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Abstract: Cognitive diagnosis models (CDMs) have increasingly been applied in education and other
fields. This article provides an overview of a widely used CDM, namely, the G-DINA model, and
demonstrates a hands-on example of using multiple R packages for a series of CDM analyses. This
overview involves a step-by-step illustration and explanation of performing Q-matrix evaluation,
CDM calibration, model fit evaluation, item diagnosticity investigation, classification reliability
examination, and the result presentation and visualization. Some limitations of conducting CDM
analysis in R are also discussed.
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1. Introduction

Cognitive diagnosis models (CDMs), or diagnostic classification models (DCMs), are
psychometric models for classifying individuals into latent classes with unique profiles of
attributes. CDMs have increasingly attracted attention in education as they have shown the
potential to identify students’ strengths and weaknesses and thus aid classroom instruction
and learning. In addition to the applications in education [1–4], CDMs have also been
applied to other areas recently, such as industrial and organizational psychology [5] and
psychiatry [6,7].

Despite the usefulness of CDMs in many fields, software programs for CDM analysis
are still lacking. Programs such as Mplus [8,9], JAGS [10,11], and Stan [12,13] have been
used for CDM analysis, but they are not without limitations. For example, CDM estimation
using these programs often requires advanced coding skills, which may pose a formidable
obstacle for CDMs practical application. Also, these general programs typically lack many
essential functions, such as those for refining Q-matrix and assessing classification reliability.
Recently, several R packages have been developed particularly for CDM analysis. Notably,
George et al. [14] introduced the CDM package, and Ma and de la Torre [15] presented the
GDINA package and how to apply it for a series of CDM analyses. However, different
R packages have different functionality and features, and it remains unclear how these
packages can be used in an integrated way for complete CDM analysis. This paper aims
to fill this gap by illustrating a comprehensive CDM analysis with a particular emphasis
on the use of multiple R packages under a widely used general CDM—the generalized
deterministic input, noisy “and” gate (G-DINA) model [16] with a real dataset. As the
first tutorial intended to introduce the state-of-the-art techniques for CDM analyses in the
environment of R via multiple R packages, this paper will help researchers gain better
insight into these packages and conduct CDM analyses in a more principled way.
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2. The G-DINA Model

CDMs are latent variable models, where the latent variables may represent skills,
abilities, misconceptions, or problem-solving strategies and are referred to as attributes.
Attributes are often assumed to have only two statuses, mastery and nonmastery. To
conduct a CDM analysis, the item response data and Q-matrix are required. Suppose a test
measures K attributes and consists of J items. The J × K Q-matrix specifies the association
between test items and the attributes measured, with qjk being the element on the jth row
and kth column. If the kth attribute is assessed by the jth item, the element qjk equals to
1; otherwise, qjk equals to 0. Let the response of examinee i to item j be denoted by Yij.
For each examinee i, there is an attribute profile ai = {ai1, . . . , aik, . . . , aiK} containing K
attributes to be inferred. In addition to the item responses and Q-matrix, one must specify
the CDM to be used. A CDM consists of the measurement model and the structural model.
The former establishes the relationship between the item response and attributes, and the
latter specifies the relationship among attributes. To specify a measurement model, one
needs to consider the nature of the response data (i.e., binary, ordinal, or nominal), the
complexity, and the assumptions of different models. Many measurement models have
been discussed in the literature [17]. DINA is a measurement model developed on specific
assumptions regarding how attributes affect item responses and thus is often referred to as
specific or reduced CDM. In contrast, several other models are referred to as general or
saturated models because they have complex parametrizations and subsume many specific
models. Examples of general CDMs include the generalized DINA model (G-DINA) [16],
the log-linear CDM [18], and the general diagnostic model [19].

Although a simpler model is often preferred if its use could be justified, a saturated
model, such as the G-DINA model, may be used to avoid potential model misspecifications.
The item response function (IRF) of the G-DINA model [16] is expressed by

g
[

P
(

Yij = 1
∣∣∣a∗l j)] = δj0 +

K∗j

∑
k=1

δjkalk +

K∗j

∑
k′=k+1

K∗j −1

∑
k=1

δjkk′ alkalkk′ . . . + δj12...K∗j

K∗j

∏
k=1

alk, (1)

where g[·] represents an identity, logit, or log link function, δj0 is the intercept of item j, δjk
is the main effect of attribute k, δjkk′ is the two-way interaction effect of attributes k and k’,
and δj12...K∗j

is the K∗j -way interaction effect of attributes 1 to K∗j .
The G-DINA model is an unrestricted, saturated model that can be reduced to many

other restricted models by imposing appropriate constraints. In particular, to obtain
the deterministic-input, noisy-and-gate (DINA) model [20–22], all terms in Equation (1)
except δj0 and δj12...K∗j

are constrained to be 0. In this way, the IRF of the DINA model is
expressed by

P
(

Yij = 1
∣∣∣a∗l j) = δj0 + δj12...K∗j

K∗j

∏
k=1

alk. (2)

To obtain the deterministic input, noisy-or-gate (DINO) model [6], only the intercept
and the main effect of attribute k are kept in the link function of Equation (1), and the IRF
of DINO is expressed by

P
(

Yij = 1
∣∣∣a∗l j) = δj0 + δjkalk, (3)

where δjk = −δjk′k′′ = . . . = (−1)K∗j +1
δj12...K∗j

, k = 1, . . . , K∗j , k′ = 1, . . . , K∗j − 1, and

k′′ > k′, . . . , K∗j [16]. In this regard, the number of item parameters for both DINA and
DINO models was reduced to just two, regardless of the number of attributes measured.
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To obtain the additive CDM (A-CDM) [16], only the intercept and the main effects in
the identity link function of Equation (1) are kept. In this way, the IRF of A-CDM can be
expressed by

P
(

Yij = 1
∣∣∣a∗l j) = δj0 +

K∗j

∑
k=1

δj0alk. (4)

The linear logistic model (LLM) [23] is the logit link function of A-CDM, and its IRF
can be expressed by

logit
[

P
(

Yij = 1
∣∣∣a∗l j)] = δj0 +

K∗j

∑
k=1

δj0alk, (5)

and the reduced reparameterized unified model (R-RUM) [24] is the log-link function of
A-CDM, and its IRF is given by

log
[

P
(

Yij = 1
∣∣∣a∗l j)] = δj0 +

K∗j

∑
k=1

δj0alk. (6)

The reduced models presented here can be understood as particular cases of the
G-DINA model that accommodate conjunctive or noncompensatory processes (DINA;
mastery of all attributes is necessary to have a high probability of success), disjunctive
processes (DINO; mastery of one attribute can compensate for the lack of the rest), or
additive processes (A-CDM, LLM, and R-RUM; each attribute implies an independent
increase in a function of the probability of success).

