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A B S T R A C T

Modern data centers require that a Network Operations Center is continuously monitoring network health,
desirably in order to take proactive action before potential trouble occurs. In this paper, we contribute to
the capacity planning of the workforce in charge. To this end, we have extensively analyzed, with real-world
data, behavioral changes in a large server population in a data center. Our findings allow classifying such
behavioral changes, which may be indicative of potential trouble, into relevance regions using a ranking
mechanism. Then, the proposed methodology allows, together with an estimation of the time to analyze,
assessing the workforce necessary to proactively tackle the behavioral changes observed. We conclude with a
case study from a working data center, including a hands-on implementation of a traffic analysis solution to
detect such behavioral changes and an estimation of the needed workforce to analyze them. Our results show
that between 4 and 5 network managers are an adequate number for handling behavioral-changes analysis in
a large enterprise data center.
1. Introduction

Nowadays, an increasing delocalization and digitalization of the
workplace is taking place in all companies, which, unfortunately, is
gaining momentum due to the COVID pandemic [1]. Thus, information
technologies (ITs) have become a strategic asset for companies that
must be fully operational at all times, to avoid stopping the company’s
activity. Such continuous operation relies completely on the networking
infrastructure. If it fails, then several IT services, if not all, are affected
and employees’ work is interrupted. Moreover, with the wide adoption
of remote work, not only the availability of services is important, but
also their security [2]. In such a challenging scenario, the Network
Operations Center (NOC) and the Security Operations Center (SOC)
play a crucial role, as responsible for keeping the network healthy and
secure.

Precisely, due to the COVID pandemic, the enterprise ITs depart-
ments have been stressed to their limits and so has the NOC. For
example, as remote working was imposed in many countries, the NOC
had to provide remote access for all company employees, all of a
sudden. This is very challenging, as it involves many capacity planning
and security issues [3].

In such a scenario, should the NOC fall short of workforce, then
the ITs would be put at stake, possibly risking the company’s revenue.
This is the main driver and motivation of our research: to shed light
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on which workforce (in Full Time Equivalents—FTE—) is necessary in
a NOC in order to preserve the network’s health and security.

Needless to say, there are many different tasks carried out by NOC,
and it would be unrealistic to pretend to model them all in terms
of the necessary workforce. In particular, we focus on a specific area
that we believe is carried out by any NOC and represents a significant
share of the time: troubleshooting network operation. In this regard,
we distinguish between reactive and proactive troubleshooting. And,
within proactive troubleshooting, we distinguish between short-term
and long-term analysis.

Reactive troubleshooting is a response to an immediate and pressing
incident that has to be taken care of to resume a given service opera-
tion. To this end, the NOC/SOC vanguard is required to act swiftly and
decisively because every minute counts. If the number of reactive trou-
bleshooting incidents increases, then the data center capacity may be
overflown, with serious business consequences as service continuity is
compromised. Take as an example an e-commerce web portal that slows
down, making customers desist from their purchases and consequently,
severely affecting the business revenue.

Actually, to prevent NOC exhaustion, proactive troubleshooting is in
order [4]. As such, the aim is to take action before a possible incident
requiring reactive troubleshooting happens. Ultimately, the aim is to
avoid reactive troubleshooting at all. However, this is very hard to
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accomplish because one has to ‘‘guess’’ what is going to happen next.
Even though we cannot reliably predict the future, we note that the
past may give a hint for potential threats. For example, a sustained
traffic increase in a given server, which never before showed such
behavior, is worth being investigated, as it may finally result in a
reactive troubleshooting incident. Generally speaking, proactive trou-
bleshooting is based on detecting behavioral changes on the network
and investigating the root cause before it is too late [5].

1.1. Proactive troubleshooting

Proactive troubleshooting deals with behavioral changes at different
time scales [6]. Short timescales are relevant for anomaly and attack
detection, where a burst of the measurements may be related to flash
crowds, Denial of Service (DoS) attacks, or a port scan [7,8]. Short
timescales are also relevant for detecting hosts and other network com-
ponents that suddenly go down, for example, consider an unexpected
reboot of a VoIP gateway. Particularly noteworthy is the role of short-
term proactive monitoring in the field of cybersecurity, where the SOC
team acts urgently as soon as disrupting activity happens.

On the contrary, changes at longer timescales (in the range of days
or weeks) should be taken into account for network operation [8] such
as network maintenance (e.g., to keep services working properly with
no issues reported by final users), network fault and misconfiguration
(e.g., software bugs and human errors, especially on several vendors’
hardware) [9,10], and traffic engineering tasks for load balancing and
capacity planning (e.g., inadequate resource configuration and traffic
congestion) [11,12].

As such, long-term anomaly detection is specifically targeted toward
identifying sustained host behavioral changes that may be worth in-
vestigating proactively. For example, a long-term anomaly happens if a
given host that was issuing 1000 TCP connections per day progressively
changes to 2000 connections per day. Such a behavioral change may be
due to new software that has been installed in the host, or, for example,
a printer or a physical access control with more use. These will not
represent a problem as long as the number of connections does not
saturate the infrastructure. Alternatively, connections may be issued by
possible malware in the host. In the latter case, network administrators
take proactive action, and not reactive as in the real-time counterpart.

In this light, proactive troubleshooting is key to avoiding risky
situations. However, our working experience with many NOC/SOCs in
recent years tells us that scarce resources are devoted to the analysis
of changes that become stationary, whereas the shortest scales have
received relatively much more attention [13–15]. Actually, it turns
out that such a type of proactive detection and analysis activities
is left unattended because of reactive and short-term interventions.
Apart from obvious reasons such as expenditure cuts (which may
very well be at the expense of the company’s reputation and market
position), we believe that there is a lack of workforce capacity planning
methodology. As a result, nobody truly knows what workforce should
be allotted to such an important task, and its corresponding effort is
usually underestimated.

