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Confinement-induced zero-bias peaks in conventional superconductor hybrids
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Majorana bound states in topological superconductors have been predicted to appear in the form of zero-
bias conductance peaks of height 2e2/h, which represents one of the most studied signatures so far. Here, we
show that quasi-zero-energy states, similar to Majorana bound states, can naturally form in any superconducting
hybrid junction due to confinement effects, in the absence of spin fields and, thus, without relation to topology.
Remarkably, these topologically trivial quasi-zero-energy states produce zero-bias conductance peaks, that could
be similar to Majorana signatures, but develop a different peak height (4e2/h) and are less stable under gating
or depletion of the confined region. Our results put forward confinement as an alternative mechanism to explain
the ubiquitous presence of trivial zero-bias peaks and quasi-zero-energy states in superconductor hybrids.
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I. INTRODUCTION

The realization of topological superconductivity featuring
Majorana bound states (MBSs) in superconducting hybrid
systems has lately been the subject of intense research due
to its potential for technological applications [1–8]. The most
promising approach involves semiconductor nanowires with
strong spin-orbit coupling and proximity-induced conven-
tional superconductivity [9,10]. Here, an external magnetic
field drives such systems into a topological phase where
MBSs emerge at zero energy and localize at each end of
the wire. These properties enable MBSs to form the basis
for qubit proposals robust against local perturbations [11–16],
highlighting the importance of topological superconductivity
in condensed matter physics.

The detection of MBSs has been mainly pursued by ex-
ploiting their zero-energy nature. Indeed, tunneling from a
normal metal into a MBS has been predicted to result in a
zero-bias conductance peak (ZBCP) of height 2e2/h [17–22].
Subsequently, many experiments reported ZBCPs and inter-
preted them as strong evidence of MBSs [23–31]. Despite
the significant experimental progress, the Majorana origin of
ZBCPs has been recently questioned; in great part because
several works have reported ZBCPs due to quasi-zero-energy
states (qZESs) at finite magnetic fields but well below the
topological phase and, hence, not tied to topology [32–54]. In
this regard, recent theoretical efforts have suggested interest-
ing detection protocols of MBSs [55–74], but the emergence
of trivial qZESs still seems puzzling in conductance measure-
ments.

Given the complex experimental setups involved in all Ma-
jorana platforms, it is fair to say that it still remains unclear if
the emergence of trivial qZESs, and associated ZBCPs, is due
to the interplay between superconductivity and magnetism,

the intrinsic inhomogeneities of superconducting heterostruc-
tures, or both. Understanding the mechanisms behind these
nontopological states can help to interpret ZBCPs in exper-
iments, rule out a possible Majorana origin, and envisage
routes for mitigating the emergence of the unwanted qZESs.

In this work we demonstrate that qZESs can naturally
emerge in hybrid junctions with conventional s-wave su-
perconductors just due to confinement, and thus requiring
neither magnetism nor spin-orbit coupling. To illustrate this

FIG. 1. (a) Sketch of a one-dimensional N1N2S junction. (b) Dis-
persion relation on each region at the same chemical potential. The
arrows represent the velocity direction of electrons and holes with
wave vectors ke,h in N1,2 and qe,h in S. (c) Quasibound states in N2

involving only normal reflections (top) or both normal and Andreev
processes (bottom).
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generic effect, we consider a normal metal–normal metal–
superconductor (N1N2S) junction, as in Fig. 1(a), where
confinement in the central region (N2) enables the forma-
tion of qZESs. Interestingly, we find that these trivial qZESs
produce ZBCPs, which might suggest some similarity to Ma-
jorana physics, although they exhibit a quantization of 4e2/h
and are less stable under variations of the chemical potential
of the central region. Since most of the setups used to detect
MBSs are prone to confinement, the emergence of topologi-
cally trivial qZESs, with quantized ZBCPs, can be a generic
and ubiquitous effect in any superconducting hybrid system.