3. Overview of the CDM Analyses

This section will discuss the steps involved in cognitive diagnosis modeling using
the G-DINA model, as shown in Figure 1. The development of diagnostic tests and
specifications of Q-matrices will not be discussed here; detailed discussions of those can be
found in Leighton and Gierl [25], Nichols et al. [26], and Tjoe and de la Torre [19], to name
a few.

When the Q-matrix may not be entirely correct, the first step of CDM analysis should
be the empirical Q-matrix evaluation, which involves validating the number of attributes
and detecting the misidentified elements. To validate the number of attributes, Nájera
and colleagues [27] adopted procedures for assessing the dimensionality, which were
initially developed for exploratory analysis, often without a provisional Q-matrix. When
the number of attributes has been validated, a host of methods have been developed for
identifying misspecified elements [28–31]. De la Torre and Minchen [32] recommended
employing a saturated CDM when conducting Q-matrix validation to avoid conflating
Q-matrix misspecifications with model misspecifications. Also, although statistical pro-
cedures could provide some valuable insights into the Q-matrix, the appropriateness of
the recommendations of these procedures should be carefully assessed by domain experts.
In other words, the Q-matrix validation procedures should be used as a tool to facilitate
domain experts developing the Q-matrix.

The second step of CDM analysis often involves model specification. The goal is
to determine the measurement model—the model estimating the association between
attributes and the observed data—for each item and specify the structural model—the
model estimating the association among attributes—for joint attribute distribution. The
measurement model can be specified on a priori grounds or determined by statistical
procedures. For example, the Wald test and likelihood ratio test have been used to select
the measurement model for each item [16,33–35]. Regularized CDMs have also been used
to determine each item’s most appropriate measurement model [36,37]. It should be noted
that monotonicity constraints may need to be imposed because they are often theoretically
reasonable and can stabilize the parameter estimation, especially when the sample size is
small [38].
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Figure 1. Data analysis diagram using the G-DINA model.

Similarly, the structural model can also be specified based on theories or statistical
approaches. For example, when it is believed that attributes have a hierarchical relationship
or are related to a common higher-order factor, the structural model should reflect such a
belief. The likelihood ratio test can also be performed to compare the saturated structural
model with a structural model it subsumes.

The next step of CDM analysis requires assessing model-data fit. Model-data fit can
be gauged in an absolute sense, at either the test or item level. The test-level absolute fit
evaluation provides information about to what extent the models can fit data well for the
whole test, whereas the item-level absolute fit assesses whether or to what extent the model
can fit data well for the item. Examples of absolute fit measures include the full information
statistics such as Pearson χ2 and limited information statistics such as M2 statistic and
RMSEA2 [39,40]. Models can also be compared using relative fit measures at either test or
item level. Examples of measures for relative fit evaluation include information criteria,
such as AIC and BIC, and other inferential statistics, such as the Wald test and LR test [41].

When the goodness of fit is adequate, one can interpret model calibration results,
including item diagnosticity and person classification reliability. In particular, the item
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characteristic graph showing the probability of success for different latent groups can be
displayed in a bar chart. Item discrimination index can also be calculated. Items with poor
psychometric properties may need to be removed. In addition to item diagnosticity, test
reliability should be investigated. The focus of CDM analysis is often classification, thus,
classification accuracy and consistency should be assessed. With satisfactory classification
reliability, the final step of CDM analysis is to report person classifications, which could be
at the individual level or at an aggregated level for a group of students. It should be noted
that CDM analysis may not necessarily be conducted sequentially. For example, the model
or the Q-matrix may need to be revised, and some items may need to be removed if the
model cannot fit data well.

4. An Illustration

This section will use a set of data to illustrate how to use different R packages for
CDM analysis.

4.1. Data and Q-Matrix Preparation

The dataset we selected the grammar session of the Examination for the Certificate of
Proficiency in English (ECPE) to illustrate an example of CDM analysis application, which
has been used in several previous studies [9,36,42]. The dataset contains dichotomous
responses to 28 items of 2922 students, reflecting their mastery of three grammar rules
(attributes): morphosyntactic rules (A1), cohesive rules (A2), and lexical rules (A3). The
Q-matrix is given in Table 1.

Table 1. Q-Matrix of the ECPE data.

Item A1 A2 A3

1 1 1 0
2 0 1 0
3 1 0 1
4 0 0 1
5 0 0 1
6 0 0 1
7 1 0 1
8 0 1 0
9 0 0 1
10 1 0 0
11 1 0 1
12 1 0 1
13 1 0 0
14 1 0 0
15 0 0 1
16 1 0 1
17 0 1 1
18 0 0 1
19 0 0 1
20 1 0 1
21 1 0 1
22 0 0 1
23 0 1 0
24 0 1 0
25 1 0 0
26 0 0 1
27 1 0 0
28 0 0 1

Note. A1 = morphosyntactic rules; A2 = cohesive rules, A3 = lexical rules.

As shown in Table 1, the Q-matrix specified the attributes measured by each item. A
cell with the value of 1 indicates that the corresponding item measures the corresponding
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attribute, and a cell with the value of 0 indicates the opposite. For example, the attribute
vector, or Q-vector, of item 1 is [1], indicating it measures attributes 1 and 2. One can find
the ECPE data and corresponding Q-matrix from CDM [14], GDINA [15], or edmdata [43]
R packages.

