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Abstract
The main ideas behind the classic multivariate logistic regression model make sense
when translated to the functional setting,where the explanatory variable X is a function
and the response Y is binary. However, some important technical issues appear (or
are aggravated with respect to those of the multivariate case) due to the functional
nature of the explanatory variable. First, the mere definition of the model can be
questioned: While most approaches so far proposed rely on the L2-based model, we
explore an alternative (in some sense, more general) approach, based on the theory of
reproducing kernel Hilbert spaces (RKHS). The validity conditions of such RKHS-
based model, and their relation with the L2-based one, are investigated and made
explicit in two formal results. Some relevant particular cases are considered as well.
Second, we show that, under very general conditions, the maximum likelihood of the
logistic model parameters fails to exist in the functional case, although some restricted
versions can be considered. Third, we check (in the framework of binary classification)
the practical performance of some RKHS-based procedures, well-suited to our model:
They are compared to several competing methods via Monte Carlo experiments and
the analysis of real data sets.
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1 Introduction

Throughout this work, we study the situation in which a binary (0-1) response variable
Y must be predicted in terms of a random explanatory variable X . We especially focus
on the case where X is an infinite-dimensional random variable, typically a function
that appears as a random trajectory of a stochastic process. In the classical, multivariate
case, where X is finite-dimensional, taking values in R

d , the logistic regression model
is a popular approach to such problem (see, e.g., Hilbe 2009 or Cramer 2003, Ch.
9 for a historical overview). According to Hosmer et al. (2013, p. 52), one of the
most appealing features of logistic regression is that the coefficients of the model are
easily interpretable in terms of the values of the predictors. As an important additional
motivation, the logistic model is necessarily fulfilled in the important case that the
conditional distributions of X given Y are both Gaussian and homoscedastic. This
finite-dimensional logistic model has been widely studied. Apart from the already
mentioned references, Efron (1975) provides a comparison between logistic predictors
and Fisher discriminant analysis. In addition, Munsiwamy andWakweya (2011) gives
a useful overview of asymptotic results of the estimators (firstly proved in Fahrmeir
and Kaufmann (1985) and Fahrmeir and Kaufmann (1986)).

A number of papers have been devoted to the extension of the logistic regression
model to the case of a functional valued explanatory variable X . The vast majority of
them follow the so-called L2-approach, assuming that X takes values in the standard
L2[0, 1] of real square integrable functions defined on [0, 1]. The basic idea of this
extension is to replace the Euclidean inner product in R

d , that appears in the formula-
tion of the multivariate logistic model, with the standard inner product in the function
space L2[0, 1]. An overview of several approaches to functional logistic regression
under the L2 point of view can be found in Mousavi and Sørensen (2018).

The purpose, contents and contributions of this work
The purpose of this paper is to explore another approach to the logistic regression

functional problem. We will focus on a different model whose theoretical basis is pro-
vided by the theory of Reproducing kernel Hilbert spaces (RKHS). In fact, wewill give
two equivalent formulations of our model: The first one, based on purely probabilistic
considerations, is easier to motivate. The second one, relying on “analytic” RKHS
tools, is apparently a bit more sophisticated but provides an explicit parameterization,
so it turns out to be much more convenient for inference and prediction purposes.
Whatever the formulation, the RKHS model extends (in a sense to be made precise
below) the L2 one and includes as well, as particular cases, all the finite-dimensional
models obtained by taking one-dimensionalmarginals from the functional explanatory
X .

In Sect. 2, we will briefly review (in order to gain some perspective) the formulation
and basic ideas of the L2-based logistic regression model.

Section 3 is devoted to the formulation of our model. As mentioned above, we will
do this in two alternative equivalent versions.

In Sect. 4, we study, in formal terms, the relation between our RKHSmodel and the
“classical” L2 one. We also show some other important particular cases, of practical
interest. Finally, we investigate under which conditions the RKHS-based model nec-
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essarily holds when both conditional distributions X |Y = i , for i = 0, 1 are Gaussian
and homoscedastic.

In Sect. 5, we investigate maximum likelihood estimation in the new model and
prove two results of non-existence for the maximum likelihood estimator. Such neg-
ative results can be seen as an aggravated, functional counterpart of the well-known
partial non-existence results arising in finite-dimensional logistic models; see Candès
and Sur (2020) and references therein.

In Sect. 6, we discuss how, still, some restricted versions of themaximum likelihood
ideas can be used in practice. Section 7 is devoted to some experimental comparisons,
via simulations and real data sets. Some brief concluding remarks are given in Sect. 8.
Some classic auxiliary results used in the proofs are included in a final appendix, for
reader’s convenience.

2 Logistic regression in the functional case: the “classical” L2-model

Here, for completeness and for comparison purposes, we will briefly recall the state-
ment of the standard L2-based functional logistic model, together with some basic
ideas and a few references.

Let us recall that the goal is to explore the relationship between a dichotomous
0 − 1 response variable Y and a functional predictor X . We will assume throughout
that X = X(t) is an L2-stochastic process whose mean and covariance functions
are continuous; so the trajectories of X are in L2[0, 1]. Thus, the random variable Y
conditional to X follows a Bernoulli distribution with parameter p(X) and the prior
probability of class 1 is denoted by p = P(Y = 1). In this setting, the most common
functional logistic regression model is

P(Y = 1|X) = 1

1 + exp{−α0 − 〈α, X〉2} , (1)

where α0 ∈ R, α ∈ L2[0, 1] and 〈·, ·〉2 denotes the inner product in L2[0, 1]. This
model is the direct extension of the d-dimensional one, where the product in R

d is
replaced by its functional counterpart. Model (1) will be referred to as the L2-based
logistic functional model.

The standard approach to this problem is to reduce the dimension of the curves using
principal component analysis (PCA). That is, the curves X = X(t) are projected into
the subspace defined by the eigenfunctions corresponding to the d largest eigenvalues
of the covariance operator of X . Then, standard logistic regression is applied to the
resulting d-dimensional projections. Among others, this strategy has been explored by
Escabias et al. (2004) and James (2002) from an applied perspective though, in fact,
the latter reference deals with generalized linear models beyond logistic regression.
These more general models are also studied by Müller and Stadtmüller (2005), but
with a more mathematical focus.
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3 An RKHS-based proposal for logistic regression in the functional
case

We will explore here a different model for functional logistic regression problems
which, as we will show, can be in fact expressed in two equivalent ways.

3.1 A first “probabilistic” formulation

We first establish our model in a preliminary version, relying on some basic tools of
probability theory, with no resort to RKHS theory.

Our functional data will be trajectories in L2[0, 1] of an L2-process X = X(t)with
continuous covariance and mean function, denoted by K = K (s, t) and m = m(t),
respectively. The covariance operatorK associated with the covariance function K of
the process is given by

K( f )(·) =
∫ 1

0
K (s, ·) f (s)ds = E

[〈X − m, f 〉2
(
X(·) − m(·))]. (2)

Let L2(�) be the Hilbert space of real random variables with finite secondmoment,
endowed with the usual inner product and with associated norm ‖U‖2 = E(U 2).
Define

L0(X) =
{

U ∈ L2(�) : U =
n∑

i=1

ai
(
X(ti ) − m(ti )

)
, ai ∈ R, ti ∈ [0, 1], n ∈ N

}
,

where m(t) = E[X(t)], and let L(X) be the completion of L0(X) in L2(�), that
is, L(X) is a subspace of L2(�) defined as the closure of the linear span of the
centered one-dimensional marginals of the process X . Given that L(X) contains the
finite linear combinations of values X(ti )− m(ti ) or limits (in the mean square sense)
of sequences of such linear combinations, it seems natural to consider the following
functional logistic regression model:

P(Y = 1|X) = 1

1 + exp{−β0 − UX } , β0 ∈ R, UX ∈ L(X). (3)

As we will show below (see Theorem 1), model (3) includes the L2-based model (1)
as a particular case, since 〈α, X〉2 = ∫ 1

0 α(t)X(t)dt ∈ L(X) for α ∈ L2[0, 1].
On the other hand, (3) is more general than the L2-formulation (1) since, for

instance, it includes finite-dimensional versions of the form

P(Y = 1|X) = 1

1 + exp{−β0 − ∑p
j=1 β j X(t j )}

(see Theorem 2 below) that cannot be expressed in terms of 〈α, X〉2 for any α ∈
L2[0, 1].
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For linear regression models and in the context of variable selection methods, an
analogous generalization of the usual L2-model was proposed by Berrendero et al.
(2019).