Precisely, this paper contributes to filling the gap of such workforce
capacity planning, with a hands-on experience: a longitudinal analysis
of a one-year worth of data in a real data center from a very large
company. During that time, we proposed and implemented metrics to
evaluate behavioral changes and supplied them to the NOC, which took
care of finding the root cause. Thus, we are aware of how many changes
happened and how long it took to deal with them. With that experience,
we have been able to categorize behavioral changes based on their
nature and model the time needed to inspect each change, giving
rise to a methodology for workforce capacity-planning for proactive
troubleshooting.

Thus, the main contributions of this paper are (i) a strategy to detect
relevant behavioral changes based on a ranking mechanism in a given
2

share of hosts, (ii) an approach to model the time and, consequently
the workforce, needed to analyze each behavioral change, (iii) the
determination of how many FTEs (Full Time Equivalents) are necessary
to proactively deal with long-term behavioral changes.

The rest of the paper is organized as follows: in Section 2, we
describe the analysis scenario, while Section 3 is devoted to the state of
the art. Then, Section 4 explains our proposal and Section 5 presents a
numerical example of our case study. Finally, Section 6 concludes the
paper by providing some future lines of work.

2. Scenario description

The dataset used for model construction and analysis comes from
the monitoring of several data centers’ network segments of a multi-
national company for one year. Such a network provides connectivity
between offices, connectivity to the management solutions, and other
systems, as well as production centers, spread all over the world. To
mention some of the services, in terms of office applications, there are
deployed video conferencing and remote desktop services (RDP proto-
col) as well as shared real-time dashboards (VDI). Traffic from employ-
ees’ workstations (mainly Microsoft Windows PCs) is also monitored.
This traffic includes protocols such as NetBIOS, SMB, and LDAP/LDAPS
used for enterprise login purposes and resource sharing. Additionally,
a number of back-end systems, including databases and applications
servers, some of them hosted on cloud infrastructures. Of relevance for
management, HANA and SO99+ modules from SAP solutions [16] and
other Supervisory control and data acquisition (SCADA [17]) applica-
tions for the management of machines and processes, which involves
industrial protocols such as IEC 60870-5-104 or ModBus.

2.1. How traffic is monitored

We sniff data center traffic for all active VLANs in the core switches.
The typical data center SDN star topologies with leaf switches con-
nected through a central spine switch render themselves adequate for
this purpose, as using a SPAN port in the spine switches is enough to
capture the traffic that flows from clients to servers and also server-to-
server traffic as long as such servers are located in different leafs.

We employ cost-effective solutions for traffic sniffing, based on com-
modity hardware. Specifically, our monitoring probe features two Intel
Xeon Gold 6126 processors with 12 cores each and 192 GB of RAM.
Regarding storage, the probe has two MegaRAID SAS-3 3108 RAID
controllers with 36 SAS disks of 8 TB each. The disks are distributed
in two RAID-0 volumes, providing thus a total storage capacity of 288
TB. The probe receives the traffic via a dual port Intel 82599ES 10 GbE
card.

To capture and store traffic at 10 Gb/s rates and beyond, we employ
our custom high-speed Linux driver [18], namely HPCAP. This driver
provides low-latency reception paths from NIC queues to different
user-space processing tasks, avoiding the overhead introduced by the
standard Linux network stack. To this end, HPCAP implements circular
reception buffers located in memory hugepages which are populated by
a kernel-level polling thread that copies the packets from the NIC in a
one-copy fashion. HPCAP presents a simple API that allows monitoring
applications to fetch packets individually in a similar way to how
libpcap does [19]. Additionally, the API provides functions to store
traffic to disks efficiently by using page-aligned block writes. Storage
functions also allow for transparent traffic capping, which significantly
reduces the disk write throughput needed while increasing packet disk
retention time until disks are full. This specific feature along with its
programming model simplicity makes HPCAP a relevant approach for
packet capture and storage compared to more complex capture engines
such as DPDK [20].

Once traffic is stored in disk, a custom traffic analyzer (similar to the
one described in [21]) loops through the captured traces, aggregating

traffic in flows defined by the standard 5-tuple (source and destination
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IP addresses and ports [22]) and reconstructing TCP sessions when pos-
sible. Besides the 5-tuple, each generated flow counts with more than
150 extra fields such as the number of TCP retransmissions, duplicate
ACKs and 0-window, number of observed TCP flags, RTT, volumetry
statistics, and even application-level information. Every 5 min, partial
records for all the active flows are exported to disk. Simultaneously,
another custom tool reads such partial flow records and aggregates
them by IP address, selects only a subset of the 150 extra fields,
and indexes the resulting records in Elasticsearch documents. Finally,
Elasticsearch data is accessed by both Grafana dashboards and our
workforce estimation tool, as detailed in Section 5.

2.2. Dataset

The dataset features almost 200 k unique IP addresses being more
than 3000 of them servers and more than 700 k concurrent flows on
average, peaking at 1 M concurrent flows. Typically, nearly 500 k
enriched records are collected within a working day.

As noted before, proactive monitoring is based on modeling behav-
ioral changes, namely, detecting situations that indicate a departure
from the usual behavior related to networking. To this end, we follow
an indirect estimation approach. By assessing the performance of com-
munications between endpoints, we can tell if such a behavioral change
has eventually happened.

Using the data provided by the monitoring system, we characterize
each TCP or UDP connection through a Key Performance Indicators
(KPIs) vector. These vectors are made up of a selection of the fields
of the enriched Netflows that the monitoring system stores. That is, the
measured KPIs accurately portray connection health and performance.
Should any of the former parameters experience a significant change,
it would be worth investigating why.

