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Deep Neural Networks for Wind and Solar Energy
Prediction

David Díaz–Vico1 · Alberto Torres–Barrán1 ·
Adil Omari1 · José R. Dorronsoro1

Abstract Deep Learning models are recently receiving a large attention because of their 
very powerful modeling abilities, particularly on inputs that have a intrinsic one- or two-
dimensional structure that can be captured and exploited by convolutional layers. In this 
work we will apply Deep Neural Networks (DNNs) in two problems, wind energy and daily 
solar radiation prediction, whose inputs, derived from Numerical Weather Prediction systems, 
have a clear spatial structure. As we shall see, the predictions of single deep models and, 
more so, of DNN ensembles can improve on those of Support Vector Regression, a Machine 
Learning method that can be considered the state of the art for regression.

Keywords Deep learning · Convolutional neural network · Wind energy · Solar energy

1 Introduction

Artificial Neural Networks (ANNs) have had three moments in the limelight. The first one 
in the second half of the 50’s, full of a somewhat naïve promise, was followed by a long 
winter from the mid 60’s to the mid 80’s. The second started around 1990, where ANNs 
received a large interest that led to a very good understanding of neural networks with one 
or two layers and that established ANNs as the state of the art approach for classification 
and regression problems. However, the appearance of new and competing modeling 
proposals
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(Support Vector Machines, Boosting, Random Forests) and the inability to train efficiently
MLPs with three or more layers because of vanishing gradients, led to a mild decline in the
research and applications of ANNs around the year 2000.

The third limelight moment for ANNs has come with the by now very famous Deep
Neural Networks (DNNs) [22]. While they can be defined as ANNs with several (at least
three ormore) hidden layers and, thus, seen as just a simple enlargement of previously studied
architectures, their success has been enormous, as they have shattered records in image and
speech recognition competitions, make the core of the famous DeepMind system for playing
Go and are currently held among the most promising building blocks towards the still elusive
goal of achieving Artificial Intelligence.

The first crucial step in this third epoch was the proposals by Hinton and Salakhutdinov
[17] on the one hand, and by Bengio et al. [5] on the other, to overcome the vanishing gradient
obstacle and to make possible the effective training of DNNs for the first time. Subsequent
work has givenDNNs a tremendous impulse inwhich a breakthrough has led to another. First,
better initialization procedures such asGlorot’s [13] greatly simplified the somewhat clumsier
pretrainings in [17] and [5] and made possible to train large networks by backpropagation.
In turn, new regularization procedures, particularly dropout [29] allowed to control the clear
risk of overfitting present in the very large networks that were now possible. New input
processing schemes were next introduced, such as the rediscovered convolutional layers,
first proposed by Y. LeCun in the late 1990’s, or the Rectified Linear Unit (ReLU) activations
[14], whose 0–1 derivatives lend stability to training. Training itself has also greatly changed
and improved. The sensible (but modest) minibatch training has been complemented by new
and powerful gradient descent techniques, such as Nesterov’s variant of classical momentum
[30], self adjusting learning rate procedures such as Adagrad [11], Adadelta [31] or Adam
[20], or batch normalization techniques to control covariance shift [2,18].

In parallel, key advances have beenmade in two crucial areas. The first one is the introduc-
tion and extensive use of GPU libraries to speed up the very costly training of large networks
by vectorializing the huge number of matrix-vector operations needed; in turn, this has been
coupled with new proposals and implementations for distributed DNN training [1,25]. The
second advance, extremely important but sometimes missed, is the development of symbolic
differentiation compilers that can automatically compute and yield very efficient low level
code for the highly complex gradients associated to very general feedforward architectures,
specially suited to concrete problems which are now routinely proposed. These two advances
have resulted in a growing number of publicly available training software platforms, either
at a relative low level, such as Caffe [19], Pylearn2–Theano [3,6] or Google’s TensorFlow
[1], or as high level efficient wrappers such as Keras [9] that runs on top of either Theano or
TensorFlow backends (we will use both Pylearn2 and Keras for our experiments here).

The main consequence of all this has been an ongoing, tremendous research effort, with
very impressing results in a number of areas, particularly on problems from computer vision
and speech recognition. The extensive use of convolutional layers is a key factor here, but
a deeper reason may be the formal similarity between the information processing of ad-hoc
DNN architectures and the layer processing that takes place in the visual cortex [21]. In the
DNNcase, this processing results in successively refined representations of input patterns that
at the last hidden layer are powerful enough to be successfully exploited by simple readouts.
In other words, DNN training can be seen as a particularly effective way to perform feature
engineering, to the point that the field is often identified with representation learning [4].

