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Abstract: Melanin and melanoma tumors are two fields of increasing interest in biomedical research.
Melanins are ubiquitous biopigments with adaptive value and multiple functions, and occur in the
malignant melanoma. Although several chemical structures have been proposed for eumelanin,
molecular modeling and orbitals indicate that a planar or spiral benzoquinone-porphycene polymer
would be the model that better explains the broad-band light and ultrasound absorption, electric
conductivity, and graphite-like organization shown by X-ray crystallography and electron microscopy.
Lysosomes and melanosomes are selectively labeled by vital probes, and melanin also binds to
metal cations, colorants, and drugs, with important consequences in pharmacology, pathology,
and melanoma therapy. In addition to traditional and recent oncologic treatments, photodynamic,
photothermal, and ultrasound protocols represent novel modalities for melanoma therapy. Since
eumelanin is practically the ideal photothermal and ultrasound sensitizer, the vibrational decay
from photo-excited electrons after NIR irradiation, or the electrochemical production of ROS and
radicals after ultrasound absorption, induce an efficient heating or oxidative response, resulting in
the damage and death of tumor cells. This allows repetitive treatments due to the remaining melanin
contained in tumoral melanophages. Given that evolution and prognosis of the advanced melanoma
is still a concern, new biophysical procedures based on melanin properties can now be developed
and applied.

Keywords: biological staining; eumelanin structure; intercalative binding; melanin ligands; melanosomes;
melanoma therapy

1. Introduction

The study of interactions between small molecular ligands (colorants, drugs) and
macromolecular substrates is a biomedical field of steadily growing interest and involves
the chemical structure and properties of both components. The term colorant has a wider
connotation than dye [1], but here both will be applied interchangeably. A colorant is
defined as a substance that is used to impart color to another material [2]. Commonly,
detailed physico-chemical features of small dye molecules are better known than those
of biopolymers, and often the knowledge of dye-substrate binding mechanisms allows a
deeper understanding of macromolecular structure.

The early history (discovery and development) of dyes and drugs is closely interwo-
ven, establishing the foundations of modern chemotherapy [3]. Numerous dyes and their
derivatives have found medical applications as diagnostic and therapeutic agents, and
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new dyes have been developed from the research on antiparasite diseases [4,5]. Thus, the
azo dye chrysoidin led to the antibacterial p-sulfamido derivative (prontosil), some bisazo
trypanocide dyes (Trypan red and blue) led to the discovery of arsenicals and aryl-urea
derivatives (suramin) [6–8], etc. Other examples are antimalarial quinacrine and chloro-
quine, antibacterial acridines and triarylmethanes, antiseptic xanthenes, tumor-markering
and psychotropic phenothiazines, antitumoral and antiviral photosensitizing (photody-
namic) agents, antitrypanosomal aromatic diamidine fluorochromes, etc. [3,7,9–13].

On the other hand, the application of physico-chemical parameters to colorants (e.g.,
quantitative structure activity relationships, QSAR) has allowed explaining cell staining and
labeling mechanisms, as well as to correct misleading chemical formulations, and to design
new and improved probes and drugs [14–18]. As macromolecular substrate, melanin has
been scarcely used to study staining processes, but at present a great interest is devoted to
analyze the selective binding of some dyes and drugs to this remarkable cell component,
which is probably the most ancient group of natural pigments. All Prokaryota and Eukary-
ota, the latter including Protista, Fungi, Plantae, and Animalia, have melanins [19–21].

Melanins are indole- and catechol-type biopolymers, and in mammals, indole-melanins
correspond to eumelanin (brown-black) and pheomelanin (yellow-red). They occur mainly
in the skin and derivatives, retinal pigmented epithelium, and central nervous system
(neuromelanin, in the substantia nigra, locus coeruleus, and stria vascularis of the cochlea). In
plants and fungi, melanins generally correspond to the catechol-type (allomelanins) [22].
Early and recent reviews deal with the main features of melanin chemistry, properties, and
applications [19,23–33].

Melanocytes are dendritic cells derived from neuro-ectodermal melanoblasts that
have migrated to the skin during vertebrate embryogenesis. They are observed in hair
follicles, and within and near the basal layer of the epidermis interspersed between ker-
atinocytes, with whom they form adherent junctions with 5–8 neighboring cells using
E-cadherin molecules [34]. The biosynthesis of melanin occurs within melanosomes, which
are round or oval organelles (~1 µm in diameter) with a clear lysosomal lineage [35,36],
and the pigment is then transferred to keratinocytes through dendritic processes. Within
melanomas, in addition to melanocytes, melanin-containing macrophages (melanophages)
show few to an abundance of variably sized pigmented lysosomal granules (compound
melanosomes) often forming coarse and vacuolated structures [37]. Sepia melanin and
melanoma melanosomes are also phagocytized by cultured keratinocytes [38].

The malignant melanoma is one of the most aggressive human tumors, showing high
resistance to standard treatments. Melanoma also occurs in experimental, companion, and
larger domestic animals [37,39–43]. Giemsa- or Papanicolaou-stained cell smears from
melanoma aspirates and tumor imprints can be used for cytopathology diagnosis [37,44].

Although the molecular structure of eumelanin is still poorly known, an overwhelming
evidence indicates that it corresponds to an indole polymer with a high degree of conjugated
double bonds [19,32]. A model based in a benzoquinone-porphycene (BQPo) macrocycle
has been suggested [45–47]. It could fulfill most characteristics of eumelanin [33], namely a
graphite-like structure with broad-band light absorption, semi- and photo-conductivity,
strong binding affinity for dyes and drugs, and electron microscopic and X-ray crystallo-
graphic features.

On the other hand, eumelanin has a striking affinity for binding to a great number
of ligands, examples being colorants, drugs, heavy metals, toxic compounds, and other
xenobiotics. In addition to provide a mechanism for elimination of dangerous agents in the
skin, ligands can also improve some melanin properties that can be useful in melanoma
treatments such as photodynamic (PDT), photothermal (PTT), and sonodynamic (sono-
electrochemical, SET) therapy [33]. When the precise melanin type is not referred, the
simple name of melanin will be used along this review.

On account of the difficulty in successfully treating the malignant melanoma in ad-
vanced and metastatic stage [48], further studies on new therapeutic modalities based on
chemical and physical approaches are still necessary. Due to the close relation between
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chemistry, properties, and implications of melanin in human diseases, the aim of this re-
view is to summarize proposed molecular structures and binding mechanisms of colorants
and drugs, as well as their consequences regarding melanoma therapy. New melanoma
treatments need to be based on a deeper understanding of the molecular structure of
melanin and its interaction with colorants and drugs. Therefore, in agreement with recently
suggested rules and criteria for review articles [49], these themes based on molecular me-
chanics and orbitals will be here illustrated, also attempting to offer seminal perspectives
for innovative therapeutic conceptions and developments.

2. Molecular Structure of Eumelanin

The detailed molecular structure of eumelanin is poorly known, although an over-
whelming amount of evidence indicates that it corresponds to a highly conjugated aromatic
polymer [19,32]. Previous and recent reviews on eumelanin have been published [32,50–53],
but at present no agreement has been reached regarding its precise chemical structure. In
spite of methodological limitations, several polymeric linear models from the precursors
3,4-dihydroxy-phenylalanine (DOPA), DHI, and IQ [32] have been proposed (Figure 1).
Although the precursor dihydroxy-indole-2-carboxylic acid (DHICA) can also play a role in
melanin biosynthesis, it has not taken into account in this work because of the limitation of
using the C2 site for polymerization, and the paler color when compared with the DHI poly-
mer. Dopamine (DA) is also a melanin precursor, and although synthetic poly-dopamine
(PDA) melanin does not contain the 2-carboxylic group, its properties correspond to a true
eumelanin [19].
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Figure 1. Chemical structure of the eumelanin precursors and polymers drawn with ChemDraw 

Ultra v12.0 software. Dihydroxy-indole (DHI) and indole-quinone (IQ) show atom numbering. 

