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We determine the effect of Lorentz invariance violation in the vacuum energy and stress between two 
parallel plates separated by a distance L, in the presence of a massive real scalar field. We parametrize the 
Lorentz-violation in terms of a symmetric tensor h μν that represents a constant background. Through the 
Green’s function method, we obtain the global Casimir energy, the Casimir force between the plates and 
the energy density in a closed analytical form without resorting to perturbative methods. With regards 
to the pressure, we find that Fc(L) = F0(L̃)/

√−det h μν , where F0 is the Lorentz-invariant expression, 
and L̃ is the plate separation rescaled by the component of h μν normal to the plates, L̃ = L/

√−hnn . We 
also analyze the Casimir stress including finite-temperature corrections. The local behavior of the Casimir 
energy density is also discussed.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The existence of a zero-point vacuum energy is one of the 
main tenets of the quantum formulation of the laws that we be-
lieve govern our Universe. In a Quantum Field Theory (QFT), the 
presence of fluctuating zero-point fields implies the existence of a 
non-vanishing macroscopic force between the boundaries that de-
limit a spatial region [1], due to the difference in the spectrum 
of quantized field modes inside and outside this region. When 
the boundaries of this delimited spatial domain take the form of 
two parallel plates, this manifestation of the vacuum fluctuation is 
known as the Casimir effect [2]. The computation of the Casimir 
force in QFT is a standard textbook exercise [3–5], and its exis-
tence, in the case of Quantum Electrodynamics, has been verified 
to a high precision [6–9].

The Casimir effect is now behind many experimental and theo-
retical pursuits. It is used as a tool to place constraints on Yukawa-
type interactions [10,11], and it has been suggested as a poten-
tial probe for the detection of feebly-interacting axion-like dark 
matter [12]. Casimir forces cannot be neglected at the nanoscale, 
and must be accounted for in the design of microelectromechan-
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ical systems [13]. Among theoretical extensions one can list its 
generalization to spacetimes with non-trivial topologies [14,15], 
dynamical boundary conditions [16], and non-Euclidean space-
times [17–19]. In the latter case it offers an independent derivation 
of the Hawking temperature from particle production from black 
holes [20,21]. Modifications of the Casimir effect in the presence 
of weak gravitational fields have been extensively studied [22–28]. 
In this context, the Casimir effect can potentially provide clues on 
the connection between zero-point fluctuations and the cosmolog-
ical constant [29–32].

The Casimir effect stands as a potential handle to distinguish 
between Lorentz-invariant and Lorentz-violating formulations of 
QFT. Lorentz invariance (LI) is one of the cornerstones behind QFT 
and general relativity, and to date there are no experimental signs 
of a departure from it [33]. Nevertheless, the quantum nature of 
the spacetime at distances of the order of the Planck length (�P ) 
has been shown to provide mechanisms that can lead to viola-
tion of LI in certain formulations of quantum gravity [34–36]. As 
an example, spontaneous Lorentz symmetry breaking can occur 
within some string theories [35]. Therefore, a better understand-
ing on the consequences of the breakdown of LI at scales larger 
than �P would provide valuable information about the microscopic 
structure of spacetime. In this Letter we explore the manifesta-
tion of the spontaneous breakdown of LI, induced by a constant 
background tensor, on the Casimir effect for a real massive scalar 
field between two parallel conductive plates in flat spacetime. We 
also explore how thermal corrections are affected by the Lorentz 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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symmetry breaking. Our work provides a generalization of previ-
ous studies of LI violation in the Casimir context [37,38].

2. The model

Arguably, the most straightforward way to implement Lorentz 
violation is by means of the introduction of a tensor field with a 
non-zero vacuum expectation value (VEV). When coupled to the 
Standard Model fields the spontaneous symmetry breaking, in-
duced by the non-zero VEV, is manifested as preferential directions 
on the spacetime, leading to a breakdown of LI. In the case of a 
real scalar field in flat spacetime, with the Minkowski metric with 
signature (+, −, −, −), we parametrize this coupling in the follow-
ing form,

L = 1

2
h μν∂μφ ∂νφ − 1

2
m2φ2 . (1)

Here h μν is a symmetric tensor that represents a constant back-
ground, independent of the spacetime position, and which does 
not transform as a second order tensor under active Lorentz trans-
formations.1 Naturally, causality, the positive energy condition and 
stability impose restrictions on the components of h μν .

