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Abstract: Objective: The identification of a complementary test to confirm the diagnosis of FM. The
diagnosis of fibromyalgia (FM) is based on clinical features, but there is still no consensus, so patients
and clinicians might benefit from such a test. Recent findings showed that pain lies in neuronal
bases (pain matrices) and, in the long term, chronic pain modifies the activity and dynamics of
brain structures. Our hypothesis is that patients with FM present lower levels of brain activity and
therefore less connectivity than controls. Methods: We registered the resting state EEG of 23 patients
with FM and compared them with 23 control subjects’ resting state recordings from the PhysioBank
database. We measured frequency, amplitude, and functional connectivity, and conducted source
localization (sLORETA). ROC analysis was performed on the resulting data. Results: We found
significant differences in brain bioelectrical activity at rest in all analyzed bands between patients and
controls, except for Delta. Subsequent source analysis provided connectivity values that depicted
a distinct profile, with high discriminative capacity (between 91.3–100%) between the two groups.
Conclusions: Patients with FM show a distinct neurophysiological pattern that fits with the clinical
features of the disease.

Keywords: fibromyalgia; EEG; fast Fourier transform; diagnosis; ROC curve

1. Introduction

Fibromyalgia (FM) is a highly prevalent, painful disease, suffered by 2–4% of the
population in the industrialized world, predominantly in women (ratio 9:1); it is very
debilitating both physically and psychologically [1]. Current diagnosis criteria evaluate
neither peripheral nor central functional deficiencies linked with the clinical symptoms,
which complicates both the identification of the physiopathology of the disease and the
search for adequate treatment [2].

In general terms, FM represents an enormous expenditure of resources, both direct
(health care and medication) and indirect (e.g., loss of jobs and use of government aid)
for the health, social and economic systems. The mean annual cost per patient in western
countries ranged from US $2274 to $9573 in the central studies and even more in others,
depending on the severity of symptoms and methods of cost calculation [3]. There exists,
therefore, a need to identify a discriminative complementary method which, together with
the description of the clinical symptoms, would help in the detection of FM [2]. Early
diagnosis and treatment would reduce the burdens on patients, relatives, and society.

The feeling of pain is generated by a widely distributed brain network rather than by
a direct sensory input evoked by a lesion or other pathology [4]. There are clear, substantial
differences between (i) acute pain, which is evoked by specific noxious inputs, and whose
sensory transmission mechanisms are well described, and (ii) chronic pain syndromes,
which are often characterized by severe pain associated with little or no discernible injury
or pathology, and are still not well understood [4]. In the last five years, some studies have

J. Clin. Med. 2021, 10, 3277. https://doi.org/10.3390/jcm10153277 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-9806-2351
https://doi.org/10.3390/jcm10153277
https://doi.org/10.3390/jcm10153277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10153277
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm10153277?type=check_update&version=1


J. Clin. Med. 2021, 10, 3277 2 of 14

shed some light on the cerebral mechanisms of chronic pain modulation [5], showing that
subjective pain experience corresponds to a defined pattern of brain activity, in what is
called the ‘pain matrix’ [6,7].

Such experience of pain has consequences that go further than temporary unpleasant
feelings. Pain leaves a footprint: experiencing chronic pain can cause anatomical and
functional reorganization of the brain [8], as shown in several disorders such as phantom
pain, chronic back pain, irritable bowel syndrome, and FM (May, 2008). The morphological
changes include the loss of gray matter volume [9], whereas the functional alterations
include aberrant functional activity [10]. Recent reviews of the long-term effects of chronic
pain have demonstrated the appearance of a “brain signature” [7,11]. The neural dynamics
of the experience of pain follow specific processes related to coherence, activation, and
deactivation of “core structures” in the default mode network, which are not linearly
associated with stimulus intensity [12]. Such oscillations and the synchrony characteristics
of pain can be measured by EEG and studied [13,14], including in clinical settings [15]. For
example, Jensen et al. (2013) reported that the presence of specific EEG patterns might
predict with 83% accuracy spinal cord injury patients’ vulnerability to feelings of chronic
pain [16], and Vuckovic et al. (2018) reported up to 85% accuracy in other studies [17]. A
similar phenomenon takes place in healthy controls [15].