Models of eumelanin polymers are also illustrated: linear flexible chain of poly 4-7 IQ [19,54], and 

planar rigid poly 1-7,3-4 IQ [55], as well as planar rigid models of benzoquinone-porphyrin (BQP, 

Figure 1. Chemical structure of the eumelanin precursors and polymers drawn with ChemDraw
Ultra v12.0 software. Dihydroxy-indole (DHI) and indole-quinone (IQ) show atom numbering.
Models of eumelanin polymers are also illustrated: linear flexible chain of poly 4-7 IQ [19,54], and
planar rigid poly 1-7,3-4 IQ [55], as well as planar rigid models of benzoquinone-porphyrin (BQP,
cyclic 2-7 IQ [56,57]), and benzoquinone-porphycene (poly-BQPo [33,45,47]), with porphyrin and
porphycene represented as violet rings.

Possible models of eumelanin polymers are a linear flexible poly 4-7 IQ [19,54], a
planar rigid poly 1-7,3-4 IQ [55]), a planar tetramer of a benzoquinone-porphyrin (BQP,
cyclic 2-7 IQ [56,57]), and a benzoquinone-porphycene (poly-BQPo [33,45,47]). In contrast
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with flexible chain models for eumelanin, which have been recently reviewed [32], the
poly-BQPo model based in the 2,2′-IQ dimer and the resulting 7-7 tetramer has been first
described [45,46] and recently revisited [47]. In this model (Figure 1), the building block
is either a benzoquinone (BQ) or benzocatechol (BC) derivative of the porphycene ring
(Po), which is a structural isomer of the porphyrin ring. A possible synthesis mechanism
based on radical precursors has been described [33]. Taking into account the reactive C2,
C3, C4, and C7 on IQ or DHI units, it can be expected that a polymer with all these sites
forming covalent bonds with other units would be the most favorable and stable structure.
This rationale is just satisfied for the BQPo model, in which these carbons are involved in
polymerization (see Figure 1).

Chemical structures of melanin monomers are presented in Figure 2, showing formal,
mesomeric, and π*-conjugated structure of the precursor IQ, as well as the formation of
hydrated IQ and ether DHI dimer.
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Figure 2. Chemical structures of melanin monomers drawn with ChemDraw Ultra v12.0 soft-
ware. (A) Formal, mesomeric (non-ionic and ionic forms), and π*-conjugated structure of indole-5,6-
quinone (IQ). In the later structure, red thick and thin lines represent the conjugated double bonds.
(B) Formation of the 6-hydrated IQ (left), and the 6,6-ether product from the 7-7 dihydroxy-indole
(DHI) dimer (right).

In the earliest formulation, Olivieri and Nicolaus [45] proposed the present BQPo
model as a “porphyrin-like graphitic structure” for DHI-melanin. A planar, three-layer
stacked model appeared in their work as Figure 4, which illustrated a polymer with ether
bridges, causing a non-shown curvature. Therefore, the correct planar stacked model
without ether bridges is here represented as Figure 3.

To substantiate chemical structures and processes, molecular modeling was performed
following previous descriptions [32,33,47]. Inspection of molecular orbitals (MOs) of
eumelanin models shows the conjugation changes induced by photo-excitation: ground
and excited singlet states of molecules (S0 and S1, respectively) result in different MOs. The
highest-occupied (HOMO), and lowest-unoccupied (LUMO) MOs represent the energy
levels of the ground and excited molecule, respectively [18]. In HOMO-d and LUMO+d, d
is from 0 to the maximum energy level, and the HOMO-LUMO separation corresponds to
the forbidden Fermi’s energy gap (Eg) between the valence band (VB) and conduction band
(CB) of semiconductors. The orbital phases are denoted by colors or signs of π- orbital lobes.
Fused lobes with the same color or sign are in-phase, and those with isolated (unfused)
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lobes with different colors or signs are out-of-phase. In MO images, positive and negative
signs have nothing to do with charge. In the case of the planar tetra-BQPo model (Figure 4),
the LUMO+0 pattern shows a clear longitudinal orientation, whereas HOMO-0 has rather
transversal components.
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Figure 3. Schematic representation of the modified 3-layer “porphyrin-like graphitic structure” from
Olivieri and Nicolaus [45], which corresponds to the poly-BQPo model with quinone or catechol
instead ether bridges, a planar structure, and interlayer spacing of 3.4 Å. On account of the redox
equilibrium and mobility of H atoms, π bonds and H are omitted, and only skeletal σ bonds are
shown. Small green circles in the center of porphycene rings (violet) represent possible metal cations.
X, Y, and Z axes are indicated. The figure was obtained using the ChemDraw Ultra v12.0 software.Colorants 2022, 1, FOR PEER REVIEW 6 
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Figure 4. BQPo model. (A) Frontal view of an atomic volume model of the planar tetra-BQPo
(HyperChem v7, MM+ energy minimization: 0.1 kcal/(Å mol)). (B,D) Comparison between HOMO-
0 and LUMO+0 patterns (HyperChem 7, PM3 geometry optimization as in (A), Gouraud shaded 3D
isosurface, orbital contour: 0.00035), showing positive (green) and negative (violet) π-orbital lobes
with energy E values. Observe the long LUMO+0 lobes that correspond to the conjugated double
bond pattern. (C) Gallery of energy levels and the HOMO-0/LUMO+0 energy gap (Eg = 5.4 eV) from
−8.84 eV to −3.44 eV, respectively, showing the massive occurrence of LUMO states (CB, red) and
HOMO states (VB, blue) (Reproduced from the Open Access reference [33]).
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Quinone compounds containing the vicinal carbonyls (=HC−CO−CO−CH=) from
benzoquinones (eumelanin, allomelanin) show a longitudinal LUMOs pattern. In these
graphitic materials (melanins, carbon pigments), the massive dissipation of the electronic
energy from excited MOs as vibrational energy produces a great amount of heat, namely,
a photothermal response [32]. The increase in absorption and dark color of DHI-melanin
by further oxidation is explained by the conversion of catechols to quinones [52]. It seems
logical to assume that, in pigments with increased number of linear benzoquinones, black
color and broad-band absorption spectra are closely related to the high π*-conjugation and
extended longitudinal LUMO components, with a reduction in the Eg and an increase in
semi-conductivity.