Some closely related ideas, aimed at the prediction problem in functional linear
models, are also present in Shin and Hsing (2012), although these authors do not
consider the RKHS aspects we study here.

3.2 Reproducing kernel Hilbert spaces

Since we want to reformulate model (3) in RKHS terms, we will briefly remind here,
for the sake of completeness, some very basic ideas and notations about RKHS’s;
see Berlinet and Thomas-Agnan (2004) and Appendix F of Janson (1997) for further
details and references. Furthermore, the book by Hsing and Eubank (2015) provides
an excellent mathematical background on mathematical methods, including RKHS
theory, for the statistical analysis of functional data. The papers by Hsing and Ren
(2009) and Kneip and Liebl (2020) offer also very general perspectives and results
on the applicability of RKHS methods in functional regression models, though not
particularly focused on the logistic case. Some other more specific references (a few
of them especially dealing with the functional logistic model) will be cited below.

Let H0(K ) := { f ∈ L2[0, 1] : f (·) = ∑n
i=1 ai K (ti , ·), ai ∈ R, ti ∈

[0, 1], n ∈ N}, be the space of all finite linear combinations of evaluations of K .
This space is endowed with the inner product 〈 f , g〉K = ∑

i, j αiβ j K (ti , s j ), where
f (·) = ∑

i αi K (ti , ·) and g(·) = ∑
j β j K (s j , ·). Then, the RKHS associated with K

is defined as the completion ofH0(K ). In other words,H(K ) is made of all functions
obtained as pointwise limits of Cauchy sequences in H0(K ). The inner product is
extended accordingly to the whole space H(K ).

These spaces are named after the so-called reproducing property, 〈 f , K (s, ·)〉K =
f (s), for all f ∈ H(K ), s ∈ [0, 1], which is particularly important in the applications.
On account of this property it is sometimes said that RKHSs are spaces of “true
functions,” in the sense that the pointwise values f (s), at a given s do matter, by
contrast with L2[0, 1] whose elements are in fact equivalence classes of functions.

3.3 The RKHS formulation of the functional logistic model

Recall thatL(X) denotes the closure of the linear span of the centered one-dimensional
marginals of the process X . A property of RKHSs especially useful in statistical
applications is given by the following isometry result: The transformation �X , from
L(X) toH(K ), defined by

�X (U )(s) = E[U (X(s) − m(s))] = 〈U , X(s) − m(s)〉 ∈ H(K ), for U ∈ L(X)

(4)

is an isometry (sometimes called Loève’s isometry) between L(X) and H(K ), that
is, �X (U ) is bijective and preserves the inner product (see Lukić and Beder 2001,
Lemma 1.1). As a consequence, the Hilbert spaces L(X) andH(K ) can be identified.
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Note that, in informal terms, �X is the completion of the transformation from L0(X)

toH0(K ) given by
∑n

i=1 ai
(
X(ti ) − m(ti )

) �→ ∑n
i=1 ai K (ti , ·).

It is worthmentioning that whileH(K ) is, in several aspects, a natural Hilbert space
associatedwith the process X , typically, the trajectories of the process X themselves do
not belong toH(K )with probability one (see, e.g., Lukić andBeder 2001, Cor. 7.1; Pil-
lai et al. 2007, Th. 11). Then, one cannot directlywrite 〈x, K (s, ·)〉K , for x a realization
of the process. However, following Parzen (1961), we will use the convenient nota-
tion 〈x, K (s, ·)〉K interpreting this expression in terms of Loève’s isometry,�X ; more
precisely, we will identify 〈x, f 〉K with�−1

x ( f ) := (�−1
X ( f ))(ω), for x = X(ω) and

f ∈ H(K ), which in particularmeans�−1
X (

∑n
i=1 ai K (ti , ·)) = ∑

i ai (X(ti )−m(ti )).
The intuition behind the definition of 〈β, X〉K is reminiscent of the definition of

Itô’s isometry, which is used to define the stochastic integral with respect to theWiener
measure (Brownian motion), overcoming the fact that the Brownian trajectories are
not of bounded variation.

The considerations above allow us to rewrite model (3) in terms of the isometric
transformation X �→ 〈β, X〉K = �−1

X (β):

P(Y = 1 | X) = 1

1 + exp {−β0 − 〈β, X〉K } , β0 ∈ R, β ∈ H(K ). (5)

There is a one-to-one correspondence between each function inH(K ) and each random
variable in L(X). It is in this sense that H(K ) is a natural parameter space for model
(3). Formulation (5) turns out to be more convenient for estimation and prediction
purposes.

4 Some important particular instances: the Gaussian case

4.1 Relationship between the L2- and the RKHS-basedmodels

In this subsection, we clarify the relation between the standard (centered on X , by
convenience) L2-logistic model

P(Y = 1|X) = 1

1 + exp{−α0 − 〈α, X − m〉2} , α0 ∈ R, α ∈ L2[0, 1], (6)

and the RKHS version (3), or its equivalent formulation (5). We will essentially show
that the RKHS-based model is more general, in the sense that, whenever the L2-
formulation (6) holds, then the RKHS counterpart (3) also holds, in a re-parametrized
version (that is, the respective “slope functions” α and β will be different and with
different interpretations). We will give as well a condition under which the logistic
model (5) formulated in RKHS terms can be rewritten into L2-terms as in (6).

This is made explicit in the following result:

Theorem 1 (a) If the L2-model (6) holds, then the RKHS model (5) holds as well with
β0 = α0 and β = K(α).
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(b) If the RKHS model (5) holds and β ∈ K(L2) = {K( f ) : f ∈ L2[0, 1]}, then the
L2-model (6) holds with α0 = β0 and K(α) = β.

Proof Let us denote‖U‖ = [E(U 2)]1/2, the L2(�)-norm, and‖ f ‖2 = [∫ 2
0 f 2(t)dt]1/2,

the L2[0, 1]-norm.

(a) Let U := ∫ 1
0 α(t)(X(t) − m(t))dt , α ∈ L2[0, 1]. We have to show that U ∈

L(X). Since continuous functions are dense in L2[0, 1], there exists a sequence of
continuous functions αn such that ‖αn − α‖2 → 0. Let Un := ∫ 1

0 αn(t)(X(t) −
m(t))dt . We have that Un ∈ L(X) (see, e.g., Ash and Gardner 2014, page 34).
Since L(X) is closed, it is enough to show that ‖Un − U‖ → 0. Indeed, using
Cauchy-Schwarz inequality and Fubini’s theorem

‖Un − U‖2 = E

[(∫ 1

0
(αn − α)X(t)dt

)2
]

≤ ‖αn − α‖22
∫ 1

0
E(X(t)2)dt → 0,

taking into account
∫ 1
0 E(X(t)2) = ∫ 1

0 (K (t, t) + m(t)2)dt < ∞ (recall we are
assumingm and K are continuous). Now,U ∈ L(X) if and only ifU = �−1

X (β) =
〈β, X〉K for β ∈ H(K ). Moreover, by Fubini’s theorem, for all s ∈ [0, 1], we have

β(s) = �X (U )(s) = E

[∫ 1

0
α(t)(X(t) − m(t))dt · (X(s) − m(s))

]

=
∫ 1

0
K (s, t)α(t)dt = K(α)(s). (7)

(b) If β = K(α), from (7), we get 〈X , β〉K = �−1
X (β) = U = ∫ 1

0 α(t)(X(t) −
m(t))dt .