By default, such a set of KPIs comprises the following performance
metrics per 5-minute interval:

• Received bytes.
• Sent bytes.
• Number of TCP duplicate ACKs.
• Number of concurrent connections.
• Number of TCP retransmissions.
• Number of TCP zero window announcements.

Nevertheless, such performance vector could be extended to incor-
orate more metrics depending on the particularities of the scenario
nder study. The anonymized dataset grouped by host for a year is
reely available at [23].

. Related work

Finding a correct definition of what a behavioral change constitutes
s actually a challenge. The state of the art shows that changes can be
odeled either in absolute or relative terms. The former happens when-

ver the metric value reaches or drops from a given threshold [24].
or example, the received/sent bytes metric falls to zero (or very small
alues) if a host suffers a network or power outage. However, things are
ore complicated when changes are not as simple as going to zero but

rriving at some high or low values. And from this, the most significant
eakness of threshold-based approaches arises, a formal definition of
igh or low tends to be arbitrary [8].

Typically, the variance of the time series itself is used to compute
onfidence bands [25,26] whereby the actual value of the measure
nder study should lie in under the normal network performance [27].
nd to predict such a normal performance, there is an extensive body of
esearch in the area of time series forecasting. For example, statistical
pproaches [28] have been applied in recent years and, nowadays,
t is common to rely on machine or deep learning techniques [29].
owever, often such statistical approaches assume parametric models

o predict, for example, Gaussian distributions or others [30], and
3

this modeling requires highly aggregated time series in order to show
convergence as a natural consequence of the central limit theorem.
Moreover, machine and deep learning techniques modeling tend to be
intensive in processing power and samples.

While the above approaches have proven relevant for changes at
short timescales [31–34], such as flash crowds or Denial of Service
(DoS) attacks (where changes in load or the number of connections
occur in a few seconds or minutes) or useful when a network compo-
nent goes down (a router whose latency and number of retransmissions
peak [35] immediately), we note that they are not able to detect
progressive changes. That is, changes that do not occur suddenly, whose
impact is not going to be in the range of some seconds or minutes, and
that are maintained over time.

Certainly, the research community has paid attention to detecting
attacks when they are already occurring but before having a significant
impact on the operation. For example, the authors in [14] detect
attacks using multiple machine learning models with the previously-
labeled dataset of attacks by MAWILab. Similarly, in [15] LSTM neural
networks are trained with manually-labeled web traffic anomalies, ob-
taining significant accuracy. In particular, they use Yahoo’s Webscope
S5 dataset. As another example, the authors in [13] present an intrusion
detection system for network security based on deep learning models.
The results are evaluated on self-supervised labeled traces, performing
with an accuracy of nearly 100%. Finally, in [26], it is presented a
real-time alerting system where the threshold of normality is estimated
by exploiting also LSTM neural networks and validated with a dataset
gathered from Facebook Prophet.

On the one hand, it becomes apparent that our aim of analyzing
behavioral changes over time is different from such a set of systems tar-
geted at detecting attacks and security breaches in real time. Moreover,
we also remark that the performance evaluation is far different: First,
leveraging labeled training datasets comes with significant limitations:
the process of labeling requires an effort by network managers, the
evaluation is limited to a set of well-known issues and the performance
of dynamic or new threats is unknown. Second, by the time that evalu-
ation is carried out, the identification of an attack behaves as a binary
classification where the system detects the attacks that are known to be
in the trace or not. However, the same does not apply when the aim is
detecting behavioral changes. That is, the network’s measurements, for
sure, are changing. For example, consider the scenario of a loaded Gb/s
link that increases the bandwidth by only 1 b/s. Certainly, there is a
change there but not in the same sense that an attack is detected, here
the point is being able to conclude if the change calls for its analysis.

Probably the difficulties described above have meant that the study
of stationary changes has received much less attention than other types
of changes, albeit its relevance in capacity planning among other tasks.
Certainly, the authors in [6] focused on stationary changes by consid-
ering the bands for normal behavior as a vector of multiple thresholds
instead of a scalar. Each threshold accounted for a 90-minute interval
throughout the day. They assumed that the behavior of a large traffic
multiplex in each of these intervals should behave as a multivariate
Gaussian process. Then, a change from the regular performance was
only considered relevant if it happened several times and at different
time intervals. On the one hand, note the threshold-based problem
remains, that is, instead of an absolute threshold as other works, there
are several ones to be considered in this case, while a new parameter
appears, i.e., how many intervals are enough to consider a change as
a steady change. Moreover, note that applying this statistical approach
requires a metric with a significant aggregation in order to converge
to a model. This could be feasible as the authors were measuring
bandwidth in a large traffic multiplex but not for individual hosts and
other types of metrics as we are focusing on.

As a conclusion, proactive monitoring needs mechanisms to distin-
guish when a change is behavioral from a simple and natural variation
in the operation of a network. And, once a change is considered
behavioral, it needs mechanisms to give relevance to such changes. This
way, the most relevant changes are analyzed first, and the less relevant
ones can be analyzed later or, given that time for analysis is limited,

not even be considered.
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4. Proposal and methodology

In the scenario described in the previous section, hereafter, we
explain how the use of KPI rankings, or a set of ordered IP addresses
by a given KPI, is a relevant mechanism to detect changes without a
modeling or training phase. Also, we apply the concepts of top and
coverage to reduce the burden while the most relevant behaviors are
still analyzed. As a metric to measure relevance, we use the difference
in position of a given IP address in a ranking compared to another.
And finally, those similar changes in terms of relevance are estimated
to need similar times to be analyzed. After some analysis of previous
events, this results in an estimation of the workforce. This factor is
not typically considered, albeit there is a direct relation between the
capacity of analysis and the number of changes that can be analyzed.
In this paper, we pay attention to this issue.

