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Abstract: Cognitive diagnosis models (CDMs) are confirmatory latent class models that provide
fine-grained information about skills and cognitive processes. These models have gained attention in
the last few years because of their usefulness in educational and psychological settings. Recently,
numerous developments have been made to allow for the implementation of cognitive diagnosis
computerized adaptive testing (CD-CAT). Despite methodological advances, CD-CAT applications
are still scarce. To facilitate research and the emergence of empirical applications in this area, we
have developed the cdcatR package for R software. The purpose of this document is to illustrate the
different functions included in this package. The package includes functionalities for data generation,
model selection based on relative fit information, implementation of several item selection rules
(including item exposure control), and CD-CAT performance evaluation in terms of classification
accuracy, item exposure, and test length. In conclusion, an R package is made available to researchers
and practitioners that allows for an easy implementation of CD-CAT in both simulation and applied
studies. Ultimately, this is expected to facilitate the development of empirical applications in this area.

Keywords: computerized adaptive testing; cognitive diagnosis modeling; R statistical programming

1. Theoretical Background

In education, we can distinguish between two types of evaluations. The first is
summative evaluation. This is a more traditional type of assessment commonly performed
at the end of the academic year, and aims at rank-ordering the students, usually on a single
continuous dimension (e.g., math knowledge). This same interest in ordering respondents
on a continuum is present in other areas of psychology, for example, in personnel selection.
This type of assessment has usually been evaluated from the classical test theory or the
traditional item response theory. The other type of evaluation is formative evaluation. The
purpose of this assessment is not so much the comparison between individuals, but the
detection of the strengths and weaknesses that each student possesses. These strengths
and weaknesses are usually articulated around more narrowly defined dimensions that are
called attributes (e.g., fraction subtraction, simplification). In education, this allows, for
example, different remedial instructions to be implemented for each student, so that each
one can overcome his or her difficulties. In a clinical or organizational psychology context,
this type of diagnostic feedback enables more targeted interventions that can potentially
be more effective compared to other interventions that take a broader measurement as
a starting point. The attributes of the diagnostic assessments are usually modeled in a
discrete form; that is, the analysis of the responses provided by the examinee leads to
the conclusion as to whether or not the examinee has mastered each attribute. As the
dimensions are more narrowly defined, these tests usually assess multiple attributes. The
need to evaluate multiple discrete dimensions led to the proposal of a family of item
response models known as cognitive diagnosis models (CDMs).

CDMs are confirmatory latent class models that can be used to classify examinees
in a set of discrete latent attributes. The main output of CDMs consists of an attribute
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vector αi = (αi1, . . . , αiK), where K denotes the number of attributes being measured by
the test items. For most CDMs, classifications are dichotomous (i.e., αk ∈ {0, 1}). That is,
αik indicates whether or not the ith examinee has mastered attribute k. Brought to the
set of attributes, this implies that the N examinees will be grouped into 2K latent classes.
For a given item, the different latent classes can be grouped into reduced latent classes
or latent groups represented by αlj

*. As an illustration, consider an item measuring only
the first two attributes in a test in which K = 3 attributes are evaluated. If we represent
the number of attributes measured by an item as Kj

*, the relevant classes for that item
would be 2Kj* = 22 = 4, i.e., {00-}, {10-}, {01-}, and {11-}, where the third attribute is partialled
out. CDMs can be understood as item response models that specify the probability of
correctly answering or endorsing the item given these reduced attribute vectors (i.e., an
item response function). To simplify the explanation, we will refer to the probability of
success even though these models have also been applied to typical performance tests. The
different CDMs available differ in the restrictions applied to the item response function.
To illustrate some of the possible response processes, an example has been generated for
the case of an item that evaluates two attributes (i.e., Kj

* = 2) in Figure 1. CDMs can be
mainly differentiated between compensatory models in which mastering one attribute
can compensate for the lack of others, non-compensatory models in which it is necessary
to master all the required attributes to achieve a high probability of success, and general
or saturated models that allow the existence of both processes within the same test and
complex relationships among the attributes within a specific item, considering main effects
and interactions. One such general model that has served as the basis for many subsequent
developments is the G-DINA model [1]. The item response function for this model will
be specified later. Suffice it to mention for now that it is a saturated model where a
different success probability is estimated for each latent group. The easy-to-interpret
output provided by CDMs is valuable in indicating the strengths and weaknesses of a
particular examinee. For this reason, these models first emerged and became popular in
the educational setting [2], although they have now spread to other areas such as clinical
psychology [3].
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In order to facilitate more efficient applications in school and clinical contexts, where
time for evaluation is always scarce, much work has been done in recent years to develop
the necessary methods that allow for the implementation of cognitive diagnostic comput-
erized adaptive testing (CD-CAT). There are multiple reasons that make adaptive testing
preferable to traditional pencil-and-paper testing. In the following text we will mention
three of them. The first and most obvious is that a more efficient assessment is achieved.
With a carefully designed item bank, it is possible to obtain an accurate assessment with
fewer items. This is possible because an adaptive algorithm is used to select the item to be
administered, taking into account the level of ability that the subject shows throughout the
CAT. Since an item response theory model is used to score the examinees, a measurement
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invariance property ensures that the assigned scores are comparable despite the fact that
each examinee has responded to a different subset of the items. Second, a CAT can be
more motivating for test takers, since items that are too far away (above or below) from
their ability level will not be administered, nor will the assessment take longer than re-
quired. Finally, test security is increased. It can be a serious problem if a questionnaire
that is presented in a fixed format is leaked. Since CAT uses different subsets of items, this
problem is minimized. The downside of adaptive testing is that it requires computerized
applications and a higher investment associated with the generation of a large item bank.
CD-CAT makes it possible to combine these CAT advantages with CDM diagnostic feed-
back. Although the line of work exploring the application of CAT based on traditional item
response models (e.g., the one-, two-, and three-parameter logistic models) has a relatively
long history, the application of CAT based on CDM is comparatively young.