Consider now the following set-up: a pair of parallel, conduc-
tive plates, orthogonal to the ẑ-direction, located at z = 0 and 
z = L, on which Dirichlet boundary conditions apply for the field φ. 
That is, φ(z = 0) = φ(z = L) = 0. We now solve for the scalar field 
between the plates, applying the Green’s function technique [40]. 
Namely, we are interested in computing the time-ordered, vac-
uum two-point correlation function G(x, x′) = −i〈0|T φ(x)φ(x′)|0〉, 
which as is well known (see e.g. [41]) satisfies the Green’s function 
(GF) equation

O�x G(x, x′) = δ(4)(x − x′). (2)

Here, in the configuration space, the modified Klein-Gordon oper-
ator has the following explicit form,

O�x = h00∂2
0 + 2h0ī∂0∂ ī + hī j̄∂ ī∂ j̄ + 2h03∂0∂3 + 2hī3∂ ī∂3

+ h33∂2
z + m2 (3)

with ī, ̄j = 1, 2. In the chosen coordinate system, the GF is invari-
ant under translations in the (x̂, ŷ)-plane. Taking advantage of this 
symmetry, we can express the GF in terms of the Fourier transform 
in the direction parallel to the plates,

G(x, x′) =
∫

d2�k⊥
(2π)2 ei�k⊥·(�x⊥−�x ′⊥)

∫
dω

2π
e−iω(t−t′)g

(
z, z′;ω, �k⊥

)
,

(4)

where �k⊥ = (kx, ky) and �x⊥ = (x, y). Henceforth we will drop the 
explicit dependence on ω, �k⊥ of g for simplicity. After substitution 
of (4) into (2), and straightforward integration of the resulting 1D 
boundary problem,2 an exact solution for the reduced GF between 
the plates can be found,

g‖(z, z′) = e−iξ0(z′−z) sin(ξ1z<) sin[ξ1(z> − L)]
h33ξ1 sin(ξ1L)

. (5)

1 Single derivative terms, such as iφuμ∂μφ with uμ a constant 4-vector, can be 
reduced to surface terms, which in absence of topological effects do not have phys-
ical contributions [39].

2 An analogous step-by-step procedure can be found in [40].
Here z> (z<) is the greater (lesser) between z and z′ . The coeffi-
cients ξ0,1 denote the following combinations of energy-momenta 
and the Lorentz-violating tensor,

ξ0 = 1

h33
(h03ω − hī3�k⊥ī) , (6)

ξ1 = 1

|h33|
[
(h03ω − hī3�k⊥ī)

2 − h33γ 2
]1/2

, (7)

where

γ 2 = h00ω2 − 2h0īωk⊥ī
+ hī j̄�k⊥ī

�k⊥ j̄
− m2 . (8)

The LI limit is recovered by taking h μν → ημν , which implies 
ξ0 → 0 and ξ2

1 → ω2 − k2⊥ − m2. It is worth noting that the case 
with Neumann conditions can be trivially recovered by replacing 
sin → cos in the numerator of (5).

The determination of the Casimir energy and stress requires not 
only the GF for the two plate setup, but also the GF in the absence 
of plates and a single plate. For the former, we find

gv(z, z′) = − i

2ξ1

eiξ0(z−z′)

h33
eiξ1(z>−z<) , (9)

while for the latter,

g|(z, z′) = −eiξ0(z−z′)

ξ1h33
sin[ξ1(z< − L)]eiξ1(z>−L) . (10)

In order to quantify the Casimir effect, we need an expression 
for the vacuum expectation value for the stress-energy tensor of 
the scalar field, T μν = h μα∂αφ ∂νφ − ημνL. In terms of the GF, it 
can be generically computed as [40]

〈T μν〉 = −i lim
x→x′

[
hμα∂α ∂ ′ν]

G(x, x′) − ημν〈L〉 , (11)

while the VEV of the Lagrangian density can be written as 〈L〉 =
−i limx→x′ 1

2

(
h μν∂μ ∂′ν − m2

)
G(x, x′).

