

 Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

Díaz-Vico, D., Fernández, A., Dorronsoro, J.R. (2021). Companion Losses for
Deep Neural Networks. In: Sanjurjo González, H., Pastor López, I., García Bringas,
P., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS
2021. Lecture Notes in Computer Science 12886 (2021): 538-549

Copyright: © 2021 Springer Nature

This version of the article has been accepted for publication, after peer review
(when applicable) and is subject to Springer Nature’s AM terms of use, but is not
the Version of Record and does not reflect post-acceptance improvements, or any
corrections. The Version of Record is available online at:

DOI: https://doi.org/10.1007/978-3-030-86271-8_45

https://repositorio.uam.es/
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/978-3-030-86271-8_45

Companion Losses for Deep Neural
Networks

David Dı́az-Vico2(B), Angela Fernández1, and José R. Dorronsoro1,2

1 Department of Computer Engineering, Universidad Autónoma de Madrid,
Madrid, Spain

2 Inst. Ing. Conocimiento, Universidad Autónoma de Madrid,
Madrid, Spain

david.diaz@iic.uam.es

Abstract. Modern Deep Neuronal Network backends allow a great flex-
ibility to define network architectures. This allows for multiple outputs
with their specific losses which can make them more suitable for partic-
ular goals. In this work we shall explore this possibility for classification
networks which will combine the categorical cross-entropy loss, typical of
softmax probabilistic outputs, the categorical hinge loss, which extends
the hinge loss standard on SVMs, and a novel Fisher loss which seeks to
concentrate class members near their centroids while keeping these apart.

1 Introduction

After the seminal work of G. Hinton [8] and J. Bengio [11] and starting
about 2010, Deep Neural Networks (DNNs) have exploded in terms of scientific
advances, technological improvements and great successes on many applications.
There are many reasons for this, but paramount among them is the great flex-
ibility that modern DNN environments such as TensorFlow [1] or PyTorch [9]
allow to define, train and exploit DNN models. Key for this are the modern
tools for automatic differentiation that make possible the definition of very gen-
eral network architectures and losses. For instance, this has made possible to
incorporate under a DNN framework cost functions such as the hinge and ε-
insensitive losses, with models and results that are very competitive with those
of the standard Gaussian SVMs [5].

Once that more general losses are available, a natural next step is to try to
combine some of them in principle independent losses within the same network,
so that they can take advantage of their different goals to jointly improve on their
individual achieved results. For instance, consider for two-class problems the com-
peting cross-entropy loss, customarily used for DNN classification, with the SVM

The authors acknowledge financial support from the European Regional Development
Fund and the Spanish State Research Agency of the Ministry of Economy, Industry, and
Competitiveness under the project PID2019-106827GB-I00. They also thank the UAM–
ADIC Chair for Data Science and Machine Learning and gratefully acknowledge the use
of the facilities of Centro de Computación Cient́ıfica (CCC) at UAM.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86271-8_45&domain=pdf

D. Dı́az-Vico et al.

hinge loss. The goal of the former is to assume a certain posterior probability and
estimate a model that maximizes its sample based likelihood, while that of the
latter is essentially to find a separating hyperplane with a margin as large as pos-
sible given the sample. A similar situation arises in multiclass problems, where the
categorical cross-entropy with softmax outputs is used for DNN classifiers while
the categorical hinge loss [3] is used for multiclass SVM-like classifiers. In these
problems one or several of the losses act as the main one, while the others act
as companions in the sense that they accompany the main loss towards a better
model. This idea of combining losses has been applied in other areas of knowledge,
specially in computer vision [10,14], although following a different rationale.

Although we will not deal with them here, competing losses for regression
problems would be the squared error of regression DNNs and the ε-insensitive
loss used in support vector regression. Again, the underlying problem is basically
the same, but the latter establishes an ε-wide tube around the fitted model and
only penalizes errors outside the tube. This results on models more robust with
respect to outliers but with the drawback of ignoring small errors, which may
be important in some settings and that the squared error does not ignore. Given
these different but not necessarily competing goals, it is in principle conceivable
that both losses could work together towards building a model that improves on
those built separately with each loss.

