking natural logarithms to make it linear. Once we take natural logarithms, and 
a traditional noise term is added, the model to be estimated is:

     i it i t itlnRate Z W X v (3)



OREA and ÁLVAREZ158

where Rate   lnY lnY
it it 1

 , itE v  is a mean-zero error term capturing random shocks, measurement or specification errors, 
and other unobservable variables not correlated with the rates of growth determinants. We used the logarithm trans-
formation of the growth rates because it can be estimated using the standard linear Fixed-Effect (FE) estimator, which 
is equivalent to a linear panel data DiD estimation (Lechner, 2010, p. 189). This estimator ensures obtaining consistent 
causal effects attributable to a given policy measure, even in those cases where the time-invariant unobservable variables 
are correlated with the treatment variable (the lockdown dummy variable in our case). For instance, in our application, 
we might think that the centrality of Madrid and the greater mobility of the people living in Madrid and other populated 
cities/provinces were responsible for triggering the implementation of the Spanish lockdown.

It is also worth mentioning that in our paper we are not examining causal epidemiological effects in the sense that, for 
instance, infected individuals in period t cause secondary infections in period t + 1, and so on. This type of causal effect 
cannot be examined using a reduced-form model that simply aims to fit the observed epidemic curve of cumulative cases. 
However, the DiD specification of our reduced-form model is able to measure causal effects of a different nature, that 
is, those attributable to the public control measures implemented nationwide in Spain around March 14, 2020 aimed at 
containing the coronavirus outbreak during the first wave of the pandemic.

There is an extensive literature on human mobility for measuring the spread of infectious diseases. In this sense, it is 
worth mentioning the articles by Belik et al. (2011) and Bajardi et al. (2011), among others, that provide computational 
and theoretical models seeking to address the effect of human mobility and mobility restrictions on containing outbreaks 
of infectious diseases. Findlater and Bogoch (2018) find that the increasing volume of passenger travel, especially by air, 
enabled the global epidemic transmission. More recently, the use of new technologies such as mobile phones has facilitat-
ed the measurement of human mobility and its effects on disease connectivity (Lai et al., 2019). The researchers actually 
focus on severe acute respiratory syndrome coronavirus 2, concluding that human mobility predicts the spread and size 
of the epidemic and that travel restrictions are particularly useful in the early stage of the outbreak (see, e.g., Kraemer 
et al., 2020). This literature also demonstrates that viruses can spread through human contact patterns (Liu et al., 2020), 
given that human mobility contributes to promote social interaction (Mollgaard et al., 2017). Several studies corroborate 
these findings for Europe (see, e.g., Iacus et al., 2020; Lemey et al., 2021).

Please note that we use a Spatial Lag Model (SLX) specification to examine the role of human mobility in spreading the 
virus across the Spanish provinces. Inter-provincial mobility is captured using the spatial weight matrix W W W

N
  1

, ,&  . 
This spatial matrix can be computed in different ways. We follow Giuliani et al. (2020) and Gross et al. (2020) and use a 
contiguity or binary E W  matrix, where the weights equal one for adjacent units and zero for non-bordering units. In their 
spatial analysis of the spread of COVID-19 in Italy, Bourdin et al. (2021) performed several tests to select the best spatial 
weight matrix and selected, like us, the first-order contiguity matrix.

We select the epidemic time of neighboring provinces (i.e., X ln K
it it
  ) in order to capture the potential propagation 

effects between provinces for two reasons. First, this variable is exogenous by construction. In a Spatial Autoregressive 
model (SAR) specification, itE X  is replaced with (a transformation of) the dependent variable, which is endogenous and 
should thus be instrumented as long as good instruments are available. Second, Vega and Elhorst (2015, p. 342) suggest 
taking the SLX model as a point of departure because this is not only the simplest specification but is also more flexible 
in modeling spatial spillover effects than other specifications.

2.2 | Drawbacks

Three drawbacks of our empirical strategy are worth noting. First, although the linear FE model (3) has some features 
that are very appealing for our application, estimating the above logged linear model implies dealing with the zero 
growth rates of cumulative cases that often appear at the beginning of outbreaks. We can address this issue by dropping 
such observations from the sample. As this approach might generate some kind of sample selection bias if the missing 
observations are not random, we instead replace the zero values with a tiny but positive number before taking logs and 
keep the adjusted zero-value observations in our sample. We include a new dummy variable controlling for (adjusted) 
zero values as an additional explanatory variable. This variable not only allows us to control for potential measurement 
issues but also to prevent the observed sharp declines in growth rates caused by zero values to distort the third-order 
parametric function of epidemic times.

Second, in the first wave of the pandemic, no European country had sufficient testing capacity so that reported cases 
are a small fraction of the true number of infections. We can discuss whether this issue matters in our empirical applica-
tion using the preliminary results of Orea et al. (2021), an ongoing study that complements the current paper as it tries to 
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account for the prevalence of undocumented cases. In this paper we propose a stochastic frontier analysis approach for 
estimating epidemic curves, where the unobserved cases are proxied using a one-sided random term in the same fashion 
as firms' inefficiency in production economics. We find that the average reporting rate is around 42%. Despite this, we ob-
tain very similar effects due to lockdown on the growth rates of coronavirus cases (6.8 percentage points [pp] on average) 
compared to our non-frontier application. So, our results would seem to be quite robust in terms of this issue.

