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ABSTRACT Sound Event Detection is a task with a rising relevance over the recent years in the field
of audio signal processing, due to the creation of specific datasets such as Google AudioSet or DESED
(Domestic Environment Sound Event Detection) and the introduction of competitive evaluations like the
DCASE Challenge (Detection and Classification of Acoustic Scenes and Events). The different categories
of acoustic events can present diverse temporal and spectral characteristics. However, most approaches use
a fixed time-frequency resolution to represent the audio segments. This work proposes a multi-resolution
analysis for feature extraction in Sound Event Detection, hypothesizing that different resolutions can bemore
adequate for the detection of different sound event categories, and that combining the information provided
by multiple resolutions could improve the performance of Sound Event Detection systems. Experiments
are carried out over the DESED dataset in the context of the DCASE 2020 Challenge, concluding that
the combination of up to 5 resolutions allows a neural network-based system to obtain better results than
single-resolution models in terms of event-based F1-score in every event category and in terms of PSDS
(Polyphonic Sound Detection Score). Furthermore, we analyze the impact of score thresholding in the
computation of F1-score results, finding that the standard value of 0.5 is suboptimal and proposing an
alternative strategy based in the use of a specific threshold for each event category, which obtains further
improvements in performance.

INDEX TERMS Sound event detection, multi-resolution, DCASE 2020 Task 4.

I. INTRODUCTION
Understanding the acoustic environment is an ongoing chal-
lenge for artificial intelligence which has motivated several
research fields. While some of them are focused in the
retrieval of information from specific kinds of acoustic sig-
nals, such as automatic speech recognition [1], [2], language
or speaker identification [3], [4] (for speech signals) or music
information retrieval [5], [6] (for musical signals), other tasks
aim to determine the categories which an audio recording
belongs to, among a set of target classes (e.g. human voice,
vehicle, musical instruments) [7]. These categories can either
refer to different environments where a recording can be
obtained (e.g. inside a house or in a crowded street) or to
different actions or sources which produced the obtained
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acoustic signals. In the former case, we talk about acoustic
scene classification [8], while in the latter the problem at hand
is sound event classification or detection [9].

Sound events can be defined as acoustic signals that have
a direct correspondence with particular occurrences in the
near environment. Hence, by hearing these sounds people can
infer that the event is happening somewhere around them.
Sound event classification and sound event detection (SED)
aim to solve this problem for machine perception. In the case
of sound event classification, signals are expected to belong
to one among a set of target categories, while the temporal
boundaries of the events are not relevant [10]. If multiple
categories can be assigned to each recording, the task is called
audio tagging [11]. The task that aims to find the time limits
of each event is sound event detection, which can be mono-
phonic (if only one event can be present at a given time) or
polyphonic (if different events can overlap in time). In every
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case, the set of target event categories is usually defined by
the field of application, ranging from a single target event
(e.g. speech activity detection) to potentially hundreds of
categories.

Training and developing modern systems for the afore-
mentioned tasks requires the use of large-scale labeled audio
event datasets. In the field of computer vision, the research
in object recognition was notably impulsed by the creation
of ImageNet, a large-scale, hierarchical image corpus [12].
This motivated the creation of Google AudioSet, a large-scale
audio dataset consisting of more than twomillion ten-seconds
audio recordings, annotated according to an ontology of more
than 500 sound events [13]. In the recent years, research has
been carried out not only aiming to detect every category in
AudioSet, but also focusing on smaller, application-oriented
subsets of event classes. Recent editions of DCASE Chal-
lenge (Detection and Classification of Acoustic Scenes and
Events), one of the most relevant international evaluations in
this field, have employed subsets of the recordings specified
in AudioSet for tasks such as audio tagging and sound event
detection [14]–[16].

Regarding the creation of audio event datasets, audio
recordings are relatively easy to obtain from web resources
like YouTube,1 Vimeo2 or Freesound.3 However, it is costly
to annotate them with human-verified event labels, therefore
it is common for large-scale audio datasets to include only
weak labels (i.e. indications of the presence or absence of
each event in a recording, without time boundaries), usually
obtained in a semi-automatic manner. A certain amount of
label noise is likely to appear in the process of annotation, due
to involuntary omission or insertion of labels in the ground
truth [10]. Hence, additional challenges arise in the learning
process, such as developing algorithms which are robust to
label noise [17] and inferring the temporal locations of events
from weak labels [18]. Moreover, validating the performance
of the systems requires verified annotations and, in the case
of sound event detection, strong labels (indicating temporal
onsets and offsets, in opposition to weak labels). For this pur-
pose, smaller datasets have been curated with human-revised
annotations [19].

Over the recent years, most works in Sound Event Detec-
tion have employed deep neural network (DNN) models,
being particularly common those with convolutional and
recurrent stages [20]. These systems usually take as input
time-frequency representations of audio signals based in the
Short-Time Fourier Transform (STFT). The most frequent
type of audio feature in this task is the mel-spectrogram,
a two-dimensional representation of audio which uses the
Mel-frequency scale. For a given audio sample frequency (fs),
the temporal and frequency resolution of such representation
is defined by the parameters of the feature extraction process:

1http://youtube.com/
2http://vimeo.com/
3http://freesound.org/

the size of the FFT, the temporal window of the STFT and the
number of Mel filters.

We hypothesize that, due to the different temporal and
spectral characteristics of different kinds of acoustic events,
employing several resolution points in the feature extrac-
tion process would improve the performance of sound event
detection systems. Following this idea, in this paper we pro-
pose a multi-resolution approach for the task of sound event
detection.

