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Abstract 

This paper proposes a model for short-term electricity load with 

differentiated temperature and daylight effects by time of day, which are 

determined by variations in intraday economic activity. The relationship 

between electricity load and economic activity implies that the electricity 

demand response to changes in exogenous variables like temperature is non-

linear  as well as non-homogeneous along the day. The proposed framework, 

a smooth transition regression model with double threshold (LSTR2), 

models the observed intraday patterns in load curves to explicitly capture 

the effect of the circadian rest-activity cycle on the distinct responses of 

electricity demand to temperature and daylight variations throughout the 

day. The model shows that the sensitivity of demand to low temperatures is 

significantly larger in the “active” compared to the “rest” state. If 

temperatures decrease from 10 ºC to 0 ºC, electricity demand in the “active” 

state increases by 960.5 MWh per 1ºC decrease, but by only 26.6 MWh per 

1º C decrease in the “rest” state. When temperatures are higher, in the “rest 
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state” demand decreases by 602.9 MWh per 1º C if temperature falls from 

26ºC to 21ºC, while in the “active” state demand only decreases by 323.6 

MWh per 1ºC variation.  

  JEL classification: Q4, L94, C53 

Keywords: short-term electricity load, temperature effect, daylight effect, 

circadian cycle.    

 

 

 

 

 

Highlights 

1. Load data shows that the temperature effect is both non-linear and non-homogenous.  

2. Time properties of economic activity directly translate into the shape of load curves. 

3. Economic activity also affects the way temperature influences the electricity load.  

4. A model for hourly electricity load with differentiated temperature effects by time of day is 

proposed. 

5. The proposed model captures well the higher sensitivity of electricity demand to 

temperatures in the “active” state. 
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Graphical Abstract 

Hourly electricity load (MWh logs) and temperature. Estimated electricity demand response for the 
“rest” and “active”  state of economic activity.  
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1. INTRODUCTION  
 

Electricity is a key input for productive activities, and hence economic 

activity strongly determines electricity demand. This relationship holds true 

at different time horizons. In the long run, the relationship is reflected in 

the link between economic growth and electricity consumption, while in the 

short run, electricity demand is very sensitive to the weekly cycle of 

economic activity induced by the succession of workdays and weekends as 

well as holidays, see e.g. [1], [2], [3], [4]  among others.  

Moreover, in the very short run the intraday cyclical nature of economic 

activity, which in the end is related to the circadian rest-activity cycle, is 

also reflected in electricity demand. Working time, opening hours, school 

schedules, leisure time, etc. shape electricity loads throughout the day and 

throughout the week.  

In Spain, the peak of hourly electricity demand in the winter occurs on cold 

days just after sunset (19h-20h), see e.g. [5.], or [6.] and [7.]. In the summer, 

hourly electricity demand is highest on hot days around 13-14h. However, 

surprisingly, these are not the hottest hours of the day (see Figure A-1 in 

the Appendix). This reveals the key role of the daily rest-activity cycle for 

understanding the factors behind the shape of the electricity load curve and 

how the effect of temperature on demand is altered by business activity 

cycle. Given the prospect of global warming, the analysis of how and when 

changes in outside temperatures affect electricity demand is particularly 

important. Furthermore, the mix of generation technologies also changes 

throughout the day. Usually during hours of peak demand, generation of 

electricity involves technologies that emit more carbon dioxide such as coal, 

gas or fuel power plants. Therefore, analyzing how electricity demand reacts 
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to changes in temperatures and daylight, depending on time of day, is not 

only relevant for estimating electricity demand correctly. It is also a first 

step towards a better understanding of how demand response policies can 

contribute to mitigate carbon emissions.   

In this paper, the observed intraday patterns in load curves are modelled to 

explicitly capture the effect of the circadian rest-activity cycle on the distinct 

responses of electricity demand to temperature and daylight variations 

throughout the day. Existing models in the literature typically include 

temperature variables to model electricity load. However, they usually do 

not include daylight duration explicitly. To deal with the rest-activity cycle, 

electricity load is usually modelled for each hour separately as in [5.], [8.], 

[9.], and [10.]. Other approaches approximate daily activity cycles by  

cyclical “footprints,” including lagged electricity loads as explanatory 

variables and applying ARIMA, SARIMA, or exponential smoothing models 

[2.], [13.], and [14.]. There also exist models that attempt to identify 

electricity load profiles by repeated application of clustering techniques, 

artificial neural networks, or restricted Boltzmann machines  (see e.g. [11.], 

[12.], [15.], or [16.]) . However, to the best of our knowledge, the proposed 

model is the first to explicitly capture the rest-activity cycle and its 

interaction with temperature and daylight duration to explain short-term 

electricity demand. In particular, a novel and simple procedure is proposed 

using well-known modelling techniques based on underlying “hidden 

states”. Comparing the results from the model that employs a Logistic 

Smooth Switching Regression controlled by a double threshold (LSTR2) to 

results from the well-known Hidden Markov Model (HMM), it can be 

concluded that the first model fits the features of the data better.  

The remainder of this paper is organized as follows. The next two sections 

describe the data and the different cycles in hourly electricity load curves. 
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Section 4 analyses the temperature effect on electricity demand using hourly 

data, and highlights why it is necessary to take into account the daily rest-

activity cycle to adequately interpret the observed responses of electricity 

load to temperature changes. Section 5 presents the modelling approach. 

Section 6 compares our results to the ones obtained from using the state-of-

the-art HMM methodology, and finally Section 7 concludes.  

 

2. CYCLICAL PATTERNS IN ELECTRICITY LOAD 

 

On a typical workday (see Figure 1), electricity demand in Spain registers 

very high levels between 7h and 16h, which is the typical working time in 

industrial, commercial, and public sector activities. We also observe 

relatively high levels of electricity demand between 16h and 23h due to 

residential demand of households and demand by retail and commercial 

sectors with opening hours until 20-21h. The lowest values for electricity 

consumption are recorded between 23h until 6h the following day, with an 

absolute minimum around 3-4h. This obviously coincides with the usual 

hours of sleep in Spain. On holidays and Sundays, hours of highest 

electricity consumption differ slightly and lie between 9-23h, while the 

absolute minimum is recorded between 4-6h. 
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Figure 1  Participation rate in the activity “Sleep and other personal care” (left y-axis; % individuals) 
and electricity load curves in winter (31/01/205) and spring (6/6/2015) for Spain (right y-axis; MWh) 

 

Sources: Harmonized European Time Use Survey for the share of 

individuals sleeping and REE S.A. for electricity load curves. 

 

Independently of the particular time of year, in Figure 1 a clear inverse 

relationship between the fractions of individuals participating in the activity 

“Sleep and other personal care” and electricity demand can be observed. This 

is not surprising given that electricity is a variable input to production, and 

hence when most individuals are sleeping and fewer economic activities are 
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being carried out, lower consumption of electricity is observed.2 

Furthermore, the level of electricity consumption also depends on the 

installed equipment (lighting, air conditioning, home appliances, etc.). For a 

given level of energy efficiency, increased penetration of appliances entails 

higher electricity consumption, but again only during hours when these 

appliances are being used. For instance, in the case of air conditioning 

equipment, electricity consumption depends on outside temperatures and 

thermal inertias that determine how comfort and inside temperatures differ. 

