

 Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

Engineering Applications of Artificial Intelligence 93 (2020): 103682

DOI: https://doi.org/10.1016/j.engappai.2020.103682

Copyright: © 2020.

This manuscript version is made available under the CC-BY-NC-ND 4.0
licence http://creativecommons.org/licenses/by-nc-nd/4.0/

 El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
https://www.sciencedirect.com/journal/engineering-applications-of-artificial-intelligence
https://doi.org/10.1016/j.engappai.2020.103682
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Auto-adaptive multi-scale Laplacian Pyramids for
modeling non-uniform data

Ángela Fernándeza,∗, Neta Rabinc, Dalia Fishelovd, José R. Dorronsoroa,b

aDepartamento de Ingeniería Informática, Universidad Autónoma de Madrid, Spain
bInstituto de Ingeniería del Conocimiento, Madrid, Spain

cDepartment of Industrial Engineering, Tel-Aviv University, Israel
dDepartment of Mathematics, Afeka Academic College of Engineering, Israel

Abstract

Kernel-based techniques have become a common way for describing the local

and global relationships of data samples that are generated in real-world pro-

cesses. In this research, we focus on a multi-scale kernel based technique named

Auto-adaptive Laplacian Pyramids (ALP). This method can be useful for func-

tion approximation and interpolation. ALP is an extension of the standard

Laplacian Pyramids model that incorporates a modified Leave-One-Out Cross

Validation procedure, which makes the method stable and automatic in terms of

parameters selection without extra cost. This paper introduces a new algorithm

that extends ALP to fit datasets that are non-uniformly distributed. In partic-

ular, the optimal stopping criterion will be point-dependent with respect to the

local noise level and the sample rate. Experimental results over real datasets

highlight the advantages of the proposed multi-scale technique for modeling and

learning complex, high dimensional data.

Keywords: Laplacian Pyramids, kernel methods, overfitting, multi-scale

interpolation, non-uniform data, adaptive stopping

∗Corresponding author
Email addresses: a.fernandez@uam.es (Ángela Fernández), netara@tauex.tau.ac.il

(Neta Rabin), fishelov@gmail.com (Dalia Fishelov), jose.dorronsoro@uam.es (José R.
Dorronsoro)

Preprint submitted to Expert Systems with Applications March 13, 2020

1. Introduction

An important challenge nowadays, when large amounts of data is collected, is

the correct approximation of functions for modeling and analyzing data. These

approximations have special interest in cases where the values of the functions

are not known over the entire dataset. They can also be useful when the function5

may be too expensive to compute, or it is only represented on a finite expan-

sion. There exist several methods for modeling and analyzing data, but when

dealing with functions that depend on multiple variables, or that are defined

over many scattered data points, the best way to tackle the general problem

of approximation and interpolation is using an approach based on Radial Basis10

Functions (RBFs) [1].

An RBF is defined in terms of an univariate continuous function φ. Given

a training sample {xn}Nn=1, a linear combination of RBFs approximates a real

function f over a new data point x in the following way:

f(x) ≈ s(x) =
∑
ξ

wξφ(‖x− xξ‖).

Here, wξ represents the weight associated with the expansion points ξ, and ‖ · ‖

is an adequate norm. The most usual choice for the norm is the Euclidean

distance, and one of the most common RBFs are Gaussians, where φ is defined

as φ(r) = exp (εr)2.15

There exists a comprehensive literature on RBF methods and expansions (see

for example [1, 2, 3, 4]). In this work we will focus on Laplacian Pyramids (LP), a

multi-scale model that generates a smoothed version of a function in an iterative

manner, using Gaussian kernels of decreasing widths [5]. It is a simple method

for learning functions from a general set of samples. The LP approximation

algorithm works in the spirit of wavelets, as the reconstruction goes from coarser

to finer scales and due to this fact, it is stable and convenient for working in

the manifold learning context. It is also remarkable that this method can be

seen as an iterative version of a Nadaraya–Watson estimator [6, 7]. This classic

2

estimator is typically defined as

g(x) =
1

n

∑
n

K(x, xn)yn,

where K is a kernel function and yn are the objective function values on the

training points xn. As we shall see, the proposed LP procedure uses this type

of construction at each iteration.

The LP scheme has been used for several applications in diverse domains;

most of them utilize LP for function approximation and its out-of-sample exten-20

sion. When a model does not allow a direct out-of-sample solution, the extension

of the model to new points is not trivial [8, 9, 10], and the LP method offers

one way for extension of such models. In [11], an multi-scale anomaly detection

algorithm that is based on diffusion maps [12] was proposed. The diffusion maps

embedding was calculated on a subset of the points and extended to the rest25

of the dataset with the LP function extension scheme. LP based out-of-sample

extension for target detection was presented in [13]. Extensions of the anomaly

detection algorithm [13], which utilizes LP for extension, include anomaly de-

tection in side-scan sonar images of sea-mines [14] and detection of defects in

wafers [15]. LP was utilized for function extension in problems related to voice30

activity detection. In [16], the likelihood ratio function of unlabeled data was

learned by extending the likelihood ratios obtained from the labeled data. An

LP-based speech enhancement algorithm was proposed in [17]. The LP-based

extension was compared with the Geometric harmonics extension scheme [18],

for which parameters need to be carefully tuned, and it was shown that the35

LP-scheme provides better results.

Another domain in which Laplacian Pyramids have been applied is for data

lifting. This challenge arises in models that first reduce the dimension of the

data to obtain a compact and reliable representation, and then need to estimate

new points in the ambient space from the low-dimensional embedding. LP-based40

lifting was applied in [19, 20] for reconstruction of data in molecular dynamics

applications and for modeling chemical kinetics. Last, the LP method has been

applied in the context of kernel based forecasting in dynamical systems such

3

as prediction of the North Pacific climate variability [21], prediction of regional

and pan-Arctic sea ice anomalies [22] and forecasting of tropical intraseasonal45

oscillations [23]. In all of the above applications, heuristic approaches were used

in order to limit the number of iterations of the LP algorithm to avoid a risk of

overfitting if too many iterations are executed.

As mentioned above, and as it is often the case in machine learning, when

an LP model is applied, one may overfit the data by refining the prediction too50

much during the training phase [20]. In fact, it is difficult to decide when to stop

the training phase to maximize the generalization capabilities of the resultant

model. A usual approach is to apply the Cross Validation (CV) method [24,

chap. 9] to measure a validation error during the training in order to stop when

this error starts to increase. An extreme form of CV is Leave-One-Out CV55

(LOOCV): a model is built using all the samples but one, which is then used

as a single validation pattern; this is repeated for each sample in the dataset,

and the validation error is the average of all the one-pattern errors. Although

LOOCV has a theoretical support and often yields good results, it has the

drawback of being a time-consuming process.60

Auto-adaptive LP (ALP), proposed in [25], is a modification of the LP train-

ing algorithm that merges training and an approximate LOOCV in one single

phase. The ALP algorithm results in a LOOCV approximation that does not

add any cost during the training step. This reduces significantly the training

complexity and provides an automatic global criterion to stop training. Thus,65

the risk of overfitting, which may appear in a standard LP, is avoided. There-

fore, ALP prevents overfitting the data and, moreover, it requires essentially no

parametrization or expert knowledge about the problem under study, while still

achieving a good test error. Moreover, it adds no extra cost compared to other

classical neighbor-based interpolation methods.70

In this paper we propose a new implementation of the ALP algorithm, pro-

viding a natural improvement of it. The main idea is to work with a local

(point-wise) kernel scale that better suited to the density of the data and, con-

sequently, to perform the optimal number of training iterations around each

4

point. This modification allows us to deal with datasets where sample densities75

vary in different regions, which may require a different resolution. The algo-

rithm will be automatically adapted to each of these areas when necessary. The

proposed method can also be seen as a variant of the iterative Nadaraya–Watson

regression with L2 boosting [26].