The use of multiple input resolutions has been already
explored in several deep learning applications. One of them is
the task of object detection in the computer vision field, which
can be considered an analogous problem to sound event
detection. However, multi-resolution has different properties
when dealing with image data or audio features. In a picture,
multiple resolutions can be helpful to recognize objects at
different scales [21], [22], but the desired benefit when using
more than one resolution in audio applications is to exploit
different details of the feature maps with each resolution
point. For instance, the use of two different resolutions has
been proposed to improve automatic speech recognition in
reverberant scenarios [23], in which a wide-context win-
dow gives information about the acoustic environment and
reverberation, whereas a narrow-context window provides
finer detail about the content of the speech signal. This is
possible due to the existence of a trade-off between time
resolution and frequency resolution in the extraction of Fast
Fourier Transform-based audio features [24] such as the mel-
spectrogram, which is also the base for the analysis proposed
in this work.

Our multi-resolution approach relies on two key aspects:
one of them is the choice of the time-frequency resolu-
tion points to be considered, while the other one is the
method employed to combine the different resolutions. Thus,
the intermediate stages between feature extraction and the
combination of resolutions (e.g. the topology of the neural
network models) are not affected by this approach and can be
considered as black-boxes to be used by the multi-resolution
system.

Considering that multi-resolution can be implemented
independently of the underlying sound event detection
systems, the potential improvements in performance are
complementary to those that could be obtained by optimiz-
ing the hyper-parameters of the neural networks. Therefore,
through this approach, multi-resolution could be added to
other DNN-based sound event detection systems in a similar
manner.

The proposed analysis is tested using a state-of-the-art
system, the baseline for DCASE 2020 Challenge Task 4
‘‘Detection and Separation of Sound Events in Domestic
Environments’’ [25]. The aim of this challenge is to make use
of unlabeled and weakly-labeled recordings, together with
strongly-labeled synthetic audio clips, to train systems that
predict the temporal locations of ten different event categories
in audio recordings. Furthermore, an additional contribution
of this paper is an exploration of the impact of different
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FIGURE 1. Ground truth event annotations provided for an audio
segment of the validation set. The horizontal bars represent the time
intervals where each event category is active. Several categories can be
active at the same time.

score thresholding strategies in the performance of the
systems.

The rest of the paper is structured as follows: Section II
presents the evaluation metrics, the dataset and the most com-
mon approaches of the DCASE Challenge Task 4. Section III
introduces the multi-resolution analysis, explaining its moti-
vation and giving details about the definition of different
resolution points. In Section IV the experimental frame-
work is described, discussing the details of the models
employed, the model fusion process, the F1-score threshold-
ing and the post-processing of scores. Section V contains the
results for the different experiments, discussing the impact
of multi-resolution and thresholding in the performance of
sound event detection, as well as a study of the behavior
of overlapped events, the impact in execution times, and an
analysis of the relationship between the results for each cate-
gory and the characteristics of the audio. Finally, Section VI
highlights the conclusions of this work.

II. SOUND EVENT DETECTION IN DCASE
2020 CHALLENGE
A. DCASE 2020 TASK 4: ‘‘DETECTION AND SEPARATION
OF SOUND EVENTS IN DOMESTIC ENVIRONMENTS’’
The goal of DCASE Challenge 2020 Task 4, ‘‘Detection
and Separation of Sound Events in Domestic Environments,’’
is to explore the use of both labeled and unlabeled data
to build systems for sound event detection, considering a
set of ten event categories drawn from the AudioSet ontol-
ogy. The target categories describe acoustic events typi-
cally found in domestic acoustic scenes: Speech, Dog, Cat,
Alarm/bell/ringing, Dishes, Frying, Blender, Running water,
Vacuum cleaner and Electric shaver/toothbrush. The task
consists on determining the starting and ending time of each
event found in the audio segments, considering that more than
one event category can be active at the same time. An example
is provided in Fig. 1.
Systems are evaluated by means of the F1-score metric,

widely used to measure performance in Sound Event Detec-
tion tasks [26]. In order to compute F1-score, some inter-
mediate metrics have to be computed: True Positives (TP),
False Positives (FP), and False Negatives (FN). Different

definitions of these statistics lead to either event-based or
segment-based F1 metrics.

For event-based metrics, each instance of an event in the
ground truth and each event predicted by the system are
considered in order to count TPs, FPs, and FNs. Usually,
a collar-based approach is taken, considering some toler-
ance (collar) for the estimations of onset and offset times.
A prediction is considered correct if the difference between
the predicted time and the ground truth is equal or lower than
the collar for both the onset and the offset times. The value
of collars in DCASE 2020 Task 4 is 200ms for onsets and
max(200ms, 0.2×event length) for offsets, hence the offset
collar is more tolerant for longer events, which often present
more diffuse endings.

Segment-based metrics, on the other hand, compare the
ground truth with the system predictions in short time inter-
vals. Each interval can be counted as a TP, a FP, or a FN
depending on its ground truth label and the system predic-
tion. While event-based metrics give the same importance
to each event, in segment-based metrics longer events are
considered more relevant, as they contain more time inter-
vals. Segment-based metrics are more robust to short pauses
between events that may not be reflected in the ground truth
labelling.

The F1-score for a given category is then obtained from the
number of TPs, FPs, and FNs.

F1 =
2× TP

2× TP+ FP+ FN
(1)

The global F1-score can be obtained in two different man-
ners. On the one hand, micro-averaged F1-score gives equal
weight to each event occurrence, thus the predominant cate-
gories in the dataset are given more importance. In contrast,
macro-averaged F1-score gives the same weight to each cat-
egory, independently of the number of occurrences.