MOs of some linear eumelanin models have been described in previous reviews [32,33].
Regarding the BQPo model (Figure 5A), the formation of ether bridges [45] leads to a chain
curvature and potential spiral organization of the poly-BQPoe model [33]. In this case,
the excited state LUMO+1 of dodeca-BQPoe (Figure 5B) shows an extended longitudi-
nal π *–electron conjugation, as well as fused MOs, whereas the ground HOMO-0 has
a transversal conjugation (not shown). The energy levels of HOMO and LUMO states
(Figure 5C) appear again as compact “semiconductor-like” VB and CB, respectively.
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Figure 5. Spiral BQPoe model of eumelanin. (A) Lateral view (atomic volume) of a spiral dodeca-
BQPoe with two complete spires (MM+ method, converged to 1 kcal/(Å mol)). For element colors
see Figure 4. (B) LUMO+1 of dodeca-BQPoe, showing the spiral fused pattern (asterisks). Extended
Hückel method [58], Gouraud 3D isosurface, contour value: 0.0001. (C) Energy levels of dodeca-
BQPoe, showing the small energy gap (Eg, white triangle = 0.03 eV), from HOMO-0 (−9.88 eV) to
LUMO+0 (−9.85 eV), and the massive occurrence of LUMO (CB, red) and HOMO (VB, blue) states
(B,C) reproduced from the Open Access reference [33].

From the morphological point of view, transmission electron microscopy (TEM) studies
of natural and synthetic eumelanin reveal stacked planar electron-dense sheets, which is
characteristic of a graphitic organization. Graphite-like soft curved or marked wavy layers,
as well as concentric onion-like structures, are also seen in eumelanins observed by TEM
(Figure 6) in all cases with a ~3.4 Å-interlayer separation, which is also confirmed by X-ray
diffraction analysis [26,59–62].

On the other hand, it is known that carbon black nano- and micro-particles have onion-
like structures formed by concentrically arranged graphene sheets. Examples are closed-
cage fullerenes spheres [63,64], onion-like graphitic spheres [65], nautilus-like fullerene
spirals [66,67], and graphene nano-scrolls structured as Archimedean spirals [68–72]. The
occurrence of spiral fullerenes and graphenes support the possibility that an oligo- or
poly-BQPoe chain could also grow as spiral structures [33]. To this respect, the similarity
between both BQPoe and graphene spirals and scrolling processes is astonishing (compare
Figure 5A (this work) and Figure 1 from [70]).
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Figure 6. Typical TEM micrographs of eumelanin. (A) Synthetic eumelanin (PDA) produced from
the oxidation of dopamine, showing the graphitic organization of molecular aggregates that form
stacked wavy nanostructures. (B) High-resolution TEM image of the same material, showing an
onion-like nanobody composed of stacked layers arranged in concentric rings, as well as planar and
wavy graphite-like eumelanin sheets. Interlayer spaces of 3.4 Å are indicated (adapted from [62] with
copyright permission).

It is most exciting to consider that the circular or spiral organization of sp2 carbon
sheets [64] might also occur in eumelanin protomolecules (e.g., BQPoe model; see Figure 5).
A supramolecular organization of spiral melanin units could be formed by aggregation
of smaller and then larger globular structures [73,74]. Spherical onion-like proto-particles
(20–50 Å) can be arranged by about four turns (~42 Å) of the Archimedean-type spiral
BQPoe model [33], and then they could aggregate into larger globular bodies following
co-axial and/or side-to-side parallel linkages. It has been proposed that the supramolecular
structure of natural and synthetic eumelanins could derive from a fractal organization of
globular units involving different hydration levels, with low pHs and high ionic strength
promoting aggregation to larger structures [27,51], in agreement with the hypothesis that
small (proto) particles are capable of aggregating to build the final eumelanin structure [75].

The proposed stacked planar BQPo and spiral BQPoe models agree with most struc-
tural views of melanins [46,60,76,77]. In the local-order-global-disorder model, ordered
nanostructured proto-particles grow first, then aggregate to form disordered spherical
particles, that self-arrange again to form large globular structures [78]. Eumelanin was
claimed to be composed of onion-like concentric circles [26], which agrees with the idea
that the eumelanin proto-molecules could assume fullerene-like closed forms [45,46], or
spiral globular structures [33].

3. Spectroscopy and Fluorescence of Melanins

As in the case of graphite and graphene materials, melanins show a broad-band
photonic absorption with exponential decay from the ultraviolet (UV) to visible and near-
infrared (NIR) region [28,32,79]. It is accepted that this spectrum fits better to graphitic
materials and inorganic semiconductors with VB and CB (and small Eg, ~0.5–1.5 eV) [31,80]
than to small organic chromophores with structured absorption peaks typically related to
π-bonding and π*-antibonding localized orbitals. The conjugated structure of eumelanins
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also allows easy redox changes and reversible equilibrium between quinone and catechol
groups. Another unusual and intriguing feature of eumelanin is its striking binding capacity
to a large number of inorganic cations, colorants, and drugs, a topic which will be discussed
in the next Section.

Although highly compacted eumelanin is a very dark or even black material, the micro-
scopic color of melanosomes in unstained skin sections is pale brown (Figure 7A,C), which
can slightly modify the color of the pigment in subsequently stained sections. Eumelanin is
capable of dissipating >99.9% of absorbed UV-visible radiation through a non-radiative
decay mode [81]. Since the radiative decay of eumelanin is nearly zero, it is expected that its
fluorescence emission should be negligible. In fact, melanosomes from unstained paraffin
skin sections show no fluorescence at all under UV, blue, or green excitation (Figure 7B).
Easy visualization of melanosomes in melanoma cell cultures can be achieved using phase
contrast optics (Figure 7C).
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Figure 7. Melanosomes from paraffin sections and melanoma cell cultures. (A) Bright-field image of
a formaldehyde-fixed, paraffin-embedded skin section of Eubalaena australis showing the brown color
of unstained (control) melanosomes. Regarding melanin, the epidermis of this whale is an excellent
tissue model due to the great abundance of clearly identifiable melanosomes within keratinocytes [82].
(B) Fluorescence image from (A) (λexc: 436 nm), showing green autofluorescence of tissue structures
(Nu: nucleoli, N: nuclei, Cy: cytoplasm) and no emission at all from melanosomes. Rectangles
show defined areas with melanosomes and correspondence between (A,B) images (courtesy of M.C.
Carou). (C) Cultured OL melanotic cell line, grown in complete DMEM medium, from an oral canine
melanoma (kindly provided by L.M.E. Finocchiaro and G.C. Glikin), and observed by phase contrast.
Observe living cells with numerous and scarce brown melanosomes in the cytoplasm (large and small
arrows, respectively), nucleoli within nuclei, and melanin-containing dense endings of cytoplasm
prolongations (encircled) (Courtesy of S.A. Moreno).

The reported yellow autofluorescence of natural and synthetic eumelanin, neurome-
lanin, and pheomelanin (λexc: ~470 nm, λem: ~540 nm) seems to be caused by degradation
products induced by H2O2 oxidation and/or UV/violet irradiation [83–85]. In keeping with
this, fluorescent quantification of melanin can be made after oxidative degradation [86]. The
fluorescence of opio-melanins is also due to low- and middle-molecular weight fractions
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formed during oxidative photo-bleaching [87]. In ophthalmoscopy, where the lifetime of
autofluorescence from the retinal pigment epithelium (RPE) is recorded, the most relevant
emission is not due to melanin but to lipofuscin, NAD(P)H, FAD, collagen, elastin, and
carotenoids [88]. The lipofuscin A2E is a relevant fluorophore of the RPE [89]. Under
785 nm near-infrared (NIR) excitation, eumelanin shows a very weak broad-band emission
between 820 and 920 nm, which appears superimposed with the Raman scatter at 880 and
890 nm [90], possibly contributing to the NIR autofluorescence in ophthalmoscopy. Interest-
ingly, a non-invasive recording of Raman spectra has been proposed for the quantification
of eu- and pheomelanin [91].