As just mentioned, DNNs are most often used in image or speech recognition problems
while less attention has been comparatively paid to other problems whose inputs also have
a bidimensional, image-like structure. An example is given by problems with Numerical
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Weather Prediction (NWP) patterns. NWP provides forecasts for a geographical area as a
number of weather variable predictions given at each one of the points of a rectangular
grid. Each such variable can be thus seen as a particular kind of image of the area under
consideration or, in convolutional network language, as a featuremap over a concrete channel.
This image-like structure naturally suggests that DNN architectures similar to those used in
image processing may result in good regression models. We will consider here two kind of
such problems. The first is forecasting wind energy production, whose increasing penetration
in many countries gives a great importance to its accurate prediction. This is an intensely
studied problemwhere standardMLPs and Support Vector Regression (SVR) acting onNWP
forecasts provided by organizations such as the European Center for Medium range Weather
Forecasts (ECMWF, [12]) or the Global Forecasting System (GFS, [27]), are themodels most
often applied. Here we will consider wind energy predictions at the farm level (namely, the
Sotavento farm in Northwestern Spain) and on a wide area (namely wind energy production
of peninsular Spain). The NWP inputs here will be those provided by the ECMWF.

Our second problem will be the prediction of total daily incoming solar radiation where
we will use data from the recent Kaggle AMS 2013–2014 Solar Energy Prediction Contest
[28], whose goal was to predict aggregated incoming radiation on a total of 98 Mesonet
weather stations covering the state of Oklahoma using as inputs NWP forecasts provided by
NOAA/ESRL Global Ensemble Forecast System (GEFS).

It is clear that for both problems convolutional networks arise as natural choices to derive
energy forecasts and they will be used in the deep models considered in this paper. It is also
well known that a good hyper-parameter selection is crucial when applying any Machine
Learning (ML) model, and this is the case too of DNNs, with the extra difficulty of the
potentially very large number of hyper-parameters as well as the large number of process-
ing options that have been proposed in the literature. To simplify on this we will work in
a relatively standard setting, using Glorot–Bengio weight initialization [13], ReLUs [14],
dropout regularization [29] on hidden layers and standard weight decay in the final ones. As
mentioned, several training algorithms can be used; we will settle with Adadelta [31], which
allows for an essentially self-adjusting learning rate. The exploration of the other relevant
hyper-parameters is handled with Hyperopt [7], a recent tool that allows for a principled
random exploration of the hyper-paramater space. We point out that this contribution is a
substantially larger extension of previous work [10] by us. Our contributions here thus further
extend and enlarge those in [10] and can be summarized as follows:

– We extend and update the review in [10] of the most recent proposals in DNNs, in
particular those for DNN training. While known, the techniques we review are scattered
amongmany different papers and our joint presentation of themwill be helpful for readers
that are considering to use DNNs.

– We build on the techniques reviewed to set up a simple and useful methodology for DNN
training and hyper-parameter selection in regression problems.

– We will thoroughly explore the application of convolutional DNNs to the wind energy
and solar radiation problems from the point of view of the ML practitioner.

– We introduce DNN ensembles as a way to enhance single DNN predictions by lowering
variance while retaining a good enough bias and show experimentally how the random
elements of DNN training (random weight initialization, minibatch training and dropout
regularization) result in robust and effective DNN ensembles.

As mentioned before, we will use the Pylearn2 [15]–Theano [3,6] and Keras–Theano [9]
platforms as they include a wide variety of already tested neural networks and allows us to
explore several of the latest and most effective proposals for deep network training. Besides
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its symbolic differentiation capabilities, that make possible the automatic computation of the
cost function gradients of fairly complex networks, another key advantage of having Theano
as the underlying backend is that we can exploit the final low level GPU code it generates to
greatly speed up DNN training with respect what is possible over standard CPUs.

The rest of the paper is organized as follows. In Sect. 2 we review our choices for deep
network configuration and optimization procedures and discuss some of their details. Section
3 contains a succinct discussion of the framework for wind energy prediction over NWP
inputs, a description of our experimental setup and the prediction results for both theSotavento
wind farm and the entire wind energy prediction over peninsular Spain that is overseen by
Red Eléctrica de España (REE). For the Sotavento problem we improve on the results of our
previous work [10] byworkingwith themuchmore flexible Keras DNNwrapper, simplifying
hyper-parameter selection and introducingDNN ensembles that further improve our previous
single DNN prediction errors. We build on the general approach for wind energy to deal in
Sect. 4with the solar radiation problemproposed in theKaggleAMS2013–2014 Solar Energy
Prediction Contest [28], showing that single DNN and ensemble models can also improve on
SVRs on this setting. Finally, in 5 we briefly discuss our results and offer pointers to further
work.