Event-based, macro-averaged F1-score is the primary met-
ric in DCASE 2020 Task 4, whereas PSDS (Polyphonic
Sound Detection Score) is proposed as a complementary
measure of performance [27]. PSDS aims to solve several
issues of the F1-score as a performance metric for Sound
Event Detection:
• Single operating point. F1-score is defined using a
single decision threshold for each event category. More-
over, such decision threshold is usually set at 0.5 for
every category by default, with no evidence of this value
being optimal. On the contrary, PSDS considers a set of
thresholds linearly distributed between 0 and 1, averag-
ing the performance of the system in each one of them.
Thus, PSDS is independent of the choice of the decision
threshold.

• Subjectivity in ground truth. Human annotators can
label the starting and ending time of events in each
audio segment with sufficient precision, however, these
labels are not objective because the same recording
could be correctly labelled in several different ways. For
instance, a short event that happens three times in a brief
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lapse of time could be labelled by some annotators as
three different occurrences of the event, but as a single
occurrence by others. When evaluating a system with a
collar-based metric (e.g. event-based F1-score), none of
the possible system outputs would be correct for both
labeling options. In order to overcome this problem,
PSDS takes a different approach to the comparison of
predictions and labels, based on intersections rather than
time collars.

• Importance of cross-triggers. When training a sound
event detector with multiple target categories, some of
the false positive predictions can match a different event
class. These are called cross-triggers, and taking them
in consideration can provide a better understanding of
errors in the detectors. Cross-triggers are more usual
between acoustically similar categories, therefore they
might indicate a bias in data rather than a flaw in the
model.

PSDS introduces two criteria to define TPs and FPs. The
Detection Tolerance Criterion (DTC) sets a minimum inter-
section between a prediction and ground truth labels of the
same class for such prediction to be considered relevant.
Non-relevant predictions are counted as FPs. On the other
hand, Ground Truth intersection Criterion (GTC) controls
the minimum percentage of a ground truth label that must
be covered by relevant predictions of its class to be con-
sidered as a TP. A third rule, the Cross-Trigger Tolerance
Criterion (CTTC) is defined to set the necessary intersection
between a non-relevant prediction and ground truth labels of
a different class for the prediction to be considered a cross-
trigger.

For each of the three criteria, a parameter ρ defines the
corresponding ratio of intersection. In DCASE 2020 Task 4,
the value of these three parameters is fixed to ρDTC = 0.5,
ρGTC = 0.5, and ρCTTC = 0.3.
Moreover, two cost parameters are introduced. αct defines

the cost of cross-triggers in the PSDS score, while αst
penalizes the instability of TP rates across different classes.
By combining the value of these parameters, three PSDS
configurations are defined as follows:

• PSDS (αct = 0, αst = 0)
• PSDS Cross-Trigger (αct = 1, αst = 0)
• PSDS Macro (αct = 0, αst = 1)

B. DESED DATASET
The dataset used in DCASE 2020 Task 4 is DESED (Domes-
tic Environment Sound Event Detection) [16], [28]. DESED
is composed of real and synthetic audio recordings. Real
recordings are obtained from AudioSet segments, extracted
from YouTube, while synthetic recordings are generated by
overlapping foreground event clips from the target categories
over background recordings of domestic environments. The
generation of synthetic audio clips is performed with the
Scaper library [29], using foreground audios from Freesound
and backgrounds from the SINS dataset [30].

The DESED dataset for DCASE 2020 Task 4 is divided
into different subsets:

• Synthetic training set (2584 clips). Synthetic record-
ings with strong labels.

• Weakly-labeled training set (1578 clips). Real record-
ings from AudioSet with weak labels.

• Unlabeled training set (14412 clips). Real recordings
from Audioset which contain events from the set of
target categories, with no labels provided.

• Validation set (1168 clips). Real recordings from
AudioSet with human-annotated strong labels.

• 2020 Evaluation set. Real recordings from YouTube
and Vimeo with human-annotated strong labels (for sys-
tem ranking), and synthetic recordings with strong labels
(for result analysis). Ground truth labels are not publicly
available, but results can be obtained by sending auto-
matic annotations to the organizers of the evaluation.

C. EXISTING APPROACHES TO SOUND EVENT DETECTION
Existing trends in Sound Event Detection systems can be
described by observing the submissions to the DCASE Task
4 evaluations over the recent years. Since 2018, the same
set of sound event categories is used, as well as a similar
organization for the dataset.

Taking into account that Sound Event Detection aims
to infer the temporal locations of events in a given audio
recording, in general terms the input to the system is some
representation of the audio segment, while the final output is a
list of predictions indicating the starting and ending times and
the category of the event detected. Hence, the Sound Event
Detection task can be interpreted as an independent two-class
classification problem (presence or absence) for each target
event category, as described in Fig. 2.

In particular, DCASE Task 4 proposes an scenario where
only a small portion of the audio corpus is annotated. More-
over, these annotations were exclusively weak labels in
DCASE 2018 [20], while in 2019 an additional subset with
strongly-labeled, synthetic recordings was introduced [16].
To deal with the lack of strong labels, several semi-supervised
learning methods have been proposed. Pseudo-labeling [31]
was the most popular approach until the success of the
mean-teacher scheme [32]. Pseudo-label trains a first system
using only the labeled data, and uses such system to generate
labels for the unlabeled recordings. Then, a final system is
trained using the labeled and pseudo-labeled data. On the
other hand, mean-teacher involves a single training process,
with a student model and a teacher model which uses the
exponential moving average of the student model weights.
In addition to the usual classification cost, a consistency
cost is defined to learn from unlabeled data, encouraging
the system to provide consistent outputs when the input is
corrupted with a slight amount of noise [33].