4.1. Rankings

We believe that it is a better approach to model changes in relative
terms rather than absolute terms for the case of detecting the long-
term behavioral changes we are considering. Thus, the approach is to
consider the relative magnitude of a metric from a given host with
respect to the others, that is, to add the sense of order and relativity.
Moreover, as in any real-world system where cost-effectiveness is key,
only a limited number of hosts can be tackled, which implies that a
prioritization scheme is in order. To combine these two concepts, we
propose to use KPI rankings: KPI rankings are defined as sets of pairs
of IP address — KPI value, ordered in descending order by such KPI
value. More formally, let the number of hosts in the network be 𝑆 and

the number of metrics under surveillance. We define the vector of
etrics (or KPIs) as a vector (𝑋𝑖

1(𝑛),… , 𝑋𝑖
𝐾 (𝑛)), 1 ≤ 𝑖 ≤ 𝑆, 𝑛 ≥ 1 such

that each 𝑋𝑖 component represents a metric (say, for instance, number
of connections) in the stability interval 𝑛. Each metric 𝑋𝑖

𝑗 is ordered for
each interval 𝑛, namely by the 𝑖 super index, such that

𝑋(1)
𝑗 (𝑛) ≤ … ≤ 𝑋(𝑆)

𝑗 (𝑛), 1 ≤ 𝑗 ≤ 𝐾 (1)

namely, a map (𝑘) → 𝑖, 𝑘 = 1…𝑆, 𝑗 = 1…𝐾 is established that
shows that host 𝑖 occupies position 𝑘 in the ranking, for a given interval
𝑛 and metric.

Then, in order to analyze relative changes, for a given time period
based on the KPI values, we build rankings for a given time period
based on the KPI values and compare them with previously calculated
rankings. We consider that a change has occurred in a given metric for
a given host if and only if its relative position in a ranking has actually
changed in a given time. Let us refer to this time as the stability interval
which will be analyzed in the next section.

In conclusion, we have a mechanism to infer changes based only on
positions and where the relevance of a change can be easily measured
as the difference in position between two ordered lists. Additionally,
note that this approach comes with significant advantages: the rank-
ing system is KPI agnostic (as long as a KPI is numeric-based and
measurable), insensitive to units of measure, sensitive to abrupt and
progressive changes, there is no need for modeling and learning phases,
and new KPIs can be added as needed without changing the system.
Additionally, as the comparison is relative, the ranking method is
immune to the influence of variations in the value of the KPIs due to
external data acquisition problems such as packet duplication, which is
very common when a SPAN port is used [36].

Finally, the ranking approach is simple in terms of both calculation
and operation and eliminates the need for performing training or more
complex modeling such as the ones involved in statistical and deep
learning methods, which allows for a more general analysis method
and reduces the amount of data needed to operate.
4

4.2. Stability interval

To define a stability interval, we rely on qualitative analysis and
measurements. As for qualitative reasoning, we note that in most en-
terprise data centers there is some degree of periodicity in the operation
of a service [37]. The stability interval serves to filter out instantaneous
variations in the metric under study that drive the host position in the
ranking up and down continuously. Note that the stability interval must
be large enough to capture the periodicity of events that occur during
normal network operation that are strongly correlated to human activ-
ity. For example, some services are provided only during the daytime
or during working days and not over the weekend. This way, one-
week intervals should be stable enough to capture the labor/non-labor
operation of the network. And one-month ranges are stable enough to
capture other events, such as payroll processes.

Other stability intervals, although periodic, are not useful for proac-
tive monitoring. For example, comparing one-year rankings, by defi-
nition, requires aggregating data for years and the conclusions drawn
should intuitively be too old to be useful in a proactive approach.

Similarly, small periods such as one day will have other limitations,
such as too much burstiness. Firstly, one day can be not enough to
show period behaviors, for example, weekends tend to be different
from working days [37,38]. And even, Fridays can be different given
that human activity periods differ. Secondly, a one-day interval is more
related to reactive monitoring approaches, as it is more useful in tasks
such as alarm triggering during peak hours or short time periods that
can detect spurious changes or deviations from normal behavior. In this
scenario, the traffic characterization has a reduced time scope and is not
significant enough to state that a behavioral change has occurred on the
network and that such a change has altered the previously observed
operational behavior.

4.3. Limiting burden: Top selection and coverage

Data centers are growing steadily, with a CAGR (Compound annual
growth rate) of more than 3% [39]. As a result, a large data center
features thousands of servers, each of which may, in turn, run virtual
machines or containers.

In such a challenging scenario, one may attempt to account for
all possible behavioral changes of all possible hosts in a data center.
Clearly, such an approach leads to a daunting number of changes.
Thus, one has to select the hosts that will be monitored for changes,
such that the number of hosts gets reduced to a reasonable figure. To
this end, a qualitative assessment of the server business relevance can
be performed, in which only those hosts that are very relevant for a
particular metric would be subject to behavioral change analysis. Such
an approach has the advantage that a fully automated choice of the
hosts can be performed, with no human intervention.