II. THEORETICAL FORMULATION

We consider a junction between a metallic and a super-
conducting contact separated by a ballistic one-dimensional
region of length L, as shown in Fig. 1(a). This can be modeled
by the Bogoliubov–de Gennes (BdG) Hamiltonian given by

H =
[

p2

2m
− μ(x)

]
τz + �(x)τx, (1)

where p = −ih̄∂x is the momentum operator, m the elec-
tron effective mass, and μ(x) = μN1�(−x − L) + μN2θ (x +
L)�(−x) + μS�(x) represents the chemical potential pro-
file across the junction, with �(x) being the Heaviside step
function and μN1(2) and μS the chemical potentials in N1(2) and
S regions, respectively. Moreover, �(x) = ��(x) represents
the conventional spin-singlet s-wave pair potential with � �=
0 only in S. We contrast our findings with junctions where S
is a topological superconductor, which we model substituting
the pair potential in Eq. (1) by the equal-spin triplet p wave
�(x) = sgn(p)��(x) [75].

Diagonalizing the Hamiltonian in Eq. (1), we obtain the
energy-momentum dispersion in each region presented in
Fig. 1(b), with wave vectors in the N regions given by

kei,hi = kNi

√
1 ± ω/μNi , with kNi =

√
2mμNi/h̄2 and i = 1, 2.

In the S region, we obtain qe,h = kS

√
1 ± √

ω2 − �2/μS, with

kS =
√

2mμS/h̄2. These wave vectors characterize the right-
and left-moving electrons and holes (electronlike and hole-
like quasiparticles) in the normal (superconducting) regions,
indicated by filled circles with horizontal arrows in Fig. 1(b).
Next, we use the scattering states associated to these quasipar-
ticles to show how confinement in the middle region enables
the formation of qZESs.

III. CONFINEMENT IN NORMAL-STATE JUNCTIONS

To understand the origin and impact of confinement in
hybrid junctions modeled by Eq. (1), we first inspect the role
of the intermediate N2 region on transport across the junction
when S is in its normal state (i.e., � = 0). For this purpose,
we calculate the conductance per spin channel across the
NN2N junction by matching the scattering states at the system
interfaces, obtaining

TN = 2e2/h

1 + [ ke
2ke2

+ ke2
2ke

]2 − [ ke
2ke2

− ke2
2ke

]2
cos(2ke2 L)

. (2)

Note that Eq. (2) is defined for a single spin channel, so the
conductance of a spinful NN2N junction is 2TN. Without loss
of generality, we assumed that the outer regions have the same
chemical potential μ (i.e., ke1 = qe ≡ ke), while N2 has μN2

and length L, thus producing a wave-vector mismatch between
the middle and outer regions. For a detailed derivation of
Eq. (2), see Supplemental Material [76]. The normal con-
ductance TN, Eq. (2), describes the possibility of an incident
electron to be transmitted through the junction after experi-
encing several normal reflections inside the middle N2 region.
The effect of N2 is captured in the cosine term in the denomi-
nator of Eq. (2), which signals the appearance of confinement
and enables the formation of discrete energy levels whose
number depends on the length of N2, similarly to a Fabry-
Perot cavity. Consequently, there is a resonant transmission
TN/(e2/h) = 1 either in the absence of N2, i.e., for L = 0
which leads to cos(2ke2 L) = 1, or when the wave vectors of
the three regions are the same, ke = ke2 [see Fig. 1(b)]. For
a finite length N2 region, with a chemical potential different
than the outer regions, the resonant condition is ke2 L = nπ ,
with n and integer.

To visualize this behavior, we plot TN in Fig. 2(a) as a
function of the chemical potential μN2. This allows us to
identify the conditions for transport on and off resonance
when the conductance is either maximum [TN/(e2/h) = 1] or
minimum. On resonance, we obtain a ZBCP with periodicity
determined by the length L [cf. Eq. (2)]. Interestingly, TN can
be resonant at exactly zero energy (ω = 0), that is, solely as a
result of confinement from the middle region due to the finite
length and different chemical potential [see bottom panel of
Fig. 2(a)]. As we show next, this rather general result is behind
the formation of trivial Andreev qZESs, making this effect
ubiquitous in superconducting heterostructures [77].