The goal of this work is precisely to explore these possibilities for classification
problems. More precisely, we will compare the combination of the cross-entropy
and hinge losses for two-class problems, and that of the categorical cross-entropy
and hinge losses in multiclass ones. To these we will add a squared loss-based
cost function which enforces for its inputs on each class to be concentrated near
the class centroids while trying to keep these centroids apart. This approach
has been proved [13] to yield linear models whose outputs can theoretically be
seen to be equivalent with those provided by the classical Fisher Discriminant
Analysis and that has been extended to a DNN setting in [4]. While trying to
yield a classifier directly, such a loss can produce a pattern representation on the
last hidden layer of a DNN which can make easier the job of a classifier acting
on these representations and, hence, result in a better model.

We will work with a substantial number of classification problems and our
results point out that this approach can indeed give such results. In fact, and as
we will experimentally show, combining the Fisher loss with the cross-entropy
or hinge ones improves on the models obtained when only single losses are used.
On the other hand, the cross-entropy plus hinge combination ties at best with a
single cross-entropy loss. This has to be further studied but a possible reason may
be that, at least in our experiments, cross-entropy DNNs yield better results that
hinge-base ones (we address reasons for this later in this paper). In summary,
our contributions here are:

– The proposal of DNNs with combined losses for two- and multi-classification,
which we implement as Keras [2] functional models.

– A substantial experimental work showing positive results that deserve further
study.

Companion Losses for Deep Neural Networks

The rest of the paper is organized as follows. We review the losses used in
Sect. 2, discuss how to combine them and give some implementation details.
Section 3 contains details on the datasets used, the experimental methodology
and results, and a discussion and a final section offers some conclusions as well
as pointers to further work. We point out that, throughout the paper, by deep
networks we mean artificial neural networks that use modern techniques such as
automatic differentiation, Glorot-Bengio initializations [6], ReLU activations or
Adam optimizers [7], rather than they having actually deep (i.e. many layered)
architectures; in fact, in our experiments we will apply all these techniques but
on a single layer network with 100 units.

2 Classification Losses

Throughout this section we will work with DNN architectures that yield models
acting on a pattern x with outputs F (x,W), where W denotes the set of weight
matrices and bias vectors associated with the network’s architecture. We will
denote targets as y, which can be either {−1, 1} for two-class problems or one-
hot encoded vectors for multiclass ones. We denote the network outputs at the
last hidden layer as z = Φ(x, ˜W), with ˜W the weight and bias set of all layers
up to the last one. Such a z is then transformed as Wz + B, where W,B are
either the transpose of an nH dimensional vector w, with nH the number of
hidden units in the last hidden layer, and a scalar b, or a K × nH matrix and
a K dimensional vector in a K-class problem. These Wz + B will be the final
network outputs in the case of the deep SVM (or deep Fisher networks, as we
describe them below); for the more standard DNN classifiers, the network output
is obtained applying to them either a sigmoid or a softmax function.

In more detail, and starting with two-class problems, the usual DNN loss is
the binary cross-entropy, given by

�bc(W; S) = �(w, b, ˜W) = −
∑

p

yp (w · zp + b) +
∑

p

log(1 + ew·zp+b) (1)

where S denotes an i.i.d. sample S = {(xp, yp)} with N patterns, z represent
the last hidden layer outputs, w represent the weights which connects the last
hidden layer with the network’s output and b is the vector bias of the output. We
recall that this expression is just the sample’s minus log-likelihood associated to
the assumption

P (y|x) = P (y|x;w, b, ˜W) =
1

1 + e−y(w·z+b)
(2)

for the posterior probability of the y class, and we assume a sigmoid network out-
put. For general multiclass problems, the network output function is the softmax

Fj(x;W) =
ewj ·z+bj

∑K−1
k=0 ewk·z+bk

. (3)