2 Deep Neural Networks

We briefly review here some of the key issues when configuring and training Deep Neural
Networks, closely following in the first four subsections our earlier presentation in [10];
Sect. 2.5 is new.

2.1 Initialization

It can be said that the problem of vanishing gradients that plagued the backpropagation
training of networks with more than 2 layers was in a great measure caused by bad weight
initialization. In fact the breakthroughs of Hinton and Bengio mentioned above were ulti-
mately clever ways to initialize a DNN in such a way that subsequent backpropagation was
successful. This was followed by the work in [13] where it was shown that bad initializations
resulted in gradients centered at 0 and whose variance decreased as one moved from the
output to the input layers. Thus, the network was stuck at weights that caused this near zero
gradient behavior in the first layers and that were therefore unable of any further learning.

Glorot and Bengio proposed in [13] a simpler way to initialize DNN weights so that
vanishing gradients are avoided. Their starting point is LeCun’s work in [24], where it is
suggested to use a properly normalized hyperbolic tangent activations and to draw the initial

weights from a uniform distributionU
[
−

√
3√
M

,
√
3√
M

]
so that the (linear) activations and (non

linear) outputs of a neuron are kept in the [−1, 1] active range of the (normalized) hyperbolic
tangent. Following on this, it is shown in [13] that, provided the initial weights Wi verify

MiVar(Wi ) = 1; Mi+1Var(Wi ) = 1 (1)

whereMi andMi+1 are the fan-in and fan-out of the units in the i-th layer, one can achieve that

Var(zi ) � Var(z j ) across the successive z j layers and also that Var
(

∂ J
∂zi

)
� Var

(
∂ J
∂zk

)
for

the preceding zk layers, where J denotes the MLP cost function. In particular, the variances 
of backpropagated gradients remain stable and vanishing gradients will no longer appear.
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Obviously, a reasonable trade-off between both terms in (1) is to take Var(Wi ) = 2
Mi+Mi+1

,
i.e., to initialize the Wi using an uniform distribution

U

[
−

√
6√

Mi + Mi+1
,

√
6√

Mi + Mi+1

]
, (2)

which coincides with the above mentioned initialization proposed in [24] when Mi = Mi+1.
Ultimately all this is related to the Batch Normalization proposals in [18] and Propagation
Normalization in [2] to correct covariance shift.

Here we will use Rectified Linear Unit (ReLU) activations, discussed next, instead of the
hyperbolic tangent ones but, nevertheless, will also apply the Glorot–Bengio initialization
using the suggestion in [16] to dilate the Glorot–Bengio uniform intervals by a factor of 1.5.
In fact, we have observed that in accordance with the analysis in [16], this usually yields
better results.

2.2 Activation Function

Wehaveused linear units in the output layer andReLUunits in the hidden layers. This decision
ismotivated by the fact thatReLUunits don’t face vanishing gradient problem in the sameway
as units with different activation functions like sigmoid or tanh do. The ReLU activation is
defined as r(x) = max(0, x). Briefly speaking, it is a piecewise linear functionwhich switches
to zero negative inputs and preserve the positive ones. The ReLU activation brings several
advantages to our models: accelerated convergence of gradient descent methods, a notable
help to avoid the vanishing gradient problem and induced sparsity in the representations
of the successive layers. On the other hand, ReLUs share some similarities with functions
relating neuronal input currents and firing rates that appear in the leaky integrate and fire
models used in biological neuron models [14].

