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Abstract

The treatment of trend components in electricity demand is critical for long-term peak load
forecasting. When forecasting high frequency variables, like daily or hourly loads, a typical
problem is how to make long-term scenarios - regarding demographics, GDP growth, etc. -
compatible with short-term projections. Traditional procedures that apply de-trending methods
are unable to simulate forecasts under alternative long-term scenarios. On the other hand,
existing models that allow for changes in long-term trends tend to be characterized by end-of-
year discontinuities. In this paper a novel forecasting procedure is presented that improves upon
these approaches and is able to combine long and short-term features by employing temporal
disaggregation techniques. This method is applied to forecast electricity load for Spain and its
performance is compared to that of a nonlinear autoregressive neural network with exogenous
inputs. Our proposed procedure is flexible enough to be applied to different scenarios based on
alternative assumptions regarding both long-term trends as well as short-term projections.

JEL classification: Q4, 194, C53

Keywords: Peak load forecasting, load curve forecasting, long-term scenarios, temporal
disaggregation

Highlights:

Grid capacity planning is critically linked to peak demand forecasts.

A methodology to produce long-term hourly peak load forecasting is presented.
Modelling hourly load have to deal with long-term and short-term features.

Long and short-term features are combined by temporal disaggregation techniques.

The method is flexible and allows for what-if simulations, key in grid planning.



1. INTRODUCTION

Long-term peak and trough load forecasts are key in the generation and transmission planning
process for non-storable utilities like electricity. Grid capacity has to be dimensioned adequately
in order to meet the requirements of the hourly/ type-of-day/ monthly/ yearly variable demand
which characterizes the electricity market. In particular, grid capacity is critically linked to peak
demand, and security margins have to be adapted with enough anticipation to deal with
uncertain variations in demand. Inaccurate forecasts can lead to costly access capacity and/or the
risk of overcharging the electric power system.

Regarding short-term load forecasting, recent models based on Artificial Neural Networks,
Genetic Algorithms, and Support Vector Machines have shown to work relatively well. For
instance, Che and Wang (2014) [1] propose a combination of kernel-based support vector
regressions (SVR) and are able to quite accurately forecast half-hour electricity loads in California,
for a horizon of up to 15 days and using training samples of 26 day-data. Yang et al. (2016) [2]
use a method that is also based on SVRs, but their model is trained with a shorter sample and is
continuously re-trained with new data. In their application the authors use a training sample of 3
days of half-hour electricity load data, which is re-trained with 2 day-data in order to make
predictions for a 15-days horizon. A combination of SVRs and a multiple linear regression model
is proposed by Che (2014) [3]. His hybrid model is trained with 29 days of hourly data, and its
forecasting accuracy is tested by launching predictions for a period of 24 hours. Dedinec et al.
(2016) [4] propose a neural network model (deep belief network) to forecast hourly electricity
consumption (24-hours ahead). Forecasting total consumption, the authors are able to obtain a
considerably low value (3.3%) for the mean absolute percentage error (MAPE). Badurally Adam
et al. (2011) [5] model monthly peak electricity demand in Mauritius using Gross domestic
product (GDP) and weather factors such as temperature, hours of sunshine, and humidity as
explanatory variables in a Gompertz diffusion process where coefficients are estimated by a
genetic algorithm.

Although short-term forecasting (i.e. for a horizon of less than 15 days) is key for grid operation,
in the current paper a long term load forecasting perspective is adopted. As pointed out in Hahn
et al. (2009) [6], due to the progressive deregulation of the electricity market, literature is paying
increasingly more attention to load forecasts with longer time-horizons. Because grid capacity
investments require long term planning which needs demand forecasts at a multi annual basis,
as remarked in Zhao and Guo (2016) [7]. However, investment planning not only requires annual
power load forecasts. These large-scale investments (e.g. in Spain they amount to 4,700 million
Euros for 2014-2019.) also have to guarantee adequate grid security margins and hence also
expected intraday variability in demand has to be considered. This requires combining hourly with
long term load forecasts. The current paper proposes a methodology that allows to obtain
accurate long-term forecasts of electricity loads at hourly frequencies. Motivated by the need for
long-term grid capacity planning, the proposed methodology is based on multiple linear
regression models which allows to account for different scenarios regarding the effect of
exogenous variables like economic activity, or outside temperatures on electricity demand. This
flexibility is key, because for grid planning it is not only important to obtain accurate projections



for one specific scenario, but also to be able to infer the width of the security margin if economic
or environmental and weather conditions differs from expected.

Usually in electricity consumption forecasting for long-term and short-term horizons are viewed
as two distinct objects. As Dedinec et al. (2016) [4] points out, the main difference between both
types of predictions lies with the variables that affect electricity demand at different time
horizons. Peak load forecasting for the long-run requires to consider factors that influence
electricity demand both in the long and a short run. In Nedellec et al. (2014) [8] electricity load is
modelled by means of three additive components, each reflecting long, medium and short
patterns respectively. Typical long-term factors affecting electricity demand are demographic
change, variations in economic activity, substitution effects between energy sources, adoption of
more efficient technologies, and mechanization/automatization of production processes. These
factors have to be combined with short-term features, such as weekday effects, yearly cycle of
temperature variations, or time-of-day demand (opening hours) as pointed out in Taylor (2010)
[9] and Mestekemper et al. (2013) [10]. The ideal forecasting procedure does not only model
these long and short term factors adequately in isolation, but is also able to integrate them.

Models that tend to work well for short-term projections based on, Support Vector Machines,
ARIMA methodology, or Neural Networks (used as a comparison method to ours in Section 3.1.1
) usually perform very poorly when used for long-term forecasting (i.e.. for monthly or yearly
horizons). This is due to the fact that these models are unable to capture breaks in trend
movements, and hence unless combined with other methods, they result inadequate for
forecasts of electricity loads under alternative long-term scenarios. Certain particularities
regarding long-term electricity consumption make it more convenient to analyze it separately
from short-term developments. One of the reasons is that in the long run, electricity consumption
reflects the changing nature of the electricity-economic growth nexus, due to technological
progress, advances in energy efficiency, changes in consumer behavior, etc. Previous works, like
[11], show that reasonable long term annual forecasts can be obtained by exploiting the strong
correlation between electricity consumption and economic variables like Gross Domestic
Product, GDP per capita, and population.

