
Received June 27, 2021, accepted July 22, 2021, date of publication July 27, 2021, date of current version August 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3100747

LOCO-ANS: An Optimization of JPEG-LS Using
an Efficient and Low-Complexity Coder
Based on ANS
TOBÍAS ALONSO , GUSTAVO SUTTER , (Member, IEEE),
AND JORGE E. LÓPEZ DE VERGARA , (Senior Member, IEEE)
High Performance Computing and Networking Research Group, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Corresponding author: Tobías Alonso (tobias.alonso@uam.es)

This work was supported in part by the Spanish Research Agency through the Project AgileMon under Grant AEI
PID2019-104451RB-C21.

ABSTRACT Near-lossless compression is a generalization of lossless compression, where the codec user
is able to set the maximum absolute difference (the error tolerance) between the values of an original pixel
and the decoded one. This enables higher compression ratios, while still allowing the control of the bounds
of the quantization errors in the space domain. This feature makes them attractive for applications where a
high degree of certainty is required. The JPEG-LS lossless and near-lossless image compression standard
combines a good compression ratio with a low computational complexity, which makes it very suitable for
scenarios with strong restrictions, common in embedded systems. However, our analysis shows great coding
efficiency improvement potential, especially for lower entropy distributions, more common in near-lossless.
In this work, we propose enhancements to the JPEG-LS standard, aimed at improving its coding efficiency
at a low computational overhead, particularly for hardware implementations. The main contribution is a
low complexity and efficient coder, based on Tabled Asymmetric Numeral Systems (tANS), well suited
for a wide range of entropy sources and with simple hardware implementation. This coder enables further
optimizations, resulting in great compression ratio improvements. When targeting photographic images,
the proposed system is capable of achieving, in mean, 1.6%, 6%, and 37.6% better compression for error
tolerances of 0, 1, and 10, respectively. Additional improvements are achieved increasing the context size
and image tiling, obtaining 2.3% lower bpp for lossless compression. Our results also show that our proposal
compares favorably against state-of-the-art codecs like JPEG-XL and WebP, particularly in near-lossless,
where it achieves higher compression ratios with a faster coding speed.

INDEX TERMS Image codec, near-lossless compression, JPEG-LS, asymmetric numeral systems, low
complexity, two-sized geometric distribution.

I. INTRODUCTION
There are scenarios in which, traditionally, lossless image
codecs are used, among other reasons, due to the value of the
information in the images (e.g. hard to obtain). Additionally,
it may be required for legal reasons or to ensure system
robustness, given that the level of uncertainty introduced
by the quantization noise may not be admissible. However,
within these scenarios, there are cases that allow for a coarser
precision (depth of each pixel channel) with respect to the
precision delivered by the sensor. In these cases, near-lossless

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Wang .

codecs can be used to obtain higher compression ratios. This
category of codecs is defined as a those that compress an
image while allowing the user to set limits to the peak errors
introduced in the decoded image, generally supporting loss-
less as the particular case where the error tolerance is set to 0.

There are many areas of applications that require this type
of bounds on image quantization errors as in the case of image
capturing satellites [1], [2] and medical imaging [3]–[5].
Within these applications, it is not uncommon to find exam-
ples that, additionally, have strong limitations on resources,
energy consumption (sometimes indirectly because of limited
dissipation capacity), latency and/or throughput [1], [4]–[6].
For this reason, low complexity is sought, understanding it

106606
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-8632-9146
https://orcid.org/0000-0001-8820-5956
https://orcid.org/0000-0002-4057-4688
https://orcid.org/0000-0003-1911-4676

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

as the capacity of a system to run comparatively fast using
limited resources.

Given the restrictions they face, many of these scenarios
would benefit from or require compressing the images using
custom hardware. This is the reason why an amenable hard-
ware implementation is also a desired feature. Particularly,
FPGAs are considered as an appropriate target, since the
production volumes of most applications would not justify
an ASIC. In addition, reconfigurability is a desired char-
acteristic, allowing to update deployed systems. Moreover,
image sensors can be connected directly to the FPGA, further
improving the overall system performance.

Although in the state of the art it is possible to find codecs
that have higher compression ratios, JPEG-LS is very well
suited for these applications, given that it provides a com-
petitive compression [7], [8] and, at the same time, permits
high performance and low resource implementations, given
their simple compute requirements and memory footprint.
Because of this, several hardware implementations proposals
have been published [1], [9]–[15], and it has even been used
in NASA’s Mars Exploration Rover mission [16].

Motivated by the existence of many applications that
would benefit from low complexity lossless and near-lossless
codecs, the observation of JPEG-LS optimization potential
and the appearance of a new efficient and low complexity
compression scheme, Asymmetric Numeral Systems (ANS),
a series of modifications to the standard were developed,
resulting in LOCO-ANS. At the cost of a low computational
overhead, the proposed system achieves great compression
ratio improvements.

The main contributions of this work are:
• An efficient and low complexity adaptive coder for
sources with a geometrical distribution, which uses
Tabled Asymmetric Numeral Systems (tANS) as the
underlying technology [17], with an expected complex-
ity similar to a Huffman coder but with efficiencies that
closely approach to the model entropy [18], [19]. This
coder is used as part of an adaptive system to code
sources with a two-sided geometrical distribution.

• JPEG-LS codec is adapted to work with the proposed
coder allowing a better compression, particularly, for
lower entropy distributions, more common in near-
lossless operation. The resulting system is capable of
diverse trade-offs between resources and compression.

• From their conception, the proposed coder and modifi-
cations are hardware implementation oriented.

• The system prototype plus auxiliary code to create tables
and run experiments are open sourced to the commu-
nity [20].

The rest of this article is structured as follows: In section II
a brief review of JPEG-LS and an introduction of ANS are
presented. This is followed by an analysis of the optimiza-
tion potential of JPEG-LS in section III and an overview of
LOCO-ANS image encoder in section IV. Then, the coder
and distribution parameters estimation details can be found
in sections V and VI, while a methodology to select the coder

configurations is provided in section VII. Next, the results
of the experiments using the implemented prototype are pre-
sented in section VIII. Finally, in section IX the conclusions
of this work are summarized. In appendix I, a table with the
notation used is provided to make the equations easier to
follow.

II. BACKGROUND
A. JPEG-LS
1) JPEG-LS BASELINE ALGORITHM
JPEG-LS was designed mainly for lossless compression
with low complexity in mind and the objective to super-
sede the previous algorithms like the lossless mode of
JPEG [21] and PNG [22]. Fig. 1 shows a high-level block
diagram of the JPEG-LS encoder algorithm, which is based in
LOCO-I [8], [23].

FIGURE 1. High-level JPEG-LS encoder block diagram. Source: Adapted
from figure 1 of [23]).

It can be appreciated that it processes image samples using
one of twomodes, the regular and the runmode. In the regular
mode, a prediction is computed and then corrected with an
adaptivemechanism, resulting in a prediction error. This error
is then quantized using a uniform mid-tread quantizer with a
bin size δ = 2 ∗ NEAR + 1, where NEAR is a parameter
chosen by the user, which is equal to the maximum possible
error of a pixel value in the decoded image. The quantized
error is then coded by a low complexity adaptive block coder
based on Golomb codes [24], which the authors call Golomb-
power-of-2 (GPO2) codes.

As the GPO2 coder does not perform well when symbols
come from a low entropy source, an adaptive run-length coder
is used when smooth surfaces are detected by the gradients
surrounding the current image sample. In the run mode,
the run-length count is incremented when |a − x| ≤ NEAR,
where a is the pixel value when the count started and x is
the new pixel. It is easy to see that, in both modes, lossless
compression is obtained when NEAR is set to 0.

To adapt the codes, contexts are used to keep predic-
tion error statistics, which select coder parameters. These
contexts are gradient defined. Gradients surrounding the
new image sample are computed and then quantized sepa-
rately, obtaining a vector of integers. The resulting vector is
mapped to an identifier, which is used to access and update

VOLUME 9, 2021 106607

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

context statistics. In [23] a detailed description of the codec
procedures can be found.

2) JPEG-LS EXTENSION
An extension of the standard [25] was proposed, based on
LOCO-A (presented in [8]), changing the GPO2 and run-
length coder used in LOCO-I by a single arithmetic coder
and adapting the error distribution estimation procedures.
These modifications closed most of the existing gap with
CALIC [26], [27] at the cost of increasing the complexity of
the system. This extension comes from the authors’ recogni-
tion of the limitations of the original coder when dealing with
low entropy distributions, as those that occur in near-lossless
operation. In general, the higher error tolerance (parameter
NEAR in JPEG-LS), the lower the entropy of the resulting
quantized error distributions.

3) JPEG-LS HARDWARE IMPLEMENTATIONS
Several hardware architectures for JPEG-LS have been pub-
lished [1], [9]–[15], however only a few are standard com-
pliant. One of the main reasons for the lack of compliance is
not supporting the run mode (which many deem as optional,
although it is not [28]). In general, this is done to further
simplify the hardware implementation. In [11] it was found
complex to implement, while others noted the run mode is
rarely usedwhen losslessly compressing images coming from
sensors, so decided not to implement it. Although this is
generally true for lossless coding, long runs can arise, for
example, when sensor saturation occurs. In satellite images,
clouds tend to produce this effect. In the case of near-lossless
operation, not supporting the run mode greatly impacts com-
pression rates, as this mode is particularly important to com-
plement the main weakness of prefix codes used in JPEG-LS
when it comes to low entropy distributions (not able to pro-
duce an average code length below 1 bit for any symbol).

Another reason why the implementations did not adhere to
the standard was the introduction of algorithm modifications
to increase system throughput. Hardware implementations
face mainly two bottlenecks: the context update, and the pixel
quantization (and reconstruction) procedures. The latter only
applies to near-lossless compression. Most implementations
try to cope with these limitations by modifying the original
algorithm and/or not supporting near-lossless compression
(and thus avoiding the second bottleneck). In many cases,
these modifications reduce the compression ratio.

Only two of the mentioned implementations support
near-lossless compression [1], [9], but neither is standard
compliant. In [1], several modifications are presented to the
decorrelation and entropy coding stages, chiefly, the error
tolerance (NEAR parameter) is modified within an image
according to custom logic and only the GPO2 coder is
employed, using a new adaptation algorithm. A close to stan-
dard compliant implementation is presented in [9], but it does
not support the run-length coder. Although the performance
of these two implementations cannot be directly compared,
given the great difference in the technologies used in the

experiments (0.22µmprocess XilinxXQR4062 in the former
versus 40 nm process Xilinx Virtex 6 in the latter), the highest
performing implementation supporting near lossless in the
literature is the latter (51.68 Mpixels/second).

B. ASYMMETRIC NUMERAL SYSTEMS
Several years after the standardization of JPEG-LS and its
extension, a new series of low complexity alternatives to
arithmetic coding were proposed, Asymmetric numeral sys-
tems (ANS), initially introduced in [17], and later extended
and compared to state-of-the-art compression algorithms,
such as Huffman and arithmetic coding, in [18], [19].