However, electricity consumption also depends on the degree of penetration 

of such equipment in households and in the commercial sector. Moreover, 

variations in economic activity throughout the day determine the use of air 

conditioning equipment and hence the degree to which temperature 

increases lead to higher electricity consumption. Therefore, depending on 

the time of year and even on the time of day, different responses in electricity 

load curves to variations in outside temperature will be observed, regardless 

of the particular variation in temperature throughout the day. In Section 3, 

the relationship between hour of day and temperature will be analyzed in 

detail. In particular, it will become clear how intraday economic activity 

alters the response of electricity demand to temperature variations. 

However, not only outside temperatures3 drive electricity loads in the very 

short run. Daylight duration also has a remarkable and variable effect on 

                                            
2 For industrial activities that use electricity as their main energy source and as a direct input for 
production, the higher the output, the higher the level of electricity consumption. However, in 
commercial and service sector activities this link is weaker because electricity is used as an indirect 
input for cooling, heating, and lighting. For instance, for a shopping mall located in a hot climate zone, 
electricity consumption depends more on temperature variations than on sales. 
3 It is important to note that outside temperatures are also directly affected by daylight. Therefore, 
it could be argued that the observed patterns in electricity load curves are completely due to 
temperature variations.  It is true that when temperatures are high (low), higher (lower) 
temperatures shift the load curve upwards. However, the intraday profile of the electricity load curve 
is much smoother around the hours of sunset and sunrise compared to the profile of temperatures. 
Moreover, the observed declining electricity load in the afternoon until sunset, both in winter and 
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electricity demand. Similar to the case of temperature, more equipment for 

lighting implies higher levels of electricity consumption, but again only 

during certain hours. In particular, demand for lighting is clearly observed 

after sunset, but only for a limited period of time, as most lights are switched 

off during periods of sleep at homes and closing hours of businesses. As 

daylight duration varies depending on the time of year, electricity 

consumption linked to lighting differs throughout the year and even across 

regions. Spain’s geographical coordinates (latitude and longitude) are such 

that throughout the year the sun rises between 6.40h and 8.38h while 

sunsets occur between 17.48h and 21.49h. Hence, depending on the time of 

year, daily economic activity in Spain sometimes needs to employ artificial 

light.  

The effect of the variability in daylight duration on electricity demand can 

be observed in Figure 2 where two electricity load curves for Spain on a 

typical day in winter (February 16th) and summer (July 22nd) are displayed.  

Figure 2 also shows electricity load curves for Singapore on these same days. 

Singapore is located on the latitude 1° 17' 24.9720'' N, and hence very close 

to the equator, leading to a very similar duration of daylight throughout the 

year. Spain’s latitude coordinates are 40° 25′ 0″ N (Madrid), which implies 

that daylight duration is much longer in the summer than in the winter.4 As 

a result, while electricity load curves for Singapore display a very similar 

                                            
summer, occurs when temperatures are still increasing in summer and decreasing in winter. 
Therefore, observed changes in the shape of electricity load curves throughout the year cannot be 
completely explained by variations in temperature (see Figure A-1 in the Appendix for hourly 
temperatures in Spain on typical days in winter and summer). 

 
4 For instance, on a typical day in winter (Feb 16th 2015) hours of sunrise and sunset were 8:08 and 
18:51 in Spain and 7:17 and 19:21 in Singapore, compared to 7:03 and 21:39 in Spain and 7:06 and 
19:17 in Singapore on a typical summer day (July 22nd 2015) - National Oceanic & Atmospheric 
Administration (NOAA)  calculator-http://www.esrl.noaa.gov/gmd/grad/solcalc/. 
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shape in summer and winter, in Spain there are marked differences, 

especially around the hours of sunrise (7-8h) and sunset (19-21h). 

  

 

Figure 2.-Electricity load curves (MWh) for Singapore (left) and Spain (right) on a typical 
day in winter (16/2/2015) and summer (22/7/2015). 

 

Source: Singapore Energy Market Authority, Spain REE S.A. 

 

 

Seasonal variations in temperatures and daily temperature amplitude 

(difference between the minimum and maximum temperature on a given 

day) are intimately related to seasonal changes in daylight duration. 

However, each factor implies different uses of electricity and different time 

patterns of electricity use. Hence, to understand short-term electricity loads, 

temperature and daylight effects on electricity demand need to be analyzed 

separately and together with the daily rest-activity cycle.  
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3. DATA AND DESCRIPTIVE ANALYSIS   
 

The data on hourly electricity loads come from the Spanish system operator, 

Red Eléctrica de España (hereafter, REE). In particular, in this paper data 

for the period 01/01/2015 to 31/12/2016 is considered, and hence our sample 

consists of 17,544 hourly observations. Between 2015 and 2016 annual 

electricity demand in Spain remained almost constant, increasing by only 

0,7%. This is important because the modelling approach proposed assumes 

that long-term drivers of electricity demand such as population growth or 

growth in investment in equipment remain constant, something that seems 

to be fulfilled for this time period.  

The left-hand graph of Figure 3 displays the continuous wavelet transform 

(CWT) of our hourly electricity load data. The relationship between the 

hourly electricity load and the timing (hours) of economic activity induces 

easily identifiable characteristics into the magnitude scalogram. The daily 

activity cycle between 7h and 23h induces a marked cyclical component 

every 24 hours into electricity demand; i.e. at a frequency of 1/24=0.04167 

per hour. For comparison, the second graph of Figure 3 displays the 

continuous wavelet transform (CWT) of simulated daily cycles with the 

frequency concentrated at exactly 0.04167 (the underlying data are depicted 

in the second graph of Figure 4). Furthermore, as clearly visible in the 

wavelet transform of our data, the weekly succession of workdays and 

weekends also induces a weekly component every 7 days (168 hours) into 

electricity demand; i.e. at a frequency of 1 / (24*7)= 0.00595 per hour.  Again, 

for comparison the third graph of Figure 3 is displayed a continuous wavelet 

transform (CWT) of simulated weekly cycles with the frequency 

concentrated at exactly 0.00595. Finally, national holidays as well as holiday 
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periods (in the summer and during Christmas time) induce less marked 

seasonal characteristics into electricity demand. These are concentrated at 

lower frequencies [0 - 3 10-6 ]. However, they are not identifiable at a mere 

glance due to the role of other seasonal factors, mainly the variation in 

temperatures throughout the year, closely linked to changes in daylight 

duration (see Figure 5). 
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Figure 3.-Continuous 1-D wavelet transform of hourly electricity load data and comparison with simulated patterns for Spain. (17,544 hourly obs.).  

        Data: Hourly electricity load    Simulated daily cycle    Simulated weekly cycle 

 

Figure 4.- Hourly electricity load data for Spain for January 2015, and examples of daily ( period of 24h.) and weekly cycles (period of 24 x 7 h.) . (336 
hourly obs.).  

                    Spain Hourly Load Daily cycle Weekly cycle 
   

 



14 
 

Figure 5 .-Continuous 1-D wavelet transform of hourly electricity load data and hourly temperature 
data for Spain, 2015-2016. 17,544 hourly obs.  