4.2. Empirical Q-Matrix Evaluation

Empirical Q-matrix evaluation involves validating the number of attributes or di-
mensionality evaluation and detecting misspecified elements in the provisional Q-matrix.
Although it usually occurs during the Q-matrix development phase, dimensionality evalu-
ation may provide valuable insight into the structure of the provisional Q-matrix. Dimen-
sionality evaluation can be conducted by the cdmTools [44] package with cdmTools::paK()
and cdmTools::modelcompK() functions. The cdmTools::paK() function adopts the par-
allel analysis method by comparing the eigenvalues generated from principal components,
Pearson correlations, and mean criterion [27,45] of the randomly resampled correlation
matrices and their sample correlation matrices. The argument cor specifies the type of
correlations to be used, whose default value is “both”, implying using both Pearson and
tetrachoric/polychoric correlations. In our code, we define cor = “cor”, indicating the
Pearson correlations are employed. The number of suggested attributes is extracted by
$sug.K. As presented in the output below, the suggested number of attributes is 3, which
is equal to that of our provisional Q-matrix.

>R res.paK <- cdmTools::paK(dat, cor = “cor”)
>R res.paK$sug.K
[1] 3
The cdmTools::modelcompK() function compares several model fit indices of the

CDMs fitted with different Q-matrices of a specified number of attributes that are developed
through the discrete factor loading method (DFL) [46] and the Hull method [47]. Nájera and
colleagues [27] suggested preferring the AIC over other indices. In modelcompK() function,
exploreK = 1:5 indicates that Q-matrices with one to five attributes were evaluated.

>R res.modelcompK <- cdmTools::modelcompK(dat, exploreK = 1:5)
Estimating and validating Q-matrix with K = 1 2 3 4 5
k = 1 explored | AIC = 86,059 | BIC = 86,400
k = 2 explored | AIC = 85,859 | BIC = 86,212
k = 3 explored | AIC = 85,367 | BIC = 85,995
k = 4 explored | AIC = 85,381 | BIC = 86,212
k = 5 explored | AIC = 85,359 | BIC = 86,645

The number of suggested attributes under each model fit index is extracted by $sug.K
as well.

>R res.modelcompK$sug.K
AIC BIC CAIC SABIC M2
5 3 3 3 5
M2.p SRMSR RMSEA2 RMSEA2.low RMSEA2.high
5 5 5 5 5
sig.item.pairs
5

The AIC and BIC values can be plotted across the number of attributes using the
plot() function to obtain a direct view of the comparison result. The plots in Figure 2
demonstrate that the tendency change of AIC values and the minimum BIC value are both
at K = 3.
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>R plot(res.modelcompK$fit$AIC, type = “b”)
>R plot(res.modelcompK$fit$BIC, type = “b”)

After the number of attributes has been assessed, whether the Q-matrix consists of
misspecified elements needs to be examined. Many R packages provide functions for
this purpose. For example, the CDM package implements de la Torre’s method [48],
and the NPCD package [49] refines the Q-matrix based on Chiu’s [50] nonparametric
approach. Both methods may be used for mixed DINA and DINO models. The GDINA
and cdmTools have functions for Q-matrix validation under the saturated CDMs.

Following the suggestion of de la Torre and Minchen [32], the G-DINA model was
employed when conducting Q-matrix validation to avoid conflating Q-matrix misspecifica-
tions with model misspecifications. Specifically, the G-DINA model was fitted to the data
using the code shown below. The argument mono.constraint is set to TRUE to impose
monotonicity constraints to the model, ensuring that the probability of having a correct
response of an item will not decrease as the student masters more required attributes. The
argument control = list(conv.crit = 0.000001) indicates that convergence criterion
was set to 0.000001 instead of the default value at 0.0001.

>R est <- GDINA::GDINA(dat, Q, model = “GDINA”, mono.constraint = TRUE,
>+ control = list(conv.crit = 0.000001))

In this paper, the stepwise Wald test [29] was used by specifying method = ”wald”
in GDINA::Qval() function. Alternatively, the PVAF (i.e., the proportion of variance
accounted for) method with fixed or predicted cutoffs can be applied [28] when using
this function. In the cdmTools package, Q-matrix validation can be performed with
cdmTools::valQ() function, which implements the Hull method with PVAF or McFad-
den’s pseudo R-squared [47] with various iteration algorithms [31].

>R qv <- GDINA::Qval(GDINA.obj = est, method = “wald”)

The suggested Q-matrix based on the stepwise Wald test is presented below. The cells
marked with an asterisk are modified according to the validation results. In our case, the
q-vector of items 9 and 13 was suggested to be modified.

>R print(qv)
Q-matrix validation based on Stepwise Wald test
Suggested Q-matrix:

A1 A2 A3
Item 1 1 1 0
Item 2 0 1 0
Item 3 1 0 1
Item 4 0 0 1
Item 5 0 0 1
Item 6 0 0 1
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Item 7 1 0 1
Item 8 0 1 0
Item 9 1* 0 1
Item 10 1 0 0
Item 11 1 0 1
Item 12 1 0 1
Item 13 1 0 1*
Item 14 1 0 0
Item 15 0 0 1
Item 16 1 0 1
Item 17 0 1 1
Item 18 0 0 1
Item 19 0 0 1
Item 20 1 0 1
Item 21 1 0 1
Item 22 0 0 1
Item 23 0 1 0
Item 24 0 1 0
Item 25 1 0 0
Item 26 0 0 1
Item 27 1 0 0
Item 28 0 0 1
Note: * denotes a modified element.

Additionally, the mesa plots were drawn [51] to visualize the PVAF of q-vectors using
the code below for Items 9 and 13, as shown in Figure 3. In mesa plots, the x-axis represents
the q-vectors and the y-axis their corresponding PVAF values. The default cutoff value for
PVAF (eps) is set to 0.95 out of the range from 0 to 1. The cutoff can be adjusted according
to the researcher’s judgment. De la Torre and Ma (2016) recommended the q-vector on
the edge of the “mesa” to be considered the correct q-vector for the item. In these mesa
plots, the red dots are the original q-vectors. These plots indicate that attributes 3 and
1 each contributed to most of the variance of the item success probabilities of items 9
and 13, respectively, whereas the rest did not contribute much. According to these plots,
the original q-vectors [001] and [100] are suggested to be the correct ones instead of the
q-vectors [101] in the modified Q-matrix.
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Please note that, in this section, only some Q-matrix validation methods were discussed
when a provisional Q-matrix is available; however, some exploratory methods [52–55] have
also been developed to estimate the Q-matrix based on the response data without the
need for a provisional Q-matrix. Additionally, different Q-matrix validation methods may
produce different recommendations because their performance may be affected by many
factors. For example, it has been shown that the stepwise Wald method may prove difficult
in converging when the number of attributes is large. As a result, although those recom-
mendations could be valuable for refining the Q-matrix, whether to adopt the suggestions
should be contingent on domain experts’ judgment and interpretation.