�

4.2 Some other important particular cases

In this subsection, we show that, in fact, the RKHS model (5) is strictly more general
than the L2 formulation (1–6), by showing (see Th. 2 (a) below) some relevant par-
ticular cases of (5) that cannot be formulated in L2-terms. They appear in the context
of dimension reduction techniques, which are often a natural alternative, motivated
by criteria of interpretability of the model and classification accuracy. In fact, we will
consider here two usual ways of performing dimension reduction: variable selection
and linear projections.

By variable selection, we mean to replace each curve xi by the finite-dimensional
vector (xi (t1), . . . , xi (tp)), for some t1, . . . , tp chosen in an optimal way. In this sec-
tion, we analyze under which conditions it is possible to perform functional variable
selection without loss. Such analysis is only feasible under the following particular
RKHS model.
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Whenever the slope function β has the form

β(·) =
p∑

j=1

β j K (t j , ·), (8)

the model in (5) is reduced to the finite-dimensional one,

P(Y = 1|X) =
(
1 + exp

{
− β0 −

p∑
j=1

β j (X(t j ) − m(t j ))
})−1

. (9)

The main difference between the standard finite-dimensional model and this one is
that now the proper choice of the points T = (t1, . . . , tp) ∈ [0, 1]p is a part of the
estimation procedure. In this sense, model (9) is truly functional since we will use
the whole trajectories xi (t) to select the points. This fact leads to a critical difference
between the functional and the multivariate problems. Then, our aim is to approximate
the general model described by Eq. (5) with finite-dimensional models as those of
Eq. (9). This amounts to get an approximation of the slope function in terms of a
finite linear combination of kernel evaluations K (t j , ·). This model, for p = 1 and a
particular type of Gaussian process X , is analyzed in Lindquist andMcKeague (2009).

Of course, when (8–9) holds, variable selection is particularly compelling. A natural
idea in this setting would be to incorporate the points t1, . . . , tp to the estimation
procedure as additional parameters to be estimated; see Sect. 5 for details.

Another standard way of dimension reduction is done by linear projections. This
is the case, for example, of principal component analysis (PCA). As it is well known,
the dimension reduction in this case is achieved by replacing the whole trajectory
x = x(t) by a vector in R

p such as (〈u1, x〉2, . . . , 〈u p, x〉2) whose components are
the projections of x along some suitable chosen “directions” u j ∈ L2[0, 1]. Such
strategy appears also as a particular case of the RKHS-based logistic model (which,
in fact, can be also formulated in L2-terms). This is shown in Th. 2(b) below.

Theorem 2 Assume model (5) holds. Then,

(a) If there exists a positive integer p, β1, . . . , βp ∈ R, and t1, . . . , tp ∈ [0, 1] such
that β(·) = ∑p

j=1 β j K (·, t j ), then

P(Y = 1 | X = x) = 1

1 + exp
{
−β0 − ∑p

j=1 β j (x(t j ) − m(t j ))
} .

(b) Let {u j } be an orthonormal basis of L2[0, 1]. If there exists a positive integer p,
and β1, . . . , βp ∈ R such that β = ∑p

j=1 β jK(u j ), then

P(Y = 1 | X = x) = 1

1 + exp
{
−β0 − ∑p

j=1 β j 〈x − m, u j 〉2
} ,
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Proof (a) Observe that for j = 1, . . . , p, X(t j ) − m(t j ) ∈ L0(K ), and for all s ∈
[0, 1],

�X (X(t j ) − m(t j ))(s) = E[(X(s) − m(s))(X(t j ) − m(t j ))] = K (s, t j ).

Therefore �−1
X (k(·, t j )) = X(t j ) − m(t j ), and

〈X , β〉K =
p∑

j=1

β j 〈X , k(·, t j )〉K =
p∑

j=1

β j (X(t j ) − m(t j )).

(b) Puttingα(t) = u j (t) in (7),weget�X (〈u j , X−m〉2) = K(u j ).As a consequence,

〈X , β〉K =
p∑

j=1

β j 〈u j , X − m〉2.


�
Part (a) of the previous result means that for some particular choices of the slope

function of type β(·) = ∑p
i ai K (ti , ·), the model (5) amounts to a finite-dimensional

logistic regression model for which the explanatory variable is a p-dimensional
marginal of the process X . Thus, the impact-point model studied by Lindquist and
McKeague (2009) appears as a particular case of the RKHS-based model. In fact,
model (5) can be seen as a true extension of the finite-dimensional logistic regression
model, which is obtainedwhen a finite-dimensional covariancematrix plays the role of
the kernel. As an important by-product, this provides a mathematical ground for vari-
able selection in logistic regression. As it turns out, functions of type β(·) = K (·, t)
belong to H(K ) but do not belong to K(L2). This fact implies that within the setting
of the RKHS model, it is possible to regress Y on any finite-dimensional projection
of X , whereas this does not make sense if we consider the L2 model. This feature is
clearly relevant if one wishes to analyze properties of variable selection methods.

Part (b) of Theorem 2 implies that model (5) also includes situations, like PCA,
where the explanatory variable is replaced by p linear projections. The corresponding
model is a particular case of (5), whereβ is in the span ofK(u1), . . . ,K(u p). Note that,
if {u j } is the orthonormal basis of eigenfunctions ofK,wehaveK(u j ) is proportional to
u j , and the condition on β reduces to the fact that β belongs to the span of u1, . . . , u p.
If this is the case, there is no loss in using the first p principal components of the
regressors instead of the whole trajectories.

4.3 Validity conditions in the Gaussian case

Generally speaking, the logistic regressionmodel specifies the conditional distribution
of the responseY given the regressor X . However, as in the finite-dimensional case, our
model holds when the conditional distributions of the process given the two possible
values ofY areGaussianwith the same covariance structure. Indeed, in this subsection,
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we prove that (5) also holds when we assume that X |Y = 0 and X |Y = 1 are Gaussian
and homoscedastic, with regular enough mean functions. Of course, (5) also may hold
for other non-Gaussian assumptions on the conditional distributions X |Y = i .

More precisely, for i = 0, 1, assume that {X(t) : t ∈ [0, 1]} given Y = i is
a Gaussian process with continuous mean function mi and continuous covariance
function K (the same for i = 0, 1). We will assume as well throughout this subsection
that all the eigenvalues λi of the covariance operatorK, associated with K are strictly
positive (so K is injective). Note that, as a consequence of Spectral Theorem (see,
e.g., Hsing and Eubank 2015, p.98) Kx = ∑

j λi 〈x, ei 〉ei , where ei stands for a

unit eigenvector associated with λi ; thus, the inverse K−1 is defined on the range of
K, K(L2), as a linear (not continuous) transformation, by K−1y = ∑

i
〈y,ei 〉

λi
ei ), for

y = ∑
i 〈y, ei 〉ei ∈ K(L2).

Let Pm0 and Pm1 be the probability measures (i.e., the distributions) induced by the
process X conditional to Y = 0 and Y = 1, respectively. Recall that when m0 and m1
both belong toH(K ), we have that Pm0 and Pm1 are mutually absolutely continuous;
see Theorem 7A in Parzen (1961) and the Appendix. The following theorem provides
a very natural motivation for the RKHS model (5) in this Gaussian setting.

Theorem 3 Let Pm0 , Pm1 and K be as in the previous lines. Then,

(a) if m1 − m0 ∈ H(K ), then Pm0 and Pm1 are mutually absolutely continuous and
model (5) holds,

P(Y = 1 | X = x) = 1

1 + exp {−β0 − 〈x, β〉K } ≡ 1

1 + exp
{
−β0 − �−1

x (β)
} ,

with β := m1−m0 and β0 := −Em1 [�−1
x (β)]+‖m1−m0‖2K /2− log((1− p)/p)

(where p = P(Y = 1) and Em1(·) stands for the expectation when the process has
mean function equal to m1).