IV. CONFINEMENT IN SUPERCONDUCTING JUNCTIONS

We now analyze the consequences of confinement in
transport across trivial and topological N1N2S junctions. In
addition to normal reflections at both interfaces, Andreev re-
flections also take place at the N2S interface, where incident
electrons from N2 are reflected back as holes [78]. Owing
to these Andreev reflections the discrete energy levels of
the middle region, discussed in the previous section, become
coherent superpositions of electrons and holes. As a result,
Andreev quasibound states are formed with properties that
depend on the system parameters, as schematically shown by
the bottom process of Fig. 1(c). This occurs for both trivial
and topological junctions. To analyze the impact of this phe-
nomenon on transport properties, we inspect the normalized
conductance [79]

σ (ω) = g
e2

h
(1 − |ree(ω)|2 + |reh(ω)|2), (3)

with g = 2 (g = 1) being the spin degeneracy factor for a
trivial (topological) junction, and where ree and reh represent
the normal and Andreev reflection amplitudes, respectively.
These amplitudes are obtained by matching the scattering
states of Eq. (1) at the interfaces of the N1N2S junction [76].
Equation (3) characterizes transport in both trivial and topo-
logical junctions, and we now discuss how it is affected by
confinement effects.
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FIG. 2. Conductance as a function of energy and chemical potential of the intermediate region N2 (top), or of the energy for on and off
resonance (bottom), for (a) a normal state, (b) a trivial, or (c) a topological junction. The on- and off-resonance values of μN2 are plotted as
dashed gray lines in the maps, labeled ON and OFF, respectively. For the bottom panels of (b) and (c) we plot 2|reh|2 using green (cyan) dashed
lines for on (off) resonance. In all cases, kFL = 3π/2, μN1 = μS ≡ μ = 2�.

We map the conductance σ as a function of the energy
ω and the chemical potential of the middle region μN2 for
a trivial (g = 2) and a topological (g = 1) N1N2S junction
in, respectively, Fig. 2(b) and Fig. 2(c). For both cases, the
conductance develops resonances in a periodic fashion with
maximum values (dark-red areas) that double those obtained
when S is in its normal state [see Fig. 2(a)]. The ZBCPs
are thus the combined result of a resonant tunneling effect
through the effective quantum well caused by the central
region N2 and the doubling of the conductance at perfect
transmission due to dominant Andreev scattering [79,80].
Here, the most important feature is that the conductance for
a trivial N1N2S junction exhibits a ZBCP for exactly the same
parameters that result in a resonant normal-state transmission
(see Fig. 2). Note that the appearance of this ZBCP can be
tuned by the chemical potential of the middle region μN2 and
remains robust under variations of other system parameters.
Similar results can be obtained in a setup with electrostatic
barriers separating the central and outer regions [81–86]. We
have thus verified that these finite barriers do not affect the
robustness of the ZBCP shown in Fig. 2(b). Moreover, the
qZESs, and associated ZBCP, we report here can emerge
also when μN1 �= μS, which makes them more robust against
asymmetry than similar resonances predicted by simpler mod-
els featuring single-level resonances [80]. In our setup, the
presence or absence of a ZBCP directly corresponds to the
on- or off-resonance regimes of the normal-state conductance,
marked by vertical dotted lines in the maps of Fig. 2. This
periodic appearance of the ZBCPs makes them very likely
to occur in trivial junctions. By contrast, the ZBCP in topo-
logical junctions remains robust for any value of μN2 [see
Fig. 2(c)]. To help distinguish the topological MBS from the
trivial qZES one could test the stability of the ZBCP, e.g., by

varying the voltage gates or applying an external magnetic
field.