ANS provides several possible algorithmic alternatives to
implement coders. Particularly, tabled ANS (tANS) has the
following properties:

• Suitability for high cardinality symbol sources.
• Capable of being used in adaptive coding settings.
• Able to match arithmetic coder [29] coding efficiencies
(having an efficiency-memory resources trade-off).

• Moderate memory resource requirements.
• Has high-throughput implementations. For Field Pro-
grammable Gate Arrays (FPGA), encoder architectures
were studied in [30] and decoder in [31], which can
outperform Huffman decoding [32].

1) tANS OPERATION
From a black box perspective, tANS works as a Finite state
machine (FSM) where the symbol to encode is the input and
the current state is an integer, the ANS state, where ANS
stores fractional bits of information. The output of the FSM
ROM has the next state and the number of bits to take from
the least significant part of the current state, which are then
stored in the output bit file. From its design, tANS is meant
to be implemented as a microcoded FSM (at least partially),
and the FSM ROM is referred to as the tANS table. After a
block of symbols is finished, the final state needs to be stored
in the output bit file.

For the decodification, the binary bits are appended to the
ANS state (state← (state� 1) |new_bit), until it is in a cer-
tain range (determined by the configuration of ANS). Then,
this state is used to address the decoding table, obtaining
the encoded symbol and the previous state. As implied by
the decodification process, an ANS state is directly matched
with a source symbol. Modifying the assignment of states to
symbols changes the average number of bits ANS is going to
generate for each of the source symbols.

tANS can be used to implement an adaptive coder given
that switching to a different table changes the distribution
ANS is tuned to. Using a particular table is referred to as an
ANS mode. Of course, the decoder has to have the means to
choose the same ANS mode that the encoder chose for each
symbol. However, more attention has to be paid when using
ANS in an adaptive manner, given that symbols are decoded
in the opposite order they were coded (the last symbol coded
is the first symbol that is decoded).

106608 VOLUME 9, 2021

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

For more in depth explanation of the ANS algorithm and
hardware implementations, refer to [18], [30], [31].

2) CODING EFFICIENCY
In general, the more bits used for the state, the more precisely
the coder can be tuned to the desired distribution, which
leads to a more efficient compression. Fig. 11 of [18] shows
simulation results to understand the relationship between the
number of ANS states used, the symbol alphabet size and
the Kullback–Leibler divergence (KLD), also presenting the
approximation KLD ≈ 0.5/(k)2 with k = |S|/|A|, where
S is the set of states (in this work, it is generally assumed
to be 2state_bits), A is the set of symbols and | · | denotes the
cardinality of the set. Eq. 1 summarizes our experience using
the simple non-fine-tuning heuristic algorithm provided in the
original work to create the tANS tables.

0.05/k2 / KLDtANS / 0.5/k2 (1)

3) STATE SIZE AND MEMORY REQUIREMENT
Increasing precision comes at the cost of increasing memory
requirements for the FSM ROM. However, the impact of
this increment depends on the actual implementation and,
as shown in [30], efficient architectures exist for large state
configurations.

4) ANS STATE SIZE AND SMALL SYMBOL PROBABILITIES
In general, the tANS tables can be fine-tuned to obtain bet-
ter results than the heuristic algorithm. However, there is a
minimum symbol probability below which the table cannot
be tuned to. In the case of 2-symbol sources, these tables are
constructed by assigning to the higher probability symbol the
first 2state_bits−1 states and the last state to the other symbol.
These tables are referred to as minimum entropy tables.
Figure 2 shows the KLD achieved by 2-symbol minimum

entropy tables as a function of the p Bernoulli distribution
parameter for different ANS state sizes. Notice that 2-symbol
sources would maximize the KLD for a given state size. From
these curves, table 1 was obtained, which shows theminimum
KLD achieved and at which p symbol probability.

FIGURE 2. KL Divergence of 2-symbol tANS tuned to the minimum
symbol probability as a function of the P(0) = p probability for several
ANS state bits.

TABLE 1. Performance of 2-symbol tANS tuned to the minimum symbol
probability as a function of ANS state bits.

This has to be taken into account when sizing the state size
of the coder. For example, in an adaptive codification of a
Bernoulli source, trying to tune tables to a p parameter equal
or below the minimum probability observed in Table 1 will
always result in the minimum entropy table. Then, adding
these tables would not improve the coding efficiency, thus
wasting resources.

C. TEST IMAGE DATASET
Throughout this work, the 8-bit gray image dataset main-
tained by Rawzor [33] was used to test the algorithms.
A description of the images of the dataset can be found
in Table 2, where the entropy was computed using a slightly
modified version of the JPEG-LS baseline model (described
in section III).

TABLE 2. Rawzor 8-bit gray dataset [33] description. Entropy estimation
based on a modified version of the JPEG-LS baseline model (described in
section III).

III. JPEG-LS OPTIMIZATION POTENTIAL
The aim of this section is to establish a theoretical limit on
improved compression due to the optimization of the predic-
tion error coder for JPEG-LS given its statistical model.

A. THEORETICAL LIMIT OF CODER OPTIMIZATION
In order to understand the impact that a new coder could
have, the average bits per pixel, bpp, obtained by JPEG-LS
coder (using the implementation in [34], linked by jpeg.org
web) was compared against the average symbol entropy using

VOLUME 9, 2021 106609

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

the statistical model employed in the standard to estimate
the prediction error probabilities (coder symbols). As no
implementations of the standard extension were found, only
the baseline codec was included in the analysis.

Although the average symbol entropy would not take into
account the effect of the compressed image header file size,
this does not have noticeable impact, particularly for the
image sizes of the used dataset. In JPEG-LS, the all 0 quan-
tized gradients context, {0}, is handled differently as it is
coded using the run-length coder, but in this analysis, given
that the same statistical model is used for all contexts, it is
treated as the rest.

In the standard, the error, ε, probabilities are estimated
using a two-sided geometric distribution (TSG) as follows:

P(θ, s)(ε) = C(θ, s)θ |ε−s|, ε = 0,±1,±2, . . . , (2)

where θ and s are the distribution parameters and C(θ, s) =
(1 − θ)/(θ1+s + θ−s) is a normalization factor. θ ∈ (0, 1)
controls the rate of decay of the probabilities and s ∈ (−1, 0]
is the fractional bias (the sign of s is inverted compared
to [23]).

In JPEG-LS baseline, s was decided to be in (−1, 0] given
that it was beneficial for their coding procedures. However,
when computing the average symbol entropy, the bias can-
cellation procedure was configured so that s ∈ (−0.5, 0.5],
like in the standard extension. For this reason, the error sign
flip applied when s > 0 was introduced, also employed in
the standard extension. Additionally, the alternative model
and estimators for the TSG proposed in [35] were used.
This change does not imply a modification in the distribution
but just a re-parametrization that simplifies the sequential
parameter estimation. In this alternative model, each integer
ε is mapped to a tuple (y, z), where:

y = y(ε) ,

{
0, ε ≥ 0
1, ε < 0

(3)

and

z = z(ε) , |ε| − y(ε) (4)

Then, if ε ∼ TSG(θ, s), the variable y ∼ Bernulli(p)
(where p = (θ1+s)/(θ1−|s| + θ |s|)) and the variable z ∼
Geometric(θ) with the same θ as ε. For sample t + 1, p is
estimated (using Beta(1/2, 1/2) as a prior) as follows:

p̂ =
Nt + 1/2
t + 1

, where Nt =
t∑
i=1

yi (5)

In [35] an optimal estimator of the probabilities of zt+1 is
provided, however, the following estimator was used:

θ̂ =
St + α

St + t + α + β
(6)

where α and β are the parameters of the Beta(α, β) function
used as a prior probability distribution. This last estimator,
as noted by the authors of the model, is sub-optimal, but,
in our experiments, it performed almost as well as the optimal

one when using the same priors, with the advantage of being
computationally simpler. To reflect the fact that as NEAR
increases, θ decreases, Beta(.5/(1 + NEAR/2), .5) was the
prior used in the experiments.

The results can be seen in Table 3, where the col-
umn labeled as ‘‘Entropy_orig_ctx’’ was obtained using this
model.

TABLE 3. JPEG-LS bpp vs TSG models estimated entropy.

It can be seen that the larger the error tolerance, the less
efficient JPEG-LS tends to be, having an inefficiency rang-
ing from 1.7% for lossless compression to 9% for an error
tolerance of 10.

B. OPTIMIZATION BY FIXING GRADIENT QUANTIZATION
In JPEG-LS, gradient quantization is a function of the
NEAR parameter. As a result, the central quantization bin
is expanded and the rest are scaled proportionally. Probably,
the quantizer was designed in this manner to be able to use
the run-length coder in this lower entropy scenario, but it was
not considered necessary for a coder capable of handling low
entropy distributions. For this reason, the quantization thresh-
olds were fixed to those computed using NEAR = 0. As a
result, the column labeled as ‘‘Entropy_fix_ctx’’ in Table 3
was obtained. As it can be seen in the table, this change would
allow getting better compression ratios as the error tolerance
increases. As expected, although this change reduced the
estimated symbol entropy, it worsens the performance of
JPEG-LS.

Additionally, a hardware implementation of the codec
that supports multiple values of NEAR is slightly simpli-
fied resulting in smaller and faster logic for the gradient
quantization.

It is worth noting that the changes introduced to the
model, particularly to the gradient quantization, did not
always result in an improvement in the estimated entropy.
For example, the fixed gradient quantization worsens the
entropy estimation of the synthetic image ‘‘zone plate’’
for all NEAR > 0. However, the changes resulted in
reduced entropy estimations in most cases, particularly for
the photographic images, which are more relevant given the
applications of low complexity lossless and near-lossless
compression.

106610 VOLUME 9, 2021

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

FIGURE 3. LOCO-ANS block diagram.

IV. LOCO-ANS OVERVIEW
LOCO-ANS block diagram can be seen in Fig. 3. It can
be appreciated that the system has a single mode of opera-
tion and the coder was replaced with a new one (explained
in section V). Additionally, some other modifications were
introduced.

As it can be observed in the diagram, the alternative TSG
model is used, then, z and y are computed and θ and p esti-
mated (explained in section VI). Given the results obtained
in section III, gradient quantization uses a fixed quantizer
function (thresholds computed using NEAR = 0). Also, as in
the standard extension, the prediction correction is configured
so that the fractional bias, s, tends to stay in (−0.5, 0.5] and
the sign of the prediction error is inverted when s > 0.

A. ENCODING ALGORITHM SUMMARY
The encoder algorithm can be summarized as follows, where
(*) denotes a new procedure and (†) one taken from the
standard extension.

Scanning the image (with an ibits pixel depth) sequentially
from left to right and from top to bottom:

1) Read the first pixel and store it directly, also updating
the row buffer (*).

