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GANprintR: Improved Fakes and Evaluation of the
State of the Art in Face Manipulation Detection

João C. Neves*, Ruben Tolosana*, Ruben Vera-Rodriguez, Vasco Lopes, Hugo Proença and Julian Fierrez

Abstract—The availability of large-scale facial databases, to-
gether with the remarkable progresses of deep learning technolo-
gies, in particular Generative Adversarial Networks (GANs), have
led to the generation of extremely realistic fake facial content,
raising obvious concerns about the potential for misuse. Such
concerns have fostered the research on manipulation detection
methods that, contrary to humans, have already achieved aston-
ishing results in various scenarios. In this study, we focus on the
synthesis of entire facial images, which is a specific type of facial
manipulation. The main contributions of this study are four-fold:
i) a novel strategy to remove GAN “fingerprints” from synthetic
fake images based on autoencoders is described, in order to spoof
facial manipulation detection systems while keeping the visual
quality of the resulting images; ii) an in-depth analysis of the
recent literature in facial manipulation detection; iii) a complete
experimental assessment of this type of facial manipulation,
considering the state-of-the-art fake detection systems (based
on holistic deep networks, steganalysis, and local artifacts), re-
marking how challenging is this task in unconstrained scenarios;
and finally iv) we announce a novel public database, named
iFakeFaceDB, yielding from the application of our proposed
GAN-fingerprint Removal approach (GANprintR) to already
very realistic synthetic fake images.

The results obtained in our empirical evaluation show that
additional efforts are required to develop robust facial manip-
ulation detection systems against unseen conditions and spoof
techniques, such as the one proposed in this study.

Index Terms—Fake news, Face manipulation, Face recognition,
iFakeFaceDB, DeepFakes, Media forensics, GAN

I. INTRODUCTION

IMAGES and videos containing fake facial information
obtained by digital manipulation have recently become a

great public concern [1]. So far, the number and realism of
digitally manipulated fake facial contents have been limited
by the lack of sophisticated editing tools, the high domain
of expertise required, and the complex and time-consuming
process involved to generate realistic fakes. On the other
hand, the scientific communities of biometrics and security
in the past decade have been paying growing attention to
understanding and protecting against what was considered a
relevant threat around face biometrics [2]: presentation attacks
conducted physically against the face sensor (camera) using
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Fig. 1. Architecture of our proposed GAN-fingerprint removal approach.
In general, state-of-the-art face manipulation detectors can easily distinguish
between real and synthetic fake images. This usually happens due to the
existence and exploitation by those detectors of GAN “fingerprints” produced
during the generation of synthetic images. We propose an autoencoder module
(GANprintR) to remove the GAN fingerprints from the synthetic images and
spoof the facial manipulation detection systems, while keeping the visual
quality of the resulting images.

various kinds of face spoofs (e.g., 2D or 3D printed, displayed,
mask-based, etc.) [3], [4].

However, nowadays it is becoming increasingly easy to au-
tomatically synthesise non-existent faces or even to manipulate
the face of a real person in an image/video, thanks to the
free access to large public databases and also to the advances
on deep learning techniques that eliminate the requirements
of manual editing. As a result, accessible open software and
mobile applications such as ZAO and FaceApp have led to
large amounts of synthetically generated fake content [5], [6].

The most popular methods to generate fake face content
can be categorised into four groups, regarding the level of
manipulation [7], [8], [9]: i) entire face synthesis, ii) identity
swap, iii) attribute manipulation, and iv) expression swap.

In this study, we focus on the entire face synthesis ma-
nipulation, where a machine learning model, typically based
on Generative Adversarial Networks (GANs) [18], learns the
distribution of the human face data, allowing to generate
non-existent faces by sampling this distribution. This type of
facial manipulation provides astonishing results, and is able
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TABLE I
COMPARISON OF STATE-OF-THE-ART MANIPULATION DETECTION APPROACHES FOR ENTIRE FACE SYNTHESIS MANIPULATION.

Study Features Classifiers Best Performance Databases
McCloskey and Albright (2018)

[10] Color-related Features SVM AUC = 70% NIST MFC2018

Yu et al. (2018)
[11] GAN-related Features CNN Acc. = 99.50%

Real: CelebA
Fake: Own Database

Marra et al. (2018)
[12] Image-related Features CNN Acc. = 95.07%

Real: Own Database(CycleGAN)
Fake: Own Database(CycleGAN)

Wang et al. (2019)
[13]

CNN Neuron
Behavior Features SVM Acc. = 84.78%

Real: CelebA-HQ/FFHQ
Fake: Own Database

Stehouwer et al. (2019)
[9] Image-related Features CNN + Attention Mechanism EER = 0.05%

Real: CelebA/FFHQ/FaceForensics++
Fake: Own Database

Yang et al. (2019)
[14] Head Pose SVM AUC = 89%

Real: UADFV/DARPA MediFor
Fake: UADFV/DARPA MediFor

Matern et al. (2019)
[15] Eye Color Features K-NN AUC = 85.2%

Real: CelebA
Fake: Own Database (PGGAN)

He et al. (2019)
[16] Color-related Features Random Forest Acc. = 99%

Real: CelebA
Fake: Own Database (PGGAN)

Wang et al. (2019)
[17] Image-related Features DRN AP = 99.8%

Real: Own Database
Fake: Own Database

to generate extremely realistic fakes. Nevertheless, contrary to
humans, most state-of-the-art detection systems provide very
good results against this type of facial manipulation, remarking
how easy it is to detect the GAN “fingerprints” present in the
synthetic images.