The first challenge for CD-CAT was the adaptation of existing procedures developed
for the traditional item response theory framework, with continuous latent variables,
to the CDM framework, with discrete latent variables. This resulted in the proposal of
multiple item selection rules [4–6]. At the same time, a great effort has been made to
develop procedures to verify a fundamental input in CDM, the so-called Q-matrix, which
specifies the relationships between items and attributes [7,8]. Despite these methodological
advances, empirical CD-CAT applications are still scarce. The most notable exception is the
work of Liu et al. (2013), who developed an item bank to assess English proficiency and
explored its adaptive application in a real-world context [9]. To facilitate research and the
emergence of empirical applications in this area, we developed the cdcatR package [10]
for R software [11]. This package is available at the CRAN repository. The purpose of this
document is to exemplify the functions included in this package. To this end, the different
phases in the implementation of a computerized adaptive testing application will be visited
and the different options available in the package will be discussed. This will be followed
by a more exhaustive illustration comparing different CD-CAT applications. Finally, a
general discussion will be presented, and lines of future work will be discussed.

2. The cdcatR Package

The R package cdcatR has been generated to facilitate the exploration of CD-CAT
methods. Thus, it includes functions to simulate item banks and CDM data, a comprehen-
sive function to fully implement a CD-CAT, as well as functions to extract and visualize
the results. These functions and their arguments are intended to comprehensively address
the aspects involved in a CAT application, which are represented in Figure 2. Similar
flowcharts can be found, for example, in Huebner (2010) or Finch and French (2018) [12,13],
among others. The difference between a standard CAT application and a CD-CAT ap-
plication lies in the nature (continuous vs. discrete) of the latent variables. This leads to
necessary modifications in several of the components of the adaptive testing application
compared to traditional CAT. As shown in the figure, the process starts with the calibration
of a bank of items and, for a particular examinee, ends when a termination criterion is
satisfied. The calibration of the item bank will be based on a CDM (e.g., DINA) instead of
relying on a traditional item response theory model (e.g., two-parameter logistic model). In
this section, a walkthrough of the steps to be implemented in an application of this type is
provided, highlighting the options included in the package. The literature related to these
topics is also briefly described. The code used is included in the supplementary material.
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2.1. Item Response Model and Item Bank Calibration

The cdcatR package allows users to work with the reduced CDMs deterministic-input,
noisy, and gate (DINA; [14]); deterministic-input, noisy, or gate (DINO; [3]); and the additive
CDM [A-CDM; [1]], as well as with the generalized DINA [1] which is a general model
that subsumes the three previous models. These models differ in their definition of the
item response function, i.e., the function that specifies the probability of success given an
attribute profile. For the saturated model, the item response function is defined as

P
(
α∗lj

)
= δj0 +

K∗j

∑
k=1

δjkαlk +

K∗j

∑
k′ =k+1

K∗j −1

∑
k=1

δjkk′αlkαlk′ . . . + δ12...K∗j

K∗j

∏
k=1

αlk, (1)

where αlj
* is a vector of length Kj

* that indicates which attributes an examinee in latent
group l masters (or not), δj0 is the intercept or baseline probability of item j, δjk is the
main effect due to αlk, δjkk’ is the interaction effect due to αlk and αlk’, and δ12 . . . Kj* is the
interaction effect due to α1, . . . , αKj*. As detailed in [1], the reduced DINA, DINO, and
A-CDM models can be understood as special cases of the G-DINA model when some
restrictions are imposed on these item parameters. As such, the DINA model is obtained
when all parameters except δj0 and the highest order interaction (i.e., δ12 . . . Kj*) are set to
zero. The DINA model is thus a non-compensatory model, where it is necessary for the
examinee to master all attributes to have a high probability of success. Its complement is
the DINO model, where the examinee will obtain a high probability of success if he/she
masters at least one of the attributes specified in the item. This is achieved by setting the
constraint δjk = δjkk’ = . . . = (−1)Kj*+1 δ12 . . . Kj*. Therefore, the DINA and DINO models have
only two parameters per item, whereas for the saturated model the number of parameters is
equal to 2Kj*. The A-CDM model is derived from the general model by setting all interaction
terms between attributes to zero, so that each attribute contributes independently to the
probability of existence. It has Kj

* + 1 parameters per item. This is a comprehensive
selection of the CDM models available, as each of these four models represents a different
type of CDM: general (G-DINA), conjunctive (DINA), disjunctive (DINO), and additive
(A-CDM). In addition, from the available empirical studies, we can notice that the DINA
and G-DINA models are two of the most popular approaches in practice.