All the above mentioned studies highlight the important differences between the long and short-
term behavior of electricity demand, and hence they point to the need for both aspects to be
analyzed alongside each other. Previous works focusing on long-term peak forecasting propose
different ways to deal with factors affecting electricity demand at different time horizons. Cho et
al. (2013) [12] propose to model the overall trend and seasonality of electricity demand by fitting
a generalized additive model to weekly averages of electricity load. To model short-term features
and the dependency among the daily loads authors propose a curve linear regression model.
Other authors [13] propose to subtract the “trend-seasonal” component from the electricity load
and to model it separately. After de-trending the original series, short-term characteristics such
as temperature effect, working-day effect, etc. are then modelled by means of casual regression
analysis, ARIMA, or Neural Networks. However, typical de-trending methods like the ones
mentioned above are only valid locally, and hence these models do not perform well when
sudden changes in trend occur, or when the forecasting period is far from the sample period used
for parameter estimation. Hyndman and Fan (2010) [13] on the other hand suggest to explicitly
model the long-term characteristics of electricity consumption within a low frequency model



(using annual data), assuming that these characteristics remain constant during any intra-year
periods. The main advantage of this procedure is that it allows to control for changes in
demographic variables (population, number of households, etc.), variations in economic variables
(GDP, per household income, price of electricity and other energy sources etc.), as well as
technological progress (usually by means of different time trends); factors which all matter for
long-term modelling and forecasting of energy demand. The problem with this procedure is that
due to the assumption that long-term characteristics remain constant during intra-year periods,
forecasts at the beginning of each year are characterized by discontinuities. Moreover, a
procedure that only allows for changes in the trend component at the end of each year might
affect the estimated temperature effecti. A different approach as proposed by Nedellec et al.
(2014) [8] models the long-term component of the half hour load curve by adjusting a Gaussian
kernel to monthly electricity load data (adding seasonal and temperature effects). The authors
then linearly interpolate the estimated trend to obtain half-hour estimates, and using simple
constant extrapolation they are able to make forecasts at weekly horizons. However, the use of
a constant extrapolation of the trend limits the scope of this method to short-term forecasts only.

In this paper a novel procedure is presented that improves upon these existing methods. By
applying temporal disaggregation techniques it is possible to obtain high frequency estimates
(daily) of the long-term component These estimates are used together with other variables like
temperature and weekday effects, and daylight duration to model the high frequency behavior
of electricity consumption (hourly demand). This approach allows to build a causal model for peak
demand, i.e. maximum hourly consumption for a given period (week, month, or year) and trough
demand, i.e., minimum hourly consumption for the same period. Using different long-term
scenarios and varying assumptions regarding short-term factors, the model is used to obtain long-
term forecasts for peak and trough demand for Spain. The remainder of this paper is organized
as follows: In the following section a description of this methodology is provided. In Section 3 the
model’s performance is analyzed. Finally, Section 4 concludes.

2. MODELLING STRATEGY

The dynamics of electricity loads exhibit both low and high frequency features that have to be
taken into account in order to develop an adequate forecasting model. In particular, as Figure 1
shows, long-term developments have an important impact on electricity demand in Spain.
Between 1996 and 2007, hourly peak and trough loads nearly doubled - they increased by 1.77
and 1.95 times respectively. But since the 2008 economic crisis, peak and trough loads have
decreased by 14% and 2% respectively. Similarly, the grid stress (the difference between peak
and trough loads) which indicates the capacity that has to be installed to meet demand without
shortages in a given year, increased between 1996 and 2007 by 66%, but has decreased since

1 Only allowing for changes in trend at the end of each year mechanically generates a discontinuity in
electricity demand in January. This discontinuity can affect the estimated effect of winter (summer)
temperatures on electricity demand.



2007 by 22%. Neither temperature nor climate variables, nor calendar effects, nor other high
frequency variables are able to explain this huge increase in peak and trough loads, nor the 2008
turning point. These observations highlight the importance of taking into account long-term
developments and to adequately model variables that affect the long-term evolution of electricity
demand, in particular as they differ from other variables that have mainly short-term effects.

Figure 1.-Annual peaks and troughs of hourly electricity loads (MWh). Spain. 1996-2014

= Annual troughs === Annual Peak

50,000.00

45,000.00 -

40,000.00 ;’M/A {H—ﬁ‘\w
35,000.00 /é\\{/a—--ﬁ'

30,000.00 _a—

25,000.00 —

20,000.00

15,000.00

10,000.00

5,000.00

e
Q\v

O N PO DO NN DEH OANAN DO O DNAD
OJCOQODQ"DQé)QQQOOQQ’\\\\
N A R AT ADT AR AR AT ADT AR AT AST AT AR A0 ADT AT AR S

2 S

Source: Own elaboration with data from REE (Red Eléctrica de Espafia S.A.)

Among variables that affect high frequency electricity loads are typical features of a country’s
economic activities, in particular as they relate to the usage of electricity during the day and
within a year. Intraday changes in electricity demand reflect the beginning, breaks, and end of
the working day. In Spain, the typical working day is remarkable different from those in other
European countries. Figure 2 displays the share of people aged 20-74 working or studying at each
hour on a typical work day in Spain and Germany. One can observe that working days in Spain
start and end later and are characterized by a longer lunch break. In particular, the working day
in Spain usually starts around 9-10 am and lasts until 8-9 pm (with a lunch break inactivity spell
between 2-4 pm). The same pattern can be observed in electricity load curves both during
summer and winter time; see Figure 3. In Spain, during winter (December-February) the typical

|II

peak load occurs on a “central” working day (Tuesday-Thursday) around 7-9 pm. The peak in the
summer shares similar features, but occurs at a different time of day, at 1-3 pmz. The lowest
consumption hour typically correspond to a nonworking day (national holiday or weekend)
between 5 pm and 9 am. However, these intra-day features are not the only variables that affect
high frequency electricity loads. Because the cycle of economic activity interacts with daylight
duration which in turn is also related to the temperature yearly cycle. As temperatures and

daylight duration are also related, it is very difficult to disentangle each individual effect. Spain’s

2 In Spain it is very common to concentrate work days during the summer; i.e. from 7 am-3 pm.



coordinates (latitude and longitude) and daylight saving time clock shifts imply that in the course
of a year the sun rises between 6.40 am and 8.38 am, while sunset occurs between 5.48 pm and
9.49 pm. Hence, in Spain economic activity usually starts with solar light and from October to
March it ends with artificial light.

Figure 2 .- Share of people (20-74 years) “Working or Studying” during the day.
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Figure 3. — Peak and valley electricity loads for a typical working day in Spain.