In this light, following Eq. (1), we define the top of a ranking as the
first 𝑁 hosts that

𝑋(1)
𝑗 (𝑛) ≤ … ≤ 𝑋(𝑁)

𝑗 (𝑛), 1 ≤ 𝑗 ≤ 𝐾, 1 ≤ 𝑁 ≤ 𝑆 (2)

Then, let us define the coverage of a metric according to a given
top as the sum of the values of the hosts in the top makes with respect
to the sum of the contribution from all the hosts in the sample. More
formally, the coverage (𝐶𝑗) of a metric (𝑗) for a given top 𝑁 is:

𝐶𝑗 =

∑𝑁
𝑡=1 𝑋

(𝑡)
𝑗 (𝑛)

∑𝑆
𝑡=1 𝑋

(𝑡)
𝑗 (𝑛)

1 ≤ 𝑗 ≤ 𝐾, 1 ≤ 𝑁 ≤ 𝑆 (3)

As an example, if top is equal to 1 and the metric is the number of
received bytes, the coverage is directly the volume of bytes received by
such top-1 host divided by the sum of the received bytes by the rest of
hosts in the sample. Then, the coverage, assuming a top equal to 2 is
the sum of the bytes received by the two most active hosts in terms of
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Fig. 1. Top hosts that provide a coverage of 95% for each metric.
received bytes divided by the total number of bytes received by all the
sample. And so forth.

Fig. 1 illustrates the coverage for the set of different behavioral met-
rics as the top increases for a year. Each point in the graph represents
data from one week’s worth of traffic. This way, each top shows 52
samples that make up a whole year’s worth of traffic. Also, the mean
and 95% confidence interval are depicted.

We note the graph shows different tops until the metric spans 95%
of the total. As it turns out, the host subset size varies between 100 and
1200 hosts, depending on the metric being considered, which, in the
worst case, represents less than 0.5% of the total number of terminals.
Moreover, not surprisingly, a small number of hosts accounts for the
majority of the traffic, in bytes and flows. For the rest of the metrics,
the same happens: a few hosts account for the most values of the metric.
Such a Pareto-like effect allows us to discriminate the relevance of the
hosts.

As a conclusion, this allows further optimization of the workforce,
which should be focused on relevant behavioral changes, IP addresses
in a different top for each metric, and not all of them. For the sake of
completeness, a similar Pareto-like effect was found for coverage for a
one-month interval. In particular, given that more data is aggregated,
such a Pareto-like effect was even stronger.

4.4. Relevance of changes

We posit that the relevance of a given change can be measured by
the number of positions that the corresponding metric has changed in
5

a ranking compared with previous rankings. For example, if the top 1
host in number of connections drops to the last position in the ranking,
this is for sure a very relevant change. Conversely, if it hops to the
second position, perhaps, it is not worthy of further analysis. We further
note that the relevance of a given change serves for workforce capacity
planning as well, since it allows rating changes according to relevance,
such that the most relevant ones are taken care of first up until the
available workforce capacity.

More formally, a change in metric happens for a host 𝑖 if (𝑘′) → 𝑘
in interval 𝑛 + 1, and the change relevance can be measured by the
difference of positions in the ranking, namely a hop (𝛥), where 𝛥 =
|𝑘′ − 𝑘|. As it turns out, the larger 𝛥 is the more relevant the change
is. In 𝛥 = 0 then no changes happen for that particular metric and no
effort is required from the NOC team. Conversely, if 𝛥 is large for a
given host then a behavioral change has occurred for that particular
host (the larger the worse) and action is required from the NOC team.

To illustrate the concept of relevance, Fig. 2 shows the distribution
of the hops that occurred per metric for the year under monitoring,
considering weekly rankings. In particular, such distributions are de-
picted as violin plots where a smoothed probability density function
of the variable under study is drawn in the vertical axis overlapped
with the average and interquartile range [40,41]. For the sake of easier
visualization and comparison, the hops are shown on a logarithmic
scale.

Several observations arise. Most of the metrics share a similar shape:
A mode accounting for those hops near the mean and median. Another
mode becomes apparent at the tail of the figures. And, in between these
modes, a fraction of samples more or less numerous depending on the
metric. Interestingly, we can relate these regions to different types of
network issues.
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Fig. 2. Change relevance distribution for the set of metrics in logarithmic scale.
That is, the latter mode accounts for very long hops. These position
hanges portray the case of hosts whose relevance was so high to be
ncluded in the top but that, in the following period of time, they fall
t the tail of the relevance ranking. Or vice versa, hosts that entered
he top when they were in the tail in the previous period of time.
uch hops, in the tens of thousands range, can be caused by either a
ramatic behavioral change (such as a total resource exhaustion, for
xample, CPU or bandwidth) or due to manual intervention in the host,
uch as a switched-off machine, maintenance tasks, planned systems
isconnections or load balancing across several VM instances. These
re issues to be addressed with urgency, as they are measurements that
ent from the top to zero. However, as noted, the reason behind such
change can be trivial or, likely, the reactive monitoring was able

o detect them. That is, proactive monitoring searches for problems
hat are starting to occur and may be critical in the distant future, for
nstance, a link saturated due to a sustained increment of the number of
sers of a service. If a problem took place and its impact was abrupt and
arge, the reactive monitoring would probably have already reported it.

The samples on the first mode account for small hops, changes in
he range of the top (between 100–1000 positions), and probably they
epresent spurious changes, which do not point to behavioral changes
f relevance. In other words, the simple and inherent variance of the
etrics’ time series may cause certain changes in the rankings. In this

cenario, sometimes, even an expert analyst would not be capable of
inding an explanation for such subtle changes, although the analysis
ime was unlimited.

Between these two modes, we have a relevant region. The hosts
f such a region traversed from a top position to a position at the
nd of the distribution. Not to the tail, but a position far from the
atest values. These hosts deserve attention as they pointed out changes
hat are not sudden, but changes that are starting to happen, and such
hanges are difficult to be detected by a reactive-monitoring system.
nfortunately, these issues may demand significant time. Note that the
orrespondent analysis here is focused on understanding the root cause
f why something is working differently, not a host that stopped or a
ecently launched VM that started to transmit. Actually, the analysis of
hese types of changes can consist in the search for an explanation for a
roblem that perhaps does not exist. For example, consider the case of
link going to a quarter of utilization simply because the applications
ehind them are being less used. Or, similarly, consider a period of
olidays that impacts the use of certain services on the network. That
s, the time required to rule out that the change represents a problem
s often harder than finding a problem when it exists.