(b) If m1 − m0 /∈ H(K ), then Pm0 and Pm1 are mutually singular.
(c) if m1 − m0 ∈ K(L2) = {K( f ) : f ∈ L2[0, 1]}, then Pm0 and Pm1 are mutually

absolutely continuous and model (1) holds.
(d) if m1 − m0 /∈ K(L2) model (1) is never recovered, but different situations are

possible, according to the condition in part (a). In particular if m0 = 0, m1 ∈
H(K ) recovers scenario (a), but if m1 /∈ H(K ), Pm0 and Pm1 are mutually singular.

Proof (a) and (b) Let P0 be themeasure induced by aGaussian processwith covariance
function K but zero mean function, m ≡ 0. From Theorem 7A in Parzen (1961),
m0 − m1 ∈ H(K ) implies that Pm0−m1 and P0 are mutually absolutely continuous,
andm0−m1 /∈ H(K ) implies that Pm0−m1 and P0 aremutually singular.ByLemma1.1
in Pitcher (1960), see Appendix, Pm0−m1 and P0 are mutually absolutely continuous
if and only if Pm0 and Pm1 are mutually absolutely continuous and, in this case, the
corresponding Radon-Nikodym derivative fulfills

dPm0

dPm1

(X) = dPm0−m1

dP0
(X − m1) = exp

{
〈X − m1, m0 − m1〉K − 1

2
‖m0 − m1‖2K

}
.
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The last equality also follows from Theorem 7A in Parzen (1961). Notice that by the
definition of Loéve’s isometry, we have 〈X − m1, m0 − m1〉K = 〈X , m0 − m1〉K −
Em1 [〈X , m0 − m1〉K ].

The conditional probability of Y = 1 can be expressed in terms of the Radon–
Nikodym derivative of P1 with respect to P0 (see Baíllo et al. 2011, Th.1) by

P(Y = 1 | X) =
p
dPm1
dPm0

(X)

p
dPm1
dPm0

(X) + (1 − p)
=

(
1 + 1 − p

p

dPm0

dPm1

(X)

)−1

. (10)

From the last two displayed equations, one can rewrite

P(Y = 1 | X)

=
(
1 + 1 − p

p
exp

{
〈X , m0 − m1〉K − Em1 [〈X , m0 − m1〉K ] − 1

2
‖m0 − m1‖2K

})−1
.

Then, reordering terms in this expression, we get the logistic model in part (a).
(c) Under the assumptions, Theorem 6.1 in Rao and Varadarajan (1963), see

Appendix, gives the following expression:

log
(dPm1

dPm0

(x)
)

= 〈x − m0, K−1(m1 − m0)〉2 − 1

2
〈m1 − m0, K−1(m1 − m0)〉2,

for x ∈ L2[0, 1]. This entails (using the Chain Rule for Radon-Nikodym derivatives)

dPm0

dPm1

(x) = C exp (−〈x, α〉2) ,

where α = K−1(m1 − m0) and C = exp〈m0 + m1, α〉2/2). Now, replacing this
expression in (10), we get the L2-model (1) with α0 = − log

( 1−p
p C

)
.

(d)Also, as a consequence of Theorem6.1 inRao andVaradarajan (1963), ifm1−m0 /∈
K(L2), it is not possible to express the Radon-Nikodym derivative in terms of inner
products in L2 or, equivalently, there is no continuous linear functional L(x) and
c ∈ R such that log( dP1

dP0
(x)) = L(x) + c. Finally, the last sentence of the statement is

a consequence of Theorem 7A in Parzen (1961). 
�
Part (b) of this theorem has been recently observed by Petrovich et al. (2018, Th.

1) without reference to RKHS theory. Note that, in general, m1 − m0 /∈ K(L2) does
not imply that Pm1 and Pm0 are orthogonal since the precise condition for this is
m1 − m0 /∈ H(K ) and K(L2) � H(K ) (in fact H(K ) = K1/2(L2) equipped with
the RKHS inner product, see, e.g., Hsing and Eubank (2015, Th. 7.6.4)). Parts (a) and
(c) of the theorem above clarify this point. From part (b) of the theorem, it follows
that the L2 model is also recovered when a higher degree of “regularity” on the mean
functions is imposed, since the functions in K(L2) are convolutions of the functions
in L2[0, 1] with the covariance function of the process so that they are in a way more
regular than the functions in K1/2(L2).
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5 Maximum likelihood estimation: non-existence results

In the finite-dimensional setting, it is well known that the maximum likelihood (ML)
estimator does not exist when there is an hyperplane separating the observations of the
two classes; see below for details. As we will show in this section, this fact worsens
dramatically for the case of functional data; more specifically, we will see that:

For a wide class of processes (including the Brownian motion), the MLE just does
not exist, with probability one (see Sect. 5.1).
Under some different conditions, in the Gaussian case, the probability of non-
existence of the MLE tends to one when the sample size tends to infinity (see
Sect. 5.2).

A brief overview of the finite-dimensional case
Despite the fact that ML estimation of the slope function for multiple logistic

regression is widely used, it has an important drawback that is sometimes overlooked.
Given a sample x0i ∈ R

d for i = 1, . . . , n0 drawn from population zero and another
sample x1i ∈ R

d for i = 1, . . . , n1 drawn from population one, the classical MLE in
logistic regression is the vector (b0, b) ∈ R × R

d that maximizes the log-likelihood

Ln(b, b0) = 1

n0

n0∑
i=1

log
( e−b0−b′x0i

1 + e−b0−b′x0i

)
+ 1

n1

n1∑
i=1

log
( 1

1 + e−b0−b′x1i

)
,

where a′b stands here for the inner product of two vectors a, b in R
d . The existence

and uniqueness of such a maximum were carefully studied by Albert and Anderson
(1984) (and previously by Silvapulle (1981) and Gourieroux and Monfort (1981)). As
stated in Theorem 1 of Albert and Anderson (1984), the latter expression can be made
arbitrarily close to zero (note that, the log-likelihood is always negative) whenever the
samples of the twopopulations are linearly separable. In that case, themaximumcannot
be attained, and then, the MLE does not exist (the idea behind the proof is similar to
the one of Theorem 4 below). There is another scenario where this estimator does not
exist; the samples are linearly separable except for some points of both populations
that fall into the separation hyperplane (named “quasicomplete separation”). In this
case, the supremum of the log-likelihood function is strictly smaller than zero, but it
is anyway unattainable.

The likelihood function in the logistic functional model

Before going on with the functional case (which is our main target here), we need to
derive the likelihood function. Let assume that {X(s), s ∈ [0, 1]} follows the RKHS
logistic model described in Eq. (5). That is,

β0 + �−1
X (β) ≡ β0 + 〈X , β〉K = log

( pβ,β0(X)

1 − pβ,β0(X)

)
,

where pβ,β0(X) = P(Y = 1|X , β, β0), β0 ∈ R and β ∈ H(K ). The random element
(X(·), Y ) takes values in the space Z = L2[0, 1]×{0, 1}, which is a measurable space
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with measure z = PX ×μ, where PX is the distribution induced by the process X and
μ is the counting measure on {0, 1}. We can define in Z the measure P(X ,Y );β,β0 , the
joint probability induced by (X(·), Y ) for a given slope function β and an intercept
β0. Then, we define,

fβ,β0(x, y) = dP(X ,Y );β,β0

dz
(x, y) = pβ,β0(x)y (

1 − pβ,β0(x)
)1−y

=
( 1

1 + e−β0−〈β,x〉K

)y( e−β0−〈β,x〉K

1 + e−β0−〈β,x〉K

)1−y
.

In view of this density function, the log-likelihood function for a given sample in
L2[0, 1] × {0, 1} is

Ln(β, β0) = 1

n

n∑
i=1

log
(

pβ,β0(xi )
yi

(
1 − pβ,β0(xi )

)1−yi
)
,

where (xi , yi ) ∈ L2[0, 1] × {0, 1} is a sample of the underlying random variable
(X , Y ).