Data: Hourly electricity load             Data: Hourly 

temperature 

 

 

One simple and intuitive way to highlight how seasonal factors which are 

partially hidden by the dominant 24-hour cycle affect electricity load, is to 

analyze load data for each hour as in [8.], [9.], [10.] or [5.]. Another 

interesting possibility, explored below,  is to apply load curve clustering, i.e. 

analyzing clusters of daily profiles of hourly electricity loads, where 𝒅𝒕 =[𝑑 , 𝑑 , … , 𝑑 ,] is the 24-hour vector of observed electricity consumption on a 

given day. This procedure preserves the full shape of the load curve on a 

given day, making it possible to identify different shapes of load curves 

throughout the year. In particular, different shapes of load curves are 

associated to certain types of days and allow us to identify seasonal factors 

other than intraday variations, which affect electricity demand. For this 

analysis, daily load curves are grouped into clusters, or seasonal profiles, 
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using a k means clustering procedure with eight types of days5 and using 

the square Euclidian distance.  

Figure 6 displays the result of load curve clustering applied to our data for 

2015. The identified clusters or profiles are displayed in a “calendar” plot 

next to the 24-hour load profiles of the centroids. This representation allows 

to immediately see the dates of seasonal patterns identified by the clusters. 

Three main features become apparent. First, weekends and national 

holidays (January 1st and 6th, March 19th, April 2nd and 3rd, May 1st, October 

12th and December 8th and 25th) always belong to clusters which are different 

from those of adjacent workdays. Second, August when the vast majority of 

Spaniards are on holiday is a very atypical month, which is reflected in the 

high number of different load profiles. Third and more interesting, a clear 

seasonal pattern in load curves is observed that can be directly related to 

the four seasons and the solstices in winter and summer as well as the 

equinoxes in spring and autumn. This seasonal pattern in electricity 

demand is related to both the temperature effect and daylight duration. 

Regarding the former, some of the clusters clearly reflect the role of 

temperature for electricity demand. For instance, cluster 2 is composed of 

hourly load data observed on workdays in July 2015, one of the hottest 

months registered in Spain. Cluster 6 on the other hand is composed of 

electricity loads observed on some of the coolest workdays in winter 

(January and February). To highlight the effect of daylight duration on 

electricity demand, peak loads in the afternoon across different clusters are 

considered. In particular, the effect becomes evident when comparing load 

curves of cluster 5 (workdays in November and December) where the peak 

is located at 19h and cluster 2 (workdays in July) where it is located at 21h. 

                                            
5 The number of groups has been determined by an iterative procedure, starting with one group and 
increasing the number of groups until the sum of within-cluster sums of point-to-centroid distances 
in two consecutives iterations increases. 
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The reported interaction between the temperature effect and daylight 

duration and their effect on the seasonal pattern in electricity demand 

highlight why it is necessary to include several seasonal (weekly and 

monthly) dummy variables if electricity load is analyzed hour by hour. In 

Section 4, a different approach is proposed that enables us to analyze the 

full load curve instead of analyzing it hour by hour. 

 

Figure 6 .- Calendar plot of load profiles (left) and load profile of centroids (right) obtained applying 
load curve clustering to hourly electricity load data for Spain for 2015. 

 

Note:  From Left to Right: January, February, etc. 
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4. TEMPERATURE EFFECT  
 

Temperature is a key driver of electricity demand; see e.g. [17.], [1.], [18.], 

[19.], [20.], [21.], [22.], or [23.] among many others. In particular, 

temperature has a direct impact on aggregate electricity consumption 

because of the need to adjust inside temperatures whenever they deviate 

from comfort temperatures due to variations in outside temperature. 

Electric appliances and uses of electricity are essentially climate and region-

specific. In countries like Spain with extreme winters and summers, 

temperature affects electricity demand in a nonlinear fashion because of 

different energy usage patterns whenever temperatures are low (demand for 

heating) or high (demand for cooling). When temperatures are low as during 

the winter, increasing temperatures have a negative effect on electricity 

demand, and hence demand decreases with higher temperatures. If on the 

other hand temperatures are high as during the summer, electricity demand 

and temperatures move in the same direction. Hence, we observe a u-shaped 

relationship between temperature and electricity demand. 

The left-hand graph of Figure 7 displays hourly electricity load data for 2015 

and 20166 (workdays only, and excluding August) against temperatures. At 

first glance, it is difficult to observe the expected u-shaped relationship 

between temperature and electricity demand. However, this changes when 

data are differentiated by hour of day, as in the right-hand graph of Figure 

7. Here we observe a u-shaped relationship between temperature and 

electricity demand. However, it also becomes clear that the exact 

relationship changes with each hour, suggesting that the approach followed 

                                            
6 For this relatively short period (2 years), we assume that growth in long term factors (GDP, 
population, equipment, etc.) and changes in efficiency affecting electricity demand can be neglected. 
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by [8.], [9.], [10.] or [5.] where load data is analyzed for each hour separately 

could be more appropriate  

 

 

Figure 7.- Hourly electricity load and temperatures (2015-2016)  
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Note: Data for holidays, weekends, and the month of August are excluded.  

 

However, modelling the temperature effect hour by hour may lead to results 

that are difficult to interpret. Assume that 𝐸 ,  electricity load (in logs) of 

hour i on day t depends nonlinearly on temperature, following an unknown 

function like, 

 𝐸 = 𝑓 𝑇 ; i=0,1,…23 .  
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The function𝑓 𝑇   can then be estimated by a third-order polynomial 

expansion in 𝑇 , as follows 

𝐸 = 𝑓 𝑇 = 𝑎 + 𝑎 𝑇 + 𝑎 𝑇 + 𝑎 𝑇 + 𝜖 . 

After estimating parameters {𝑎 , 𝑖 = 0,1, . .23 ; 𝑗 = 0,1, . .3} by ordinary least 

squares, it is possible to obtain the hourly estimated temperature responses7 

plotted in Figure 8. Although the expected u-shaped relationship between 

temperature and electricity demand can be observed, the temperature effect 

is non-homogenous across hours.  In particular, between 3h and 20h the u-

shaped relationship seems to shift upwards and to the right, while we 

observe a downright and leftward shift between 21h and 2h.   

 

Figure 8   Hourly electricity load (MWh logs) and temperatures (ºC). 2015-2016  
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7 Estimation results are included in the Appendix. 



20 
 

This shift of the temperature-electricity curve does not only affect the 

theoretical threshold of demand response changes to temperatures (in the 

literature an outdoor temperature threshold of 19-20ºC is commonly found). 

It also alters the gradient of the load response of electricity demand to 

temperature changes, i.e. the increase in electricity demand as temperature 

changes by 1ºC. In particular, between 2h and 6h the u-shaped curve is much 

flatter, and the threshold demand response lies between 10-15ºC. Over the 

following hours of the day, the u-shaped curve becomes much steeper and 

the temperature threshold moves from 12ºC (at 7 h) to 22ºC (at 15 h). The 

change in the temperature threshold throughout the day can be explained 

by the effect of thermal inertias on indoor temperatures, which are the true 

drivers of electricity demand whenever they differ from comfort 

temperature.  The change in the elasticity of the demand response, however, 

reflects the relevance of other variables which affect the intraday electricity 

load pattern. This paper follows the hypothesis that the level of economic 

activity changes the observed response of electricity demand to 

temperatures. In particular, we expect is that the way temperature affects 

electricity demand will not be the same under full business and household 

activity during the day,  than with very low economic activity during the 

night.   The next section details the proposed model that is able to explain 

variations in short-term electricity load by incorporating how economic 

activity interacts with temperature and daylight effects. 
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5. MODELLING STRATEGY   
 

Hourly electricity load can be modeled as the interaction between several 

effects, such as hour of the day, temperature, type of day, daylight duration, 

as well as a factor s affecting electricity demand in the long run. We define 𝐸  as the hourly electricity load (in logs) observed at time t, which is defined 

by an hour h (h=0,1,2,..23) and a type of day 𝑊 , and we assume that the 

different effects interact (see Figure 9) according to: 𝐸 = 𝑓(ℎ, 𝑊 , 𝑇 , 𝐿 , 𝑂 ) = 𝑔 (ℎ, 𝑊 )𝑔 (𝑇 , 𝐿 )𝑔 (𝑂 )   [Eq. 1], 

where 𝑇  is the temperature in ºC observed at time t, 𝐿  denotes lighting 

needs determined by daylight duration, and 𝑂  are other, low frequency 

events which affect electricity load (economic activity, population growth, 

etc.).  The functions 𝑔  (where 𝑖 = 1,2,3) capture how each effect influences 

electricity load. 