Another but related matter has to do with the onset date of the pandemic used in our paper. Our epidemic time 
variable is defined as the number of days relative to the observed onset date of the pandemic, which relies on reported 
cases. Therefore, it is not a necessary circumstance that a single reported case on a certain date seeded the pandemic in 
a particular province due to underreporting of cases. In order to see whether in practice the gap between observed and 
true onset dates is an important issue, we have modified the simulation of Chudik et al. (2020) and simulated several sce-
narios with different observed onset dates due to underreporting.3 Two results of the simulation are worth mentioning. 
First, the goodness-of-fit of our model does not deteriorate when underreporting increases if the level of underreporting 
is common to all provinces. Second, the goodness-of-fit of the model does deteriorate when underreporting is large and 
the gap between observed and true onset dates varies notably across provinces. In this case, however, a linear model with 
fixed effects allowed us to retrieve the predictive capabilities of the model.

2.3 | Discussion on modeling choice

2.3.1 | Local versus global spatial spillovers

In this sub-section we discuss the nature of the spillovers generated by the SLX spatial specification of our epidemic 
curve. The spillovers induced by an SLX model are local in the sense that once the virus is transmitted from a province 
to another neighboring province, the transmission does not feedback and does not reverberate to other provinces. In this 
case, only adjacent neighbors are involved, but not higher-order neighbors. In contrast, the SAR model yields a more 
global spillover effect because it assumes that an impact on neighboring provinces reverberates to the neighbors of the 
neighboring provinces, neighbors to the neighbors, and so on, thus generating endogenous interaction and feedback ef-
fects (see LeSage, 2014). In this case, the propagation of an original outbreak involves more spatial observations.

The epidemiology literature focusing on the spatial propagation of COVID-19 highlights the contribution to the 
spread of the virus of both cross-border travel (Lemey et al., 2021) and local transmission (du Plessis et al., 2021). How-
ever, these papers do not discuss explicitly whether their transmission channels do have feedback effects between geo-
graphical units. This is the key issue that should guide the selection of a spatial econometric model. Although we believe 
that most of the inter-provincial mobility is local in nature due to regular commuting, we cannot rule out the possibility 
of more global effects caused by the transportation of goods or by business and leisure travelers.

As we do not have a theoretical justification for the selected spatial specification, we will proceed as follows with our 
empirical application. First, we will verify that the SLX model is able to capture all the spatial dependence in the depend-
ent variable through a set of spatial autocorrelation tests on the model's residuals. We will next provide the parameter 
estimates of an SLX model that uses a W matrix defined using information on human mobility across all Spanish prov-
inces, that is, not only between adjacent provinces. In this case, more spatial observations are involved, as occurs in the 
SAR and spatial Durbin models.

2.3.2 | Linear versus count regression models

In this sub-section we discuss the advantages of using a linear model instead of a count model. Both models mainly 
differ in their dependent (outcome) variables and distributional assumptions.4 Despite these differences, the parameter 
estimates in our linear model can be interpreted as a semi-elasticity of the number of new cases with respect to an ex-
planatory variable, in the same fashion as in count regression models.5

Although the interpretation of the estimated parameters is the same, the linear specification has some features that 
are critical in our application in order to measure the effectiveness of the Spanish lockdown in containing the propagation 
of COVID-19. First, running a linear model allows us to estimate a DiD model using the traditional FEs estimator. Esti-
mating a DiD model using a count regression model is contentious as different empirical strategies exist for incorporating 
fixed effects into a count regression model, and some of them are not true FEs models (see Allison & Waterman, 2002). 
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Moreover, Lechner (2010, p. 196) shows that estimating a DiD model with the standard specification of a count regression 
models (and other popular nonlinear models) would usually lead to an inconsistent estimator. Second, as the growth rate 
of cumulative cases is much less volatile than the number of new cases (or its growth rate), our linear model provides 
more accurate predictions than a count model. This is a feature of the model that is important in our application because 
we use predicted values to carry out our counterfactual analyses aimed at examining the effect of the Spanish lockdown.

Despite the fact that the FE linear model has some features that are very appealing for our application, we also pro-
vide the parameter estimates of a Negative Binomial (NB) model for robustness analyses. The NB model is also estimated 
using two different W matrices, in the same fashion as the linear models. Whereas the contiguity-based W matrix is 
computed using binary values indicating adjacent provinces, the so-called mobility-based W matrix is computed using 
information on human mobility across all the Spanish provinces.

3 | SAMPLE AND DATA

We have used several sources in order to collect a province-based dataset of coronavirus cases that permits the use of spa-
tial econometric techniques in order to capture spatial propagation effects across Spain. As most control measures began 
on the days of March 13, 2020 and March 14, 2020, we analyze data on coronavirus cases 2 weeks before and 2 weeks 
after those dates. In particular, our dataset covers the period between the onset of the pandemic in each province and 
April 4, 2020.