The calibration of these models needs to be done with an external package to cdcatR.
The GDINA [15] or CDM [16] packages of R can be used for this purpose. The result of this
calibration will be included as the input in cdcat(), which is the main function of the
cdcatR package, using the fit argument. Figure 3 provides an example of how the GDINA
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and CDM packages can be used to calibrate some data with the DINA model and incorporate
this input into the cdcat() function. It is also shown how the cdcat.summary() function
can be used to compare different cdcat objects. For this purpose, the true attribute vectors
are provided in the alpha argument, which allows us to obtain attribute classification
accuracy indicators. In the context of an empirical data analysis, where the true attribute
vectors are unknown, the estimated attribute vectors using the entire item bank could be
included in alpha. This would act as an upper-limit benchmark to evaluate the CD-CAT
efficiency. Additionally, it is possible to include a label for each cdcat object to facilitate the
readability of the results using the label argument. Nearly identical results are expected
when employing the GDINA or CDM packages to calibrate the CDMs [17,18].
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Figure 3. Item bank calibration using the GDINA and CDM packages of the data contained in the sim180DINA object included
in the cdcatR package.

It should be noted, as previously indicated, that the different models vary in complex-
ity. The degree of complexity affects the ease or difficulty of item parameter estimation.
Under challenging estimation conditions characterized, for example, by a small sample size,
a larger estimation error can be expected to affect the performance of the CD-CAT [19]. To
deal with this, Sorrel et al. (2021) recommended performing a model comparison analysis
at the item level in order to minimize the number of parameters to be estimated [20]. To
this end, the authors used the two-step LR test, an efficient approach to the likelihood ratio
test [21]. The cdcatR package includes a function called LR.2step() that implements this
statistic. Figure 4 includes an illustration for that function in which a G-DINA model is
calibrated to DINA-generated items, and the two-step LR test is used to select the most
appropriate model for each item. Another similar statistic included in the GDINA and CDM
packages is the Wald test [22,23].
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Finally, we shall note that in these analyses we have considered a known Q-matrix
without specification errors. Although this is a plausible scenario considering the efforts
that are invested in the development of the Q-matrix, it is important to remark that these
procedures involve a certain degree of subjectivity [24,25]. The Q-matrix can be empirically
tested by employing empirical validation procedures. For example, it can be assessed
whether the empirical data lead to any modification suggestions by employing the Hull
method [7] implemented in the R package cdmTools [26]. The CDM and GDINA packages
include other empirical validation procedures based on item discrimination [27] that could
also be used for this same purpose. It can also be verified whether the number of attributes
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established from theory converges with the empirical results using procedures such as
parallel analysis or relative fit indicators. Researchers can use the paK() and modelcompK()
functions from the cdmTools package to conduct such analyses [28]. After addressing the
aspects related to the calibration of the item bank, the following sections deal with specific
aspects of the CAT implementation.

2.2. Starting Point

The first specification to set in our CAT is the starting point. The two basic options
involve applying the item selection rule to select the item that optimizes that rule from the
very beginning or starting from a random start such that the first item is randomly selected
(the selection rule is applied thereafter). Having a random start facilitates a lower overlap
rate at the beginning of the test, although accuracy may suffer for very short CAT lengths.
The preference for one of these two start procedures is captured in the startRule argument,
which takes “random” or “max” as the input. The selection rules are usually weighted by a
posterior distribution obtained at each CAT step, and it is possible to specify a distribution
to be used for the first item by means of the initial.distr argument. This should be a
multinomial distribution of length 2K where each value indicates the expected proportion
of examinees for each latent class. Otherwise indicated, a uniform distribution is used.
Finally, it has recently been pointed out that it is possible to identify optimal starts. For
instance, ensuring that the first K items form an identity matrix satisfies the identification
condition [29]. For this reason, the package includes a startK argument in which the users
can indicate TRUE or FALSE to determine whether they want a start with identity matrix or
not. If so, after applying K one-attribute items selected at random among those measuring
each of the attributes, it proceeds as indicated in the startRule argument.

2.3. Item Selection Rule

The item selection rule determines how the items are selected based on the responses
already provided by an examinee. The fact that the underlying latent variables are discrete
impedes the use of the most popular item selection rules in traditional CAT, i.e., point
Fisher information. This is why in recent years several rules had to be developed for the
case of discrete attributes. Currently, the package allows working with six item selection
rules using the itemSelect argument: the general discrimination index (GDI; [5]), the
Jensen–Shannon divergence index (JSD; [30,31]), the posterior-weighted Kullback–Leibler
index (PWKL; [4]), the modified PWKL index (MPWKL; [5]), the nonparametric item
selection method (NPS; [32]), and random selection. The research by Yigit et al. (2019) and
Wang et al. (2020) examined the relationships among several of the indices proposed in the
previous literature, and found that they are tightly related [31,33]. As an exception, PWKL
differs from the rest of the rules in that it takes a single punctual latent class estimator
obtained at the t step for the examinee i (i.e., α̂