In order to make the model tractable the following assumptions are imposed. 

First, it is assumed that during relatively short periods of time (e.g. less than 

2 years) other variables 𝑂  remain constant, and hence their effect on 

electricity load variations can be neglected. For longer time periods, the 

effect of 𝑂  could be captured by a simple trend term given that the 

underlying variables tend to evolve rather smoothly. Second, for simplicity 

only two types of days are considered: workdays (excluding August) and 

other days (weekends and holidays). For a given hour h=0,1,2,…,23 of a day 

type 𝑊 , the function 𝑔 (ℎ, 𝑊 ) maps each hour of the day into a real value 

belonging to the [0,1] interval, i.e.  𝑠 = 𝑔 (ℎ, 𝑊 ), where  𝑠 ∈ [0,1] .  
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Figure 9.-  Modelling the effect of temperature (𝑇 ) and lighting needs (𝐿 ) on electricity load 
depending on the unobserved state of “economic activity.”  

 

 

 

 

 

The function 𝑠 = 𝑔 (ℎ, 𝑊 ) can be interpreted as a function for the 

probability of being in a hidden “active state” of economic activity. If 𝑠 = 0, 

then economic activity is in a “rest”  state, and if 𝑠 = 1 economic activity is 

in an “active”  state. If for hour h the function  𝑔 (ℎ, 𝑊 ) takes on a value of 

0, economic activity at this hour is very low and other drivers of electricity 

consumption (lighting needs, cooling and heating needs, etc.) will only have 

a reduced impact on aggregate electricity consumption.  At the other 

extreme, if for hour h’ the function 𝑔 (ℎ′, 𝑊 )  takes on a value of 1, then 

there is full economic activity at this hour and other drivers will have a large 

impact on aggregate electricity consumption. Given that economic activity 

throughout the day is not expected to behave as a ”jump” process, but rather 
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that it transitions smoothly between states, 𝑔 (ℎ, 𝑊 )  is assumed to be a 

smooth transition function. In particular, 𝑔 (ℎ′, 𝑊 ) is assumed to be a 

quadratic logistic function with double threshold (LSTR2) 

𝑔 (ℎ , 𝑊 , 𝛾 , 𝜏 , 𝜏 ) = ( )( )  ,     [Eq. 2] 

where 𝜏   and 𝜏   are parameters for the threshold hours indicating when the 

“active” state of economic activity starts and ends respectively. Parameter 𝛾  modulates the speed of transition between the “rest” and “active” states, 

and as such allow characterizing how transitions between states occur. 

In Equation [1], the effect of temperatures and daylight duration is captured 

by the term 𝑔 (𝑇 , 𝐿 ), assumed to be a nonlinear function. However, to avoid 

additional complexity it is assumed that this function is additively separable 

in its arguments, 𝑔 (𝑇 , 𝐿 ) = 𝑔′ (𝑇 )+𝑔′ (𝐿 ). The function 𝑔′ (𝑇 ) will be 

linearized by polynomial expansions of degree 3 in 𝑇  , and 𝑔 (𝐿 ) will be 

linearized in 𝐿  , which is a binary variable that takes on value 1 if t belongs 

to the period between sunset and sunrise (night), and 0 otherwise.8 The 

interaction between 𝑔 (𝑇 , 𝐿 ) and the activity effect 𝑔 (ℎ, 𝑊 ) implies that 

temperature and lighting needs will have different effects on electricity 

demand if economic activity is in an “active” or in a “rest” state. In 

particular, if at time t economic activity is in a “rest” state (𝑠 = 0), then 

electricity load will be determined by model 𝑔 (𝑇 , 𝐿 ). If on the other hand, 

economic activity is in an “active” state (𝑠 = 1), then electricity load will be 

determined by model 𝑔′ (𝑇 , 𝐿 ).  Put differently, 𝑔 (ℎ, 𝑊 ) can be interpreted 

                                            
8 Data on times of sunset and sunrise are obtained from the NOAA calculator (National Oceanic & 

Atmospheric Administration) . Temperature data is from Ru5 
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as the probability of being in each state, and the expected electricity load at 

time t, 𝐸[𝐸 ], is then given by 𝐸[𝐸 ] = 𝑔 (ℎ, 𝑊 )𝑔 (𝑇 , 𝐿 ) = 𝑔 (𝑇 , 𝐿 )[1 − 𝑔 (ℎ , 𝑊 , 𝛾 , 𝜏 , 𝜏 )] +𝑔′ (𝑇 , 𝐿 )𝑔 (ℎ , 𝑊 , 𝛾 , 𝜏 , 𝜏 ),          [Eq. 3] 

where 𝑔 (ℎ , 𝑊 , 𝛾 , 𝜏 , 𝜏 ) = ( ( )(( )   is the unconditional 

probability of being in an “active” state ( 𝑠 = 1). Note that this probability 

is fully determined by h, once parameters 𝛾 , 𝜏 , and 𝜏  ℎave been estimated. 

A convenient specification of the model, introducing the linearity 

assumption regarding 𝑔 (𝑇 , 𝐿 ), is the following,   𝐸 = 𝑔 (ℎ, 𝑊 , 𝛾 , 𝜏 , 𝜏 )𝑔 (𝑇 , 𝐿 ) = [𝛽 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝐿 ]+               +[𝛽′ + 𝛽′ 𝑇 + 𝛽′ 𝑇 + 𝛽′ 𝑇 + 𝛽′ 𝐿 ]𝑔 (ℎ , 𝑊 , 𝛾 , 𝜏 , 𝜏 ) + 𝜀 ,         [Eq. 4] 

where 𝜀  captures approximation errors to the unknown function 𝑔 (𝑇 , 𝐿 ). 

These errors are expected to exhibit some degree of correlation of a similar 

order as the dominant periodicity in variables 𝑇  and 𝐿 . 

 

Alternatively, Eq 4 can be expressed as  

𝐸 = 𝛽 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝐿 + 𝜀                                                                                 ;    𝑖𝑓  𝑔 (ℎ, 𝑊 ) = 0𝛽 + 𝛽 + 𝛽 + 𝛽 𝑇 + 𝛽 + 𝛽 𝑇 + 𝛽 + 𝛽 𝑇 + 𝛽 + 𝛽 𝐿 + 𝜀   ;  𝑖𝑓  𝑔 (ℎ, 𝑊 ) = 1 

[Eq. 5] 

Whenever economic activity is in an “active” state, electricity load can be 

modelled as  
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𝐸 |(𝑔 (ℎ, 𝑊 ) = 1) = [(𝛽 + 𝛽 ) + (𝛽 + 𝛽 )𝑇 + (𝛽 + 𝛽 )𝑇 + (𝛽 +𝛽 )𝑇 + (𝛽 + 𝛽 )𝐿 ].   [Eq. 6]             

When economic activity is in ”rest” state, on the other hand, the model will 

be 𝐸 |(𝑔 (ℎ, 𝑊 ) = 0) = 𝛽 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝐿 .            [Eq. 7] 

 

Hence, the proposed model is able to capture differentiated effects of 

temperature and lighting needs on electricity demand depending on the 

“state” of economic activity. As can be seen, the proposed model belongs to 

the general class of switching regression models, where the transition is 

governed by the smooth function 𝑔 (ℎ, 𝑊 ). A description about this class of 

models, and others like the Markov-switching regression models, and the 

Smooth transition regression models, can be found in [24]. 