4.3. CDM Calibration

After the Q-matrix is finalized, CDMs can fit into the data. Both CDM and GDINA
packages can fit the G-DINA model to the data, but they have different default settings.
This section will show how the model calibration using one package can be converted to the
other package. First, the data is calibrated using the GDINA package with the code below:

>R tol <- 0.000001
>R GDINA.est <- GDINA::GDINA(dat, Q, model = "GDINA", mono.constraint = TRUE,
>+ control = list(conv.crit = tol))

Based on the estimates from the GDINA package, the following code allows fixing
the parameters at their estimated values and obtaining an object of “gdina” from the
CDM package directly. In particular, item parameter estimates from the GDINA::GDINA()
function of the GDINA package were extracted by GDINA.est$delta.parm, and the prior
probabilities for each latent class for the last E-step of the EM cycle are obtained via
GDINA::extract(GDINA.est, what = “att.prior”). Using the CDM package, the ar-
guments in CDM::gdina() function can be defined with the elements we extracted from
GDINA.est. In particular, the arguments delta.fixed and attr.prob.fixed make it
possible to fix delta parameters and attribute probabilities, respectively. The argument
reduced.skillspace is FALSE, indicating the attribute patterns were not reduced and all
possible attribute patterns were included in the estimation [56]. It should be noted that the
attribute space needs to be specified using argument skillclasses in that CDM::gdina()
and GDINA::GDINA() functions use different attribute spaces by default. In the code be-
low, the attribute space was defined as att.pattern and then specified in CDM::gdina()
function. Because of those settings, GDINA.est and CDM.est contain equivalent estima-
tion results.

>R delta.param <- extract(GDINA.est,"delta.parm")
>R mixing.proportions <- GDINA::extract(GDINA.est, what = "att.prior")
>R K <- ncol(Q)
>R att.pattern <- extract(GDINA.est,"attributepattern")
>R CDM.est <- CDM::gdina(dat, Q, skillclasses = att.pattern,
>+ delta.fixed = delta.param,
>+ attr.prob.fixed = mixing.proportions,
>+ reduced.skillspace = FALSE)

The data can be fit first using the CDM package prior to fixing the parameter estimates
in the GDINA package. As shown below, when fitting the data using CDM::gdina()
function, monotonic constraints were imposed using argument mono.constr and set
criteria for convergence using arguments conv.crit and dev.crit. It should be noted
that when the monotonicity constraints are imposed, a logit link G-DINA model is adopted
by default, which is mathematically equivalent to the identity link G-DINA model.

>R cdm.fit <- CDM::gdina(dat, Q, rule = “GDINA”, conv.crit = tol,
>+ dev.crit = tol,
>+ mono.constr = TRUE)
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The GDINA::GDINA() function does not allow fixing delta parameters directly; instead,
the item success probabilities can be fixed. The code below extracts the probabilities of
success for each reduced attribute profile on each item:

>R p <- list()
>R for(j in 1:ncol(dat)){
>+ p[[j]] <- unlist(subset(cdm.fit$probitem, itemno == j, select = prob))
>+ }

The code below calls GDINA::GDINA() with several arguments. In particular, the logit
link G-DINA model was specified via the arguments model and linkfunc. The attribute
space used in the CDM package was extracted via cdm.fit$attribute.patt.splitted
and specified using att.str in GDINA::GDINA() function. The initial item success prob-
abilities were specified via argument catprob.parm and the initial distribution of latent
classes was specified using att.prior. By specifying maxitr = 0 in argument control, the
E-M cycle was disabled, and the initial item success probabilities and distribution of latent
classes were used for the final E-step calculation.

>R gdina.fit <- GDINA::GDINA(dat, Q, model = "GDINA", linkfunc = "logit",
>+ att.str = cdm.fit$attribute.patt.splitted,
>+ catprob.parm = p, att.prior = cdm.fit$attr.prob,
>+ control = list(maxitr = 0))

After determining the CDMs and Q-matrix, the assessment is performed to determine
whether the parameters of the model can be identified. The function cdmTools::is.Qid()
from the cdmTools package checks model identifiability according to the criteria from
Chen and colleagues [53] and Xu and Shang [57]. As shown below, all parameters of the
G-DINA model can be identified in this example. Q-matrix in the Q argument, as well as
the model that was estimated in the model, need to be provided. Available inputs for the
model are “DINA”, “DINO”, or “others”. Here “others” are indicated because of the use of
the G-DINA model.

>R cdmTools::is.Qid(Q, model = “others”)

So far, the discussion has been focused on how to estimate the G-DINA model using
both packages, obtain the equivalent objects between two packages, and assess the iden-
tifiability of the G-DINA model globally. In practice, researchers may want to simplify
the G-DINA model empirically because it has been shown that reduced models, when
used appropriately, can provide better classification results than the G-DINA model [34].
The GDINA package offers a function called GDINA::modelcomp(), which implements
the Wald test and likelihood ratio test for assessing whether the G-DINA model can be
reduced to five commonly used reduced models, namely, the DINA model, the DINO
model, A-CDM, LLM, and R-RUM, as shown below:

>R mc <- GDINA::modelcomp(GDINA.est)
>R mc
Item-level model selection:
test statistic: Wald
Decision rule: simpler model + largest p -value rule at 0.05 alpha level.
Adjusted p -values were based on holm correction.

models pvalues adj.pvalues
Item 1 RRUM 0.4815 1
Item 2 GDINA
Item 3 RRUM 0.7505 1
Item 4 GDINA
Item 5 GDINA
Item 6 GDINA
Item 7 LLM 0.6565 1
Item 8 GDINA
Item 9 GDINA
Item 10 GDINA
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Item 11 ACDM 0.9209 1
Item 12 RRUM 0.4902 1
Item 13 GDINA
Item 14 GDINA
Item 15 GDINA
Item 16 LLM 0.5678 1
Item 17 DINO 0.1332 1
Item 18 GDINA
Item 19 GDINA
Item 20 RRUM 0.3889 1
Item 21 LLM 0.9537 1
Item 22 GDINA
Item 23 GDINA
Item 24 GDINA
Item 25 GDINA
Item 26 GDINA
Item 27 GDINA
Item 28 GDINA

Similarly, the CDM package implements the Wald test for comparing the G-DINA
model with the DINA model, the DINO model, A-CDM in CDM::gdina.wald(). In addi-
tion, the CDM package allows researchers to fit the regularized G-DINA model using a
variety of penalty terms. This is a flexible approach to simplifying the G-DINA model
and interested readers may refer to Robitzsch [37] and Robitzsch and George [36] for more
information. A caveat to the Wald and LR tests for model comparisons is that trivial
discrepancy between two models may be detected when sample size is large and one
should be aware that the logit link must be used when the regularized G-DINA model is
specified in the CDM package.