(t)
i ) to select the next item, whereas the rest

are global measures that consider the entire posterior distribution (i.e., p̂(αi)
(t) ). Global

measures can be expected to perform better in cases of short CAT lengths where the
punctual estimation is still noisy [5,34]. The other exception is the NPS method, which,
unlike the other procedures, does not require prior calibration of the item bank as it uses
a nonparametric estimation procedure for the latent class assignment. This procedure
starts with startK = TRUE and the latent class is then estimated using the nonparametric
classification method (NPC; [35]). This method is based on the concept of Hamming
distance to compute the discrepancy between the examinee’s response pattern and the
ideal responses associated with each attribute profile. These ideal responses are defined
according to a deterministic conjunctive (non-compensatory like the DINA model) or
disjunctive (compensatory like the DINO model) rule. This must be specified a priori
using the NPS.args argument where gate can take the value of “AND” (conjunctive) or
“OR” (disjunctive). A process is then initiated where the items are randomly selected,
considering those that can differentiate between the ideal response of the current estimate
of the attribute vector and the ideal response of the second most likely attribute vector.
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Since version 1.0.3 of the cdcatR package, two procedures to control the item expo-
sure rate have been available. On the one hand, the progressive method can be imple-
mented [36,37]. This rule adds a random component to the chosen item selection rule that
becomes less important as the test progresses. For a test of length J items, the first item
would be chosen randomly and at item J the random component would not be relevant at
all. The progression of the loss of importance of randomness is reflected in an acceleration
parameter b. With b = 0, the proportion of selection due to the item selection rule will
linearly increase from 0 (first item) to 1 (last item reflected in the MAXJ argument) [36].
With b < 0, an increment in the proportion of selection due to the selection rule would
follow an inverse exponential function; that is, there would be a random component at
the beginning of the test but this random component would lose importance very quickly.
The random component will always have less impact compared to b = 0. With b > 0,
this increment would follow an exponential function; that is, the random component
will always have greater impact compared to b = 0. To use this method in the package,
set itemExposurecontrol = “progressive.” The default is “NULL”, i.e., not to apply the
progressive method. There is an argument b to set the acceleration parameter, which
defaults to a value of 0. With lower (can be negative) values, exposure rates are expected
to be more similar to those that would be obtained if no control were implemented. This
would optimize accuracy at the cost of allowing greater item exposure. On the other hand,
a maximum exposure rate can be set for the items by means of the rmax argument. By
default, there is no control over the maximum exposure rate (i.e., rmax can be as high as 1).
Interested users can also include content constraints on the number items per evaluated
attribute. In particular, the constraint.args argument can indicate the minimum number
of items to be administered for each of the attributes [38].

2.4. Scoring Method

The main output of CD-CAT is the estimated attribute vector of each examinee (i.e., α̂i).
The maximum likelihood (ML), maximum a posterior (MAP), or expected a posterior
(EAP) methods can be used to make both the initial and subsequent attribute vector
estimations [39]. All these methods are based on the likelihood function (L(Yi|αl)), which
at a given point in the CAT is defined as

L(Yi |α l) =
J(t)

∏
j=1

P
(
Yj = 1 |α l

)Yij
[
1− P

(
Yj = 1 |α l

)]1−Yij , (2)

where J(t) denotes the number of items administered. From this likelihood we can estimate
a posterior distribution of the latent classes given the observed response patterns by
considering a prior attribute joint distribution (p(αc)) as

P(αl |Yi) = L(Yi|αl)p(αl)/
2K

∑
c=1

L(Yi|αc)p(αc) (3)

Once these functions have been calculated, the ML, MAP, and EAP estimators are
obtained as follows:

ML(αi) = argmaxαl [L(Yi |α l)] (4)

MAP(αi) = argmaxαl [P(αl |Y i)] (5)

EAP(αi) = {P(αik|Yi)}
L

∑
l=1

P(αl |Y i)αlk. (6)

The EAP estimator indicates the posterior probability that examinee i has of mastering
each of the K attributes. This probability can be dichotomized using a cutoff point, usually
0.50. Table 1 includes the estimators for a particular examinee in a CD-CAT application
as returned in the package. It can be seen how the posterior probability approaches 1 as
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the CAT progresses, indicating the increasing degree of certainty around the estimator.
The ML and MAP estimators coincide because a uniform prior joint attribute distribution
was specified, which is the default option in the package. Another distribution could be
specified by means of the att.prior argument.

Table 1. Latent class estimates at each step of a 10-item CAT for an examinee with true attribute profile of αi = (00110).

#item j qj xj ML nmodesML Lik MAP nmodesMAP Post EAP K1 K2 K3 K4 K5

1 47 10000 0 00000 16 1.00 00000 16 0.06 00000 0.02 0.50 0.50 0.50 0.50
2 15 00001 0 00000 8 0.96 00000 8 0.12 01110 0.02 0.50 0.50 0.50 0.00
3 12 01000 0 00000 4 0.93 00000 4 0.24 00110 0.02 0.01 0.50 0.50 0.00
4 58 00100 1 00100 2 0.90 00100 2 0.48 00100 0.02 0.01 0.99 0.50 0.00
5 18 00010 1 00110 1 0.87 00110 1 0.91 00110 0.02 0.01 0.99 0.94 0.00
6 110 00110 1 00110 1 0.78 00110 1 0.96 00110 0.02 0.01 0.99 1.00 0.00
7 11 10000 0 00110 1 0.77 00110 1 0.98 00110 0.00 0.01 0.99 1.00 0.00
8 62 01000 0 00110 1 0.74 00110 1 0.99 00110 0.00 0.00 0.99 1.00 0.00
9 8 00100 1 00110 1 0.74 00110 1 0.99 00110 0.00 0.00 1.00 1.00 0.00