In the case of FM generalized pain, allodynia, and other neurological symptoms of
central origin [18], result from deep tissue, like joints or muscles, in combination with
central sensitization mechanisms. The nociceptive input may begin in peripheral tissue
(e.g., by infection), generating allodynia or central sensitization. Those impairments in
pain mechanisms might derive from long-term neuroplastic imbalances that the patients’
antinociceptive capabilities cannot manage and result in ever-increasing pain sensitivity
and dysfunction [19].

The physiopathology of the FM syndrome described in the literature is compatible
with a central state of hyperexcitability of the nociceptive system [20,21], specifically, a
persistent over-activation of Theta and Beta bands [22,23].

Complementary research indicates that both power band and power density differ-
ences exist between patients and matched controls. For example, Delta power density at
temporal areas appears to be decreased in patients concerning controls, but Beta power
reaches higher values in frontal and cingulate regions of patients with FM (Gonzalez-
Roldan). Other types of analysis based on EEG data as source analysis have also indicated
differences in the cingulate cortex. In particular, Vanneste et al. focused on both the degree
of activation and the degree of integration and concluded that patients with FM showed
decreased connectivity in the anterior cingulate cortex, which may affect the pain inhibitory
pathway, mediating the pain feeling [24]. Pain experience correlates with a decreased level
of Alpha-2 (11–12 Hz) in the posterior cortex [25] and decreased connectivity of the insula
within the default mode network [26].

Other neuroimaging techniques, such as magnetoencephalography (MEG), have also
shown disrupted connectivity at the Theta frequency for patients with FM compared
with controls in the default mode network [27] and with resting state sequences [28].
However, there is little information comparing patients with FM with controls on electrical
coherence between brain regions [24], and specific connections between regions have not
yet been addressed. The analysis of such differences could, perhaps, be based on the EEG
technique [29]. Working on EEG data, this study aims to describe the connectivity patterns
in the default mode network in a group of patients to establish differential parameters
and compare them with a sample of healthy controls. The hypothesis is that patients with
fibromyalgia present significant differences from the controls in EEG activity and that this
differential activity would be linked to a decrease in brain connectivity, as happens in other
diseases related to chronic pain [30–33].
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2. Materials and Methods
2.1. Sample

The sample consisted of 23 patients with FM and 23 healthy control subjects. The
patients with FM were recruited via FIBROFAMUR (the association of patients with FM).
They had all been diagnosed with FM by the Rheumatology Department of the Virgen de
la Arrixaca University Hospital, Murcia) according to the American College of Rheuma-
tology Diagnostic Criteria for fibromyalgia, with no record of epilepsy seizures or other
neurological disorder in the sample. Recruiting, testing, and analysis of the data took place
in 2017 and 2019.

The two groups were matched for age and gender. The mean age of the experimental
group was 56 years (range 35–65). Seventy-seven percent had had the disease for more
than 12 years. T-test analysis indicated no significant differences in age (t (44) = 0.061,
p = 0.54) with the control group. The gender distribution was five males (21.8%) and
eighteen females (78.2%) in each group. The control sample was randomly collected
from the PhysioBank database, a public standard database available on the internet from
the National Center for Research Resources of the National Institutes of Health [34]. It
came from an experiment on motor movement/imagery, with a baseline of eyes closed
EEG in resting state conditions, similar to the FM patients. A history of neurological or
neuropsychiatric records or the use of drugs were exclusion criteria for participation in the
control group. Accordingly, no pathological signals were found on the EEG registry of the
control sample. Control sample registries undergo visual inspection to check the absence
of pathological signs [35].

The Ethical Committee of the University of Murcia (Spain) approved the study. All
procedures used followed the ethical standards of the responsible committee on human
experimentation (institutional and national) and with the Helsinki Declaration of 1964 and
its later amendments. All patients signed a written informed consent before their inclusion
in the study.

