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We establish boundedness estimates for solutions of general-
ized porous medium equations of the form

∂tu + (−L)[um] = 0 in RN × (0, T ),

where m ≥ 1 and −L is a linear, symmetric, and nonnegative 
operator. The wide class of operators we consider includes, 
but is not limited to, Lévy operators. Our quantitative esti-
mates take the form of precise L1–L∞-smoothing effects and 
absolute bounds, and their proofs are based on the interplay 
between a dual formulation of the problem and estimates on 
the Green function of −L and I − L.
In the linear case m = 1, it is well-known that the L1–L∞-
smoothing effect, or ultracontractivity, is equivalent to Nash 
inequalities. This is also equivalent to heat kernel estimates, 
which imply the Green function estimates that represent a key 
ingredient in our techniques.
We establish a similar scenario in the nonlinear setting m > 1. 
First, we can show that operators for which ultracontractivity 
holds, also provide L1–L∞-smoothing effects in the nonlin-
ear case. The converse implication is not true in general. 
A counterexample is given by 0-order Lévy operators like 
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−L = I−J∗. They do not regularize when m = 1, but we show 
that surprisingly enough they do so when m > 1, due to the 
convex nonlinearity. This reveals a striking property of nonlin-
ear equations: the nonlinearity allows for better regularizing 
properties, almost independently of the linear operator.
Finally, we show that smoothing effects, both linear and non-
linear, imply families of inequalities of Gagliardo-Nirenberg-
Sobolev type, and we explore equivalences both in the linear 
and nonlinear settings through the application of the Moser 
iteration.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction and main results

In this paper, we consider solutions of generalized porous medium equations [115]:{
∂tu + (−L)[um] = 0 in QT := RN × (0, T ),
u(·, 0) = u0 on RN ,

(GPME)

where m ≥ 1, T > 0, 0 ≤ u0 ∈ L1(RN ), and the operator −L is at least linear, symmetric, 
nonnegative,1 and includes Lévy operators2 defined for ψ ∈ C∞

c (RN ) and c ≥ 0 as

cψ(x) −
N∑

i,j=1
aij∂

2
xixj

ψ(x) − P.V.

ˆ

RN\{0}

(
ψ(x + z) − ψ(x)

)
dμ(z)

︸ ︷︷ ︸
=:Lμ[ψ](x)

(1.1)

where the real matrix [aij ]i,j=1,...,N is nonnegative and symmetric, P.V . is the Cauchy 
principal value, and:

μ is a nonnegative symmetric Radon measure on RN \ {0} satisfying (Hμ)ˆ

|z|≤1

|z|2 dμ(z) +
ˆ

|z|>1

1 dμ(z) < ∞.

Important examples are the Laplacian, the fractional Laplacian, sum of onedimensional 
fractional Laplacians, and so-called convolution type or 0-order operators given as −L =
I − J∗ where J ≥ 0 satisfies ‖J‖L1(RN ) = 1.

Boundedness estimates are the first step on the way to further regularity properties. 
This was exploited in e.g. [5] (cf. Theorem 2.2 in [66]), [57, Section 7], [25], [58, Theorem 
1.2], [116, Theorem 1.2], [59, Theorem 1.1], and [38, Theorem 1.2]. It is also an important 
estimate in obtaining uniqueness in L1 for very weak solutions of (GPME), see e.g. 
[39,62,63]. We will therefore focus on such estimates in this paper.

