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THE SPACE OF RELATIVE ORDERS AND A GENERALIZATION 

OF MORRIS INDICABILITY THEOREM 

´ YAGO ANTOL ́IN AND CRISTOBAL RIVAS 

Abstract. We introduce the space of relative orders on a group and show that it is 
compact whenever the group is fnitely generated. We use this to show that if G is 
a fnitely generated group acting by order preserving homeomorphism of on the line, 
then if some stabilizer of a point is proper and co-amenable subgroup, then G surjects 
onto Z. This is a generalization of a theorem of Morris. 

1. Introduction 

In [9], Dave Morris proved the following celebrated theorem 

Theorem 1.1 (Morris). Let G be a fnitely generated and amenable group acting non 
trivially by order preserving homeomorphisms on the line. Then G surjects onto Z. 

His proof exploits a strong connection between faithful group actions on the line and 
left-multiplication invariant total orders (left-orders for short) on groups (see [6] for a 
general introduction on this relationship). Crucial to his proof, is the fact that LO(G), 
the space of all left-orders on a group G, is compact [13] and there is a natural G-action 
on it by homeomorphisms. Thus there is a G-invariant probability measure on LO(G) 
whenever G is amenable. Finally, Morris shows that almost every order in the support of 
the invariant probability is a left-order of Conradian type1 , which implies that G surjects 
onto Z whenever G is fnitely generated [4]. 

In this note we extend Morris’s result to groups acting on the line that are not neces-
sarily amenable but contain large point-stabilizers. More precisely we show 

Theorem 1.2. Let G be a fnitely generated group acting on the line by order preserving 
homeomorphisms. Suppose there is a point p ∈ R whose stabilizer in G is a proper and 
co-amenable subgroup. Then G surjects onto Z. 
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1A left-order � is of Conradian type if whenever id � f ≺ g then g ≺ fgn for some n ≥ 1. See [4]. 
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Recall that H ≤ G is co-amenable if whenever G acts by homeomorphisms of a 
compact space in such a way that H preserves a probability measure, then G also pre-
serves a probability measure (as with amenability, there are many equivalent defnitions 
of co-amenability, see [5, 8]). So, amenable groups are precisely groups on which the 
identity is co-amenable. In particular, Morris’ theorem follows from ours as the case 
that the kernel of the action is co-amenable. 

Given G a fnitely generated group acting on the line by order preserving homeomor-
phisms and H = StabG(p) a proper subgroup, a natural reaction is to try to show that 
H preserves a probability measure when acting on LO(G). This is however, not true in 
general as we explain in Example 2.7. In fact, the essence of our work is to show that 
LO(G) sits inside a larger space, which we call the space of relative orders, which is also 
a compact space enjoying a G-action by homeomorphisms and, moreover, it is enlarged 
enough so that the H-action on it will have fxed points. 

Defnition 1.3 (Folklore). A proper subgroup C of a group G is called relatively convex 
if there is a total order � on G/C which is invariant under left-multiplication by G, 
meaning that if fC � gC, then hfC � hgC for all f, g, h in G. (In particular, C has 
infnite index in G.) 

We say that � is a relative order of G (with respect to C) and denote by ORel(G) the 
set of all relative orders of G. 

In Section 2 we will show 

Theorem 1.4. There is a natural topology on ORel(G) that makes it compact whenever 
G is fnitely generated. Moreover, G acts naturally on ORel(G) by homeomorphisms and, 
if C is a relatively convex subgroup of G, then C fxes a point in ORel(G). 

Here is one easy recipe to build relative orders. Start with a non-trivial action of a 
group G on the line and take x ∈ R a point which is not globally fxed by G. Then, 
we can declare f � g if and only if g(x) ≤ f(x). This is a relative order of G whose 
corresponding relative convex subgroup is StabG(x). In Section 2, we will also show 
that any relative order on G can be obtained from the above procedure. Thus, if G 
is fnitely generated, ORel(G) can be regarded as a compactifcation of the space of 
non-trivial actions of G on the line in the same way as LO(G) can be regarded as a 
compactifcation of the space of faithful actions of G on the line. 