2.2. Procedure

Twenty-one high-resolution EEG channels (NEURON-SPECTRUM-AM®) were used
to record the data following 15 min eyes-closed resting state protocol. The sampling rate
was 512 Hz. Guidelines to standard sample registration were followed (demographics,
medical history, screening EEG, medication status) [36]. Data acquisition was conducted in
complete silence, sitting in a comfortable and isolated room free from unpleasant stimuli.
The disposition of electrodes followed the international 10–20 system with earlobes used
as references and ground reference located in the Fpz location.

2.2.1. Data Preprocessing

Average reference, filtering, and analysis of the EEG signal were equal in both samples.
A medical doctor with 50 years’ experience in EEG ran a qualitative analysis by visual
inspection of specific assemblies of bipolar montages. Segments of no less than 1 min of
EEG free from artifacts were selected for analysis. The grapho-elements of pathological sig-
nificance were registered (i.e., frequent posterior sharp waves) [37] since the morphological
mapping tests of these patients usually show the presence of areas with atrophy [38,39],
with signs of aging [40] or irrigation alterations [41] (Figure 1).
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Figure 1. Example of EEG registry that presents abnormal activity (squared in black). Recording
details: amplitude 70 microvolts, 10 s.

2.2.2. Data Analysis

Global EEG power was calculated with a weighted average across all channels
with an average reference. Quantitative analyses (both fast Fourier transformation (FFT)
and coherence analysis) were performed using the Brainstorm software [42] on MAT-
LAB compiler runtime R2015b (MCR v9.0). The amplitude for each frequency band
was calculated through the FFT and the functional connectivity through the coherence
method (https://neuroimage.usc.edu/brainstorm/ Retrieved on 13 April 2021) previously
used [43]. Relative amplitude was calculated as a percentage for each frequency band from
the total absolute amplitude spectrum (from 1 to 32 Hz). The localization of the abnormal
activity source required the standardized low-resolution brain electromagnetic tomography
(sLORETA) method [44].

2.3. Statistical Analysis

The calculation of the mean amplitude and coherence differences for each group were
obtained using the Student’s T method. The 95% confidence intervals were estimated with
a significance level of p < 0.05. The Bonferroni method was used to minimize errors arising
from multiple comparisons.

Although we calculated several indices of functional association between pairs of
electrodes that obtained good discriminative capacity, only significant ones are reported
here. Their calculation was based on the sum of the coherences between the temporary
locations (T3 and T4) with the Fz [index of functional discrimination between healthy and
FM = (T3 − Fz coherence) + (T4− Fz coherence)].

To elucidate whether the connectivity pattern may serve to identify patients with
fibromyalgia, we calculated ROC curves through the SPSS ROC curve calculation, obtaining
sensitivity and specificity values and a total discrimination index. This index was used
alongside the clinical diagnosis to calculate the sensitivity/susceptibility, S = TP/(TP + FN),
and the specificity, E = TN/(FP + TN), of the EEG as a diagnostic tool, where TP means “true
positive”, TN “true negative”, FN “false negative”, and FP “False positive”. ROC curves
were used as an accuracy index to explore the discriminative validity of EEG parameters.
Note that no machine learning methods were used. The discriminative capacity, following
the ROC curve analysis, using 95% confidence intervals (CI), was calculated using the

https://neuroimage.usc.edu/brainstorm/
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following formula: sensitivity − (1 − specificity) [45]. The software SPSS v.23 was used for
statistical analysis.

3. Results
3.1. Frequency Analysis

The FM group had significantly lower amplitude values than the control group
(p < 0.001). These differences appeared in all frequency bands and locations studied, except
for the relative frequency of the Delta band (absolute and relative frequency values appear
in Figure 2 and the statistical figures Table 1).
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Figure 2. Absolute amplitude average of frequency bands (µV) in FMS and control groups (p < 0.0001
for all frequency bands comparisons).

Table 1. Differences in frequency bands between groups of absolute and relative mean frequencies
for FM and control group * p < 0.001.