Sound event detection systems usually consist on convo-
lutional neural networks (CNN), recurrent neural networks
(RNN), or neural networks combining convolutional and
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FIGURE 2. Block diagram describing the general pipeline of a sound
event detection system with K target categories.

recurrent stages (CRNN): among the top-10 submissions to
the last three editions of the DCASE Challenge Task 4, every
participation employed at least one of the listed models [16],
[20], [34].

The most recurring type of input feature is the mel-
spectrogram, a time-frequency representation of the audio
which is widely used for many sound analysis tasks. The
extraction process starts with a Short-Time Fourier Transform
(STFT), which applies a Discrete-Time Fourier Transform
to a moving temporal window of the audio signal, resulting
on a bidimensional representation of the evolution of the
spectrum in time. A bank of mel-filters is then used to map
the spectra to the auditory Mel-scale, obtaining the mel-
spectrogram. Almost every submission to DCASE Task 4 in
its last three editions uses mel-spectrogram features, while
some participants used other types of representations such
asMFCC (Mel-Frequency Cepstral Coefficients),1 features,
CQT (Constant-Q Transform), or the raw waveform.

Some research has been carried out trying to apply differ-
ent resolutions at some point of the detection process. For
instance, controlling the size of a median filter during the
post-processing according to the average temporal duration
of the target category [35], [36]. Other existing approach is to
process the audio segments with two different temporal res-
olutions, one aiming to optimize audio tagging performance
and the other trying to specialize in temporal localization of
events [37]. However, these approaches use input features that
limit the audio representation to a particular time-frequency
resolution.

In order to determine the temporal boundaries (onset and
offset) for each prediction, binary decisions have to be made.
Considering that the usual output of neural networks for
two-class classification problems is a sigmoid-based score
bounded between 0 and 1, a decision-making criterion has
to be defined. The standard approach is to set a threshold
value th ∈ (0, 1), so that the presence of an event is pre-
dicted when the score is above th. In the systems proposed
for DCASE 2018 and 2019 Challenge Task 4, the value for
this threshold is usually set to th = 0.5, without further
justification for choosing such value. Nevertheless, some
different thresholding strategies have been proposed, such as
double-thresholding [38] or dynamic thresholding [39].

III. MULTI-RESOLUTION ANALYSIS
The main hypothesis for the experiments presented in this
paper is that sound event detection systems can benefit from
using different time and frequency resolutions in the feature
extraction process, instead of using a single resolution point,
which is the most common approach in previous works. This
idea is motivated by the fact that acoustic events can present
very different temporal and spectral characteristics. A similar
approach was proposed recently for the task of automatic
speech recognition [40], obtaining modest but consistent
improvements despite the types of sounds to be classified
(human phones) were much more similar.

The distribution of the time durations of the examples in
each class have been computed over the Synthetic Training
set and are presented in Fig. 3 as a histogram for each cate-
gory. The figure shows that the distribution of time durations
vary very significantly depending on the event class. While
some categories tend to have very short examples (Alarm
bell/Ringing, Cat, Dishes, Dog, or Speech), others present
more diverse lengths (Electric shaver/Toothbrush, Frying,
or Running water).

During the extraction of mel-spectrogram audio features,
a particular time-frequency resolution point is defined by the
set of parameters used, given the sample rate (fs) of the audio
segment. Such parameters are the number of samples of the
DTFT (N ), the type of window used in the STFT, its length
(L) and hop size (R), and the number of filters of the Mel
filter bank (nmel). Varying the values of these parameters,
the temporal and the frequency resolutions of the resulting
features will be different. There is a compromise between
the time and frequency resolutions, as increasing one of them
implies decreasing the other one.

In order to illustrate the convenience of using mul-
tiple time-frequency resolutions to represent different
sound events, Fig. 4 provides an example where two
mel-spectrograms are displayed for the same audio seg-
ment which belongs to the class Electric shaver/Toothbrush,
using two different time-frequency resolution points. The
acoustic event presents some frequential components that
remain constant in time, resulting in horizontal lines in the
mel-spectrogram. Such lines are much better captured by
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FIGURE 3. Histograms of the durations of each event category in the synthetic training set.

the second mel-spectrogram, which offers a higher frequency
resolution.

A second example is provided in Fig. 5, representing an
Alarm bell/Ringing audio segment using two different reso-
lutions. At the beginning of the segment, some repetitions of a
tone can be observed, which could be a representative aspect
of this event category. However, the different repetitions are
better represented in the left mel-spectrogram, which offers a
higher temporal resolution.

Taking the resolution of the baseline system as a reference,
we define four additional resolution points. The five working
points used share in common with the baseline the use of a
sample rate of fs = 16000 Hz and the use of a Hamming win-
dow, while the other parameters (N , L, R, nmel) are modified
to increase the time resolution or the frequency resolution.
The configuration of each resolution point is described below,
and the values of the parameters are presented in Table 1.

1) BS (Baseline). The baseline uses an analysis window of
length L = 128 ms and a window hop of R = 15.94 ms
(255 samples). Both parameters are related to the tem-
poral resolution of the analysis. On the other hand,
the frequency resolution is limited by the width of the
main lobe of the Hamming window, 8π/(L − 1) =
8π/2047 rad/sample, which corresponds to a frequency
resolution of 4/2047 × 16000 ≈ 31 Hz. However,
this frequency resolution is later more limited in a
non-linear way by the use of the Mel filterbank with
128 filters.

2) T++ (Twice better time resolution). We halve the anal-
ysis window to a length of L = 64 ms and the window
hop to R = 8 ms, which essentially doubles the time
resolution. We also halve the number of Mel filters,
which along with the previous changes roughly halves
the frequency resolution.

TABLE 1. FFT length (N), window length (L), window hop (R) and number
of Mel filters of the five proposed time-frequency resolution working
points.