In this context, the main contributions of our paper are:

• A novel approach to spoof state-of-the-art facial manipu-
lation detection systems, while keeping the visual quality
of the resulting images. Fig. 1 graphically summarises our
proposed approach based on a GAN-fingerprint Removal
autoencoder (GANprintR).

• An in-depth literature analysis of the state-of-the-art
detection approaches for the entire face synthesis manipu-
lation, including the key aspects of the detection systems,
the databases used for developing and evaluating these
systems, and the main results achieved by them.

• A thorough experimental assessment of this type of
facial manipulation considering fake detection (based on
holistic deep networks, steganalysis, and local artifacts)
and realistic GAN-generated fakes (with and without
the proposed GANprintR) over different experimental
conditions, i.e., controlled and in-the-wild scenarios.

• We announce a novel database named iFakeFaceDB1,
resulting from the application of our GANprintR to
already very realistic synthetic images.

The remainder of the paper is organised as follows. Sec. II
summarises previous studies focused on the detection of the
entire face synthesis manipulation. Sec. III explains our pro-
posed GAN-fingerprint removal approach. Sec. IV summarises
the key features of the real and fake databases considered
in our experimental framework. Sec. V and VI describe the
proposed experimental setup and results achieved, respectively.
Finally, Sec. VII draws the final conclusions and points out
some lines for future work.

1https://github.com/socialabubi/iFakeFaceDB

II. RELATED WORK

Various studies have recently evaluated how easy it is
to detect manipulations based on the entire face synthesis.
Table I shows a comparison of the most relevant approaches
in this area. For each study, we include information related
to the features, classifiers, best performance, and databases
considered.

In [10], the authors analysed the architecture of GANs in
order to detect different artifacts between fake and real images.
They proposed a detection system based on colour features
and a linear Support Vector Machine (SVM) for the final
classification. Their approach achieved a final 70% Area Under
the Curve (AUC) for the best performance when considering
the NIST MFC2018 dataset [19]. A similar approach was
followed by Matern et al. [15] where the authors exploited
relatively simple visual artifacts from specific facial regions
(e.g., eyes, teeth, facial contours) to detect different types of
facial manipulations. In a similar research line, Yang et al. [14]
exploited the weakness of GANs in generating consistent head
poses, and trained a SVM to distinguish between real and
synthetic faces based on the estimation of the 3D head pose.

In [16], the authors exploited different color channels
(YCbCr, HSV and Lab) to extract from a Convolutional Neural
Network (CNN) different deep representations, which were
subsequently fed to a Random Forest classifier for deciding
the realness of an image.

In [13], Wang et al. conjectured that monitoring neuron
behavior could also serve as an asset in detecting fake faces
since layer-by-layer neuron activation patterns may capture
more subtle features that are important for the facial ma-
nipulation detection system. Their proposed approach, named
FakeSpoter, extracted as features neuron coverage behaviors of
real and fake faces from deep face recognition systems (i.e.,
VGG-Face [20], OpenFace [21], and FaceNet [22]), and then
trained a SVM for the final classification. The authors tested
their proposed approach using real faces from CelebA-HQ [23]
and FFHQ [24] databases and synthetic faces created through
InterFaceGAN [25] and StyleGAN [24], achieving for the best

https://github.com/socialabubi/iFakeFaceDB
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Fig. 2. Proposed GAN-fingerprint Removal module (GANprintR) based on a convolutional AutoEncoder (AE). The AE is trained using only real face
images from the development dataset. In the evaluation stage, once the autoencoder is trained, we can pass synthetic face images through it to provide them
with additional naturalness, in this way removing the GAN-fingerprint information that may be present in the initial fakes.

performance a final 84.78% accuracy for the FaceNet model.
More recently, Stehouwer et al. carried out in [9] a complete

analysis of different facial manipulation detection methods.
They proposed to use attention mechanisms to process and
improve the feature maps of CNN models. For the facial
manipulation method considered in our study (i.e., entire face
synthesis), the authors achieved a final 0.05% Equal Error Rate
(EER) considering real faces from CelebA [26], FFHQ [24],
and FaceForensics++ [27] databases and fake images created
through PGGAN [28] and StyleGAN [24] approaches.

Wang et al. carried out in [17] a very interesting research
using publicly available commercial software from Adobe
Photoshop in order to synthesise new faces [29], and also a
professional artist in order to manipulate 50 real photographs.
The authors began running a human study through Amazon
Mechanical Turk (AMT), showing real and fake images to the
participants and asking them to classify each image into one of
the classes. The results remark the task difficulty for humans,
with a final 53.5% performance (chance = 50%). After the
human study, the authors proposed an automatic detection
system based on Dilated Residual Networks (DRN), achieving
Average Precisions (AP) of 99.8% and 97.4% for automatic
and manual face synthesis manipulation detection.

In another line of research, some authors have recently
focused on the problem of finding the GAN architecture used
for generating a specific image potentially synthetic [30], [31].
Yu et al. analysed in [11] the existence and uniqueness of GAN
fingerprints to detect fake images. In particular, they proposed
a learning-based formulation consisting of an attribution net-
work architecture to map an input image to its corresponding
fingerprint image. Therefore, they learned a model fingerprint
for each source (each GAN instance plus the real world), such
that the correlation index between one image fingerprint and
each model fingerprint serves as softmax logit for classifica-
tion. Their proposed approach was tested using real faces from
CelebA database [26] and synthetic faces created through dif-
ferent GAN approaches (PGGAN [28], SNGAN [32], Cramer-
GAN [33], and MMDGAN [34]), achieving a final 99.50%
accuracy for the best performance in manipulation detection.