FM (n = 23) Control (n = 23)

Mean SD Mean SD p

ABSOLUTE

Delta 5.59 0.42 21.22 2.69 0.000 *
Theta 6.32 0.50 27.88 3.75 0.000 *
Alpha 15.74 0.75 72.86 18.53 0.000 *
Beta 20.67 1.72 65.11 9.22 0.000*

RELATIVE

Delta 11.57 0.49 11.57 2.07 0.991
Theta 13.08 0.65 15.02 1.55 0.000 *
Alpha 32.62 1.06 38.45 4.09 0.000 *
Beta 42.72 1.17 34.97 2.08 0.000 *

Analyzing each group, frequency maps of the FM sample showed greater activity in
the right parietal region (location P4) for the other bands. This seems to agree with the
presence of spike-type grapho-elements in the right parietal and occipital areas, mentioned
earlier.

3.2. Sources by LORETAs

All EEG registries were visually checked. A higher frequency of spike-type grapho-
elements was found in patients (17.8%) than in controls (0%), with potential symptomatic
seizures from irritation of neighboring cerebral cortical tissue located on the right occipital
and parietal regions [35]. This is a common finding, as nonepileptic seizures (PNES) are
frequently found in FM patients [46–48].

By analyzing the location of sources using the sLORETA method we located anoma-
lous activity (signs of irritation) on the bilateral precuneus, with right predominance, on the
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right inferior parietal cortex, bilateral prefrontal medial cortex, and right anterior Cingular
cortex for patients with FM. Figure 3 shows the localization of the band activity.
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Figure 3. Source localization of abnormal activity in FMS patients.

3.3. Analysis of Coherence

In the FM group, we found that cortical interconnections in FM were very scarce
during eyes-closed resting, especially for Delta and Beta frequencies. Those existing in
the Alpha and Theta bands were only visible in frontotemporal regions (p < 0.001). These
findings contrast strongly with the degree of interconnection shown by control subjects.
In particular, the coherence analysis revealed greater functional connectivity between the
insular regions and the frontal regions in the patients with FM, but not in the control sample
(p < 0.001). The coherence measures for FM and control samples appear in Figure 4, where
only coherences equal to or greater than 0.5 were included.
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3.4. Discriminatory Index

Finally, to distinguish patients with FM from controls, we analyzed a discrimination
index using average amplitudes, the region of interest amplitude of P4, and functional
connectivity between fronto-bitemporal locations. Statistical data appear in Table 2, show-
ing good discrimination results with high accuracy (between 91.3–100%), and in Table 3,
showing the area under the curve for ROC curves from frontal and temporal coherence
values. The Theta band showed the best AUC with a sensitivity of cases of 100% and
inclusion of 0% false cases. Frontotemporal functional connectivity showed a sensitivity of
91.3% and inclusion of 21.4% of false cases.

Table 2. Comparison between discriminative indexes for different EEG parameters. AUC = area
under the curve.

FFT Amplitude ROC
(AUC)

Sensitivity/
1 − Specificity p [95% CI]

Delta (1–4 Hz) 0.618 0.643/0.609 0.234 (0.417, 0.819)
Theta (4–7 Hz) 1 1/0 0.000 (1, 1)

Alpha (7–14 Hz) 0.975 1/0.217 0.000 (1, 1)
Beta (15–32 Hz) 0.988 1/0.174 0.000 (0.960, 1)

Right Parieto-Occipital activity (P4) 0.984 1/0.217 0.000 (0.951, 1)
Frontotemporal functional connectivity 0.913 0.913/0.214 0.000 (0.816, 1)

Table 3. Accuracy index—area under the curve (AUC) for ROC curves calculated from coherence
values. * p < 0.05; ** p < 0.001.