3) F++ (Twice better frequency resolution).We double the
analysis window length to L = 256 ms and the window
hop to R = 32 ms, which essentially halves the time
resolution. We also double the number of Mel filters,
which alongwith the previous changes roughly doubles
the frequency resolution.

4) T+ (Intermediate point betweenBS and T++). Analysis
window of length L = 96 ms, window hop R = 12 ms.
An intermediate number of Mel filters is used
(nmel = 96).

5) F+ (Intermediate point between BS and F++). Anal-
ysis window of length L = 192 ms, window hop
R = 24 ms. An intermediate number of Mel filters is
used (nmel = 192).

IV. EXPERIMENTAL FRAMEWORK
Our experiments have been performed using a Convolutional
Recurrent Neural Network (CRNN) based upon the Baseline
System of DCASE 2020 Task 4. As in the baseline system,
the features are extracted from the audio signals without
a pre-processing stage such as a noise reduction module.
In order to incorporate multi-resolution analysis into the
model described by the Baseline, first we adapt the model
to each resolution point, training a model for each resolu-
tion, and then we perform model fusion with the resulting
models.
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FIGURE 4. Two representations of the same audio segment belonging to the category electric shaver/toothbrush.
Each representation is a mel-spectrogram extracted using a higher temporal resolution (left) and a higher frequency
resolution (right).

FIGURE 5. Two representations of the same audio segment belonging to the category alarm bell/ringing. Each
representation is a mel-spectrogram extracted using a higher temporal resolution (left) and a higher frequency
resolution (right).

TABLE 2. Dimensions of the max-pooling layers in the convolutional
stage, adapted for each resolution point.

A. MODEL STRUCTURE AND TRAINING
Following the configuration of the Baseline System, the mod-
els are trained by means of the Mean Teacher method
(described in Section II-C). The mel-spectrogram features
are fed to the convolutional stage of the model, formed by
seven 2D-convolutional layers with kernels of size 3×3. The
number of filters is 16 for the first layer and is doubled in each
layer until a maximum of 128. The activation function is the
Gated Linear Unit (GLU).

Each convolutional layer is followed by a max-pooling.
In order to reduce the different input mel-frequency sizes to
a single dimension as done in the baseline system, the pool-
ing size in the mel-frequency dimension is modified in the
networks used for the different time-frequency resolution
points, as specified in Table 2. The total pooling factor of the
convolutional stage is 4 in the time dimension and nmel in the
mel dimension.

At the end of the convolutional stage, the input features
have been shaped into a temporal sequence with length L
which is fed to the recurrent stage of the model. Such recur-
rent stage is formed by two layers of bidirectional gated recur-
rent units (bi-GRU) with 128 units each. Finally, an attention
pooling layer is applied with sigmoid activation, obtaining a
temporal score sequence for each target category.

B. MODEL FUSION
We define a model fusion method that allows us to combine
the scores generated by several CRNN models before further
post-processing, such as thresholding or median filtering,
with no additional parameter tuning. These models have to
be trained individually beforehand, and they can employ dif-
ferent input features, namely the mel-spectrograms computed
at different time-frequency resolution points as described in
Section III, or could be as well trained with the same input
features but different configurations.

For a given category i, a sound event detection system
performs a classification between classes {θi,0; θi,1}, mean-
ing absence or presence of event i, respectively. For each
classification task (i.e. for each target category), a detector
j generates a score s(j)i as a time series with a given time
resolution or frame rate. By convention, lower scores show
a stronger support to θi,0, while higher scores support θi,1.
In the proposed systems, each of the scores is taken from
the output of a sigmoid layer trained with a cross-entropy
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FIGURE 6. Block diagram describing the model fusion procedure for class i with J models. After the interpolation step, each sequence
t (j )
i is N time frames long, where N is the length of the longest sequence s(j )

i . The logit, average, and sigmoid operations are performed
for each time frame n ∈ [1,N]. Therefore, the resulting sequence si is also N time frames long.

criterion. The scores are then between 0 and 1, and can be
interpreted as the posterior probability of the presence of the
event category i, P(θi,1|x) = 1 − P(θi,0|x), where x is the
observation of the audio segment.

The fusion procedure is performed as follows. In order to
handle the different frame rates of score sequences generated
with different feature resolutions, the first step is an interpo-
lation. Let J be the number of models to combine, each score
sequence s(j)i is interpolated along the temporal dimension to
fit a target frame rate, obtaining a set of J score sequences
(t (1)i , . . . , t (J )i ). The target frame rate is chosen as the highest
frame rate of the J model outputs to be combined. Then, the
resulting sequences have N time frames each, being N the
number of frames of the sequence with the highest frame rate:
t (j)i = (t (j)i,1, . . . , t

(j)
i,N ).

Afterwards, the logit operator is applied frame-wise, in the
following way:

l(j)i,n = logit(t (j)i,n) ≡ log
t (j)i,n

1− t (j)i,n
(2)

Then, the logit scores of the model fusion, li are computed
frame by frame as the average of the logit scores from each
model j.

li,n =
1
J

J∑
j=1

l(j)i,n (3)

As a final step for the model fusion process, the sigmoid
operator is applied to the resulting logit score sequences li,
obtaining the final score sequences si for each category i.
Then, these sequences are post-processed as described in
Section IV-C, in order to obtain temporal predictions. The
whole process is described in Fig. 6.

C. SCORE POST-PROCESSING
Evaluating a system bymeans of F1-score requires converting
the score sequences si into timestamps which mark the start
and the end of each event. For such purpose, defining a
threshold th is necessary in order to obtain a set of predictions.

The most common value for such threshold, used by the
Baseline System, is thi = 0.5 for every category i.