The daily evolution of laboratory-confirmed COVID-19 cases in Spanish mainland provinces was collected manually 
by the authors from the official press releases of the Spanish regional governments, the Ministry of Health and Wiki-
pedia. In particular, we had to consult these information sources to extend backward the provincial data published by 
Datadista in GitHub under a free License since March 13, 2020,6 the latter source extracting their data from a variety of 
documents published by the Ministry of Health. From March 28, 2020 onward, we collected the data directly using RTVE 
Flourish.7 We used the regional online data released by the Ministry of Health8 and the province-level data released by 
the Spanish regional governments in order to correct typos and the lack of information on coronavirus cases in some 
provinces (e.g., in Galicia). It should be noted that we were unable to obtain province-level data for the Cataluña region. 
For this reason, the whole region is treated as a single province.

We do not show the temporal evolution of reported coronavirus cases in each province due to space limitations, but 
they can be found in Orea and Álvarez (2020). We instead show the onset pandemic dates for each province in Figure 2, 
the latter determining the values of the epidemic times. A feature worth highlighting is the relatively large dispersion of 
onset dates across provinces. This feature is crucial for the estimation of Equation (3) because we need observations with 

F I G U R E  2  Observed onset date [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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both small and large epidemics in order to appropriately estimate the parametric function of itE lnK  , especially before the 
lockdown implementation date.

Figure 3 shows the box-plots of the growth rates of cumulative cases by epidemic time. This figure clearly reveals two 
relevant features. First, the growth rates are much larger at the beginning of the pandemic than when the epidemic had 
progressed. That is, our dependent variable tends to decrease over the epidemic time. Second, the volatility is much larger 
when itE K  is small and much smaller when itE K  increases. This calls for using heteroskedasticity robust standard errors 
when estimating our models.

Both linear and NB models are also estimated using a spatial W matrix that is computed using information on human 
mobility across all the Spanish provinces. Data on mobility flows is obtained from the Spanish National Statistics Insti-
tute (INE), which in November 2019 initiated an ambitious project aimed at measuring daily mobility based on tracking 
spatial-temporal mobile position data.9

4 | EMPIRICAL RESULTS

4.1 | Parameter estimates

Table 1 shows the parameter estimates of several epidemic curves. Whereas the dependent variable using a linear model 
is the growth rate of cumulative cases, the new cases per day is the dependent variable using the NB model. All models 
have been estimated using the FE estimator because we reject that no correlation exists between the province-specific ef-
fects and the regressors using the traditional Hausman test at any significance level. All specifications in Table 1 provide 
very similar results, indicating that our empirical strategy is quite robust. The coefficients of the third-order function of 

itE lnK  are all statistically significant. This is an expected result as the traditional epidemic curve is S-shaped and this form 
requires estimating up to a third-order function of the epidemic time.

The coefficients of 14E M  , 21E M  and 28E M  allow us to test whether the Spanish lockdown and the previous control 
measures enacted by regional governments were successful in attenuating the spread of the virus within each province. 
As social distancing was encouraged on 9 March and in the following 3 days several regional governments prohibited 
in-class teaching and forced local quarantines, we find a statistically significant coefficient for M14. We also find a statisti-
cally significant coefficient for M28, an expected result due the national lockdown of the population. Figure 4 depicts the 

F I G U R E  3  Daily growth rates of cumulative cases [Colour figure can be viewed at wileyonlinelibrary.com]
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new cases per day over time for the different provinces, sorted by regions. This explains why each plot in Figure 4 includes 
multiple lines. There are two vertical red lines. Whilst the left one identifies the implementation of the Spanish lockdown 
(i.e. March 14, 2020), the right vertical line labels March 28, 2020. Notice that the daily incidence peaked around March 
28, 2020 (i.e., when  37E t  or so), in many of the Spanish provinces. Therefore, this figure seems to support the idea that 
the Spanish lockdown started to have a significant effect on new cases and, hence, on cumulative cases 2 weeks after the 
implementation of the Spanish lockdown.

All models in Table 1 include two spatially lagged epidemic time variables. Our SLX spatial specification seems to cap-
ture all the spatial dependence in the dependent variable as we cannot reject the null hypothesis that the SLX residuals 
are not spatially correlated.10 A key result of our empirical exercise is the positive and statistically significant coefficient 
found for the spatially lagged variable, i tE W ln K  . This result provides evidence supporting the belief that human mobility 
did spread the virus across the country as it indicates that the growth rates of COVID-19 cases in one province depend on 
the development of the pandemic in other provinces.

Please note that we have interacted 14E M  with i tE W ln K  . This implies that the coefficient of i tE W ln K  measures propaga-
tion effects before the implementation of the Spanish lockdown. The coefficient of · 14i tE W ln K M  is negative and statisti-
cally significant, indicating that the lockdown has attenuated the COVID-19 propagation between provinces. Moreover, 
the combined effect of i tE W ln K  and · 14i tE W ln K M  is close to zero in most models. This suggests that the lockdown has been 
quite effective in preventing the propagation of the coronavirus between provinces. In addition to this, the negative effect 
found for · 14i tE W ln K M  indicates that the lockdown has been more effective in provinces that are either close to the epi-
centers of the coronavirus or adjacent to provinces at a more advanced stage of the pandemic. As in our paper, Dickson 
et al. (2020) find that in the northern Italian provinces the Government containment measures not only succeeded in 
drastically reducing the transmission of COVID-19 amongst individuals within the Italian provinces, but also avoided 
contagions between neighboring areas.