45000 —&— Peak load day (summer)
= Peak load day (winter)
40000 —@—"Valley " load day (summer)
"Valley " load day (winter)

35000

L

= 30000

=
25000
20000
15000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hours

Source: Own elaboration with data from REE (Red Eléctrica de Espafia S.A.)



The methodology proposed combines both these long and short-term drivers of electricity loads
to generate long-term forecasts of hourly electricity demand. On the one hand, annual forecasts
of electricity demand obtained from a long-term demand model (LTDM) converted to daily
frequencies are employed. On the other hand, hourly demand forecasts are obtained by
combining the LTDM forecasts at daily frequencies with working day and temperature effects
that are estimated using hourly data. This procedure allows to generate hourly load curves under
alternative scenarios characterized by different assumptions about economic activity (from the
LTDM model) and temperatures (working day patterns are considered invariant). Once a load
curve is generated, the extreme values (peaks and troughs) for any period of analysis - week,
month, year- can easily be determined.

In particular, and similar to [13] and [14], the hourly load curve is modelled hour-by-hour and
explanatory variables are allowed to have different effects on electricity demand at each hour of
the day:

C: = (DI(LFt'H”:t)+‘91,t

Gt =@, (L'Et'HFt)_'_‘c"z,t

Cour = QLR HF )+ &5y, [eq.1]

where ™ js electricity consumption at hourjon day t, LF:is the low frequency component (trend

effect) and HF: is the high frequency component of electricity demand (calendar, temperature

E.
and daylight effect). "is the error term. Both the low frequency component as well as the high

frequency component potentially have different effects at each hour, as indicated by the function
¢ i(..) which is assumed to be linear.

Given the complexity of the calendar and temperature effects and their interaction, residuals in
Equation 1 are likely to exhibit some degree of auto- and cross correlation. In addition, we assume
that coefficients assigned to calendar and temperature effects remain constant over a fairly long
period (1996-2014). If the weekly cycle or temperature effects evolves over time (e.g. due to
increased flexibility in opening hours on Sundays, higher penetration of air-conditioning
equipment, etc.) this can also lead to residual correlation (in Section 3 this aspect is analyzed in
greater detail). However, the model’s main purpose is to provide forecasts, and hence estimating
precise coefficients for the function % i(..) is not the main interest.s

In order to be able to apply our methodology, the following issues have to be addressed: (1)
Estimation of the low-frequency component. A long-term forecasting model is proposed, and the
method used to transform annual demand forecasts into daily data is presented. (2) Estimation
of the high-frequency component. Section 2.2 details how the high frequency features, such as

3 As we include the same regressors in all equations, our OLS estimates are equivalent to SURE (Seemingly
Unrelated Regressions) estimates, and thus we implicitly take into account any residual correlation
among the equations.



working day and temperature effects using hourly data, are modelled, and how we account for
the effects of daylight duration. (3) Finally, in Section 2.3 the model for hourly demand is
specified.

2.1. LOW-FREQUENCY COMPONENT

The starting point for estimating the low-frequency component (LF:) is an annual electricity
demand model Annual data is chosen because for Spain detailed sectorial electricity consumption
is only available on an annual basis. The data come from the Spanish system operator, Red
Eléctrica de Espafia (REE hereafter) which collects and homogenizes the information available
from the Ministry of Industry, Energy, and Tourism. As mentioned before, the long-term
behavior of electricity demand reflects the changing nature of the electricity-economic growth
nexus driven by economic and technological factors. Previous work by Pérez-Garcia and Moral-
Carcedo (2016) [15] shows that the long-term behavior of electricity demand in Spain reflects
marked differences between residential and non-residential demand. In order to better capture
such long-term developments, electricity demand is modelled for both sectors separately. To this
end, the methodology detailed in [15] is applied. The design of the proposed long-term
forecasting model starts with Equation 2 which specifies that total demand (Cy) in year T can be
obtained by adding up the specific consumption of each sector (Ci7).

For non-residential sectors (i=1...5-1), electricity consumption can be obtained by multiplying
total value added (Y1) by the sector-specific intensity of electricity use (l; 7). Residential electricity
consumption can be computed as the number of households (Hy) multiplied by residential

intensity (lu7).
S-1

s
C; :zci,T :zYiTIi,T +H. 1,

i=1 i=1 [eq.2]

For the purpose of the model, both the breakdown of GVA (Gross Value Added) by sector as well
as the number of households are considered exogenous. These variables define the socio-
economic environment that affects the future demand for electricity. The general structure of
the Long-term Demand Model (LTD Model) is depicted in Figure4. To model long-term electricity
demand the intensities of electricity use are defined as functions of three variables:

e The amount of total equipment, both in the productive sectors as well as in households that
are powered by electricity.

e The efficiency and/or electrification factor, which includes both the share of total equipment
powered by electricity (electrification) and the unitary consumption of this equipment
(efficiency).

e The substitution effect that accounts for changes in electricity demand induced by changes in
the relative price of electricity compared to alternative sources of energy (gas, fuel, etc.)



Figure 4 . General Structure of the Long Term Demand Model (LTDM)
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The LTD model provides us with a baseline estimate for long-term electricity demand or the trend
component. This trend aims to capture the long-term behavior of electricity consumption and it
is a central input to our forecasting model. However, total demand generated by the LTD model
comes at annual frequencies, making it necessary to break these series down into daily
frequencies that are consistent with annual demand. To this end the Boot-Feibes and Lisman
(BFL) disaggregation method proposed originally by Boot et al. (1967) [16] is considered. The main
advantage of this method is that no additional indicators are needed - as is the case for instance
when using the Chow-Lin procedure - nor does it require any assumptions regarding the
underlying data generating process of the estimated trend. A drawback of this method is that is
requires the inversion of matrices making it a computationally costly method in particular when
dealing with large data samples.

Temporal dlsaggregatlon problems consist in estlmatlng an unobserved series, in our case a daily

—{Yor it=1,...,365/366,T =1,.

series which is coherent with an observed annual

fseﬁ'ﬁ%Y =T :1""’N}. Coherency implies that the longitudinal constraint is satisfied,
=, VT
2 Yer Vs By=Y B=1,®f f

t=1 , or in matrix form, , Where N , and where is a row

vector of ones of size (1x 365/366).
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The BFL method consists in estimating % as the solution of a constrained minimization program

in which the disaggregated series satisfies the longitudinal constraint and exhibits a smooth

shape; i.e. Yir solves

M
z(yl _y|—1)2 i=1..,M;
Min i=2 leq.3]

365/366
z Yer =Y, VT
subjectto  t=l (eq.4 ]

where M s the total number of days in the analyzed sample, taking into account if the year has
365 or 366 (leap year) days.