It is well-known since the works of Bénilan [11] and Véron [117] that the parabolic 
equation ∂tu − Δ[ϕ(u)] = 0 enjoys L1–L∞-smoothing when ϕ ∈ C1(R) and ϕ′(r) ≥
C|r|m−1 (see also [116, Theorem 8.2] in the case of the fractional Laplacian −L =
(−Δ)α

2 , and [114] in the standard Laplacian case). Let us therefore fix ϕ(r) = |r|m−1r. 
In the linear case (m = 1), the standard heat equation and the fractional heat equation 
still enjoy L1–L∞-smoothing [8,31], but there are cases in which the operator is too 

1 And moreover, densely defined, m-accretive, and Dirichlet in L1(RN ). Basically, we need the comparison 
principle and Lp-decay to hold for solutions of (GPME). We refer the reader to Appendix C for further 
information. Note that the terminology “Dirichlet operator” appears in the literature also as “sub-Markovian 
operator”. This property is expressing the fact that the operator has to be order preserving.
2 That is, operators which are nonnegative at any global nonnegative maximum (usually called the positive 

maximum principle), see e.g. [51]. When c > 0, there is (strong) absorption in (GPME).
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weak to ensure such estimates. This can e.g. be seen for the convolution type operators 
−L = I − J∗ (cf. [2, Theorem 1.4 and Lemma 1.6]), where the solutions are as smooth 
as the initial data. Hence, when the nonlinearity cannot help, the operator needs to be 
strong enough to provide bounded solutions. One of our main concerns is therefore the 
following question:

Which operators L produce bounded solutions of (GPME)?

To provide an answer to this intriguing question we will extend the so-called Green 
function method to a wide class of operators. Such a method was developed in a se-
ries of papers [14,15,26,27,30,32,33,35] both for operators on bounded domains and on 
manifolds, including the Euclidean space RN . The key tool is having at disposal good es-
timates for the kernel of (−L)−1, i.e. the Green function G−L. Now, applying the inverse 
operator on each side of the PDE in (GPME) yields the so-called dual equation

0 = (−L)−1[∂tu] + (−L)−1[(−L)[um]] = G−L ∗ ∂tu + um.

Another essential ingredient is the so-called Bénilan-Crandall (time-monotonicity) esti-
mate

∂tu(·, t) ≥ − u(·, t)
(m− 1)t in D′(RN ),

which is a weak version of the fact that the map t �→ t
1

m−1u(·, t) is nondecreasing. 
This is well-known to be a consequence of the time-scaling and comparison principle for 
(GPME), cf. [12,114].3 A combination of the above equations then gives the so-called 
fundamental upper bound or “almost representation formula”

um(x0, t) ≤
1

(m− 1)tG−L(· − x0) ∗x u(·, t). (1.2)

The latter name is justified in the sense that the bound is similar to the one given by the 
representation formula (convolution with the heat kernel) in the linear case m = 1, where 
the Green function G−L(· −x0) is replaced by the heat kernel H−L(· −x0) corresponding 
to the operator. In both cases, the boundedness estimates follows directly by applying 
various properties of G−L(· − x0) and H−L(· − x0). Further details on the proofs can be 
found in Section 4.

Our method allows to recover the well-known L1–L∞-smoothing result, cf. Theo-
rem 3.1 and Fig. 1,

3 The estimate is purely nonlinear since it degenerates when m = 1. However, the stronger Aronson-
Bénilan estimate [4] do hold for the linear case as well, but it relies on the operator itself having space-scaling. 
We refer the reader e.g. to [31, Lemma 6.1] and [56, p. 1270]. Thus, the Green function method can indeed 
hold for particular linear cases.
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‖u(·, t)‖L∞(RN ) � t−Nθα‖u0‖αθαL1(RN ) for a.e. t > 0

where α ∈ (0, 2] and θα := (α + N(m − 1))−1, is respectively valid for the Laplacian 
(−L) = (−Δ) [69,113,114] and the fractional Laplacian −L = (−Δ)α

2 [56] (see also [47,
50] with p = 2). An immediate consequence of our approach is that also Lévy operators 
L = Lμ with μ comparable to the measure of the fractional Laplacian enjoys the same 
estimate, see Lemma 7.8. It is also interesting to note that we are able to treat operators 
whose Green functions have different power behaviours. Solutions of (GPME) with such 
operators satisfy