Obviously then
∑

j Fj(x;W) = 1 and we assume P (j|x) � Fj(x;W). For two-
class problems this reduces to the previous output if we take w = w0 − w1. For

D. Dı́az-Vico et al.

the loss to be used here, we assume one-hot encoded targets, i.e., the target of the
k-th class is ek = (0, . . . , 1

︸︷︷︸

k

, . . . , 0); then, the probability of getting patterns

xp in class kp (i.e., yp
kp

= 1) within an i.i.d. sample S = (X,Y) is

P (Y |X;W) =
N
∏

p=1

P (kp|xp;W) =
N
∏

p=1

K−1
∏

m=0

P (m|xp;W)y
p
m �

N
∏

p=1

K−1
∏

m=0

Fc(x;W)y
p
m ,

(4)
and we estimate the DNN’s weights W by minimizing the minus log of the
approximate sample’s likelihood

˜P (Y |X;W) =
N
∏

p=1

K−1
∏

m=0

Fm(xp; W)y
p
m . (5)

That is, we will minimize the categorical cross-entropy loss

�cce(W) = − log ˜P (Y |X;W) = −
N

∑

p=1

K−1
∑

m=0

yp
m log Fm(xp; W). (6)

Once an optimal weight set W∗ has been obtained, the decision function on a
new x is given by arg maxm Fm(x;W∗), i.e. the class with the maximum posterior
probability.

Turning our attention to two-class SVMs, the local loss is now the hinge
loss h(x, y) = max{0, 1 − yF (x,W)}; here the network has linear outputs, i.e.,
F (x;W) = F (x;w, b, ˜W) = w · Φ(x, ˜W) + b. The global loss is now

�h(W;S) =
∑

p

max{0, 1 − ypF (xp,W)}. (7)

There are several options to extend SVMs for multiclass problems. The usual app-
roach in a kernel setting is to use either a one-vs-one (ovo) or a one-vs-rest (ovr)
approach so that just binary kernel classifiers have to be built. Unfortunately, this
cannot be directly translated to a DNN setting but there are two other ways to
define multiclass local losses. The first one is due to Weston and Watkins [12] which
for a pattern x in class kx (i.e., ykx

= 1) propose the local loss

�(x, y) = max

⎧

⎨

⎩

0,
∑

m�=kx

(1 + Fm(x) − Fkx
(x))

⎫

⎬

⎭

(8)

where we denote as F0(x), . . . FK−1(x) the network’s lineal outputs. The alter-
native to this is the local loss proposed by Crammer and Singer [3], namely

�(x, y) = max
{

0,max
m�=y

(1 + Fm(x) − Fkx
(x))

}

. (9)

Notice that both coincide for two-class problems and, moreover, if in this case
we require w0 = w1 = 1

2w and b0 = b1 = 1
2b, they coincide with the local hinge

loss. We will use the second one, that results in the categorical hinge global loss

Companion Losses for Deep Neural Networks

�ch(W) =
N

∑

p=1

max
{

0, 1 − Fkxp (xp) + max
m�=kxp

Fm(x)
}

; (10)

here Fm(x) denotes the m-th component of the network’s K dimensional lin-
ear output, i.e., Fm(x) = wm · Φ(x; ˜W) + bm. Now, once an optimal weight
set W∗ has been obtained, the decision function on a new x is given again by
arg maxm Fm(x;W∗), although now no posterior probabilities are involved.