On the other hand, the computationally simpler quadratic match sum method requires solving
the following equation

_ 2
y=at"+bt+c :1=0,1,2,,..., 365/366

365/366
Z Yir :YT vT

subject to the longitudinal constraint  t=! [eq.5]

Both procedures provide with daily values for the long-term trend (observed or predicted).
However, the quadratic match sum method will generate discontinuities at the end of each year.
This holds true in particular if no additional constraints are imposed (e.g. that the last daily data
point estimated for a year has to equal the first one estimated for the following year). Especially
when the series to model exhibits volatile changes in trend growth rates as is the case for
electricity consumption in Spain after the 2008 crisis, the BFL method is much more reliable.

Furthermore, the BFL method has an additional advantage. The outcome of this method is similar
to the one obtained when applying the widely used Hodrick-Prescott filter to the daily series of
electricity consumption (with A= 133,225,000). Although results for the two methods are very
similar, there is an important difference when making forecasts. When using Hodrick Prescott
filtered series, forecasts implicitly assume that trends follow an underlying IMA(2,1) process.
Hence, the so-forecasted values can exhibit notorious inertia, typical for dynamic non-casual
models. In the BFL trend estimation on the other hand, the forecasted values are derived from a
causal model (LTD model) which is expressed in annual terms. In addition, annual values for
electricity consumption under different scenarios regarding electricity demand can be generated
(“what-if “simulations). The BFL approach thus offers greater flexibility for simulating alternative
scenarios, something that is essential in the generation and transmission planning process for
non-storable utilities like electricity.

2.2. HIGH FREQUENCY COMPONENT
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For the high frequency component of the model the following three effects are considered:
calendar effect, temperature effect, and daylight duration.

2.2.1. Calendar effect

Daily electricity demand is strongly affected by weekly cycles and calendar effects. As pointed out
in Che (2014) [3] intraweek and intraday seasonal cycles heavily condition short-term profiles of
electricity loads. Also the intra annual variation of temperatures translates into an intra annual
cycle in electricity loads as pointed out by [17]. Although such cycles can show up differently in
the electricity demand of different economic sectors, as reflected in [18], a common aggregate
pattern can be observed. In particular, the repeated succession of working days and weekends
creates an underlying periodic 7-day behavior, only interrupted by holidays and other
deterministic events (national strikes, etc.). The high frequency components of the load curves
are mainly driven by such weekly cycles. Another calendar effect that has to be taken into account
is the month effect, i.e. seasonality not explained for by variations in temperature. The month
effect is particularly important during summer holidays, but a priori it cannot be ruled out that it
could also be significant for other months.

Given that the main purpose of the model is to provide reliable forecasts, a causal specification
that is able to deal with calendar effects is proposed. The main advantage of this specification is
the off-sample treatment of non-periodic features of calendar effects (holidays, Easter week, leap
year, etc.) which are hard to capture using dynamic models.

The following model for estimating calendar effects is defined,

f f+11
f.(D,) = B, +ZﬂjiDjt + ZﬂkiMk—f,t
j=1 k=f+1 [eq.6]

D. - -
where ' is a dummy variable that takes on value 1 whenever day t belongs to type J ( J
=1,2,..f with f=1,..,182 detailed in Table 1), B is the effect of day type J on electricity load at

hour i (i=1,..24,.), ﬂki is the effect of month Mig: (k=1,..11) on electricity load at hour i

(seasonality), Mi¢ is a dummy variable taking on value 1 if day t belongs to month k. The
reference value 7% is a Wednesday in January.

Other effects linked to the calendar that are also included in our model are general strikes and
dummy variables indicating if the last day in July is a Monday, Tuesday or Wednesday.a

2.2.2. Temperature effect

Outside temperatures represent another important determinant of short-term electricity
demand. Temperature effects exhibit highly nonlinear features, due to different energy usage

4 In Spain, economic activity, mainly in industry and the public sector, nearly comes to a halt in August, and
hence for most Spaniards August is the typical month for summer holidays. We observe a holiday
anticipation effect when the last day in July is Monday-Wednesday.

11



patterns when temperatures are “low” or “high”. Because temperature modifies the direction of
electricity consumption or the “demand state”, i.e. if temperatures rise when temperatures are
already high, consumption will increase due to the use of air condition/cooling equipment. But
when temperatures are low, an increase in temperatures decreases consumption. Second,
conditional on the “demand state”, changes in temperature affect electricity demand according
to the “demand temperature-elasticity”. And third, calendar effects are likely to interact with the
temperature effect (weekends, beginning and end of work days, holidays, etc.).

Table 1.- Type of days considered

Number of
dummy Casesina
Type Subtype variables year
National holidays weekday 1x6 (1) 8 (1) (2)
Regional holidays weekday 1x6 (1) 8 (1)(2)
Local holidays in big cities
(Madrid, Barcelona, Valencia,
Sevilla, Zaragoza, Murcia) NO 1x6 (1) 10 (1)
Day after national holiday Weekday 1x 6(3) 8 (3)
Day after regional holiday Weekday 1x6(3) 8 (3)
Christmas season (12/21 -1/7) Weekday 18X7 1x 18
Easter week 9 days 9 1X9
Weekday x
(Summer-not
August, August
Working days and Rest) 3X7 VARIABLE

(1) There are no holidays on Sundays.

(2) If for a given day there is a coincidence in type of days, we apply the following hierarchy:
Christmas/ Easter > National > Regional > Day after national >local.

(3) As there are no holidays on Sundays, Mondays are never considered “days after” holidays.

For the case of Spain, these features are analyzed in detail by [18], among others. When dealing
with high frequency data, adjusting for the temperature effect thus requires adjustments along
these three dimensions. The first dimension requires estimating the threshold temperature for

12



which the demand behavior switches. These thresholds are determined as the average of the
values| ggigt.,rr)@inl'rrpl;%tllpe Ah‘it qiﬁzria in the following regression:
Ei=1 ¢o+&y ti>T 21,

it
Hio +0i1Tt +g'it Tt ZTil [eq 7]

where E, is the load data at hour i on day t from which the weekly cycle is filtered out by taking

a centered moving average of 7 terms, while the trend is filtered out using a Hodrick Prescott
filter. This regression also includes a month dummy to take into account the seasonality in
electricity consumption that is not driven by temperature variations. The estimates are 152C and
202C for the low and high temperature thresholds respectively.