Derivations Delta Theta Alpha Beta

Fp1-Fp2 0.390 0.467 0.294 0.238
Fp2-T4 0.843 ** 0.907 ** 0.875 ** 0.846 **
Fp1-T3 0.843 ** 0.849 ** 0.884 ** 0.746 *
T3-T4 0.580 0.596 0.706 0.593
Fz-T3 0.712 * 0.684 0.780 * 0.765 *
Fz-T4 0.799 * 0.835 * 0.774 * 0.846 **

Fz-T3 + Fz-T4 0.877 ** 0.794 * 0.788 * 0.822 *
Fp1-T3 + Fp2-T4 0.765 * 0.887 ** 0.913 ** 0.80 *

4. Discussion

In this study, we report the EEG data of a sample of 23 patients with FM and 23
matched controls to identify electrical differences between the two groups. The differential
pattern of coherence, in the last instance, might work as a complementary method for FM
diagnosis.

According to our results, patients with FM presented lower values than controls in
all frequencies except for the Delta band. The frequency maps of the FM group indicated
greater activity in parietal areas than in the rest of the scalp. Subsequent sources analysis
indicated anomalous activity at the bilateral precuneus, with right predominance, on the
right inferior parietal cortex, bilateral prefrontal medial cortex, and right anterior cingular
cortex in the FM group. The coherence analysis of the brain signal showed clear differences
between the groups, particularly in the bilateral frontotemporal region. Discriminatory
analysis indicated a significant difference in interconnectivity patterns between patients
and controls.

In general, we can state that frequency power was dramatically lower in the FM
group than in the controls. These findings are compatible with the morphological findings
reported by multiple authors using neuroimaging techniques [49]. The weight of the
encephalon can be up to 3.3 times lower in chronic pain patients than in healthy subjects.
In particular, this neuronal loss affects white matter, as evaluated by fractional anisotropy
techniques [50]. With regard to location, studies by Kuchinad et al. (2007) showed that
the most affected structures were the thalamus, medial posterior cingulate cortex, insula,
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prefrontal cortex, parahippocampus, hippocampus, anterior cingulate cortex, and striated
nuclei [51]. A neuronal loss might explain the decrease in neuronal working synchrony, as
a consequence of the communication defects caused by both the diffuse neuronal loss and
the fibers of the white matter [52].

Deeper analysis of the affected bands shows that the most severe decrease took place
in Alpha, Theta, and Beta frequency bands and was not significant in the Delta band. On the
one hand, given that the first three bands depend on the cortical neuronal interaction and
its networks, it is reasonable to link these alterations with the morphological impairments
described above. On the other hand, Delta activity is more dependent on the somas of the
deep pyramidal neurons affected in degeneration, usually by irrigation defects [53]. Other
studies have reported similar differences between patients with FM and healthy controls
while solving problems of various types. In global field power analysis, patients with FM
presented lower modulation of Alpha and Theta, less synchronization, and lower spectral
density, which indicates the presence of excessive neuronal noise [54]. According to fMRI
research, patients with FM have to mobilize more cortical extension than healthy subjects,
even in young patients aged between 25 and 40. This process may explain the presence of
cognitive impairments. This reaction closely resembles the one in healthy elderly people,
which is why some authors compare the consequences of fibromyalgia with an accelerated
brain aging process.

Frequency mapping with a separate representation of the different frequency bands
demonstrates that all bands showed their maximum amplitude in the right parieto-occipital
region (Figure 5). This predominance may represent better conservation of the neuronal
structure of the right parietal lobe than in other cortical areas (susceptible to potential
irritative characters) [55]. This may also be related to the increase of glutamic acid and
the decrease of gamma-aminobutyric acid described by Puiu et al. at the anterior cingular
cortex, insula, and amygdaloid nucleus [56].

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 5. Functional connectivity comparison between control and FMS samples (connectivity be-
tween temporal and frontal locations). 

Concerning connectivity patterns, the intercommunication at the Alpha and Theta 
frequencies were more abundant in patients with FM, but short association fiber between 
neighboring areas predominate in the bilateral frontotemporal region, suggesting better 
conservation of U-fibers than long fibers in the whole of the white substance (Table 3). 
This contrasts with recent findings in which long fibers appeared more connected than 
short ones in the Alpha band [54]. Other studies support our results about the significantly 
lower level of connectivity signal in the FM group than in controls during resting state, 
particularly in the Theta band [27,58,59]. These functional connectivity differences are re-
lated to differences in pain intensity between FM patients and controls [60].  