4.4. Model Fit Evaluation

Both CDM and GDINA packages offer functions for assessing model–data fit. Table 2
shows the functions and the statistics calculated in each package. It is evident that both
packages calculate various statistics for assessing both absolute and relative fit at test and
item levels. This paper will not enumerate the outputs of all those statistics; instead, it
will focus on absolute fit statistics, as only the G-DINA model was used, and present some
results as an example.

4.4.1. Test-Level Fit Evaluation

Most test-level absolute fit measures gauge the discrepancy between observed quan-
tities and model-implied counterparts. For example, the M2 statistic [38,58,59] compares
the univariate and bivariate distributions of observations and model predictions. Because
it conforms to χ2 distribution, hypothesis tests can be conducted to assess whether the
model fits data. However, it is well-known that a hypothesis test is affected by sample
size, and a large sample may capture trivial discrepancies between the model and the data.
To address this issue, the root mean square error of approximation (RMSEA2) [39,60] and
the standardized root mean square residual (SRMSR) [39,61] can be used as effect–size
measures. For both RMSEA2 and SRMSR, a smaller value indicates a better absolute
model data fit [62]. Simulation studies suggest that RMSEA2 < 0.03 indicates excellent fit,
0.03 < RMSEA2 < 0.045 a good fit, and RMSEA2 < 0.045 poor fit. SRMSR < 0.05 indicates
good model fit [39,63]. It should be noted that when the number of parameters is large, the
M2 statistic, as well as RMSEA2, may not be calculable.
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Table 2. Model-data fit statistics.

CDM GDINA

Function Statistics Function Statistics

Absolute fit

Test-level IRT.modelfit()

max(X2)
MADcor
SRMSR

MADRESIDCOV
abs(fcor)

modelfit()
itemfit()

M2
RMSEA2
SRMSR

MaxAD.r
MaxAD.LOR

Item-level IRT.RMSD()
itemfit.sx2()

RMSD
RMSD_bc

MAD
MD
χ2

S− χ2

RMSEA

itemfit()
MaxAD.r

MaxAD.LOR

Item-pair level IRT.modelfit() χ2

fcor
itemfit()

MaxAD.r
MaxAD.LOR

Relative fit

Test-level IRT.modelfit()
anova()

AIC
BIC

CAIC
AIC3
AICc

LR test

modelfit()
anova()

AIC
BIC

CAIC
SABIC
LR test

Item-level gdina.wald() Wald test modelcomp()
Wald test

LR test

Note. max(X2) = the maximum chi-square statistic; MADcor = mean of absolute deviation of correlations; SRMSR = standardized mean
square root of squared residuals; MADRESIDCOV = mean of absolute deviation of residual covariances; abs(fcor) = the absolute deviation
of Fisher transformed correlations; RMSD = root mean square deviation; RMSD_bc = RMSD statistic with analytical bias correction;
MAD = mean absolute deviation; MD = mean deviation; χ2 = chi-square statistic; S-χ2 = S-chi-square statistic; RMSEA = the root mean
square error of approximation; fcor = Fisher transformed correlations; AIC = Akaike’s Information Criteria; BIC = Bayesian Information
Criteria; CAIC = consistent AIC; AICc = the sample size adjusted AIC; M2 = the second-order marginal statistic; RMSEA2 = limited
information RMSEA; MaxAD.r = maximum absolute deviation of transformed correlation; MaxAD.LOR = maximum absolute deviation of
log odds ratio; SABIC = the sample size adjusted BIC; LR test = likelihood ratio test.

Aggregated item-level or item-pair level absolute fit measures have also been used to
assess test-level fit. Examples include the mean absolute difference between the observed
and expected correlations (MADcor) [64,65], the maximum absolute difference between
observed and predicted Fisher transformed correlations (MaxAD.r) [64], the maximum
absolute difference between observed and predicted log odds ratios (MaxAD.LOR) [64],
the mean of absolute deviations of residual covariances (MADRESIDCOV) [66], and the
maximum χ2 value of all item pairs (max(X2)) [67]. The χ2 statistic quantifies the deviance
between the observed and predicted item-pair distributions, using individual posterior
distributions of the specified model. For MaxAD.r, MaxAD.LOR and max(X2), one can
often report adjusted p-value to assess whether the model and the data fit well for the worst
pair of items. For other measures, a small value indicates a good fit. Since the value of
MADRESIDCOV is often small, the value of 100*MADRESIDCOV is usually adopted [68].

In the CDM package, function CDM::IRT.modelfit() can be used to calculate MAD-
cor, MaxAD.r (labelled as abs (fcor)), MADRESIDCOV, max(X2) and SRMSR. The
CDM::IRT.modelfit() function also calculates information criteria, such as Akaike’s In-
formation Criteria (AIC) [69] and Bayesian Information Criteria (BIC) [70]. Both criteria
are based on the maximum likelihood statistic, and BIC is additionally affected by sample
size. Both AIC and BIC serve as a measure for comparing model fit, and a smaller value
indicates better model fit. Nevertheless, please note that when parameters are fixed in
model calibration, the calculation of information criteria is incorrect and must be manu-
ally corrected.
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In the GDINA package, GDINA::modelfit() function calculates M2 statistic, RMSEA2,
and SRMSR for absolute fit evaluation, and calculates log-likelihood, AIC, BIC, CAIC, and
SABIC for relative fit evaluation. The GDINA::itemfit() function calculates MaxAD.r
and MaxAD.LOR. The code below shows how to obtain these statistics from CDM and
GDINA packages.