There is just one small caveat in order to implement Morris’ strategy with ORel(G) in 
place of LO(G). Morris in his paper, after fnding an order that is Conradian, gives an 
alternative argument for the indicability that avoids Conrad’s theorem. In our case, we 
are forced to avoid Conrad’s theorem since there is no available analog in the context of 
relative orders on groups. To overcome this issue we use the concept of crossings for a 
group acting on a totally ordered space (see Defnition 3.2). This concept was introduced 
by Beklaryan [2] in the case of group acting on the line, but it was Navas [10] and later 
Navas and the second author [11] who realized that the absence of crossings in the left 
multiplication action of G on the totally ordered space (G, �) is a characterization of the 
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Conradian property for the left-order �. In Section 3 we will generalize this observation 
by showing that actions without crossings of a fnitely generated group on a totally 
ordered space always entails a surjection onto Z (Proposition 3.5). In addition to that, 
we will show that almost every relative order in the support of a G-invariant probability 
measure on ORel(G) corresponds to an action of G on (G/C, �) without crossings, thus 
showing Theorem 1.2. 

2. The space of relative orders 

We will use the following characterization of relative orders, see [12, Corollary 5.1.5] 
or [1]. For completeness we provide a proof. 

Lemma 2.1. The subgroup C is relatively convex in G if and only if there is a semigroup 
P 6= {id} such that 

i) CPC ⊂ P and 
ii) G = P ⊔ P −1 ⊔ C (disjoint union). 

If P is a semigroup satisfying i) and ii) for some subgroup C, we say that P a relative 
cone with respect to C. 

Proof. Let C be a relatively convex subgroup of G and denote by � a G-invariant total 
order of G/C. Then P = {g ∈ G | gC ≻ C} is a relative cone. Conversely if P is a 
relative cone respect to C, defne fC ≺ gC if and only if f−1g ∈ P . Observe that this 
defnition is independent of the coset representative and that two cosets fC and gC are 
not comparable under ≺, if and only if f−1g ∈ C. � 

Some authors, e.g. [12], allow a relatively convex subgroup to be the whole ambient 
group. The reason why we restrict our attention only to proper subgroups, is because 
under that restriction relative orders correspond to non-trivial actions of the group on 
the line, in the same way as total left multiplication invariant orders (left orders for short) 
correspond to faithful actions on the line by orientation-preserving homeomorphisms, see 
[7]. More precisely we have 

Proposition 2.2. Suppose that G is a countable group. Then G admits a relative order 
if and only if it admits a non-trivial action by orientation-preserving homeomorphisms 
on the line. 

Moreover, if � is a relative order with respect to C, then there is an action ˆ� : G →
Homeo+(R) and a point p ∈ R such that C = StabG(p) and 

(1) C ≺ gC ⇔ p < ˆ�(g)(p). 

As with total orders, we call ˆ� a dynamical realization of the relative order � and 
call p the reference point for the action. 

Proof. The proof is an adaptation of the proof of [7, Theorem 6.8], so we only give a 
sketch. Suppose G is acting non-trivially by orientation-preserving homeomorphisms of 
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the line. There is some g0 ∈ G and x0 ∈ R such that g0(x0) 6= x0. Then P := {g ∈ G |
g(x0) > x0} is a relative cone with respect to C = StabG(x0) 6= G. 

Conversely, suppose � is a G-invariant order on G/C. Then, since G is countable, we 
can enumerate the cosets of C, say g0C, g1C, . . ., and embed (G/C, �) into (R, ≤) via 
an order preserving map t : G/C → R. The group G then acts on t(G/C), and, if t is 
taken with a bit of care, as in [7], then this partial action can be extended to an action 
of G by homeomorphisms of the line. Certainly, if C = giC, then p := t(giC) satisfes 
(1). � 

For each relatively convex subgroup C one can consider the set of all relative orders 
with respect to C, which we denote by OC (G). More interestingly, one can consider the 

S

set of all relative orders on G: ORel(G) = C OC (G). Observe that LO(G), the set of 
left-orders on G, is contained in ORel(G). A natural topology can the defned on ORel(G) 
by considering � as an element ° (�,C) ∈ {±1, ∗}G defned by 





1 if C ≺ gC 
° (�,C) : g 7→ −1 if gC ≺ C 

 ∗ if gC = C. 