Substitution of (4) leads to the following expressions for the 
energy density and the pressure in the ẑ-direction,

〈T 00〉 = − i lim
z′→z

∫
dω

2π

∫
d2�k⊥
(2π)2

[
h00ω2 − h0īω�k⊥ī

+ih03ω∂z

]
g(z, z′) − 〈L〉, (12)

〈T 33〉 = − i

2
lim
z′→z

∫
dω

2π

∫
d2�k⊥
(2π)2

[
γ 2 − h33∂z∂z′

]
g(z, z′).

(13)

where

〈L〉 = − i

2
lim
z′→z

∫
dω

2π

∫
d2�k⊥
(2π)2

[
γ 2 + h33∂z∂z′

− ih33ξ0(∂z′ − ∂z)

]
g(z, z′) . (14)

3. Casimir effect with Lorentz symmetry violation

With the VEV of the stress-energy tensor at hand, we now pro-
ceed to compute the global Casimir energy and the Casimir stress 
upon the plates in the presence of Lorentz-invariance violation.
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3.1. Global Casimir energy

The renormalized vacuum energy stored between the parallel 
plates can be computed formally as the difference between the 
zero-point energy in the presence of the boundary, 〈T 00〉‖ , and that 
of the free vacuum, 〈T 00〉v . Namely,

EC (L) =
L∫

0

(
〈T 00〉‖ − 〈T 00〉v

)
dz . (15)

We begin by evaluating 〈T 00〉‖ . As a first step, it can be noted after 
a cursory computation that the contribution from the VEV of L
in (12) is L-independent and will therefore not contribute to the 
Casimir pressure.3 After simplification, the remaining terms in (12)
can be rearranged to lead to the following expression,

〈T 00〉‖ = −i

∫
dω

2π

∫
d2�k⊥
(2π)2

[
h00ω2 − h0īω �k⊥ī

− h03ωξ0

]
g‖(z, z) . (16)

The term inside the brackets in the previous equation is a 
quadratic form in (ω, kx, ky), with coefficients given by the compo-
nents of h μν . This quadratic form is different from that appearing 
in the argument of the GF, | h33| ξ2

1 , and this makes the evaluation 
of (16) a non-trivial task. However, a closed-form solution may 
be obtained by diagonalization of the latter quadratic form, map-
ping it into a mimic of the LI case, | h33| ξ2

1 = ω′ 2 − k′ 2
x − k′ 2

y − m2, 
where primed quantities correspond to the rotated frequency and 
momenta. Further performing a Wick rotation ω′ → iζ , it can be 
shown that (16) is equivalent to the following expression,

〈T 00〉‖ = 1√−h

∫
dζ

2π

∫
d2 �k′⊥
(2π)2

ζ 2 sinh(γ z̃) sinh[γ (z̃ − L̃)]
γ sinh(γ L̃)

,

(17)

where now γ 2 = ζ 2 + k′ 2⊥ + m2, h ≡ det h μν , and

z̃ = z√−h33
, L̃ = L√−h33

. (18)

An entirely analogous procedure can be followed to evaluate 
the vacuum energy density 〈T 00〉v , making use in this case of the 
corresponding GF (9). For it we obtain

〈T 00〉v = − 1√−h

∫
dζ

2π

∫
d2�k′⊥
(2π)2

ζ 2

2γ
. (19)

Finally, substituting into (15), integrating with respect to z and 
dropping an L-independent constant term leads to the following 
expression for the vacuum energy between the plates,

EC (L) = −
√

h33

h

∫
dζ

2π

∫
d2�k′⊥
(2π)2

ζ 2

2γ
L̃ [coth (γ L̃) − 1]. (20)

This resulting integral can be recognized as the LI result, E0, 
rescaled by the factor 

√
h33/h, with a rescaled separation between 

the plates (18) [40]. Integration gives

EC (L) =
√

h33

h
E0(L̃) = − m2

8π2 L̃

√
h33

h

∑∞
n=1

1

n2
K2(2mnL̃), (21)

3 More precisely, ∫ L
0 〈L〉‖ dz = (1/2i) ∫ dω

2π

∫ d2�k⊥
2 .
(2π)
where K2(x) is the second-order Bessel function of the second 
kind. Note that the Lorentz-violating result reduces trivially to the 
LI one as h33, h → −1, which would be the case for hμν → ημν . 
Although the sum which appears in (21) does not have an ana-
lytical closed form, it can be reduced to simple expressions in the 
large and small mass limits,

EC (L)  −
√

h33

h
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π2

1440L̃3
− m2

96L̃
, mL̃ � 1 ,

m2

16π2 L̃

√
π

mL̃
e−2mL̃ , mL̃ � 1 .