In the case that the posteriors P(θi,1|x) were properly
computed (i.e. calibrated) and the prior probabilities of the
evaluation set were P(θi,1|x) = P(θi,0|x) = 0.5, the previ-
ous approach would be the optimal decision in a Bayesian
scenario. However, in the scenario of DCASE Challenge
Task 4 the prior information of the 2020 Evaluation set was
not known and could not be estimated reliably. Moreover,
the cost of Bayes decisions and the F1-score are not compa-
rable metrics, and therefore, even with an optimal Bayesian
decision scenario, it is not guaranteed that the F1-scorewill be
optimized. As a consequence, there is no reason whatsoever
to support th = 0.5 as an adequate decision threshold.

Aiming at choosing a more optimal threshold for
decision-making under the F1-score criterion, we tested two
options:

1) Applying thi = 0.5 for every event category, as done in
the Baseline

2) Choosing the optimal threshold for each category
empirically, as that which maximizes F1 over the Val-
idation set.

It is worth noting that he choice of specific thresholds for
each category does not apply in the case of PSDS metrics,
since PSDS is not dependent on the threshold.

As a final stage, median filtering is applied to the binary
scores with a window length of 450 ms. The purpose of
median filtering is to clean impulsive peaks which are not
representative of the presence or absence of acoustic events.
The filtered binary vectors can be considered temporal pre-
dictions over which F1 or PSDS metrics can be computed.

V. RESULTS AND DISCUSSION
A. SINGLE-RESOLUTION RESULTS
In the first place, experiments were carried out using
single-resolution systems with no model fusion involved.
A model was trained five times with different random ini-
tializations for each one of the resolution points described
in Table 1. The models are based on the Baseline System
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TABLE 3. Event-based F1-score (%) over the validation set for each event category obtained with different time-frequency resolution working points.

of DCASE 2020 Challenge Task 4, adapting the pooling
sizes according to the time-frequency resolution as specified
in Table 2. Taking into account that the BS resolution point
coincides with the baseline system of DCASE Challenge
2020 Task 4, the results obtained using this resolution con-
stitute the common benchmark for the aforementioned task.

The results of the single-resolution models are presented
in Table 3 as the mean and the standard deviation of the
F1-scores obtained with the five trainings. Observing the
performances for each event category, it can be noted that
different resolution points hold the best average result for
different classes, supporting our hypothesis that different
time-frequency resolutions are better suited to detect certain
types of events.

Some classes achieve better results when employing higher
temporal resolutions, for example Dog, Blender, or Running
water, while the clearest tendency to achieve a better perfor-
mance with a higher frequency resolution is shown by the
categoryElectric shaver/toothbrush. TheBS resolution point,
used by the Baseline System, achieves the best result only for
the category Cat.

B. MULTI-RESOLUTION RESULTS
The model fusion process described in Section IV-B allows
to combine models trained at different time-frequency resolu-
tion points, thus obtaining multi-resolution systems. The goal
is to achieve better performance thanks to the complementary
information supplied by the different resolutions.

Following this idea, two multi-resolution models are pro-
posed: a three-resolution model (3res) which combines the
baseline resolution BS with the resolution points T++ and
F++, and a five resolution model (5res) combining the
five resolution points defined (BS, T++, F++, T+, and
F+). To obtain these models, the model fusion procedure is
employed with one model per resolution point. Thus, 3res
is a combination of three single-resolution models, and 5res
is a combination of five single-resolution models. As shown
in Table 4, both multi-resolution systems outperform the
single-resolution systems in terms of macro-averaged F1 over
the Validation set, with 5res obtaining a higher performance
(39.8%) than 3res (38.2%).
However, it is necessary to determine whether the improve-

ments in performance are due to the combination of several
resolutions rather than solely to the combination of different

models. In order to achieve this, an additional combined
model is proposed which performs a model fusion with five
models trained with the BS resolution point and different
initializations (5×BS). Such combined model was found to
outperform the individual models trained with the same res-
olution in terms of macro-averaged F1 over the Validation
set, but with a lower performance (36.9%) than 3res or
5res. Therefore, we conclude that, although model fusion
allows to improve performance even in a single-resolution
setting, the multi-resolution approach is able to obtain further
improvements in terms of macro F1-score.

Aiming to compare the results of single-resolution and
multi-resolution models, the F1-scores obtained by the com-
bined models (3res, 5res, and 5×BS) over the Validation
set are presented in Table 4, next to those obtained using
the BS resolution point (previously presented in Table 3).
The improvements are consistent in every category when
increasing the number of resolution points involved.

In terms of the mean macro-averaged F1-score computed
across five random initializations of each system, the 3res
model obtains 6.2 points more than the single-resolution
model BS. In the case of the 5res model, an improve-
ment of 1.6 points is observed with respect to 3res, which
makes a total improvement of 7.8 points with respect to the
macro-averaged F1-score achieved by the BS model. More-
over, some categories seem to benefit of the multi-resolution
analysis more than others: it is the case of Blender, which
obtains 27.4% with BS and 44.6% with 5res, or Vacuum
cleaner, which obtains 38.9% with BS and 54.6% with 5res.
According to the single-resolution results shown in Table 3,
the BS resolution is the least fitted to the detection of these
two types of events, which would explain a higher impact of
multi-resolution in these categories.

Regarding the PSDS metrics, the multi-resolution analy-
sis has been found to achieve improvements as well. The
PSDS has been computed for the single-resolution models
trained with the BS resolution points as well as for the
combined models 3res, 5res, and 5×BS, using the config-
uration proposed for the DCASE Challenge 2020 Task 4.
The results over the Validation set are shown in Table 5,
showing that the PSDS scores obtained are higher when
usingmore different resolution points. Such effect is observed
in the three configurations: PSDS, PSDS cross-trigger, and
PSDS macro. Moreover, the combination of five models
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TABLE 4. Event-based F1-score (%) results over the validation set.