Finally, we also include for completeness some relevant ref-
erences to other recent studies focused on the detection of gen-
eral GAN-based image manipulations, not facial ones: [12],
[35], [36], [37], [38].

III. PROPOSED APPROACH:
GAN-FINGERPRINT REMOVAL (GANPRINTR)

Our approach aims at transforming synthetic face images,
such that their visual appearance is unaltered but the GAN
fingerprints (the discriminative information that permits the
distinction from real imagery) are removed. Considering that
the fingerprints are high frequency signals [31], we hypothe-
sise that their removal could be performed by an autoencoder,
which acts as a non-linear low-pass filter. We claim that by
using this strategy, the detection capability of state-of-the-art
facial manipulation detection methods significantly decreases,
while at the same time humans still are not capable of
perceiving that images were transformed.

In general, an autoenconder comprises two distinct net-
works, encoder ψ and decoder γ:

ψ : X 7→ l

γ : l 7→ X ′
(1)

where X denotes the input image to the network, l is the latent
feature representation of the input image after passing through
the encoder ψ, and X ′ is the reconstructed image generated
from l, after passing through the decoder γ. The networks
ψ and γ can be learned by minimising the reconstruction
loss Lψ,γ(X,X ′) = ||X −X ′||2 over a development dataset
following an iterative learning strategy.

As result, when L is nearly 0, ψ is able to discard all
redundant information from X and code it properly into l.
However, for a reduced size of the latent feature representation
vector, L will increase and ψ will be forced to encode in l only
the most representative information of X . We claim this kind
of autoencoder acts as a GAN-fingerprint removal system.

Fig. 2 describes our proposed approach based on a convo-
lutional AutoEncoder (AE) composed of a sequence of 3×3
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convolutional filters, coupled with ReLU activation functions.
After each convolutional layer, a 2×2 max-pooling layer
is used to progressively decrease the size of the activation
map to 28×28×8, which represents the bottleneck of the
reconstruction model.

The AE is trained with images from a public dataset that
comprises face imagery from real persons. In the evaluation
phase, the AE is used to generate improved fakes from input
fake faces where GAN “fingerprints”, if present in the initial
fakes, will be reduced. The main rationale of this strategy
is that by training with real images the AE can learn the
core structure of this type of natural data, which can then
be exploited to improve existing fakes.

IV. DATABASES

Four different public databases and one generated are con-
sidered in the experimental framework. Fig. 3 shows some
examples of each database. We now summarise the most
important features.

A. Real Face Images

1) CASIA-WebFace [39]: this database contains 494,414
face images from 10,575 actors and actresses of IMDb. Face
images comprise random pose variations, illumination, facial
expression, and resolution.

2) VGGFace2 [40]: this database contains 3.31 million
images from 9,131 different subjects, with an average of
363 images per subject. Images were downloaded from the
Internet and contain large variations in pose, age, illumination,
ethnicity, and profession (e.g., actors, athletes, and politicians).

B. Synthetic Face Images

1) TPDNE: this database comprises 150,000 unique faces,
collected from the website2. Synthetic images are based
on the recent StyleGAN approach [24] trained with FFHQ
database [41].

2) 100K-Faces [42]: this database contains 100,000 syn-
thetic images generated using StyleGAN [24]. In this database
the StyleGAN network was trained using around 29,000
photos of 69 different models, producing face images with
a flat background.

3) PGGAN [28]: this database comprises 80,000 synthetic
face images generated using the PGGAN network. In particu-
lar, we consider the publicly available model trained using the
CelebA-HQ database.

V. EXPERIMENTAL SETUP

A. Pre-Processing

In order to ensure fairness in our experimental validation,
we created a curated version of all the datasets where the
confounding variables were removed. Two different factors
were considered in this study:
• Background: this is a clearly distinctive aspect among

real and synthetic face images as different acquisition
conditions are considered in each database.

2https://thispersondoesnotexist.com

CASIA-WebFace (Real)

VGGFace2 (Real)

TPDNE (Synthetic)

100K-Faces (Synthetic)

PGGAN (Synthetic)

Fig. 3. Examples of the databases considered in our experiments after
applying the pre-processing stage described in Sec. V-A.

• Head pose: images generated by GANs hardly ever pro-
duce high variation from the frontal pose [9], contrasting
with most popular real face databases such as CASIA-
WebFace and VGGFace2. Therefore, this factor may
falsely improve the performance of the detection systems
since non-frontal images are more likely to be real faces.

To remove these factors from both the real and synthetic
images, we extracted 68 face landmarks, using the method
described in [43]. Given the landmarks of the eyes, an affine
transformation was determined such that the location of the
eyes appears in all images at the same distance from the
borders. This step allowed to remove all the background
information of the images while keeping the maximum amount
of the facial regions. Regarding the head pose, landmarks
were used to estimate the pose (frontal vs. non-frontal). In our
experimental framework, we kept only the frontal face images,
in order to avoid biased results. After this pre-processing stage,
we were able to provide images of constant size (224×224 pix-
els) as input to the systems. Fig. 3 shows examples of the crop-
out faces of each database after applying the pre-processing
steps. The synthetic images obtained by this pre-processing
stage are the ones used to create the database iFakeFaceDB
after being processed by our GANprintR approach.

https://thispersondoesnotexist.com
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B. Facial Manipulation Detection Systems

Three different state-of-the-art manipulation detection ap-
proaches are considered in this study.