(22)

The massless case is trivially recovered taking the m → 0 limit in 
the previous equation.

3.2. Stress on the plates

We now proceed to determine the Casimir stress upon the plate 
at z = L by direct evaluation of the normal-normal component 
of the stress-energy tensor (13). Denoting by 〈T 33〉‖ the vacuum 
stress due to the confined scalar field, and by 〈T 33〉| the stress due 
to the field above the plate, we can write

FC (L) = 〈T 33〉‖ − 〈T 33〉|. (23)

In a similar fashion to the previous computation of the Casimir 
energy, all it takes to calculate these stresses is to substitute the 
corresponding reduced GFs into (13), and to repeat the quadratic 
form diagonalization procedure. A key difference in this analysis is 
the fact that the Lagrangian density does contribute to the stress.4

Nevertheless, despite this relative complication, a straightforward 
calculation using (5) and (10) yields

〈T 33〉‖ = − 1√−h

∫
dζ

2π

∫
d2�k′⊥
(2π)2

γ

2
coth(γ L̃) ,

〈T 33〉| = − 1√−h

∫
dζ

2π

∫
d2�k′⊥
(2π)2

γ

2
.

(24)

Each stress contains an L-independent divergent term that is can-
celed by the regularization provided by (23). Substitution of these 
expressions into (23), and following the same steps that lead to 
Eq. (20), produces

FC (L) = 1√−h
F0(L̃) = 1√−h

1

4π2

∞∫
0

τ 2
√

τ 2 + m2

e2L̃
√

τ 2+m2 − 1
dτ . (25)

In this expression F0 denotes the LI result. Expectedly, the stress 
in the LI violating result is proportional to the stress in the ab-
sence of Lorentz violation, but evaluated at the rescaled length L̃ . 
For a vanishing scalar field mass, Eq. (25) reduces to FC (L)|m=0 =
−π2/(480L̃4

√−h).
As a consistency check, one can verify that the Casimir energy 

(21) and the stress (25) are connected by the elementary relation

FC (L) = −∂EC (L)

∂L
. (26)

3.3. Local effects

In Section 3.1 we derived an expression for the global Casimir 
energy by computing the integral of 〈T 00〉‖ − 〈T 00〉v in the region 

4 〈L〉 also plays a fundamental role regarding the behavior of the field near the 
boundaries, see Section 3.3.
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between the plates by means of the GF method. Although alter-
native methods exist to evaluate EC [42], the power of the GF 
procedure arises clearly when studying the local energy density, 
which in turn reveals the divergent structure of the theory. The 
computation of 〈T μν 〉 is the goal of this section.

We begin with the energy density per unit volume between 
the plates. Without dropping in this case the contribution of 
〈L〉 (which was discarded in the global analysis due to its L-
independence after integration), the same analysis that led to (17)
in this case gives

〈T 00〉 = − 1√−h

∫
dζ

2π

∫
d2�k′⊥
(2π)2

×
{

ζ 2

2γ
coth(γ L̃) + k′2⊥ + m2

2γ

cosh[γ (2z̃ − L̃)]
sinh(γ L̃)

}
. (27)

The introduction of the polar coordinates k⊥ = ρ cos θ , ζ = ρ sin θ , 
where ρ ∈ [0, ∞) and θ ∈ [−π/2, π/2], leads to the following re-
sult

〈T 00〉 = − 1

12π2

1√−h

∞∫
0

{
ρ4

γ ∗
2

e2γ ∗ L̃ − 1

+ρ2

γ ∗ (2γ ∗2 + m2)
e2γ ∗ z̃ + e2γ ∗(L̃−z̃)

e2γ ∗ L̃ − 1

}
dρ . (28)

Here γ ∗ = √
ρ2 + m2, and we have discarded an L-independent 

term. Denoting by U the z-independent term in the previous ex-
pression, one can easily show that U = EC /L. Similarly, a straight-
forward change of variables allows us to write the z-dependent 
term of (28), which we denote by f (z), as follows,

f (z) = − 1

192π2 L̃4

1√−h

∞∫
2mL̃

√
y2 − (2mL̃)2

×
[

2y2 + (2mL̃)2
] e yz/L + e y(1−z/L)

e y − 1
dy. (29)