‖u(·, t)‖L∞(RN ) � t−Nθα‖u0‖αθαL1(RN ) + t−Nθ2‖u0‖2θ2
L1(RN ) for a.e. t > 0,

see Theorem 3.3. The examples treated in Section 7.2 are −L = (−Δ) + (−Δ)α
2 , rela-

tivistic Schrödinger type operators −L = (κ2I−Δ)α
2 −καI with κ > 0, and L being the 

generator of a finite range isotropically symmetric α-stable process in RN with jumps 
of size larger than 1 removed. Finally, if G−L ∈ L1(RN ) in (1.2), then we immediately 
obtain the following absolute bound (cf. Theorem 3.7 and Fig. 3):

‖u(·, t)‖L∞(RN ) � t−1/(m−1) for a.e. t > 0. (1.3)

All operators on the form I − L provide such an estimate (Lemma 7.16), and also the 
operator −L = (I − Δ)α

2 corresponding to the Bessel potential (Lemma 7.21).4 They 
are furthermore examples of operators which have better boundedness properties in the 
nonlinear case than in the linear, see Remark 7.22.

The Green function method requires the existence of an inverse (−L)−1 with a ker-
nel G−L satisfying suitable estimates. This of course puts a restriction on the class of 
operators we are able to treat. To remedy this fact, we also develop another approach 
which consists in considering GI−L instead, i.e., the Green function associated with the 
resolvent operator I − L. In this case, the inverse always exists, and GI−L is at least as 
good as G−L. By rewriting the PDE in (GPME) to ∂tu + (I − L)[um] = um, applying 
(I − L)−1, and using the time-monotonicity estimate (associated with −L), we obtain 
the following fundamental upper bound:

um(x0, t) ≤
(

1
(m− 1)t + ‖u(·, t)‖m−1

L∞(RN )

)
GI−L(· − x0) ∗x u(·, t). (1.4)

Hence, we see that we have to pay the price of treating an equation with the reaction 
term um, which we then have to reabsorb to be able to obtain good estimates in this 
case. However, note that we can split the estimation of (1.4) into two cases:

‖u(·, t)‖m−1
L∞(RN ) ≤

1
(m− 1)t and ‖u(·, t)‖m−1

L∞(RN ) >
1

(m− 1)t .

4 This operator can be written as I − Lμ for μ satisfying (Hμ), i.e., on the form (1.1).
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In the first case, we already have the estimate ‖u(·, t)‖L∞(RN ) � t−1/(m−1), while in the 
other

um(x0, t) ≤ 2‖u(·, t)‖m−1
L∞(RN )GI−L(· − x0) ∗x u(·, t),

from which we can deduce ‖u(·, t)‖L∞(RN ) � ‖u0‖L1(RN ) as long as GI−L ∈ Lp(RN )
with p ∈ (1, ∞). Hence, the fundamental upper bound (1.4) yields

‖u(·, t)‖L∞(RN ) � t−1/(m−1) + ‖u0‖L1(RN ) for a.e. t > 0, (1.5)

see Theorem 3.5 and Fig. 2. The operator −L =
∑N

i=1(−∂2
xixi

)α
2 provides an important 

example in this case since G−L = ∞ (for some values of α), while GI−L ∈ Lp(RN ). We 
refer to Lemma 7.24 and Remark 7.25 for further information. Indeed, this is the first 
time the Green function method is able to treat this operator. We end this part by also 
mentioning that Lévy operators L = Lμ with μ such that, for α ∈ (0, 2) and constants 
C1, C2, C3 > 0,

C1

|z|N+α
1|z|≤1 ≤ dμ

dz (z) ≤ C2

|z|N+α
1|z|≤1 and dμ

dz (z) ≤ C31|z|>1, (1.6)

fall into this case (Lemma 7.26). The latter fits with the “usual impression” in the PDE 
community regarding the least assumptions expected on nonlocal operators which would 
produce bounded solutions of (GPME). Nevertheless, we were not able to find such a 
result other places in the literature.