2) Read a new pixel.
3) Compute the gradients, quantize them (*) and obtain

the pixel context.
4) Compute the fixed prediction.
5) Get the prediction bias and the TSG quantized param-

eters estimations, p̂q and θ̂q for the context (*).
6) Correct the prediction using the bias and compute the

prediction error.
7) Invert the sign of the prediction error if the context is

negative and if s > 0 (†).
8) Obtain the quantized error using the NEAR parameter

and reduce it modulo α, where α = 2ibits if NEAR = 0
else α = (2ibits − 1+ 2 ∗ NEAR)/(2 ∗ NEAR+ 1).

9) Compute z and y and store it in the coder input buffer
with their distribution parameters (*).

10) Check if the symbol block is complete, and if so, use
the coder presented in section V to process the whole
block and append the resulting binary stack to output
bit stream (*).

11) Reconstruct the pixel and store it in the row buffer.
12) Update the prediction bias (†) and the TSG parameters

estimations (*).
13) If there are more pixels in the image, return to step 2.

Although presented as an ordered list, notice that some of
these steps can be done completely or partially in parallel.

V. AN ANS-BASED CODER FOR TSG SOURCES
To use tANS in an adaptive setting, in general, one table per
symbol distribution is required, so there is a trade-off between
table resources and KLD. Additionally, more tables can also
imply a reduction in the coder throughput.

Given the simplicity of the parameter estimation proce-
dures and the coding efficiency of ANS, the proposed system
encodes the (y, z) tuple components separately, instead of the
TSG distributed error. Notice that choosing to code the (y, z)
tuple components independently, allows having tables tuned
to the distributions of each component instead of tuned to
the tuple join distributions, which is needed if using the TSG
model described by eq. 2. In this way, the number of required
tables is equal to |{θ̂q}|+|{p̂q}| instead of |{θ̂q}|∗|{p̂q}| tables,
where |{θ̂q}| and |{p̂q}| are the number of reconstruction
values supported for θ and p, respectively.

In this section, the codification procedures for y and z
variables are presented. To simplify the explanation, as most
algorithms do not strictly depend on ANS, it is first assumed
that the encode and decode order are the same (which is not
true for ANS), addressing the codification order required by
ANS in section V-C;

A. ADAPTIVE BERNOULLI CODER
Coding the y binary variable with tANS is simple. Given a
quantized estimation of the Bernoulli parameter p̂q = Qp(p̂),
whereQp is the chosen quantization function for the p param-
eter, a unique index is assigned to it, which is used to select
the ANS table tuned to p̂q.

To half the number of required tables, if p̂q > 0.5, then y
is inverted and p̂q is set to 1− p̂q. On the decoder side, when
p̂q > 0.5, then p̂q← 1− p̂q is used to select the decode table,
and the obtained symbol is inverted.

Note that assuming the TSG distribution hypothesis holds
and that the bias cancellation procedure works well, and given

VOLUME 9, 2021 106611

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

that p = (θ1+s)/(θ1−|s| + θ |s|) and s ∈ (−0.5, 0.5] then p ∈
[θ/2, 0.5]. In practice, using the Rawzor dataset, limiting the
p̂ to that range does not increase the bpp, except for the ‘‘zone
plate’’ artificial image.

B. BASIC GEOMETRIC CODER
Given a symbol z coming from an infinite alphabet source
with a geometric distribution and a quantized parameter esti-
mation θ̂q = Qθ (θ̂), where Qθ is the chosen quantization for
the θ parameter, the probabilities of z are computed as:

P(θ̂q)(z) = (1− θ̂q) · θ̂q
z

(7)

To code this type of symbol source using tANS, one
main challenge had to be overcome. Taking into account
the maximum possible value of z for the image compressing
application, the cardinality of the symbol source is very large,
which leads to high resource requirements for the tANS
tables. Additionally, eq. 7 shows that the probabilities of z
can decrease very fast. So, as seen in section II-B4, ANS
would require an impossibly large state to cover the whole
z range, which, in turn, exponentially increases the memory
requirements. This could be addressed with binarization, but
there is an alternative enabled by the memoryless property of
geometric distribution, which allows a simpler, scalable and
generally higher throughput system.

Both the large cardinality and high probability precision
problems can be addressed by using conditional probabil-
ities when the symbol z is larger than an implementation
defined threshold. Symbols in the range [0..(C − 1)] are
coded directly, choosing the ANS mode (ANS table com-
puted for a certain distribution) according to the provided θ̂q,
which also determines the C constant. For larger symbols,
the coder inserts C , which stands for ‘‘z ≥ C’’. Applying
the memoryless property, it can be seen that the distribution
of (z−C) given that z ≥ C is the same as z. For this to
be strictly true, z should come from an infinite set not a
constrained one, as in the case of error residuals, but the set
is large enough, so there is no significant difference, at least,
for the θ̂ seen in practice. Then, using the same ANS mode
(as they have the same distribution), the system tries to code
(z−C) and, again, if it is greater or equal to C , it inserts C .
This process is repeated until a symbol different that C is
coded.

Notice that in this way, without the need of deriving
probabilities for the decomposed symbols or any additional
statistics gathering process, and using a stateless coder with
C+1 symbols, any number originated from an infinite alpha-
bet source with the memoryless property can be optimally
encoded. In this way, for each supported θ̂q, just one tANS
table tuned to a C + 1 symbol source is required.

C. CODIFICATION ORDER FOR ANS
If ANS is used to code the symbols, then for the bitstream to
be decodable, the codification order must be inverted.

1) SYMBOL BLOCK CODIFICATION ORDER
Asmentioned before, the ANS output binary acts as a Last In,
First Out (LIFO) memory, so prior to coding, the symbols are
stored with the necessary adaptation parameters and coded
in reverse order, as proposed in [18]. In this case, θ̂q and p̂q
parameters should be stored alongside the (y, z) tuple. In some
cases, it is not possible or desirable (added latency) to store
these variables for the whole image, so smaller blocks can
be used at the cost of some additional bits (the final ANS
state needs to be sent after each block and small inefficiencies
can arise due to word alignment) effecting slightly the overall
coding efficiency. The decoder needs to know the block size,
which can be included in the compressed image header.

In general, the additional bits per symbol due to the need
of transmitting the final ANS state at the end of each block
and the requirement of aligning a new block to a certain word
size is going to be, on average:

KLD = (state_bits+ (word_bits− 1)/2)/block_size (8)

For example, for a 6 bit ANS state, aligning binary blocks
to bytes and using a block size of 2048 pixels, KLD = (6 +
(8− 1)/2)/2048 = 0.0046 bits/pixel.

As suggested in [18], the initial state of the ANS coder can
be used to carry information, but, in the system prototypes,
the initial ANS state is used as a sanity check of each block.
That is, the encoder always sets the initial state to 0 (actually
to 2state_bits), and the decoder checks after each block that the
final ANS state is 0 (corresponding to the first in the encoder
side).

In hardware implementations, to avoid stalls, a ping-pong
buffer should be used. In this manner, a block can be pro-
cessed, while the next one is being generated.

2) SUBSYMBOL CODIFICATION ORDER
If y is coded before z, then z is decoded before y. Addition-
ally, for each symbol z, the order of operations described
in section V-B is as the decoder would see them. The
encoder should proceed in the reverse order, inserting first
the last subsymbol the decoder should see. It is not hard
to see that the value of that subsymbol is z mod C (trivial
to implement if C is chosen to be a power of 2). After,
if required, it inserts a sequence of n C sub-symbols, where
n = (z− (z mod C))/C .
Finally, the codification of a single z symbol could be

implemented as seen in Fig. 4. There, store_in_binary_stack
function call deals directly with the output binary and its
arguments are an integer variable with the bits to store and
the number of bits to take starting from the least significant
bits. The ANS tables are stored in the array ANS_table,
which is addressed by the quantized distribution parameter
id, the current state of the ANS coder and the new symbol
to encode. Each element of the table is a structure with the
number of bits that should be sent to the output and the next
ANS state. Note that ANS operation can be implemented
differently [19], [30].

106612 VOLUME 9, 2021

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

FIGURE 4. Codification procedure for a single geometrically distributed
symbol using tANS.

3) BINARY STORE ORDER
As the decoder reads the binary bits in the inverse order,
the encoder generates them and to avoid the need of append-
ing a header to each binary block, bits should be stored in
the reverse order as they are produced. This can be easily
implemented storing coder output bits in a stack, and then
copying the whole binary block below the previous binary
block.

D. GEOMETRIC CODER ITERATIONS
Although this algorithmmay appear to be slow for its iterative
nature, even with small C ∈ [1, 16] and for the θ observed
in 8-bit images, it is not. This can be appreciated in Fig. 5,
where the expected iterations per symbol (i) were plotted,
which is computed as follows:

i =
1

1− θC
(9)

FIGURE 5. Geometric coder mean iterations as a function of St compared
to number of iterations resulting from a Rice-based binarization strategy.
The approximations are shown with dashed lines.

Note that the equation can be approximated with i ≈
St/C + 1 for high St/C , where St =

∑
zi/t = θ/(1− θ).

As a reference, Fig. 6 shows the distribution of St for
different values of NEAR for the Rawzor dataset.

Notice that the larger St , the smaller rate at which P(z)
decreases. Additionally, C can be a function of θ̂q. So, in gen-
eral, although i increases almost linearly with St , the maxi-
mum C value for a given an ANS state size tends to increase
with St . Of course, the state size has to be large enough to be
able to code θ and (1− θ) (the two symbols for C = 1).

An alternative strategy to the one presented in Fig. 4 would
be to binarize the symbol and then proceed with a binary
coder. Instead of a trivial binarization, this procedure could
consist in using Rice-codes [36] for the symbol, which is a
similar method to the one employed in the JPEG-LS standard
extension. Fig. 5 allows to compare the iterations required
by the proposed method with the average number of bits
(and thus iterations of the binary coder) resulting from a
Rice coding binarization strategy. There, the k rice parameter
was chosen as the closest integer to −log2(−log2(θ)). It can
be seen that in range of interest, with small values of C ,
the proposed method requires fewer iterations. Moreover,
no binarization or bit probability modeling is required.

Although the coder can be configured so that i stays within
some desired bounds, the maximum possible iterations are
higher, which can lead to data loss if buffers are not cor-
rectly sized. Given that there are many situations in which
buffer sizes and/or latency are highly constrained, this issue
is addressed in the next section.

E. LIMITATION TO CODER ITERATIONS
AND SYMBOL EXPANSION
One of the concerns that arises when analyzing the pro-
posed coding algorithm is the possibility of bursts of symbols
requiring many cycles to code them and, particularly for the
smaller θ , the possibility of local expansion. Both burst of
long iterations and expansions have to be considered when
sizing buffers before and after the coder, respectively. For this
reason, it would be desirable to have a direct mechanism to
limit them.

A way of limiting both the expansion and the number of
iterations would be the following: The maximum number of
iterations (NI) is chosen. Then, NI consecutive sub-symbols
C will act as an escape mechanism, after which z is stored
directly using z_bits = dlog2(max(z)+1)e. Given the modulo
reduction applied to the prediction error in JPEG-LS, z can be
coded with (ibits − 1) bits, where ibits is the pixel depth of
the input image.