1) XceptionNet [44]: this network was selected, essentially
because it provides the best detection results in the most
recently published studies [9], [27], [45]. We followed the
same training approach considered in [27]: i) the model was
initialized with the weights obtained after training with the
ImageNet dataset [46], ii) we changed the last fully-connected
layer of the ImageNet model by a new one (two classes, real
or synthetic image), iii) we fixed all weights up to the final
layers and pre-trained the network for few epochs, and finally
iv) we trained the network for 20 more epochs and chose the
best performing model based on validation accuracy.

2) Steganalysis [38]: the method by Nataraj et al. was
selected for providing an approach based on steganalysis,
rather than directly extracting features from the images, as
in the XceptionNet approach. In particular, this approach
calculates the co-occurrence matrices directly from the image
pixels on each channel (red, green and blue), and passes
this information through a custom CNN, which allows the
network to extract non-linear robust features. Considering that
the source code is not available from the authors, we replicated
this technique to perform our experiments.

3) Local Artifacts [15]: we have chosen the method of
Matern et al., because it provides an approach based on the
direct analysis of the visual facial artifacts, in opposition to
the remaining approaches that follow holistic strategies. In
particular, the authors of that work claim that some parts
of the face (e.g., eyes, teeth, facial contours) provide useful
information about the authenticity of the image, and thus
train a classifier to distinguish between real and synthetic face
images using features extracted from these facial regions.

All our experiments were implemented under a PyTorch
framework, with a NVIDIA Titan X GPU. The training of the
Xception network was performed using the Adam optimiser
with a learning rate of 10−3, dropout for model regularization
with a rate of 0.5, and a binary cross-entropy loss function.
Regarding the steganalysis approach, we reused the parameters
adopted for Xception network, since the authors of [38]
did not detail the training strategy adopted. Regarding the
local artifacts approach, we adopted the strategy for detecting
“generated faces”, where a k-nearest neighbour classifier is
used to distinguish between real and synthetic face images
based on eye color features.

C. Protocol

The experimental protocol designed in this study aims at
performing an exhaustive analysis of state-of-the-art facial
manipulation detection systems. As such, three different exper-
iments are considered: i) controlled scenarios, ii) in-the-wild
scenarios, and iii) GAN-fingerprint removal.

Each database was divided into two disjoint datasets, one
for the development of the systems (70%) and the other one
for evaluation purposes (30%). Additionally, the development
dataset was divided into two disjoint subsets, training (75%)
and validation (25%). The same number of real and synthetic

(a) XceptionNet [44] (b) Steganalysis [38]

Fig. 4. Exp. A.1: evolution of the loss/accuracy with the number of epochs.

images were considered in the experimental framework. In
addition, for real face images, different users were considered
in the development and evaluation datasets, in order to avoid
biased results.

Our proposed GANprintR was trained during 100 epochs,
using the Adam optimizer with a learning rate of 10−3, and
mean square error (MSE) to obtain the reconstruction loss.
To ensure an unbiased evaluation, our GANprintR was trained
with images from the MS-Celeb dataset [47], since it is disjoint
from the datasets used in the development and evaluation of
all the fake detection systems used in our experiments.

VI. EXPERIMENTAL RESULTS

A. Controlled Scenarios

In this section, we report the results of the detection of entire
face synthesis in controlled scenarios, i.e., when samples from
the same databases were considered for both development and
final evaluation of the detection systems. This is the strategy
commonly used in most studies, typically resulting in very
good performance (see Sec. II).

A total of six experiments are carried out: A.1 to A.6.
Table II describes the development and evaluation databases
considered in each experiment together with the corresponding
final evaluation results in terms of EER. Additionally, we
represent in Fig. 4 the evolution of the loss/accuracy of the
XceptionNet and Steganalysis detection systems for Exp. A.1.

The analysis of Fig. 4 shows that both XceptionNet and
Steganalysis approaches are able to learn discriminative fea-
tures to detect between real and synthetic face images. The
training process was faster for the XceptionNet detection
system compared with Steganalysis, converging to a lower loss
value in fewer epochs (close to zero after 20 epochs). The best
validation accuracies achieved in Exp. A.1 for the XceptionNet
and Steganalysis approaches are 99% and 95%, respectively.
Similar trends are observed for the other experiments.

We now analyse the results included in Table II for experi-
ments A.1 to A.6. Analysing the results obtained by the Xcep-
tionNet system, almost ideal performance is achieved with
EER values less than 0.5%. These results are in agreement
to previous studies in the topic (see Sec. II), pointing for the
potential of the XceptionNet model in controlled scenarios.
Regarding the Steganalysis approach, a higher degradation of
the system performance is observed, when compared with the
XceptionNet approach, especially for the 100K-Face database,
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TABLE II
CONTROLLED AND IN-THE-WILD SCENARIOS: MANIPULATION DETECTION PERFORMANCE IN TERMS OF EER AND RECALL (%) FOR DIFFERENT

DEVELOPMENT AND EVALUATION SETUPS. Rreal AND Rfake DENOTE THE RECALL OF THE REAL AND FAKE CLASSES, RESPECTIVELY. CONTROLLED
(EXP. A.1-A.6). IN-THE-WILD (EXP. B.1-B.24). VF2 = VGGFACE2. CASIA = CASIA-WEBFACE. ALL METRICS ARE GIVEN IN (%).