Dependent variable
W matrix

SLX model
ln Rate

Negative binomial
New cases

Contiguity Mobility Contiguity Mobility

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Epidemic time function

 lnK −1.183*** 0.138 −1.189*** 0.141 −0.806*** 0.260 −0.867*** 0.252

 lnK2 0.514*** 0.094 0.516*** 0.099 0.613*** 0.145 0.620*** 0.151

 lnK3 −0.110*** 0.020 −0.106*** 0.022 −0.039 0.034 −0.037 0.035

Lockdown variables

 M14 −0.390*** 0.089 −0.308*** 0.088 −0.414** 0.170 −0.145 0.120

 M21 −0.039 0.064 −0.070 0.068 0.129 0.101 0.139 0.106

 M28 −0.330*** 0.064 −0.362*** 0.068 −0.546*** 0.100 −0.542*** 0.105

SLX variables

 WlnK 0.289*** 0.057 0.032*** 0.009 1.048*** 0.186 0.140*** 0.017

 WlnK·M14 −0.204*** 0.036 −0.022*** 0.006 −0.683*** 0.084 −0.090*** 0.009

Overdispersion parameter

 lnα - - - - −1.058*** 0.104 −1.070*** 0.103

Fixed effects Yes - Yes - Yes - Yes -

Zero-value effect Yes - Yes - No - No -

Lockdown effect (p.p.) 6.4 - 5.5 - 9.9 - 3.9 -

R-squared (%) 81.0 - 80.9 - 20.3 - 20.5 -

Obs 1411 - 1411 - 1411 - 1411 -

Note: M14, March 14; M21, March 21; M28, March 28; p.p., percentage points; K, epidemic time (number of days relative to the onset date).
Abbreviation: SLX, Spatial Lag Model.
*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

T A B L E  1  Parameter estimates
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To conclude this section, it is germane to mention that we also regressed the estimated province fixed effects against 
a set of covariates in order to identify province-specific factors which intensify the pandemic's development in each 
province.11 This information can be very useful for policy makers and health authorities when planning the relaxation 
of future lockdowns. We find that the most-populated provinces have suffered more acutely from COVID-19, probably 
due to the agglomeration of individuals and the more frequent use of public transport in these provinces. Coronavirus 
proved more intensive in those provinces with a relatively large share of highly educated workers. This result is most 
probably linked to provincial international connectivity and the probability of traveling abroad and/or importing cases 
of COVID-19 from other countries. We also found that the COVID-19 pandemic proved more severe in those provinces 
with a relatively large share of service sector workers. In contrast, the pandemic was less harsh in provinces with a rela-
tively large share of workers in the agriculture and construction sectors. The risk of contagion in the service sector is not 
surprisingly much higher than in the construction and agricultural sectors because many service jobs are indoors, while 
most tasks in the other two sectors are mainly outdoors.

4.2 | Robustness analyses

Although in Table 1 all the models appear to provide similar parameter estimates, we next discuss some subtle but in-
teresting differences. First, whereas the estimated parameters are very similar regardless of whether we use linear or NB 
models, the goodness-of-fit of the linear models is fairly large (over 80%) compared to the NB models (around 20%), an 
expected result due to the large volatility of daily new cases. Second, both linear and NB models are estimated using con-
tiguity and mobility-based W matrices. While the first one is computed using binary values indicating adjacent provinces, 
the second one is computed using information on human mobility across all the Spanish provinces. The results of these 

F I G U R E  4  Provincial daily incidence, sorted by regions [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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two competing spatial specifications are very similar due to 77% of the variation of the weights of the mobility-based W 
matrix being explained by the binary values of the weights of the contiguity W matrix. For instance, the mobility-based 
SLX model only attributes a slightly smaller effect to the Spanish lockdown than our preferred model. As the goodness-of-
fit is slightly larger using the contiguity linkages, the latter model is used to carry out our simulation exercises. Interest-
ingly enough, we find that the effect attributable to the Spanish lockdown in the NB models varies considerably when we 
change the W matrix. This seems to indicate that the linear models are, in our application, more robust to the definition 
of the W matrix.

4.3 | Spatial propagation

Our preferred model indicates that on average the growth rates of cumulative cases increases 5.1 pp, from 17.1% to 22.2%, 
due to the spatial propagation between provinces. The spatial spillover varies over time. For instance, while the growth 
rate of cumulative cases attributable to inter-provincial propagation is on average about 8.8 pp before March 14, 2020, it 
decreases up to 3.3 pp after the implementation of the Spanish lockdown. This result again suggests that the lockdown 
was effective in preventing the propagation of the coronavirus between provinces.

We also performed a counterfactual exercise using the parameter estimates of our preferred model in order to simu-
late what would have happened on April 4, 2020 in the case of no spatial propagation between provinces. Table 2 provides 
the results of this simulation exercise. This table shows remarkable reductions in cumulative cases in the absence of 
spatial spillovers between provinces. The number of reported cases in the mainland Spanish provinces on April 4, 2020 
was 126,859. This number would have decreased to 37,557 if we drop the propagation between provinces. Therefore, the 
number of COVID-19 cases would have been reduced by 70.4% in the absence of spatial spillovers between the Spanish 
provinces.