The maximum likelihood estimator is the pair (β̂, β̂0) that maximizes this function
Ln . The population counterpart of Ln is the expected log-likelihood function,

L(β, β0) = EZ
[
log fβ,β0 (X , Y )

] = EZ

[
log

(
pβ,β0 (X)Y (

1 − pβ,β0 (X)
)1−Y

)]
,

(11)

where EZ [·] denotes the expectation with respect to the distribution of Z .
The main idea behind ML estimation stands in the infinite-dimensional situation.

If our “parameter space” is � ⊂ H(K ) × R and the “true” value of the parameter is
(β∗, β∗

0 ) ∈ �, then a simple, standard argument based on Jensen’s inequality shows
that the population log-likelihood function L(β, β0) fulfills

L(β∗, β∗
0 ) ≥ L(β, β0), for all (β, β0) ∈ �.

This leads to the usual, natural idea of maximizing a consistent estimator of L(β∗, β∗
0 )

that, in our logistic model, is the log-likelihood function Ln(β, β0) defined above.

5.1 Non-existence of theMLE in functional settings

We first show that, when moving from the finite-dimensional model to the functional
one, the problem of the non-existence of the MLE is drastically worsened.

This situation is quite similar to that arising in other statistical problems with
infinite-dimensional parameter spaces. This is, for example, the case of density esti-
mation where nonparametric, non-penalized, ML estimators do not exist, unless some
drastic restrictions are imposed on the underlying density function; see Grenander
(1981).
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Since the analogous non-existence result for the case of the functional logistic
regression model is not perhaps so direct, it is established in Theorem 4 below. We
confine ourselves to the RKHS-based model (5), although the result can be easily
extended, with a completely similar method of proof, for the standard L2-based model
of Eq. (1).

We first will need to establish a condition which plays, in the functional case, a
similar role to that of the linear separability condition mentioned above in the setting
of finite-dimensional logistic regression.

Assumption 1 (SC) The multivariate process W (t) = (X1(t), . . . , Xn(t)), t ∈ [0, 1]
satisfies the “Sign Choice” (SC) property when for all possible choice of signs
(s1, . . . , sn), where s j is either + or −, we have that, with probability one, there
exists some t0 ∈ [0, 1] such that sign(X1(t0)) = s1, . . . , sign(Xn(t0)) = sn .

Without loss of generality, we assume E(X(t)) = 0. The non-existence result is as
follows.

Theorem 4 Let X(s), s ∈ [0, 1], be an L2 stochastic process with E(X(s)) = 0.
Denote by K the corresponding covariance function. Consider a logistic model (5)
based on X(s). Let X1, . . . , Xn be independent copies of X. Assume that the n-
dimensional process Zn(s) = (X1(s), . . . , Xn(s)) fulfills the SC property. Then, with
probability one, the MLE estimator of (β, β0) (i.e., the maximizer of the log-likelihood
function Ln(β, β0)) does not exist for any sample size n.

Proof Let x1(s) . . . , xn(s)be a randomsample drawn from X(s). From theSCassump-
tion, there is (with probability 1) one point t0 such that xi (t0) > 0 for all i such that
yi = 1 and xi (t0) < 0 for those indices i with yi = 0. Note that, the sample log-
likelihood function can be split in two terms, as follows,

Ln(β, β0) = 1

n

∑
{i : yi =1}

log
( 1

1 + e−β0−〈β,xi 〉K

)
+ 1

n

∑
{i : yi =0}

log
( e−β0−〈β,xi 〉K

1 + e−β0−〈β,xi 〉K

)
.

Note also that Ln(β, β0) ≤ 0 for all β. Now, take a numerical sequence 0 < cm ↑ ∞
and define

βm(·) = cm K (t0, ·).

Then, by the definition of Loéve’s isometry, if yi = 0,

〈βm, xi 〉K = cm xi (t0) → ∞, as m → ∞,

since we have taken t0 such that xi (t0) > 0 for those indices i with yi = 1. Likewise,
〈βm, xi 〉K goes to −∞ whenever yi = 0 since we have chosen t0 such that xi (t0) < 0
for those indices. As a consequence, Ln(βm, 0) → 0 as m → ∞. Therefore, the
likelihood function can be made arbitrarily large so that the MLE does not exist. 
�
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Remark 1 A non-existence result for the MLE estimator, analogous to that of Theo-
rem 4, can be also obtained with a very similar reasoning for the L2-based logistic
model of Eq. (1). The main difference in the proof would be the construction of βm

which, in the L2 case, should be obtained as an approximation to the identity (that is,
a linear “quasi Dirac delta”) centered at the point t0.

Although the SC property could seem a somewhat restrictive assumption, the fol-
lowing proposition shows that it applies to some important and non-trivial situations.

Proposition 1 (a) The n-dimensional Brownian motion fulfills the SC property.
(b) The same holds for any other n-dimensional process in [0, 1] whose independent

marginals have a distribution absolutely continuous with respect to that of the
Brownian motion.

Proof (a) Given the n-dimensional Brownian motion Bn(t) = (B1(t), . . . , Bn(t)),
where the B j are independent copies of the standard Brownianmotion B(t), t ∈ [0, 1],
take a finite sequence of signs (s1, ..., sn) and define the event

A = {for any given t there exists 0 < t0 < t such that sign(B j (t0)) = s j , j = 1, . . . , n} (12)

We may express this event by

A =
⋂

t∈(0,1]∩Q
At , (13)

where, for each t ∈ (0, 1] ∩ Q,

At = {there exists t0 < t such that sign(B j (t0)) = s j , j = 1, . . . , n}.

Now, the result follows directly fromBlumenthal’s 0-1 Law for n-dimensional Brown-
ian processes (see, e.g., Mörters and Peres 2010, p. 38). Such result establishes that for
any event A ∈ F+(0), we have either P(A) = 0 or P(A) = 1. Here, F+(0) denotes
the germ σ -algebra of events depending only on the values of Bn(t) where t lies in
an arbitrarily small interval on the right of 0. More precisely,

F+(0) =
⋂
t>0

F0(t), where F0(t) = σ(Bn(s), 0 ≤ s ≤ t).

From (12) and (13), it is clear that the above defined event A belongs to the germ σ -
algebra F+(0). However, we cannot have P(A) = 0 since (from the symmetry of the
Brownian motion) for any given t0 the probability of sign(B j (t0)) = s j , j = 1, . . . , n
is 1/2n . So, we conclude P(A) = 1 as desired.

(b) If X(t) is another process whose distribution is absolutely continuous with
respect to that of the n-dimensional Brownian motion Bn , then the set A, defined by
(12) and (13) in terms of Bn , has also probability one when it is defined in terms of the
process X(t): Recall that, from the definition of absolute continuity, if the set Ac has
probability zero under the Brownian motion, then its probability must be zero as well
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when B(t) is replaced with X(t). Therefore, the probability of A under X = X(t)
must be one. 
�
Remark 2 As pointed out inMörters and Peres (2010, p. 63), Blumenthal’s 0-1 law can
be extended to other processes, beyond Brownian Motion, including Lévy Processes
(with independent stationary increments). Thus, one could think of obtaining a version
of Proposition 1 valid for such cases.

The situation considered in Theorem 4 would be the functional counterpart of
having a finite-dimensional problem where the supports of both classes (0 and 1) are
linearly separable. However, as we have just seen, this separability issue does not only
appear in degenerate problems in the functional setting. In the next section, we suggest
a technique to completely avoid the problem.

From a theoretical perspective, in view of Theorem 4, it is clear that there is no
hope of obtaining a general convergence result of the standard maximum likelihood
estimator (MLE) defined by the maximization of the likelihood function Ln(β, β0).
That is, one should define a different estimator or impose some conditions on the
process X to avoid the SC property. For instance, Lindquist and McKeague (2009)
prove consistency results under a model of type

log

(
p(X)

1 − p(X)

)
= β0 + β X(θ0),

depending on a unique impact point θ0 ∈ (0, 1), which must be estimated, where
X(t + θ0) − X(θ0) is a standard two-sided Brownian Motion.