An alternative to the Green function method is the nowadays standard Moser iter-
ation [95,96], which requires the quadratic form associated to the operator to satisfy 
Gagliardo-Nirenberg-Sobolev (GNS) and Stroock-Varopoulos inequalities. In the case 
−L = (−Δ)α

2 , we refer to [56]. We devote Section 6 to a further discussion on the 
connections between Green function estimates, heat kernel estimates, and functional in-
equalities like GNS. In the linear case m = 1, it is well-known that L1–L∞-smoothing 
is equivalent with Nash inequalities (a subfamily of GNS) [97], and moreover, equiv-
alent with on-diagonal heat kernel H−L estimates. We present those connections in 
Theorem 6.1, where we also include—maybe the less-known—equivalence with Sobolev 
inequalities. Since we are interested in Green function estimates, we finally prove that 
the bound G−L � |x|−(N−α) implies the Sobolev inequality. If the Green function exists, 
it is given by

G−L(x) =
∞̂

0

H−L(x, t) dt.

Hence, off-diagonal heat kernel bounds is needed to give estimates on the Green function. 
In other words, we need more information on H−L than what the previous equivalences 
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give us. The linear panorama is more or less settled, and we move on to the nonlinear case 
m > 1. Again, L1–L∞-smoothing is equivalent with a family of GNS inequalities which is 
now subcritical since m > 1. The latter is somehow interesting in the sense that we need 
a weaker inequality, compared to the linear case, in order to prove L1–L∞-smoothing 
through the Moser iteration. However, this inequality is still equivalent with the Sobolev 
inequality by [7]. This is in contrast to the absolute bound which is equivalent to the 
Poincaré inequality! In general, the latter inequality can only give Lq–Lp-smoothing es-
timates through an iteration approach [75,76], and somehow the Green function method 
then provides an improvement here (since we indeed reach L∞-estimates, cf. (1.3)). See 
the Figs. 4 and 5 for the various connections.

The resolvent approach also offers further interesting insight. Since

GI−L(x) =
∞̂

0

HI−L(x, t) dt =
∞̂

0

e−tH−L(x, t) dt,

even poor on-diagonal heat kernel bounds for H−L will give GI−L ∈ Lp(RN ). This has at 
least two consequences: (i) Such estimates for H−L imply both Green function bounds 
and also GNS inequalities, which furthermore imply that solutions of (GPME) (with 
m > 1) are bounded whenever the Green function method and/or Moser iteration go 
through. (ii) If the operator is such that solutions of (GPME) with m = 1 are bounded, 
then also solutions of (GPME) with m > 1 are bounded (Theorem 3.9). The last item 
corresponds to the “usual impression” in the PDE community, but again we were not able 
to find a good reference for such a statement. The first item provides a clear connection 
between the Green function method and the Moser iteration, but there are some rather 
simple on-diagonal bounds for which the algebra of the Moser iteration is hard to work 
out, while the Green function approach is more straightforward. Consider for example 
H−L(x, t) � t−N/αet which corresponds to the Lévy operator Lμ with μ satisfying (1.6). 
It is clear that the linear case has the estimate ‖u(·, t)‖L∞(RN ) � t−N/αet‖u0‖L1(RN ), 
for a.e. t > 0, but the unclear nonlinear case is in fact easily handled with the Green 
function method.

We have then reached our final task:

Can the nonlinear case provide bounded solutions in cases when the linear cannot?

The question has parallels to other equations for which regularizing effects only happen 
when the nonlinearity is strong enough. Take e.g. the scalar conservation law ∂tu +
div[f(u)] = 0. If f(r) = r, we are in the setting of the transport equation, and the 
solutions are as smooth as the initial data. Hence, the operator itself is not able to 
provide smoothing estimates. In the mentioned case, f needs to be so-called genuinely 
nonlinear to provide regularizing effects. A sufficient condition is f ′′(r) > 0 when N = 1, 
and f : RN → RN defined as f(r) = (u2/2, u3/3, . . . , uN+1/N +1) when N > 1. L1–L∞-
smoothing can then be found in [104], while other regularizing properties in e.g. [53]. In 
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this context, we also mention [1] which treats e.g. ∂tu + div[f(u)] − Δ[um] = 0. Under 
some conditions on f , it is proven that properties like boundedness hold whenever it 
holds for ∂tu − Δ[um] = 0.