Region Province
Reported
A

Simulated
B

Difference (%)
C = (A − B)/A

Andalucía Almería 346 242 −29.9

Andalucía Cádiz 846 380 −55.0

Andalucía Córdoba 974 225 −76.9

Andalucía Granada 1477 516 −65.1

Andalucía Huelva 279 149 −46.4

Andalucía Jaén 914 395 −56.8

Andalucía Málaga 1863 778 −58.2

Andalucía Sevilla 1602 461 −71.2

Aragón Huesca 396 244 −38.3

Aragón Teruel 371 103 −72.2

Aragón Zaragoza 2409 424 −82.4

Asturias Asturias 1605 726 −54.8

Cantabria Cantabria 1441 337 −76.6

CLM Albacete 2653 622 −76.6

CLM Ciudad real 3854 673 −82.5

CLM Cuenca 497 181 −63.5

CLM Guadalajara 858 265 −69.1

CLM Toledo 2169 532 −75.5

CyL Ávila 679 280 −58.8

CyL Burgos 985 178 −81.9

CyL León 1261 310 −75.4

CyL Palencia 472 232 −50.8

T A B L E  2  Spatial effects: Reported 
and simulated cases (April 4, 2020)
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Figure 5 allows an examination of the geographical distribution of the estimated spatial effects if we compare the 
actual distribution of cases on April 4, 2020 (top map) with the distributions of cases that would have been observed on 
April 4, 2020 in our hypothetical scenario (bottom map). This figure suggests that the spatial effect varies across provinc-
es. Indeed, we found that while the reduction of cases in the event of no spatial propagation is much larger in provinces 
that are either close to the epicenters of the coronavirus or adjacent to provinces at a more advanced stage of the pandem-
ic, it is smaller in the other provinces.

4.4 | Lockdown effects

We find using the parameter estimates of our preferred model that the growth rates of coronavirus cases decrease, on 
average, 6.4 pp (from 28.6% to 22.2%) due to the Spanish lockdown.12 As aforementioned, the reduction in the growth 
rate of cumulative cases attributable to the lockdown in provinces that are close to (far from) the epicenters of COVID-19 
or adjacent to provinces at more advanced stages of the pandemic, are much larger (smaller) than the abovementioned 
average value.

To provide information about the effectiveness of the lockdown by provinces, we have carried out two new counter-
factual exercises that simulate what would have happened in two different hypothetical scenarios. We first simulate the 
number of coronavirus cases if the lockdown had not been implemented around March 14, 2020. The counterfactual 
values were simulated from March 14, 2020 onward by adding the difference between simulated and predicted growth 
rates to the observed growth rates cumulative cases. The counterfactual values are then used to compute reductions in 
the number of coronavirus cases for each province and not only for the whole country as in Flaxman et al. (2020). The 
second counterfactual exercise tries to examine what would have happened if the lockdown had been implemented on 
March 7, 2020. This information can be very useful for policy makers and health authorities in the event of new outbreaks 

Region Province
Reported
A

Simulated
B

Difference (%)
C = (A − B)/A

CyL Salamanca 1659 653 −60.6

CyL Segovia 1148 259 −77.5

CyL Soria 803 392 −51.1

CyL Valladolid 1403 365 −74.0

CyL Zamora 339 161 −52.4

Cataluña Cataluña 26,032 8093 −68.9

Extremadura Badajoz 672 188 −71.9

Extremadura Cáceres 1375 570 −58.5

Galicia A Coruña 2180 1373 −37.0

Galicia Lugo 565 194 −65.6

Galicia Ourense 921 410 −55.5

Galicia Pontevedra 1519 821 −46.0

La Rioja La Rioja 2592 589 −77.3

Madrid Madrid 37,584 9266 −75.3

Murcia Murcia 1235 507 −58.9

Navarra Navarra 3073 976 −68.3

País Vasco Álava 2639 381 −85.6

País Vasco Vizcaya 4489 1248 −72.2

País Vasco Guipúzcoa 1500 543 −63.8

Valencia Alicante 2627 917 −65.1

Valencia Castellón 852 402 −52.8

Valencia Valencia 3701 992 −73.2

SPAIN - 126,859 37,557 −70.4

Note: A, Number of reported cases; B, number of simulated cases.

T A B L E  2  (Continued)
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of COVID-19 in Spain. The counterfactual values were simulated here from March 7, 2020 onward by subtracting the 
province-specific average of differences between simulated and predicted growth rates from the observed growth rates of 
confirmed cases. Table 3 provides the results of these two simulation exercises. Figure 6 compares the actual geographical 
distribution of coronavirus cases (shown in the middle map) with the counterfactual geographical distributions in the 
case of non-intervention (bottom map) and in the case of a hypothetical lockdown implemented on March 7, 2020 (top 
map).