Note that these thresholds are much more related to inside comfort temperature than to
observed outside temperature. Hence, outside temperatures, although related to inside
temperature, do not necessarily have an immediate and contemporaneous effect on electricity
demand. Given the strategy of modelling each hourly load separately, ideally it would be
preferable to use hourly data for outside temperatures. However, due to the very high costs of
hourly temperature data this option is disregarded. In any case, due to the inertia in inside
temperatures (heat-loss is not linear as pointed out in e.g. Henley and Peirson,1997 [19]) only a
limited impact for our estimates can be expected. Nevertheless, to better capture the true
temperature effect, in the model specification it is also included the minimum and maximum daily
temperatures together with the mean temperatures, and a moving average temperature over

five consecutive da¥s
9;(T )= 9g;(T min,, T min

Thﬁ II(orwmg)furﬁ'fJﬁnPl fgeéi’fj][tnaz.l[r:gth tergpletra re ef ctl %Ep&e ad%pt%iis T >0+

o T min,_, Tmax,,T max,,,..T max, )= BT, <)+ BT, 27)+

] tJ_

+ B A (T, <)+ B (T, 2 1)+ BT (T, 2 1)+ BT (T, < 2) + By (T max, — 7)(T, > 7) +
+ ,Bloi (z-T mint _)(Tt <7)

eq.8]

T T max, + T min,
.=

where T is the daily mean temperature defined as 2 , L s the estimated

— 5
threshold for “low temperatures” and 7 the threshold for “high temperatures”. Re is the moving

average value of mean temperatures over five consecutive days, and A is the daily thermal

s The temperature used is the mean of the minimum and maximum temperatures on a given day. Minimum
and maximum temperatures are the weighted average of temperatures recorded at seven observatories
(Malaga, Bilbao, Barcelona, Madrid, Valencia, Sevilla and Valladolid). These observatories are
representative of the climatological areas in Spain. Our weights are given by the share in electricity
consumption of each area.
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amplitude.s To deal with nonlinearities in the demand-temperature elasticity, also a quadratic
temperature as an additional explanatory variable is included.

The proposed model for the temperature effect allows for different temperature elasticities
depending on the hour of the day and the type of day considered, as well as depending on the
“history” of temperatures (i.e., the previous four day values). The interaction of the working day
effect and the temperature effect introduces a highly nonlinear behaviorr into electricity demand.
Figure 5 shows that the observed effect on electricity demand of a decrease in outside
temperatures by 12C ranges from 580 MWh to 153 MWh measured at 8 pm in the winter and
from 776 MWh to 607 MWh measured at 1 pm during the summer. Furthermore, independently
of the season, a much higher variability in the temperature effect at 1 pm than at 8 pm can be
observed.

Figure 5.- Electricity demand at 1 pm and 8 pm vs outside temperatures (daily data 2001-2014).
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Note: Data for electricity load is raw data. The theoretical temperature effect is u-shaped but the long-term
trend and the weekday effect are such that they displace, both upwards and downwards, the theoretical
u-shape response to temperature.

. . . . . A =Tmax,—Tmin
6 The difference between maximum and minimum temperatures on a given day; i.e. “t ax, t,

7 Non-linearity in the demand elasticity to temperature variation can be also derived within our theoretical
4
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Source: Own elaboration with data from REE (Red Eléctrica de Espafia S.A)

2.2.3. Daylight effect

Finally, one particularly interesting feature of electricity demand can be extracted from the
analysis of differences in temperature elasticity at adjacent hours. Looking at the estimated
coefficients assigned to temperatures in Equation 7 we observe certain “abnormalities” at 8-9 am
and notably at 7-9 pm are observed. The estimated coefficients for the effect of outside
temperatures on electricity demand are abnormally low in the “cooling” regime (high
temperatures), and abnormally high in the “heating” regime (low temperatures). A plausible
conjecture is that this is caused by the interaction between daylight duration and daily working
hours (commercial sector opening hours, industrial activity, etc.); see Section A of the Appendix
for an empirical test of this interaction. In Spain, during some months there is daylight at 6-8 am
and 7-9 pm, while this is not the case during other months. Electricity demand does hence not
only reflect the effects of temperatures but also lighting needs.

Lighting represents one of the original uses of electricity and its use is most clearly observed at
night. Lighting use is expected to change only with the evolution of the surface to be illuminated
(new homes, new commercial and industrial facilities, urban sprawl, etc.) or lighting technology
(incandescent, fluorescent, LED, etc.) which determines the intensity of consumption. Such long-
term effects are picked up by our low-frequency component, and there are no perceptible high
frequency effects, except for electricity loads at hours for which there is a day/night transition
throughout the year; i.e. 6-8 am and 7-9 pm for the case of Spain. These high frequency effects
are particularly visible around daylight saving time clock shifts. The clock shift imposes a sudden
change in the official time causing a displacement in the shape of the load curve, precisely at 7-8
pm (+1hour and -1 hour), and 8-9 am (-1 hour); see Figure 6. The high frequency component
thus has to include this effect. Furthermore, the relationship between temperature, thermal
amplitude, and daylight duration shows that the model also has to account for the interaction of
daylight duration with the temperature effect.

Figure 6 .- Changes in load curve after daylight saving time clock shifts on last Sunday in March
(+1h) and October (-1h).
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Source: Own elaboration with data from REE (Red Eléctrica de Espafia S.A)

2.3 MODEL FOR HOURLY DEMAND

The proposed procedure requires to analyze each hourly data of the load curve independently.
In particular, the observed electricity consumption at a given hour i is assumed to be the result

of a long-term component, LR, plus a high frequency component, HF, which is linked to

calendar and temperature effects. The following specification for hourly demand is proposed:

Ci =@ (LR, HFt)+gl,t :hi(LFt)+ fi(Dt)—i_(‘:]i(-rt)—i_gi’t [eq.9]

where Ci is hour i’s mean load power on day t and fi(),is the calendar effect, 9i (), is the

temperature effect, and LR is the low-frequency component for hour i on day t. The model

parameters are estimated by minimizing the sum of the squared errorsin eq.9, that is, minimizing
the expression, Min Z{zl[ci’t — @;(LF,, HF,)]?-

The low frequency component is specified as follows:
hi (LFt) = a)ict . [eq.10]
where C, is the value of the historical/forecasted annual demand disaggregated on a daily basis

using the BFL method as previously discussed.