As an alternative model, a HMM model (a good description can be found in 

[25], Ch. 17) is considered.  In this model, the observed variable, electricity 

load in this analysis, depends on exogenous variables (temperatures and 

lighting needs), but the relationship between endogenous and exogenous 

variables responds to two alternative specifications. Whether one or another 

specification is “the right one” depends on another “hidden” variable that 

can take as many values as alternative specifications.  For the HMM model, 

“economic activity” is assumed to be the hidden state variable (st), which at 

time t can take on two values (1 =”active” state, 0 = “rest” state). Hence, in 

the HMM model, electricity load follows the model,  
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𝐸 = 𝜙 + 𝜙 𝑇 + 𝜙 𝑇 + 𝜙 𝑇 + 𝜙 𝐿  + 𝜀   ;         𝑖𝑓  𝑠 = 1𝜙 + 𝜙 𝑇 + 𝜙 𝑇 + 𝜙 𝑇 + 𝜙 𝐿 + 𝜀   ;                  𝑖𝑓  𝑠 = 0 

 

      [Eq. 8] 

where 𝑠  behaves as a random variable that switches from one state to 

another. Furthermore, 𝑠   is assumed to follow a Markov chain with matrix 

transition probability A=[p, 1-p ; 1-q, q] ; where  𝑝 = 𝑃[𝑠 = 1|𝑠 = 1]  is the 

probability of remaining in  the “active” state between hour t and hour t+1,  

and 𝑞 = 𝑃[𝑠 = 0|𝑠 = 0] is the probability of remaining in the “rest” state.   

Hence, the probability of being in a given state at time t, depends on the 

state in the previous period, t-1, and on the transition probabilities. It is 

immediate to see the similarities between the HMM model [eq.8] and the 

LSTR2 model [eq.5]. In the proposed switching regression model with 

transition function LSTR2 on the other hand, the probability of being in a 

given state depends only on the hour of the day [0,23]. Two versions of the 

HMM model are considered, in the first one the probabilities of moving from 

a state to another are independent of the hour time. In this first HMM 

model, Given the initial unconditional probabilities of being in a given state 

at time t=0, 𝑃[𝑠 = 1], and 𝑃[𝑠 = 0] = 1 −  𝑃[𝑠 = 1],  the probability of being 

in state st  at time t is thus given by  𝑃 = 𝐴 𝑃 ,                        [Eq. 9] 

where 𝑃 = 𝑃[𝑠 = 1]  𝑃[𝑠 = 0] , and 𝑃 = 𝑃[𝑠 = 1]  𝑃[𝑠 = 0] .    

In our proposed switching regression model with transition function LSTR2 

on the other hand, the probability of being in a given state depends only on 

the hour of the day [0,23]. While this assumption might be considered more 

restrictive, it is clear that it is more realistic to assume that business activity 
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responds to a time schedule instead of assuming that business activity at 

hour t depends only on business activity at hour t-1.  A second version of the 

HMM model also considered, assumes that the probability of transition 

between states depends also on the hour of the day, as in the LSTR2 model. 

In particular, in this second version of the HMM model the probability, 𝑝 ,  

of moving from state i (i=”rest”, active”) to state j (j= “active”, “rest”) is 

characterized as a multinomial logit function 

 

𝑝 =  ( )∑  ( ). 
 

As will be detailed in Section 6, it is convenient to impose that economic 

activity follows the same time schedule throughout the year (excluding 

holidays and weekends), as  assumed in the LSTR2 model. This way one 

avoids that the yearly temperature cycle (and therefore the daylight cycle) 

contaminates the estimated state probability in the HMM model. Another 

advantage of the LSTR2 model is its robustness to the presence of rare 

events, avoiding identification problems.9  

 

5.1. ESTIMATION PROCEDURE AND RESULTS 

 

                                            
9 Our model is specific for each type of day (workdays and non-working days) and we only consider 
national holidays and weekends “non-working days”. However, other regional holidays, mainly in 
more populated areas in Spain, and e.g. holidays on Tuesdays, which affect economic activity on 
previous Mondays also have a significant effect on aggregate electricity load.  If such events are “rare”, 
their effect on the estimation of the LSTR2 function is negligible. However, in the HMM model these 
events would affect identification of the most likely state sequence. 
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In principle, the model in Equation 4 could be estimated directly by 

unrestricted nonlinear least squares (NLS). But in practice there are several 

limitations to adopting this procedure, as also pointed out by [26] (p.213) for 

the case of Smooth Transition autoregressive model (STAR) estimations. In 

particular, hours are restricted to the [0,23] range, and hence parameters 𝜏  

and 𝜏  have to satisfy the following constraints  0 ≤ 𝜏 < 23;  0 ≤ 𝜏 ≤ 23. 

However, NLS does not guarantee that the estimated values of the time 

thresholds satisfy such constraints, and hence other estimation procedures 

are preferred. In addition, NLS usually fails to numerically converge when 

parameters 𝛾 , 𝜏 , and 𝜏   are estimated jointly. This might be due to the 

variability throughout the year in the correlation between hourly 

temperature and the daily economic activity cycle. While in the summer both 

variables exhibit a near 1:1 correlation, this is not the case in the winter 

when this correlation is much lower, and variable Lt takes on a more 

important role, see Figure 10. Hence, throughout the year, the correlation 

between temperature and daily economic activity changes, and the 

smoothness coefficient 𝛾  and the thresholds 𝜏  and 𝜏  are competing to 

capture this behavior (wider 𝜏 − 𝜏   ranges compete with lower 𝛾  values). 

 

Figure 10 Hourly electricity load, hourly temperature and lighting needs. Normalized data. (left, 
winter: 2/1/2016-2/3/2016, right, summer: 7/4/2016-7/6/2016. workdays only, August excluded) 
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In order to circumvent the limitations pointed out above, an iterative 

conditional NLS procedure is proposed. Starting with an initial value for the 

smoothness coefficient 𝛾 , we compute the optimal threshold parameters, 𝜏 , 𝜏  , that minimize the sum of squared residuals,  𝜏 , 𝜏 = 𝑎𝑟𝑔𝑚𝑖𝑛[∑ 𝑢 (𝛾 , 𝜏 , 𝜏 ) ],            [Eq. 10] 

where,   𝑢 (𝛾 , 𝜏 , 𝜏 ) = 𝐸 − 𝑔 (ℎ, 𝑊 , 𝛾 , 𝜏 , 𝜏 )𝑔 (𝑇 , 𝐿 )   and, 

 𝑔 (ℎ, 𝑊 , 𝛾 , 𝜏 , 𝜏 )𝑔 (𝑇 , 𝐿 ) = 𝛽 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝐿 +[𝛽′ +𝛽′ 𝑇 + 𝛽′ 𝑇 + 𝛽′ 𝑇 + 𝛽′ 𝐿 ]𝑔 (ℎ , 𝑊 , 𝛾 , 𝜏 , 𝜏 ).                
 