To sum up, the contribution of this paper is twofold. On one hand, it80

presents a self-contained explanation about Laplacian Pyramids, including a

complete analysis of the error bounds and decay rates. Moreover we review

in detail the automatic stopping criteria which is integrated into the algorithm

without extra computational cost, prevents overfitting and bypasses the need

for heuristic approaches to set the parameters of the method. On the other85

hand, the second contribution is an extension of the ALP algorithm to a local

resolution setting, taking advantage of the different sample statistics that might

appear in the data.

This paper is organized as follows. In Section 2 we briefly review the LP

model and present a detailed analysis of its training error. We describe classical90

ALP and its LOOCV estimation in Section 3, and an improved ALP version

with local resolution is presented. The algorithm description is accompanied by

a synthetic example to illustrate its behavior. Results over several datasets are

shown in Section 4, and the paper ends with some conclusions in Section 5.

2. Laplacian Pyramids95

Laplacian Pyramids (LP) is an iterative model introduced by Burt and Adel-

son [5] for image processing applications. In its traditional form, the LP algo-

rithm decomposes the input image into a series of sub-images, and each of them

captures a different frequency band of the original one. This process is car-

ried out by constructing Gaussian kernel-based smoothing masks of different100

widths, followed by a down-sampling (quantization) step. LP was later proved

to be a tight frame (see Do and Vetterli [27]) and used for signal processing ap-

plications, for example as a reconstruction scheme in [28]. In [29], a multi-scale

5

algorithm was introduced in the spirit of LP to be applied in the setting of high-

dimensional data analysis. In particular, it was proposed as a simple method for105

extending low-dimensional embedding coordinates, that result from the appli-

cation of a non-linear dimensionality reduction technique, to a high-dimensional

dataset (this has been recently applied in [30]).

2.1. The Basic LP Procedure

Next, we review the LP procedure as described in [29] (note that the down-

sampling step, which is part of Burt and Adelson’s algorithm is skipped here).

Let S = {(xi, fi = f(xi))}Ni=1, xi ∈ RM be the sample dataset where f is a

function which is only known on the sample points. For simplicity we assume

that it belongs to a Sobolev space [31] ||f ||m,2 for a certain m. The algorithm

approximates the function f by constructing a series of functions {f̃ (`)} obtained

by several refinements d(`) over the approximation errors. In a slight abuse of

notation we will use the same name f for both the general function f(x) and

also for the vector of its sample values f = (f1 = f(x1), . . . , fN = f(xN)). The

end result of this process yields a function approximation to f in the form

f ' f̃ = f̃ (0) + d(1) + d(2) + d(3) + · · ·

In more detail, a first level kernel K(0)(x, x′) = Φ (dist(x, x′)/σ) is cho-

sen using a one dimensional positive function Φ(z) and a wide, initial scale σ;

dist(x, x′) denotes some distance function between points in the ambient space.

As mentioned before, the Gaussian kernel with Euclidean distances is applied

here, i.e., we take dist(x, x′) = ‖x− x′‖. Then, we define

K(0)(x, x′) = κ(0)e−
‖x−x′‖2

σ2 ,

where κ(0) is the Gaussian kernel normalizing constant which depends on σ.110

The notation K(0) is used (with a slight abuse of notation) for the gen-

eral continuous kernel K(0)(x, x′) and its discrete matrix counterpart K
(0)
jk =

K(0)(xj , xk) over the sample points. The smoothing operator P (0) is constructed

6

as the row-stochastic normalized kernel matrix

P
(0)
ij =

K
(0)
ij∑

k K
(0)
ik

. (1)

A first coarse representation of f is then generated by the convolution f̃ (0) =

f ∗P (0) that captures the low-frequencies of the function. For the next steps, a

parameter value µ > 1 is fixed. A sharper normalized Gaussian kernel matrix

P (`) is constructed at level ` with scale σ/µ`. Then, the residual d(`−1) =

f − f̃ (`−1) is computed. It captures the error of the approximation of f at the

previous `−1 step. A more detailed representation of f is generated. It is given

by

f̃ (`) = f̃ (`−1) + d(`−1) ∗ P (`) = f̃ (`−1) + g(`),

with g(`) = d(`−1) ∗ P (`). The iterative algorithm stops once the norm of the115

residual vector d(`) is smaller than a predefined tolerance. Stopping at iteration

L, the final LP model has the form

f̃ (L) = f̃ (0) +

L∑
`=1

g(`) = f ∗ P (0) +

L∑
`=1

d(`−1) ∗ P (`). (2)

Extending this multi-scale representation to a new data point x ∈ RM is

now straightforward by setting

f̃ (L)(x) = f ∗ P (0)(x) +

L∑
`=1

d(`−1) ∗ P (`)(x)

=
∑
j

fjP
(0)(x, xj) +

L∑
`=1

∑
j

d
(`−1)
j P (`)(x, xj).

The kernels P (`) are directly extended for a new point x as

P (`)(x, xj) =
K(`)(x, xj)∑
k K

(`)(x, xk)
(3)

with K(`)(x, x′) = κ(`)e
− ‖x−x′‖2(

σ/µ`
)2

. Observe that when defining P (`), κ(`) disap-

pears for being also present in the denominator.120

Next, we show that the L2 norms of the residuals d(`) decay extremely fast.

7

2.2. Error Analysis for the LP Scheme

For analyzing the LP error, the previously defined kernel is considered. First

notice that, when working in the continuous kernel setting, the summation be-

comes an integral. Therefore, we have P (`)(x, x′) = K(`)(x, x′) for a Gaussian125

function since the denominator in (3) is just
∫
K(`)(x, z)dz = 1.

Furthermore, for all `, writing now P (`) (x) = P (`)(x, 0), P is an approxima-

tion to a delta function satisfying∫
P (`) (x) dx = 1,∫

xP (`) (x) dx = 0, (4)∫
‖x‖22P (`) (x) dx ≤ 2C, where C is a constant.

Assume that f is in L2, i.e.,
∫
x
f2(x) dx <∞. The LP scheme is a relaxation

process for which in the first step the function f is approximated by G(0)(f) =

f ∗P (0) (x). In the second step f is approximated by G(0)(f)+G(1)(d(0)), where

d(0) = f −G(0)(f) and G(1)(d(0)) = d(0) ∗P (1) (x), and so on. Taking the Fourier130

transform of P (`) (x) results in (see [32])∣∣∣P̂ (`) (ω)− 1
∣∣∣ ≤ (σ/µ`)

2

2

∫
‖x‖22‖ω‖22P (`) (x) dx ≤ C (σ/µ`)

2 ‖ω‖22. (5)

We first analyze the error d(0)(x) in the first step, which is defined by

d(0)(x) = f − f ∗ P (0) (x) . Taking the Fourier transform of d(0)(x) together

with the bound in (5) yields∣∣∣d̂(0)(ω)∣∣∣ = ∣∣∣f̂(w)∣∣∣ ∣∣∣P̂ (0)(ω)− 1
∣∣∣ ≤ C‖ω‖22σ2

∣∣∣f̂(ω)∣∣∣ . (6)

The error in the second step is135

d(1)(x) = d(0)−G(1)(d(0)) =
(
f − f ∗ P (0)

)
−d(0) ∗P (1) = d(0)−d(0) ∗P (1). (7)

Taking the Fourier transform of (7) yields∣∣∣d̂(1)(ω)∣∣∣ = ∣∣∣d̂(0)(ω)− d̂(0)(ω)P̂ (1)(ω)
∣∣∣

=
∣∣∣ ˆd(0)(ω)

∣∣∣ ∣∣∣P̂ (1)(ω)− 1
∣∣∣ . (8)

8

Using (5) and (6) we obtain∣∣∣d̂(1)(ω)∣∣∣ ≤ C‖ω‖22
∣∣∣d̂(0)(ω)∣∣∣ (σ/µ)2 ≤ Cσ2 (σ/µ)

2
∣∣∣f̂(ω)∣∣∣ ‖ω‖42. (9)

Since µ > 1, then
∣∣∣d̂(1)(ω)∣∣∣ ≤ Cσ2 σ2

µ2

∣∣∣f̂(ω)∣∣∣ ‖ω‖42. Similarly, for the `th step the

error is bounded by

∣∣∣d̂(`)(ω)∣∣∣ ≤ Cσ2

(
σ2

µ(`+1)