5.2 Asymptotic non-existence for Gaussian processes

In the previous section, we have seen that the problem of non-existence of the MLE
is aggravated for the case functional data. But this is not the only issue with MLE
in functional logistic regression. In this section, we see that the probability that the
MLE does not exist goes to one as the sample size increases, for any Gaussian process
satisfying very mild assumptions.

We use the following notation: for T = {t1, . . . , tp} ⊂ [0, 1] and f ∈ L2[0, 1], let
f (T ) := ( f (t1), . . . , f (tp))

′ and let �T be the p × p matrix whose (i, j) entry is
K (ti , t j ).

Theorem 5 Let (x1, y1), . . . , (xn, yn) be a random sample of independent observa-
tions satisfying model (5). Assume that X is a Gaussian process such that K is
continuous and �T is invertible for any finite set T ⊂ (0, 1). It holds

lim
n→∞ P(MLE exists) = 0.

Proof Let β∗ ∈ HK , β∗
0 be the true values of the parameters. Since ‖β∗‖K < ∞,

we have h(β∗
0 , ‖β∗‖K ) < ∞, where h is the function defined in Candès and Sur

(2020), Eq. (2.2) (see Remark 3 below). Let pn be an increasing sequence of natural
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numbers such that limn→∞ pn/n = κ > h(β∗
0 , ‖β∗‖K ). Consider the set of equis-

paced points 0 < t1 < t2 < · · · < tpn < 1 and denote Tn = {t1, . . . , tpn }. Define
αTn = �−1

Tn
β∗(Tn). Now, consider the following sequence of finite-dimensional logis-

tic regression models

P(Y = 1 | X) = 1

1 + exp
{
−β∗

0 − α′
Tn

X(Tn)
} ,

and the following sequence of events

En = {There exists α ∈ R
pn : α′xi (Tn) ≥ 0, if yi = 1; α′xi (Tn) ≤ 0, if yi = 0}.

Recall that the event En amounts to non-existence of MLE for finite-dimensional
logistic regression models (see Albert and Anderson (1984)).

Now let us prove the validity of condition (1.3) in Candès and Sur (2020), which
is required for the validity of Theorem 2.1. in that paper. In our case, such condition
amounts to

lim
n→∞Var

(
α′

Tn
X(Tn)

) = lim
n→∞ α′

Tn
�Tn αTn = ‖β∗‖2K ,

but this directly follows from Theorem 6E of Parzen (1959). Since limn→∞ pn/n =
κ > h(β∗

0 , ‖β∗‖2K ), we apply Theorem 2.1. in Candès and Sur (2020) to get
limn P(En) = 1.

Now we define the auxiliary sequence of events

Ẽn = {There exists α ∈ R
pn : α′xi (Tn) > 0, if yi = 1; α′xi (Tn) < 0, if yi = 0},

with strict inequalities. Assume that Ẽn happens so that there exists a separating
hyperplane defined by α ∈ R

pn . Then, in the same spirit as in the proof of The-
orem 4, it is possible to show that if β̂m,n = m

∑pn
j=1 α j K (·, t j ) ∈ HK , then

limm→∞ Ln(β̂m,n, 0) = 0, where Ln(β, β0) is the log-likelihood function. As a con-
sequence, for all n, if Ẽn happens, then the MLE for the RKHS functional logistic
regression model does not exist. The result follows from the fact that P(En) = P(Ẽn)

and the events α′xi (Tn) = 0 have probability zero since we are assuming that the
process does not have degenerate marginals. 
�
Remark 3 Theorem 2.1. in Candès and Sur (2020) is a remarkable result. It applies
to logistic finite-dimensional regression models with a number p of covariables,
which is assumed to grow to infinity with the sample size n, in such a way that
p/n → κ . Of course, the sample is given by data (xi , yi ), i = 1, . . . , n. Essen-
tially, the result establishes that there is a critical value such that, if κ is smaller
than such critical value, one has limn,p→∞ P(MLE exists) = 1; otherwise, we have
limn,p→∞ P(MLE exists) = 0. Such critical value is given in terms of a function h
(which is mentioned in the proof of the previous result) whose definition is as fol-

lows. Let us use the notation (Ỹ , V ) ∼ Fβ0,γ0 whenever (Ỹ , V )
d= (Ỹ , Ỹ X), for
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Ỹ = 2Y − 1 (note that, in the notation of Candès and Sur (2020), the model is defined
for the case that the response variable is coded in {−1, 1}), β0, γ0 ∈ R, γ0 ≥ 0 and
where X ∼ N (0, 1) and P(Ỹ = 1|X) = (1 + exp{−β0 − γ0X})−1. Now, define
h(β0, γ0) = mint0,t1∈R E[(t0Ỹ + t1V − Z)2+], where Z ∼ N (0, 1) independent of
(Ỹ , V ) and x+ = max{x, 0}. Then, Theorem 2.1. in Candès and Sur (2020) proves
that the above-mentioned critical value for κ is precisely h(β0, γ0).

6 The estimation ofˇ in practice

The problem of non-existence of the MLE can be circumvented if the goal is variable
selection. Themain idea behind the proof of Theorem 5 is that one can approximate the
functional model with finite approximations as those in (9) with p increasing as fast
as desired. Therefore, if we constrain p to be less than a finite fixed value, Theorem 5
does not apply.

In order to sort out the non-existence problem for a given sample (due to the SC
property), it would be enough to use a finite-dimensional estimator that is always
defined, even for linearly separable samples. As mentioned, an extensive study of
existence and uniqueness conditions of the MLE for multiple logistic regression can
be found in the paper of Albert and Anderson (1984).

A simple, RKHS-motivated alternative would be as follows. In many cases, one
could assume that the “true parameter” (β∗, β∗

0 )belongs to a bounded set BK (0, R)×I ,
I being a compact interval in the real line and BK (0, R) the closed ball centered at
zero, with radius R in the RKHS associated with the covariance function K . This
restriction of searching for an estimator in a ball within the parameter space resembles
other regularization methods in regression such as ridge or lasso.

If K is continuous and bounded, all functions f in the RKHS space are continuous
as well and, using the reproducing property 〈 f , K (·, t)〉K = f (t), we get

‖ f ‖∞ = sup
t

|〈 f , K (·, t)〉K | ≤ ‖ f ‖K sup
t

K (t, t).

If, for simplicity, we assume that supt K (t, t) = 1, we have (from the definition of the
RKHS H(K )) that all functions β ∈ BK (0, R) can be approximated by functions of
type

g(·) =
p∑

j=1

β j K (t j , ·),

where β j are real numbers with |β j | ≤ R, p ∈ N, t j ∈ [0, 1].
Now, recall that the RKHS functional logistic model corresponding to such

function g would be given by expression (9) in terms of βi and X(ti ). Then,
assuming the continuity of the trajectories X(t), we can ensure the existence of an
approximate maximum likelihood (ML) estimator of (β∗, β∗

0 ) expressed in terms of
(β0, β1, . . . , βd , t1, . . . , tp).
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The effective calculation of such estimator could be done by a sequential “greedy”
method. The idea is to exchange the direct maximization of the likelihood function by
the execution of an iterative algorithm, as follows:

1. Let us fix a grid Tp of p equispaced points in [0, 1]. For each t on the grid, we
fit the logistic model of Eq. (9) with p = 1 and m̂(t) = X̄(t). The log-likelihood
achieved for this t at the ML estimators β̂0 and β̂1 is stored in �1(t). Then, the first
point t̂1 is fixed as the point at which �1(t) achieves its maximum value.

2. Once t̂1 has been selected, for each t in the grid, we fit the model

P(Y = 1|X) =
(
1 + exp

{
β0 + β1[X (̂t1) − X̄(t̂1)] + β2[X(t) − X̄(t)]

})−1

.