For hours 7- 8 am and 7-9 pm, Equation 9 also includes as an additional explanatory variable the
time of sunrise (Sn) and sunset ( Ss, ) to account for the impact of daylight duration on lighting

demand:

6, (S, 21)+6,Sr.(Sr, >1) =78
mi(st):{ 1 t 2% t

6’“(33t < -1)+6, (SSt > i)—I—HiZSSt (SSt <i-I) 1=19,2021 (eq.11]

The same specification is considered for all hours (with the obvious exception of the mi(S;)
component specified in Equation 11). Disposable data cover the period 1/1/1996- 12/31/2014,
and hence for each hour more than 6,900 daily observations of hourly electricity load are
available to estimate 219/216 coefficients (on days when the daylight saving time clock shift
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occurs observations for 3 am are excluded ). As an example, in section B of the Appendix our full
estimation results for 8 pm are detailed.

3. MODEL PERFORMANCE

The model performs well in terms of fit as measured by the hourly R-squared coefficient,
especially around peak hours (7-8 pm in the winter and 1-2 pm in the summer). For low activity
periods, like 1 -7 am, the R-squared coefficient lies somewhat below 0.97. The correlation of the
residuals is linked to the weekly cycle, and the structure of the correlation across equations
suggests that this effect is stronger for adjacent hours and that it becomes very weak for distant
hours; for the evolution of the residuals over time see Figure A2 of the Appendix. For all cases,
the correlation diminishes with the length of the time period considered, and it only remains
significant due to the weekly cycle.

3.1 MODEL FORECASTING PERFORMANCE

Given the forecasting purpose of our model, first its accuracy for replicating the data is analyzed.
This test is intended to validate the accuracy and stability of the model. To this end, the model is
estimated recursively with moving samples, including one more year of observations at a time,
and then launching predictions to 12/31/2014 (last available data point). The incurred errors are
checked at each estimation-forecasting stage, first using data up to 2010s, and then adding one
year of data at a time. At each stage, the forecasting period is shortened. At the first stage
(estimation period 1996-2010) we analyze four years of daily data, and at the last stage, seven
years of daily data (estimation period 1996-2013). As measures of accuracy the mean absolute
error (MAE) and the percentage mean error (PMEA) are computed (Table 2):

MAE = %Z\Ci,t —¢,
MAE , Mean absolute error ,  [eq.12]

1 Hci, _éi “
MAPE—?Z;

C
MAPE, Mean absolute percentage error 1.t , [eq.13]

where "'denotes the actual value of electricity load at hour ion day t, and Cit is the estimated

variable.Both measures are calculated for each of the four following cases: 2010 (estimation:
1996-2010, prediction: 1/1/2011-12/31/2014); 2011 (estimation: 1996-2011, prediction:

8 The model estimated with data from 1996-2010 and forecasted from 1/1/2011 onwards is particularly
interesting as it allows to see the advantages of this method in comparison to the alternative method of
extracting the underlying trend using the Hodrick-Prescott Filter and forecasting it. If the HP filtered series
is modelled as an IMA(2,1) process, the forecasted values remains nearly constant. Other models for the
HP filtered values, like the IMA(1,2) perform even worse as forecasts show an upward trend while the
observed pattern was a decreasing trend due to the “double-dip” recession experienced by the Spanish
economy.
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1/1/2012-12/31/2014); 2012 (estimation: 1996-2012, prediction: 1/1/2013-12/31/2014); and
2013 (estimation: 1996-2013, prediction: 1/1 /2014-12/31/2014).
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Table 2.- Measures of model’s accuracy: MAE and MAPE values for each estimated equation Hi (i:1,...,24)

MAE
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24
2010 942.0 848.8 845.3 647.2 560.9 508.5 532.0 813.1 937.3 962.8 896.6 883.6 843.2 857.0 931.9 861.4 904.6 1,002.1  1,058.7  905.0 734.6 648.6 670.0 930.7
2011 944.2 841.8 836.0 635.2 548.6 487.4 497.7 745.0 885.8 937.1 895.7 897.0 848.7 823.7 865.9 835.9 907.7 1,024.0 11,0669 905.5 718.0 628.0 658.1 974.7
2012 884.1 762.6 758.0 565.9 487.7 446.2 463.7 703.9 856.2 922.7 910.4 918.7 869.2 827.1 851.8 828.6 899.0 1,0249 11,0659 902.8 699.8 616.1 664.7 972.2
2013 776.8 668.8 683.6 516.8 468.6 469.9 503.8 719.2 879.7 937.0 932.2 939.8 886.7 807.3 810.1 816.0 896.9 1,0146 1,036.1 8784 680.1 600.0 641.9 912.9
MAPE
H1 H2 H3 H4 HS H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24
2010  3.58% 3.49% 3.33% 2.90% 2.55% 2.29% 2.26% 3.12% 3.41% 3.35% 3.00% 2.89% 2.73% 2.75% 3.05% 2.91% 3.08% 3.38% 3.46% 2.91% 2.33% 2.00% 2.18% 3.27%
2011 3.61% 3.48% 3.31% 2.86% 2.51% 2.21% 2.14% 2.89% 3.27% 3.30% 3.03% 2.96% 2.77% 2.67% 2.86% 2.85% 3.11% 3.46% 3.50% 2.93% 2.29% 1.97% 2.18% 3.45%
2012 3.40% 3.17% 2.99% 2.56% 2.23% 2.04% 2.01% 2.77% 3.21% 3.30% 3.10% 3.05% 2.85% 2.70% 2.84% 2.84% 3.10% 3.49% 3.52% 2.93% 2.25% 1.96% 2.23% 3.47%
2013 3.02% 2.79% 2.65% 2.33% 2.14% 2.13% 2.17% 2.85% 3.33% 3.38% 3.20% 3.13% 2.91% 2.64% 2.70% 2.80% 3.10% 3.47% 3.44% 2.88% 2.20% 1.93% 2.18% 3.30%
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The average absolute error lies below 1100 MWh whether the forecast horizon is long or short,
representing less than 4% of electricity load, see Table 2. This can be interpreted as a sign of
stability of the estimated model. The errors are particularly low during peak hours, at 8-10 pm
and 1-2 pm, while the worst results are obtained for hours characterized by relatively low
consumption; i.e. between 11 pm and 4 am.