Let us formally relate the types of changes, regions in the distribu-
ion of relevance, and analysis times:

• Region IV — Urgent changes, moderate analysis times: That is, these
samples are hosts that were in the top for a week and went to the
tail in the following week (or vice versa, they arrived at the top
from the tail). The analysis cost is not high as some changes can
be easily analyzed.
Let us include a host in this region if the position change in
ranking is more than 90% of the total host population. As an
6

illustrative example of an event that fits in this region, consider
the case of a host that has been switched off after a long working
period.

• Region III — Relevant changes, high analysis times: This group
comprises significant hops in the ranking in terms of size, but such
hops did not cause the host to fall into the tail of the distribution.
They would require detailed analysis.
We include a host in this region if a change was longer than
the top, but smaller than 90% of the total host population. To
exemplify events in this region, consider the case of a link whose
utilization is increasing due to new users being added to a service.

• Region II — Low relevant changes, very high analysis times: This
group brings us changes of position inside the top. Such changes
are far less relevant than the previous ones, as the host is still
within the top length. In the case of being analyzed, such changes
demand a detailed study.
We define such a region when the position change in ranking is
more than 10% but less than 100% of the top. One example of
an event in this region is the reduction of traffic due to regional
holidays that produce a subtle reduction in the number of users
of a service during one or maybe two days.

• Region I — Irrelevant changes, no analysis: This group includes
hosts that changed very little or even did not change at all in the
ranking. These changes are not studied.
We define such a region when the position change in ranking is
less than 10% of the top. The type of event that is located in
this region is produced typically by the variation of use due to
the very nature of the services. As an example, the duration (and
thus the amount of traffic generated) of the daily remote desktop
connections is not constant throughout the week and depends on
employee utilization and workday distribution.

Let us illustrate these regions of changes with an example. Fig. 3
shows the above-mentioned regions, for the received-bytes metric as-
suming a top of 1000 hosts, for a representative week of the year. In
particular, the figure divides the probability density function of hops
into the previously described regions.

In conclusion, we note that the above taxonomy allows for clas-
sifying changes into relevant regions or categories, such as the most
relevant changes must be attended to first. And, importantly, we have
explained that each region represents a different set of issues, and,
coherently, the time for analysis will be different between regions and
similar between samples inside the same region. This serves to quantify
the NOC workforce in the following section.

4.5. Quantifying NOC workforce: Regions and TTA

Once behavioral changes have been categorized, the required work-
force would be the addition of the number of changes in each region
multiplied by the time to analyze each type of issue.

Let 𝑛𝐼 , 𝑛𝐼𝐼 , 𝑛𝐼𝐼𝐼 and 𝑛𝐼𝑉 be the number of hosts in the defined
categories, then the workforce (𝑊 ) is measured in time for a given

stability interval:
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Fig. 3. Example of an illustrative week for received-bytes metric where the change
relevance regions are highlighted.

𝑊 = 𝛼𝐼 ⋅ 𝑛𝐼 ⋅ 𝑇𝑇𝐴𝐼

+ 𝛼𝐼𝐼 ⋅ 𝑛𝐼𝐼 ⋅ 𝑇𝑇𝐴𝐼𝐼

+ 𝛼𝐼𝐼𝐼 ⋅ 𝑛𝐼𝐼𝐼 ⋅ 𝑇𝑇𝐴𝐼𝐼𝐼

+ 𝛼𝐼𝑉 ⋅ 𝑛𝐼𝑉 ⋅ 𝑇𝑇𝐴𝐼𝑉 (4)

where the 𝛼𝑖 values range between 0 of 1 depending on the desired
ttention to each category 𝑖, and 𝑇𝑇𝐴𝑖 represents the time to analyze
change in region 𝑖.

A conservative approximation would be setting 𝛼𝐼𝐼𝐼 = 𝛼𝐼𝑉 = 1
and 𝛼𝐼 = 𝛼𝐼𝐼 = 0 whereby only the relevant changes are studied.
The increase of 𝛼𝐼𝐼 will provide a more detailed study of a fraction
of the changes considered only moderately relevant. Also, the stability
intervals may focus only on weekly changes or also include monthly
data.

The TTA, time to analyze, is simply a variation of the well-known
term TTR, time to repair. While TTR focuses on the time required to
repair a machine or system, we pay attention to the time required to
provide an analysis of a behavioral change. TTR has received much
attention for its relevance in the measurement of systems’ performance,
design, and reliability [42] for more than three decades. In this way,
we can borrow all the efforts dedicated to characterizing such a metric.
In particular, the Mean Time to Repair (MTTR) metric represents the
average time to repair a system considering the last 𝑁 reparations. Sim-
ilarly, MTTA is the average time a NOC needs to analyze a behavioral
change.

4.5.1. Limitations
However, a simple mean often may not be a good approximation

for heavy-tailed shapes that the TTR and TTA processes can follow. In
this light, they can be posed as a distribution function, not a scalar,
following, typically, a log-normal or exponential distribution [43]. The
implication of Eq. (4) is that each term 𝑛𝑖 ∗ 𝑇𝑇𝐴𝑖 is a convolution
of 𝑛𝑖 terms. In the case of assuming an exponential distribution, the
sum will follow a Gamma distribution and, in the case of considering a
log-normal distribution, the sum can be estimated with approximation
methods [44].