)` ∣∣∣f̂(ω)∣∣∣ ‖ω‖2(`+1)
2 . (10)

By Parseval’s equality we obtain

∥∥∥d(`)∥∥∥
L2

=
∥∥∥d̂(`)∥∥∥

L2
≤ Cσ2

(
σ2

µ(`+1)

)` ∥∥∥f̂(ω)‖ω‖2(`+1)
2

∥∥∥
L2

≤ Cσ2

(
σ2

µ(`+1)

)`

‖f‖2`+2,2, (11)

where ‖f‖m,2 denotes the Sobolev norm of a function with up to m derivatives

in L2. Thus, the L2 norm of the LP error decays at a very fast rate.140

2.3. Overfitting Risk

Since the error of the LP method decays fast, setting a small error threshold

may easily result in f̃ (`) ' f and hence cause overfitting of the data. In order

to understand the approximation process, we express f̃ (`) = f̃ (`−1) + g(`) by

f̃ (`) = f̃ (`−1) + g(`) = f̃ (`−1) + (f − f̃ (`−1)) ∗ P (`)

= f ∗ P (`) + f̃ (`−1) ∗ (I − P (`)),

where I denotes the identity matrix. Now, taking the limit f̃ (`) → φ yields

φ = f ∗ limP (`) + φ ∗ lim(I − P (`)),

i.e., φ = f , for P (`) → I. In practice, when ` is large enough, numerically

P (`) ' I, so that K(`)(xi, xj) ' 0, i 6= j. Then d
(`)
j = 0 for all j and the LP

stays almost the same for a large enough `. In other words, care has to be taken

when deciding when to stop the LP iterations in order to avoid overfitting.145

9

3. Auto-adaptive Laplacian Pyramids

The standard way to prevent overfitting is to use an independent validation

subset and to stop the iterations as soon as the validation error on that subset

starts to increase. This can be problematic for small samples as it introduces

a random dependence on the choice of the particular validation subset. k-150

fold Cross Validation (CV) is then usually the standard choice to avoid this.

Samples are randomly distributed in k subsets, and iteratively k−1 subsets are

used for training while the remaining N − (k−1) are used for validation. In the

extreme case when k = N , i.e., when just one pattern is used for validation, CV

becomes Leave-One-Out Cross Validation (LOOCV) and the train iterations155

are stopped when the LOOCV error starts to increase. Besides its simplicity,

LOOCV has the attractive property of being an almost unbiased estimator of

the true generalization error (see for instance [33, 34]), possibly with a high

variance [35]. In our case, LOOCV can be easily applied using for training a

N×N normalized kernel matrix P(p). This is just the previous matrix P , where160

we set to 0 the p-th rows and columns when xp is held out of the training sample

and used for validation. The most obvious drawback of LOOCV is its rather

high cost, which in our case would be in principle N × O(LN2) = O(LN3),

where we recall that L is the number of LP iterations. However, it is often the

case for other models that there are ways to estimate the LOOCV error with a165

smaller cost. This can be done exactly in the case of k-Nearest Neighbors [36]

or Ordinary Least Squares ([37], Chapter 7); or approximately for Support

Vector Machines [38] or Gaussian Processes [39]. We show next how to perform

LOOCV without essentially augment training cost.

3.1. Standard ALP170

In the context of this work and to alleviate the LOOCV cost, notice first

that here when xp is removed from the training sample, the test value of the

10

f(p) extension at the point xp is given by

f
(L)
(p) (xp) =

∑
j 6=p

fjP
(0)(xp, xj) +

L∑
`=1

∑
j 6=p

d
(`−1)
(p);j P (`)(xp, xj)

=
∑
j

fjP̃
(0)(xp, xj) +

L∑
`=1

∑
j

d
(`−1)
(p);j P̃ (`)(xp, xj).

Here P̃ (`) is a modification of P (`), where the diagonal elements in P̃ (`) are set

to zero, i.e., P̃i,j = Pi,j when j 6= i. d
(`)
(p) are the different previously defined

errors computed using the P
(`)
(p) matrices.

This observation leads to the modification of the standard LP that was pro-

posed in [29], and which simply consists on applying the LP procedure described175

in Section 2 but replacing the P matrix by its 0-diagonal version P̃ . This modi-

fication requires the computation of the function approximation f̃ (0) = f ∗ P̃ (0)

at the beginning, and then the vectors g̃(`) = d̃(`−1) ∗ P̃ (`), f̃ (`) = f̃ (`−1) + g̃(`)

and d̃(`) = f − f̃ (`) are computed at each iteration. This algorithm is denoted

as the Auto-adaptive Laplacian Pyramid (ALP) [25].180

According to the previous formula for the f
(L)
(p) (xp), we can take the ALP

values f̃
(L)
p = f̃ (L)(xp) given by

f̃ (L)(xp) =
∑
j

fjP̃
(0)(xp, xj) +

L∑
`=1

∑
j

d̃
(`−1)
j P̃ (`)(xp, xj),

as approximations to the LOOCV validation values f
(L)
(p) (xp).

The squared LOOCV error at each iteration may be approximated by∑
p

(f(xp)− f
(L)
(p) (xp))

2 '
∑
p

(f(xp)− f̃ (L)
p)2 =

∑
p

(d̃(L)
p)2,

which is just the training error of ALP at the current iteration. In other words,

working with the P̃ matrix instead of P , the training error at step L gives in

fact an approximation to the LOOCV error at this step.

For the parameter selection, choosing as customarily done µ = 2, the only

required parameter would be the initial σ but assuming it is wide enough, its

σ/2` scalings will yield an adequate final kernel width. Furthermore, in this

11

paper we propose a heuristic technique to compute the initial bandwidth σ and

the maximum number of iterations maxits ensuring that all the interesting σ

values (and only the interesting ones) will be tested. Relevant values of σ are

obtained in between the ones that yield an all-ones P matrix, and the ones

that produce a P = I matrix. In the first case, every data point obtains the

same weight, resulting in a mean function. In the second case, as mentioned

in Subsection 2.3, the original function is reproduced. To approximate these

values, the parameters are fixed in the following way:

σ = 10max (Wij)

maxits = log2(σ/σmin), with σmin = 1/5min (Wij),

where W represents the distance matrix.185

We also point out that it is straightforward to extend the model to a vecto-

rial function F = (F1, . . . , FM). The squared ALP error at the L-th iteration

becomes∑
p

‖F (xp)− F
(L)
(p) (xp)‖2 '

∑
p

‖F (xp)− F̃ (L)
p ‖2 =

∑
p

‖D̃(L)
p ‖2,

where here D = (D1, . . . , DM) is the vector formed of the ALP residuals Dm of

each component Fm of F . Again, the optimal value for L is set as the iteration

where this estimate of the LOOCV error begins to grow.

The cost of running L steps of ALP is just O(LN2) and, thus, we gain

the advantage of approximating the exhaustive LOOCV without any additional190

cost on the overall algorithm. The complete training and test procedures are

presented in Algorithm 1 and Algorithm 2 respectively. Notice that in this

work, the computed error for setting the optimal stopping iterations number

of the algorithm is the Root Mean Squared Error (RMSE). This type of error

measure was selected because it is the classical error to compute when dealing195

with functions and due to the improved results obtained empirically compared

with the Mean Absolute Error (MAE).

As it has just being argued, the obvious advantage of ALP is that when the

training error is evaluated, in practice the LOOCV error after each LP iteration

12

Algorithm 1 The ALP Training Algorithm
Input: {xi, Fi}Ni=1.

Output: ({d̃(`)}, σ, µ, L), the trained model.

1: µ← 2, Wij ← xi − xj ∀i, j, σ ← 10max (Wij), maxits ← log2(5
σ

min (Wij)
).

2: F̃ (0) ← F ; F̃ (0) ← 0; `← 1.

3: while (` < maxits) do

4: K̃(`) ← e
− ‖W‖2

σ2 , with 0-diagonal. % LOOCV approximation.

5: P̃ (`) ← normalize(K̃(`)).