We will finally consider what we call the Fisher loss. The goal in standard
Fisher Discriminant Analysis is to linearly project patterns so that they concen-
trate near the projected class means while these are kept apart. To achieve this,
one seeks to maximize the trace criterion

g(A) = trace(s−1
T sB) = trace

(

(AtSTA)−1(AtSBA)
)

, (11)

where A is the projection matrix, SB and ST denote the between-class and total
covariance matrices, respectively, of the sample patterns and sB and sT are their
counterparts for the projections z = Ax. Solving ∇Ag = 0 leads to the system
S−1
T SBA = AΛ, with Λ the non-zero eigenvalues of S−1

T SB . For such an A we have

g(A) = trace(s−1
T sW) = trace Λ = λ1 + . . . + λq, (12)

where sW represents the within-class matrix. This expression is maximized by
sorting the eigenvalues {λ1, λ2, . . . } in Λ in descending order and selecting the
K − 1 largest ones and some conveniently normalized associated eigenvectors.
Since the minimizer of (11) is not uniquely defined, it is usually normalized as
AtSTA = IK−1, being IN the identity matrix of size N . It turns out that an equiv-
alent solution can be obtained by solving the least squares problem min 1

2‖Y f −
XW − 1NB‖2, where W is a d × K matrix, B a 1 × K vector, 1N is the all ones
vector and for a pattern xp in the p-th row of the data matrix X which is in class

m, we have Y f
pm = N−Nm

N
√
Nm

when xp and as Y f
pj = −

√
Nj

N for j �= m, with Nj

the number of patterns in class j. Then, it can be shown that the optimal W ∗ is
equivalent, up to a rotation, to a solution ˜V of (11) subject to the normalization
˜V tST

˜V = Λ; see [4,13] for more details. As a consequence, any classifier defined
in terms of distances to class means will give the same results with the Fisher’s
projections using ˜V than with the least squares ones using W ∗.

This can be extended to a DNN setting by solving

min
W,B,˜W

1
2
‖Y f − F (X, W)‖2 =

1
2
‖Y f − Φ(X; ˜W)W − 1NB)‖2. (13)

As discussed in [4], this could be exploited to define a Fisher-like distance clas-
sifier on the network outputs F (x,W); however, those classifiers are in general
worse than those based on the categorical entropy or hinge losses. On the other
hand, such a loss is likely to enforce the last hidden layer projections z to be
concentrated around their class means while keeping these apart and, hence help
entropy or hinge based classifiers to perform better.

In this line, the above suggests that instead of using just one of the previous
losses, we can try to combine them, something that can be done by defining a

D. Dı́az-Vico et al.

Table 1. Sample sizes, number of features and number of classes.

Size Size test Features Classes

a4a 4781 27780 123 2

a8a 22696 9865 123 2

australian 690 – 14 2

breast-cancer 569 – 30 2

diabetes 768 – 8 2

digits 1797 – 64 10

dna 2000 – 180 3

german 1000 – 24 2

letter 10500 5000 16 26

pendigits 7494 3498 16 10

protein 14895 6621 357 3

satimage 4435 – 36 6

segment 2310 – 19 7

usps 7291 – 256 10

w7a 24692 25057 300 2

w8a 49749 14951 300 2

DNN with two or even three output sets upon which one of these losses acts. In
the most general setting, we may have outputs ŷce, ŷch and ŷf , one-hot encoded
targets y and the yf Fisher-like targets just defined for the loss (13), and we
define the combined loss

�(y, yf , ŷce, ŷch, ŷf) = �ce(y, ŷce) + λ�ch(y, ŷch) + μ�f (yf , ŷf), (14)

with {λ, μ} appropriately chosen hyperparameters. In our experiments next, we
will consider the (ce, fisher), (hinge, fisher), (ce, hinge) and (ce, hinge, fisher) loss
combinations; for simplicity we will just take λ = μ = 1.