Optimal thresholds, 𝜏 = 𝜏 (𝛾 ) and 𝜏 = 𝜏 (𝛾 ) are restricted to lie in the 

intervals, 𝜏 ∈ [4,11], and 𝜏 ∈ [𝜏 , 23]. In each iteration, the parameters 𝛽  , 
and 𝛽′ , (𝑖 = 0,1, … 4) are also estimated. Given the value for 𝛾  and the 

previously determined thresholds, 𝜏  and 𝜏 , the conditional sum of squared 

residuals (SSR) is given by 

𝜑 (𝛾 , 𝜏 , 𝜏 ) = ∑ 𝐸 − 𝑔 (ℎ, 𝑊 , 𝛾 , 𝜏 , 𝜏 )𝑔 (𝑇 , 𝐿 ) .               [Eq. 11] 

The iterative procedure aims to minimize this SSR, and the outcome will be 

the optimal parameter value for 𝛾  that minimizes the SSR,  𝛾∗ = 𝑎𝑟𝑔𝑚𝑖𝑛[𝜑 (𝛾 , 𝜏 , 𝜏 )].          [Eq. 12] 

Then given 𝛾∗,  the threshold parameters 𝜏∗ = 𝜏∗(𝛾∗) and  𝜏∗ = 𝜏∗(𝛾∗) will 

also be optimal and by construction lie in the rage [0,23]. 

Once 𝛾∗, 𝜏∗ = 𝜏∗(𝛾∗), and 𝜏∗ = 𝜏∗(𝛾∗) are determined,  the following model is 

estimated: 
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𝐸 = 𝑔 (ℎ, 𝑊 , 𝛾∗, 𝜏∗, 𝜏∗)𝑔 (𝑇 , 𝐿 ) = [𝛽 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝐿 ]+[𝛽′ +𝛽′ 𝑇 + 𝛽′ 𝑇 + 𝛽′ 𝑇 + 𝛽′ 𝐿 ]𝑔 (ℎ , 𝑊 , 𝛾∗, 𝜏∗, 𝜏∗) + 𝜀 .             
 [Eq. 13] 

Depending on whether or not the autoregressive term 𝜀 = 𝜃 𝜀 + 𝜃 𝜀 +𝜗  is included, we estimate two version of this model.,. Note that the  

autoregressive term tries to capture the approximation errors induced by 

the linearization of the “true” underlying temperature and lighting effects. 

6. ESTIMATION RESULTS 

 

The model in Equation 13 is estimated using 9,696 hourly observations for 

workdays (excluding August) between 1/1/2015 and 12/31/2016. In 

particular, we use data on hourly electricity load (in logs), temperature (in 

ºC) and a dummy variable Lt which takes on value 1 if observation t is after 

sunset and before sunrise, and 0 otherwise. Results of the estimation are 

presented in Table 1. Column(1) presents results for the model without and 

column(2) for the model with autoregressive error terms. In column(3) the 

estimation results for the HMM model are presented. Column (4) displays 

the estimation results10 of an alternative HMM model that includes the hour 

of the day as an explanatory variable for the state probabilities (“active” and 

“rest” states).  In all four cases, the models perform relatively well in terms 

of goodness of fit to the data, keeping in mind the reduced number of 

parameters required. The mean of the absolute percentage errors (MAPE) 

ranges from 0.20% to 0.61%. These values, in MWh units instead of logs, 

represent absolute errors between 2.10% and 10.5% of the mean hourly 

                                            
10 More details about the estimation of Markov switching models can be found in [26]. 
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electricity load. The HMM, without explanatory variables in the state 

probabilities, performs worst, with a MAPE of 0.61% or an absolute error of 

10.5% if electricity load is measured in MWh. Our proposed LSTR2 model 

with autoregressive error terms performs best with a MAPE of 0.20% or an 

absolute error of 2.1% if electricity load is measured in MWh. 

Although both versions of the HMM model fit the data well, they have 

important limitations that make the LSTR2 model more appealing. In 

particular, one drawback is related to the sign of the estimated coefficient of 

the Lt variable in the HMM model. In the two HMM models, the estimated 

lighting effect is negative, both in the “active” and the “rest” state of 

economic activity.  This result is counterintuitive, since, as Figures 10 or 11 

shows, there is a significant increase in electricity load after sunset, with a 

higher and longer lasting impact if sunset occurs  when economic activity is 

still ”active”. This result is due to the fact that in the HMM model, the 

estimated state probabilities are very sensitive to the “switching on” and 

“switching off” of lights after sunrise and sunset (see Fig 12 ). However, in 

the summer (Graph b) of Fig 12), due to the near perfect correlation between 

hourly electricity load and temperature, the HMM model mistakenly 

identifies the lighting effect for the “activity” effect.  In the simple version of 

the HMM model this drawback is particularly visible when considering 

electricity demand in the summer (see Figures 11 and 12). This 

counterintuitive result may be due to the interaction between the state 

probabilities and daylight duration, which contaminates the lighting effect 

when it is estimated simultaneously together with the state probabilities. 

This problem is not present in the proposed LSTR2 model as the state is 

estimated by  the 𝑔 (ℎ , 𝛾 , 𝜏 , 𝜏 ) function using a sequential method, which 

is unique for the full sample. 
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Figure 11.- Estimated probabilities for economic activity to be in an “active”  or “rest” state and data 
on hourly electricity load (logs MWh) for winter (left graph) and summer (right graph).  
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Figure 12.-  Estimated probabilities for economic activity to be in an “active”  or “rest” state  in the 
HMM model (HMM_Prob), HMM Model with state probability depending of the hour 
(HMM_prob_time) and LSTR2 model, and 𝐿  (NIGHT_SPAIN equal to 1 if the hour is after sunset 
and before sunrise). . 
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b) Summer 
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Even more interesting, is the ability of the proposed LSTR2 model to 

replicate the observed relationship between hourly electricity load and 

temperature.  In Figures 13 and 14, the estimated responses from the 

LSTR2 model which includes autoregressive error terms are represented. 

using the values of the estimated coefficients from Table 1. Figure 13 depicts 

hourly electricity load data together with the estimated responses, while 

Figure 14 shows the same variables but differentiated by time of day (hour). 

As can be seen, the estimated responses allow us to adequately replicate 

observed differences in the u-shaped relationship between temperatures and 

electricity load. Only in the case of hours 0 and 1 is the degree of accuracy 
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not fully satisfactory. This is due to the fact that the function 𝑔 (ℎ , 𝛾 , 𝜏 , 𝜏 ) 

is defined in the [0,23] range, with 0 and 23 being the extremes of the 

function domain, while in the data 0 and 23 are contiguous hours. Given 

that the estimated values for our parameters are 𝜏∗ = 8 and 𝜏∗ = 23, hours 

0 and 1 belong to the “rest” state, while 23h, although contiguous to 0h, is a 

transition hour where function 𝑔 (ℎ , 𝛾 , 𝜏 , 𝜏 ) takes on value 0.5. 