6: F̃ (`) ← F̃ (`−1) + D̃(`−1) ∗ P̃ (`).

7: D̃(`) ← F − F̃ (`).

8: err(`) ← ‖D̃(`)‖2. % For each point a mean error value is computed.

9: σ ← σ/µ; `← `+ 1.

10: end while

11: L← argmin`{err`}. % Optimal iteration.

Algorithm 2 The ALP Testing Algorithm
Input: {xi}Ni=1, xte, ({D̃(`)}, σ, µ, L).

Output: F̂te.

1: F̂te ← 0.

2: for `=1 to L do

3: K
(`)
i;te ← e

− ‖xi−xte‖2

σ2 ∀i.

4: P (`) ← normalize(K(`)).

5: P (`) ← normalize(K(`)).

6: F̂te ← F̂te + D̃(`−1) ∗ P (`).

7: σ ← σ/µ.

8: end for

13

is estimated. Therefore, the evolution of these LOOCV values automatically200

defines the optimal iteration at which the algorithm is stopped, i.e., just when

the training error starts to increase. Thus, the risk of overfitting is removed

and in addition the training errors can be used as an approximation to the

generalization error. This effect can be seen in Figure 1 that illustrates the

application of ALP to the synthetic problem described in the next subsection.205

In this example, the optimum stopping time for ALP is exactly the same as the

LOOCV error would generate, where the training error stabilizes afterwards at

a slightly larger value. Moreover, ALP achieves an automatic selection of the

width of the Gaussian kernel which makes this version of LP to be auto-adaptive

as it does not require costly parameter selection procedures.210

3.2. ALP with Local Resolution

When working with scattered datasets, it is often the case that the available

data is not equally distributed, and there exist regions with different sample

statistics and density characteristics. In these cases, it makes sense to define

different models, with different stopping times, adapted to each region.215

Focusing on the ALP method, the original algorithm may be modified to

take into account this particular issue. We propose to use a point-wise σ value,

computed by using the neighborhood of each sample point. To accomplish this

goal, the train and test phases are modified as follows.

• Training step: An error per point is computed in terms of the ν nearest220

neighbors mean error. The optimal number of iterations will be given then

by L∗
i ← argmin`{err(`)i }.

• Test step: The optimal number of iterations L∗
te of each test point will

be given by the optimal number of iterations of the nearest training point

xn, i.e. L∗
te = L∗

n.225

The proposed modification introduces a new parameter ν, that represents

the number of neighbors taken into account to define the best local σ per point.

14

This parameter will have the same value for every point in the training set, and

it will be determined by CV.

To sum up and remark the changes with respect to the original ALP algo-230

rithm, the corresponding training and test procedures are presented in Algo-

rithm 3 and Algorithm 4.

Algorithm 3 The Local ALP Training Algorithm
Input: {xi, Fi}Ni=1.

Output: ({D̃(`)}, σ, µ, {Li}Ni=1).

1: µ← 2, Wij ← xi − xj ∀i, j, σ ← 10max (Wij), maxits ← log2(5
σ

min (Wij)
).

2: D̃(0) ← f ; F̃ (0) ← 0; `← 1.

3: while (` < maxits) do

4: K̃(`) ← e
− ‖W‖2

σ2 , with 0-diagonal.

5: P̃ (`) ← normalize(K̃(`)).

6: F̃ (`) ← F̃ (`−1) + D̃(`−1) ∗ P̃ (`).

7: D̃(`) ← F − F̃ (`).

8: err(`)i ← ‖D̃(`)
i ‖

2 ∀i. % For each point the mean error of the nearest points is com-

puted.

9: σ ← σ/µ; `← `+ 1.

10: end while

11: Li ← argmin`{err(`)i }. % Optimal iteration (σ value) per point.

Algorithm 4 The Local ALP Testing Algorithm
Input: {xi}Ni=1, xte, ({D̃(`)}, σ, µ, {Li}Ni=1).

Output: F̂te, Lte.

1: F̂te ← 0.

2: for `=1 to max{Li} do

3: K
(`)
i;te ← e

− ‖xi−xte‖2

σ2 ∀i.

4: P (`) ← normalize(K(`)).

5: F̂te ← F̂te + D̃(`−1) ∗ P (`).

6: σ ← σ/µ.

7: if `==1 then

8: Lte ← L (argmini{xi − xte}). % Return also the optimal iteration per point.

9: end if

10: end for

When applying this new ALP version, the risk of overfitting is still removed.

15

In this case, in which the width of the kernel is automatically adapted to each

point, the overfitting risk is prevented in a point-wise manner. We will see an235

example of this behavior in the following subsection.

3.3. A Synthetic Example

For a better understanding of the proposed method and its advantages, we

illustrate in this section the classic ALP algorithm and its local resolution version

on a synthetic example of a composition of sines with different frequencies plus240

additive noise.

Consider a sample x with N points equally spaced over the range [0, 10π].

The target function f is given by

f = sin(x) + 0.5 sin(3x) · I2(x) + 0.25 sin(9x) · I3(x) + ε,

where I2 is the indicator function of the interval (10π/3, 10π], I3 that of (2 ·

10π/3, 10π] and ε ∼ U([−δ, δ]) is uniformly distributed noise. In other words,

there is a single frequency in the interval [0, 10π/3], two frequencies in (10π/3, 2·

10π/3] and three in (2 ·10π/3, 10π]. For the classic ALP algorithm, two different245

simulations are executed: the first one with 4, 000 points with small δ = 0.1

noise and the second one with 2, 000 points and a larger δ = 0.5 (observe that

|f | ≤ 1.75). In both cases, 1/3 of the original set is randomly chosen for test

purposes.

Recall that the main advantage of ALP is the approximation of the LOOCV250

error obtained while we evaluate the training error. Due to this fact, if the

algorithm iterations stop as the error starts to grow, the risk of overfitting is

removed. This effect can be observed in Figure 1 where ALP is applied to this

synthetic example. The solid blue and dashed green lines represent the LP

training error and the true LOOCV error per iteration respectively, and the255

dashed red line represents the error for the ALP method. Notice that the ALP

training error attains its minimum at the same iteration prescribed by exact

LOOCV for LP.

16

kALP = kLOOCV = 13
0

0.2

0.4

0.6

0.8

Iterations

R
M

SE

kALP = kLOOCV = 12
0

0.2

0.4

0.6

0.8

Iterations

R
M

SE

ALP LP LOOCV

Figure 1: Training errors for the original LP models (with and without LOOCV) and its

modified version, the ALP model, applied over a perturbed sine. Left: δ = 0.1 over 4, 000

patterns; right: δ = 0.5 over 2, 000 patterns.

Recall also that the ALP model automatically adapts its multiscale behavior

to the data, trying to refine the prediction in each iteration using a more local-260

ized kernel, given by a smaller σ. This behavior can be observed in Figure 2,

which shows the evolution of the ALP predictions for the 0.1-noise experiment.

At the beginning, the model approximates the function just by a coarse mean

of the target function values, and in the subsequent iterations when the model

starts using sharper kernels and refined residuals, the approximating function265

captures the different frequencies and amplitudes of the composite sines. In this

particular case, the minimum LOOCV value is reached after 13 iterations. Note

that we start plotting from the 7th iteration, because before the result resembles

a mean function due to a large initial σ value.

17

−1

0

1

Iteration 7

−1

0

1

Iteration 8

−1

0

1

Iteration 9

−1

0

1

Iteration 10

−1

0

1

Iteration 11

−1

0

1

Iteration 12

−1

0

1

Iteration 13

f

faprox

Figure 2: Interpolations given by the ALP model for the last seven steps (out of 13) on the

small noise example.

Next, the same synthetic experiment is carried out, but now the amplitude270

of the uniform noise distribution is increased to δ = 0.5. The predicted function

is represented in Figure 3 and it is obtained after 12 iterations (as shown in

the right hand image of Figure 1). As expected, the number of LP iterations is

now slightly smaller than in the previous example because the algorithm selects

a more conservative, smoother prediction in the presence of noisier and, thus,275

more difficult data.