Table 2. Test accuracies of the models considered.

ce ce-fisher hinge hinge-fisher ce-hinge ce-hinge-fisher max min

a4a 84.38 84.36 84.39 84.40 84.43 84.45 84.45 84.36

a8a 85.10 85.51 84.96 84.93 85.20 85.09 85.51 84.93

australian 86.52 85.65 85.22 85.07 85.36 85.07 86.52 85.07

breast-cancer 97.72 98.07 96.84 97.19 96.49 96.31 98.07 96.31

diabetes 77.60 77.60 76.82 76.95 77.08 76.95 77.60 76.82

digits 98.22 98.44 98.39 98.27 98.50 98.22 98.50 98.22

dna 95.70 95.85 94.65 94.85 95.55 95.60 95.85 94.65

german 77.90 77.50 75.30 76.40 74.00 74.80 77.90 74.00

letter 95.38 95.28 95.42 95.66 94.98 95.42 95.66 94.98

pendigits 99.52 99.45 99.47 99.52 99.49 99.44 99.52 99.44

protein 69.78 69.76 66.49 66.71 67.62 67.07 69.78 66.49

satimage 91.09 90.55 91.54 91.25 91.75 91.25 91.75 90.55

segment 97.66 97.79 97.01 97.36 97.88 97.79 97.88 97.01

usps 97.79 97.93 97.82 97.53 97.65 97.68 97.93 97.53

w7a 98.79 98.84 98.83 98.81 98.83 98.84 98.84 98.79

w8a 98.97 98.99 98.84 98.88 99.00 99.00 99.00 98.84

Companion Losses for Deep Neural Networks

3 Experimental Results

In this section we will describe the considered models, describe the datasets
we will use, present our experimental methodology and results, and finish the
section with a brief discussion.

3.1 Models Considered

We will consider six basic model configurations, involving different network out-
puts, losses and ways to make predictions, namely

– ce: the model uses softmax outputs and the categorical cross-entropy loss.
Class labels are predicted as the index of the output with the largest a pos-
teriori probability.

– hinge: the model uses linear outputs and the categorical hinge loss. Class labels
are predicted as the index of the largest output.

– ce_hinge: the model uses two different outputs, one with softmax activations
and the other with linear ones; the losses are the categorical cross-entropy and
the categorical hinge, respectively. To get predictions, the softmax function is
applied to the second output set, so that we can see the entire output vector
as made of estimates of posterior probabilities (although this is not true for
the second set, as no probability model is assumed for the hinge loss); class
labels are predicted as the index of the output with the largest value.

– ce_fisher: the model uses two different output sets, one with softmax activa-
tions and the other with linear ones. The categorical cross-entropy is min-
imized on the first and the Fisher loss introduced in Sect. 2 on the second.
Label predictions are computed on the first set, as the one with the largest a
posteriori probability.

– hinge_fisher: the model uses two linear outputs, the first one to minimize the
categorical hinge loss and the second one the Fisher loss. Class labels are
predicted as the index of the largest output of the first set.

– ce_hinge_fisher: the model uses now three different outputs, a first one with
softmax activations and the other two with linear outputs; the categorical
cross-entropy, categorical hinge and Fisher losses are minimized, respectively,
on each output set. Here the softmax function is also applied to the hinge
loss linear outputs and class labels are predicted as the index of the first two
outputs with the largest value.

3.2 Datasets

We will work with sixteen datasets, namely a4a, a8a, australian, breast_cancer, diabetes,
digits, dna, german, letter, pendigits, protein, satimage, segment, usps, w7a and w8a; eight of
them are multiclass and the rest binary. All are taken from the LIBSVM data
repository, except when pointed out otherwise. Table 1 shows their train and test
(when available) sample sizes, dimensions and the number of classes. We give
more details about them below.

D. Dı́az-Vico et al.

Table 3. Model rankings for each problem in ascending accuracies.

ce ce-fisher hinge hinge-fisher ce-hinge ce-hinge-fisher

a4a 5 6 4 3 2 1

a8a 3 1 5 6 2 4

australian 1 2 4 5 3 5

breast-cancer 2 1 4 3 5 6

diabetes 1 1 6 4 3 4

digits 5 2 3 4 1 5

dna 2 1 6 5 4 3

german 1 2 4 3 6 5

letter 4 5 2 1 6 2

pendigits 1 5 4 1 3 6

protein 1 2 6 5 3 4

satimage 5 6 2 3 1 3

segment 4 2 6 5 1 2

usps 3 1 2 6 5 4

w7a 6 1 3 5 3 2

w8a 4 3 6 5 1 1

ave 3 2.6 4.2 4 3.1 3.6

– a4a and a8a. Variations of the adult of predicting whether income exceeds
$50,000 per year based on census data.