Alternatively, the residual (z − NI · C) could be stored,
which in some configurations might require fewer bits to
code. What is more, the GPO2 coder could be used to code
this residual, selecting k from a small array indexed by the
distribution parameter. These codes are more efficient for
high θ geometric distributions, which at the same time are
the most likely to require this mechanism for a given C .

For an ANS implementation of the coder, the order is
reversed. If z ≥ NI × C , then z (or the residual) is coded

VOLUME 9, 2021 106613

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

FIGURE 6. St Histogram for Rawzor dataset using different NEAR parameters. Bins bounds are placed at (2x ,2x+1) with 2x representing the bin.

FIGURE 7. Codification of single z limiting the iterations.

and, after that,NI consecutiveC sub-symbols are coded using
the ANS encoder as usual. On the receiver side, upon seeing
NI C sub-symbols, it will get out of the loop and proceed to
get z directly (or through the Golomb decoder). Note that,
as before, if C is chosen to be a power of 2, NI × C is
just a binary shift. Alternatively, those values can be stored,
and then, retrieved using the parameter distribution identifier.
Finally, for the simpler case where the GPO2 coder is not
used to code the residual, the algorithm can be expressed as
in Fig. 7, where a new input is required, z_bits.

1) IMPLICATIONS ON CODING EFFICIENCY
The implementation of this iteration limitation mechanism
will tend to decrease the coding efficiency of the coder. In its
simpler version, it forces all symbols equal or above NI × C
to be coded using a fixed amount of bits (z_bits). The KLD

FIGURE 8. Coding inefficiency (KLD/Entropy) caused by the iteration
limitation mechanism using the direct z codification after the escape
mechanism. Curves for NI = 7.

can be obtained as:

KLD(L, θ) = θL ·
(
z_bits− Entropy(z|z ≤ max(residual)

)
(10)

where L = NI · C .
The code inefficiency (KLD/Entropy) due to the use of the

simple coding of z or its residual can be observed in Fig. 8,
setting NI to 7 and using small values of C , for St in the
range observed in dataset. As it can be seen, KLD can be
relatively small even for the simplest codification and using
small numbers of C .

2) UPPER BOUND ON THE CODE LENGTH
As mentioned before, apart from limiting the iterations,
it would be useful to obtain an upper limit on the code length.
For each θ̂q, if Max(z) ≥ NI × C , there are two symbols
that could have the maximum code length. These are either
z ≥ NI × C (all symbols in this set are coded with the same
length) or z = NI × C − 1. Then, if NI > 0, an upper limit

106614 VOLUME 9, 2021

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

for a single symbol and a given θ̂q would be:

Max code length ≤ max
state

(tANS
θ̂q
[C]) · (NI − 1)

+ max
(
max
state

(tANS
θ̂q
[C])

+ z_bits, max
state

(tANS
θ̂q
[C − 1])

)
≤ ANS_state_bits · NI + z_bits (11)

Here, tANS
θ̂q
is the ANS table for θ̂q storing the number of

bits to send to the output, which is addressed by the symbol
and ANS state (omitted in the equation). This is an upper
bound as, after an ANS symbol is coded, only a subset of the
state domain is possible. To have the exact maximum code
length for a given θ̂q, the sub-symbol sequences used in eq. 11
can be coded, iterating over the state domain to set the initial
state.

However, upper bounds on long sequences of symbols
(like the coder block size) are more useful to size the output
buffer. Then, if the ANS tables are already generated, using
a simulation, the buffer could be computed such that there
is no possibility of exceeding its size. A complete block of
the symbol that produces the maximum code length should
be coded for each θ̂q, taking the largest binary block to size
the output buffer. Compared to eq. 11, this procedure would
produce tighter upper bounds.

If the ANS tables are not yet generated, the worst case
could be assumed, in which all the max functions applied
over tableANS in eq. 11 are equal to the ANS state number
of bits. This would be accurate if the entropy of the C
subsymbol, is close to the state bits. If that is not the case,
entropy values plus safety margins (see section II-B) could
be used instead of the max

state
(tANS

θ̂q
[][]) functions to do the

estimation.

3) INTERACTIONS BETWEEN THE CODER AND
THE REST OF THE SYSTEM
Something that should be noticed is that there is a negative
feedback loop in place. Code expansion and long iterations
are due to a large z given the estimated θ̂q for the context
and C = f (θ̂q). If this situation persists, the large errors are
going to drive θ̂q up, and subsequent large z that belong to
this context would produce fewer bits, and fewer iterations as,
in general, C can be increased with θ̂q for a given ANS state
size. If C is not increased, as it might be limited for resource
requirement reasons, the number of iterations would remain
the same, butmaximum code lengthwill tend to decreasewith
increasing θ̂q estimations, as the number of bits used to code
the sub-symbol C decreases.
For this reason, the actual largest binary output depends

on the relative values of the block size, context domain size
(number of context defined by surrounding quantized gra-
dients), context θ̂q parameter estimation inertia, NI , C for
each θ̂q. The smaller the block size, the bigger context domain
size, and the higher θ̂q parameter estimation inertia, the closer
it gets to the limit established by eq. 11.

VI. DISTRIBUTION PARAMETERS ESTIMATION
To integrate the presented coder with JPEG-LS, the parameter
estimation procedures to obtain θ̂q and p̂q need to be intro-
duced. These procedures not only estimate the distribution
parameters, but also define the Qp and Qθ parameter quanti-
zation functions.

A. P PARAMETER ESTIMATION
An approximation of eq. 5 can be used to obtain p̂q. For this,
the Nt sum is kept for each context and the bias cancellation
procedure with some minor modifications can be employed,
implementing a quantizer with uniform bin sizes. The recon-
struction values can be chosen to minimize the KLD within
each bin.

In Fig. 9, N is the context counter also used for the bias
cancellation and pid is p̂q id number, which is also kept for
each context. The parameters of this algorithm are Ntp and
the bound functions, fi(N) and fs(N). Ntp determines the
number of fractional bits stored in the Nt register and, as a
consequence, the size of each quantization bin is 2−Ntp and
Ls − Li = fs(N)− fi(N) = N .

FIGURE 9. Update procedure the estimation of p Bernoulli parameter
after accessing the context.

There are several ways (Li,Ls) can be set. The extreme
cases are analyzed, that is, the case (−N/2,N/2) (where
pid/2Ntp is centered within bin bounds) and (0,N) (where
pid/2Ntp is not centered, but equal to the lower bound). Fig. 10
shows the KLD for each of these cases for p ∈ [0, 0.5] and
Ntp = 4. Here, the reconstruction values were chosen to be
in the center of the bin, except for bin 0 of the centered case,
where the reconstruction is computed taking p = 0 as the
lower bound.

Although slightly more complex, choosing the (−N/2,
N/2) bounds allows a lower KLD for a given precision as
it has a smaller bin (half the size) in the lower end of p range,
where the KLD is more sensitive. This comes at the cost
of an additional bin in the p ∈ [0, 0.5] range (resulting in
2Ntp−1 + 1 bins). However, the optimal reconstruction value
of the upper bin (bin 2Ntp−1) is p = 0.5, so the tANS coder
can be bypassed as y does not need to be coded (entropy= 1).
Then, the number of tables required for both configurations
is 2Ntp−1. It has to be noticed that low p̂ ranges are used

VOLUME 9, 2021 106615

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

FIGURE 10. KL Divergence result of the quantization of the p̂ parameter
estimation for ‘‘centered’’ bin bounds ((id − 1/2)/2N tp, (id + 1/2)/2N tp)
and ‘‘not centered’’ bounds (id/2Ntp , (id + 1)/2Ntp) using Ntp = 4
(accumulator precision). The average KLD, in bits, are shown between
parentheses.

for low θ , so the impact of choosing one or the other would
be appreciated for lower entropy cases (high NEAR and/or
images that are accurately predicted, like smooth surfaces).

For photographic images, as forcing p̂q <= 0.5 does
not increase the bpp, the condition pid < (2Ntp−1 − 1) can
be added to the else if (Fig. 9), avoiding the need to
implement the logic to code y for the rare caseswhen p̂q > 0.5
(as indicated in section V-A).

B. θ PARAMETER ESTIMATION
Unlike the GPO2 coder used in LOCO-I, where the quanti-
zation of the TSG distribution parameters has to be adapted,
particularly, to the k Rice parameter, with the proposed coder
any quantization can be chosen. However, it is necessary to
find a good trade-off between coding efficiency and coder
resources.

An approximation of equation 6 is used to estimate θ .
To implement it, a St sum register is stored for each context.
Then, St needs to be computed and quantized, obtaining
indexes which can be directly mapped to θ using eq. 6 with α
and β set to 0. Given this direct relationship between St and θ ,
these two terms are used interchangeably.

1) CONSTANT RATIO QUANTIZER
The constant ratio quantizer, CRQ, is defined here as hav-
ing the lower and upper bounds of each bin computed as
(Li,Ls) = (Stx ∗ r, Stx/r), where Stx is the reconstruction
value of the bin x and r ∈ (0, 1) is a constant the regulates
the size of the bins. This quantizer tends to keep the average
KLD per bin constant when it is applied to St . Once St0 and
r are set, all bins bounds and reconstruction values can be
determined. The bin bounds can be placed at 2i, i ∈ Z,
to obtain the quantization function used in LOCO-I for the
average absolute error. However, as the presented coder is
able to handle lower entropy distributions, the precision of
the St register can be increased (as it was done for the Nt

FIGURE 11. Coding inefficiency due to the quantization of St for two
simple quantizers.

register) in order to support the quantization of St < 1, which
has more impact as NEAR increases.

The inefficiency (KLD/Entropy) due to the quantization
of St can be observed in Fig. 11, where θ is computed as
St/(St + 1) and reconstruction values are computed using
the rule stated above. Although those are not the optimal
reconstruction values, they are close to them. Assuming a
uniform distribution of St in the observed range, this simple
quantization has on average inefficiency of 0.48%.

The division and quantization procedure can be carried out
in several ways. LOCO-I presents an iterative method, imple-
mented with a one-line for loop. Alternatively, the procedure
in Fig. 9 can be adapted to accomplish the same quantization.
To do this, Li is set to 0, Li = N � f (θid , Stp) (where Stp
is the precision of the St register) and in line 2, instead of
subtracting θid , the bin lower bound needs to be computed
based on θid and Stp.

These two procedures will not always output the same
result, as the latter can only produce a decrement/increment of
θid of 1 with respect to the previous id (this can be extended
at the cost of more logic). In addition, this method requires
storing θid in the context, although the size of the St register
will be small as it will contain only the division residual.

In a software implementation, particularly a single thread
one, this procedure will tend to be faster compared to the iter-
ative one. However, from the hardware perspective, despite its
iterative nature, the first alternative is appealing as it can be
carried out outside the error quantization loop, and then the
system throughput will tend to be higher. In this case, St and
N are sent to the next stage where a possibly highly pipelined
module obtains θid , while the context is being updated and a
new sample is processed by the image quantizer. Whereas for
the second alternative, the quantization procedure and update
of the St index in the context needs to be completed in order
to continue with next image sample.