−1

0

1

2

f faprox

Figure 3: Final interpolations given by the ALP model for the large noise example.

In any case, we can conclude that the ALP model captures very well the

essential underlying behavior of both samples, as it identifies the three different

frequencies of the sine and their amplitudes even when the noise level increases.

18

Next, we illustrate in this subsection the advantages of the modified ALP280

version with local resolution (ALPl). For this purpose, the same sine example is

used, but the focus is on the third interval, where the three frequencies of the sine

are present. The function takes the form f = sin(x)+0.5 sin(3x)+0.25 sin(9x),

with 4, 000 points and no noise (δ = 0, and thus ε = 0). In this case, also

three different regions are defined, but in terms of the subsampling density. In285

particular, we divide the interval [0, 10π] into three parts. The first region holds

400 samples, the second 1, 400 and the third one 2, 200. In this scenario it seems

logical to adapt the final bandwidth of the Gaussians to each region, expecting

larger bandwidth values (few iterations) for sparse regions, obtaining then a

smoother, coarser approximation; for the dense regions we expect a smaller σ290

value (more iterations), that will capture finer details, as there are more points

to estimate the original function).

The parameters of the method have been fixed automatically, as done in the

ALP case, except the parameter ν for the local approximation that has been

cross-validated using 10 folds and a grid {10, 20, . . . , 200}, selecting finally a295

value of 50. As seen in Figure 4, the resolution selection works as expected,

presenting three main different values corresponding to the three different sub-

sampling regions.

19

0 10 20 30

−1

0

1

Xtrain

f

0 10 20 30
14

15

16

17

18

Xtrain

It
er

at
io

ns

ALP local ALP

Figure 4: Left: Representation of the synthetic example over the training set, colored by

subsampling region. Right: Stopping number of iterations for the synthetic example over the

training set, represented as a constant red line for ALP and as asterisks of different colors

depending on region for ALPl.

The original ALP and ALPl algorithms are compared in Figure 5 for the

three different regions, where we can acknowledge that in general the blue ALPl300

points are very close to the red ALP values. Both methods present very similar

results, as expected because they used very similar σ values, and they give a

good result for prediction. In particular, this can be observed in the second and

third region, where the sample set is dense and big enough. The first region,

which only has a few number of available sampled point, is the most difficult305

region for approximation and therefore the results are less accurate.

20

−1 0 1
−2

−1

0

1

Reality

P
re

di
ct

io
n

Region 1

−1 0 1

Reality

Region 2

ALPl ALP

−1 0 1

Reality

Region 3

Figure 5: Sine example test results. Comparison between ALP (red points) and ALPl (blue

points) predictions.

Finally, we would like to emphasize that the new ALPl algorithm prevents

overfitting as well as its original version, as explained before. This fact can be

appreciated in Figure 6 where each curve presents the same shape than the ALP

curve (like the one shown in Figure 1). It should be noticed that the red lines,310

corresponding with points in the last region, represents an error over an easy

synthetic problem with lots of subsampled points. Because of this, the error is

0, as the method is able to recover the original function perfectly.

2 4 6 8 10 12 14 16 18
0

0.5

1

Iterations

R
M

SE

Figure 6: Training errors of a subset of the sample points. The different colors represent

the three subsampling regions as in previous plots, where blue curves correspond to points in

the first region, green curves correspond with the second region and red ones with the third

region.

21

4. Experiments over real data

This section presents numerous interpolation experiments over real datasets,315

for which we analyze the behavior and properties of ALP and its modified

version, ALPl. For this analysis, the results are compared against a k-Nearest

Neighbor (k-NN) model, a standard interpolation method. All the real problems

presented in the paper will deal with the missing values problem, which is one of

the most interesting and more frequent problems in the interpolation context,320

for being crucial to tackle other problems like classification or regression. The

importance of missing values problems is shown in [40], where missing values are

imputed using k-NN and Self-Organizing Map techniques or in [41], where the

classification problem with missing values is solved with a random-forest based

algorithm. In this type of problem, when the data is regressed many times325

against each of the columns, methods like k-NN need to be tuned manually

to fit the behavior of each target function while ALP and ALPl automatically

choose a scale that fits the function and data.

For all the experiments we will follow the subsequent methodology:

1. Select the less correlated features among a complete dataset to simulate330

the missing value problem, if needed.

2. Define 10 independent train-test folds for each case study. We consider 3

possible scenarios: a 90%-10% train-test split, a 80%-20% and a 70%-30%.

In total, 30 experiments per problem will be executed.

3. Parameter selection in one of the training folds. As previously explained,335

the parameters needed for ALP and ALPl are automatically selected by

the algorithm, except in the case of the parameter ν in the local version.

Recall that this parameter is used for determining the number of neighbors

involved in the point-wise final bandwidth selection for each training point.

The value of this parameter is estimated using a 10-fold CV. For the k-NN340

algorithm, the k neighbors are also obtained via a 10-CV.

4. Run the models in each of the 30 defined experiments.

22

5. Evaluate the results. The Root Mean Squared Error (RMSE) is used for

measuring errors, as previously discussed. Notice that, for making all the

datasets errors comparable among them, the errors presented are divided345

by the standard deviation of the target function in the test set. We will

present the median and standard deviation of each set of 10 experiments,

together with a statistical significance test between models, in this case

a Mann–Whitney U test [42] applied over the errors obtained. The null

hypothesis of this test states that both models come from continuous dis-350

tributions with equal medians, rejecting the null hypothesis at the 5%

significance level.

6. Derive plots to illustrate the results. When the dimension of the data

is large, Principal Component Analysis (PCA [43]) will be applied for

making the visualization possible.355

Next, the described procedure is applied to a number of real datasets.

4.1. Wisconsin Breast Cancer (Diagnostic) Dataset

The first example selected is a classification UCI dataset [44]: the Wisconsin

breast cancer. The features in this dataset are characteristics of each cell nuclei

presented on an image of a breast mass. In this work, we changed the original360

target function and instead we take one of the cell characteristics to be the

target function for interpolation, simulating that it has several missing values.

The selected feature for being the target function is the less correlated with the

other ones, which in this example is the number 12.

As explained in the general case, three different scenarios will be considered:365

a 90%-10% train-test split, a 80%-20% and a 70%-30%. In all cases, the data has

been standardized before building the models. For the ν parameter selection,

the grid {10, 20, . . . , 200} was used in the ALPl case selecting values of 70, 110

and 170 for the 10%, 20% and 30% test splits respectively. The grid {1, 2, ..., 10}

was used for the k-NN method, obtaining k = 2 for all the partitions.370

The interpolation RMSE errors for this example are shown in Table 1, to-

gether with the result of applying the Mann–Whitney U significance test, mark-

23

ing in bold font the winners and ties in first position. Notice that we consider

the three different scenarios depending on the number of test samples: 10% of

random test samples, 20% or 30%. Observing the results in the table we can375

conclude that the proposed method, in its original form and in its local version,

yields the best results for the 10% case, outperforming k-NN as an interpola-

tion method and ties it when less information is available during training. Even

though the error values between ALP and ALPl are not significant in this ex-

ample, the ALPl errors are smaller when there is more training data available.380

This implies that finer structure in the data is captured with ALPl when data

is at hand (see the 10% case).

Table 1: Normalized RMSE errors for the Breast Cancer example.

ALP ALPl k-NN

10% 0.4181± 0.1025 0.4007± 0.0881 0.4797± 0.0666

20% 0.4194± 0.0941 0.4265± 0.0914 0.4580± 0.0488

30% 0.5431± 0.1214 0.4517± 0.1246 0.4673± 0.0383

For reinforcing these results, we present some plots to visually appreciate

the effects of these methods for modeling the considered dataset. In Table 2

we present a comparison between the expected result (the reality, in the x axis)385

and the interpolated one (the prediction, in the y axis) for ALPl and ALP. Both

methods present similar results, but if we focus our attention on the left lower

side of the image, ALPl points are a bit nearer to the diagonal than ALP ones.

24

Table 2: Breast Cancer example. Comparison between ALP (red points) and ALPl (blue

points) predictions over the test set for different test subsets.