As in the previous step, �2(t) would be the log-likelihood achieved at β̂0, β̂1 and
β̂2, and t̂2 is the point at which the maximum of �2(t) is attained.

3. We proceed in the same way until a suitable number of points p has been selected.

In practical problems, it is also important to determine how many points p one should
retain. The common approach is to fix this value p̂ by cross-validation, whenever it is
possible. Another reasonable approach is to increase the initial value p by repeating
the whole procedure with another grid Tp+1 of p + 1 equispaced points until the
increase achieved in the likelihood function is smaller than a given threshold, in a
similar way as in Berrendero et al. (2019).

7 Some experiments on binary classification

We focus on binary classification, a major application of logistic regression models.
This empirical study comprises a group of RKHS-based methods, including the one
presented previously, as well as some L2-based proposals. Firstly, a set of simulated
examples is used, in order to check the performance of the different proposals under
controlled conditions. Then, a few real data sets are considered as well, for a more
complete assessment. The R-codes are available from the authors.

In all cases, the classification performance, for a sample (y1, x1), . . . , (yn, xn)with
yi ∈ {0, 1}, is measured in terms of the misclassification rate

1

n

n∑
i=1

∣∣yi − ŷi
∣∣,

where ŷi , i = 1, . . . , n, are the predicted labels.

7.1 Methods

Below we include a brief introduction to the methods selected for the study. The
corresponding nicknames are shown in boldface.
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RKHS-based methods

Besides the method proposed in Sect. 6, denoted RKHS-sq, we will consider two
further methods, also inspired (in different ways) on RKHS ideas which has been
recently proposed in the literature. To be more specific, we will check the following
methods:

• RKHS-sq: The sequential approach to the RKHS-based functional logistic model
(5) presented in Sect. 6. As for the finite-dimensional estimator suitable for linearly
separable samples, we use Firth’s estimator (Firth (1993)) via the R function
“brglm” of the package brglm ( Kosmidis (2017)). The number of points included
in the model is selected by fivefold cross-validation.

• RK: Linear Discriminant Analysis applied to a set of optimally selected variables
X(t1), . . . , X(tp). This method has been proposed in Berrendero et al. (2018, Sec.
5.1). The idea is to select (t1, . . . , tp) in order tominimize a plug-in estimator of the
explicit expression of the misclassification error (Izenman 2008, p. 244) available
for a p-dimensional Gaussian binary homoscedastic discrimination problem based
on (X(t1), . . . , X(tp)).We use our own R translation of the originalMATLAB code.

• Mah - The Mahalanobis-type classifier described in Berrendero et al. (2020),
where the smoothing parameter α is selected by fivefold cross-validation.

For RKHS-sq and RK methods, the maximum number of selected points is limited
to ten, which in practice does not turn out to be a serious limitation for the method’s
practical performance.
L2-based methods
These methods are two different approaches to the standard functional logistic regres-
sion model (1).

• Wav: A functional adaptation of the method proposed in Zhao et al. (2012), pre-
sented in Mousavi and Sørensen (2017). It uses a wavelet representation of the
curves, with the number of basis elements shrunk with LASSO. We use the modi-
fied least asymmetric version ofDaubechieswavelets (as suggested inMousavi and
Sørensen (2018)), via the R function “hardThresholding” of RFgroove package (
Gregorutti (2016)). The detail level of the basis is fixed byfivefold cross-validation.

• PCA: The functional logistic model considered as a particular case of the “gen-
eralized linear model” in Müller and Stadtmüller (2005). A finite logistic model
is applied to the coefficients of the curves representation in the base of func-
tional principal components of the process (see also Escabias et al. (2004)). The
functional principal components are obtained via the R function “fdata2pc” of
fda.usc package ( Febrero-Bande and de la Fuente (2012)). The number of
coefficients retained is fixed by fivefold cross-validation, from a maximum of 30
basis elements.

The knn benchmark

As a benchmark for the previous methods, we use functional k-nearest neighbors with
k = 5 (knn5), through the function “classif.knn” of fda.usc R package. This is a
good reference, as a simple easy-to-implement classifier whose performance is often
good in functional examples.
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7.2 Simulated scenarios

Hereunder, we present the data sets selected for the more theoretical half of the study,
aiming at presenting amiscellaneous selection of non-trivial problems.We distinguish
two ways of constructing the data sets. Samples can be seen in Fig. 1.

Choosing the conditional distributions X |Y = i and the marginal of Y
Inspired by Theorem 3, these examples follow the Gaussian setting, with P0 a standard
centered Brownian motion and P1 a standard Brownian motion plus a trend.

• Bm fin: Using as the trend (mean function) for class 1, a finite linear combination
of the covariance function of the standard Brownian motion, K (s, t) = min(s, t).
In particular, we take m1(s) = 2min(0.2, s) − 3min(0.5, s) + min(0.7, s).

• Bm log: Using m1(s) = log(s + 1), which also belongs to the RKHS of the
Brownian motion but has not a finite representation as in the previous case. Let
us recall in this connection that the RKHS associated to the Brownian covariance
is the so-called Dirichlet space of absolute continuous functions F : [0, 1] → R,
with F(0) = 0 whose derivative is in L2[0, 1]; see (Mörters and Peres 2010, p.
24).

Choosing the conditional distributions Y |X = x and the marginal of X
We assign the class Y to a trajectory X by applying the RKHS logistic model. Note
that, when the slope function β follows a finite representation as in Eq. (8), it is not
necessary to know the explicit expression of K , since the finite-dimensional logistic
model (9) is recovered. The following choices are considered for the distribution of
X .

• fBm: Fractional BrownianMotion with Hurst’s exponent H = 0.9. The responses
Y are drawn from a Bernoulli random variable whose parameter is given by the
functional logistic regression model presented in Theorem 3. The intercept β0 is
equal to zero and the slope function used is β(s) = 2K (0.2, s) − 4K (0.5, s) −
K (0.7, s), K being the covariance function of X . In this case, we recover the
finite-dimensional model (9) with (β1, β2, β3) = (2,−4,−1) and (t1, t2, t3) =
(0.2, 0.5, 0.7).

• Mixt: A mixture of a standard centered Brownian motion B(s) and another inde-
pendent Brownian motion

√
2B ′(s), being both distributions equiprobable. The

response Y is generated as in the previous case using the same points t j but with
coefficients (β1, β2, β3) = (2,−3, 1).

When the slope function does not have such finite representation, one needs to know,
or to approximate, the explicit expression of the inverse of the Loève’s isometry.

• Bm sin - Covariates X are drawn from a standard centered Brownian motion.
In this case, the inverse of the Loève’s isometry matches Itô’s stochastic integral∫ 1
0 β ′(s)dX(s) for β ∈ H(K ) (see Janson 1997, Example 8.19, p. 122). The
functions in thisH(K ) are a.s. derivable with respect to Lebesgue measure. Then,
the responses Y are realizations of a Bernoulli variable with parameter given by
Eq. (5) with slope function β(s) = sin(πs).
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Table 1 Misclassification rates
for simulated data sets

Bm fin Bm Logs fBm

RKHS-sq 0.319 (0.070) 0.398 (0.076) 0.214 (0.057)

RK 0.313 (0.069) 0.391 (0.071) 0.197 (0.047)

Mah 0.353 (0.075) 0.383 (0.075) 0.203 (0.051)

Wav 0.338 (0.067) 0.393 (0.076) 0.200 (0.050)

PCA 0.335 (0.073) 0.379 (0.075) 0.205 (0.051)

knn5 0.383 (0.074) 0.417 (0.069) 0.221 (0.061)

MixtSd Bm sin OU

RKHS-sq 0.312 (0.062) 0.235 (0.065) 0.232 (0.055)

RK 0.309 (0.065) 0.236 (0.068) 0.234 (0.057)

Mah 0.357 (0.080) 0.250 (0.060) 0.276 (0.074)

Wav 0.338 (0.072) 0.246 (0.069) 0.247 (0.057)

PCA 0.314 (0.070) 0.228 (0.062) 0.237 (0.055)

knn5 0.387 (0.071) 0.290 (0.066) 0.323 (0.060)

• OU - Curves are generated from a long-term (stationary) Ornstein-Uhlenbeck
process, constructed as in Example 6.2 of Bosq (2000). The inverse of Loève’s
isometry is approximated as �−1

X (β) � β(S)′�−1
S X(S), where S = {s1, . . . , sm}

is an equispaced grid in [0, 1] and β(S)′ = (β(s1), . . . , β(sm)), with β(s) =
sin(πs). Equivalently for X(S). By Theorem 6D of Parzen (1959) (and Theorem
6E for the convergence of the norms), we know that this expression converges to
�−1

X (β) when the number of points in the grid increases.