Development Evaluation XceptionNet [44] Steganalysis [38] Local Artifacts [15]
Experiment Real Synthetic Real Synthetic EER Rreal Rfake EER Rreal Rfake EER Rreal Rfake

A.1 VF2 TPDNE VF2 TPDNE 0.22 99.77 99.80 10.92 89.07 89.10 38.53 60.72 62.20
B.1 VF2 TPDNE VF2 100F 0.45 99.30 99.80 23.07 71.66 85.59 35.86 64.13 64.16
B.2 VF2 TPDNE VF2 PGGAN 13.82 78.44 99.73 27.12 67.28 83.87 40.10 59.05 60.80
B.3 VF2 TPDNE CASIA 100F 0.35 99.30 100.00 24.00 71.23 83.53 35.61 64.05 64.69
B.4 VF2 TPDNE CASIA PGGAN 13.72 78.47 100.00 28.05 66.81 81.61 39.87 59.0 61.4
A.2 VF2 100F VF2 100F 0.28 99.70 99.73 12.28 87.70 87.73 31.45 67.83 69.26
B.5 VF2 100F VF2 TPDNE 21.18 70.32 99.54 28.02 66.72 82.09 42.89 55.17 60.16
B.6 VF2 100F VF2 PGGAN 44.43 52.96 97.71 32.62 62.35 79.31 48.70 50.53 52.87
B.7 VF2 100F CASIA TPDNE 21.07 70.37 99.94 28.85 66.29 80.14 46.04 52.50 55.98
B.8 VF2 100F CASIA PGGAN 44.32 53.01 99.71 33.45 61.90 77.15 51.89 47.8 48.6
A.3 VF2 PGGAN VF2 PGGAN 0.02 99.97 100.00 3.32 96.67 96.70 35.13 64.33 65.41
B.9 VF2 PGGAN VF2 TPDNE 16.85 74.79 100.00 33.32 60.42 91.74 40.84 57.55 61.17

B.10 VF2 PGGAN VF2 100F 5.85 89.53 100.00 25.60 66.87 94.04 44.47 53.99 57.77
B.11 VF2 PGGAN CASIA TPDNE 16.85 74.79 100.00 35.73 59.19 81.85 39.89 58.02 62.82
B.12 VF2 PGGAN CASIA 100F 5.85 89.53 100.00 28.02 65.73 86.50 43.53 54.5 59.5
A.4 CASIA TPDNE CASIA TPDNE 0.02 99.97 100.00 12.08 87.90 87.93 39.36 59.62 61.65
B.13 CASIA TPDNE VF2 100F 1.75 99.35 97.20 36.68 59.58 71.82 39.03 60.67 61.25
B.14 CASIA TPDNE VF2 PGGAN 4.42 94.21 97.04 30.77 65.13 76.40 38.94 61.02 61.10
B.15 CASIA TPDNE CASIA 100F 0.32 99.37 100.00 34.12 61.02 78.41 38.05 61.20 62.67
B.16 CASIA TPDNE CASIA PGGAN 2.98 94.37 100.00 28.20 66.48 82.19 37.96 61.5 62.5
A.5 CASIA 100F CASIA 100F 0.08 99.90 99.93 16.05 83.94 83.96 33.96 65.04 67.03
B.17 CASIA 100F VF2 TPDNE 5.93 97.69 90.95 34.00 62.64 71.80 43.11 55.00 59.83
B.18 CASIA 100F VF2 PGGAN 10.08 89.64 90.20 45.63 52.91 58.71 46.36 52.37 55.92
B.19 CASIA 100F CASIA TPDNE 1.10 97.91 99.93 31.67 63.97 76.67 44.22 53.94 58.54
B.20 CASIA 100F CASIA PGGAN 5.25 90.55 99.93 43.30 54.34 64.74 47.49 51.3 54.6
A.6 CASIA PGGAN CASIA PGGAN 0.05 99.93 99.97 4.62 95.37 95.40 34.79 64.42 66.00
B.21 CASIA PGGAN VF2 TPDNE 4.90 99.96 91.10 31.73 61.93 88.92 43.52 55.25 57.94
B.22 CASIA PGGAN VF2 100F 4.88 100.00 91.10 41.97 54.63 80.35 44.69 54.05 56.89
B.23 CASIA PGGAN CASIA TPDNE 0.03 99.97 99.97 31.43 62.08 90.07 41.46 56.64 61.00
B.24 CASIA PGGAN CASIA 100F 0.02 100.00 99.97 41.67 54.79 82.22 42.63 55.5 60.0

e.g., a 16% EER is obtained in Exp. A.5. Finally, it can be
observed that the approach based on local artifacts was the
least efficient to spot the differences between real and synthetic
data, with an average 35.5% EER over all experiments.

In summary, for controlled scenarios XceptionNet has ex-
cellent manipulation detection accuracies, then Steganalysis
provides good accuracies, and finally Local Artifacts has poor
accuracy. In the next section we will see the limitations of
these techniques in-the-wild.

B. In-the-Wild Scenarios

This section evaluates the performance of the facial ma-
nipulation detection systems in more realistic scenarios, i.e.,
in-the-wild. The following aspects are considered: i) different
development and evaluation databases, and ii) different image
resolution/blur among the development and evaluation of the
models. This last point is particularly important, as the quality
of raw images/videos is usually modified when, e.g., they
are uploaded to social media. The effect of image resolu-
tion has been preliminary analysed in previous studies [27],
[48], but for different facial manipulation groups, i.e., face

swapping/identity swap and facial expression manipulation.
The main goal of this section is to analyse the generalisation
capability of state-of-the-art entire face synthesis detection in
unconstrained scenarios.