10% 20% 30%

ALPl

0 0.5 1
0

0.5

1

Reality

P
re

di
ct

io
n

0 0.5 1
0

0.5

1

Reality

P
re

di
ct

io
n

0 0.5 1
0

0.5

1

Reality

P
re

di
ct

io
n

ALP

0 0.5 1
0

0.5

1

Reality

P
re

di
ct

io
n

0 0.5 1
0

0.5

1

Reality

P
re

di
ct

io
n

0 0.5 1
0

0.5

1

Reality

P
re

di
ct

io
n

In Figure 7, the final number of iterations are depicted over the PCA training

coordinates (recall that the number of iterations is related to the analysis scale390

of the data in each region). It can be appreciated that points with similar final

number of iterations are located in the same region, so it seems that the number

of iterations it is also related with the data structure and the ALPl method is

able to capture this information.

25

PC(1)

P
C

(2
)

(a) 10%

PC(1)

(b) 20%

PC(1)
7

7.5

8

8.5

9

(c) 30%

Figure 7: Breast Cancer Wisconsin (Diagnostic) number of iterations. The image plots the

final number of iterations, represented in different colors according to the colorbar, over the

PCA components of the training set.

4.2. Wine Quality Dataset395

For another real, but small dataset example, we consider the Wine Quality

dataset from the UCI repository. The wine dataset holds several features based

on physicochemical tests such as acidity, chlorides or sulfur dioxide from each

wine type. There is a separate dataset for red and white variants of wine. We

have discarded the discrete features number 2 and 8 from both datasets.400

As in the previous example, we change the problem for being a missing values

one. The feature with missing values, selected for being the less correlated with

the other features, is in this case the feature number 4 for the wine red dataset,

that corresponds to the residual sugar, and feature number 10 for the white

wine dataset, that corresponds to the sulphates information.405

We consider again three different scenarios: a 90%-10% train-test split, a

80%-20% and a 70%-30% and, in all cases, the data has been standardized

before building the models.

For the parameter selection of the ALPl algorithm and for the k of k-NN,

the used grids where the same than for the first example, obtaining the values410

of 50, 40 and 50 for the 10%, 20% and 30% test splits respectively in the case of

the red wine dataset and ν = {110, 60, 90} for the white wine dataset. for the

10% test case values of ν = 70, for the 20% case ν = 110 and for the 30% test

26

split, ν = 170. For the k parameter, the best values were k = {4, 3, 3} for the

10%, 20% and 30% cases respectively for the red wine dataset and k = 7 for all415

the white wine cases.

The RMSE errors for both examples are shown in Table 3, where it is also

shown the result of the significance test over the errors obtained at a 5% sig-

nificance level. It can be appreciated that for the red wine variant, there is no

significance difference between models except for the 30% case, where the ALP420

models outperform k-NN. For the 10% and 20% cases, even though there is no

significance difference, the errors is smaller also in the ALP models. For the

white variant, the ALPl model is clearly better than the other two, indepen-

dently of the test subset size.

Table 3: Normalized RMSE errors for the Wine examples.

ALP ALPl k-NN

10%
Red 0.9190± 0.0950 0.9072± 0.0991 0.9354± 0.1071

White 0.8527± 0.0212 0.8191± 0.0405 0.8704± 0.0243

20%
Red 0.8845± 0.0676 0.8898± 0.0690 0.9246± 0.0826

White 0.8627± 0.0197 0.8293± 0.0279 0.8767± 0.0191

30%
Red 0.8489± 0.0501 0.8725± 0.1057 0.9043± 0.0654

White 0.8712± 0.0110 0.8540± 0.0139 0.8963± 0.0104

In Table 4 and Table 5 a comparison between the expected result (the target,425

in the x axis) and the interpolated one (the prediction, in the y axis) for ALP

and ALPl is shown for both examples. The previous conclusions can be also

observed in the images: for the red wine variant, both models look almost

indistinguishable, while for the white wine the results are clearly better (they

follow better the diagonal line).430

27

Table 4: Red wine example. Comparison between ALP (red points) and ALPl (blue points)

predictions over different test subset sizes.

10% 20% 30%

ALPl

0.5 1 1.5 2

0.5

1

1.5

2

Reality

P
re

di
ct

io
n

0.5 1 1.5 2

0.5

1

1.5

2

Reality

P
re

di
ct

io
n

0.5 1 1.5 2

0.5

1

1.5

2

Reality

P
re

di
ct

io
n

ALP

0.5 1 1.5 2

0.5

1

1.5

2

Reality

P
re

di
ct

io
n

0.5 1 1.5 2

0.5

1

1.5

2

Reality

P
re

di
ct

io
n

0.5 1 1.5 2

0.5

1

1.5

2

Reality

P
re

di
ct

io
n

Table 5: White wine example. Comparison between ALP (red points) and ALPl (blue points)

predictions over different test subset sizes.

10% 20% 30%

ALPl

0.20.40.60.8 1

0.2

0.4

0.6

0.8

1

Reality

P
re

di
ct

io
n

0.20.40.60.8 1

0.2

0.4

0.6

0.8

1

Reality

P
re

di
ct

io
n

0.20.40.60.8 1

0.2

0.4

0.6

0.8

1

Reality

P
re

di
ct

io
n

ALP

0.20.40.60.8 1

0.2

0.4

0.6

0.8

1

Reality

P
re

di
ct

io
n

0.20.40.60.8 1

0.2

0.4

0.6

0.8

1

Reality

P
re

di
ct

io
n

0.20.40.60.8 1

0.2

0.4

0.6

0.8

1

Reality

P
re

di
ct

io
n

28

4.3. Mice Protein Dataset

The Mice Protein Expression [45] dataset from the UCI repository consists

of the expression levels of 77 protein modifications that produce detectable

signals in the nuclear fraction of cortex of mice. The dataset contains a total

of 1080 measurements per protein and each measurement can be considered as435

an independent sample. The original task for this problem is the classification

of different types of mice but, as explained before, here the dataset will be

used to demonstrate the interpolation capabilities of the proposed methods.

Nevertheless, this real-life dataset presents a high rate of missing values, and

interpolation methods can be a good solution for filling in these gaps [46]. For440

measuring the quality of the results, the experimental data will be set as the

subset of the 66 features from the entire dataset that have no missing values.

From this dataset, we will simulate that one feature has some gaps on it. In

particular, feature number 52 is chosen as the missing data feature as it is less

correlated with the rest of the feature columns in the data.445

We consider again three different scenarios: a 90%-10% train-test split, a

80%-20% and a 70%-30% and, in all cases, the data has been standardized

before building the models.

For the ν parameter selection of the ALPl algorithm and for the k of k-NN,

the used grids where the same as for the previous examples, obtaining for the450

10% test case values of ν = 40, for the 20% case ν = 130 and for the 30% test

split, ν = 140. For the k parameter the best value was 2 for all the partitions.

The RMSE errors are shown in Table 6, where the significance test results

(at the 5% significance level) are also shown, following the same notation as in

the previous examples. In this case there is a tie between the three compared455

methods in almost all the tested cases, but as in the first example, and even

though the difference is not significant, it can be seen that when more data is

available (the 10% case) the ALPl obtains a lower error.

29

Table 6: Normalized RMSE errors for the Mice Protein example.

ALP ALPl k-NN

10% 0.1883± 0.0243 0.1874± 0.0241 0.1962± 0.0302

20% 0.2020± 0.0222 0.1998± 0.0223 0.2122± 0.0356

30% 0.2133± 0.0235 0.2133± 0.0235 0.2529± 0.0426

In Table 7 we present a comparison between the expected result (the target,

in the x axis) and the interpolated one (the prediction, in the y axis) for ALP460

and ALPl. The results obtained with both models look very similar, as expected.

Table 7: Mice protein example. Comparison between ALP (red points) and ALPl (blue points)

predictions over the test set for different test subsets.