– australian. The goal is to decide whether or not an application is credit-
worthy.

– breast cancer. The goal is here to predict whether a patient is to be diag-
nosed with cancer.

– diabetes. The objective here is to diagnose the presence of hepatitis on a
sample of Pima Indian women.

– digits. We want to classify pixel rasters as one of the digits from 0 to 9; the
subset is pre-loaded in the scikit-learn library.

– dna. The goal is to classify splice-junction gene sequences into three different
classes.

– german. This is another problem where patterns are to be classified as either
good or bad credits.

– letter. Pixel displays are to be identified as one of the 26 English capital
letters.

– pendigits. Images of handwritten digits between 0 and 9 are to be classified.
– satimage. The goal is to classify the central pixel in a satellite image; we

will work only with the 4,435 training subsample.
– segment. We want to classify satellite images into one of seven categories.
– usps. We want to classify image rasters as a digit between 0 and 9.
– w7a and w8a. Variants of a classification problem of web pages.

3.3 Experimental Methodology and Results

Recall that all model losses include a L2 regularization term, which requires the
selection of a hyperparameter α so we will proceed first to estimate the optimal

Companion Losses for Deep Neural Networks

Table 4. Model rankings for each problem in ascending accuracies after putting
together models with closer rankings.

ce ce-fisher ce-hinge ce-hinge-fisher hinge hinge-fisher

a4a 2.0 3.0 1.0 1.0 3.0 2.0

a8a 3.0 1.0 2.0 1.0 2.0 3.0

australian 1.0 2.0 3.0 2.0 1.0 2.0

breast-cancer 2.0 1.0 3.0 3.0 2.0 1.0

diabetes 1.0 1.0 3.0 1.0 3.0 1.0

digits 3.0 2.0 1.0 3.0 1.0 2.0

dna 2.0 1.0 3.0 1.0 3.0 2.0

german 1.0 2.0 3.0 3.0 2.0 1.0

letter 1.0 2.0 3.0 2.0 2.0 1.0

pendigits 1.0 3.0 2.0 3.0 2.0 1.0

protein 1.0 2.0 3.0 1.0 3.0 2.0

satimage 2.0 3.0 1.0 2.0 1.0 2.0

segment 3.0 2.0 1.0 1.0 3.0 2.0

usps 2.0 1.0 3.0 2.0 1.0 3.0

w7a 3.0 1.0 2.0 1.0 2.0 3.0

w8a 3.0 2.0 1.0 1.0 3.0 2.0

ave 1.9 1.8 2.2 1.8 2.1 1.9

Table 5. Accuracy spreads across all models as percentages of the difference between
the maximum and minimum accuracies over the minimum one.

a4a a8a austr breast diab digits dna german

Spread 0.11 0.69 1.7 1.82 1.02 0.28 1.27 5.27

letter pendig protein satimage segment usps w7a w8a

Spread 0.72 0.08 4.95 1.32 0.89 0.41 0.05 0.16

α and then evaluate model performance. Eight datasets considered have train-
test splits and we will find the optimal α by searching on a one-dimensional
logarithmically equally-spaced grid using 5-fold cross validation (CV) on the
training set. Then we will evaluate the performance of optimal α∗ model by
computing its accuracy on the test set. On the other datasets we will apply 5-
fold nested cross validation (CV), defining first a 5-fold outer split and applying
again 5-fold CV to estimate the optimal α∗

i over the i-th outer train split. Once
this α∗

i is obtained, the associated model is trained over the i-th outer train
fold and applied on the patterns remaining on the i-th test fold; these class
predictions ŷ are then compared with the true target labels y to compute now
the accuracy of the model under consideration.