On the other hand, formaldehyde-induced fluorescence (FIF) in melanocytes was
identified as due to the reaction of the aldehyde with DOPA, yielding an isoquinoline
derivative [92–94]. A green FIF was also observed in pheomelanin-containing cells that
arises from 5-S-cysteinyl-DOPA rather than DOPA, allowing for the detection of melanoma
metastasis by serum and urine analysis [95].

In contrast, fluorescence quenching by melanin can reduce the background autoflu-
orescence of cells subjected to incorporation of fluorescence-labeled mRNA probes [96].
Likewise, on account of the broad-band absorption, fluorescence quenching by graphene
oxide has been proposed for removing the signal of free single-stranded fluorescent DNA
nanoprobes (attached to the graphene surface), whereas those hybridized as DNA duplexes
remain far away of the surface and retain the fluorescence signal [97]. Interestingly, in spite
of its broad-band absorption, which could quench emission by an inner filter or screen effect,
melanin allows the emission of bound fluorophores in microscopic preparations, appearing
highly fluorescent after appropriate labeling, a feature that will be described later.

4. Staining Mechanisms of Melanin

Eumelanin is the melanin type mainly stained or labeled in melanosomes, but stud-
ies on the staining of pheomelanin or allomelanin seem rather overlooked. Although
eumelanin is a dark pigment, light microscopic visualization depends on its concentra-
tion in the melanosome. It must be noted that cultured melanomas often show weakly
or non-pigmented cells. The well-known B16 melanoma line can differ significantly in
pigmentation, as well as the expression of antigens, growth rate in mice, metastatic poten-
tial, etc. [39]. In contrast, the canine OL melanoma cells show conspicuous melanosomes
(see Figure 7C). Microscopic analysis of cultured cells should allow the observation of
melanosomes [98] using appropriate optics, but unfortunately detailed morphological
studies are often not performed, or the absence of melanosomes is subtlety dismissed.

Several immunohistochemical methods regarding melanoma diagnosis and prognosis
are available [99], but the classical silver staining by the Fontana-Masson (FM) method
for melanin remains useful [100]. In this argentaffin reaction, which does not require any
developer, the silver diammine cation (Ag[NH3]2)+ from an ammoniacal silver nitrate
solution is reduced by melanin to a dark colloidal metallic Ag0, but chromaffin cells and
lipofuscin pigments are also revealed by this method. In addition to FM, Warthin-Starry
(WS) silver stain is also used to reveal melanin [101,102]. In the WS stain, hydroquinone is
added to the silver solution, increasing the sensitivity and specificity of detection, possibly
by pre-reduction in melanin or by reducing the silver bound to melanin [102].

Most staining reactions are based on the affinity of eumelanin for cationic compounds
and dyes (basophilia). Eumelanin is negatively charged at pH values above 4 [103], and
then some staining reactivity can be related to its polyanionic nature. Melanin reacts with
metal cations, and can be stained by metal-dye complexes (e.g., aluminum-hematein), and
cationic colorants. Reactivity of catechols and quinones seems to be also responsible for
strong adhesive binding to particles and surfaces [27,104–106].

Taking into account most of the reports on binding of inorganic cations to melanin,
the following alkali, alkali earth, and transition metals can be mentioned: Na, Mg, Al, K,
Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Sr, Mo, Ag, Cd, Sb, Hg, Pb, As, etc. [19,30,77,78,107–110].
Although native sepiomelanin appears as a Ca and Mg salt, exchange reactions with the
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above-mentioned cations are possible. The amount and binding affinity of melanin for
some metals can be very large, binding to Ca2+, Mg2+, Sr2+, and Cu2+ being 4, 5, 14, and
34 times stronger than EDTA, respectively. For Ca, Mg, Fe, Cu o Zn, the saturation levels of
binding are ~3–4 indole units per ion [79]. Binding for metal ions is about 6 × 1020 sites per
gram of dried melanin [107].

Diagnostic and microscopic applications of metal binding to melanin are abundant.
Melanoma detection by magnetic resonance imaging (MRI) could be improved by using
melanin uptake of 67Ga and 111In [111]. Doping of eumelanin and synthetic melanin with
titania (TiO2) nanoparticles, and Fe3+ or Gd3+ metal ions with catechol or quinone units
(Figure 8), produces nanoplatforms for multimodal imaging and therapeutic applications,
enhancing light absorption, photocatalysis, and photothermal effect [30,78,108–110].
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Figure 8. Interaction of melanin IQ units with metals. (A,B) Complexes with TiO2 (A) [30,109], and
Fe (B) [78], showing the geometry of chelating O5 and O6 atoms. Observe that Ti4+ belongs to a
nanoparticle of TiO2 (dashed rectangle). Axial O ligands (HO-, H2O) complete the hexa-coordination
of Fe3+. (C) Frontal atomic volume view of two bis-BQPo units bound through two edge-to-edge
bridges of hexa-coordinated Eu3+ ions (green, with two additional H2O ligands to complete the
octa-coordinated arrangement). HyperChem v7 software was used, with MM+ energy minimization
converged to E = 0.1 kcal/(Å mol). For element colors see Figure 4.

In the case of TiO2, the O atoms of IQ ligands forms a charge-transfer complex, which
also promotes polymerization of the monomer [109] (Figure 8A). The iron uptake reaction
gives a blue-green color [100], which is typical of ferric-catechol complexes [7,78]. Fe3+

hexa-coordinated by O atoms from catechol, forms a mononuclear complex with typical
square-planar geometry and octahedral arrangement [78] (Figure 8B). Likewise, borate
esters with tetrahedral geometry of anionic boron may be formed using the O5 and O6
catechol atoms of DHI. Strong melanin binding of trivalent lanthanides (La, Pr, Nd, Sm, Gd,
Dy, Ho, Er, Tm) with the O ligands of IQ has been also reported [107,108]. Using molecular
docking of cations on the melanin BQPo model, binding of Ca2+ and lanthanides (Eu3+,
Dy3+) to O5 and O6 have been found (Figure 8C).

Interestingly, the luminescence of Eu3+ under UV excitation [18] and its binding to
melanin (Figure 9) can be microscopically visualized due to its red (620 nm) emission when
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complexed with IQ, which act as a ligand UV antenna for Eu3+ photoexcitation. Likewise,
Pr, Nd, Sm, Dy, Ho, and Er are NIR-emitting lanthanides that when bound to IQ units of
melanin could induce selective tumor-damaging luminescent heating.
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Figure 9. Luminescence of the lanthanide Eu3+ complexed with melanin. Formaldehyde-fixed,
paraffin-embedded section of the skin of Eubalaena australis treated with europium acetate (1 mg/mL
for 1 h, DPX mounting), showing the red luminescence (620 nm) of melanosomes (M) within ker-
atinocytes, and the blue autofluorescence of the cytoplasm (Cy), and nucleoli (Nu) within nuclei (N).
λexc: UV (365 nm).

After using the common nuclear staining of paraffin tissue sections by the cationic
blue aluminum-hematein complex (H), the pale brown color of melanosomes is shifted to
blue-violet, which depends on the binding of Al ions of the complex to melanin anionic
sites. When followed by eosin Y staining (H&E), melanosomes are visualized in dark
violet-brown or even black color (Figure 10). In addition to H, other colored or fluorescent
dye-metal lakes are expected to stain melanosomes.