2) FINER GRAIN AVERAGE QUANTIZERS
If higher coding efficiency is required, maintaining a simple
quantization logic, the previously obtained quantization bins

106616 VOLUME 9, 2021

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

FIGURE 12. Procedure to obtain the quantized estimation parameter of
the geometric distribution, θ̂q, using the halved constant ratio quantizer.

can be uniformly divided. This can be implemented in several
ways, for example, see Fig. 12. This algorithm halves each
bin, generating the inefficiency curve labeled ‘‘Half constant
ratio’’ in Fig. 11 when using optimal reconstruction values.
It achieves an average inefficiency of 0.12% at the cost of
doubling the number of required tables for a given St range.

C. RESETS
As done in JPEG-LS, the context count N and accumulators
(in this case St and Nt) are halved when N reaches N0 =

2i, i ∈ N to limit the size of the registers and better adapt to
changes in the context statistics.

VII. SELECTION OF CODER PARAMETERS
Different scenarios might need different trade-offs between
resources, code efficiency, throughput and latency, and
requiring support for a variable set ofNEAR settings and types
of images. However, it is not an easy task to establish the
best configuration because of the strong coupling between the
parameters of the coder.

These parameters are:

• The ANS state size, which sets limits to the ranges of
possible θ̂q and p̂q values, as well as, the maximum C
for a given θ̂q.

• The precision of the St accumulator, Stp, which sets a
lower bound to the θ̂q values. If Stp is such that the lower
bound it sets is equal or below the one set by the ANS
state size, increasing Stp has almost not impact. The only
effect it would have is that the accumulator will have an
additional memory of past errors.

• The maximum θ̂q value.
• The Qθ quantization function
• The precision of the Nt accumulator, Ntp, which sets a
lower bound on the p̂q range. If only considering the
centered uniform quantizer presented in section VI-A,
Ntp also determines the Qp quantization function.

• The ANS table cardinality, C , for each θ̂q.
• The code block size.
• The geometric codermaximumnumber of iterations,NI .

All system performance measurements are effected by all
or most of the above parameters.

A. SELECTION METHODOLOGY
1) PRELIMINARY CONSIDERATIONS
A design methodology was derived from the mentioned
relationships between coder parameters and the experience
obtained when creating the prototype configurations for the
experiments. For them, given an ANS state size, the main
objective was to obtain configurations for a wide range of
prediction error entropies. That is, to aim at a wide range of
images and NEAR values. Additionally, for each ANS state
size, a good trade-off between code efficiency and resources
was sought. Then, the methodology intends to support the
widest range of θ̂ and p̂ for a given state size.
In addition, Ntp is set so that it does not limit the range

of p̂, but not increasing it beyond that point as the impact
on efficiency tends to be minimal while the number of tables
doubles for each additional bit of precision (if the quantizer
is configured to obtain the maximum number of quantization
bins given the selected precision). Also, by default, the con-
stant ratio quantizer is used for St and the centered uniform
quantizer for p.

The maximum θ̂ that has practical implications to code
efficiency is affected by the minimum NEAR supported,
the pixel depth and the type of images to encode (classifying
them according to their entropy, given the chosen model).
Assuming that the actual z distribution as a geometric con-
ditioned with the maximum possible value (2ibits−1−1), then
as θ tends to 1, then St will tend to (2ibits−1 − 1)/2 (half of
the range). Fig. 6 shows that for the 8-bit gray images of the
dataset some pixels reach this maximum (less than 0.4% of
them). However, if only photographic images are considered,
just 0.16% of the pixels reach a St > 16. Then, to achieve
high coding efficiency, the maximum θ̂q should correspond
to a quantization bin that covers or is above St = 32, in the
general case, and St = 16 for photographic images. If the
minimum NEAR > 0, these values would be approximately
scaled down by δ = (2 ·minNEAR)+ 1.

To create the ANS tables a slightly modified version of the
heuristic algorithm (mentioned in section II-B) was used. The
goal of this modification is to ensure that the resulting table is
a valid one, given the cardinality of the symbol source. This
is done detecting if the original algorithm fails to assign at
least 1 state to each symbol and then forcing it. In these cases,
the KLD is expected to be higher than what eq. 1 states given
that the tuning of the table to the set of symbols probabilities
would tend to be worst. These tables are referred to as subop-
timal tables. Note that this table generation algorithm can be
improved.

2) METHODOLOGY
The methodology is as follows:

1) Choose the ANS state bits.
2) Set Stp and Ntp such that they do not increase the

lower bound on the range of the distribution parameter

VOLUME 9, 2021 106617

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

TABLE 4. Prototype configurations used in the experiments.

estimations they affect (θ̂ and p̂, resp.), given the
selected ANS state size. For this, start with small preci-
sion, for example, set both Stp andNtp to 0. Then, using
C = 1, try to generate the ANS tables for the first bin
of each quantizer (smallest θ̂q and p̂q). If it succeeds,
increment the corresponding accumulator precision.
If it returns a suboptimal table, stop.

3) Set the maximum θ̂q. Choose the minimum θ̂q between
the maximum one that has practical implications to
compression and the maximum supported by the ANS
state size. To check this latter maximum, proceed sim-
ilarly to step 2, iterating over the order set of θ̂q until a
suboptimal table is returned. Particularly for hardware
implementations where ANS tables would be stored
in on-chip memory, using a number of St quantization
bins different to a power of 2 will result in unused
resources. Then, if the ANS state size allows it, increas-
ing the number of St quantization bins up to a power
of 2 might provide some additional compression with-
out requiring more resources.

4) For each θ̂q, choose the maximum allowed C . For this,
proceed similarly to step 2, but in this case, start with
C = 1 and iterate over power of 2. In the experiments,
the maximum allowed C (8) was not big enough to
have a significant intrinsic ANSKLD (see eq. 1). How-
ever, depending on the implementation, the maximum
used C can significantly affect memory resources and,
particularly in the case of hardware implementations,
coder throughput. For this reason, an upper limit to C
may be set using the ANS state bits and the number of
required ANS tables to do resource and performance
estimations.

Initially, to choose the ANS state bits, it can be assessed
the number of bits that can be afforded given the memory
resources and performance requirements. This should be
done assuming that 16-64 ANS tables would be employed.
For FPGA implementations, the results in [30] can be used as
a guide to understand the impact of resources on performance.

3) SETTING THE CODE BLOCK SIZE AND NI
The code block size is relatively decoupled from the rest of
parameters. The larger it is set, the better compression ratio
achieved. However, if the binary is aligned to bytes and the
ANS state bits is below 10, no significant improvement will
result increasing the code block size above the tens of thou-
sands of symbols. Increasing its size comes at the cost ofmore

memory resources and some impact on latency, although,
in practical scenarios, this does not represent a major problem
to achieve high efficiency and low latency. For most of the
experiments, presented in section VIII, the block size was set
to 2048 as it results, on average, in a KLD of 0.005 bits or
less when binary blocks are aligned to bytes (ANS state bits
∈ [4..7]). Moreover, for an FPGA implementation processing
8-bit images and using 32 p̂q tables and 32 θ̂q tables, one block
of symbols with their distribution parameter estimations can
be stored in 1 Xilinx 36K BRAM or 2 Intel M20K.

Regarding NI , a larger value tends to reduce the bpp.
However, as in the case of the code block size, increasing
NI has diminishing returns. Also, the worst-case throughput
worsens linearly (initially) with NI . Most test were run with
NI set to 7, the number of bits required to represent z variable
for 8-bit images. Then, the worst case throughput is the same
as the resulting from a coder using trivial binarization. Using
this value, little negative impact on compression is seen in
general, and almost no impact for photographic images.

B. TUNING THE CODER PARAMETERS
If the application needs to support a limited number of NEAR
values and/or type of images, then better trade-offs between
code efficiency and resources could be obtained.

Using the halved constant ratio quantizer for St (doubling
the number of bins covering the same range) can have a
greater impact on code efficiency than increasing the ANS
state bits, while in former equal or less memory resources
are required. This effect can be observed in the experimental
results shown in the following section.

Similarly, for p̂, changing the centered uniform quantizer
with the non-centered one and incrementing Ntp in one,
would result in the same minimum p̂q, but the rest of the p̂
range would have bins that are half the size, resulting in a
smaller KLD.

If performance models and resource restrictions are avail-
able, the optimization task could be handled algorithmically.

VIII. EXPERIMENTAL RESULTS
A prototype of LOCO-ANS was implemented using C++,
which was tested with a set of different configurations with
the goal of exploring the design space. The tested configura-
tions can be seen in Table 4. The name of the configurations
indicates the most relevant parameter settings, following the
format:

106618 VOLUME 9, 2021

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

TABLE 5. Mean bpp and iterations obtained using the prototype configurations with NI = 7.

FIGURE 13. Mean bpp obtained using the prototype configurations with NI = 7 vs. JPEG-LS.

Nt{Ntp}_St{Qθ}{Stp}_ANS{State bits}, where Qθ is
‘‘cg’’ for the (coarse grain) constant ratio quantizer or ‘‘fg’’
for the (finer grain) halved constant ratio quantizer described
in section VI-B. In all cases, N0 was set to 64 (JPEG-LS
default), the centered uniform quantizer was used to quantize
the distribution parameter estimation p̂ and the maximum C
was set to 8.

Apart from the configuration parameters, Table 4 shows the
total number of rows (total number of tables by the number
of states), which provides a measure of the memory resources
required by each configuration (the actual memory utilization
depends on the implementation).

A. ANALYSIS OF LOCO-ANS CONFIGURATIONS
PERFORMANCE
The average compression results (over the whole dataset)
can be seen in Table 5 and plotted in Fig. 13. Additionally,
the entropy estimation (according to the model) is shown in
the figure to appreciate the efficiency of the configurations.

For these experiments, the code block size was set to
2048 and NI to 7. All configurations surpass JPEG-LS
mean compression ratios for all the tested NEAR settings,
except for the Nt4_Stcg5_ANS4 configuration for lossless.

The highest performing configuration, Nt6_Stfg8_ANS7,
achieves a 1.2% mean bpp improvement for lossless, which
increases with NEAR. Interestingly, even the lighter version,
Nt4_Stcg5_ANS4, is able to obtain remarkable reductions
of bpp for near-lossless compression, with improvements
ranging from 3.5% for NEAR = 1 to 18.2% for NEAR = 10.
However, for NEAR > 10 the improvement percentage for
this particular configuration starts to decrease, as the lower
entropy distributions require larger ANS state sizes and
higher precision estimations.

1) COMPRESSION OF PHOTOGRAPHIC IMAGES
It is worth noting that when only considering the photo-
graphic images of the dataset, the bpp improvements are
greater. In this case, as observed in Table 6, even the
configuration using 4 bits for the ANS state size outperforms
JPEG-LS for all the tested NEAR values, including lossless.