It also seems that some treatments that reduce pain in FM produce a change in brain 
connectivity, including the insula and the cingulate cortex, as in our study [61]. Physical 
exercise interventions also seem to normalize aberrant resting state functional connectiv-
ity in FM patients and to be associated with pain improvement [62]. These patterns of 
altered connectivity have been found to be associated with altered integration of sensory 
information [63]. Other studies of functional connectivity have shown a reduced pattern 
of connectivity in FM, and it has been suggested that functional connectivity could have 
clinical implications if used as an objective measure of pain dysregulation [64]. 

Test Accuracy 
The resulting patterns demonstrated high discriminability between patients and con-

trols, predominantly in the Theta band and right frontotemporal regions (Table 3), agree-
ing with Ichesco [65]. A variety of methods of complementing FM diagnoses have reached 
high accuracy values: 72.9% accuracy of FM symptomatology questionnaires [66], 78.9% 
accuracy of neurophysiological reflex exploration of the spinal nociceptive flexion reflex, 
indicative of central sensitization [20], 95% accuracy of qEEG during polysomnography 
[67], 85.1% accuracy with different alternative criteria for FM (Salaffi et al., 2020), and 
64.8%–71.3% accuracy based on physical examination and laboratory tests to identify FM 
patients [68]. Another study using an fMRI combination of neurologic pain signature, 
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between temporal and frontal locations).

Analysis of the source with the sLORETA system pointed to the bilateral precuneus,
right inferior parietal cortex, bilateral medial prefrontal cortex, and right anterior cingular
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cortex. These cortical structures are part of the default mode network, except for the
insula, which was not observed in our maps. The most activated structure was the anterior
cingular cortex, the first structure affected in FM, and the one in which has been observed
the most manifest excess of glutamic acid, reduction in gamma-aminobutyric acid, and
neuronal loss [24]. This fact may help explain why some authors argue that the exacerbation
of pain in FM results from the existence of hypersensitive neural networks which, with
their explosive response to any stimulus, cause synchronizations of the most sensitive
networks [57]. These authors found a positive relationship between the intensity of pain
caused by any normal stimulus and the degree of explosive synchronization of the EEG in
these patients. According to the results of the current study, the presence of EEG spikes
could be an example of these explosive phenomena, although it can also only facilitate
them.

Concerning connectivity patterns, the intercommunication at the Alpha and Theta
frequencies were more abundant in patients with FM, but short association fiber between
neighboring areas predominate in the bilateral frontotemporal region, suggesting better
conservation of U-fibers than long fibers in the whole of the white substance (Table 3).
This contrasts with recent findings in which long fibers appeared more connected than
short ones in the Alpha band [54]. Other studies support our results about the significantly
lower level of connectivity signal in the FM group than in controls during resting state,
particularly in the Theta band [27,58,59]. These functional connectivity differences are
related to differences in pain intensity between FM patients and controls [60].

It also seems that some treatments that reduce pain in FM produce a change in
brain connectivity, including the insula and the cingulate cortex, as in our study [61].
Physical exercise interventions also seem to normalize aberrant resting state functional
connectivity in FM patients and to be associated with pain improvement [62]. These
patterns of altered connectivity have been found to be associated with altered integration
of sensory information [63]. Other studies of functional connectivity have shown a reduced
pattern of connectivity in FM, and it has been suggested that functional connectivity could
have clinical implications if used as an objective measure of pain dysregulation [64].