2.3 Regularization

Adding regularization to Deep Neural Networks is often mandatory due to the extremely
large number of weights. The standard regularization technique, weight decay, consists on
adding the squared norm of the weights to the objective function. When performed only
in the last layer and with linear outputs, this is equivalent to the ridge regression fit of the
deep features generated by the hidden layers of the network. In this work we will use more
modern techniques such as dropout [29], described next. Let ali be the i-th activation of the
l-layer and zli the corresponding output, the standard feedforward processing would yield
zli = f (ali ) = f (wl

i z
l−1 + bli ), where f is the activation function. However, with dropout,

a 0–1 vector rl is first generated applying a Bernoulli distribution componentwise. The
feedforward process then becomes

zli = f (ali ) = f
(
wl
i (z

l−1 � rl) + bli

)
, (3)

where� denotes the componentwise product. Each element in rl has a probability p of being
1, so dropout can be seen as sub-sampling a larger network at each layer. The output errors
are backpropagated as in standard MLPs for gradient computations and the final optimal
weightsw∗ are downscaled asw∗

f = pw∗ to yield the final weights used for testing. Dropout
clearly induces a regularization of the network weights. Besides, it is reminiscent to the well
known bagging technique for ensembles that repeatedly subsamples data to build specific
models and then takes the average. However, in dropout all the “models” (i.e., the particular
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feedforward Bernoulli realizations) share weights and they are “trained” in a single step.
Although we will not use it, in [29] it is also suggested that network performance improves
when dropout is combined with a bound on the L2 norm of the weights, i.e., when they
are constrained as ‖w‖2 ≤ c, with c a second tunable parameter on top of the Bernoulli
probability p.

2.4 Convolutional Layers

While traditional deep MLP architectures usually benefit from the use of a high number of
units in the hidden layers, this leads to a high number of weights, M × M ′ if an M unit layer
is connected to an M ′ unit one, a number that can become rather large if, for instance, inputs
are images or video. Also, feeding such data to a traditional MLP poses the problem of the
complete loss of information on the spatial relationship between variables.

Convolutional and pooling layers arise as a way to avoid both problems by limiting the
fan-in of a given hidden unit to the output of just a subset of units in the previous layer. The
definition of such a restricted fan-in is, in general, problem-dependent, but when data have
an intrinsic spatial structure, a natural approach to limit the connections is to work over small
patches of variables that are local in space.

Let’s assume inputs to be arranged in one channel with a two-dimensional M1 × M2

structure, and consider K × K patches over this data. Patches can be either disjoint or
partially overlapping, but for simplicity we will consider a S = 1 stride, the displacement
applied when we move from one patch to another, in both dimensions. Then there are such
(M1 − K + 1) × (M2 − K + 1) (overlapping) patches x j .

A convolutional layer transform consists in deriving a feature patch p j = f (w ∗ x j + b),
where f is the activation function and ∗ denotes the convolution operator between the K ×K
filterw with bias b and the patch x j . This transforms an M1×M2 input X into an (M1−K +
1) × (M2 − K + 1) output X ′. It is usual to learn a number L of filter pairs (wl , bl), which
conceptually correspond to the hidden units in a classical densely connected layer, since its
number is a free hyper-parameter that needs similar tuning. Thus, the number of weights in a
convolutional layer is L×K 2, while the output dimension is L×(M1−K+1)×(M2−K+1),
which for L > K might exceed the expressive power of a densely connected layer with a
fraction of its weights, and still preserve the spatial information of the data.

A second transform, known as pooling (or subsampling), is usually applied in order to
gain translation invariance and reduce overfitting. In this case, an operation such as averaging
or computing the max is applied on P × P patches of X ′ to derive the final output XC , which
has a L × (M1 − K − P + 2)× (M2 − K − P + 2) dimension. Note that since the operation
applied is fixed, no weights need to be learnt for this layer.

This combined convolution-pooling process allows processing the input using a moderate
number of weights while preventing overfitting and the loss of useful spatial information.
Notice that, to be effective, convolutional and pooling layers must act on inputs that have a
spatial structure and are naturally distributed in feature channels. This is the case for images
or video and their decomposition in RGB channels, but it also happens here, given the spatial
structure of weather prediction and that we can see the different meteorological features
(pressure, temperature, wind components, etc.) as corresponding to different input channels.

2.5 New Minimization Approaches

Deep Networks have also resulted in several new minimizing approaches being proposed
and applied, several of them borrowed from recent advances in convex optimization. Some,
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such as the use of Nesterov’s Accelerated Gradient [30], improve on the classical momentum
enhancement of stochastic gradient descent (SGD). Other procedures essentially aim to get
rid of the learning rates used in SGD and that are often difficult to adjust in order to achieve
effective training. Most of these techniques can be traced back to work by LeCun et al. [24]
and seek to replace standard learning rates by adaptive ones, based ultimately on Newton’s
method for second order optimization.