In Figure 13, the estimated model is plotted separately for the two states, 

given by the extreme values of function 𝑔 (ℎ , 𝛾 , 𝜏 , 𝜏 ). According to 

Equations [5] and [6] - repeated here for convenience - if economic activity 

is in an “active” state the estimated model is 𝐸 |(𝑔 (ℎ, 𝑊 ) = 1) = [(𝛽 +𝛽 ) + (𝛽 + 𝛽 )𝑇 + (𝛽 + 𝛽 )𝑇 + (𝛽 + 𝛽 )𝑇 + (𝛽 + 𝛽 )𝐿 ].    
But in the ”rest” state the estimated model is, 𝐸 |(𝑔 (ℎ, 𝑊 ) = 0) = 𝛽 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝑇 + 𝛽 𝐿 .            
These expressions are evaluated using the previously estimated coefficients, 

and they are plotted against temperatures, taking into account only values 

of temperatures observed when each state is active.11  Looking at Figure 13, 

the asymmetry in the response of electricity demand to temperatures in both 

states becomes evident.  Over the entire range of temperatures, electricity 

demand in the “active” state is generally higher than in the “rest” state, 

except when temperatures in the “rest” state rise above 30 ºC.  

                                            
11 The model estimated in each state is only valid for values of the exogenous variables when the 
given state is active. For example, in the “rest” state, observed temperatures are in the range [-5.4 ºC 
- 31.5º C], while in the “active” state, temperatures lie in the range [-0.7 ºC - 40.2º C]. Estimating the 
two equations over the full range of temperatures produces misleading results.  
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Table 1 Estimation Results 

 

Model 1 (LSTR2) 
  
   

LSTR2 with autoregr.. ) 
  
   

 
HMM Model 

 
  

HMM Model 
(State prob. depending of hour time) 

 Coeff Std. Err. 
Sig 
(95%)  Coeff Std. Err. 

Sig 
(95%)    Coeff Std. Err. 

Sig 
(95%)  Coeff Std. Err. Sig (95%) 

             State 1        State 1     

Constant 10.15497 0.005738 **  10.16513 0.002609 **  
Constan
t 10.4811 0.005303 **  10.52273 0.005982 ** 

Temp -0.004626 0.000966 **  -0.005133 0.000448 **  Temp -0.000279 0.001026    -0.010594 0.001102 ** 

Temp2 -0.000241 8.61E-05 **  -0.00012 3.96E-05 **  Temp2 -0.000766 6.16E-05 **  -0.000198 0.0000612 ** 

Temp3 2.30E-05 2.15E-06 **  1.90E-05 9.88E-07 **  Temp3 2.14E-05 1.08E-06 **  0.0000133 1.01E-06 ** 

Lighting -0.035831 0.004834 **  -0.052008 0.002184 **  Lighting -0.02166 0.002185 **  -0.019282 0.002057 ** 

              State 2              

Constant*f 0.500009 0.010021 **  0.469411 0.004569 **  
Constan
t 10.31714 0.004143 **  10.28774 0.004878 ** 

Temp*f -0.023715 0.001617 **  -0.020812 0.000743 **  Temp -0.011755 0.000812 **  -0.007891 0.001015 ** 

Temp2*f 0.000842 0.000111 **  0.000633 5.10E-05 **  Temp2 0.000623 6.05E-05 **  -0.0000245 0.0000921   

Temp3*f -2.13E-05 2.45E-06 **  -1.64E-05 1.12E-06 **  Temp3 -3.41E-06 1.23E-06 **  0.0000171 2.38E-06 ** 

Lighting*f 0.068026 0.005923 **  0.103111 0.002686 **  Lighting -0.187295 0.003008 **  -0.150991 0.003862 ** 

Err (-1)       0.597187 0.005903 **              

Err (-24)         0.398736 0.005882 **                 

                               

S.E. of regression 0.064057     0.028888       0.079408     0.063059    

Sum squared resid 39.68405     8.06134       160.45153     41.20117    

Log likelihood 12891.41     20562.83       11144.95     12283.49    
Akaike info 
criterion -2.657057     -4.249552       -2.296193     -2.530629    

PEAM 0.48%     0.20%       0.61%     0.50%    

Theil UI 0.0031      0.0014        0.0063      0.0032     𝑓 = 𝑔 (𝛾∗, 𝜏∗, 𝜏∗)  ,  𝛾∗ = −0.0791, 𝜏∗ = 8 , 𝜏∗ = 23    
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Furthermore, the estimated model shows that the sensitivity of demand to 

low temperatures is significantly larger in the “active” compared to the 

“rest” state, where very little response is observed. For example, if 

temperatures decrease from 10 ºC to 0 ºC, electricity demand in the “active” 

state increases by 960.5 MWh per 1ºC decrease, but by only 26.6 MWh per 

1º C decrease in the “rest” state. However, the contrary is true for warm 

temperatures. If temperatures increase from 21ºC to 26ºC, electricity 

demand increases by 323.6 MWh per 1ºC in the “active” state, and by 602.9 

MWh per 1º C in the “rest” state. However, to correctly interpret these last 

results it is important to take into account temperature time dynamics in 

the summer.  In particular, between 0h-6h (“rest” state) outdoor 

temperatures at night are decreasing, while between 10h and 18h (“active” 

state) temperatures are increasing, and between 18h-23h (“active”  state) 

they are decreasing but only slowly. Hence, the correct way to interpret the 

elasticity in the “rest state” is a demand decrease by 602.9 MWh per 1º C as 

temperatures fall from 26ºC to 21ºC.  More importantly, the estimated model 

highlights that at high temperatures, levels of electricity demand in the 

“rest” state are similar to those observed in the “active” state. 

Figure 13.- Estimated LSTR2 model and electricity load data (MWh logs). Extreme temperature 
response cases for the “rest” and “active”  state of economic activity 
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Figure 14.-   Estimated time of day temperature response and data on hourly electricity load (logs).  
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7.CONCLUSIONS  
 

Planning, managing and forecasting of electricity demand requires knowing 

not only the factors that affect it, but exactly when and how these factors 

impact demand. In particular, if impacts differ by time (hour of day), then 
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this analysis is not only necessary but mandatory. This paper proposes a 

model for shortterm electricity demand with differentiated effects by time of 

day which are determined by variations in intraday economic activity.  The 

relationship between electricity load and economic activity implies that the 

time properties of the latter directly translate into the former. In particular, 

the circadian rest-activity cycle and the weekly cycle that affect periods of 

rest and activity in businesses and working and leisure time of workers is 

clearly reflected in electricity demand. 

The proposed approach allows to differentiate the effects of the circadian 

rest-activity cycle and the daily and seasonal cycles of temperatures that are 

caused by the rotation and translation of the earth. Additionally, this 

movement also affects the insolation cycle, which alters daylight duration. 

However, this last effect has to be treated separately, given that daylight 

duration affects different uses of electricity demand (lighting versus heating 

and cooling) during specific time windows, but also with different intensities 

according to the degree of economic activity at each hour of the day.  

Obviously, the existence of differentiated effects according to uses, and 

according to time of day, affects the intraday price elasticity of electricity 

demand. Such differences in elasticity in turn can also affect the 

effectiveness of differentiated demand response measures such as time-of-

day pricing. Peak load in Spain is usually found in the winter on cooler days 

between 19-20h, due to the combination of heating demand and lighting 

needs when economic activity is in an “active” state. It is clear that in this 

situation, electricity demand is price inelastic such that taxing consumption 

will not have any significant effect on demand in the short run.  