TABLE 5. PSDS, PSDS cross-trigger, and PSDS macro results over the
validation set.

TABLE 6. Binarization thresholds used in the 5res-thr system.

TABLE 7. Event-based F1-score (%) results of a multi-resolution model
with global thresholding th = 0.5 (5res) and with specific thresholds for
each class (5res-thr) over the validation set.

with the same resolution (5×BS) achieves a higher PSDS
performance than each individual model (BS) on its own,
but does not reach the results of multi-resolution models
3res and 5res.

C. SCORE THRESHOLDING RESULTS
Whereas the experiments described in sections V-A and V-B
employ a threshold th = 0.5 for every category, additional
experiments have been carried out aiming to determine the
adequacy of such approach for F1-score decisions. For this
purpose, we have taken the 5resmodel as a starting point, and
we have studied its performance in each category in terms of
event-based F1-score using different values for the threshold,
considering 50 values linearly distributed from th = 0 to

TABLE 8. Event-based F1-score (%) results of a multi-resolution model
with global thresholding th = 0.5 (5res) and with specific thresholds for
each class (5res-thr) over the public evaluation set (eval 2019).

th = 1. It should be noted that this analysis does not affect the
PSDS performance, which is not dependent on the threshold
value.

Following this procedure, we obtain the results presented
in Fig. 7. Observing the F1 curves, it can be observed that the
optimal value of the threshold usually differs from th = 0.5.
Moreover, the election of th affects the performance differ-
ently in each category.

Aiming to improve the performance by tuning the values
of the thresholds for each category, we define a new model,
5res-thr, which is based upon the 5res model but uses a
specific threshold thi for each category, instead of a global
threshold th = 0.5. The thresholds are chosen as those which
maximize the F1 performance for each category over the Val-
idation set. Following this criterion, the resulting thresholds
are listed in Table 6. The performances of 5res and 5res-thr
over the Validation set are compared in Table 7, where it is
shown that the choice of specific thresholds allows to increase
the performance in every category, and up to 2.5 points in
F1 macro. However, it should be noted that the results of
5res-thr over the Validation set represent the best-case sce-
nario, where we know the optimal thresholds, whereas these
optimal values differ from one dataset to another. In order
to test the threshold tuning approach in a more realistic
scenario, we have compared the performances of 5res and
5res-thr over a different dataset, the Public Evaluation set,
showing the results in Table 8. Although the performance
does not increase in every category, the 5res-thr achieves a
higher overall F1-score. Additionally, 5res and 5res-thrmod-
els were submitted to the DCASE Challenge 2020 Task 4,
both outperforming the Baseline System and also obtaining a
higher overall F1 performance by using class-specific thresh-
olds [41].

D. EVENT OVERLAP ANALYSIS
When tackling the problem of polyphonic sound event detec-
tion, it is possible to encounter multiple event categories
coinciding in time. Generally, such overlap constitutes a
particularly challenging scenario for sound event detectors,
because one of the events can mask the others, making them
more difficult to recognize and thus producing False Negative
errors.
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TABLE 9. Event-based recall (%) results of the systems over the Validation set, the Non-overlapped Validation subset, and the Overlapped Validation
subset. Relative improvement is given with respect to the BS model. The highest relative improvement for each system is highlighted in bold.

FIGURE 7. F1-scores obtained by the 5res model in each category with different threshold values. The blue curve represents the F1 performance
over the Validation set, marking the best result with a blue vertical line. The black curve represents the performance in the Public evaluation set.
The intersection of the blue line and the black curve indicates the performance over the Public evaluation set using the threshold chosen with
the Validation set. The optimal threshold for the Public Evaluation set is marked with a green vertical dashed line, whereas the default threshold
(0.5) is marked with a grey vertical dotted line.

However, taking into account that different resolutions are
more fitted to capture certain event classes, the proposed
multi-resolution approach should be able to improve the
results for overlapped events.

In order to compare the performance of our systems in
the scenario of event overlap, we have divided the DESED
Validation set into two subsets: a non-overlapped subset, con-
taining the events that do not coincide in time with any other
class, and an overlapped subset, which contains the events
which occur at the same time than other categories in their
entirety. Given that the main problem of overlapped events is
the appearance of False Negative errors, we have studied the
event-based Recall metric (R), which is the component of the
event-based F1-score that is affected by false negatives:

R =
TP

TP+ FN
(4)

The results ofmacro-averaged recall over theValidation set
and both subsets are presented in Table 9. It can be observed
that the recall metric is consistently lower for the overlapped
subset than for the complete Validation set. On the other hand,
the recall metric when considering only non-overlapped
events is very similar to that of the Validation set, which
was the expected result considering that the non-overlapped
subset constitutes the majority of the Validation set. In every
case, the multi-resolution approach provides better results

TABLE 10. Number of events included in the validation set,
the Non-overlapped validation subset, and the Overlapped validation
subset for each target category.

considering the mean recall of five systems with different
random initializations.

In terms of relative improvement, the impact of
multi-resolution is more accentuated in the overlapped sub-
set. With the 3res model, the mean recall increases from
10.6% to 13.5%, which constitutes a 27.8% relative improve-
ment. The mean recall over this subset experiments a fur-
ther increase when using five resolutions, reaching 14.8%,
a 40.0% relative improvement with respect to the BS system.

In contrast, the relative improvement is considerably lower
when considering thewhole validation set (13.1%) or only the
non-overlapped subset (12.6%). This fact seems to suggest a
larger impact in the correct detection of overlapped events.
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TABLE 11. Value of the ratio ri = σ̄1t,i /σ̄1f ,i for each category.