In order to avoid costlyHessian computations, thesemethods apply several simplifications,
the first one being the consideration of just theHessian diagonal of the network’s cost function
e or its Gauss–Newton approximation, working with rates of the form

ηi j = η

∂2e
∂w2

i j
+ ε

� η(
∂e

∂wi j

)2 + ε

(4)

where ε and η can be kept fixed, and the term
(

∂e
∂wi j

)2
adapts the overall rate to the geometry

of the error function, being large in low curvature dimensions (i.e., when ∂e
∂wi j

is small) and

small in high curvature dimensions (i.e., when ∂e
∂wi j

is large). Variants of this basic ideas have
been derived from convex optimization and play an important role in DNN training, such as
Adagrad [11], which considers weight updates of the form

wt+1
i j = wt

i j − η
∑t

s=1(g
s
i j )

2
gti j (5)

where gi j = ∂e
∂wi j

and the denominator approximates the average E[gi j ]. Zeiler’s Adadelta
[31], which will be the optimizer used in our experiments, improves on this by working with
updates

wt+1
i j = wt

i j − η

1
t

∑t
1(Δws

i j )
2 + ε

1
t

∑t
1(g

s
i j )

2 + ε
gti j = wt

i j − η
RMSt (Δws

i j )

RMSt (gsi j )
gti j (6)

that add a momentum-like term to the numerator and where avoiding storing momen-
tum/gradient info is avoided updating RMSt (gsi j )

2 and RMSt (Δws
i j )

2 as

RMSt (g
s
i j )

2 = (1 − ρ)
[
RMSt−1(g

s
i j )

]2 + ρ(gti j )
2; (7)

RMSt (Δws
i j )

2 = (1 − ρ)
[
RMSt−1(Δws

i j )
]2 + ρ(Δwt

i j )
2 (8)

for an appropriate ρ. As mentioned in [31], ε and ρ can be used with fixed values (10−6 and
0.95, respectively, are recommended in [31]) while η is more problem dependent.

3 Wind Energy Experiments

In this section we will apply DNNs to the problem of predicting wind energy production,
first on the Sotavento wind farm and then over peninsular Spain
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3.1 Wind Energy Data

Wewill work with the following eight NWP variable forecasts given by the European Centre
for Medium-Range Weather Forecasts (ECMWF):

– P , the pressure at surface level.
– T , the temperature at 2m.
– Vx , the x wind component at surface level.
– Vy , the y wind component at surface level.
– V , the wind norm at surface level.
– V 100

x , the x wind component at 100m.
– V 100

y , the y wind component at 100m.
– V 100, the wind norm at 100m.

In the Sotavento case they are taken on a 15 × 9 rectangular grid with a 0.25◦ resolution
centered on the Sotavento site (43.34◦N, 7.86◦W); input dimension in this case is thus
15× 9× 8 = 1080. For peninsular Spain we consider a 57× 35 rectangular grid that covers
entirely the Iberian peninsula; input dimension is now a very large 57 × 35 × 8 = 15,960.
Wind energy data for Sotavento are publicly available; those for peninsular Spain were kindly
provided by Red Eléctrica de España (REE). In both cases we normalize them to the [0, 1]
interval by dividing actual wind energy production by the maximum possible value in each
case. We will work with data for the years 2011, 2012 and 2013, that we will use as training,
validation and test subsets respectively. Since NWP forecasts are given every 3h, each subset
will approximately have (24/3) ∗ 365 = 2920 patterns.

3.2 Building Deep Models

Akey issue to achieve a good performance inDNN training is the correct choice of the several
architecture and training hyper-parameters to be considered. However, the extremely large
range of possibilities forces the practitioner to begin with a concrete approximation to the
network structure before embarking on the very costly process of optimal hyper-parameter
selection. In previouswork ([10])we considered for thewind energy problem several different
deep network architectures, among which a convolutional architecture of the LeNet type [23]
proved there to be the best choice. We will use an adaptation of the concrete architecture
used in [10], which has

– Two initial convolutional layers, followed by
– Two fully connected layers and, finally,
– A final linear readout layer.

We will work here with non-symmetric ReLUs as hidden layer activations and apply the
Glorot–Bengio weight initialization heuristic proposed in [13], with a 0-symmetric uniform
weight distribution and an interval width (or, equivalently, uniform distribution variance)
adjusted to the layers’ fan-in. As in [10] we will refer to it as the LeNet-5 architecture.