Simulation outputs

The estimated misclassification rates given in Table 1 are based on training samples
of size 200 and test samples of size 50, with P(Y = 0) = 1/2. The standard deviation
of the error rates is in brackets. The two best methods are written in boldface.

The outputs in this table are based on 100 replications of each experiment.
The sequential RKHS proposal and RK method tend to be the best performing

ones. It is worth mentioning that, while RK is in fact optimal for the first example, the
RKHS-sq proposal obtains a similar error without using any Gaussianity assumption.

7.3 Real data sets

The different proposals are also tested with four real data sets, commonly used in the
literature of functional classification and all freely available.

• Phoneme - Log-periodogram curves of the pronunciation of phonemes AA (695
samples) andAO (1022 samples). A total of 150 frequencies are kept per recording,
sampled over a grid of 256 points. The complete data set can be found along with
the online material of Ferraty and Vieu (2006).

• MCO - Mitochondrial calcium overload of mouse cardiac cells measured for two
groups, control and treatment, of 45 samples each. Measurements are taken every
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Table 2 Misclassification rates for real data sets

Phoneme MCO-P MCP-I Poblenou

RKHS-sq 0.181 (0.022) 0.256 (0.150) 0.170 (0.108) 0.113 (0.050)

RK 0.187 (0.028) 0.322 (0.133) 0.091 (0.066) 0.052 (0.036)

Mah 0.209 (0.013) 0.389 (0.056) 0.112 (0.056) 0.252 (0.048)

Wav 0.181 (0.027) 0.233 (0.046) 0.068 (0.048) 0.096 (0.036)

PCA 0.248 (0.043) 0.411 (0.128) 0.180 (0.174) 0.174 (0.097)

knn5 0.233 (0.031) 0.244 (0.084) 0.190 (0.133) 0.113 (0.073)

10 seconds during an hour, excluding the first three minutes. The experiment
was done using the intact cells (MCO-I) and “permeabilized” cells (MCO-P). It
appeared originally in Ruiz-Meana et al. (2003) and is available in fda.usc
package.

• Poblenou - Daily nitrogen oxide, NOx , measurements in Poblenou (Barcelona,
Spain). We sub-sample the original hourly records to obtain measures every 15
minutes by representing the curves in a Bspline base of 50 elements and evaluating
them in a thinner grid. Classification groups include weekends and bank holidays
(39 samples) versus working days (76 samples).

A sample of these data sets is presented in Fig. 2. Original curves are used since
under-smoothing is, in general, desirable for functional classification problems accord-
ing to Carroll et al. (2013). In order to better approximate the misclassification rate, we
use fivefold cross-validation. The resulting mean rates and their standard deviations
(in brackets) can be found in Table 2 where, again, the boldfaced entries correspond
to the best results.

The wavelets L2-based model seems to outperform the others in general. The
RKHS-sq proposal is competitive and is among the best options for the phoneme
set, which is the largest one. Regarding variable selection, let us note that this method
selects 8.5 points on average for these data sets.

As an overall, tentative conclusion of our experiments, we could say that themethod
RKHS-sq, compatible with our RKHS-based model, seems to be competitive. Then,
the gain of interpretability associatedwith the use of finite-dimensionalmarginals does
not seem to come at a high cost in efficiency. We do not see an obvious explanation for
the relative good behavior of theWav in the real data examples; it might be associated
with a particular flexibility of this method against non-structured data. In any case, of
course, more detailed experiments should be done to get a broader perspective.

8 Some concluding remarks

Our results suggest that there is a case for considering alternative formulations to the
more popular L2-based model for the problem of functional logistic regression.

In particular, an RKHS-based formulation allows us to encompass all the finite-
dimensional models based on marginals (X(t1), . . . , X(tp)) from the explanatory
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process {X(t), t ∈ [0, 1]} as particular cases. This provides a unified framework
to consider all this models when facing, for example, the problem of optimal variable
selection.

TheRKHS formulation seems to beflexible andgeneral enough. Still, the estimation
issues remain challenging. Different adapted versions of the maximum likelihood
paradigm, as well as Bayesian methodologies, could be considered here.

While the empirical results shown in Sect. 7 are just preliminary, they are generally
encouraging on the possibility of using RKHS-based approaches in functional logistic
regression.
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Appendix

In order to make reading easier, we review here some of the results we have used in
our proofs.

In this section, Pm denotes the probability measure induced on the space of sample
paths by a separable Gaussian stochastic process {X(t) : t ∈ [0, 1]} with continuous
covariance kernel K and mean function m, and P0 stands for the probability measure
corresponding to the Gaussian process with covariance kernel K and mean function
m ≡ 0. Moreover, K denotes the covariance operator defined by K .

The following theorem, that can be found in Parzen (1961), p. 979, provides an
expression for the Radon-Nikodymof probabilitymeasures induced by homoscedastic
Gaussian processes:

Theorem (Parzen, 1961) The measures Pm and P0 are mutually absolutely continuous
or orthogonal depending on whether m does or does not belong toH(K ). If m ∈ H(K ),
then the Radon-Nikodym density of Pm with respect to P0 is given by

dPm

dP0
(X) = exp

{
〈X , m〉K − 1

2
‖m‖2K

}
.

In Parzen’s result, one of the measures must correspond to a zero mean process. To
remove this condition, Lemma 1.1 in Pitcher (1960) can be applied:

Lemma (Pitcher, 1960) The measures Pm1 and Pm0 are orthogonal if and only if
Pm1−m0 and P0 are. The measure Pm1 is absolutely continuous with respect to Pm0 if

123

http://creativecommons.org/licenses/by/4.0/


On functional logistic regression: some conceptual...

and only if Pm1−m0 is absolutely continuous with respect to P0, and in this case

dPm1

dPm0

(X) = dPm1−m0

dP0
(X − m0).

Theorem 6.1, p. 317, in Rao and Varadarajan (1963) provides an alternative expres-
sion for the Radon-Nikodym density of Pm1 with respect to Pm0 under the more
restrictive condition m1 − m0 ∈ K(L2). Moreover, the density can be expressed in
terms of a continuous linear functional on L2[0, 1] if and only if m1 − m0 ∈ K(L2):

Theorem (Rao and Varadarajan, 1963) Suppose that Pm1 and Pm0 are mutually abso-
lutely continuous. Then, there exists a continuous linear functional T : L2[0, 1] → R

and a constant c such that

dPm1

dPm0

(X) = exp {T (X) + c}

if and only if m1 − m0 ∈ K(L2). In that case,

dPm1

dPm0

(X) = exp

{
〈X − m0,K−1(m1 − m0)〉2 − 1

2
〈m1 − m0,K−1(m1 − m0)〉2

}
.

It can be checked that the expressions of the Radon-Nikodym densities given by
Parzen (1961) andRao andVaradarajan (1963) coincidewhen the conditionm1−m0 ∈
K(L2) holds. When m1 − m0 ∈ H(K) = K1/2(L2) but m1 − m0 /∈ K(L2), the use of
Loéve’s isometry to write the density is unavoidable.
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