10 14 00010 1 00110 1 0.61 00110 1 1.00 00110 0.00 0.00 1.00 1.00 0.00

Note. j: item index; qj: q-vector for item j; xj: observed response for item j; ML: maximum likelihood estimator; nmodesML: number of
attribute profiles that have the same likelihood as the ML estimator; Lik: likelihood of the ML estimator; MAP: maximum a posteriori
estimator; nmodesMAP: number of attribute profiles that have the same posterior probability as the MAP estimator; Post: posterior
probability of the MAP estimator; EAP: expected a posteriori estimator; K1, . . . ,K5: posterior probabilities of attribute mastery.

2.5. Termination Criterion

The last aspect of a CAT that can be specified is the termination criterion, i.e., the
condition that must be satisfied to stop the adaptive application. By default, a fixed-length
termination criterion of 20 items is applied. This number of items can be varied with the
MAXJ argument. Alternatively, the FIXED.LENGTH argument can be set to FALSE, in which
case a fixed-precision criterion is applied. Under this criterion, the CAT for a particular
examinee is stopped when the assigned latent class posterior probability is greater than a
cutoff point set by the precision.cut argument. This argument takes the default value of
0.80 [40].

2.6. Data Generation Using the Package

The package contains two functions designed to simulate CDM data. First, the
gen.itembank() function can be used to generate an item bank. The user can either
provide a Q-matrix using the Q argument or create one defining a set of specifications
in the gen.Q argument. If this latter option is chosen, the user will have to include a list
indicating the number of items (J); the number of attributes (K); the proportion of items
measuring 1, 2, . . . , up to K attributes (propK.j); the minimum number of identity matrices
included in the Q-matrix (nI); the minimum number of items measuring each attribute
(minJ.K); and the maximum correlation to be expected by design between the attributes
(max.Kcor). In both cases, it will be necessary to indicate the quality of the items in the
bank by establishing the mean and range of a uniform distribution (mean.IQ and range.IQ,
respectively). These arguments set the mean value of the traditional item discrimination
index that evaluates the difference in success probability for examinees mastering all and
none of the attributes required by an item (i.e., IDI = P(1)–P(0); (3)). The mean of IDI would
be mean.IQ and the minimum and maximum values would be approximately mean.IQ
–range.IQ/2 and mean.IQ + range.IQ/2, respectively. Item parameters are generated so
that the monotonicity constraint is satisfied (i.e., mastering a higher number of attributes
always leads to a higher or equal probability of success).

The next step involves the use of the gen.data() function. This function takes as input
an object of the gen.itembank type and also requires specifying the number of examinees to
be generated (N). Optionally, R indicates the number of replicas or databases to be generated
(one, by default). The true attribute profiles are generated, by default, from the uniform
distribution, but other attribute joint distributions can be specified with att.dist (i.e.,
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higher.order, multivariate normal, or multinomial). Alternatively, a matrix containing the
true attribute profile can be directly provided using the att.profiles argument. Finally,
to ensure replicability, the user can specify a seed.

Figure 5 includes two illustrations in which data are generated using these functions.
In the first example, data are generated with a Q-matrix included in the package indi-
cating items of medium quality (P(1)–P(0) = 0.60) with high variability in discrimination
(range.IQ = 0.20; [5]). The selected model is the DINA model. P(0) and P(1) denote the
probability of success for examinees mastering none and all of the attributes required by the
item, respectively. Once the item bank is generated, what follows is an example of how data
can be generated using the uniform distribution, the multivariate normal distribution, or
by providing specific attribute profiles. In the second illustration, a Q-matrix is generated
by indicating a series of specifications including the number of items and attributes, the
proportion of items measuring 1, 2, 3, and 4 attributes, stating that at least three identity
matrices are to be included. In this case, high-quality items with lower variability are
specified. Then, data are generated using the uniform distribution.
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3. Illustration

In order to demonstrate some of the functions and arguments discussed above, this
section presents an illustration that starts with the generation of data and ends with
the evaluation of the performance of different CD-CAT procedures in terms of attribute
classification accuracy, item exposure rate, and CAT length. The code used can be found
in its entirety in Appendix A. Note that we used the true (generating) item parameters in
this illustration so that we could emulate the scenario with no sampling error in the model
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estimation. To achieve this, we provided the true item parameters in the GDINA() function
and set the maximum number of iterations to 0. This allowed for a more direct comparison
of the different CAT implementations. In applied contexts, some sampling error is to be
expected (for a discussion of this, see, for example, [19,20]). The plots were obtained using
the cdcat.summary() function of the package, which uses the R package ggplot2 [41]. The
GDINA package was used to calibrate the models.