3.1.1. Analysis of forecasting performance

In this section we compare the forecasting performance of the model presented in the previous
section, hereafter model LFC+HFC (low frequency component + high frequency component), with
the results obtained using a nonlinear autoregressive neural network with exogenous inputs
(NARX model). This kind of model is suitable for the type of problem analyzed here given the
flexibility of the Artificial Neural Networks (ANN’s) which allows to capture typical nonlinearities
in the load curve caused by the working day cycle and temperature effect in electricity demand.
Next to a number of exogenous variables, the ANN uses lagged values of the load curve as inputs
which allows the model to capture the trend in the load curve; see Figure 7. We also consider an
alternative version where additionally a quadratic time trend is included as an input variable.

The NARX model with three layers that it is considered as a comparison model, has the following
specification,

Cit = Z}'u Wji [f(zﬁx Wji,k xlic,t + Z?=l1 Wji,l Ci,t—l)] +e; , [eq.l4]

where ¢; . is the electricity load at hour ion dayt, ¢;,._; are the / day lagged value of electricity
load at hour i, and x,‘;'t are the values of the nx exogenous variables used to explain the load at
hour i on day t. The hidden layer has ni neurons, and each neuron has nx inputs or exogenous
variables, and nl lags of the output variable with weights Wji_k, and Wji,l respectively. The hidden
layer employs a sigmoid transfer function from inputs to output, and at each output layer it uses
a linear transfer function with weights wi. Finally, € is the error term, i.e. the difference

J
between the true value of electricity load and the estimated output of the NARX model.

The exogenous variables used in the NARX model are the same as the ones in the high frequency
component of the LFC+HFC proposed models, including variables for the calendar effect and
monthly seasonality (193 variables), variables for the temperature effect (21 variables) and
variables for the daylight effect (only for 6-8 am and 7-9 pm). Therefore, as inputs a total of nx
=217 exogenous variables are included, plus the lagged values of the load curve at hour i. This
selection of variables is similar to those used by [4] who employ a deep belief network, but in
addition for the NARX model here more detailed calendar and temperature effects are used.1o

9 See the appendix for a detailed enumeration of the variables.

10 In Dedinec et al 2016 [4] input variables are the hour of the day, the day of the week, holiday indicator,
average load on previous day, load for the same hour on previous day, temperature, a cheap tariff indicator,
and the load at the same hour and day of week in the previous week.
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As mentioned before, an alternative version of the model that also includes quadratic trend terms
as input variables to better capture the long term evolution of the load curve is considered as
well. In this case the number of exogenous input variables increases to nx =219.

Figure. 7- Schematic representation of the NARX model
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Source: Own elaboration

To determine the number of hidden units, ni, and the number of output lags, nl, a “brute-force”
procedure is applied. To this end NARX models with different values of ni and nl from intervals
[1,15] and [1,14] respectively are trained and tested, retaining the value of the “optimal”11 MSE
(mean squared error) for the NARX(ni, nl) model in the test sample. Finally, ni and nl are chosen
from the NARX(ni,nl) models with the lowest value of the MSE for each of the different
specifications analyzed, see Table 2. It isimportant to point out that while for the NARX(ni,nl) with
quadratic trends a total of [ni x (219+nl)] coefficients (weights) have to be computed, in the
LFC+HFC model only 218 coefficients need to be estimated.

To compare the performance of the LFC+HFC model to the different specifications of the NARX
model, the load data at 8 pm, which concentrates the highest frequency of annual peak loads,
are used. The LFC+HFC model is estimated for the 1996-2010 period and daily predictions are
made for 2011-2014(1461 values). The NARX model is trained with data for the same period, and
forecasts are launched for 2011-2014 under two distinct scenarios. A “real-world” scenario,
where a closed loop version of the NARX model is considered (i.e. the lagged electricity loads used
as inputs are the predicted values of the electricity load, allowing for forecasts along the entire

11For each hour the total sample size is 5,479 (daily data from 1/1/1996 to 12/31/2010). The NARX model
is trained with 3.835 data points, validated with 822 data points, and tested with 822 randomly selected
data points. “Optimal” MSE refers to the value of the MSE in the epoch with the lowest value of the MSE
of the trained NARX model in the selection sample.
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horizon), and an “optimal fit” case where an open loop version of the NARX model is employed
(i.e. the lagged electricity load used as inputs are the true values of the electricity load, only
allowing for one-day-ahead forecasts). As performance measures the MAPE and the MSE are
calculated, see Table 3. The results show that the LFC+HFC model performs well, with a MAPE
value similar to the one from an open-loop version of the NARX model. In comparison to the
closed loop version, more realistic in terms of a real-world forecasting exercise, the performance
of the LFC+HFC model is clearly superior.

Table 3.- Comparative values of performance measures.

MAPE MSE

Model LFC+HFC 2.8% 1,235,618

NARX with quadratic trend Closed Loop Open Loop Closed Loop Open Loop
ni=10, nl =11 3.7% 2.4% 2,293,174 1,201,633
ni=s, nl =11 7.0% 2.9% 7,735,151 1,677,151
ni-=1, nl =13 4.2% 2.4% 4,006,233 1,947,101
NARX without trend Closed Loop Open Loop Closed Loop Open Loop

ni =10, nl =11 16.3% 2.9% 35,766,888 1,656,525
ni =5,nl=11 27.9% 3.3% 97,130,977 1,757,538
ni =2, nl =12 7.7% 3.0% 8,334,711 2,455,380

Note: Model LFC+HFC (low frequency component + high frequency component) is the model detailed in
the paper. Only in the NARX models with the quadratic trend terms the error autocorrelation is not
significant. In the NARX model with no trend the autocorrelation in residuals induce persistent deviations
from the true values of electricity load, which could explain why the MAPE error in the closed loop version
is so high.

3.1.2. Extreme values forecasting performance

The methodology presented in this paper is oriented towards long-term peak and trough load
forecasting. The modelling approach allows us to obtain hourly load estimates whose accuracy
can be tested in several ways. The most obvious test is to graphically compare the observed and
the projected values for hourly load forecasts. But given that both accuracy measures (MAE and
PMEA) are low it can be expected that both values move together; see Figure 8.
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Figure. 8- Hourly load forecast and actual values. 2014
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Note: The estimation period is 1996-2010 and the forecast horizon 2011-2014 (1461
predictions for each of the 24 series). We only show values for 2014.