In the massless limit, this function can be expressed in terms of 
the Hurwirtz zeta function, ζ(s, a) = ∑∞

n=0(n + a)−s ,

f (z) = − 1

16π2L4

(h33)2

√−h
[ζ(4, z/L) + ζ(4,1 − z/L)] . (30)

Therefore we have found that 〈T 00〉 = U + f (z). U encodes 
the part of the vacuum energy resulting in an observable force, 
whereas f (z) corresponds to a local, divergent effect that does not 
contribute to the pressure, as the L-independence of the following 
integral confirms

L∫
0

f (z)dz = − 1

48π2

√
h33

h

∞∫
2m

√
x2 − 4m2(x2 + 2m2)

dx

x
. (31)

In the massless case this divergence is quartic as z approaches the 
plates, as can be appreciated from Eq. (30). For a generic mass the 
complex form of (29) prevents us from analytically determining 
the degree of divergence.

We turn now to the evaluation of the VEV for the remaining 
components of T μν . Owing to the symmetry of the setup, these 
components can be easily determined. For example, rotational in-
variance around the z-axis immediately implies that 〈T 11〉 = 〈T 22〉. 
Moreover, after an explicit calculation we find that 〈T 11〉 = −〈T 00〉. 
The off-diagonal components of T μν vanish in the LI limit, but in 
the presence of a non-trivial h μν they are in general non-zero, al-
though they can also be related to the 00 and 33 components by 
symmetry arguments. A cursory computation provides the follow-
ing general expression for the VEV of the stress-energy tensor,

〈T μν〉 = −2hα3

h33
(ημα + nμnα)nν

[
〈T 00〉 − 〈T 33〉 − f (z)

]
+(ημν + nμnν) 〈T 00〉 + nμnν 〈T 33〉 . (32)

Here nμ = (0, 0, 0, 1) is the unit vector perpendicular to the plates, 
and 〈T 00〉 and 〈T 33〉 are given by Eqs. (28) and (24), respectively. 
Clearly, in the LI limit the first term vanishes and we recover the 
usual structure of the vacuum stress [43].

3.4. Finite temperature effects

The Casimir effect, as described in the previous sections, is a 
manifestation of the fluctuations of the φ field in the vacuum. 
However, any realistic parallel plate setup will necessarily be im-
mersed in a bath with a temperature above absolute zero. It is 
therefore crucial to determine the effect that thermal fluctuations 
would have in the Casimir stress. Luckily, in our relatively simple 
scenario, the stress at T > 0 case can be determined in a straight-
forward manner.

In the Matsubara formalism of finite temperature QFT, the 
Casimir stress at nonzero temperature can be obtained from 
Eq. (24) upon the replacement 

∫
dζ/2π → β−1 ∑∞

n=−∞ , together 
with mapping the imaginary frequency ζ to the discrete Matsubara 
frequency ζn ≡ 2πn/β [44]. Here β = 1/kB T , with kB the Boltz-
mann constant. These substitutions yield

FC (L; T ) = − 1

β
√

h

+∞∑
n=−∞

∫
d2�k⊥
(2π)2

γn

e2γn L̃ − 1
, (33)

where γn =
√

ζ 2
n + k2⊥ + m2. Although this expression lacks a 

closed form in terms of elementary functions, we can gain some 
insight of its behavior in the massless case for small temperature 
and large temperature (classical) limits. For low temperature, the 
above expression for the pressure takes the form

FC (L; T � 1) ≈ − π2

480L̃4
√

h

(
1 + 1

48π4
s4 − 60

π2
se−4π2/s

)
,

(34)

where s = 4πkB T L̃ � 1. Clearly this result is consistent with the 
Nernst heat theorem, since the associated entropy vanishes as s
goes to zero.

In the opposite regime, at high temperatures, all terms in the 
sum of Eq. (33) except the n = 0 term are exponentially sup-
pressed, resulting in

FC (L; T � 1) ≈ − ζ(3)kB T

8π L̃3
√

h
− kB T

4π L̃3
√

h

(
1 + s + s2

2

)
e−s, (35)

where here s � 1. The leading term can also be obtained from the 
Helmholtz free energy for Lorentz-violating massless bosons.