First, we focus on the scenario of considering the same real
but different synthetic databases in development and evaluation
(Exp. B.1, B.2, B.5, B.6, and so on, provided in Table II).
In general, the results achieved in the experiments evidence a
high degradation of the detection performance regardless of the
facial manipulation detection approach. For the XceptionNet,
the average EER is 11.2%, i.e., over 20 times higher than
the results achieved in Exp. A.1-A.6 (<0.5% average EER).
Regarding the Steganalysis approach, the average EER is
32.5%, i.e., more than 3 times higher than the results achieved
in Exp. A.1-A.6 (9.8% average EER). For Local Artifacts, the
observed average EER is 42.4%, with an average worsening
of 19%. The large degradation of the first two detectors
suggests that they might rely heavily on the GAN fingerprints
of the training data. This result confirms the hypothesis that
different GAN models produce different fingerprints, as also
mentioned in previous studies [11]. Moreover, these results



7

TABLE III
COMPARISON BETWEEN THE PROPOSED APPROACH (GANPRINTR) AND TYPICAL IMAGE MANIPULATIONS. THE DETECTION PERFORMANCE IS
PROVIDED IN TERMS OF EER AND RECALL (%) FOR EXPERIMENTS A.1 TO A.6, WHEN USING DIFFERENT VERSIONS OF THE EVALUATION SET. TED

STANDS FOR TRANSFORMATION OF THE EVALUATION DATA AND DETAILS THE TECHNIQUE USED TO MODIFY THE TEST SET BEFORE FAKE DETECTION.
Rreal AND Rfake DENOTE THE RECALL OF THE REAL AND FAKE CLASSES, RESPECTIVELY.

Development Evaluation XceptionNet [44]
Experiment Real Synthetic Real Synthetic TED EER(%) Rreal(%) Rfake(%) PSNR(db) SSIM

A.1 VF2 TPDNE VF2 TPDNE Original 0.22 99.77 99.80 - -
Downsize 1.17 98.83 98.87 35.55 0.93
Low-Pass Filter 0.83 99.17 99.20 34.63 0.92
JPEG Compression 1.53 98.47 98.50 36.02 0.96
GANprintR 10.63 89.37 89.40 35.01 0.96

A.2 VF2 100F VF2 100F Original 0.28 99.70 99.73 - -
Downsize 0.87 99.13 99.17 36.24 0.95
Low-Pass Filter 2.87 97.10 97.13 35.22 0.93
JPEG Compression 1.83 98.17 98.20 36.76 0.97
GANprintR 6.37 93.64 93.66 35.59 0.96

A.3 VF2 PGGAN VF2 PGGAN Original 0.02 99.97 100.00 - -
Downsize 3.70 96.27 96.30 34.85 0.91
Low-Pass Filter 1.53 98.43 98.47 34.10 0.90
JPEG Compression 30.93 69.04 69.06 35.85 0.96
GANprintR 17.27 82.71 82.73 34.82 0.95

A.4 CASIA TPDNE CASIA TPDNE Original 0.02 99.97 100.00 - -
Downsize 1.00 98.97 99.00 35.55 0.93
Low-Pass Filter 0.07 99.90 99.93 34.63 0.92
JPEG Compression 2.50 97.47 97.50 36.02 0.96
GANprintR 4.47 95.50 95.53 35.01 0.96

A.5 CASIA 100F CASIA 100F Original 0.08 99.90 99.93 - -
Downsize 6.27 93.70 93.73 36.24 0.95
Low-Pass Filter 11.53 88.44 88.46 35.22 0.93
JPEG Compression 3.27 96.73 96.77 36.76 0.97
GANprintR 11.47 88.50 88.53 35.59 0.96

A.6 CASIA PGGAN CASIA PGGAN Original 0.05 99.93 99.97 - -
Downsize 7.77 92.24 92.26 34.85 0.91
Low-Pass Filter 2.10 97.90 97.93 34.10 0.90
JPEG Compression 5.37 94.64 94.66 35.85 0.96
GANprintR 8.37 91.64 91.66 34.82 0.95

suggest that these GAN fingerprints are the information used
by the detectors to distinguish between real and synthetic data.

Table II also considers the case of using different real and
synthetic databases for both development and evaluation (Exp.
B.3, B.4, B.7, B.8, etc.). In this scenario, average EERs of
9.3%, 32.3% and 42.3% in fake detection are obtained for
XceptionNet, Steganalysis, and Local Artifacts, respectively.
When comparing these results with the EERs of the previous
experiments (where only the synthetic evaluation set was
changed), no significant gap in performance is found, which
suggests that the change of synthetic data in training might be
the main cause for performance degradation.