2) EFFECT OF ITERATIONS LIMITATION
The results in Table 5 and 6 correspond to configurations with
NI = 7. When the number of iterations of the geometric
coder are not limited, the compression ratio slightly increases
for lossless compression of the complete dataset, allowing

VOLUME 9, 2021 106619

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

TABLE 6. Mean bpp for photographic images of the dataset obtained
using a selection of the prototype configurations with NI = 7.

the Nt6_Stfg8_ANS7 configuration to reach a 1.3% improve-
ment over JPEG-LS. However, for near-lossless compression
or for the photographic images (including lossless), there is
not a practical difference in compressionwhen settingNI = 7
compared to not limiting the iterations.

3) ANALYSIS AT THE IMAGE LEVEL
A comparison at the image level is presented in Table 7,
which shows the number of images of the dataset (and of the
photographic image subset in parentheses) JPEG-LS obtains
better compression ratios for different error tolerances. The
numbers observed for NEAR = 5 repeat exactly up to
NEAR = 12. From that point, configurations with smaller
ANS states start to struggle with lower entropy images, which
can also be appreciated in Fig. 13.

The synthetic image ‘‘zone plate’’ is the hardest to
compress (according to the model) and the one where
JPEG-LS tends to outperform LOCO-ANS. As mentioned in
section III, because of the change in the gradient quantization
function, the entropy estimation for all NEAR > 0 worsens
for this particular synthetic image. This results in JPEG-LS
obtaining a bpp below the estimated entropy, according to the
modified model for most NEAR > 0. For the best performing
LOCO-ANS configuration in Table 7, this situation occurs for
all the cases in which JPEG-LS obtained a better compression
ratio, except for one case where the average estimated entropy
is 0.0001 bits lower that JPEG-LS bpp. Then, in these cases,
the problem lies in the statistical model (which is better suited
for photographic images) and not in the coder.

The best performing configuration introduced in Table 7
has an increased block size of 16384 symbols. This reduces
the KLD due to the need of sending the final ANS state at the
end of a code block and aligning each new block to a word,
in this case, to bytes (eq. 8). For this reason, the configuration
achieves a 1.5%, 5% and 25.7% mean bpp improvement for
NEAR set to 0, 1 and 10, respectively, when compressing the
complete dataset. These improvements increase to 1.6%, 6%
and 37.6% when only taking into account photographic
images.

TABLE 7. Number of images of the dataset that JPEG-LS achieves a lower
bpp. Dataset size: 14 images.

B. EXPERIMENTAL SYSTEM EFFICIENCY
To evaluate experimentally the sources of inefficiencies,
given the chosen model, the KLD resulting from parameter
estimation procedures and from the coder were decoupled.
To do this, for each image sample, a second average entropy
computation was performed, denoted as H (TSG(θ̂q, p̂q)),
which estimates the bpps assuming an ideal coder. This
entropy was computed using the quantized estimations of
the distribution parameters (obtained with the procedures
described in section VI), instead of using the optimal esti-
mators θ̂ and p̂ (computed using eq. 5 and 6). Then, the KLD
due to the distribution parameters estimation procedures was
computed as H (TSG(θ̂q), p̂q)) − H (TSG(θ̂ , p̂)) and the KLD
due to the coder as bpp − H (TSG(θ̂q), p̂q)).
The resulting KLD, for all images and for NEAR ∈ [0..20]

is shown in Figs. 14 and 15. These were plotted as a func-
tion of H (TSG(θ̂ , p̂)). A logarithmic scale is used for the
KLD axis, given that values in this axis range over 5 orders
of magnitude. The entropies and bpp resulting from the
experiments were stored using 4 fractional digits, as it was
considered that increasing it would not provide any useful
information. Because of this, 10−4 is the smallest difference
that can be appreciated in the log scale, smaller values (zero
or negative) are plotted with a KLD = 6 · 10−5. In addition,
this explains the patterns in the 10−4 ≤ KLD ≤ 10−3

range.

1) PARAMETER ESTIMATION EFFICIENCY
In Fig. 14, in general, it can be observed that high efficien-
cies are achieved by the distribution parameter estimation
procedures. For an image average entropy greater than 1,
the quantization of θ̂ (indirectly as St is quantizated) domi-
nates observed inefficiency. Here, a clear separation between
prototypes using the coarse grain and the fine grain quan-
tizer for St can be seen. As a consequence of this effect,

106620 VOLUME 9, 2021

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

FIGURE 14. KL Divergence as a function of the estimated entropy due to
distribution parameter estimation inefficiencies for all images in the
dataset for NEAR ∈ [0..20]. The divergence results from using the
quantized estimations of the distribution parameters (computed as
described in section VI) instead of the estimations obtained using
eq. 5 and 6.

Nt5_Stfg6_ANS5 configuration is capable of matching, and
in some cases improving, the compression ratios achieved
by the Nt6_Stcg7_ANS6 configuration, whereas the lat-
ter requires about twice the memory resources. The finer
St quantization allows the former to be more efficient for
medium entropies.

However, when the average entropy diminishes below 1,
the effect of having a minimum θ̂q and a minimum p̂q starts
to be noticeable (the entropy diminishes as θ → 0 and p
moves away from .5). Here, the main parameter that separates
the points of the plot is the ANS state size, which deter-
mines these minimums. Additionally, the quantization of p̂
contributes to the increase of the KLD as it is less efficient in
this zone (observed in Fig. 10).

On the other end of the range, for high entropies, the effect
of having a maximum θ̂q would also increase the KLD.
This can only be observed for the prototype using a 4-bit
ANS state when losslessly coding the greatest entropy image
(zone plate).

2) CODER EFFICIENCY
In the case of the coder KLD, seen in Fig. 15, the relevant
parameters are the ANS state size, the code block size andNI .
For an entropy in the (1, 5) range, the KLD is basically
flat, with a small positive slope, and it would mainly come
from ANS intrinsic KLD (eq. 1) and the code block size
(eq. 8). The magnitude of the KLD due to the latter can be
appreciated comparing the Nt6_Stfg8_ANS7 prototype with
block sizes of 2048 and 16384 symbols (both with unlimited
iterations). Note, however, that these differences are not as
big as the plot might suggest, given that the KLD is plotted
on a logarithmic scale. Additionally, notice that with a block
size of 16384 symbols the coder of this prototype achieves a
practically null KLD.

FIGURE 15. KL Divergence as a function of the estimated entropy due to
coder inefficiencies for all images in the dataset for NEAR ∈ [0..20].
Computed as the average bits produced by the coder minus the average
entropy assuming the quantized estimations of the distribution
parameters are optimal. Default configuration: NI = 7 and code block
size = 2048 symbols. 1configuration with unlimited iterations
2configuration with unlimited iterations and code block size =
16384 symbols.

The increase in the KLD observed for the lower entropies
is due to the use of the suboptimal tables for the smaller θ̂q and
p̂q (see the selection methodology in section VII). The lower
the average entropy, the more probable is to use these tables,
then the KLD increases. Although the use of these suboptimal
tables increases the coder KLD, including these smaller dis-
tribution parameters more than compensates, then, the final
effect is a reduction in the overall KLD.

As the entropy increases, the KLD can increase for several
reasons: the limitation of the geometrical coder iterations
(eq. 10), the increase of C as θ̂q increases (which in turn
increases the intrinsic ANS KLD as indicated by eq. 1)
and the increased average iterations (which make the coder
incur in the ANS intrinsic KLD several times). The effect
of NI can be observed comparing the points corresponding
to the Nt6_Stfg8_ANS7 prototype with NI = 7 and with
unlimited iterations. For low and medium entropies, the two
configurations result in approximately the same KLD, while
for higher ones the KLD due to the escape mechanism can
be appreciated. To understand the magnitude of the effect of
increasing C as θ̂q increases, the highest entropy cases were
compressed with a modified Nt6_Stfg8_ANS7 prototype,
setting max(C) = 4. The resulting KLD (not shown in
the figure) went back to the (0.001- 0.008) range when the
iterations were not limited. For this modified configuration,
the average iterations increased (nearly doubled).

C. SOFTWARE PERFORMANCE COMPARISON
In this section, we compare LOCO-ANS in terms of compres-
sion ratio and encoder/decoder speed against well-known and
recently developed lossless and near-lossless codecs:

• JPEG-LS (implementation: [37]).
• CALIC (implementation: [38]).

VOLUME 9, 2021 106621

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

• JPEG2000 Part 1 [39] (implementation: [40]) and
JPEG2000 Part 15 High-throughput JPEG2000
(HTJ2K) [41] (implementation: [42]) (none of them
provide near-lossless compression).

• WebP [43] (implementation: [44]).
• WebP2, currently under development (implementa-
tion: [45]).

• JPEG-XL [46], [47] (although not yet a standard, it is
currently under evaluation and the reference software is
available [48]).

The tests were carried out in a Raspberry Pi 3 Model B
with 1 GB of RAM. This platform was chosen because it
better resembles, compared to an x86_64 system, thememory
and compute limitations that embedded systems tend to face,
which is our target. In addition, it is a widespread platform,
facilitating the reproducibility of the results here presented.

All tests were run using a single thread, given that most
codec implementations do not have multi-threading capabil-
ities, although they could support it. For example, images
could be divided in tiles, like JPEG-XL or JPEG2000, which
are able to do. In the case of JPEG-LS, although this is not part
of the standard, this could be easily implemented, like in the
hardware implementation presented in [9]. This tiling, when
performed dividing the image vertically, not only allows for a
higher level of parallelism but also tends to benefit JPEG-LS
statistical modeling, thus increasing compression (demon-
strated by the tests).

Additionally, to show other possible speed-compression
trade-offs, a version of LOCO-ANS using four gradients to
define the context, as in the original LOCO-I and the standard
extension, was also included. Finally, the configurations used
for the codecs can be seen in Table 8.

TABLE 8. Codec configurations used in the tests.

1) DATASET
Given the large memory requirements of JPEG-XL (even
for the lower effort setting ‘‘-s0’’), it was not possible to
process the largest images of the Rawzor dataset using this
codec in the chosen platform. For this reason and to obtain
more robust results, these tests were run using gray versions
of a subset of the Challenge on Learned Image Compression
(CLIC) [49] training dataset (this subset was used in the eval-

uation of JPEG-XL lossless compression, and it is available
in [50]). It contains 303 2048×1320 photographic images and
was not used during the development of LOCO-ANS, so it is
also good for validation purposes.

2) ANALYSIS
The results for encoder and decoder procedures are presented
in Figs. 16 and 17, respectively. In addition, Table 9 summa-
rizes the results for lossless compression, where entries are
sorted by bpp. As expected for software implementations,
the increased compression obtained by LOCO-ANS comes
at the cost of a reduction in the encoder and decoder speeds
compared to JPEG-LS. Specifically, the tests show a 32% and
46% encoder speed reduction and a 42% and 54% decoder
speed reduction for lossless compression. As the peak error
increases, both implementations run-times tend to decrease,
although the relative comparison favors JPEG-LS, which can
be explained by the incremented use of the run-length coder.