If we endow {±1, ∗}G with the product topology, then {±1, ∗}G is compact by Ty-
chono ’s theorem and a basis of open neighborhoods of ° ∈ {±1, ∗}G consists of the 
sets of the form Ug1,...,gn(°) := {° ′ | ° ′(gi) = °(gi)}, where g1, . . . , gn runs over all f-
nite subsets of G. Note that {±1, ∗}G is metrizable whenever G is countable (see for 
instance [10, §1]). For example if G is fnitely generated by S, then we can declare 
dist(° (�,C), ° (�′,C′)) = 1/2n where n is the largest integer such that ° (�,C) and ° (�′,C′) 

agree on the ball Sn . Thus, in order to show that ORel(G) is compact we only need to 
show 

Proposition 2.3. If G is fnitely generated, then ORel(G) is closed inside {±1, ∗}G . In 
particular, ORel(G) is compact. 

Before providing the proof, we exhibit an example showing that the fnite generation 
hypothesis cannot be dropped. 

Example 2.4. Consider G = ⊕i∈NZ, and for every n ∈ N take Cn = ⊕1≤i≤nZ and �n a 
G-invariant order on G/Cn. Then ° (�n,Cn) converges as n → ∞ to the constant function 
g 7→ ∗, which is certainly not a relative order of G (since it is trivial). 

Proof of Proposition 2.3. Since {±1, ∗}G is compact and metrizable, we only need to 
show that ORel(G) is sequentially closed. Let ° n = ° (�n,Cn) be a convergent sequence 
of elements of ORel(G), i.e. ° n(g) converges for all g ∈ G (so, ° n(g) is an eventually 
constant sequence). Defne P := {g ∈ G | ° n(g) → 1} and C := {g ∈ G | ° n(g) → ∗}. 

°−1Since G is fnitely generated, say by S, and Cn = n (∗) are proper subgroups, there 
is a generator g0 ∈ S such that g0 ∈/ Cn for all suÿciently large n, and hence g0 ∈/ C. 
In particular, C is a proper subgroup of G. Using Lemma 2.1, it is straightforward to 
check that P is a relative cone with respect to C. � 
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Let P be a relative cone with respect to C, then, for every g ∈ G, gPg−1 is a relative 
cone with respect to gCg−1 . More generally, for g ∈ G and ° ∈ {±1, ∗}G , the map 
g : ° 7→ °g, where 

(2) °g(h) = °(ghg−1), 

sends bijectively the basic neighborhood Ug1,...,gn(°) onto Ug−1g1g,...,g−1gng(°
g). Thus we 

have proved 

Proposition 2.5. The natural conjugation action of G on ORel(G) is an action by 
homeomorphisms. 

The fnal assertion in Theorem 1.4 is given by the next 

Corollary 2.6. If C is a relatively convex subgroup of G, then C fxes a point in ORel(G). 
In fact C fxes each point of OC (G). 

Proof. Let P be a relative cone with respect to C, and take c ∈ C. Then, by Proposition 
2.5 and Lemma 2.1, G is the disjoint union of cP −1c−1 , C, and cPc−1 . But also, by 
Lemma 2.1, we have that cPc−1 ⊆ P , which implies that cPc−1 = P . � 

We fnish this section with the example announced in the Introduction. 

Example 2.7. Let H be a fnitely generated, left-orderable group without homomor-
phisms onto Z. For instance we can take H being the perfect group with presentation 
ha, b, c | a2 = b3 = c7 = abci (see [3, 15]). Let G = Z × H . Certainly H is a relatively 
convex subgroup of G. We claim that H does not preserve a probability measure when 
acting on LO(G). 