First, an item bank was generated that included 180 items to assess 5 attributes. The
proportion of items measuring 1, 2, and 3 attributes was set to be 0.40, 0.30, and 0.30, re-
spectively. It was established that there should be at least three identity matrices within the
Q-matrix and that each attribute should be assessed by a minimum of 10 items. Item quality
was set to be high and with high variability (i.e., mean.IQ = 0.90 and range.IQ = 0.20).
The generating model was set to be the DINA model and the number of generated response
patterns were 500, employing a uniform distribution for the attribute joint distribution,
which is the default specification in the gen.data() function. With respect to model calibra-
tion, we chose to exemplify a scenario in which there is no calibration error by providing
the true item parameters in the GDINA() function of the GDINA package.

Next, a total of seven CD-CATs with a fixed length of 15 items were compared: (1)
an application with itemSelect = “GDI” and startRule = “max” (default values in the
cdcat() function); (2) an application with itemSelect = “GDI” but with startRule =
“random” (i.e., the first item is selected at random and the GDI rule is applied); (3) and
(4) were applications including the progressive item exposure control method applied on
the GDI (i.e., itemSelect = “GDI” and itemExposurecontrol = “progressive”) with
values for the acceleration parameter equal to −2 and 2, respectively, (5) an application
with itemSelect = “PWKL”; (6) an application with itemSelect = “NPS”; and (7) an ap-
plication with itemSelect = “random.” It was expected that “random” would obtain the
worst performance in attribute classification accuracy. PWKL was expected to perform
comparatively worse at the beginning of the test, where the punctual estimation of the at-
tribute vector is still unreliable. A higher acceleration parameter in the progressive method
applications will lead to lower overlap rates, to the detriment of reliability compared to
GDI. Using startRule = “random” will allow the overlap rate to be slightly reduced, with
minimal impact on the attribute classification accuracy.

The attribute classification accuracy and overlap rates were obtained with the cdcat.
summary() function specifically designed for the comparison of cdcat-type objects. Specifi-
cally, we report pattern recovery calculated as the proportion of correctly classified attribute
vectors:

PCV =
N

∑
i=1

I[αi = α̂i]

N
(7)

Descriptive information was also included for the item exposure rates, including the
overlap rate, computed as [42]:

T =
n
q

S2
er +

q
n

, (8)

where n is the item bank size, q is the CAT length, and Ser
2 is the variance of the item

exposure rates. The overlap rate is a traditional test security indicator (e.g., [43]). It provides
information on the average proportion of items expected to be shared by two examinees.
In the event that a bank is leaked, a high overlap rate would allow examinees to have easy
access to the items that will be presented to them. CD-CAT applications will typically
occur in educational learning contexts where this is not a priori a problem, as it is not a
high-stakes context. However, high overlap rates often reflect a suboptimal use of the item
bank, represented by an overexposure of a few items and an underexposure of many others.
That is why the optimization of both the classification accuracy and overlap rate should
ideally be achieved.

The results for attribute classification accuracy are shown in Figure 6. As can be seen,
the application that obtained the best results was the one based on GDI, with a pattern
recovery equal to or higher than that of the remaining methods starting in the fifth item.
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As more items were applied, the pattern recovery increased until reaching values equal
or close to 1 for all GDI-based procedures. Having a high acceleration parameter in the
progressive method meant that for the selection of the first items there was a strong random
component, leading to less accurate classifications. This was shared by the PWKL method,
which, although it managed to obtain an acceptable accuracy, obtained poorer results
in the first items. The NPS method started after applying K items of an attribute at the
beginning, so its line started at item K = 5. This nonparametric method ended up achieving
a reliability equal to that obtained by PWKL, although we see that it had a slower growth
in reliability compared to the parametric procedures. Finally, an almost linear growth in
reliability is observed for the random method, which did not optimize item selection based
on previously administered items.

Psych 2021, 3, FOR PEER REVIEW 11 
 

where n is the item bank size, q is the CAT length, and Ser2 is the variance of the item 
exposure rates. The overlap rate is a traditional test security indicator (e.g., [43]). It pro-
vides information on the average proportion of items expected to be shared by two exam-
inees. In the event that a bank is leaked, a high overlap rate would allow examinees to 
have easy access to the items that will be presented to them. CD-CAT applications will 
typically occur in educational learning contexts where this is not a priori a problem, as it 
is not a high-stakes context. However, high overlap rates often reflect a suboptimal use of 
the item bank, represented by an overexposure of a few items and an underexposure of 
many others. That is why the optimization of both the classification accuracy and overlap 
rate should ideally be achieved. 

The results for attribute classification accuracy are shown in Figure 6. As can be seen, 
the application that obtained the best results was the one based on GDI, with a pattern 
recovery equal to or higher than that of the remaining methods starting in the fifth item. 
As more items were applied, the pattern recovery increased until reaching values equal 
or close to 1 for all GDI-based procedures. Having a high acceleration parameter in the 
progressive method meant that for the selection of the first items there was a strong ran-
dom component, leading to less accurate classifications. This was shared by the PWKL 
method, which, although it managed to obtain an acceptable accuracy, obtained poorer 
results in the first items. The NPS method started after applying K items of an attribute at 
the beginning, so its line started at item K = 5. This nonparametric method ended up 
achieving a reliability equal to that obtained by PWKL, although we see that it had a 
slower growth in reliability compared to the parametric procedures. Finally, an almost 
linear growth in reliability is observed for the random method, which did not optimize 
item selection based on previously administered items. 