However, these results need to be taken with caution, since
the analysis was limited by the lack of overlapped events
in most of the classes, as shown in Table 10. Moreover,
the improvement in mean recall in the case of overlapped
events does not seem statistically significant, given the stan-
dard deviations found in the multi-resolution results with
overlapped events.

E. RESOURCE ANALYSIS
In Section V-B, it has been shown that the combination of
multiple resolutions is able to provide improvements in terms
of F1-scores. However, it would be relevant to know the
impact of multi-resolution in terms of execution times.

For this reason, we have measured the time required by
the baseline system (BS) and by the multi-resolution systems
3res and 5res to perform the feature extraction process and
generate predictions for the DESED Validation set (181 min-
utes of audio).

Each system has been run five times, using 15 CPU cores
for feature extraction and a Nvidia GeForce RTX 2080 GPU
for the forward pass of the neural networks. Averaging the
five executions, we have computed a 0.02× real time factor
for the BS model. In the same manner, we have measured a
0.04× factor for the 3res model and a 0.07× factor for the
5res model.

It can be observed that the increase of the execution time
is lower than the number of resolutions. This is due to the
existence of two different stages in the test process. The first
stage is repeated for each resolution, and consists of the
mel-spectrogram feature extraction and the forward pass of
the CRNN, after which the score sequences for each reso-
lution are obtained. Afterwards, the scores from each model
are averaged and binarized by means of a threshold, and the
F1metrics are computed: this process is performed only once,
regardless of the number of resolutions involved.

F. FEATURE ANALYSIS
Aiming to give insights into the different temporal and spec-
tral characteristics that make a given event category more
adequate for a certain resolution point, we have studied the
variations in time and frequency of the mel-spectrogram fea-
tures in the DESED Validation set.

As a first step for this analysis, we have selected the
mel-spectrogram features of the events that are not over-
lapped in time with any other in-domain event, in order for
overlapped events not to interfere in the analysis of other
categories. Rather than the entire audio segments, we have
only considered the relevant time interval for each event,
i.e., from the onset time to the offset time.

For these mel-spectrograms, we have obtained the first dif-
ferences (1-features) in each axis, which indicate the change
of energy with respect to the previous time step (in the time
axis) or the adjacent mel-filter (in the frequency axis). Let
them be called1t and1f . In order to obtain the most reliable
measures in each axis, 1t has been computed from the T++
resolution with a time step of four frames, which corresponds
to a 50% overlap of the analysis window of feature extraction,
and 1f has been computed from the F++ resolution.

We have computed the standard deviation of the1-features
between consecutive temporal frames (σ1t,i) and between
adjacent mel filters (σ1f ,i) for each event category i. A higher
standard deviation means that the variations in the corre-
sponding axis are larger. Aiming to obtain a measure which
determines whether the variations in time or in frequency are
predominant for a certain category, we have computed the
ratio ri between the mean values of the standard deviations
for each category i:

ri =
σ̄1t,i

σ̄1f ,i
(5)

A higher ri implies that the corresponding event category
has its predominant variations in the time axis. Therefore,
a higher time resolution should, in principle, be able to cap-
ture such events with more detail. In Table 11, the ratios ri for
each category are presented. When comparing these values
with the best performing resolution point for each category
in Table 3, it can be observed that the only category that
performs best with F++, Electric shaver/toothbrush, presents
the lowest ratio (0.31). Additionally, the class with the highest
ratio, Dog (0.71), obtains its best performance using the T+
resolution.

However, the relationship between the ratio value and the
best performing resolution point is not perfect for every cat-
egory. In fact, the analysis can be complemented with the
average length of each event category, which was already
described in Section III and Fig. 3. Those categories that
present long events, such as Frying or Vacuum cleaner, obtain
better results with the F+ resolution, while short-duration
categories like Speech or Alarm bell/ringing perform better
with T+.

VI. CONCLUSION
In this work we present a method to better modelling the
different temporal and spectral characteristics of sound events
in the task of Sound Event Detection. We hypothesize that
features extracted using different time-frequency resolution
parameters are able to represent certain event categories in
a more recognizable way. Hence, in contrast to most current
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approaches which use a single time-frequency resolution dur-
ing the feature extraction process, we propose combining the
information from several resolution points to improve the
performance of the detectors.

In order to test our hypothesis, we take as a starting
point the Baseline System of DCASE 2020 Task 4, which
consists of a Convolutional-Recurrent Neural Network that
is trained using mel-spectrogram features. By training this
system with different feature resolutions, we observe that
each sound event category obtains a higher performance at
different time-frequency resolution points. This supports our
idea that different resolutions are more suited to represent
certain sound event classes.

Afterwards, aiming to combine the information of each
resolution point into a multi-resolution system, a model
fusion procedure is defined that operates over the scores
of the CRNNs. We obtain the final scores as the average
of the scores of each individual model, without additional
trainable parameters. Such process could be applied to other
score-based systems.

Using the DESED Validation set to test the performance
of the systems, we find that multi-resolution models are able
to outperform single-resolution models in every category in
terms of event-based F1-score, and also in terms of the PSDS
metric, with longer execution times, but still much faster than
real-time performance.

Additionally, we have explored the impact of the threshold
used to define the event predictions, finding that its usual
value th = 0.5 is not necessarily the optimal setting. We are
able to improve the performance of a multi-resolution model
by choosing specific thresholds for each category using
the DESED Validation set. Although the optimal thresholds
change when using a different dataset, the specific thresholds
obtain a better result in terms of macro-averaged F1-score
over the DESED Public Evaluation set.
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