Indeed, since Z is amenable and the Z-factor commutes with H , we conclude that 
if there is an H-invariant probability measure on LO(G), then an averaging procedure 
returns a G-invariant probability measure on LO(G). Following Morris’ [9, Remark 2.2], 
this is enough to show that G admits a left-order of Conradian type �. Since this con-
dition clearly passes to subgroups, we conclude that H admits a left-order of Conradian 
type, and therefore admits a surjective homomorphism onto Z, which contradicts the 
choice of H . 

3. Co-amenable relatively convex subgroup 

In this section we prove Theorem 1.2. By Proposition 2.2 it is enough to show 

Theorem 3.1. Suppose G is fnitely generated and C ⊂ G is a proper relatively convex 
subgroup which is also co-amenable. Then G surjects onto Z. 

3.1. Actions without crossings. In addition to our work from Section 2, our main 
tool is the concept of crossings for a group acting on a totally ordered space. This 
notion is due to Beklaryan [2] for the case of group action on the line, but here we use 
the analogous version for group actions on totally ordered space from [11]. 
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Defnition 3.2. Let G be a group acting by order-preserving bijections of a totally 
ordered space ( , ≤). A crossing for the action is a 5-uple (f, g; u, v, w), where f, g ∈ G, 
and u, v, w ∈ such that: 

• u < w < v, 
• gn(u) < v and u < fn(v) for every n ∈ N, 
• there exist M, N in N so that fN (v) < w < gM (u). 

In a picture 

f 

g 

u w v 

Figure 1: The crossing (f, g; u, v, w). 

Let G be a (perhaps not fnitely generated) group acting by order preserving bijections 
of a totally ordered space ( , ≤). For every x ∈ and every g ∈ G, let Ig(x) denote the 
convex envelope of the hgi-orbit of x, that is Ig(x) = {y ∈ | gn(x) ≤ y ≤ gm(x) for 
some n, m ∈ Z}. Note that Ig(x) = Igk(x) for every k ∈ Z−{0}, Ig(x) = Ig(y) for every 
y ∈ Ig(x), and, for every f, g ∈ G, f(Ig(x)) = Ifgf−1(f(x)). It follows that 

(3) if Ig(x) = for some x ∈ , then Ig(x) = for all x ∈ . 

Actions without crossings are sometimes referred to action by levels [11] or embôités 
[16]. The reason for this is the following lemma whose proof can be found between 
the lines of [11, Proof of Proposition 1.12]. For the reader’s convenience we redo the 
argument here. 

Lemma 3.3. Suppose G is a group acting by order preserving bijections and without 
crossings on ( , ≤). Then either Ig(x) and If (y) are disjoint or one is contained in the 
other. 

Proof. Assume there are non-disjoint sets Ig(x) and If (y) neither of which contains the 
other. In particular, neither g fxes x nor f fxes y. Without loss of generality we may 
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assume that Ig(x) contains a point that is on the left of If (y) (if this is not the case, 
just interchange the roles of f and g) and therefore If (y) contains a point on the right 
of Ig(x). Moreover, by perhaps replacing f and/or g by their inverses, we may assume 

′ ′ ′ ′that x ≤ g(x ′) for all x ∈ Ig(x) and f(y 
′) ≤ y for all y ∈ If (y). Take u ∈ Ig(x) \ If (y), 

w ∈ Ig(x) ∩ If (y) and v ∈ If (y) \ Ig(x). Then, one easily verifes that (f, g; u, v, w) is a 
crossing for the action. � 

Proposition 3.4. Suppose G is a group acting by order preserving bijections and without 
crossings on ( , ≤). Then for every f, g ∈ G and x ∈ , f(Ig(x)) either coincides with 
Ig(x) or is disjoint from it. 

Proof. Suppose that Ig(x) ∩ f(Ig(x)) =6 ∅. Let gf = fgf−1 . Since f(Ig(x)) = Igf (f(x)), 
by Lemma 3.3 and replacing perhaps f by f−1 , we can assume that f(Ig(x)) ⊆ Ig(x). 

Suppose there is y ∈/ Ig(x) such that f(y) ∈ Ig(x), we will see that this implies that 
there is a crossing. We will assume that y > Ig(x), the case y < Ig(x) is analogous. Note 
that by Lemma 3.3, we have that If (y) ⊇ Ig(x) and for all z ∈ Ig(x), f(z) < z. See 
Figure 2. 