 
Figure 6. Pattern recovery comparison for the seven fixed-length CD-CAT implementations. GDI: 
general discrimination index; GDI.prog2 and GDI.progm2: progressive method for item exposure 
control with b = 2 and –2, respectively; GDI.randomstart: first item is selected at random; NPS: non-
parametric item selection method; PWKL: posterior weighted Kullback–Leibler; random: random 
item selection. 

The results for item exposure are shown in Table 2. The trade-off between accuracy 
and test security is clearly illustrated. GDI, which obtained the best results for pattern 
recovery, had the highest overlap rate (0.50), with some items being applied to 100% of 
examinees. This was slightly mitigated by using a random start, which increased the first 
quartile for item exposure rate and minimally lowered the overlap rate. The application 

Figure 6. Pattern recovery comparison for the seven fixed-length CD-CAT implementations. GDI:
general discrimination index; GDI.prog2 and GDI.progm2: progressive method for item exposure
control with b = 2 and –2, respectively; GDI.randomstart: first item is selected at random; NPS: non-
parametric item selection method; PWKL: posterior weighted Kullback–Leibler; random: random
item selection.

The results for item exposure are shown in Table 2. The trade-off between accuracy
and test security is clearly illustrated. GDI, which obtained the best results for pattern
recovery, had the highest overlap rate (0.50), with some items being applied to 100% of
examinees. This was slightly mitigated by using a random start, which increased the first
quartile for item exposure rate and minimally lowered the overlap rate. The application of
the progressive method decreased the overlap rate (the higher the value of the acceleration
parameter, the lower the overlap rate). The other parametric selection rule, PWKL, obtained
the highest overlap rate after GDI (0.44) despite having comparatively worse results in
pattern recovery. For this reason, GDI would be preferred over PWKL. The results for NPS
clearly reflect the random component of this selection rule. Thus, it provided a low overlap
rate and an exhaustive use of the item bank with few over- and under-item item exposure
problems. In particular, we see how NPS obtained results similar to the random application
even when acceptable pattern recovery results were obtained.
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Table 2. Item exposure comparison for the seven fixed-length CD-CAT implementations.

Implementation Min. 1st Qu. Median Mean 3rd
Qu. Max. Overlap Rate

GDI 0.00 0.00 0.00 0.08 0.05 1.00 0.50
GDI.randomstart 0.00 0.01 0.01 0.08 0.05 0.93 0.45

GDI.progm2 0.00 0.01 0.01 0.08 0.05 0.89 0.42
GDI.prog2 0.02 0.05 0.07 0.08 0.09 0.43 0.13

PWKL 0.00 0.01 0.01 0.08 0.06 0.99 0.44
NPS 0.02 0.05 0.08 0.08 0.12 0.19 0.10

random 0.05 0.07 0.08 0.08 0.09 0.12 0.09
Note. GDI: general discrimination index; prog2 and m2: progressive method for item exposure control with b = 2
and –2, respectively; randomstart: first item is selected at random; NPS: non-parametric item selection method;
PWKL: posterior weighted Kullback–Leibler; random: random item selection.

This illustration was followed by conducting two fixed-precision applications. To
do this, the FIXED.LENGTH argument was set to FALSE and an accuracy-based stopping
criterion was established. Specifically, it was established that for an examinee i the CAT
should stop when the posterior probability assigned to the estimated latent class is equal to
or greater than 0.95 (precision.cut = 0.95). The maximum number of items to apply for
an examinee was set to be 20 (i.e., the default specification for MAXJ). As we shall see, this
led to each examinee being able to respond to a different number of items and, if the size
and quality of the item bank allowed it, the final pattern recovery being equal to or greater
than 0.95. The latter can be seen in Table 3, which shows the attribute classification accuracy
results obtained using the cdcat.summary() function. For illustrative purposes only, two
CD-CAT applications were included: one based on GDI and the other based on GDI, but
applying the progressive method for item exposure control with b = 2. The stopping
criterion tries to set the value for the proportion of completely correct classifications in
the estimated latent class vector (K/K, in this case, 5/5). We see that in this case both
CD-CAT applications exceeded the value of 0.95, taking the values of 0.97 and 0.98 for
GDI and GDI with the progressive method, respectively. This means that for 97–98% of
the 500 examinees, the estimated latent class coincided with the true one. It is difficult to
obtain high values for this variable if, for example, the number of attributes to be classified
is high. Thus, the number of any attributes correctly assigned in the estimated vector (1/K
to K−1/K) is offered as complementary information. In this case we observe that for both
classifications at least four of the five attributes were correctly classified in 100% of the
cases. The PCA indicates the proportion of classifications for each individual attribute. In
this case we observe that all attributes were measured with a very similar level of accuracy.

Table 3. Attribute classification accuracy comparison for the two fixed-precision CD-CAT implemen-
tations.

PCV 1/5 2/5 3/5 4/5 5/5

GDI precision 1.00 1.00 1.00 1.00 0.97
GDI.prog2 precision 1.00 1.00 1.00 1.00 0.98

PCA K1 K2 K3 K4 K5

GDI precision 1.00 0.99 1.00 0.99 1.00
GDI.prog2 precision 1.00 0.99 1.00 1.00 1.00

Note. PCV: proportion of correctly classified attributes at the vector level. PCA: proportion of correctly classified
attributes at the individual attribute level. K1, . . . ,K5: attributes 1 to 5.