Anyhow, regardless of considering TTA as a scalar or stochastic
process, the key is to have a significant number of samples to fully
capture the variability of the process. That is, it is unlikely that all
network managers are equally efficient (or even that a given analyst
works the same way every day), but it makes sense that after the
aggregation of enough samples the distribution converges. In other
words, the best, worst and regular analysts/working days are offsetting
7

the estimation. Actually, the authors in [43] suggest measuring in
the range of hundreds of samples to ensure the significance of MTTR
estimate but, at the same time, they state that in practical cases this
number may be in dozens rather than hundreds. In the case of our
work, we have used a number of samples an order of magnitude above
hundreds on our hands-on working experience with operations centers,
this provides us with a significant estimate with narrow confidence
intervals.

5. Case study

In this section, we describe how to numerically estimate the work-
force for the NOC of the multinational company described in Section 2
by means of the methodology explained in the previous section.

5.1. Operation in the NOC

We have developed a visual proactive-monitoring system through
standard and custom-made modules of Grafana [45]. Fig. 4 illustrates
such a monitoring system whose details are the following:

At the back-end side, each Monday early morning, aggregation
metrics are calculated and, automatically, the top and region thresholds
are fixed. With this, the set of IP addresses per region and metric are
estimated. According to the parameter 𝛼, the system elaborates a list of
IP addresses to analyze ordered by priority (left part of Fig. 4).

Then the regular operation of a network manager is to click the
first one that has not been previously analyzed by another coworker.
Then, a new dashboard came up to the manager (right part of Fig. 4).
Inside, the managers can find the time series of the six-default metrics
for the last week, two weeks ago, and for both the current month and
year. Additionally, time series for on-demand time intervals can also
be depicted. The metric or metrics, we note that more than a metric
can be of relevance for analysis, that made the address of relevance
are marked in red.

Interestingly, thanks to the capacity of Grafana filters and variables,
such time series can be tuned to depict time series from/to a specific
set of IP addresses, port numbers, or services (e.g., SAP, DNS or tele-
conference applications). Finally, the managers have available buttons
to download Netflows-like records and packet traces to further inspect
particular time intervals, for example, those that the time series suggest
are abnormal. In these tasks, well-known network analyzers such as
Wireshark can help. Packet traces may demand a significant amount of
storage capacity, for default we store traces for one week, while flow
records are stored for one month.

As standard Grafana plugins do, we have developed a back-end
service that, after receiving the parameters chosen by the manager,
retrieves the PCAP file or files and concatenates them. Finally, the
system serves the filtered trace using HTTP for its download. As an
alternative, the system can open the trace and forward the output of
Wireshark to an HTML5 interface. This allows the trace to be viewed,
avoiding its download and without the need of having Wireshark
installed.

The dashboard also shows specific KPIs for certain protocols. In
the case of TCP connections, the system tracks the number of SYN
and RST flags detected, as well as latency measurements. For HTTP,
DNS, or SAP packets, the system also tracks the number of erroneous
notifications. Together with all this data, network managers have access
to the inventory, operational, and historical databases. In particular, the
latter contains, for each of the previous issues, a report with the analysis
carried out. This database can be filtered by the metrics that provoked
the behavioral change, metric values, relevance, and any keywords.
This way, network managers have an easier time looking for problems,
finding the root cause of the behavior change, or simply determining
that a change does not have relevance (e.g., a switched-off machine or
a planned upgrade).
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Fig. 4. Monitoring system and dashboards.
To provide feedback, network managers must create a report ex-
plaining their findings as introduced before and, if necessary, trigger
an alarm. Both outputs must be treated subsequently by one of the
support departments of the infrastructure. They are receiving a formal
report describing the issue. For example, a machine saturated or a
virtual machine not working properly must be handled by the systems
department and an increase in the number of retransmissions must be
forwarded to the network department. Finally, such a department will
take opportune measures to solve the issue. Note that time required
to solve an issue can be far different from the time to analyze it. For
example, consider the case of a saturated link. The time to upgrade it
can be only a few minutes for a virtualized connection, but it can be
days in the case of a physical upgrade, whereas the time to find the
saturated link does not depend on the type of link.

As the final step, the network managers are asked to mark the
time or time intervals that they used for each analysis. This activity
track and ticketing systems are very common in companies to assign
dedication times to a particular project; hence, it should not entail any
additional burden. These times are received by the monitoring system
that upgrades TTA estimations per region and several distribution
charts are formed. This provides the information needed for the task
of workforce capacity planning.

5.2. Example of operation in the NOC

Let us detail a successful use case of our system for a recurring
issue with a monitoring and management software solution [46]. Such
software is in charge of monitoring systems, applications, and network
devices to gather information such as CPU and memory usage, tempera-
ture, event logs, etc. The software works in a client–server fashion, with
a central server that receives data from thousands of agents installed at
different hosts or network devices. Periodically, the agents establish a
TCP connection to the server, transfer the information collected, and
close the connection. Although the application closes the connection
when data is acquired, the TCP connection stays active at the operating-
system level for several seconds to ensure complete data transmission
between server and client. The closed connection stays active, typically,
for 1 min, and therefore the resources remain allocated and cannot be
used by new connections. This should not be a problem as the monitor-
ing software schedules the connection establishment from agents evenly
8

spaced in a way that does not exhaust the available resources, and only
hundreds of connections are active at the same time.

Focusing on the chronology of the problem, first, our system de-
tected increments in the number of connections for the server. This
resulted in an increase in the ranking position of the IP address as-
sociated with such a metric. During the first month analyzed when
the problem was present, the increase was subtle, and the change in
the ranking position was assigned to the Region II of the relevance
distribution. At that moment, the event was reported to the NOC
workers that started studying the problem with low priority as other
events were more relevant at that time. In the next month, our system
detected a massive change in the position of the IP address of the server
in the number of connections of that server. Such position change was
assigned then to the Region III of the relevance distribution and was
reported as urgent to the NOC workers along with an estimation of
45 min needed to diagnose the problem. In parallel, during the last days
of that second month, a few tickets were opened by users complaining
about random failures in accessing the service. While there was no
full-service outage and the service continued working, some instability
symptoms were present.