>R mf <- CDM::IRT.modelfit(CDM.est)
>R mf$modelfit.test
type value p

1 max(X2) 39.5604293 1.202279e-07
2 abs(fcor) 0.1170423 4.831683e-08

>R mf$modelfit.stat
est

MADcor 0.02516064
SRMSR 0.03174674
100*MADRESIDCOV 0.45668011
MADQ3 0.02267701
MADaQ3 0.02236228

>R GDINA::modelfit(GDINA.est)
Test-level Model Fit Evaluation

Absolute fit statistics:
M2 = 506.2694 df = 325 p = 0
RMSEA2 = 0.0138 with 90% CI: [0.0114, 0.0161]
SRMSR = 0.0317

>R GDINA::itemfit(GDINA.est)
Summary of Item Fit Analysis

Call:
GDINA::itemfit(GDINA.obj = GDINA.est)

mean[stats] max[stats] max[z.stats] p -value adj.p- value
Proportion correct 0.0009 0.0025 0.3152 0.7526 1
Transformed correlation 0.0255 0.1173 6.3375 0.0000 0
Log odds ratio 0.1341 0.5335 6.5190 0.0000 0
Note: p -value and adj.p- value are associated with max[z.stats].

adj.p- values are based on the holm method.

4.4.2. Item-Level and Item-Pair Level Fit Evaluation

Item-level absolute fit can be assessed using S-χ2 item fit statistic [41,71], which can
be calculated using CDM::itemfit.sx2() function. The S-χ2 item fit statistic compares
observed and expected proportions for each item and each latent class and forms a chi-
square distributed statistic. As a result, the items with p-values greater than 0.05 indicate
good item fit at 0.05 nominal level. The output, for instance, indicates that item 13 has a
significant misfit.

>R sx2 <- CDM::itemfit.sx2(CDM.est)
>R summary(sx2)
item itemindex S-X2 df p S-X2_df RMSEA Nscgr Npars p.holm
1 Item 1 1 13.222 16 0.656 0.826 0.000 20 4 1.000
2 Item 2 2 22.492 18 0.211 1.250 0.009 20 2 1.000
3 Item 3 3 13.459 16 0.639 0.841 0.000 20 4 1.000
4 Item 4 4 20.444 18 0.308 1.136 0.007 20 2 1.000
5 Item 5 5 23.327 18 0.178 1.296 0.010 20 2 1.000
6 Item 6 6 16.232 18 0.576 0.902 0.000 20 2 1.000
7 Item 7 7 11.512 16 0.777 0.720 0.000 20 4 1.000
8 Item 8 8 10.404 18 0.918 0.578 0.000 20 2 1.000
9 Item 9 9 22.559 18 0.208 1.253 0.009 20 2 1.000
10 Item 10 10 39.520 18 0.002 2.196 0.020 20 2 0.065
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11 Item 11 11 18.609 16 0.289 1.163 0.007 20 4 1.000
12 Item 12 12 20.022 16 0.219 1.251 0.009 20 4 1.000
13 Item 13 13 55.254 18 0.000 3.070 0.027 20 2 0.000
14 Item 14 14 18.053 18 0.452 1.003 0.001 20 2 1.000
15 Item 15 15 15.154 18 0.651 0.842 0.000 20 2 1.000
16 Item 16 16 32.079 16 0.010 2.005 0.019 20 4 0.254
17 Item 17 17 13.134 16 0.663 0.821 0.000 20 4 1.000
18 Item 18 18 17.355 18 0.499 0.964 0.000 20 2 1.000
19 Item 19 19 33.059 18 0.016 1.837 0.017 20 2 0.410
20 Item 20 20 14.929 16 0.530 0.933 0.000 20 4 1.000
21 Item 21 21 15.607 16 0.481 0.975 0.000 20 4 1.000
22 Item 22 22 27.171 18 0.076 1.509 0.013 20 2 1.000
23 Item 23 23 16.777 18 0.538 0.932 0.000 20 2 1.000
24 Item 24 24 18.182 18 0.444 1.010 0.002 20 2 1.000
25 Item 25 25 16.269 18 0.574 0.904 0.000 20 2 1.000
26 Item 26 26 25.935 18 0.101 1.441 0.012 20 2 1.000
27 Item 27 27 24.753 18 0.132 1.375 0.011 20 2 1.000
28 Item 28 28 13.008 18 0.791 0.723 0.000 20 2 1.000
--Average Item Fit Statistics--
S-X2 = 21.019 | S-X2_df = 1.206

Other item-level absolute fit measures can be requested through function
CDM::IRT.RMSD() [63,72]. It computes item-wise and group-wise root mean square de-
viation (RMSD), bias corrected root mean square deviation (RMSD_bc), mean absolute
deviation (MAD), mean deviation (MD), and chi square statistic [73,74].

Unlike the S-χ2 and RMSD statistics that focus on to what extent the model can fit
data well for each item, the absolute difference between observed and predicted Fisher
transformed correlations and the absolute difference between observed and predicted log
odds ratios for all item pairs [64] are reported in the GDINA package. Both measures focus
on to what extent the model can explain the association between each pair of items. A
heatmap plot illustrating the adjusted p-values of transformed correlation between item
pairs can be requested using plot(), as demonstrated in Figure 4. In the heatmap plot,
items are presented on both x- and y-axes. The first item on the x-axis and the last on the
y-axis were dropped for pairing items. The adjusted p-values of all item pairs are plotted
in the lower right shading area, where those of adequately fitted item pairs are in grey
(p > 0.05) and those of inadequately fitted item pairs are in different tones of red (p < 0.05),
depending on the p-value [42]. In our case, some item pairs (e.g., items 9 and 10 and items
13 and 22) demonstrated significant misfit and thus are in demand for further exploration
by domain experts.