Numerous cationic dyes can stain eumelanin [7,33,100]. Examples are methylene blue,
toluidine blue, thionine, Nile blue, and acridine orange. The precise binding mechanism of
cationic dyes to eumelanin has been rather overlooked. In contrast to classical views [100],
melanosomes from both normal skin and melanoma cells give metachromatic staining
and fluorescence when stained with thionine, toluidine blue, and acridine orange. A clear
example is toluidine blue metachromatic staining of keratinocyte melanosomes in the skin
of Eubalaena australis (Figure 11).
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Figure 10. Bright-field hematoxylin and eosin (H&E) image of a formaldehyde-fixed, paraffin section
of the murine B16-F10 melanotic melanoma growing in a Balb/c mouse [112]. The tumor shows nu-
merous intracellular melanosomes with different size and shape (m), and large extracellular melanin
granules (M), both stained in dark brown-black color. In contrast with small and rather uniform
melanosomes from normal skin, coarsely deformed melanosomes are often found in pigmented
melanomas. This tumor sample had abundant and large melanosomes.
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Figure 11. Paraffin section of the formaldehyde-fixed skin from a southern right whale
(Eubalaena australis) stained with toluidine blue (50 µg/mL for 10 min, DPX mounting), showing the
strong and selective metachromatic reaction of melanosomes (dark violet) within keratinocytes, and
the orthochromatic reaction (blue) of basophilic cytoplasm and nucleoli (Nu) within nuclei (N). The
same pattern is observed after thionine staining. UV-protective umbrellas (asymmetric arrangement)
of melanosomes with supra-nuclear localization [113] are indicated (arrows) (Reproduced from the
Open Access reference [33]).
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The polyanionic character of melanin could explain its metachromatic staining reac-
tion with appropriate colorants. In the case of double-stranded nucleic acids, intercalation
between base pairs is favored when compared with external electrostatic binding to phos-
phate sites [18,114]. The same preference seems to occur for melanin when the graphitic
BQPo model is analyzed for dye docking using molecular modeling: cationic acridine and
thiazine colorants prefer face-to-face hydrophobic binding (lower free energy) instead of
edge-to-edge ionic interactions (higher free energy).

It is well known that planar aromatic compounds can intercalate into host lattices
forming inclusion complexes [115]. In the case of tissue components such as polysaccha-
rides, lignin, nucleic acids duplexes, etc., bathochromic changes in the absorption spectra
are induced by monomerization of colorants, which remain trapped between aliphatic
chains or aromatic rings of the biopolymer [116,117].

Since Lerman’s formulation of the intercalative binding mode into DNA [118], numer-
ous colorants have been found to bind to nucleic acid duplexes by intercalation [114,119],
using strong face-to-face hydrophobic and π–π electron interactions between planar dyes
and base pairs. Therefore, on account of the aromatic character of eumelanin, intercalation
of planar cationic dyes should be the preferential binding mode, as occurs with nucleic
acid duplexes stained by acridine, thiazine, azine, oxazine, and xanthene dyes. A gallery
of representative cationic colorants and fluorochromes involved in melanin binding is
presented in Figure 12.
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Figure 12. Chemical structure of some lysosome probes and potential eumelanin-binding colorants,
belonging to different chemical groups, drawn using the ChemDraw Ultra v12.0 software. Abbrevi-
ated names of probes and dyes are indicated in parentheses.

Stacked dye aggregates commonly found in classical tissue histochemistry give
metachromatic reactions, which are most apparent for toluidine blue [120,121], and acridine
orange [18,122]. They have the advantage that ortho- and metachromatic peaks (and colors)
are well defined and spectrally separated.

In this respect, the copper-phthalocyanine (CuPc) macrocycle is an intriguing model
dye regarding binding to eumelanin. A tetrasulfonated CuPcS4 dye deposited on multiwall
carbon nanotubes has been used as electronic conductor in photovoltaics [123]. The cationic
derivative Alcian blue pyridine variant (ABPV) was also applied in TEM studies of PDA-
melanin [62]. No increase in electron contrast over that of a graphitic structure was apparent,
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but a new composite was formed by layer-by-layer film deposition of PDA-melanin and
ABPV, which displayed an electrical conductivity five orders of magnitude higher than that
of pure melanin films [62].

Interestingly, clear 610 nm metachromatic spectra (peak/shoulder: 610/670 nm) ap-
pear after addition of successive monomeric ABPV-PDA layers [62]. This is an intriguing
finding, because dye intercalation involves binding of isolated monomers, canonically
leading to an orthochromatic reaction (red or bathochromic spectral shift), and not to
metachromasia (hypsochromic shift). Spectroscopic analysis confirms that in the presence
of Sepia melanin (SM), the absorption peak of the AB-SM complex remains metachromatic
(blue), as it would correspond to a highly aggregated state and not to the intercalated
monomers (Figure 13). This unexpected metachromatic reaction can be explained on
account of the massive occurrence of overlapping LUMOs in the AB/SM intercalated
complex, allowing the π*–electron coupling between all CuPc chromophores [33]. Thus,
long-range CuPc “aggregates” are established from CuPc intercalated monomers.
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Figure 13. Absorption spectra of Alcian blue 8G (AB). The dye was dissolved in distilled water (AB),
in 5% sodium dodecylsulfate (AB-SDS), and in commercial Sepia melanin (diluted 1:2000, v/v in
distilled water) (AB-SM). Note the position of metachromatic and orthochromatic peaks of AB at ~610
and ~670 nm, respectively. Part of the exponential absorption decrease in Sepia melanin as a typical
broad-band graphitic material [32] is also shown (SM, normalized at 300 nm with the remaining
dye peaks).

Positive charges (a) on the ring of phthalocyanine colorants (e.g., cuprolinic blue and
its analogous zinc complex [124–126]), or (b) on the side chains (e.g., AB [127,128], and
Alcian blue pyridine variant [129]) could be advantageous but not essential for intercalative
binding and staining of eumelanin. Although there are no structural details of the dye
binding to this substrate, it is logical to assume that, as it occurs in the face-to-face CuPc
binding to the graphitic surface of carbon nanotubes [123], the same mechanism could also
be possible for eumelanin.

5. Lysosome and Melanosome Labeling

Selective labeling of lysosomes and endocytic cell compartments (endocytosis vesicles,
endosomes, phagosomes, trans-Golgi network, lysosome remnants such as age pigments or
lipofuscin granules) is a well-known process. The main vital probes are acridine orange,
acridine yellow, alizarin, auramine O, 3,4-benzpyrene, Bismarck brown, brilliant cresyl blue,
coupled azo dyes, eosin Y, erythrosin B, euchrysine 3R, Evans blue, FITC-dextran, fluores-
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cein, hematein and hematoxylin, hydroethidine, inorganic nanoparticles, Lucifer yellow
CH, methylene blue, neocyanine, neutral red, Nile blue, phloxine B, phosphine, primulin,
proflavine, purpurin, quinacrine, thionine, toluidine blue, trypan blue, etc. [5,18,130–139].
Numerous lysosome probes are also efficient photosensitizers for photodynamic therapy
(PDT) [140,141].

On the other hand, eosinophil, basophil, and azurophil leucocyte granules, sperm cell
acrosomes, secretion (zymogen) granules, and particularly melanosomes, are acidic com-
partments that also have a clear lysosome lineage [18,35,36,142–144]. The intramelanosomal
pH range is as low as 3–5, and the organelle contains proton-translocating ATPase, hy-
drolases, cathepsines B and L, and acid phosphatase [35]. In addition to colorants and
fluorescent probes, an interesting feature is the high number of xenobiotics (nanoparti-
cles, colloids, latex microparticles, metals, drugs) that can be up taken by lysosomes and
melanosomes [35,130].