Once we verified that the accuracy achieved was as desired, we examined the distri-
bution of the number of items applied to each examinee and the exposure rate of the items
also using the cdcat.summary() function. This information is reported in Figures 7 and 8,
respectively. As expected, the application based exclusively on GDI satisfied the criterion
of precision, requiring a much smaller number of administered items. Since the items in
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the bank were of high quality, in many cases it was sufficient to administer five items, the
mean being 6.25, at the cost of overexposing several items. In order to control the exposure
rate of the items, the progressive method starts with a random component (in this case high
due to the use of b = 2), which makes 10.35 items necessary on average per examinee but
making a much more exhaustive use of the item bank. The context of application should
be considered to prioritize an efficient evaluation (GDI) or better security and item bank
usage (GDI with the progressive method).
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4. Discussion

The CD-CAT methodology has emerged to combine the efficiency of adaptive ap-
plications with the fine-grained diagnostic output of CDMs [4]. Multiple papers have
been published exploring this methodology and proposing new developments. The first
empirical applications have also emerged. Specifically, Liu et al. (2013) described the
generation of a bank of 352 items assessing eight attributes related to English proficiency
and Tu et al. (2017) presented 181 items to classify examinees in nine attributes related to
internet addiction [9,44]. To date, the authors making use of this methodology have needed
to develop ad hoc codes. This complicates comparison across studies and access to these
methodologies by researchers in applied settings. For this reason, the cdcatR package
was developed in a manner analogous to what had been done previously in the context
of traditional item response theory with the catR [45] and mirtCAT [46] packages. The
main difference between traditional CAT and CD-CAT is that in CD-CAT the measurement
model considers multiple discrete latent attributes, whereas in traditional IRT the measure-
ment model typically considers one (or only a few) continuous latent traits. This leads to
numerous similarities between these two types of adaptive applications (e.g., the workflow
presented in Figure 2 is common), but has also led to the need for developments of the
CD-CAT itself, as reviewed in the previous section. The present document has described
the main functions and arguments of cdcatR. In addition, an illustration has been provided
in which various specifications for the implementation of the CD-CAT were compared in
terms of attribute classification accuracy, item exposure, and test length for the simulated
data. We hope that this will motivate the development of new empirical applications using
this framework and simulation studies that further explore the methods available to date.
It should be noted that the package is still in its initial stages. The first stable version of the
package was version 1.0.0 and was published on CRAN in June 2020. The current version
is version 1.0.3 and, with respect to previous versions, the specifications for starting rule
and exposure control were added [36,37]. In the following text, some of the developments
that are planned to be included in future versions are detailed.

First, we plan to include other exposure control methods specifically developed in
the context of CD-CAT to facilitate their scrutiny and comparison with the traditional
progressive method [47]. Second, other popular selection rules in CD-CAT such as mu-
tual information [48] and Shannon entropy [49] and more modern ones such as the one
presented in Li et al. (2021) will be incorporated [6]. Previous studies have found a close
theoretical relationship between several of the item selection rules available [31,33]. In-
cluding these procedures will facilitate the implementation of simulation studies to better
understand their similarities and discrepancies in different contexts. Third, the package
allows for work to be carried out currently under the G-DINA framework for dichotomous
data (i.e., G-DINA, DINA, DINO, and A-CDM models). It is expected that more complex
models be incorporated that allow work to be carried out considering information from the
item distractors such as the MC-DINA model [31,50] or work to be conducted with ordinal
items and attributes such as the sequential G-DINA [51] and polytomous G-DINA [52]
models. To date, studies on CD-CAT have mostly been restricted to the case of dichotomous
items. It is hoped that this development will allow realistic contexts in applied practice to
also be explored. The study by Gao et al. (2020) has pioneered this [53]. Fourth, there has
been recent interest in hybrid selection rules that seek to simultaneously classify a general
latent trait score that is continuous and that explains the relationships between discrete
attributes modeled in CDM and the attributes (e.g., [30]). This could be easily implemented
by using the higher-order model to model the attribute relationships [54]. Fifth, in re-
cent years there has also been very intensive research on Q-matrix validation procedures
(e.g., [7,55]). The adequacy of the Q-matrix determines to some extent the quality of the
classifications that can be made with the adaptive application. Specifically, for CD-CAT,
developments have been proposed that allow online calibration of the Q-matrix so that
the proposed specification for new items can be tested from the information available in
the item bank [8]. These developments will be incorporated into the package to explore
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this previous phase of a CD-CAT implementation. Finally, in this paper, we have adopted
as a starting point a maximum likelihood estimation of item parameters. Recently, efforts
have been made to make the estimation with the Bayesian Markov chain Monte Carlo
algorithm more accessible [56]. This approach can be particularly useful in the case of
complex models. Work will be done to allow the adoption of the results of a calibration
obtained in this way to be an input in the cdcat function. Ultimately, work will be done to
turn the package into a referential software that can be used to evaluate the proposals in
the literature and to explore the future functioning of empirical item banks.
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