>R itf <- GDINA::itemfit(GDINA.est)
>R plot(itf)
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4.5. Item Diagnosticity Investigation

To assess item diagnosticity, the distribution of the probability of success across all
latent groups in each item can be drawn, using plot() as the code presents below. The
plots should show the distinctions between the bars representing each latent group. A good
example is item 20 presented in Figure 5, where an increase is observed in the probability
of success as a student masters more attributes measured by this item. A poor example
is item 17, where the success probability of all four latent groups is over 0.75 and little
difference is observed between the bars. This indicates that a student has a more than 75%
chance to answer this item correctly whether they do not master any attributes required by
this item, master only one attribute, or master both attributes. In this regard, item 17 does
not have the ability to distinguish students in different latent groups. Similar plots can be
drawn using the plot() function as well in the CDM package.
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>R plot(GDINA.est,item = 1:28)
Another way to check item diagnosticity is to investigate the item discrimination

indices. In the GDINA package, item discrimination is measured by two indices: P(1)-P(0)
and G-DINA discrimination index (GDI). P(1)-P(0) measures the differences in success
probabilities between those who master all required attributes and those who master
none of them. GDI measures the variance of the item success probabilities based on the
reduced attribute profile [28,75]. An item with a higher value of P(1)-P(0) or GDI has higher
discrimination power. Currently, there is no agreement in the field regarding the value of
good discrimination power. Although a higher value of P(1)-P(0) or GDI is desirable, it
could be an indicator of overspecified q-vectors [28]. These two item discrimination indices
can be requested using GDINA::extract() as in:

>R GDINA::extract(GDINA.est, what = “discrim”)
P(1)-P(0) GDI

Item 1 0.2369939 0.011248186
Item 2 0.1693254 0.007113710
Item 3 0.3681559 0.025439442
Item 4 0.3598914 0.028732987
Item 5 0.2099038 0.009774136
Item 6 0.2243154 0.011162359
Item 7 0.4663292 0.037643097
Item 8 0.1529452 0.005803950
Item 9 0.2584621 0.014819434
Item 10 0.3776435 0.033710651
Item 11 0.4350662 0.031866830
Item 12 0.5924216 0.062055464
Item 13 0.2487938 0.014631276
Item 14 0.2802295 0.018562263
Item 15 0.2269881 0.011429941
Item 16 0.4319718 0.032239549
Item 17 0.1475092 0.004242115
Item 18 0.1938551 0.008336667
Item 19 0.3878091 0.033363663
Item 20 0.5640100 0.057509619
Item 21 0.3751756 0.024045446
Item 22 0.5030707 0.056143024
Item 23 0.2788246 0.019289193
Item 24 0.3625726 0.032616838
Item 25 0.2504526 0.014827037
Item 26 0.2420333 0.012995354
Item 27 0.4038545 0.038552543
Item 28 0.2717041 0.016376848

In the CDM package, P(1)-P(0) is referred to as item discrimination index or IDI [48,76].
The CDM package also calculates the discrimination index (DI) at the item-attribute level
based on the mastery probability of including and excluding the measured attribute for a
specific item and the DI at the test level by averaging the marginalized probability of DIs
at the item-attribute level for each item. Using CDM::discrim.index(), the test, item, and
item-attribute level DIs can be requested. Note that the IDI at item level is the same as the
P(1)-P(0) values requested by GDINA::extract(). Although not presented here, the CDM
package also calculates the cognitive diagnostic index (CDI) based on the Kullback-Leibler
information (KLI) [76], which can be requested by using CDM::cdi.kli().

>R summary(CDM::discrim.index(CDM.est))
––––––––––––––––––––––––––––––––––––––-
CDM 7.5-15 (2020-03-10 14:19:21)
––––––––––––––––––––––––––––––––––––––-
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Test-level discrimination index
[1] 0.304
––––––––––––––––––––––––––––––––––––––-
Item discrimination index (IDI)
Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10
0.237 0.169 0.368 0.360 0.210 0.224 0.466 0.153 0.258 0.378
Item11 Item12 Item13 Item14 Item15 Item16 Item17 Item18 Item19 Item20
0.435 0.592 0.249 0.280 0.227 0.432 0.148 0.194 0.388 0.564
Item21 Item22 Item 23 Item 24 Item 25 Item 26 Item 27 Item 28
0.375 0.503 0.279 0.363 0.250 0.242 0.404 0.272
––––––––––––––––––––––––––––––––––––––-
Item-attribute discrimination index

item A1 A2 A3
1 Item 1 0.127 0.237 0.000
2 Item 2 0.000 0.169 0.000
3 Item 3 0.282 0.000 0.183
4 Item 4 0.000 0.000 0.360
5 Item 5 0.000 0.000 0.210
6 Item 6 0.000 0.000 0.224
7 Item 7 0.466 0.000 0.226
8 Item 8 0.000 0.153 0.000
9 Item 9 0.000 0.000 0.258
10 Item 10 0.378 0.000 0.000
11 Item 11 0.210 0.000 0.240
12 Item 12 0.355 0.000 0.592
13 Item 13 0.249 0.000 0.000
14 Item 14 0.280 0.000 0.000
15 Item 15 0.000 0.000 0.227
16 Item 16 0.430 0.000 0.213
17 Item 17 0.000 0.098 0.081
18 Item 18 0.000 0.000 0.194
19 Item 19 0.000 0.000 0.388
20 Item 20 0.382 0.000 0.522
21 Item 21 0.231 0.000 0.244
22 Item 22 0.000 0.000 0.503
23 Item 23 0.000 0.279 0.000
24 Item 24 0.000 0.363 0.000
25 Item 25 0.250 0.000 0.000
26 Item 26 0.000 0.000 0.242
27 Item 27 0.404 0.000 0.000
28 Item 28 0.000 0.000 0.272

4.6. Classification Reliability

Classification reliability refers to whether the model can consistently and accurately
classify test-takers into latent classes, usually measured by classification accuracy and
consistency. Specifically, classification accuracy relates to the extent to which the estimated
attribute classifications and the true classifications are the same, whereas classification
consistency concerns the extent to which the estimated attribute classifications from two
parallel test forms are consistent. Although different measures have been proposed in the
literature [77–79], the GDINA package calculates classification accuracy at test, pattern,
and attribute levels according to Iaconangelo [80] and Wang et al. [81]. In contrast, the CDM
package calculates both classification accuracy and consistency at pattern and attribute
levels using the estimator of Johnson and Sinharay [78].
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The classification accuracy of maximum a posteriori or MAP method (by default, and
maximum likelihood estimation or MLE can be requested) can be estimated in the GDINA
package using GDINA::CA() as demonstrated below:

>R GDINA::CA(GDINA.est, what = “MAP”)
Classification Accuracy
Test level accuracy = 0.747
Pattern level accuracy:
000 100 010 001 110 101 011 111
0.8942 0.1385 0.0000 0.4486 0.1891 0.0882 0.5780 0.9091
Attribute level accuracy:

A1 A2 A3
0.8968 0.8538 0.9161

In the CDM package, one can calculate both classification accuracy and consistency
using CDM::cdm.est.class.accuracy() as demonstrated below. The output gives classi-
fication accuracy and consistency statistics [77,81] at attribute and latent class level for both
MLE and MAP estimators. Pa_est and Pc_est give classification accuracy and consistency
by estimators of Johnson and Sinharay [78,82], respectively, and Pa_sim and Pc_sim give
classification accuracy and consistency only for DINA, DINO, and mixed DINA and DINO
models based on simulation, respectively. The classification accuracy values at latent class
and attribute level for MAP estimators are the same as the values we obtained from the
GDINA package.