Selective lysosome labeling with vital colorants and fluorochromes show metachro-
matic color, although toluidine blue (TB) and methylene blue (MB) give violet and blue
colors, respectively; both dyes are just metachromatic, but the shift is only appreciated for
TB, because the shift for MB takes place entirely within the blue spectral region, and it is not
appreciated by the eye. In the case of CuPc, the colorant shows a spectral metachromasia
in spite of the monomeric binding in PDA-ABPV films [62]. After acridine orange (AO)
labeling, bright orange emission is observed in lysosomes from live cells, which is due to
the low lysosomal pH and the aggregation of AO+, reaching local metachromatic concentra-
tions (Figure 14A), whereas a weaker AO+ accumulation produces a green orthochromatic
emission in nucleoli, chromatin and cytoplasm [18]. Selective lysosome labeling by other
photosensitizing dyes such the porphyrin ZnTPP, and the porphycene TPPo are shown in
Figure 14B,C, respectively.
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Figure 14. Fluorescence labeling of lysosomes (L). Nuclei (N) and nucleoli (Nu) are also indicated.
All semi-confluent cell cultures were grown in complete DMEM medium. (A) A-549 cells labeled
with acridine orange (5 µg/mL for 15 min). λexc: 450–490 nm. (B) Overlay of images of HeLa cells
treated with ZnTPP [145] (10 µM in DPPC liposomes for 6 h (red signal), and then labeled with
50 nM LysoTracker Green DND-26 for 30 min (green signal), λexc: 561 and 450–490 nm). Yellow color
indicates colocalization in lysosomes. (C) HeLa cells labeled with the porphycene probe TPPo (5 µM
in DPPC liposomes for 18 h, λexc: 405 nm). Observe the massive occurrence of large lysosomes after
the prolonged TPPo incubation. After labeling, cell cultures were washed and mounted in PBS, and
immediately observed.

Lysosomal photosensitizers such as AlPc2, AlPc4, CF3, Pc13, PoD, Py3MeO-TBPo,
SnEt2, TPP, TPPS2a, TPPS4, TMPyP, ZnPc, ZnTPP, etc. [140,141,145–149] should also be
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suitable to label melanosomes, and then for dye-improved photothermal and ultrasonic
melanoma therapy. It must be noted that some well-known lysosome probes can also label
the Golgi apparatus [150]. Lysosome-labeling PDT dyes that are water insoluble can be
delivered within DPPC liposomes to enter live cells, increasing selective uptake into tumor
cells [151]. Regarding porphycenes, as the double N-protonation of the Po core at low pH is
possible, some amount of TPPo could remain trapped in lysosomes as a dication [141,152].

The selective AO labeling of cultured canine OL melanoma cells (Figure 15), illustrates
the strong metachromatic labeling of melanosomes (and lysosomes). It is worth to note
that AO uptake in both organelles depends on the low pH, but dye aggregation occurs
due to its high concentration in lysosomes, and to massive dye binding to eumelanin
in melanosomes.
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Figure 15. Cultured OL living cells from the oral canine melanotic melanoma [153] grown at semi-
confluence and labeled by acridine orange (50 µg/mL in complete DMEM for 10 min, followed by
washing and observation after mounting in PBS). Observe the fusiform and dendritic morphology of
tumoral melanocytes, orthochromatic (green) nuclei (N) and cytoplasm with massive accumulation of
metachromatic (red) melanosome-containing regions (m), and melanin labeling at the end of narrow
cytoplasmic prolongations (encircled). λexc: 436 nm) (courtesy of S.A. Romero).

The possible molecular structure and electron orbitals of this colorant bound to eume-
lanin bis-BQPoe units is shown in Figure 16A,B, as modeled intercalative binding of two
AO+ into two sheets of the units. Molecular docking indicates that both aromatic acridine
rings approach and remain bound face-to-face on one sheet of BQPoe. In the intercalated
complex, the fused MOs from LUMO+5 are clearly visible (Figure 16C).

Lysosomes and melanosomes share numerous properties, and when they occur simul-
taneously, differential identification should involve unshared properties: (a) the brown color
of melanosomes characterizes this organelle; (b) silver staining or immunocytochemistry
(for tyrosinase or melanosomal proteins) to detect only melanosomes; (c) autofluorescence,
which occurs in lysosomes [18] but not in melanosomes. In comparison with melanosomes
of skin and skin melanoma, neuromelanin [77], and melanin from RPE are very special
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cases, because they have a complex organization, with melanosomes, lipids, lipofuscin, and
melanosomes encased in melano-lipofuscin granules [25].
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Figure 16. Bis-BQPoe-AO complex. (A): Frontal view of a wire model of two AO+ molecules (yellow
carbons) intercalated between two bis-BQPoe units (HyperChem v7 software). (B): Lateral view of
the complex tilted 7.5◦. For other element colors see Figure 4. (C): The corresponding LUMO+5,
showing long linear and fused (asterisks) MOs (MM+ method converged to E = 1 kcal/(Å mol),
extended Hückel, Gouraud shaded 3D isosurface, orbital contour: 0.0001).

Macrocyclic colorants are also suitable to fit tightly between eumelanin layers of the
poly-BQPo model, allowing to develop fused LUMOs [33,47]. The possible intercalative
binding of TPPo into two BQPoe units is shown in Figure 17A,B. When MOs are analyzed,
the fused LUMO pattern is clearly observed (Figure 17C). Although different in shape, fused
LUMOs of intercalated TPPo-BQPoe eumelanin also occur at many other energy levels.
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Figure 17. BQPoe-TPPo intercalation complex. (A,B) Frontal and lateral view, respectively, of a wire
model of the possible intercalation complex using HyperChem v7 after PM3 energy optimization
converged to E = 2 kcal/(Å mol). Carbon atoms of TPPo are yellow; e: ether bridges. For other
element colors see Figure 4. (C) Fused LUMO+4, Gouraud 3D isosurface, contour value: 0.0006.
Observe both the linear and fused LUMOs. The four non-planar phenyl substituents of TPPo do not
appreciatively interfere with the intercalative binding and lead to twisted LUMO fusions (asterisks).

Figure 18 emphasizes the hydrophobic binding mode of two copper phthalocyanine
(CuPc) chromophores from the AB dye with three aromatic BQPoe units of this eumelanin
model. Obviously, stacked arrays of fused LUMOs permits interactions between successive
dye chromophores through MOs coupling with the host eumelanin layers, this feature
allowing the metachromatic reaction of intercalated dye monomers.
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Figure 18. Stacked BQPoe-CuPc complex. (A) Lateral atomic volume view of two copper-
phthalocyanine rings (CuPc, yellow carbons) intercalated between three BQPoe units with ether
bridges (e), using the HyperChem v7 software after MM+ energy optimization converged to
E = 1 kcal/(Å mol). For element colors see Figure 4. (B) LUMO+4 of the intercalated CuPc-BQPoe
complex (extended Hückel method, Gouraud shaded 3D isosurface, contour: 0.00005, HOMO-0:
E = −11.36 eV, LUMO+0: E = −11.35 eV, Eg = 0.01 eV). Fused LUMOs (asterisks) allow a close π*–
electron coupling between dyes leading to metachromasia. The correspondence of aromatic planes is
indicated by vertical white lines.