Observe that for all n ∈ N, gn(f(y)) < f−1(f(y)) and thus fgn(f(y)) < f(y). 
By taking n large enough, we can assume that fgn(f 3(y)) > f 2(y). We claim that 
Ifgn(f(y)) ∩ f(Ig(x)) =6 ∅. Indeed, if the intersection was empty, then since f 2(y) < f(y) 
we must have that for all z ∈ Ig(x), f(z) < Ifgn(f(y)), and since f(Ig(x)) = I(gf )n(f(x)) 
then fgn(z) < Ifgn(f(y)) for all z ∈ Ig(x), which is a contradiction. 

We let v ∈ Ifgn(f(y)) ∩ f(Ig(x)). We have that f(gf )n(v) < f 2(y) and by increasing 
n if necessary, we can assume that f(gf )n(f 3(y)) > f 3(y). 

Now it follows that (fgn, f(gf )n, f 3(y), f 2(y), v) is a crossing. 

Therefore we get that for all y ∈/ Ig(x), f(y) ∈/ Ig(x) and since f is a bijection, we 
have that f(Ig(x)) = Ig(x). 
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f−1 

g 

gf 
u 

w 

v 

Figure 2: f weakly contracts Ig. 

� 

Proposition 3.5. Let G be a fnitely generated group acting non-trivially by order-
preserving bijections of a totally ordered space ( , ≤). Suppose that the action has no 
crossings. Then G surjects onto Z. 

Proof. Clearly, it is enough to restrict ourself to the case that the G-action on has 
all orbits unbounded in the sense that for all x < y there is g ∈ G such that y < g(x) 
(in the case = R this is just assuming that the action has no global fxed points). 
Assuming this, we will say that g ∈ G is cofnal if for every x < y, there is n ∈ Z such 
that y < gn(x) (in the case = R, this is saying that g has no fxed points). It follows 
from (3) that g is cofnal if and only if Ig(x) = for all x ∈ . 

Let FG denote the set of elements in G which are not cofnal. This is, in general, a 
subset invariant under conjugation, but, since the G-action has no crossings, we have 
that FG is a normal subgroup (see [11, Proposition 2.13]). 

We claim that FG is a proper subgroup. To prove the claim observe that G is fnitely 
generated, so we let S = S−1 be a fnite generating set of G. We also fx x0 ∈ and let 
g0 ∈ S be such that g(x0) ≤ g0(x0) for all g ∈ S. Thus ∅ 6= Ig(x0) ∩ Ig0(x0) for every 
g ∈ S, and it follows from Proposition 3.4 that Ig0(x0) is invariant under every g ∈ S 
and therefore it is invariant under G. Since the G-action is unbounded, Ig0(x0) = and 
the claim follows. 

We now claim that G/FG is torsion-free abelian. For this we let I
∗ be the union of 

all the intervals If (x0) for f ∈ FG. By Lemma 3.3, we have that the union defning 
I∗ is nested and so I∗ is an interval. Let f ∈ FG and g ∈ G \ FG. Suppose that 
g(If (x0)) = If (x0). Then Ig(x0) = If (x0) 6= , a contradiction. From Proposition 3.4, 
we deduce that g(If (x0)) is disjoint from If (x0). Since I

∗ is a nested union of intervals 
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of the form If (x0), f ∈ FG, we conclude that g(I
∗) is disjoint from I∗ for every g ∈/ FG 

and that f(I∗) = I∗ for every f ∈ FG. Finally, since FG is a normal subgroup, we have 
that G/FG acts on the G-orbit of I∗, and the kernel of this new action is trivial. We 
can therefore induce a (total) left-order on G/FG by declaring that g ≻ id if and only 
if g(I∗) is to the right of I∗. This is an Archimedean left-order on G/FG, meaning that 
for every f, g ∈ G/FG we have that there is n ∈ Z such that f ≺ gn . It then follows 
from Holder’s theorem (see [6, §3.1]) that G/FG is a subgroup of (R, +), which implies 
the claim. 