Finally, we also analyse how different image transforma-
tions affect facial manipulation detection systems. In this
analysis, we focus only on the XceptionNet model as it pro-
vides much better results when compared with the remaining
detection systems. For each baseline experiment (A.1 to A.6),
the evaluation set (both real and fake images) was transformed
by: i) resolution downsizing (1/3 of the original resolution),
ii) a low-pass filter (9 × 9 Gaussian kernel, σ = 1.7), and
iii) jpeg image compression using a quality level of 60. The
resulting EER together with the Recall, PSRN, and SSIM

values are provided in Table III, together with the performance
of the original images. The results suggest a high performance
degradation in manipulation detection for all experiments,
proving the vulnerability of fake detection systems to unseen
conditions, even if they result from simple image transfor-
mations. These findings agree with the conclusions extracted
in other studies of the literature. For example, Marra et al.
evaluated in [12] the robustness of different fake detectors
over different training and testing scenarios, considering fake
images created using image-to-image translations [49]. For the
XceptionNet approach and the image compression scenario,
the authors achieved an accuracy in manipulation detection of
87.17%, an average absolute worsening of 7.32% compared
with the uncompressed scenario (accuracy of 94.49%).

To further understand the impact of these transformations,
we evaluated an increasing downsize ratio in the performance
of the fake detection system. Fig. 5 depicts the detection
performance results in terms of EER(%), from lower to higher
modifications of the image resolution. In general, we can
observe increasingly higher degradation of the fake detection
performance for decreasing resolution. For example, when
the image resolution is reduced to 1/4, the average EER in
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raw 1/2 1/3 1/4 1/5 1/6 1/7

Fig. 5. Robustness of the fake detection system regarding the image
resolution. The XceptionNet model is trained with the raw image resolution
and evaluated with lower image resolutions. Note how the EER increases
significantly while reducing the image resolution.

manipulation detection increases 6% when compared with the
raw image resolution (raw equals to 1/1). This performance
degradation is even higher when we further reduce the image
resolution, with EERs(%) higher than 15%. These results
support the conclusion about a poor generalisation capacity of
state-of-the-art facial manipulation detection systems to unseen
conditions.

C. GAN-Fingerprint Removal

This section analyses the results of the proposed strategy
for GAN-fingerprint Removal (GANprintR). We evaluated to
what extent our method is capable of spoofing state-of-the-
art fake detectors by improving fake images already obtained
with some of the best and most realistic known methods
for entire face synthesis. For this, the experiments A.1 to
A.6 were repeated for the XceptionNet detection system, but
the fake images of the evaluation set were transformed after
passing through our proposed GANprintR. Table III provides
the results achieved for both the original fake data and after
GANprintR. The analysis shows that GANprintR results in
higher fake detection error than the remaining attacks, while
maintaining a similar or even better visual quality. In all the
experiments, the EER of the manipulation detection increases
when using GANprintR to transform the synthetic face images.
Also, the detection degradation is higher than other types of
attacks for similar PSNR values and slightly higher values
of SSIM. In particular, the average EER when considering
GANprintR is 9.8%, i.e., over 20 times higher than the results
achieved when using the original fakes (<0.5% average EER).
This suggests that our method is not simply removing high-
frequency information (evidenced by the comparison with the
low-pass filter and downsize) but it is also removing the
GAN fingerprints from the fakes improving their naturalness.
It is important to remark that different real face databases

original 28x28x128 28x28x64 28x28x32 28x28x16 28x28x8 28x28x4

Fig. 6. Robustness of the fake detection system after our proposed GAN-
fingerprint Removal (GANprintR). The latent feature representation size of
the AE is varied to analyse the impact on both system performance and visual
aspect of the reconstructed images. Note how the EER increases significantly
when considering our proposed spoof approach, while maintaining a high
visual similarity with the original image.

were considered for training the face manipulation detection
systems and our GANprintR module.

In addition, we provide in Fig. 6 an analysis of the impact
of the latent feature representation of the autoencoder in terms
of EER and PSNR. In particular, we follow the experimental
protocol considered in Exp. A.3, and calculate the EER
of XceptionNet for detecting fakes improved with various
configurations of GANprintR. Moreover, the PSNR for each
set of transformed images is also included in Fig. 6 together
with a face example of each configuration to visualise the
image quality. The face examples included in Fig. 6 show
no substantial differences between the original fake and the
resulting fakes after GANprintR for the different latent feature
representation size of the GANprintR, which is confirmed by
the tight range of PSNR values obtained along the different
latent feature representations. On the other hand, EER values
of fake detection significantly increase as the size of latent
feature representations diminish, evidencing that GANprintR
is capable of spoofing state-of-the-art manipulation detection
systems without significantly degrading the visual aspect of
the image.

Finally, to confirm that GANprintR is actually removing the
GAN-fingerprint information and not just reducing the image
resolution of the images, we performed a final experiment
where we trained the XceptionNet for fake detection consid-
ering different levels of image resolution, and then tested it
using fakes improved with GANprintR. Fig. 7 shows the fake
detection performance in terms of EER for different size of
the latent feature representation of GANprintR. Five different
GANprintR configurations are tested per image resolution. The
obtained results point for the stability of EER values with
respect to downsized synthetic images in training, concluding
that our proposed approach is actually removing the GAN-
fingerprint information.
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TABLE IV
IMPACT OF THE GANPRINTR APPROACH ON THREE STATE-OF-THE-ART MANIPULATION DETECTION APPROACHES. A SIGNIFICANT

PERFORMANCE DEGRADATION IS OBSERVED IN ALL MANIPULATION DETECTION APPROACHES WHEN EXPOSED TO IMAGES TRANSFORMED BY THE
PROPOSED GANPRINTR APPROACH. THE DETECTION PERFORMANCE IS PROVIDED IN TERMS OF EER AND RECALL (%), WHILE Rreal AND Rfake

DENOTE THE RECALL OF THE REAL AND FAKE CLASSES, RESPECTIVELY.