The resulting accuracies are given in Table 2 while Table 3 shows for each
problem the model ranking by decreasing accuracies; when two or more give the
same accuracy, they receive the same rank. We remark that these rankings are
given only for illustration purposes and they do not imply statistically significant
differences. This table also shows the mean ranking of each model across all the
datasets considered. As it can be seen, the model with the best mean ranking
is ce-fisher, followed by ce and ce-hinge. The following one is ce-hinge-fisher while
hinge and hinge-fisher perform similarly but behind all others.

D. Dı́az-Vico et al.

These similar performances can also be seen in Table 4, where model rankings
are shown after we group together ce-fisher, ce and ce-hinge on a first model group,
and ce-hinge-fisher, hinge and hinge-fisher on another. Here ce-fisher still performs
best on the first group, while in the second ce-hinge-fisher and hinge-fisher perform
similarly and better than hinge. In any case, the test accuracies of all models
shown in Table 2 are quite similar. This can also be seen in Table 5, which shows
for each problem the difference between the highest accuracy (i.e., the best one)
and the smallest one (i.e., the worst) as a percentage of the latter. As it can be
seen, and except for the german and protein problems, in all other this percentage
is below 2%, and even below 1% in nine problems.

Finally, in Table 6 we give the statistic values returned by the Wilcoxon
signed rank test when applied to the columns of the test accuracies in Table 2,
and their associated p-values. To obtain them, we have sorted the different losses
in increasing order of their rank averages given in the last row of Table 3; this
means that in the rows of Table 6 the first model is better ranked than the second
one and, hence, expected to perform better. Recall that the test’s null hypothesis
is that the two paired samples come from the same distribution.

As it can be seen, this null hypothesis can be rejected at the p = 0.05 level
when comparing the ce-fisher loss with the ce-hinge-fisher, hinge-fisher and hinge,
and at the p = 0.1 level when doing so with the ce-hinge loss; on the other hand,
the p-value when comparing it with the ce is quite high. This suggests that the
ce-fisher loss performs similarly to the ce loss, but better than the others. In the
same vein, the ce loss appears to perform better than the hinge and hinge-fisher

ones; all the other loss pairings give similar performances.

Table 6. Model rankings for each problem in ascending accuracies after putting
together models with closer rankings.

stat p-val

ce-fisher vs ce 62.0 0.776

ce-fisher vs ce-hinge 32.0 0.065

ce-fisher vs ce-hinge-fisher 27.0 0.036

ce-fisher vs hinge-fisher 23.0 0.018

ce-fisher vs hinge 22.0 0.016

ce vs ce-hinge 43.0 0.211

ce vs ce-hinge-fisher 39.0 0.14

ce vs hinge-fisher 24.0 0.024

ce vs hinge 27.0 0.034

ce-hinge vs ce-hinge-fisher 43.0 0.205

ce-hinge vs hinge-fisher 44.0 0.231

ce-hinge vs hinge 46.0 0.266

ce-hinge-fisher vs hinge-fisher 55.0 0.603

ce-hinge-fisher vs hinge 64.0 0.856

hinge-fisher vs hinge 44.0 0.231

Companion Losses for Deep Neural Networks

3.4 Discussion

The preceding results indicate that the companion losses proposed here can
improve on the accuracies of models based on the single ce and hinge losses. More
precisely, adding the Fisher loss results in larger accuracies than those achieved
by using just the ce and hinge ones, although this does not extend to the ce-hinge

combination (which basically ties with the single ce loss), or when combining the
ce-hinge with the Fisher loss, worsens the ce-hinge performance.