10% 20% 30%

ALPl

0.2 0.4

0.2

0.4

Reality

P
re

di
ct

io
n

0.2 0.4

0.2

0.4

Reality

P
re

di
ct

io
n

0.2 0.4

0.2

0.4

Reality

P
re

di
ct

io
n

ALP

0.2 0.4

0.2

0.4

Reality

P
re

di
ct

io
n

0.2 0.4

0.2

0.4

Reality

P
re

di
ct

io
n

0.2 0.4

0.2

0.4

Reality

P
re

di
ct

io
n

4.4. Seismic Data

Seismic data analysis is another real example where interpolation is neces-

sary. In these datasets, temporal data is collected by using a grid of sensors,

in this case seismometers, and missing data values is a common problem that465

30

occurs when one of the sensors stops to function. The task at hand is a multi-

dimensional interpolation problem, where a complete temporal series that was

not recorded needs to be recovered.

The presented examples are from a marine and a land seismic networks, and

the data was taken from the New Zeland open database (http://wiki.seg.470

org/wiki/Open_data). The number of patterns, i.e. the information of each

point of the grid, available for these examples (around 70, 000) was too big, so

a reduced dataset of the first 10, 000 coordinates available was prepared for the

simulations. The objective function to interpolate here is the entire temporal

series of dimension 1, 252 in the marine case and 2, 500 in the land one.475

In this case, for CV of the number ν of neighbors for the ALPl algorithm, we

have used the knowledge of the grid structure of the data, trying as grid sizes

{8, 24, 48, 80, 120, 168, 224} (with the idea of taking in each case bigger squares

around the point). In the case of the marine seismic dataset we obtain values

of ν = 168 for the 10% test partition, ν = 24 for the 20% test partition and480

ν = 8 for the 30% one, and in the case of the land seismic dataset we obtain

ν = 120, 168, 168 respectively. To set the k-NN parameter, the grid {1, 2, . . . , 10}

was used, like in the previous examples, obtaining k = 3 for all the partitions

in both datasets.

Table 8 presents the RMSE errors for the different models, where ALP mod-485

els again outperform k-NN as interpolation methods, and again we can observe

that in general when more train data is available, the ALPl model has an advan-

tage. This table also presents the results of the significance test applied at the

5% significance level over the errors obtained, remarking the most significant

results in bold-faced.490

31

http://wiki.seg.org/wiki/Open_data
http://wiki.seg.org/wiki/Open_data
http://wiki.seg.org/wiki/Open_data

Table 8: Normalized RMSE errors for the Seismic examples.

ALP ALPl k-NN

10%
Marine 0.2937± 0.0221 0.2783± 0.0099 0.3299± 0.0068

Land 0.0989± 0.0011 0.0989± 0.0011 0.1450± 0.0010

20%
Marine 0.3202± 0.0096 0.3224± 0.0095 0.3557± 0.0078

Land 0.1075± 0.0008 0.1075± 0.0008 0.1567± 0.0015

30%
Marine 0.3342± 0.0114 0.3479± 0.0086 0.3776± 0.0088

Land 0.1187± 0.0012 0.1187± 0.0012 0.1707± 0.0014

In Tables 9 and 10 the two ALP versions are depicted and also the real

objective function for an interval of the temporal series interpolation of one of

the patterns. The results in this case are essentially indistinguishable, as both

models are basically equal.

Table 9: Marine seismic example. Comparison between ALP (red points) and ALPl (blue

points) predictions over one test pattern.

10% 20% 30%

ALPl

−4 −2 0 2 4
−4

−2

0

2

4

Reality

P
re

di
ct

io
n

−4 −2 0 2 4
−4

−2

0

2

4

Reality

P
re

di
ct

io
n

−4 −2 0 2 4
−4

−2

0

2

4

Reality

P
re

di
ct

io
n

ALP

−4 −2 0 2 4
−4

−2

0

2

4

Reality

P
re

di
ct

io
n

−4 −2 0 2 4
−4

−2

0

2

4

Reality

P
re

di
ct

io
n

−4 −2 0 2 4
−4

−2

0

2

4

Reality

P
re

di
ct

io
n

32

Table 10: Land seismic example. Comparison between ALP (red points) and ALPl (blue

points) predictions over one test pattern.

10% 20% 30%

ALPl

−2 0 2

·104

−2

0

2

·104

Reality

P
re

di
ct

io
n

−2 0 2

·104

−2

0

2

·104

Reality
P

re
di

ct
io

n

−2 0 2

·104

−2

0

2

·104

Reality

P
re

di
ct

io
n

ALP

−2 0 2

·104

−2

0

2

·104

Reality

P
re

di
ct

io
n

−2 0 2

·104

−2

0

2

·104

Reality

P
re

di
ct

io
n

−2 0 2

·104

−2

0

2

·104

Reality

P
re

di
ct

io
n

In this case, the difference between the ALP versions is neither significant at495

a 5% significance level but we can conclude that the ALP with local resolution

is also able to detect this global structures where just a global σ is needed,

offering the same results as the ALP original model. It should be remarked the

difference with respect to the k-NN model, being again that the ALP models

are a better option for interpolation in this real problem.500

5. Conclusions

The proposed framework provides novel, flexible and multi-scale analysis

tools, which are easy to implement and are suitable for modeling different types

of datasets including those with non-uniform data distribution. In particular, we

introduce an extended version of the Auto-adaptive Laplacian Pyramids (ALP)505

where the local structure of the data is taken into account with success, defining

a different width of the kernel per point. In addition, this adaptive version of

33

LP training yields, at no extra cost, an estimate of the LOOCV value at each

iteration, allowing thus to automatically decide when to stop in order to avoid

overfitting.510

All together, the proposed methodology provides a robust and flexible frame-

work supported by theoretical error analysis for modeling complex datasets.

This work overcomes the limitations of previous LP methods and, thus, appli-

cations that utilizes LP will benefit from this research. Indeed, these advantages

are already expressed in the experimental results where ALP outperforms k-NN515

in the different examples presented.

Regarding future work, one challenge we plan to tackle is the global nature

of these algorithms, which requires high computational cost as data size grows.

This may be addressed by modifying the training step stages of the current

algorithm by considering smaller suitable subsamples. Finally, since our method520

offers a general setting, it can be applied in different domains for out-of-sample

extension and forecasting problems.

Acknowledgements

They wish to thank Prof. Ronald R. Coifman for helpful remarks. They

also gratefully acknowledge the use of the facilities of Centro de Computación525

Científica (CCC) at Universidad Autónoma de Madrid.

Funding: This work was supported by Spanish grants of the Ministerio de

Ciencia, Innovación y Universidades [grant numbers: TIN2013-42351-P, TIN2015-

70308-REDT, TIN2016-76406-P]; project CASI-CAM-CM supported by Madri+d

[grant number: S2013/ICE-2845]; project FACIL supported by Fundación BBVA530

(2016); and the UAM–ADIC Chair for Data Science and Machine Learning.

References

[1] M. Buhmann, Radial Basis Functions: Theory and Implementations, Cam-

bridge Monographs on Applied and Computational Mathematics, Cam-

bridge University Press, 2003.535

34

[2] J. Wang, G.R.Liu, A point interpolation meshless method based on radial

basis functions, International Journal for Numerical Methods in Engineer-

ing 54 (11) (2002) 1623–1648.

[3] R. Beatson, W. Light, Fast evaluation of radial basis functions: methods for

two-dimensional polyharmonic splines, IMA Journal of Numerical Analysis540

17 (3) (1997) 343–372.

[4] M. Carozza, S. Rampone, An incremental multivariate regression method

for function approximation from noisy data, Pattern Recognition 34 (3)

(2001) 695 – 702.

[5] P. Burt, E. Adelson, The laplacian pyramid as a compact image code, IEEE545

Transactions on Communications 31 (1983) 532–540.

[6] E. Nadaraya, On estimating regression, Theory of Probability & Its Appli-

cations 9 (1) (1964) 141–142.

[7] G. Watson, Smooth regression analysis, Sankhyā: The Indian Journal of

Statistics, Series A (1964) 359–372.550

[8] N. Duchateau, M. De Craene, M. Sitges, V. Caselles, Adaptation of multi-

scale function extension to inexact matching: application to the mapping of

individuals to a learnt manifold, in: International Conference on Geometric

Science of Information, Springer, 2013, pp. 578–586.