We will consider each weather variable to define an input feature map which in the wind
energy case implies that there 8 such input channels. This plus our overall DNN architecture
leaves us with the following hyper-parameter ranges to be explored:

– Number of convolutional output channels: integers from 8 to 200.
– Number of fully connected hidden units: integers from 50 to 500, one per layer.
– Weight decay multipliers in fully connected layers: float from 0.0 to 0.5.
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– Dropout fractions in hidden fully connected layers but not for the output weights: float
from 0.1 to 0.9.

– Minibatch training size: integer from 50 to 500.
– Starting learning rate for the training algorithm: float from 1.0 to 0.00001 in a logarithmic

scale.

Convolutional networks also require that strides and filter and pooling sizes are set. This
would add further complexity to the hyper-parameter search and to avoid it here we set
the stride to 1 and the filter size to 2 × 4 in the first convolutional layer and 3 × 5 for the
second; we will not apply any kind of pooling. In any case, it is clear that the number of
hyper-parameters is too large for an exhaustive grid search. To alleviate this we have used
the Tree-structured Parzen Estimator approach available through the Hyperopt ([7]) library,
with a maximum number of evaluations set to 200 that iteratively defines a random path in
hyper-parameter space that progressively focuses on better values. Of the several training
algorithms at our disposal (SGD, SGD–Nesterov, Adagrad and Adadelta), best results were
obtained with Adadelta. We recall that it automatically adjusts its learning rate from an initial
choice.

We selected the best hyper-parameter set by a simplified, time-structured validation pro-
cedure, using as our error measure over a concrete hyper-parameter set P the mean absolute
error (MAE), i.e.,

MAE(P) = 1

N

N

n=1

|D(xn; P) − yn | , (9)

where D(x; P) denotes the value on pattern x of the current deep network D built using
the hyper-parameter set P . We use the MAE instead of the more often used squared error
as it is the measure of choice in renewable energy, for it represents energy deviation and,
thus, the energy to be shed or bought from other generation sources to compensate errors in
energy estimates. For the above mentioned time structured validation, the year 2011 is used
for training, 2012 for validation and 2013 for test; this is a quite natural choice when data
have a strong temporal structure.

In Figure 1 we depict the evolution of the train and validation errors for the optimal Keras-
bssed deep network we will describe in Sect. 3.4. While the training MAE present spikes
due to the use of mini-batches, it decreases over the entire training. However, this decrease
in training MAE does not result in the model overfitting; in fact validation MAE also present
spikes but its value stabilizes even while training MAE keeps decreasing. Most likely this is
due to the use of dropout. Because of this, and to shorten training times, our strategy is to set
a maximum number of 1000 training epochs (i.e., passes through the entire training set), keep
track of the best validation MAE after each iteration and to stop training if no improvement
in validation MAE is achieved in the last 100 epochs.

3.3 Ensembles

As it is well known, ensemble learning is an important area of Machine Learning in which
several machines or experts are combined to create a more accurate one. The concepts that
support, in principle, the success of ensemble learning can be resumed in two simple ideas:
the easiness of designing individual experts with good enough outputs (i.e., low bias), and
the independent and random differences between the experts’ output (that lowers variance).
If these two requirements are satisfied, it is clear that with an appropriate aggregation of the
experts’ outcomes, the final output can have a higher quality [26].
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Fig. 1 Training and validation evolution of the optimal LeNet-5 network for Sotavento

Table 1 Mean absolute errors
for the Sotavento and REE
problems as reported in [10]

MAE Sotavento MAE REE

Test Validation Train Test Validation Train

SVR 7.80 6.73 5.62 3.13 3.30 1.01

LeNet-5 7.63 6.25 5.82 3.13 3.01 2.48

There aremany techniques to achieve diversity of learners in regression ensembles, such as
bagging [8] inwhich each learner is trained on a subset of the original training dataset sampled
with replacement, and random initialization in which all experts see all the training dataset
but are initialized using different random seeds. These ideas aim to incorporate randomness
during training, both on the training samples and, also and if possible, on the training pro-
cedure. Notice that Deep Networks exploit both ideas naturally: minibatch training ensures
randomness on the training sample at each epoch, and random weight initialization, mini-
batch training again and dropout enforce randomness during model building. As we shall see
in our experiments, ensembles of these networks are likely to improve on the performance
of single models.