Development Evaluation XceptionNet [44] Steganalysis [38] Local Artifacts [15]
Experiment Real Synthetic Real Synthetic data EER(%) Rreal(%) Rfake(%) EER(%) Rreal(%) Rfake(%) EER(%) Rreal(%) Rfake(%)

A.1 VF2 TPDNE VF2 TPDNE Original 0.22 99.77 99.80 10.92 89.07 89.10 38.53 60.72 62.20
GANprintR 10.63 89.37 89.40 22.37 77.61 77.63 44.06 55.16 56.67

A.2 VF2 100F VF2 100F Original 0.28 99.70 99.73 12.28 87.70 87.73 31.45 67.83 69.26
GANprintR 6.37 93.64 93.66 17.30 82.71 82.73 36.35 62.93 64.41

A.3 VF2 PGGAN VF2 PGGAN Original 0.02 99.97 100.00 3.32 96.67 96.70 35.13 64.33 65.41
GANprintR 17.27 82.71 82.73 35.13 64.85 64.85 42.24 57.28 58.29

A.4 CASIA TPDNE CASIA TPDNE Original 0.02 99.97 100.00 12.08 87.90 87.93 39.36 59.62 61.65
GANprintR 4.47 95.50 95.53 24.97 75.04 75.06 42.75 56.16 58.37

A.5 CASIA 100F CASIA 100F Original 0.08 99.90 99.93 16.05 83.94 83.96 33.96 65.04 67.03
GANprintR 11.47 98.50 98.53 19.80 80.17 80.19 38.14 60.77 62.97

A.6 CASIA PGGAN CASIA PGGAN Original 0.05 99.93 99.97 4.62 95.37 95.40 34.79 64.42 66.00
GANprintR 8.37 93.64 93.66 27.77 72.21 72.22 39.15 60.02 61.70

Fig. 7. Robustness of the fake detection system trained with different
resolutions and then tested with fakes improved with GANprintR under
various configurations (representation sizes). Five different GANprintR
configurations are tested per image resolution level. The results observed point
for the stability of EER values with respect to using downsized synthetic
images in training. This observation supports the conclusion that GANprintR
is actually removing the GAN-fingerprint information.

D. Impact of GANprintR on other Fake Detectors

For completeness, this section provides a comparative anal-
ysis of the impact of GANprintR on the three state-of-the-art
fake detectors considered in this study. Table IV reports the
EER and Recall observed when using the original fake images
and the same ones after passing through GANprintR.

In general, the same conclusions highlighted for Xception-
Net in Sec. VI-C are extracted in Table IV for the other
two fake detectors. For XceptionNet, an average absolute
worsening of 9.65% EER is produced when using GANprintR.
This degradation is even higher for the Steganalysis fake
detector with an average absolute worsening of 14.68% EER.
Finally, the fake detector based on Local Artifacts has proven
to be the most robust one, with an average absolute worsening
of 4.91% EER. This lower performance degradation can be
produced due to the higher EERs achieved in the original
fake images (an average 35.54% EER). These performance
degradations prove the success of our proposed GANprintR,
creating improved versions of the original fake images.

VII. CONCLUSIONS

In this paper we presented a method (GANprintR) for
improving the naturalness of facial fake images based on
autoencoders, and we have empirically shown its ability to
deceive state-of-the-art manipulation detection methods in a
larger extent than some of the most sophisticate and realistic
GAN-based synthetic face image generators available in the
literature. Our method and experiments have been positioned
and discussed in comparison with key related works around
this problem published in the last couple of years.

We started by training one deep autoencoder using public
genuine face databases that models the typical spatial corre-
lations between the pixels of real faces and simultaneously
removes the high frequency components that correspond to the
“fingerprints” of the models used to generate synthetic images.
In test time, the autoencoder was fed only with synthetic
face images to produce manipulated versions, whose properties
were deliberately changed for spoofing fake detection systems.

In the empirical validation of our approach, we used var-
ious well known face datasets, coming out with three major
conclusions about the performance of the state-of-the-art fake
detection methods: i) the existing fake systems attain almost
perfect performance when the evaluation data is derived from
the same source used in the training phase, which suggests that
these systems have actually learned the GAN “fingerprints”
from the training fakes generated with GANs; ii) the observed
fake detection performance decreases substantially (over one
order of magnitude) when the fake detection is exposed to
data from unseen databases, and over seven times in case of
substantially reduced image resolution; and iii) the accuracy
of the existing fake detection methods also drops significantly
when analysing synthetic data manipulated by GANprintR.

In summary, our experiments suggest that the existing
facial fake detection methods still have a poor generalisation
capability and are highly susceptible to - even simple - im-
age transformation manipulations, such as downsizing, image
compression or others similar to the one proposed in this work.
While loss of resolution may not be particularly concerning
in terms of the potential misuse of the data, it is important
to note that our approach is capable of confounding detection
methods, while maintaining a high visual similarity with the
original image.
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Having shown some of the limitations of the state of the art
in face manipulation detection, in future work we can harden
such face manipulation detectors by exploiting our improved
fakes. Additionally, further works may study: i) how improved
fakes obtained in similar ways as GANprintR can jeopardize
other kinds of sensitive data (e.g., other popular biometrics
like fingerprint [50], iris [51], or behavioral traits [52], [53]),
ii) how to improve the security of systems dealing with other
kinds of sensitive data, and finally iii) best ways to combine
multiple manipulation detectors [54] in a proper way to deal
with the growing sophistication of fakes.
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