The number of reported cases in Spanish mainland provinces on April 4, 2020 was 126,859. This number would have 
increased to 737,663 in the absence of lockdowns. Therefore, the lockdown implemented on March 14, 2020 reduced the 
number of potential COVID-19 cases by 82.8%. Similar numbers are found by Nussbaumer-Streit et al. (2020) in their 
rapid review of the literature related to COVID-19. They find that the quarantine measures reduce the number of people 
with the disease up to 81%. Using a similar approach, Cho (2020) recently found that the infection cases in Sweden would 
have been reduced by almost 75% had its policy makers followed stricter containment policies.

The largest reductions in coronavirus cases attributable to the Spanish lockdown are found again in provinces that 
are either close to the epicenters of the coronavirus or adjacent to provinces at more advanced stages of the pandemic, as 

F I G U R E  5  Spatial spillovers: geographical distribution of cumulative cases on April 4, 2020. (a) Actual cases with spatial spillovers. 
(b) Counterfactual cases with no spatial spillovers [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Region Province
Reported cases
A

Simulated cases Difference (%)

Mar 14
B

Mar 7
C

Mar 14
D = (B − A)/B

Mar 7
E = (A − C)/B

Both
F = (B − C)/B

Andalucía Almería 346 470 286 26.4 13.1 39.5

Andalucía Cádiz 846 2021 380 58.1 23.1 81.2

Andalucía Córdoba 974 15,078 35 93.5 6.2 99.8

Andalucía Granada 1477 12,347 111 88.0 11.1 99.1

Andalucía Huelva 279 671 103 58.4 26.3 84.8

Andalucía Jaén 914 2617 404 65.1 19.5 84.6

Andalucía Málaga 1863 4792 922 61.1 19.7 80.8

Andalucía Sevilla 1602 9168 416 82.5 12.9 95.5

Aragón Huesca 396 1073 90 63.1 28.6 91.7

Aragón Teruel 371 4922 14 92.5 7.3 99.7

Aragón Zaragoza 2409 37,372 169 93.6 6.0 99.6

Asturias Asturias 1605 3431 902 53.2 20.5 73.7

Cantabria Cantabria 1441 13,566 196 89.4 9.2 98.6

CLM Albacete 2653 57,665 170 95.4 4.3 99.7

CLM C. Real 3854 48,889 271 92.1 7.3 99.4

CLM Cuenca 497 8106 11 93.9 6.0 99.9

CLM Guadalajara 858 3913 241 78.1 15.8 93.9

CLM Toledo 2169 24,228 266 91.0 7.9 98.9

CyL Ávila 679 12,241 8 94.5 5.5 99.9

CyL Burgos 985 10,829 117 90.9 8.0 98.9

CyL León 1261 19,294 106 93.5 6.0 99.5

CyL Palencia 472 2736 35 82.8 16.0 98.8

CyL Salamanca 1659 5509 591 69.9 19.4 89.3

CyL Segovia 1148 11,766 178 90.2 8.3 98.5

CyL Soria 803 6145 39 86.9 12.5 99.4

CyL Valladolid 1403 29,383 112 95.2 4.4 99.6

CyL Zamora 339 1316 68 74.2 20.7 94.9

Cataluña Cataluña 26,032 92,979 10,742 72.0 16.4 88.4

Extremadura Badajoz 672 6332 97 89.4 9.1 98.5

Extremadura Cáceres 1375 4685 534 70.6 18.0 88.6

Galicia A Coruña 2180 3061 1698 28.8 15.8 44.6

Galicia Lugo 565 3210 70 82.4 15.5 97.9

Galicia Ourense 921 3210 235 71.3 21.4 92.7

Galicia Pontevedra 1519 3050 820 50.2 22.9 73.1

La Rioja La Rioja 2592 11,140 750 76.7 16.5 93.3

Madrid Madrid 37,584 188,028 11,927 80.0 13.6 93.7

Murcia Murcia 1235 2857 565 56.8 23.5 80.3

Navarra Navarra 3073 18,269 747 83.2 12.7 95.9

País Vasco Álava 2639 15,334 629 82.8 13.1 95.9

País Vasco Vizcaya 4489 10,033 2433 55.3 20.5 75.8

País Vasco Guipúzcoa 1500 3546 724 57.7 21.9 79.6

(Continues)

T A B L E  3  Lockdown effects: reported and simulated cases (April 4, 2020)
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T A B L E  3  (Continued)

Region Province
Reported cases
A

Simulated cases Difference (%)

Mar 14
B

Mar 7
C

Mar 14
D = (B − A)/B

Mar 7
E = (A − C)/B

Both
F = (B − C)/B

Valencia Alicante 2627 5416 1376 51.5 23.1 74.6

Valencia Castellón 852 2017 452 57.8 19.9 77.6

Valencia Valencia 3701 14,950 1279 75.2 16.2 91.4

SPAIN - 126,859 737,663 41,318 82.8 11.6 94.4

F I G U R E  6  Lockdown effects:  
Geographical distribution of cumulative 
cases on April 4, 2020. (a) Counterfactual 
cases if the lockdown were implemented 
on March 7, 2020. (b) Actual cases with the 
lockdown implemented on March 14, 2020. 
(c) Counterfactual cases with no lockdown 
[Colour figure can be viewed at  
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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the two last maps in Figure 6 suggest. We next discuss what would have happened if the lockdown had begun on March 
7, 2020. If the lockdown had been brought forward to March 7, 2020, the number of additional coronavirus cases would 
have been reduced from 126,859 to 41,318 in the Spanish Peninsula. Taken together both counterfactual analyses, the 
lockdown implemented on March 7, 2020 reduced the number of potential COVID-19 cases by 94.4%. Therefore, the 
number of coronavirus cases would have been reduced by an additional 11.6% if the lockdown had been brought forward 
to March 7, 2020, a reduction that potentially would have prevented the collapse of many hospitals in Spain.