[9] Y. Bengio, J.-f. Paiement, P. Vincent, O. Delalleau, N. L. Roux, M. Ouimet,555

Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral

clustering, in: Advances in neural information processing systems, 2004,

pp. 177–184.

[10] A. W. Long, A. L. Ferguson, Landmark diffusion maps (l-dmaps): Accel-

erated manifold learning out-of-sample extension, Applied and Computa-560

tional Harmonic Analysis 47 (1) (2019) 190–211.

35

[11] G. Mishne, I. Cohen, Multiscale anomaly detection using diffusion maps,

IEEE Journal of selected topics in signal processing 7 (1) (2012) 111–123.

[12] R. Coifman, S. Lafon, Diffusion Maps, Applied and Computational Har-

monic Analysis 21 (1) (2006) 5–30.565

[13] G. Mishne, R. Talmon, I. Cohen, Graph-based supervised automatic target

detection, IEEE Transactions on Geoscience and Remote Sensing 53 (5)

(2014) 2738–2754.

[14] G. Mishne, I. Cohen, Multiscale anomaly detection using diffusion maps

and saliency score, in: 2014 IEEE International Conference on Acoustics,570

Speech and Signal Processing (ICASSP), IEEE, 2014, pp. 2823–2827.

[15] G. Mishne, I. Cohen, Multi-channel wafer defect detection using diffusion

maps, in: 2014 IEEE 28th Convention of Electrical & Electronics Engineers

in Israel (IEEEI), IEEE, 2014, pp. 1–5.

[16] S. M. N. Spingarn, I. Cohen, Voice activity detection in transient noise575

environment using laplacian pyramid algorithm, in: 2014 14th International

Workshop on Acoustic Signal Enhancement (IWAENC), 2014, pp. 238–242.

[17] I. C. M. Li, S. Mousazadeh, Multisensory speech enhancement in noisy en-

vironments using bone-conducted and air-conducted microphones, in: 2014

IEEE China Summit & International Conference on Signal and Information580

Processing (ChinaSIP), 2014, pp. 1–5.

[18] R. Coifman, S. Lafon, Geometric harmonics: A novel tool for multiscale

out-of-sample extension of empirical functions, Applied and Computational

Harmonic Analysis 21 (1) (2006) 31–52.

[19] C. J. Dsilva, R. Talmon, N. Rabin, R. R. Coifman, I. G. Kevrekidis, Non-585

linear intrinsic variables and state reconstruction in multiscale simulations,

The Journal of chemical physics 139 (18) (2013) 11B608_1.

36

[20] E. Chiavazzo, C. W. Gear, C. J. Dsilva, N. Rabin, I. G. Kevrekidis, Re-

duced models in chemical kinetics via nonlinear data-mining, Processes

2 (1) (2014) 112–140.590

[21] D. Comeau, Z. Zhao, D. Giannakis, A. J. Majda, Data-driven prediction

strategies for low-frequency patterns of north pacific climate variability,

Climate Dynamics 48 (5-6) (2017) 1855–1872.

[22] D. Comeau, D. Giannakis, Z. Zhao, A. J. Majda, Predicting regional and

pan-arctic sea ice anomalies with kernel analog forecasting, Climate Dy-595

namics 52 (9-10) (2019) 5507–5525.

[23] R. Alexander, Z. Zhao, E. Székely, D. Giannakis, Kernel analog forecasting

of tropical intraseasonal oscillations, Journal of the Atmospheric Sciences

74 (4) (2017) 1321–1342.

[24] R. Duda, P. Hart, D. Stork, Pattern Classification, Wiley, New York, 2001.600

[25] A. Fernández, N. Rabin, D. Fishelov, J. Dorronsoro, Auto-adaptive

laplacian pyramids, in: European Symposium on Artificial Neural Net-

works, Computational Intelligence and Machine Learning - ESANN 2016,

i6doc.com, 2016, pp. 59–64.

[26] P. Bühlmann, B. Yu, Boosting with the l2 loss: regression and classification,605

Journal of the American Statistical Association 98 (462) (2003) 324–339.

[27] M. Do, M. Vetterli, Framing pyramids, IEEE Transactions on Signal Pro-

cessing 51 (2003) 2329–2342.

[28] L. Liu, L. Gan, T. Tran, Lifting-based laplacian pyramid reconstruction

schemes, in: ICIP, IEEE, 2008, pp. 2812–2815.610

[29] N. Rabin, R. Coifman, Heterogeneous datasets representation and learning

using Diffusion Maps and Laplacian Pyramids, in: SDM, SIAM / Omni-

press, 2012, pp. 189–199.

37

[30] G. Mishne, I. Cohen, Multiscale anomaly detection using diffusion maps,

J. Sel. Topics Signal Processing 7 (1) (2013) 111–123.615

[31] R. Adams, J. Fournier, Sobolev spaces, Vol. 140, Academic press, 2003.

[32] D. Fishelov, A new vortex scheme for viscous flows, Journal of computa-

tional physics 86 (1) (1990) 211–224.

[33] G. Cawley, N. Talbot, Fast exact leave-one-out cross-validation of sparse

least-squares support vector machines, Neural Networks 17 (10) (2004)620

1467–1475.

[34] A. Elisseeff, M. Pontil, Leave-one-out error and stability of learning algo-

rithms with applications, in: J. Suykens, G. Horvath, S. Basu, C. Micchelli,

J. Vandewalle (Eds.), Advances in learning theory: methods, models and

applications, NATO ASI, IOS Press, Amsterdam, Washington, DC, 2002,625

pp. 152–162.

[35] R. Kohavi, A study of cross-validation and bootstrap for accuracy estima-

tion and model selection, in: Proceedings of the 14th International Joint

Conference on Artificial Intelligence, IJCAI’95, Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1995, pp. 1137–1143.630

[36] K. Fukunaga, D. Hummels, Leave-one-out procedures for nonparametric

error estimates, IEEE Trans. Pattern Anal. Mach. Intell. 11 (4) (1989)

421–423.

[37] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning:

data mining, inference and prediction, Springer, 2008.635

[38] O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple

parameters for support vector machines, Machine Learning 46 (1) (2002)

131–159.

[39] C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning

(Adaptive Computation and Machine Learning), The MIT Press, 2005.640

38

[40] Z. Liu, Q. Pan, J. Dezert, A. Martin, Adaptive imputation of missing values

for incomplete pattern classification, Pattern Recognition 52 (2016) 85 –

95.

[41] J. Xia, S. Zhang, G. Cai, L. Li, Q. Pan, J. Yan, G. Ning, Adjusted weight

voting algorithm for random forests in handling missing values, Pattern645

Recognition 69 (2017) 52 – 60.

[42] H. Mann, D. Whitney, On a test of whether one of two random variables is

stochastically larger than the other, The Annals of Mathematical Statistics

18 (1) (1947) 50–60.

[43] I. Jolliffe, Principal Component Analysis, Springer Series in Statistics, 2002.650

[44] M. Lichman. UCI machine learning repository [online] (2013).

[45] C. Higuera, K. Gardiner, K. Cios, Self-organizing feature maps identify

proteins critical to learning in a mouse model of down syndrome, PLOS

ONE 10 (6) (2015) 1–28.

[46] N. Rabin, D. Fishelov, Missing data completion using diffusion maps and655

laplacian pyramids, in: International Conference on Computational Science

and Its Applications, Springer, 2017, pp. 284–297.

39

http://archive.ics.uci.edu/ml

	caratula angela
	auto-adaptive_Pascual_2020
	Introduction
	Laplacian Pyramids
	The Basic LP Procedure
	Error Analysis for the LP Scheme
	Overfitting Risk

	Auto-adaptive Laplacian Pyramids
	Standard ALP
	ALP with Local Resolution
	A Synthetic Example

	Experiments over real data
	Wisconsin Breast Cancer (Diagnostic) Dataset
	Wine Quality Dataset
	Mice Protein Dataset
	Seismic Data

	Conclusions