On resonance, the ZBCP for a trivial junction is quantized
as twice the normal-state conductance, i.e., 4TN [compare
Figs. 2(a) and 2(b)]. Such quantization disappears if μN2

is tuned out of resonance. The ZBCP is mainly due to
Andreev processes fulfilling σ (|ω| < �)/(2e2/h) = 2|reh|2,
with |reh(ω = 0)|2 → 1 [see green and cyan dashed lines
in Fig. 2(b)]. By contrast, the topological superconductor
features a ZBCP both on and off resonance, with a perfect
zero-energy Andreev reflection |reh(ω = 0)|2 = 1. The height
of the ZBCP for topological junctions is, however, 2e2/h, and
thus distinct to the ZBCP due to the qZESs reported here; an
aspect that could also be useful when distinguishing the topo-
logical nature of both ZBCPs [see bottom panels in Figs. 2(b)
and 2(c)]. It is also important to point out that the Andreev re-
flection in both trivial and topological junctions exhibit some
important similarities. While topological junctions exhibit ro-
bust unitarity of Andreev reflection, confinement in trivial
junctions can only approximately accommodate regimes of
unitarity. These two situations are, however, difficult to dis-
tinguish by the naked eye.

The findings discussed above thus show that, on resonance,
the ZBCPs for both trivial and topological junctions feature
a very similar behavior. We stress again that this ZBCP for
trivial junctions arises solely due to confinement effects of the
central region. Importantly, our system does not include any
spin-orbit coupling or magnetic field, in contrast to previous
works [32–54], implying that the ZBCPs we find are not
related to Majorana physics or topology. These results are thus
in line with recent developments reporting that ZBCPs cannot
be taken as a definitive indicator of topological superconduc-
tivity [50–52].
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FIG. 3. Spatial dependence of the zero-energy LDOS for trivial
(a) and topological (b) junctions, with the same parameters as Fig. 2,
and red (blue) lines corresponding to on (off) resonance.

V. REAL SPACE ZERO-ENERGY LDOS

To better understand the behavior of the trivial qZES,
we now study the spatial dependence of the local density
of states (LDOS) ρ at zero energy. The LDOS is obtained
from the retarded Green’s function Gr (x, x′, ω) associated
to the BdG Hamiltonian in Eq. (1). To find Gr (x, x′, ω) we
follow a scattering Green’s function approach [76] commonly
used for superconducting junctions [87–94]. The Green’s
function Gr (x, x′, ω) is a 2 × 2 matrix in Nambu (particle-
hole) space, and the LDOS is then obtained as ρ(ω, x) =
−ImTr[Gr (x, x, ω)]/π . The LDOS in S and N2 exhibits a
complex behavior, but in N1 it is simply given by

ρ(ω, x) = m

π h̄2 Im

{ ∑
α=e,h

i

kα

(1 + rααe−2isαkαx )

}
, (4)

where se,h = ±1 and rαα represent normal reflection ampli-
tudes. Deep inside the leftmost normal region, the LDOS
adopts the simple form ρ0 = m(k−1

e1 + k−1
h1 )/(π h̄2), which we

use for normalization.
Because our interest is on the qZES, we present in Fig. 3

the spatial dependence of the zero-energy LDOS for trivial (a)
and topological (b) junctions, when the chemical potential of
the middle region μN2 is set on and off resonance (red and
blue lines, respectively). For topological junctions, Fig. 3(b),
the zero-energy LDOS is almost independent of the chemical
potential in N2, μN2 . The zero-energy LDOS is perfectly flat
on N1 and oscillates with constant amplitude in N2, unaf-
fected by variations of μN2 . Both features are a result of the
perfect Andreev reflection taking place at the N2-S interface
for ω = 0, where the MBS is located, which, in turn, also
promotes a perfect transmission at N-N2. As a result, ree = 0
in Eq. (4) and the zero-energy LDOS in N takes exactly the
value of the bulk density ρ0. Hence, the robust profile of the
zero-energy LDOS in topological junctions can be attributed
to the presence of a MBS.