4.5 | GDP savings of bringing forward the date of the Spanish lockdown

We finally examine the GDP gains of bringing forward the date of the Spanish lockdown. The second counterfactual 
exercise carried out in the previous section shows that many provinces would have had less than 28 new confirmed cases 
per 100.000 habitants during the 2 weeks prior to April 4, 2020. This in turn implies that on April 4, 2020 many regions 
would have already met one of the conditions stipulated by the Spanish Government to initiate the relaxation of the 
lockdown measures.

The easing of the lockdown restrictions in Spain began on May 11, except in Castilla-León, Cataluña and Madrid 
where it started on May 25. Table 4 shows the duration of the actual lockdown in the Spanish mainland regions (see the 
second column). The strictest part of the confinement lasted 8.3 weeks in all regions, except in the three aforementioned 
regions where the confinement was extended by 2 weeks. The first column in Table 4 shows the annual GDP growth 
rate forecasts per week of lockdown provided by BBVA Research (2020). Based on this information, the third and fourth 
columns use this information to compute the economic effect of the actual lockdown in terms of GDP growth rates and 

GDP growth 
per weeka (in 
%)

Lockdown from 14 Mar onward
Simulated lockdown from 7 Mar 
onward

Difference 
in GDP 
lossesf 
(in 1000 
millions)

Lockdown 
durationb 
(in weeks)

GDP 
growthc 
(in %)

GDP lossesd 
(in 1000 
millions)

Lockdown 
duratione 
(in weeks)

GDP 
growthc 
(in %)

GDP lossesd 
(in 1000 
millions)

Andalucía −1.04 8.3 −8.6 −13.4 5 −5.2 −8 5.3

Aragon −0.85 8.3 −7.0 −2.5 4.5 −3.9 −1.4 1

Asturias −1.00 8.3 −8.3 −1.9 6 −6 −1.4 0.5

Cantabria −1.00 8.3 −8.3 −1.1 4 −4 −0.5 0.6

C. La Mancha −0.80 8.3 −6.6 −2.6 6.2 −5.0 −2.0 0.6

Castilla Leon −0.93 10.3 −9.5 −5.3 6.2 −5.8 −3.2 2.1

Cataluña −1.03 10.3 −10.5 −23.3 8 −8.2 −18.2 5

Extremadura −0.83 8.3 −6.8 −1.3 5.6 −4.6 −0.9 0.4

Galicia −0.93 8.3 −7.7 −4.6 6.0 −5.5 −3.3 1.3

La Rioja −1.00 8.3 −8.3 −0.7 8 −8 −0.7 0

Madrid −0.93 10.3 −9.5 −21.1 8 −7.4 −16.4 5

Murcia −1.04 8.3 −8.6 −2.6 4 −4.2 −1.3 1.4

Navarra −0.91 8.3 −7.6 −1.5 8 −7.3 −1.4 0

País Vasco −0.91 8.3 −7.6 −5.3 7.3 −6.7 −4.7 0.6

Valencia −1.04 8.3 −8.6 −9.3 6 −6.2 −6.7 2.6

All regions - - - −96.6 - - −69.7 26.9

Abbreviation: GDP, Gross domestic product.
aAnnual GDP growth rate per week of lockdown (BBVA Research forecast).
bThe easing of the Spanish lockdown restrictions started on May 11, except in Castilla-León, Cataluña, and Madrid where it started on May 25.
cAnnual GDP growth rate attributable to the whole lockdown.
dLosses computed using the GDP for 2019.
eWeighted average of provinces' lockdown duration.
fSimulated GDP losses minus GDP losses of the actual lockdown.

T A B L E  4  GDP losses of both simulated and actual lockdowns
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GDP losses. Given BBVA forecasts, the lockdown implemented on March 14, 2020 would have reduced Spanish GDP by 
96,600 million euros.

The next four columns on Table 4 provide an estimate of the economic disruption corresponding to a hypothetical 
lockdown implemented on March 7, 2020. The lockdown of a province is assumed to start easing on April 11, 2020 if two 
conditions are satisfied. The first is that it meets the criterion mentioned above of having less than 28 new confirmed 
cases per 100,000 habitants during the 2 weeks prior to April 4, 2020. The second is a condition that has to do with the 
(relative) capacity of its health services to deal with new cases of COVID-19, which a province meets if it has less con-
firmed cases per capita than the median province on April 4, 2020. The lockdown would have lasted only 4 weeks if a 
province had met these two conditions on April 4, 2020. If only one condition is met, the easing of lockdown restrictions 
is assumed to start on April 25, 2020, in which case the lockdown would have lasted 6 weeks. Finally, if neither of the 
conditions is met, the easing of lockdown is assumed to start on May 9, that is, 2 weeks later. Once the duration of the 
lockdown has been simulated for each province, a weighted average is computed for the whole region using the relative 
GDP of each province as weights. The simulated regional lockdown durations are shown in the fifth column. The next 
two columns show the simulated annual GDP growth rate and GDP losses using the annual GDP growth rates per week 
of lockdown shown in the first column. Given the BBVA forecasts, our simulated lockdown implemented on March 7, 
2020 would have reduced Spanish GDP by 69,700 million euros.