Test Accuracy

The resulting patterns demonstrated high discriminability between patients and
controls, predominantly in the Theta band and right frontotemporal regions (Table 3),
agreeing with Ichesco [65]. A variety of methods of complementing FM diagnoses have
reached high accuracy values: 72.9% accuracy of FM symptomatology questionnaires [66],
78.9% accuracy of neurophysiological reflex exploration of the spinal nociceptive flexion
reflex, indicative of central sensitization [20], 95% accuracy of qEEG during polysomnog-
raphy [67], 85.1% accuracy with different alternative criteria for FM (Salaffi et al., 2020),
and 64.8%–71.3% accuracy based on physical examination and laboratory tests to identify
FM patients [68]. Another study using an fMRI combination of neurologic pain signa-
ture, pain-related response, and multisensory nonpainful sensory stimulation showed 93%
discrimination accuracy [29].

To our knowledge, EEG functional connectivity has not been used, so far, to dis-
criminate between chronic pain syndromes. One future line of research should study the
discriminative power of brain activity between different pain syndromes using functional
connectivity, a line of research that needs further optimization. It is theoretically possible
that chronic pain syndromes share common brain signatures, but discriminative methods
could also be optimized to increase the accuracy of the results. For example, more specific
examination with fMRI has been used to discriminate between pain syndromes with non-
significant results, although 78.8% discriminative accuracies were achieved between FM
and rheumatoid arthritis [69]. Overall, due to the consistently higher accuracy results of
brain parameters over other methods of FM discrimination, neuroscientific methods could
help improve FM diagnosis. In particular, EEG seems to be a promising tool with which to
improve the early identification of patients at risk of developing a chronic pain condition.
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Some possible limitations result from using the reference database, which is a relatively
new (albeit increasingly adopted) procedure [70,71]. It is arguable that the FM sample
could not be completely comparable with the nonclinical subjects extracted from the
standard database because of incompatibilities between different acquisition methods.
The use of several methodological techniques can, however, ensure the validity of the
comparisons made in the present study, by reducing acquisition noise and sources of
confusion [72]. These methods include the use of averaging mounts, band-pass frequency
filters that exclude frequencies above 100 Hz [73], and relative power calculations to
reduce differences individual measurements in skull thickness or amplifier calibration [74].
These techniques show similar results between acquisition devices when calculating the
FFT bands [75], and similar signal-to-noise ratios between devices (up to 12 different
ones). Even the comparison between modern low-cost EEG devices with medical-grade
instruments shows comparable results for calculating frequency [76]. These techniques and
new research opportunities are opening up new avenues for the use of open repositories in
neuroscience research and collaboration.

To confirm the validity of the control sample, other studies used the same database [10,77–82],
including with FM population [83]. Alterations in functional connectivity are frequent
in patients with FM (Hargrove et al., 2010), in particular alterations in frontotemporal
connectivity [62,65,84], and are often associated with a lower white matter volume than
in controls in frontal regions [28]. Our results replicate these previous findings. However,
since we have specifically studied frontotemporal functional connectivity as a region of
associations of interest (due to sample size limitations), these results should be viewed
with caution. In summary, the comparison with normative samples constitutes a valid
method if certain requirements are met (i.e., age-appropriate values, selection of artifact-
free segments, and similar registry conditions, among others). Healthy control databases
have been demonstrated to be reliable and to lack ethnic bias, making the comparison with
clinical samples adequate, cost-effective, culture-fair, and highly sensitive to abnormalities
in brain function both to spectra [15] and LORETA comparisons [85].

About the sample size, it would have been interesting to compare patients with FM
with depressed individuals to see whether our algorithm correctly differentiates from other
comorbid psychiatric pathologies. Another limitation is that there may be different origins
of FM which end in the same syndrome. Therefore, we may be facing a particular type of
FM pattern that presents specific connectivity abnormalities. However, the syndromic sub-
groups of FM remain an unsolved problem. We have not been able to measure pain levels
or precise psychopathological characteristics through questionnaires or cognitive tests,
which may be an interesting line of work in the future, as suggested by some studies [86,87].
Triñanes et al. suggested that types I and II of FM differ by psychopathological profile [87].

This study shows potential distinctive neurophysiological features in patients with
FM that put in connection function and structure. In the future, data could be the basis
of a reproducible and safe diagnostic method for FM, as previously suggested by other
studies [88].
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