A more interesting test in line with the objective of the paper is to determine the ability of the
model to predict extreme values, such as the minimum and maximum load values in a given
period (e.g. a month). This type of analysis can be approached in two ways: (i) Simply comparing
the true observed extreme values and the predicted onesa2. (ii) Visualizing the ability of the model
to reproduce the observed frequencies of load values; i.e. constructing a histogram or probability
density of load values. The latter provides a measure of confidence regarding the accuracy of the
model. In a realistic forecasting environment when deciding which model to use for simulating
different scenarios of temperatures and long-term demand situations this is a very useful

12 We compare the observed monthly extreme values (highest and lowest load data) with the ones
predicted by the model for the same day (estimation with data until 2010 and forecasting from 2011 to
2014). To make predictions we use “true” temperature values and long-term demand projections. The
prediction error lies between [-3618 / 1371] GWh (on average 2.8%), with underestimation (estimated
value less than the actual value) prevailing. If we analyze annual extreme values, the estimation error in
the prediction period is below 3.0% for peaks, and 3.3% for troughs.
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measure. From the so-constructed histogram it can be immediately observed that the actual
critical values - “value-at-risk” - of electricity demand; i.e. values of demand that will not be
exceeded at a given level of probability. This result has direct practical applications for grid and
generation long-term planning.

In Figure 9 we show the probability density function estimated from the histogram of load data
(probability of obtaining a given value) with observed and forecasted values up to 2014, using the
model estimated with data from 1996 to 2010. In global terms the model performs well,
reproducing the bi-modal distribution of load values (the Kullback-Leibler divergence measure is
0.65*107(-4) ). For load values at the bottom half of the distribution the predicted values are
shifted towards lower values, i.e. the model assigns a higher probability to lower values than are
observed. This pattern is especially visible for January and December as well as for September.
However, while this weakness of the model should be taken into account, this is not an important
limitation given that the main aim of the model is to help. In this context the maximum load is
much more critical than its minimum value.

4. Figure 9.- Probability density function for load values. 2014. Actual and predicted values.
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7.1. LONG-TERM SIMULATION

Once the goodness of fit of the model has been established, the model can be incorporated into
the simulation process. A flow chart for such a simulation process is represented in Figure 10. The
starting point is the definition of a macroeconomic scenario which is translated into alternative
annual growth scenarios for electricity demand. These annual values are then converted into daily
values via the described BFL methodology. The high frequency components (calendar and
temperature effects) are then incorporated into the simulation process in two different ways:
Calendar effects (calendar days, holidays, month dummies, sunrise and sunset times) are nearly
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deterministic and are considered as fixed across alternative simulations. Temperature effects are
random and are simulated using Monte Carlo trialsis. For each trial the extreme values of interest
are retained (annual maximum and minimum loads, maximum loads in winter and summer,
monthly maximum, etc.).

Figure 10- Simulation flow chart
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Source: Own elaboration.

As an example for the proposed simulation process, in Figure 11 the simulated peak loads for
2020 are presented, assuming that electricity demand grows at an annual rate of 1.6% during
2015-2020. In the simulation, 3000 Monte Carlo trials for temperature are used, and 3000
alternative hourly load forecasts are computed. Then the 3000 peak values for winter and
summer are retained. As it can be observed, both winter and summer peak loads are skewed to
the right with larger right tails, showing that extremely unfavorable (and unlikely) scenarios for
temperatures can cause huge increases in peak loads. Coherent with the long-term evolution of
electricity demand, this kind of analysis allows to assign probabilities to different values of peak
loads, and to thus establish security margins for the electricity grid.

1k;The ¢lodetured to simulate temperatures is the following
vi=4+eg, 1=12,..24

where U is the temperature variable (daily minimum or maximum temperature), Hiis the intercept
value of the temperature variable (daily minimum or maximum observed in the i=1,2,...,24 bi-weekly
period (sample 1/1/1996-12/31/2014). 7 is the persistence parameter which is estimated via OLS as is

the residual term Eir . For simulation purposes the estimated residual is assumed to be normally
distributed with mean zero and standard deviation equal to the one computed from the residual terms
Eir . In each trial a realization of Eir is generated for the prediction range. The advantage of this
method is that it allows to capture both the observed persistence in temperatures (the parameter ¢ )

and the intra-year observed pattern (increasing from January to August and then decreasing, with higher
volatility in the winter).
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8. Figure 11.- Simulation of peak load for the summer and winter, forecasts for year 2020
assuming 1.6% annual growth rate for electricity demand.
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9. CONCLUSIONS

Long-term peak load forecasting requires to deal with both high and low frequency or trend
components. When forecasting high frequency variables, like daily or hourly loads, the way trend
components are treated is critical because long-term scenarios have to be made compatible with
short term projections. The forecasting procedure has to be flexible enough to allow simulating
alternative long-term scenarios that usually come from other models, or from different policy
objectives, or are simply “what if” simulations. In this paper, a novel forecasting procedure is
proposed using causal models which combines long and short-term features by employing
temporal disaggregation techniques. The procedure is flexible enough to analyze different
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scenarios based on alternative assumptions regarding both long-term trends as well as changes
in high frequency components.

The main advantage of this procedure is that it allows to control for long-term developments like
changes in GDP growth, demographic variables, and technological progress. Technically, the use
of the Boot Feibes and Lisman (BFL) procedure is proposed, a well-known methodology for
temporal disaggregation. Using the BFL procedure, the outcome of long-term models can be used
for forecasting because it allows to deal with low frequency component in hourly loads. At the
same time, the modelling approach proposed is able to include high frequency components such
as calendar or temperature effects. Daylight duration is also included, a variable that has not been
employed much in the literature. This variable only matters at certain hours, but in the case of
Spain these are precisely the hours when peak loads occur (7-9pm).

The model’s performance is tested using historical data, with an average absolute error below
1100 MWh, which represents less than 4% of the hourly electricity load. The estimation errors
are especially low for peak hours (8-10 pm and 1-2 pm), while the worst results are achieved
during hours characterized by relatively low consumption of electricity (between 11 pm and 4
am).

The ability of the model to reproduce the observed frequency of load values is also tested i.e. the
histogram or probability density of load values. This analysis is crucial in order to assign probability
levels to load range forecasts. In global terms the model performs well, reproducing the bi-modal
distribution of load values in Spain (the Kullback-Leibler divergence measure is 0.65*10%(-4) ). For
load values at the bottom half of the distribution the model assign higher probabilities to lower
values than are truly observed (especially visible in January, December and September). This
weakness is not very limiting given the aim of the model to help in grid capacity planning where
the maximum load is much more critical than its minimum value.
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