Finally, the last column on Table 4 shows the difference in GDP losses between the simulated and real lockdown. 
Summing across all regions, the estimated difference in GDP losses is around 26,900 million euros. Therefore, the simple 
economic analysis in Table 4 suggests that the final economic consequences of the confinement of population would 
have been much less severe if the Spanish lockdown had been brought forward to March 7, 2020.

5 | CONCLUSIONS

This paper examines the propagation of COVID-19 across the Spanish provinces and assesses the effectiveness of the 
Spanish lockdown of the population implemented on March 14, 2020 to combat the pandemic. To achieve these objec-
tives, we use a spatial econometric model that somehow mimics the popular reproduction-based models used in the 
epidemiological literature.

The main findings of the paper are the following. We provide evidence supporting the belief that human mobility did 
spread the virus across the country given that we observe that the growth rate of COVID-19 cases in one province de-
pends on the development of the pandemic in other provinces. We also find that the lockdown has been effective in both 
attenuating the propagation of the virus within each province as well as preventing the propagation of the coronavirus 
between provinces.

Our counterfactual analyses show that local and national lockdowns of the population are effective measures to 
combat COVID-19 in the absence of both pharmaceutical related measures (e.g., vaccines) and other non-pharmaceu-
tical interventions (e.g., massive testing, face-masks available for the whole population, etc.). However, they should be 
implemented at the very early stages of the pandemic. On the one hand, our analyses suggest that carrying out a gradual 
relaxation of the control measures in Spain, both across provinces and sectors is preferable. On the other hand, we find 
that the GDP losses attributable to the confinement of the population would have been reduced by 26.9 thousand million 
euros if the Spanish lockdown had been brought forward to March 7, 2020. As such, we find that a rapid institutional re-
sponse to the COVID-19 outbreak not only saves lives but would also have attenuated the economic impact of the Spanish 
coronavirus pandemic.
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ENDNOTES
 1 We thank the reviewers for pointing out to us that human mobility is a proxy for what we really think effects the spread of a contagious 

disease, that is, human contact patterns.
 2 Separate analyses or more flexible models must be implemented in order to account for more than one contagion waves (see, e.g., Dickson 

et al., 2020, who use B-spline regressors to model complex nonlinear spatio-temporal dynamics in the propagation of the virus).
 3 We have modified the simulation of Chudik et al.  (2020) as follows. We first generate the true evolution of total coronavirus cases in a 

representative province using the discrete-time SIR model developed by Chudik et al. (2020). Observed values for each province are then 
obtained by adjusting the theoretical values with simulated values for a one-sided (half-normal) random term capturing the proportion of 
undocumented cases. We replicate this procedure for different levels of underreporting. In all replications, the onset of the pandemic is 
associated with the day on which we observe the first case. Although all provinces have the same true onset date, the observed onset date of 
each province might differ due to underreporting.

 4 When the outcome is considered to be continuous, the data are frequently assumed to be normally distributed and linear least squares re-
gression techniques are applied. The count regression models provide an alternative approach for the analysis of discrete data, provided that 
the outcome follows , for example, a Poisson distribution, the over dispersion issue is correctly specified, and the model adequately fits the 
data.

 5 Notice that Rate Y Y Y N Y
it it it it it it
     1 1 1

/ /  , where itE N  stands for new cases in day t in province i. As the conditional ex-
pectation of itE lnRate  in our model is E lnN lnY Z W X Z W X

it it it i t i it i t
[( ) | , ]   1

    , the conditional expectation of itE lnN  is 
        1 1| , ,it it i t it i it i t itE E lnN Z W X Y Z W X lnY  . Therefore, despite their differences, both approaches are similar in the sense 

that the parameter estimates have the same interpretation.
 6 See https://github.com/datadista/datasets/tree/master/COVID%2019.
 7 See https://app.flourish.studio/visualisation/1451263/.
 8 See https://covid19.isciii.es/.
 9 See https://www.ine.es/experimental/movilidad/experimental_em.htm.
 10 According to Beenstock and Felsenstein (2019), the lack of spatial correlation in the residuals should be tested for each time period. The set 

of performed Moran's I and Geary's tests are available from the authors upon request.
 11 The parameter estimates are available from the authors upon request.
 12 Although the accumulated effect of this reduction is remarkable (see our results in Table 3), the epidemic did not stop growing by April 4, 

2020. Using our model, we can only conclude that the Spanish lockdown helped to attenuate the COVID-19 propagation during the first 
wave of contagion.
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APPENDIX A

F I G U R E  A 1  Growth rates of cumu-
lative cases in an Susceptible, Infected and 
Recovered models [Colour figure can be 
viewed at wileyonlinelibrary.com]
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