In the intercalative binding mode, the planar ligands slip between aromatic units of
eumelanin layers, and remain trapped as an inclusion complex or “graphitic sandwich”,
allowing both linear and stacked fused LUMOs [33]. Therefore, massive π*–π* electron
interactions are found in dye-intercalated BQPo or BQPoe model sheets. A schematic
diagram of coupled LUMOs is shown in Figure 19. These coupling patterns just occur
in aggregated colorants commonly found in tissue histochemistry, leading to a strong
metachromatic shift.
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Figure 19. Schematic view of structure–LUMOs correlations. Top: TEM image “equivalent” of
graphitic eumelanin layers (M) [62], such as from the poly-BQPoe model, showing the regular 3.4 Å
separation of stacked aromatic planes. Middle: Simplified structure and LUMOs from intercalated
dyes (D) between eumelanin layers (M), showing linear and fused LUMOs (asterisks). Observe
the π*–electron coupling between colorant molecules through π* electrons of aromatic eumelanin
layers, leading to metachromatic staining and labeling [33]. Bottom: Stacked chromophores and
fused LUMOs (asterisks) are related to a typical metachromatic reaction.

6. Binding of Colorants and Drugs to Melanin

Natural and synthetic eumelanins are capable of binding small molecules with high
dielectric constants (dimethyl sulfoxide, formamide, methanol), inducing reversible con-
ductivity changes of as much as ten orders of magnitude [154]. Hydrated DOPA-melanin
complexed with diethylamine subjected to 10 kHz-ultrasound (US) shows a resistivity
reduction in ~6 orders of magnitude [155]. The high affinity of eumelanin for organic
compounds allows the establishment of charge-transfer complexes between the pigment
(electron acceptor) and the included compound (electron donor), leading to a strongly
increased conductivity [80].

High binding affinity of eumelanin for drugs and colorants was found as an unex-
pected adverse effect of treatments with some neuroleptic and antimalarial drugs. Chronic
administration of antidepressant phenothiazines [156,157], and high-dose chloroquine
therapy [158] produced chorioretinopathy, suggesting an association between toxic ef-
fects of drugs and affinity for melanin. Ototoxicity and disturbances of the skin and
hair pigmentation were also reported. Drug binding affinity has been calculated in silico
by simple free-energy methods [159], as well as by solvation energy relationships [160],
in vitro-in vivo correlations [161], and microscale thermophoresis [162].

Using biochemical analysis, typical colorants, drugs and chemicals have been found
to bind strongly to melanin [74,163–174]. Among these melanin-binding ligands, colorants
are acridine orange, methyl orange, Biebrich scarlet, Bismarck brown Y, Congo red, Buffalo
black NBR, methylene blue, thionine, toluidine blue, fluorescein, neutral red, neutral violet,
safranine O, Janus green B, Nile blue A, bromophenol blue, malachite green, fast green
FCF, alizarin red S, primulin, tetramethyl-p-phenylenediamine, etc. [159,163]. Most of these
colorants are also selective probes for lysosome labeling.

Likewise, numerous drugs from different chemical groups bind strongly to melanin
(for references, see [74,163–174]). Examples are: aflatoxin B1, p-aminobenzoic acid, amino-
glycoside and tetracycline antibiotics, amitriptyline, aniline, benzamides (e.g., 18F-labeled
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picolinamide or nicotinamide derivatives), and antipsychotic and anti-emetic benzamides, ben-
zidine, carcinogenic polycyclic hydrocarbons (benzo(a)pyrene, dimethyl-benz(a)anthracene),
chloroquine, chlorpromazine, dexamethasone, diclofenac, fluoro-quinolones, herbicides
(paraquat), indole acetic acid, iodoquine, MPP+ (1-methyl-4-phenylpyridinium), methotrex-
ate, N-nitrosamines, 2-naphthoic acid, papaverine, timolol), quinine, quinidine, phenoth-
iazines, thiouracil, thioureas, trimethyl-psoralen, etc. Benzamides are also used as melan-
otropic carriers for cytostatic drugs [171].

Therapeutic uses of melanin-binding agents (named melanin or melanoma “seekers”)
also have limitations. It has been estimated that 7% of primary skin melanomas, 13% of
regional lymph-node metastases, and 31% of distant metastases lack melanin [175]. The
occurrence of amelanotic melanomas is a disadvantage, because melanoma seekers do not
accumulate in those tumors. However, amelanotic melanomas may contain minor amounts
of melanin [176], which could be still sufficient to work as a selective therapeutic target.

Melanin-binding ligands can be related to neurotoxic effects, Parkinsonism, and
melanoma induction [170]. Interestingly, some of these ligands are known DNA-intercalators,
and analogies between DNA- and melanin-binding modes have been pointed out [165].
Among the wide collection of melanin-binding ligands, numerous aromatic compounds
are obvious candidates for an intercalative binding mode, according to the models already
mentioned (see Figures 16–18). Thiazine ligands (almost planar promethazine and chlor-
promazine, with ring torsion angle of ~20◦), and planar methylene blue bind strongly to
melanin, likely by intercalation.

Interestingly, the ability to label melanosomes can be profited by using radionuclide-
containing colorants or agents in therapeutic protocols for advanced melanomas [177]. Bind-
ing of radionuclide-labeled dyes and drugs to eumelanin has been applied for melanoma
diagnosis and therapy [166,174,178–180]. It is worth to note that in classical studies on
melanin-bearing tissues (melanomas, uveal tract, hair follicles), whole body autoradiog-
raphy has shown labeling after administration of radioactive chloroquine and chlorpro-
mazine [166].

Radioactive ligands such as 35S-methylthionine bromide, 125I- and 211At-methylene
blue have been used to irradiate pigmented melanoma in animal models [179,181,182].
Mono- and di-radioiodinated methylene blue [183], and 125I-radiolabeled acridine and
acridone derivatives [184] have also been used. 125Iodine and 211Astatine are Auger-electron
and alfa-particle emitters, respectively.

Several compounds with a thioureylene group (e.g., thiouracil and 6-alkyl derivatives,
thioureas, methimazole) are incorporated into melanin during its synthesis, and thiouracil
derivatives such as 125I-5-iodo-2-thiouracil, 35S-2-thiouracil, and 10B-5-dihydroxyboryl-2-
thiouracil have been applied as selective tumor seekers for radio-scanning diagnosis or
treatment of malignant melanoma and metastasis [169,180], in the latter case using slow
neutron irradiation. Targeted radiotherapy of pigmented melanoma using 131I-labeled
picolinamide agents has been carried out [185]. An interesting review has been published
on imaging of melanoma metastases with the positron emitter 15F attached to melanotropic
carriers [186].

Likewise, targeting of melanocytes in vitro and in vivo has been achieved using oc-
tapeptide derivatives of α-melanocyte-stimulating hormone (α-MSH) for binding to the
specific receptor MC1R, containing either a chelator for 111In, 67/68Ga or 90Y (allowing
accumulation of radioactivity in experimental melanomas) [187], or a photosensitizer
(methylene blue or pyropheophorbide derivative) for PDT [188]. Finally, due to its high
ability to retain heavy metals, selective melanin seekers could be simple radionuclide
cations for direct binding to O or N atoms of the pigment.