>R summary(CDM::cdm.est.class.accuracy(CDM.est))
Pa_est Pa_sim Pc_est Pc_sim

MLE_patt 0.594 0.621 0.409 0.437
MAP_patt 0.747 0.771 0.664 0.686
MLE_A1 0.859 0.886 0.760 0.798
MLE_A2 0.759 0.762 0.645 0.645
MLE_A3 0.893 0.911 0.811 0.838
MAP_A1 0.896 0.913 0.833 0.849
MAP_A2 0.854 0.860 0.807 0.817
MAP_A3 0.916 0.933 0.854 0.882

4.7. CDM Result Presentation

The primary goal of CDM analysis is to classify students into different latent classes
or estimate students’ attribute profiles. Both CDM and GDINA packages can estimate a
person’s parameters using expected a posteriori (EAP), MAP, or MLE methods [83]. In
the GDINA package, the GDINA::personparm() function could be used, whereas in the
CDM package, the CDM::IRT.factor.scores() function can be applied. Below are the
estimated attribute profiles of the first six students using GDINA::personparm().

>R head(personparm(GDINA.est))
A1 A2 A3

[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1
[4,] 1 1 1
[5,] 1 1 1
[6,] 1 1 1
Meanwhile, we can obtain the success probability of attribute mastery for each student

by specifying the what argument to “mp” in GDINA::personparm() function.
>R head(personparm(GDINA.est, what = “mp”))

A1 A2 A3
[1,] 0.9967 0.9615 0.9999
[2,] 0.9952 0.9150 0.9999
[3,] 0.9841 0.9898 1.0000
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[4,] 0.9976 0.9913 1.0000
[5,] 0.9884 0.9845 0.9512
[6,] 0.9929 0.9908 1.0000
Using the mpRadar() function created from the fmsb::radarchart() function of the

fmsb R package [84], a radar chart of the mastery probability for each student or for several
students at the same time can be plotted. As presented in Figure 6, the student has a
nearly 100% chance of mastering the lexical rules, a nearly 0% chance of mastering the
morphosyntactic rules, and about a 45% chance of mastering the cohesive rules.
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Figure 6. Radar Chart of the attribute mastery probabilities of student 8.

In addition to person classifications, the proportion of students who master or do not
master each attribute referred to as attribute prevalence, and the proportion of students
in each latent class referred to as latent class proportions can also be measured. They can
be requested by calling GDINA::extract() function and specifying what = “prevalence”
and “posterior.prob” in the GDINA package, respectively. In the CDM package, it
can be obtained in the list named “Skill Pattern Probabilities” by calling the summary()
function. Figure 7 presents a bar plot of the attribute prevalence, and Figure 8 presents a
pie chart and a doughnut chart of the latent class proportions.

R> GDINA::extract(GDINA.est, what = “prevalence”)
$all

Level0 Level1
A1 0.6167223 0.3832777
A2 0.4565763 0.5434237
A3 0.3321875 0.6678125
>R GDINA::extract(GDINA.est, what = “posterior.prob”)

000 100 010 001 110
[1,] 0.3007218 0.008738675 0.01194014 0.1289744 0.01078687

101 011 111
[1,] 0.01814145 0.1750859 0.3456107
Figure 9 presents a network plot showing both the tetrachoric correlations among

attributes and the attribute prevalence. In particular, the tetrachoric correlations are
displayed on the arrows between corresponding attributes, and the attribute prevalence is
represented using pie charts for each attribute.
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The attribute prevalence and latent class proportions can be plotted together as pre-
sented in Figure 10, similar to Bradshaw et al. [2]. The code for creating the plots in
Figures 7–10 was written by the authors and can be requested from the first author of
the article.
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5. Discussion

The purpose of this study is to provide a hands-on example of conducting CDM
analysis in the G-DINA framework using R packages and illustrating how different R
packages can be used in an integrated manner, providing richer information for cognitive
diagnosis. Utilizing an exemplary dataset, the study demonstrated a workflow of CDM
analyses, from Q-matrix validation to classification visualization. Such an illustration will
be helpful to researchers who plan to conduct CDM analysis in R. However, only a limited
number of relevant procedures were discussed because of their availability in existing
R packages. Other procedures that are equally if not more critical can often be found in
the literature.

Despite the potential usefulness, the procedures discussed in this paper may not
always work well. For example, the M2 statistic and RMSEA2 from the GDINA package
may not be calculable if the number of parameters is too large. The S-χ2 item fit statistic
from the CDM package would also not be calculated if there are missing data. In addition,
although it was shown that the CDM and GDINA packages could complement each other
in various aspects, researchers need to proceed with caution when using them together.
Separate data calibrations may produce different parameter estimates due to the fact
that (1) the EM algorithm may reach local maxima or (2) different default settings are
specified for different packages. Therefore, this paper shows how to obtain equivalent
calibration results by fixing parameter estimates obtained from one package in the other.
Doing so, however, may lead to incorrect calculation of the number of free parameters and
consequently affect the calculation of other statistics, such as information criteria.

Finally, it should be emphasized that this paper only focuses on the CDM analysis of
dichotomous response data using the G-DINA model. However, researchers can do more
than that in R. For example, the CDM package can also handle the general diagnostic model
and regularized latent class model, while the GDINA package can handle several CDMs
for multiple strategies. Both can also run CDMs for polytomous attributes and polytomous
responses. Also, The NPCD and ACTCD [49,85] packages can conduct nonparametric
cognitive diagnostic analysis.
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