The results of equations (34) and (35) exhibit an interesting 
behavior as a function of the Lorentz violating parameter h33

through the rescaled length L̃ = L/
√−h33. When Lorentz invari-

ance is mildly broken, h33 ≈ −1, and hence the conditions s � 1
and s � 1 correspond to low and high temperatures, respectively. 
However, when Lorentz symmetry breaking is not negligible, such 
conditions are relaxed and possibly flipped. For example, when 
h33 ≈ 0− , the condition s � 1 can be fulfilled even for low tem-
peratures.



C.A. Escobar et al. / Physics Letters B 807 (2020) 135567 5
4. Summary and discussion

In the present work we have obtained explicit expressions for 
the Casimir energy and force between two parallel conductive 
plates, arising from the vacuum fluctuations of a massive real 
scalar field, in the presence of a generic background defined by 
the tensor h μν in Eq. (1). This background is motivated by theo-
ries in which the breakdown of Lorentz invariance manifests itself 
as the non-vanishing vacuum expectation value of a fundamental 
field.

Since no deviation from Lorentz invariance has been experi-
mentally observed yet, the perturbative expansion h μν = ημν +
kμν is justified. Here ημν is the Minkowski metric and kμν is a 
constant tensor whose components are much smaller than one 
|kμν | � 1. Working to first order in kμν , it is possible to prove 
that the Lorentz-violating theory described by Eq. (1) can be trans-
formed into the standard Lorentz-invariant theory by an appro-
priate change of spacetime coordinates x′μ = xμ − 1

2 k μ νxν [45]. 
In this new coordinate system it is relatively straightforward to 
evaluate the Casimir energy. It is given by the Lorentz-invariant re-
sult, albeit with a redefinition of the separation between the plates 
and a global multiplicative factor arising from the Jacobian of the 
transformation. Let us discuss our result in Eq. (25) in this ap-
proximation. One can verify that the global multiplicative factor, 
1/

√−h in Eq. (25), corresponds to the square root of the Jacobian, 
whereas L̃ ≈ L(1 + 1

2 k33) is precisely the transformed distance be-
tween plates. This confirms that our result, valid to all orders in 
kμν , correctly reduces to the expected result in the limit |kμν | � 1.

Focusing on the massless case for simplicity, the (measurable) 
Casimir force explicitly reduces to first order in kμν to FC (L) =
(1 −2k33 − 1

2 ημνkμν) F0(L). For the sake of comparison, if we con-
sider the present experimental measurements of the Casimir force 
between parallel plates for the electromagnetic case (15% preci-
sion in the 0.5-3 μm range), the bound that can be obtained from 
this result is | 2k33 + 1

2 ημνkμν | < 10−2. Note that the leading-order 
modification to the Lorentz invariant result only involves the com-
ponent of kμν perpendicular to the plates and the trace of kμν . 
We also note that in this Letter we have assumed that Dirich-
let boundary conditions apply at the plates location. Nevertheless, 
other types of boundary conditions, such as Neumann conditions, 
can be treated in a completely analogous manner since they only 
directly modify the Green’s function form. We have found that for 
this parallel plate setup, the form of the Casimir energy and force 
are independent of the choice of Dirichlet or Neumann conditions, 
as happens in the LI case.

It is worth mentioning that in Refs. [37,38] the Casimir effect 
and its corresponding thermal corrections for the scalar field were 
studied for a particular case where h μν = ημν + λu μu ν , being 
λ a LV parameter and u μ a four-vector that specifies the direc-
tion in which the Lorentz symmetry is broken. There, the authors 
considered separately different choices of the four-vector u μ and 
analyzed, by means of the mode-summation method, the Casimir 
effect. One can verify that our results in Eqs. (21) and (33) for the 
global Casimir energy and thermal corrections to the Casimir stress 
respectively reduce to the ones reported in Refs. [37,38] by setting 
h μν = ημν + λu μu ν . However, the local approach adopted here 
provides additional information regarding the local behavior of the 
theory, besides the generalization and flexibility that the second-
rank tensor h μν gives to the model.

We finish by emphasizing that our method allowed us to de-
termine the effect of h μν on the Casimir energy and stress in a 
non-perturbative way and did not require a smallness condition on 
the magnitude of the components of h μν . Although this appears 
to be an overkill in the context of Lorentz invariance violation, 
our computation can be relevant for condensed matter physics and 
materials science because therein the internal structure of media, 
which generically leads to anisotropies, will play an analogous role 
to that of a background in empty space.
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