7. Melanoma and Ultrasound Therapy

On the other hand, using ultrasound (US) microscopy at frequencies near 1 GHz, the
comparison of iris tissue from albino and pigmented rabbits showed that melanin is a
particularly strong acoustic attenuator at those frequencies. In addition, other high US-
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absorbing structures are cell nuclei, rod and cone outer segments, and red blood cells [189].
Acoustic waves can traverse longer distances than photons in condensed matter, and as
such, penetration of US into deep tissues can be orders of magnitude higher than light.
Accordingly, targeting and therapy of melanomas subjected to sono-sensitizers (SSs) and
US treatments show good responses and promising perspectives. Taking into account the
binding of numerous ligands to melanin and the strong photonic and US absorption of this
pigment, it seems logical to expect an improved photothermal and ultrasono-activity.

An emerging approach for the therapy of tumors and atherosclerosis has been called
sonodynamic therapy (SDT), which involves the use of a SS followed by exposure to
low intensity US [48,190,191]. As SDT generates damaging ROS and radicals, a more
appropriate denomination for this modality should be “sono-electrochemical therapy”
(SET), to avoid the misleading use of the term “dynamic” [33]. Employed US parameters
for SET are ~1–2 MHz frequencies and ~0.5–10 W/cm2 energy densities [192].

Berberine, curcumin, hypericin, and protoporphyrin IX are natural SSs with increasing
importance [190,191]. Regression of experimental B16 melanoma has been achieved using
several SSs such as TiO2 nanoparticles, chloro-aluminum phthalocyanine disulfonate,
rose Bengal, and nickel ferrite/carbon nano-composites (NiFeO/C), revealing that SET
may be more effective than PDT in treating advanced melanotic melanomas [48]. TiO2
nanoparticles subjected to US (1 MHz, 1 W/cm2, 2 min) produced significant regression
of the C32 melanoma [193]. It is tempting to assume that generic biomembranes and
lysosome uptake of nanoparticles [138], and piezoelectric activity of TiO2 are involved in
the therapeutic response. As xanthene colorants accumulate into lysosomes, it would be
expected that rose Bengal could also label melanosomes. It is noteworthy realizing that the
strong US-absorbing eumelanin from melanomas is just a highly suitable endogenous SS
for SET itself.

Melanocytes are killed in vitro by US (phonons) in proportion to their melanosome con-
tent [194]. Melanin-binding drugs and colorants induce additional toxicity in melanocytes
subjected to US, and cell damage increases sharply with temperature, from 7 to 37 ◦C.
The absorption coefficient of melanin exposed to 1-MHz US increases and reaches a
value approaching maximal absorption at 60 ◦C. Absorbed US converts the mechani-
cal phonon energy into cytotoxic products through phonon–electron interactions within
the melanosome [194]. In early experiments, cultured melanotic tumor cells treated with
chlorpromazine were preferentially killed by 10 kHz US irradiation [155], with radical
production and DNA damage. Likewise, 1 MHz-US induced melanin degradation and
death of melanin-containing cells, which were potentiated by previous treatment with
melanin-binding drugs such as chlorpromazine and kanamycin [194,195].

Therefore, the concept of melanin as an inert biopolymer is in conflict with the experi-
mental evidence that it is an unusually efficient energy conversion medium with possible
biological implications, and capable of cytoprotective as well as cytotoxic action. Cytopro-
tection is observed with the conversion of photons or excited-state energy of free radicals
into phonons. Cytotoxic effects are achieved by driving this process in reverse. In keeping
with these facts, electron–phonon interactions are known [196,197]. A photon–electron–
phonon coupling model for energy interactions in melanin and ligand-bound melanin is
shown in Figure 20.
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Figure 20. Photon–electron–phonon interaction model in eumelanin. Schematic view of the possible
photon–electron–phonon coupling for energy interactions in dye-intercalated eumelanin complexes,
inspired in concepts from Corry et al. [155], Kono et al. 1979 [194], Crippa et al. [197], Migliaccio
et al. [198], and Sharma and Das [199]. The energy gap (Eg) between VB and CB of eumelanin is
occupied by a symbolically intercalated dye (D) that reduces Eg. Energy decay of photo- or US-excited
π electrons causes vibrational (heat) or electrochemical processes involving electrons (e−) and holes
(h+), which participate in photo (electro) catalytic redox reactions. Reduction in O2 to superoxide
radical (O2

•−) and H2O2 proceeds under oxygenated conditions. All these ROS and radicals generate
cell damage and death (Reproduced from the Open Access reference [33]).

Therefore, melanin-, melanin/ligand-based SET, and melanin/lanthanide-based US-
hyperthermia could represent new, elegant, and non- or minimally invasive therapies
for melanoma.

8. Biomedical Perspectives

At present there are important advances in imaging and therapeutic protocols for
melanomas and neurologic diseases using properties of melanin and melanin-like nanopar-
ticles [32,78,200–202]. A better knowledge of melanin structure and binding capacity
toward colorants and drugs will be surely reflected in understanding mechanistic aspects of
drug-induced pathological processes, leading to a progress of new biophysical approaches
for photodynamic, photothermal, and ultrasonic therapy of melanomas. In this review,
we have described molecular modeling advances (mainly planar BQPo and spiral BQPoe
models) to explain the chemical organization of eumelanin, as well as the possible in-
tercalation of colorants into graphitic eumelanin layers. These processes result in linear
and fused LUMOs in melanin-dye complexes, allowing photon–electron–phonon interac-
tions, and leading to metachromatic staining and labeling of melanosomes. Features based
on US-absorbing melanin-ligand complexes induce biological and antitumoral effects, in
agreement with previous proposals [33,47].

If corroborated by further studies, these novel conceptions may open interesting
perspectives and efficient strategies regarding melanoma therapy, as well as innovative
developments with potential biomedical and biotechnological applications. Regarding
melanin affinity and melanoma seekers, it is conceivable that the great quantity of catechol
groups makes eumelanin a suitable substrate to form borate esters [18]. When the isotope
10B is used and then irradiated with slow neutrons, the products of the nuclear fission
(7Li and 4He nuclei) due to neutron capture could damage specifically melanoma cells
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because of their very short braking distance in condensed matter. In keeping with this, a
borate ester of DOPA [203] has been proposed as a possible precursor of melanin for 10B
neutron-capture therapy of melanoma.

Regarding dye–melanin interaction, suitable molecular fitting should be a relevant
factor: most colorants that label lysosomes also bind to melanin, and could also intercalate
between its aromatic layers. In particular, possible intercalative binding of the porphycene
dyes TPPo and PdTPPo with melanin would be based on the excellent geometrical matching
of these ligands with the BQPo model for eumelanin (see Figure 17), because the host unit
and the ligand dyes have the same porphycene ring.

Hypericin induces a necrotic mode of cell death in pigmented melanoma cells and
melanocytes (possibly due to the release of toxic melanin precursors from melanosomes),
as well as apoptosis in non-pigmented melanoma cells and keratinocytes [204]. Taking
into account the aromatic structure of hypericin, it is tempting to speculate that its lyso-
somal localization [205] could allow uptake and intercalative binding to melanin also in
melanosomes. Colorants from acridine, thiazine, xanthene, azine, oxazine, porphyrin,
phthalocyanine, and other groups are also well suited to intercalate into graphitic melanin
layers. In all these cases of melanin–colorant interactions, an enhanced biological response
of melanoma cells and tumors would be expected to occur. Therefore, better understanding
of the molecular structure of melanin, as well as binding possibilities and melanin staining
and labeling mechanisms, will surely improve the rationale and efficiency of PDT, PTT, and
SET protocols for melanoma therapy.
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