3.4 Wind Energy Results

As a starting point we recall the results in [10] in Table 1. While Pylearn–Theano was
used in [10], here we will use the Theano/TensorFlow Keras wrapper for DNN training.
Because of this we have re-trained DNNs for both Sotaveno and REE. However, for the
REE problem, Keras’ based DNNs have not produced improvements on the results in [10]
as given in Table 1; because of this we will report the new Keras-based results only for
for Sotavento. The previously described hyper-parameter search with Hyperopt yielded the
following optimal hyper-parameters:

– 64 convolutional feature maps (channels) in the first layer and 128 in the second.
– Two fully connected 200 unit layers.
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Table 2 SVR, Keras–LeNet and
ensemble Mean Absolute Error
for the Sotavento problem

MAE Sotavento

Test Validation Train

SVR 7.80 6.73 5.62

Keras–LeNet 7.60 6.03 5.10

Ensemble 7.53 5.96 5.02

Fig. 2 Histogram of test errors over the individual 200 ensemble networks for the Sotavento problem

– A dropout coefficient of 0.2.
– A mini-batch size of 70.
– A learning rate of 0.3.

We point out that the optimalweight decaywas extremely small in all cases (probably because
of the regularizing effect of dropout), so at the end no weight decay was used. Moreover,
recall that we preset strides to 1, convolutional filter sizes to 2 × 4 in the first layer and
3× 5 in the second, and that no pooling will be applied. We will refer to this architecture as
Keras–LeNet.

Table 2 gives training, validation and test errors for the optimal models with our new
approach; we also include SVR for comparison, Notice that the new Keras–LeNet model
slightly improves the results in [10] and that the DNN ensemble yields a noticeably better
error rate. The ensembleMAEvalues have been obtained training 200Keras–LeNet networks
and averaging the predictions of those that yielded the smallest 25% validation errors

Figure 2 shows the histogram of the test error resulting from the 200 trained Keras–LeNet
models; the red line represents the SVR test error. Notice that 94% of Keras–LeNet errors are
belowSVRerror and that the best network (which, of course, cannot be identified beforehand)
would have yielded a MAE of 7.43, rather close to the ensemble MAE. All this suggests that
DNN ensembles are a robust way to improve single DNN performance.
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4 Solar Radiation Experiments

In this section we will apply DNNs to the problem of predicting daily aggregated solar
radiation for Oklahoma’s Mesonet stations. We will also consider here each weather variable
to define an input feature map; there will now be 15 input maps.

4.1 Solar Radiation Data

The NWP variables provided in the Kaggle competition were the following:

– apcps f c, 3-h accumulated precipitation at the surface.
– dlwr fs f c, downward long-wave radiative flux average at the surface.
– dswr fs f c, downward short-wave radiative flux average at the surface.
– presmsl, air pressure at mean sea level.
– pwateatm, precipitable water over the entire depth of the atmosphere.
– sp f h2m, specific humidity at 2m above ground.
– tcdceatm, total cloud cover over the entire depth of the atmosphere.
– tcolceatm, total column-integrated condensate over the entire atmosphere.
– tmax2m, maximum temperature over the past 3h at 2m above the ground.
– tmin2m, mininmum temperature over the past 3h at 2m above the ground.
– tmp2m, current temperature at 2m above the ground.
– tmps f c, temperature of the surface.
– ulwr fs f c, upward long-wave radiation at the surface.
– ulwr ft atm, upward long-wave radiation at the top of the atmosphere.
– uswr fs f c, upward short-wave radiation at the surface.

Here the grid had 9×16 points with 0.5◦ resolution. Recall that the targets were daily aggre-
gated measurements of incoming solar radiation at the 98 stations of Oklahoma’s Mesonet
network. There were 5 forecasts available per day, from 1994 to 2007, corresponding essen-
tially to sunlight hours at 3-h interval. NWP forecasts were available also for 2008 and 2009
but not the radiation measures; these years were thus provided by Kaggle as the test datasets.
While NWP forecasts were given for a 11 member ensemble, we will only work with the
first ensemble. Thus, the input dimension of the problem is 9 × 16 × 15 × 5 = 10,800. In
our experiments we will use 1994 to 2005 as training dataset, 2006 as validation dataset, and
2007 as test dataset. The number of training patterns is thus essentially 365 × 12 = 4380.

4.2 Results for Solar Radiation

In the light of the results for the wind energy problem, we will also consider here only
Keras–LeNet networks. Applying a new hyperopt-based hyper-parameter search over the
same ranges used for wind energy, we have now obtained the following optimal set:

– A first convolutional layer with 150 output channels and a second one with 150 channels.
As before, strides are set to 1, we use 2 × 5 filters in the first layer, 3 × 5 filters in the
second and no pooling.

– Two fully connected 400 unit layers.
– Dropout coefficient of 0.2.
– Mini-batch size of 150.
– Starting learning rate of 0.3.