After receiving the tickets and our recommendation of inspecting
the server, the NOC workers analyzed the problems and found the root
cause. As it turned out, during a software update, the developers of the
tool reduced the agent data-gathering intervals without warning about
it. That broke the even distribution of requests previously observed.
This resulted in thousands of concurrent connection attempts that, in
some cases, went unanswered due to exhaustion of server resources as
closed connections remained active for 1 min as stated before. This
aggravated, progressively, the problem, as agents that were not able
to establish a connection sent connection retries with intervals of less
than a minute, thus generating more load for the server.

Once the root causes were analyzed, the NOC team decided to
increase the maximum number of connections the server can handle
and reduce the time period that connections are still active after
being closed (from 60 s to 20 s). These changes solved the problem,
and all agents were able to transfer data without any issues. All the
troubleshooting and solving the problem took effectively 1.5 h from
the NOC team, which deviates 45 min from our initial estimations. This
exemplifies a case where the analysis needs extra time from the network
managers in contrast to cases that are trivially solved.
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5.3. Workforce figures in the NOC

Once described how we propose network managers receive their
tasks and illustrate with an example of the operation, let us provide
some estimations of the workforce in the NOC.

By default, we set 𝛼 parameter in such a way that the changes from
regions I and II receive full attention while the other regions are not
analyzed, i.e., 𝛼𝐼𝐼𝐼 = 𝛼𝐼𝑉 = 1 and 𝛼𝐼 = 𝛼𝐼𝐼 = 0. Similarly, weekly
analysis is provided by default while monthly analysis is only optional.
As a good trade-off between simplicity and applicability, we use the
mean of the TTA process to estimate analyzing times.

As coverage, we parametrize the top to span 95% of each metric.
That is, tops are set to 1000, 500, 1200, 900, 300, and 100 hosts for
the six metrics studied by default as Fig. 1 showed. In particular, we
are considering the last two hundred samples to estimate the mean. By
the end of 2020, the MTTA was measured at 45 and 12 min for regions
III and IV, respectively. For its part, category II averages more than one
hour. This result does not come as a surprise. As previously noted, it is
easier to find a trivial problem (category IV) than to find the root cause
of a relevant problem (category III). And what is more, it is even more
time-demanding to rule out that a problem exists given the inherent
variance of communications behavior (i.e., category II).

Table 1 shows the average number of IP addresses in each of the
regions per metric for the 52 weeks of the year 2020. The last row
depicts the number of unique (∩) addresses for each of the regions
considering all the metrics, that is, the intersection of each of the
columns of the table. It becomes apparent that it is common for a
change to involve more than one metric at the same time. For example,
consider a payment gateway that increases the number of transactions
as it covers more payment points, causing metrics such as Received
bytes, Sent bytes, and Number of concurrent connections to increase at
the same time.

This way, following Eq. (4), the average per-week workforce (W) in
minutes is 216 ⋅ 45 + 98 ⋅ 12 resulting in 10,896 min, or equivalently,
81 h, less than 23 working days (assuming 8 h per working day),
nd consequently, between 4 and 5 FTE network managers (assuming

working days per week). In the case of 5 FTE managers to get
alanced capacity and dedication, 𝛼𝐼𝐼 may be set to 0.03 to obtain full
ccupancy while including a few of the most relevant changes from
ategory II. In case of having a smaller budget, 𝛼𝐼𝐼𝐼 may be reduced
o 0.86 to set the number of FTE network managers to 4 (i.e., 86% of
he relevant changes). Similarly, if the maximum number of available
etwork managers is 3 FTE, 𝛼𝐼𝐼𝐼 should be fixed to 0.62, for 2 FTE

network managers 𝛼𝐼𝐼𝐼 takes on 0.37, and, finally, for lower funds,
𝛼𝐼𝐼𝐼 is 0.12 for a single FTE network manager. On the other hand, if the
budget is sufficient to support even low-relevant changes (i.e., category
II, with an estimated MTA of 69 min), the analysis demands 536 ⋅ 69 +
216 ⋅ 45 + 98 ⋅ 12 a week, which translates in, roughly, 20 FTE network
managers.

To put figures into perspective, for the analyzed year in the multi-
national company NOC under study, we found that roughly 60% of the
reported issues needed attention from the support departments of the
infrastructure and within those, 15% required corrective measures by
data-center technicians.

6. Conclusions

Through extensive analysis of real-world data center data, we
have come up with a methodology that allows identifying behavioral
changes and quantifying the workforce required in a NOC to proac-
tively analyze them. Such changes are classified into change relevance
regions based on KPI rankings which, combined with a TTA estimation,
provides a final estimation of the NOC workforce.

Future work includes the identification of relevant metrics beyond
traffic, such as those coming from logs or telemetry APIs, to identify
hosts that not only show changes at the network level but also at the
systems/application level, which could be classified as of high priority
9

for the NOC/SOC workforce.
Table 1
Number of IP addresses falling into regions in weekly average per metric.

Regions

I II III IV

M
et

ric
s

Received bytes 814.65 183.71 56.14 43.68
Sent bytes 283.70 204.29 97.01 19.91
Duplicate ACKs 1005.46 212.60 76.80 53.87
Number of connections 615.29 281.83 43.68 25.47
Retransmissions 166.35 132.06 20.17 9.34
TCP zero windows 41.65 55.07 18.79 2.58
∩ 1580.63 536.28 215.69 97.55
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