For trivial junctions on resonance, the magnitude and oscil-
lations of the zero-energy LDOS [red curve in Fig. 3(a)] are
very similar to those of topological junctions, albeit there are
no MBSs present in this case. This indicates the formation of
an extended qZES in N2, which is responsible for the finite
LDOS at zero energy at the N-N2 interface and causes the
ZBCP in the conductance on resonance (Fig. 2). However,

off resonance, the zero-energy LDOS oscillations become
vanishingly small, as seen in the blue curve of Fig. 3(a).
Moreover, the zero-energy LDOS displays clear oscillations
in the leftmost normal region N1, originating from the term
proportional to rαα in Eq. (4). While the oscillations in N1 are
present both on and off resonance, their amplitude is greatly
suppressed on resonance because normal reflections are finite
but vanishingly small, i.e., |ree|2 → 0.

By the exposed above, the zero-energy LDOS on reso-
nance for a trivial junction has the same qualitative behavior
as that of a topological junction. While for trivial junctions
on resonance the unitarity of the Andreev reflection is only
approximately true, i.e., |reh|2 → 1, the presence of a MBS in
topological junctions promotes a perfect Andreev reflection
|reh|2 = 1. However, whether the Andreev reflection unitarity
is approximated or exact is rather challenging to distinguish
in measurements, thus posing a critical question when inter-
preting ZBCPs. Consequently, discerning between the perfect
Andreev reflection (|reh|2 = 1) for a MBS and the approxi-
mate one (|reh|2 � 1) for a trivial qZES on resonance would
require a very sensitive scanning tunneling experiment.

VI. FINITE-SIZE EFFECTS

To showcase the emergence of confinement-induced
qZESs, we have thus far considered a perfectly one-
dimensional ballistic junction with semi-infinite outer leads.
We now explore possible deviations from having finite-size
outer leads or quasi-one-dimensional junctions. First, we per-
formed tight-binding simulations on finite length systems,
after discretizing Eq. (1) on a lattice, and verified that the
main findings remain robust under more realistic conditions
(see Ref. [76] for more details). Previously, the appearance of
trivial qZESs has been confirmed in junctions with spin-orbit
coupling and magnetism [34,72]. These junctions require that
the middle region is within the helical regime, which, in some
cases, can be a sufficient condition for the formation of qZESs
[32]. Our work suggests that, in addition to other mechanisms
showing the appearance of qZESs [32–54], confinement also
deserves attention when analyzing ZBCPs in hybrid junctions.

Another finite-size effect is related to the finite cross
section of semiconducting junctions [95,96]. Indeed, the
Majorana condition in these setups is only fulfilled by a
few transverse modes [97]. Even though a perfect one-
dimensional regime is challenging to achieve, most Majorana
platforms attempt to approach a one-dimensional limit by
reducing the number of transverse modes contributing to
transport. To study the impact of extra transport modes on the
trivial ZBCP, we extend Eq. (1) to describe a two-dimensional
system and denote as ky the wave-vector component parallel
to the interfaces [76]. The transport observables in Eqs. (2)
and (3) must then be averaged over all incident modes, and the
resonant condition for the confined states in N2 becomes more
complicated, as it now depends on the transverse wave vector
ky. Consequently, as we add extra modes, the magnitude of the
ZBCP for trivial junctions on resonance is reduced, although
the peak never disappears. Even though a quantization of the
ZBCP in planar junctions is no longer possible, a conductance
approaching the quantized value is still achievable in quasi-
one-dimensional trivial junctions (see Ref. [76]).
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VII. CONCLUSIONS

We have shown that quasi-zero-energy Andreev states can
naturally emerge due to confinement effects in hybrid junc-
tions based on conventional s-wave superconductors in the
absence of any magnetic order. Such confinement-induced
states, emerging here from a depleted or gated finite-length
intermediate region, produce zero-bias conductance peaks and
an enhanced zero-energy local density of states. These prop-
erties might suggest some similarity to Majorana physics.
However, the trivial zero-bias peaks presented here have a
different quantization (4e2/h instead of 2e2/h for MBSs) and
are less stable under variations of the chemical potential of
the confined region. Note that confinement is a very common
effect in hybrid junctions, including most Majorana nanowire
experiments. Our results thus exemplify how ubiquitous trivial

zero-bias peaks can be in hybrid junctions, even without spin
fields.
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