The proposed model presents a very satisfactory adjustment to actual data 

under different statistical measures (Log likelihood, Theil’s U, Sum of 

squared residuals, AIC criteria).  The Logistic Smooth Switching Regression 
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controlled by a double threshold (LTRS2) without autoregressive error 

terms attains a mean absolute percentage error of 0.48% (4.95% if electricity 

load is measured in MWh). When autoregressive error terms are included, 

the mean absolute percentage error reduces to 0.2% (2.1% if electricity load 

is measured in MWh).  

Based on the observation of the distinct behavior of electricity load when 

economic activity is in an “active” or in a “rest” state, we also propose a state-

of-the-art Hidden Markov Model (HMM) under two different specifications. 

The best fit to the data is attained when “state” probabilities depend on the 

hour of the day, as also assumed in our proposed LSTR2 model. Although 

they both fit the data relatively well, neither version of the HMM model is 

able to correctly capture how the lighting effect affects electricity load. This 

limitation of the HMM model seems to be due to the interaction between the 

yearly cycle of daylight duration and the estimated “state” probabilities, 

making the LSTR2 model a more promising method for analyzing 

differentiated effects of temperature and lighting on short-term electricity 

demand. 
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APPENDIX 

Figure A-1   Hourly temperatures in Madrid, Spain for 2015 

 

Source: https://rp5.ru/. Non available temperatures are interpolated with a 

cubic spline. 
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Table A.1.- Estimation results Hourly Load against temperature in hour I of day t 𝐸 = 𝑓(𝑇 ) = 𝑎 + 𝑎 𝑇 + 𝑎 𝑇 + 𝑎 𝑇  

   Hour 0        Hour 1        Hour 2        Hour 3        Hour 4        Hour 5        Hour 6       

      
Variable  Coeff  Std. Err.    Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err. 

Constant  10.32105  0.013475    10.22057  0.011607  10.14524  0.008903  10.09785  0.00702    10.07691  0.006134  10.07797  0.005429  10.1271  0.006419 

Temp  ‐0.013789  0.003692    ‐0.011376  0.003474  ‐0.012617  0.002831  ‐0.011508  0.002371    ‐0.011976  0.002137  ‐0.011557  0.00199  ‐0.013147  0.00238 

Temp2  ‐1.40E‐06  0.000286    ‐1.39E‐05  0.000293  0.000345  0.000256  0.000347  0.000232    0.000518  0.00022  0.000453  0.000221  0.000536  0.000277 

Temp3  1.75E‐05  6.33E‐06    1.85E‐05  6.99E‐06  8.76E‐06  6.49E‐06  9.32E‐06  6.29E‐06    4.23E‐06  6.21E‐06  7.87E‐06  6.67E‐06  7.57E‐06  8.73E‐06 

     
R‐squared  0.394178     0.363218  0.362412  0.395731  0.377916  0.385756  0.289738 

S.E. of regression  0.061421     0.060126  0.05484  0.049227  0.047932  0.046279  0.057549 

Sum squared resid  1.509039     1.44607  1.202972  0.96931  0.919004  0.856699  1.32477 

AIC criterion  ‐2.732263        ‐2.774886        ‐2.95894        ‐3.174906        ‐3.228201        ‐3.298404        ‐2.862497       

      
     
 Hour 7        Hour 8        Hour 9        Hour 10        Hour 11        Hour 12        Hour 13       

      
Variable  Coeff  Std. Err.    Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err. 

Constant  10.24409  0.00773    10.39839  0.007751  10.51267  0.011951  10.5975  0.017185    10.64298  0.021404  10.64531  0.024283  10.63374  0.025035 

Temp  ‐0.01485  0.002771    ‐0.016209  0.002494  ‐0.017671  0.003326  ‐0.022457  0.003894    ‐0.023314  0.004176  ‐0.02123  0.004318  ‐0.018915  0.004196 

Temp2  0.000531  0.000319    0.000213  0.000246  ‐2.53E‐05  0.000265  0.000172  0.000259    0.000192  0.000245  0.000122  0.000233  6.60E‐05  0.000215 

Temp3  5.46E‐06  9.87E‐06    1.23E‐05  6.66E‐06  1.90E‐05  6.05E‐06  1.44E‐05  5.12E‐06    1.23E‐05  4.34E‐06  1.18E‐05  3.84E‐06  1.12E‐05  3.36E‐06 

     
R‐squared  0.204182     0.393977  0.543684  0.622207  0.652424  0.66049  0.673203 

S.E. of regression  0.072531     0.060974  0.051025  0.043901  0.040067  0.03824  0.037716 

Sum squared resid  2.104312     1.487132  1.041441  0.770917  0.642158  0.584918  0.569005 

AIC criterion  ‐2.399747        ‐2.746886        ‐3.103131        ‐3.40391        ‐3.586657        ‐3.68002        ‐3.707601       
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Table A.1 (cont.).- Estimation results Hourly Load against temperature in hour I of day t 𝐸 = 𝑓(𝑇 ) = 𝑎 + 𝑎 𝑇 + 𝑎 𝑇 + 𝑎 𝑇  

 Hour 14        Hour 15        Hour 16        Hour 17        Hour 18        Hour 19        Hour 20       

      
Variable  Coeff  Std. Err.    Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err.  Coeff  Std. Err. 

Constant  10.59075  0.026322    10.57836  0.025756  10.57872  0.024295  10.58438  0.020792    10.6358  0.018683  10.67298  0.019129  10.66171  0.017976 

Temp  ‐0.013297  0.004257    ‐0.01569  0.004101  ‐0.018813  0.003877  ‐0.023381  0.003453    ‐0.033348  0.003279  ‐0.033426  0.003526  ‐0.028205  0.003554 

Temp2  ‐0.000199  0.00021    ‐8.81E‐05  0.000199  5.86E‐05  0.000188  0.000332  0.000171    0.000829  0.000168  0.000713  0.000189  0.000459  0.000202 

Temp3  1.45E‐05  3.19E‐06    1.27E‐05  2.97E‐06  1.07E‐05  2.77E‐06  6.50E‐06  2.57E‐06    ‐7.51E‐07  2.59E‐06  1.66E‐06  3.00E‐06  5.16E‐06  3.40E‐06 

     
R‐squared  0.660519     0.692941  0.724498  0.731942  0.724335  0.684649  0.65872 

S.E. of regression  0.040476     0.040432  0.039894  0.040609  0.043184  0.050576  0.052122 

Sum squared resid  0.655338     0.653885  0.636627  0.659636  0.74595  1.023156  1.086663 

AIC criterion  ‐3.56634        ‐3.56856        ‐3.595306        ‐3.559803        ‐3.436833        ‐3.120844        ‐3.060624       

      
     
 Hour 21        Hour 22        Hour 23      
     
Variable  Coeff  Std. Err.    Coeff  Std. Err.  Coeff  Std. Err.   
Constant  10.61833  0.014416    10.54861  0.01412  10.45016  0.013927   
Temp  ‐0.023017  0.003092    ‐0.017199  0.003249  ‐0.016504  0.003513   
Temp2  0.000366  0.00019    5.80E‐05  0.000213  5.73E‐05  0.000251   
Temp3  5.17E‐06  3.44E‐06    1.20E‐05  4.06E‐06  1.47E‐05  5.18E‐06   
     
R‐squared  0.625033     0.557678  0.470673   
S.E. of regression  0.047226     0.049571  0.05692   
Sum squared resid  0.892105     0.982929  1.295969   
AIC criterion  ‐3.257908        ‐3.160954        ‐2.884477      

 

 

 