It is also to be pointed out that the performance of the hinge-based models is
worse than that of the ce-based ones. A possible reason for this is the relatively
small number of units in the single hidden layer architecture of all models. In
fact, it is well known that for SVMs to achieve good results, the dimension of the
projected input space (upon which an SVM acts linearly) must be quite large.
For instance, in the case of the commonly used Gaussian kernel, this dimension
essentially coincides with the sample’s size. Here we are using the last hidden
layer activations as a proxy of the projection space but its dimension is 100, much
below sample size for all problems. In fact, in [5] deep networks with at least
1,000 units in the last layer were needed to match or improve the performance
of a standard Gaussian SVM. Also, better performance should also be possible
with more hidden layers, although this will also help ce models. Finally, it is
also clear that adding the Fisher loss helps; in fact, it seeks a last hidden layer
representation which concentrates each class samples near their centroids while
keeping these apart. This should help any classifier acting on that layer while,
on the other hand, it doesn’t compete directly with ce and hinge.

4 Conclusions and Futher Work

In this paper we have proposed how to combine different classification losses in
a single DNN so that each one acts on specific network outputs. The underlying
goal is that these competing but, at the same time, complementary objectives
result in models with a performance better than that of those built on each
individual loss. We give experimental results on sixteen classification problems
combining the categorical cross-entropy and hinge losses as well as a least squares
one inspired in Fisher’s Discriminant Analysis, and they show that, indeed, such
combinations yield better accuracies. In fact, using the Fisher based loss as a
companion of the cross-entropy or hinge ones improved on the performance of
DNN models using individually those losses; the same happens with the combi-
nation of the entropy and hinge losses.

These results suggest that further study is warranted. Beside the obvious
extension to more complex network architectures than the simple one here, the
choice of the hyperparameters used to define the combined loss (14) should be
explored. Moreover, the same strategy of adding companion losses to a base
one can be applied to regression problems, where natural choices are the mean
square, ε-insensitive or Huber losses. We are currently pursuing these and related
venues.

D. Dı́az-Vico et al.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), pp. 265–283 (2016)

2. Chollet, F.: Keras (2015). https://github.com/fchollet/keras
3. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-

based vector machines. J. Mach. Learn. Res. 2, 265–292 (2001)
4. Dı́az-Vico, D., Dorronsoro, J.R.: Deep least squares fisher discriminant analysis.

IEEE Trans. Neural Netw. Learn. Syst. 31(8), 2752–2763 (2020)
5. Dı́az-Vico, D., Prada, J., Omari, A., Dorronsoro, J.R.: Deep support vector neural

networks. Integr. Comput. Aided Eng. 27(4), 389–402 (2020)
6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward

neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2010. JMLR Proceedings, Chia
Laguna Resort, Sardinia, Italy, 13–15 May 2010, vol. 9, pp. 249–256 (2010)

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations, ICLR 2015, Conference Track
Proceedings, San Diego, CA, USA, 7–9 May 2015 (2015)

8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems 25, 26th Annual Conference on Neural Information Processing Systems 2012,
Proceedings of a Meeting Held 3–6 December 2012, Lake Tahoe, Nevada, United
States, pp. 1106–1114 (2012)

9. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32. Curran
Associates, Inc. (2019)

10. Tang, M., Perazzi, F., Djelouah, A., Ben Ayed, I., Schroers, C., Boykov, Y.: On
regularized losses for weakly-supervised CNN segmentation. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 507–522 (2018)

11. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

12. Weston, J., Watkins, C.: Support vector machines for multi-class pattern recogni-
tion. In: ESANN 1999, Proceedings of the 7th European Symposium on Artificial
Neural Networks, Bruges, Belgium, 21–23 April 1999, pp. 219–224 (1999)

13. Zhang, Z., Dai, G., Xu, C., Jordan, M.I.: Regularized discriminant analysis, ridge
regression and beyond. J. Mach. Learn. Res. 11, 2199–2228 (2010)

14. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with
neural networks. IEEE Trans. Comput. Imaging 3(1), 47–57 (2017)

https://github.com/fchollet/keras

	caratula companion
	companion editado
	Companion Losses for Deep Neural Networks
	1 Introduction
	2 Classification Losses
	3 Experimental Results
	3.1 Models Considered
	3.2 Datasets
	3.3 Experimental Methodology and Results
	3.4 Discussion

	4 Conclusions and Futher Work
	References