Again, we didn’t use weight decay here and used Adadelta as the training algorithm. The solar 
energy problem is more demanding in terms of computational resources than the Sotavento
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Fig. 3 Training and validation evolution of the optimal Keras–LeNet network for Solar

Table 3 SVR, Keras–LeNet and
ensemble Mean Absolute Error
for the Solar problem

MAE Solar

Test Validation Train

SVR 2,225,252.24 1,917,895.20 1,417,140.20

Keras–LeNet 2,163,321.97 1,837,780.91 1,772,189.87

Ensemble 2,090,959.30 1,772,383.39 1,739,860.07

problem, so we have to decrease the number of networks per ensemble. We have decided
to train 40 Keras–LeNet nets with the above optimal parameters and to select again those
yielding the top 25%validation errors. For comparison purposes, we also consider a Gaussian
SVR model whose C, γ and ε hyper-parameters have been established by a grid search
over data from the first Mesonet station; their optimal values were C=8,388,608, γ =
6.1035e − 05 and ε = 4096.

We point out that here again validation MAE values stabilize during training even if
training errors keep decreasing. This is illustrated in Fig. 3, which shows the evolution of the
train and validation errors for the optimal Keras–LeNet network; again, the regularizations
used helps to avoid overfitting.

Table 3 displays the training, validation and test errors for the SVR, a Keras–LeNet
single network and the Keras–LeNet ensemble. These have been computed by training one
SVR model for each Mesonet station in the first case, while the DNN-based models have
been trained over the data of all the stations at the same time in a multi-target regression
configuration,workingwith a 98-dimensional target vectormade upwith the daily aggregated
radiation for each station. Here again, we achieve a lower error using an ensemble. Our
procedure makes clear that these models have not been built in order to compete with the
best ones in the Kaggle contest. Among other things, we do not consider the entire set of
NWP predictions available nor seek to build optimal DNN models for each one of the 98
Mesonet stations. At best, our models would be the core of a first submission to be improved
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Fig. 4 Histogram of test errors over the individual 40 ensemble networks for the solar radiation problem

on subsequent ones (the 10 top teams made an average of 85 submissions each). Nevertheless, 
it is interesting to place our results in the competition’s context and our single deep net model 
would have been placed in the 42-th position of the Private Leaderboard, with a MAE of 
2,371,143.10. The ensemble brings a slight improvement, with a MAE of 2,365,637.10 and 
would occupy the 41-th position. The SVR model would be ranked in the 110-th position, 
with a MAE of 2,561,382.58.

We finally point out that ensemble training also seems to be quite robust here. Figure 4 
shows the histogram of the test errors derived from the 40 Keras–LeNet models trained 
independently with the same hyper-parameter set. Again, the red line represents the SVR test 
error, which is even more in the right tail of the ensemble’s MAE distribution that was the 
case for wind energy.

5 Conclusions

Deep networks are undeniably very powerful but also very costly to set up and train. However, 
this considerable training effort usually pays off as deep nets often produce better results than 
other classical models. As we have shown, this has been the case for the Sotavento wind energy 
prediction and the Kaggle data set for solar radiation from Oklahoma’s Mesonet network; on 
the other hand, they essentially tied with SVRs for the wind energy prediction over peninsular 
Spain. Observe that in all cases the use of grid-based weather forecasts as inputs gives to 
both problems a bi-dimensional pattern structure; moreover, each individual variable can be 
naturally seen as an input channel to be processed by a convolutional layer.

As in many problems, a natural option to reduce variance is to build an ensemble that com-
bines several deep models. We have pointed out how Deep Networks introduce and exploit 
independent randomness in a natural way by using random minibatch training, weight ini-
tialization and dropout regularization and our experiments show that DNN ensemble models 
can be quite robust and significantly improve the accuracy of a single network. Therefore,
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deep networks are clear candidates to noticeably benefit from ensemble methods and this is
part of our current research. Other research venue is the exploitation of some of the many
new proposals for network initialization and architectures as well as model training and
regularization that appear almost constantly from the ongoing great research effort in Deep
Networks.

Finally, a weak spot of DNNs is the high cost of their training and, hence, model selection.
The way out of this is to exploit the constant advances to, first, speed up single network
training through the use of GPUs and, second, to shorten ensemble model building through
parallelization. We are also studying some of the new proposals on these directions which
are appearing almost continually, in particular the recent extensions of Google’s TensorFlow
library.
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