TABLE 9. Encoder/Decoder speed comparison for lossless compression.

Despite this decrease in performance, given the codecs
utilized in this comparison, both of the LOCO-ANS configu-
rations presented are on the Pareto frontier [51] of encoder
speed versus bpp and decoder speed versus bpp. When it
comes to near-lossless compression, most codecs do not per-
form so well. Particularly, in the case of JPEG-XL, the near-
lossless quantization is done as a preprocessing step that
reduces the cardinality of the prediction errors, not the range
of these errors, and then, it is up to the entropy encoder to
detect and exploit the reduced error set cardinality. For this
reason, the faster compression modes not only fail to increase
compression, but they decrease it. Conversely, LOCO-ANS
excels in this type of compression achieving the highest com-
pression ratios for a given peak error, in the presented order
of magnitude of encoder speed, and it is only surpassed in
encoder speed by JPEG-LS and in decoder speed by JPEG-LS
and WebP.

Lastly, to show that tilling does not worsen LOCO-ANS
performance and given that the prototype supports it, tests

106622 VOLUME 9, 2021

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

FIGURE 16. Average encoder MiPixels/s versus average bpp for software implementations of different codecs. Numbers next to each point indicate the
corresponding peak error. Pareto frontier is drawn with a solid line for error tolerances ∈ {0,1,2}.

FIGURE 17. Average decoder MiPixels/s versus average bpp for software implementations of different codecs. Numbers next to each point indicate the
corresponding peak error. Pareto frontier is drawn with a solid line for error tolerances ∈ {0,1,2}.

were also run dividing the images in 4 columns (num-
ber of cores available in the Raspberry Pi platform).
As a result, 3.67 and 3.64 bpp (2.3% improvement com-
pared to JPEG-LS) were obtained for configurations 1 and
2, respectively, compared to 3.69 and 3.65 bpp without
tilling.

3) COMPARISON WITH OTHER ANS-BASED APPROACHES
Although JPEG-XL entropy encoder is also based on ANS
and the implementation used in the tests is highly optimized,
it runs slower (in general several times) than LOCO-ANS,
even using low-effort modes. Moreover, CALIC compares
favorably against it.

JPEG-XL uses a modified version of Range ANS (rANS)
to encode symbols given clustered histograms. To perform
this operation, all prediction residuals are computed (that is,
for the complete image) and then histograms for each context
are generated. In general, these contexts are dynamically
determined (obtained at run-time). After that, histograms can
be clustered (context merging) and the final histograms are
signaled to the decoder. LUTs (Look-up Tables) to speed
up rANS (with a not trivial initialization) are generated for
each of these histograms (these LUTS are called Alias Tables,
not to be confused with tANS tables). Finally, residuals (or
more generally, tokens), after going through other numerical

manipulations, are coded with rANS using a 32bit state. ANS
code blocks coincide with a tile (256× 256 pixels).
To our understanding, JPEG-XL aims to be a general-

purpose codec, although oriented to web image delivery [52].
In this scenario, it is reasonable to allow higher complex-
ity (higher computation time and/or computation/memory
resources), particularly on the encoder side. This encoder
vs decoder speed trade-off is also observed in WebP and
WebP2. However, the aim of our work was to improve image
compression in situations with stronger constraints (low
resources, low energy budget, high throughput). It is easy to
observe that, given their resource requirements, many of the
sub-processes that JPEG-XL performs to code the generated
tokens are not well suited for high-performance hardware nor
embedded software implementation. This is also the case for
other procedures that are part of the JPEG-XL codec, for
example, those that require full image scanning.

In contrast, LOCO-ANS approach, based on static tANS
using parametric distributions (instead of rANS using clus-
tered histograms) leads to higher throughput (illustrated by
Figs. 16 and 17). Additionally, it is more suitable for a hard-
ware implementation, given that buffering is limited, simple
arithmetic is used and tables are generated at compile time,
which allows both software and hardware optimizations, par-
ticularly in the latter case.

VOLUME 9, 2021 106623

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

D. EXPECTED HARDWARE IMPLEMENTATION
THROUGHPUT
The software performance results do not translate directly to
hardware implementations, given that encoders are normally
implemented as pipelines, where pixel decorrelation and cod-
ing run in parallel, providing lower latency and higher speed
in the compression. These features are very suitable for real-
time applications [53].

The coder symbol rate is going to be directly affected by the
mean number of iterations required to encode z, but, as it can
be seen in Table 5, these tend to be very small for all config-
urations. Even considering lossless compression, including
artificial images and using the worst performing configura-
tion, 1.34 iterations/pixel is achieved. If a single ANS state is
shared between both y and z coders (as in the experiments),
the coder symbol rate is dependent on the mean number of
accesses to the ANS tables per image sample, which adds
one access to code y. Alternatively, two independent ANS
coders could be used for y and z variables, decoupling their
ANS state. This would allow to code y and z in parallel and
to tune the state size for each of them separately. However,
both final states should be sent at the end of the block, which
can result in an increased KLD. If enough memory resources
are available, this can be mitigated using a larger code block
size.

As studied in [30], the memory resources required by the
tables impact on the system throughput, as they correlate
with the maximum operating frequency. Given the through-
put obtained by these hardware implementations of ANS
coders and the average cycles required by the coder, it is
expected that the throughput of an FPGA implementation of
the proposed TSG coder will outperform the best reported
JPEG-LS implementation supporting near-lossless [9]. The
throughput obtained by the JPEG-LS and the ANS encoder
implementations are considered comparable as they targeted
the same technology (Xilinx Virtex-6). Then, the utilization
of this coder will increase compression, while the throughput
bottleneck would remain in the context update and the pixel
quantization (and reconstruction) procedures.

E. DISCUSSION
Given the obtained results, it is observed that the proposed
TSGANS coder is particularly well suited for sources with an
entropy in the (.15, 4) range, approximately. Even, the 4-bit
ANS state configuration achieves a great efficiency with low
memory resources and capable of high-throughput operation.
Taking into account the strengths of the GPO2 and the run-
length coders, it would be interesting to combine these with
the proposed coder. The resulting system may achieve the
best complexity-efficiency trade-off for a very wide range of
applications.

Additionally, it is worth noting that the TSG coder (or just
the geometrical coder) could also be used in other applica-
tions, such as audio compression. For example, in the case
of MPEG-4 ALS [54] or FLAC [55], the prediction error
distribution could be modeled as a two-sided geometric.

IX. CONCLUSION
In this work, improved lossless and near-lossless compres-
sion was achieved through a series of modifications of the
JPEG-LS standard. Particularly, the development of an ANS
based coder for two-sided geometric sources provides highly
efficient and low complexity coding. Additionally, this coder
enabled the introduction of more precise distribution param-
eter procedures and to quantize more effectively the gradient
defined context space.

The system as a whole admits a wide range of configura-
tions, providing the capability to obtain different trade-offs
between coding efficiency, resources and throughput, which
allows it to be used in a variety of applications. A prototype
available to the community was implemented and a set of
experiments were run with different configurations to explore
the design space. These configurations range from a very low
resource instance that outperforms JPEG-LS in near-lossless
compression to an instance using 64 tables with a 7-bit ANS
state that closely approaches the estimated entropy.

When compared to JPEG-LS baseline compressing pho-
tographic images, LOCO-ANS, using the same context size,
is able to achieve up to a 1.6%, 6% and 37.6% mean
bpp improvement for an error tolerance set to 0, 1 and 10,
respectively. Allowing an increase of the context size and
image tiling, a 2.3% lower bpp is obtained for lossless com-
pression. Moreover, LOCO-ANS approaches lossless com-
pression rates of more complex encoders, even surpassing
them in near-lossless compression, and obtaining a much
faster encoder speed.

Given that many applications would benefit from a hard-
ware implementation, future work will focus on developing
and evaluating a prototype implemented in an FPGA, with
higher throughput and lower latency, which can be used for
real-time purposes.

106624 VOLUME 9, 2021

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

REFERENCES
[1] S. J. Visser, A. S. Dawood, and J. A. Williams, ‘‘FPGA based satellite

adaptive image compression system,’’ J. Aerosp. Eng., vol. 16, no. 3,
pp. 129–137, 2003.

[2] Z. Cao, T. Zhang, M. Liu, and H. Luo, ‘‘Wavelet-supervision convolutional
neural network for restoration of JPEG-LS near lossless compression
image,’’ in Proc. IEEE Asia Conf. Inf. Eng. (ACIE), Jan. 2021, pp. 32–36.

[3] M. R. Lone, ‘‘A high speed and memory efficient algorithm for
perceptually-lossless volumetric medical image compression,’’
J. King Saud Univ.-Comput. Inf. Sci., Apr. 2020. [Online]. Available:
https://service.elsevier.com/app/answers/detail/a_id/22801/supporthub/
sciencedirect/

[4] G. Placidi, ‘‘Adaptive compression algorithm from projections: Applica-
tion on medical greyscale images,’’ Comput. Biol. Med., vol. 39, no. 11,
pp. 993–999, Nov. 2009.

[5] Q. Al-Shebani, P. Premaratne, P. J. Vial, and D. J. McAndrew, ‘‘The devel-
opment of a clinically tested visually lossless image compression sys-
tem for capsule endoscopy,’’ Signal Process., Image Commun., vol. 76,
pp. 135–150, Aug. 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S092359651830290X

[6] Y. Kim, ‘‘Real-time medical imaging with multimedia technology,’’ in
Proc. IEEE Eng. Med. Biol. Soc. Region Int. Conf. Inf. Technol. Appl.
Biomed. (ITAB), Sep. 1997, pp. 33–37.

[7] M. Yang and N. Bourbakis, ‘‘An overview of lossless digital image com-
pression techniques,’’ in Proc. 48th Midwest Symp. Circuits Syst., vol. 2,
2005, pp. 1099–1102.

[8] M. J.Weinberger, G. Seroussi, and G. Sapiro, ‘‘FromLOGO-I to the JPEG-
LS standard,’’ in Proc. Int. Conf. Image Process., vol. 4, 1999, pp. 68–72.

[9] L. Chen, L. Yan, H. Sang, and T. Zhang, ‘‘High-throughput architecture for
both lossless and near-lossless compression modes of LOCO-I algorithm,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 12, pp. 3754–3764,
Dec. 2019.

[10] M. Ferretti and M. Boffadossi, ‘‘A parallel pipelined implementation of
LOCO-I for JPEG-LS,’’ in Proc. 17th Int. Conf. Pattern Recognit. (ICPR),
vol. 1, 2004, pp. 769–772.

[11] M. Klimesh, V. Stanton, and D. Watola, ‘‘Hardware implementation of
a lossless image compression algorithm using a field programmable gate
array,’’Mars, vol. 4, no. 4.69, pp. 5–72, 2001.

[12] M. Ferretti and M. Boffadossi, ‘‘A parallel pipelined implementation of
LOCO-I for JPEG-LS,’’ in Proc. 17th Int. Conf. Pattern Recognit. (ICPR),
vol. 1, 2004, pp. 769–772.