Since G is fnitely generated, G/FG is a fnitely generated torsion-free abelian group 
and hence maps onto Z. � 

3.2. Right recurrent orders. The next defnition is due to Morris for the case of 
left-orders [9]. 

Defnition 3.6. Let � be a relative order of G with respect to C. We say that � is 
recurrent for every cyclic subgroup if for every h ∈ G and every fnite sequence �1, . . . , �k 

in G such that �1C ≺ . . . ≺ �kC, there exist positive integers ni → ∞ such that 

�1h
niC ≺ . . . ≺ �kh

niC. 

Lemma 3.7. Suppose � is a relative order of G with respect to C that is recurrent 
for every cyclic subgroup. Then the left-action of G on (G/C, �) is an action without 
crossings. In particular, if G is fnitely generated, then G surjects onto Z. 

Proof. Suppose that the G-action on = G/C has a crossing, say (f, g; uC, vC, wC). In 
particular we have that 

fN g M wC ≺ wC. 

Let h = w−1fw, and let k > N . Then by the third condition in the defnition of crossing 
we have that wC ≺ gM fkwC = gM whkC. But then, by G-invariance we have that for 
k > N , 

fN g M whkC = fN g M fkwC ≻ fN wC ≻ fkwC = whkC, 

contradicting the right-recurrence for hhi. This shows the frst assertion of the lemma. 
The second one follows from Proposition 3.5 by taking ( , ≤) = (G/C, �). � 

We can now give the 

Proof of Theorem 3.1: Let G and C be as in the statement, and consider the con-
jugation action of G on ORel(G) denoted by g : ° (�,C) 7→ °g (see equation (2)). By(�,C) 

Theorem 1.4 the space ORel(G) is compact and C acts with a fxed point. In particular, 
since C is co-amenable, there is a G-invariant probability measure µ on ORel(G). 

Now, the Poincaré Recurrence Theorem (see, for instance, [14]) implies that for every 
° 0 = ° (�,C) in the support of µ, every neighborhood Uf1,...,fn(° 0) of ° 0 and every g ∈ G, 
there is a µ-null set Zg,f1,...,fn 

such that for every ° ∈ Uf1,...,fn(° 0) \ Zg,f1,...,fn(°) there is 

a sequence ni → ∞ such that °g−ni belongs to Uf1,...,fn(° 0). But since G is countable 
and ORel(G) is metrizable (hence it has a countable basis of open neighborhoods) and 
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compact (hence it has a dense countable subset), we can take a countable union of the 
above Z’s to conclude: 

(Recurrence) There is Z ⊂ ORel(G) with µ(Z) = 0 such that for every ° = ° (�,C) ∈ ORel(G)\Z, 
every open neighborhood Uf1,...,fn(°) of ° and every g ∈ G, there is a sequence 

−ni ni → ∞ such that °g ∈ Uf1,...,fn(°). 

Let ° (�,C) be a relative order in ORel(G) \ Z. We claim that � is right recurrent 
for every cyclic subgroup. Indeed, let �1C ≺ . . . ≺ �nC, g ∈ G, and consider the 
neighborhood U = U�−1 (°) of °. Note that U coincides with the set made 

1 2 
�3,...,�

−1 �n�2,�
−1 

n−1 

of all relative orders on which �k is strictly smaller than �k+1 for every k = 1, . . . , n − 1. 
°gNow, by (Recurrence), we have that there is ni → ∞ such that 

−ni ∈ U . This 
−ni −ni means that °g (�−

k 
1�k+1) = °(�−

k 
1�k+1) = 1. But by defnition °g (�−

k 
1�k+1) = 

−ni�−1 −ni�−1 −ni�−1 niC.°(g �k+1g
ni), thus 1 = °(g �k+1g

ni) which implies C ≺ g �k+1gk k k 

Using left-multiplication invariance and transitivity of � we conclude that �1g
niC ≺

. . . ≺ �ng
niC, so � is right recurrent for every cyclic subgroup. In particular, Lemma 

3.7 implies that G surjects onto Z. � 
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