[13] P. Merlino and A. Abramo, ‘‘A fully pipelined architecture for the LOCO-
I compression algorithm,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 17, no. 7, pp. 967–971, Jul. 2009.

[14] X. Li, X. Chen, X. Xie, G. Li, L. Zhang, C. Zhang, and Z. Wang, ‘‘A low
power, fully pipelined JPEG-LS encoder for lossless image compression,’’
in Proc. IEEE Multimedia Expo Int. Conf., Jul. 2007, pp. 1906–1909.

[15] L.-J. Kau and S.-W. Lin, ‘‘High performance architecture for the encoder
of JPEG-LS on SOPC platform,’’ in Proc. SiPS, Oct. 2013, pp. 141–146.

[16] A. Kiely and M. Klimesh, ‘‘The ICER progressive wavelet image com-
pressor,’’ Jet Propuls. Lab., Pasadena, CA, USA, IPN Prog. Rep. 42-155,
2003, pp. 1–46, vol. 42, no. 155.

[17] J. Duda, ‘‘Asymmetric numeral systems,’’ CoRR, vol. abs/0902.0271,
pp. 1–47, May 2009. [Online]. Available: http://arxiv.org/abs/0902.0271

[18] J. Duda, ‘‘Asymmetric numeral systems: Entropy coding combining
speed of Huffman coding with compression rate of arithmetic coding,’’
CoRR, vol. abs/1311.2540, pp. 1–24, Nov. 2013. [Online]. Available:
http://arxiv.org/abs/1311.2540

[19] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp, ‘‘The use of asymmetric
numeral systems as an accurate replacement for Huffman coding,’’ in Proc.
Picture Coding Symp. (PCS), May 2015, pp. 65–69.

[20] LOCO-ANS Repository. Accessed: Jun. 27, 2021. [Online]. Available:
https://github.com/hpcn-uam/LOCO-ANS

[21] Digital Compression and Coding of Continuous Tone Still Images—
Requirements and Guidelines, document ITU-T T.81-ISO/IEC is 10918-1,
ITU-T Recommendation T, 1993, vol. 81.

[22] Portable Network Graphics (PNG). Accessed: Apr. 20, 2021. [Online].
Available: http://www.libpng.org/pub/png/libpng.html

[23] M. J.Weinberger, G. Seroussi, andG. Sapiro, ‘‘The LOCO-I lossless image
compression algorithm: Principles and standardization into JPEG-LS,’’
IEEE Trans. Image Process., vol. 9, no. 8, pp. 1309–1324, Aug. 2000.

[24] S. Golomb, ‘‘Run-length encodings,’’ IEEE Trans. Inf. Theory, vol. IT-12,
no. 3, pp. 399–401, Jul. 1966.

[25] Information Technology—Lossless and Near-Lossless Compression of
Continuous-Tone Still Images: Extensions, document ITU-T T. 870-
ISO/IEC 14495- 21, ITU-T, 2003.

[26] X. Wu, N. Memon, and K. Sayood, A Context-Based, Adaptive,
Lossless/Nearly-Lossless Coding Scheme for Continuous-Tone Images,
document ISO/IEC JTC 1/SC 29/WG, 1995, vol. 1.

[27] X. Wu and N. Memon, ‘‘Context-based, adaptive, lossless image coding,’’
IEEE Trans. Commun., vol. 45, no. 4, pp. 437–444, Apr. 1997.

[28] Information Technology-Lossless and Near-Lossless Compression of
Continuous-Tone Still Images: Baseline, document ITU-T T. 87-SO/IEC
14495-1, ITU-T, Jun. 1998.

[29] J. Rissanen, ‘‘Generalized Kraft inequality and arithmetic coding,’’ IBM J.
Res. Develop., vol. 20, no. 3, pp. 198–203, May 1976.

[30] S. M. Najmabadi, Z. Wang, Y. Baroud, and S. Simon, ‘‘High throughput
hardware architectures for asymmetric numeral systems entropy coding,’’
in Proc. 9th Int. Symp. Image Signal Process. Anal. (ISPA), Sep. 2015,
pp. 256–259.

[31] S. M. Najmabadi, H. S. Tungal, T.-H. Tran, and S. Simon, ‘‘Hardware-
based architecture for asymmetric numeral systems entropy decoder,’’ in
Proc. Conf. Design Archit. Signal Image Process. (DASIP), Sep. 2017,
pp. 1–6.

[32] S. M. Najmabadi, T.-H. Tran, S. Eissa, H. S. Tungal, and S. Simon,
‘‘An architecture for asymmetric numeral systems entropy decoder—
A comparison with a canonical Huffman decoder,’’ J. Signal Process. Syst.,
vol. 91, no. 7, pp. 805–817, Jul. 2019.

[33] Rawzor. Rawzor Test Images. Accessed: Apr. 20, 2021. [Online]. Avail-
able: http://imagecompression.info/test_images/

[34] Libjpeg Implementation. Accessed: Jan. 7, 2021. [Online]. Available:
https://github.com/thorfdbg/libjpeg

[35] N. Merhav, G. Seroussi, and M. J. Weinberger, ‘‘Coding of sources with
two-sided geometric distributions and unknown parameters,’’ IEEE Trans.
Inf. Theory, vol. 46, no. 1, pp. 229–236, Jan. 2000.

[36] R. F. Rice, ‘‘Some practical universal noiseless coding techniques,’’ Jet
Propuls. Lab., Pasadena, CA, USA, Tech. Rep. 76-22, 1979.

[37] Charls Implementation of JPEG-LS. Accessed: Apr. 20, 2021. [Online].
Available: https://github.com/team-charls/charls

[38] CALIC Implementation. Accessed: Jun. 15, 2021. [Online]. Available:
https://github.com/Tobi-Alonso/gcif/tree/master/refs/calic

[39] Information Technology—JPEG 2000 Image Coding System: Core Coding
System, document ITU-T T.800 | ISO/IEC 15444-1, ITU-T, Jun. 2019.

[40] JPEG2000 Implementation. Accessed: Jun. 9, 2021. [Online]. Available:
https://github.com/uclouvain/openjpeg

[41] Information Technology—JPEG 2000 Image Coding System: High-
Throughput JPEG 2000, document ITU-T T.814 | ISO/IEC 15444-15, ITU-
T, Jun. 2019.

[42] High Throughput JPEG2000 Implementation. Tag: 0.7.3. Accessed:
Jun. 9, 2021. [Online]. Available: https://github.com/aous72/OpenJPH

[43] Webp Homepage. Accessed: Jun. 15, 2021. [Online]. Available:
https://developers.google.com/speed/webp

[44] Libwebp Implementation. Accessed: Jun. 15, 2021. [Online]. Available:
https://github.com/webmproject/libwebp

[45] Libwebp2 Implementation. Accessed: Jun. 15, 2021. [Online]. Available:
https://chromium.googlesource.com/codecs/libwebp2

[46] Overview of JPEG XL. Accessed: Jun. 24, 2021. [Online]. Available:
https://jpeg.org/jpegxl/index.html

[47] A. Rhatushnyak, J. Wassenberg, J. Sneyers, J. Alakuijala, L. Vandevenne,
L. Versari, R. Obryk, Z. Szabadka, E. Kliuchnikov, I.-M. Comsa,
K. Potempa, M. Bruse, M. Firsching, R. Khasanova, R. van Asseldonk,
S. Boukortt, S. Gomez, and T. Fischbacher, ‘‘Committee draft of JPEG
XL image coding system,’’ 2019, arXiv:1908.03565. [Online]. Available:
https://arxiv.org/abs/1908.03565

[48] JPEG XL Reference Software. Accessed: May 28, 2021. [Online]. Avail-
able: https://gitlab.com/wg1/jpeg-xl

[49] Challenge on Learned Image Compression. Accessed: Jun. 15, 2021.
[Online]. Available: http://compression.cc/tasks/

[50] CLIC Images Subset. Accessed: Jun. 15, 2021. [Online]. Available:
https://drive.google.com/drive/folders/1wMgmjf54iN46dVihvMnHhGk8o
QT7a8Nd

[51] A. V. Lotov and K. Miettinen, ‘‘Main terminology and notations used,’’
in Multiobjective Optimization. Berlin, Germany: Springer, 2008, ch. 7,
pp. 10–11.

[52] J. Alakuijala, J. Sneyers, L. Versari, and J. Wassenberg. JPEG White
Paper: JPEG XL Image Coding System. Accessed: Jun. 24, 2021. [Online].
Available: http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf

VOLUME 9, 2021 106625

T. Alonso et al.: LOCO-ANS: Optimization of JPEG-LS Using Efficient and Low-Complexity Coder Based on ANS

[53] T. Alonso, M. Ruiz, Á. L. Garcia-Arias, G. Sutter, and J. E. L. de Vergara,
‘‘Submicrosecond latency video compression in a low-end FPGA-based
system-on-chip,’’ inProc. 28th Int. Conf. Field Program. Log. Appl. (FPL),
Aug. 2018, pp. 355–3554.

[54] T. Liebchen, T. Moriya, N. Harada, Y. Kamamoto, and Y. A. Reznik,
‘‘The MPEG-4 audio lossless coding (ALS) standard-technology and
applications,’’ in Proc. 119th AES Conv., 2005, pp. 1–14.

[55] FLAC—Free Lossless Audio Codec. Accessed: Apr. 20, 2021. [Online].
Available: https://xiph.org/flac/

TOBÍAS ALONSO received the degree in elec-
tronic engineering from Universidad Nacional de
San Juan (UNSJ), Argentina, in 2017. He is cur-
rently pursuing the Ph.D. degree with Universidad
Autónoma de Madrid, Spain. He was a Teaching
Assistant with UNSJ. He is also a Research and
Teaching Assistant with Universidad Autónoma
de Madrid. His research interests include FPGA
hardware design for high-speed networks, algo-
rithm acceleration, and development of embedded
systems.

GUSTAVO SUTTER (Member, IEEE) received
the M.S. degree in computer science from
State University UNCPBA, Tandil, Buenos Aires,
Argentina, in 1997, and the Ph.D. degree from the
AutonomousUniversity ofMadrid, Spain, in 2005.
He has been a Professor with UNCPBA. He is
currently a Professor with Universidad Autónoma
de Madrid. He is the author of 3 books and more
than 100 international articles and communica-
tions. His research interests include FPGA design,

digital arithmetic, development of embedded systems, and high-performance
computing.

JORGE E. LÓPEZ DE VERGARA (Senior Mem-
ber, IEEE) received theM.Sc. and Ph.D. degrees in
telecommunication engineering from Universidad
Politécnica de Madrid, Spain, in 1998 and 2003,
respectively. He is currently an Associate Profes-
sor with Universidad Autónoma deMadrid, Spain,
and a Founding Partner of Naudit HPCN, a com-
pany devoted to high performance traffic moni-
toring and analysis. He has coauthored more than
100 scientific articles on this topic. His research

interests include network and service management and monitoring.

106626 VOLUME 9, 2021