We also found the answer to the above question by looking at operators which were 
too weak to provide boundedness estimates by themselves: the family −L = I − J∗, 
mentioned earlier. Basically, the porous medium nonlinearity is so strong that we were 
even able to prove that solutions of (GPME) with those operators are bounded as in 
(1.5). Theorem 5.1 provides the rigorous statement, and what is interesting to note is 
that the proof resembles the Green function of the resolvent operator method.

Notation. Derivatives are denoted by ′, d
dt , and ∂xi

. We use standard notation for Lp, 
W p,q, and Cb. Moreover, C∞

c is the space of smooth functions with compact sup-
port, C∞

b the space of smooth functions with bounded derivatives of all orders, and 
C([0, T ]; Lp

loc(RN )) the space of measurable functions ψ : [0, T ] → Lp
loc(RN ) such that 

ψ(t) ∈ Lp
loc(RN ) for all t ∈ [0, T ], supt∈[0,T ] ‖ψ(t)‖Lp(K) < ∞, and ‖ψ(t) −ψ(s)‖Lp(K) →

0 when t → s for all compact K ⊂ RN and t, s ∈ [0, T ]. In a similar way we also 
define C([0, T ]; Lp(RN )). Note that the notion of RN × (0, T ) � (x, t) �→ ψ(x, t) ∈
C([0, T ]; Lp

loc(RN )) is a subtle one. In fact, we mean that ψ has an a.e.-version which 
is continuous [0, T ] → Lp(RN ). Let f, g be positive functions. The notation f � g or 
f � g translates to f ≤ Cg or f ≥ Cg for some constant C > 0. Hence, f � g is exactly 
that f � g and f � g hold simultaneously. For α ∈ (0, 2] and p ∈ [1, ∞), the quantity 
(αp +N(m −1))−1 will either be denoted by θp or θα, when there is no ambiguity. Finally, 
the following Young inequality is repeatedly used throughout the paper:

ab ≤ 1
ϑ
aϑ + ϑ− 1

ϑ
b

ϑ
ϑ−1 , where a, b > 0 and ϑ > 1. (1.7)

2. Assumptions and weak dual solutions

The spatial dimension is fixed to be N ≥ 3,5 and the assumptions on the data (u0, m)
are6:

5 The cases N = 1 and N = 2 are different and could fall out of our general setting. An example is the 
fractional Laplacian, where the condition N > α plays an essential role in the form of the Green function. 
In this case we could consider N ≥ 1, under the extra condition α ∈ (0, 1). Also, the Green function of 
the standard Laplacian is sign-changing when N = 2, and it falls out of our setting as it fails to satisfy 
assumption (HG) below. Since we are dealing with Sobolev-type inequalities and their connection with 
smoothing effects, it is worth recalling that those inequalities tend to be different in dimension 1 and 2: For 
instance, functions of H1(R) are automatically bounded.
6 For the purpose of boundedness results, there is no loss of generality in assuming nonnegative initial data. 

First, for sign-changing solutions, the nonlinearity um has to be replaced by |u|m−1u. As a consequence, 
−u is a solution of (GPME) whenever u is. Second, consider the sign-changing solution u with initial 
data u0, and also the two other nonnegative solutions u+ and u− corresponding respectively to the initial 
data u+

0 = max{u0, 0} and u−
0 = − min{u0, 0}. By the comparison principle, u0 ≤ u+

0 implies u ≤ u+

and −u0 ≤ u−
0 implies −u ≤ u−. We can combine the inequalities to obtain −u− ≤ u ≤ u+, that is 

|u| ≤ max{u+, u−} ≤ u+ + u−. Also, being nonnegative, u+ and u− satisfy (some form of) smoothing 
effect estimate, that we can sum up to obtain the same estimate for |u|, since u+

0 and u−
0 have disjoint 

support.
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0 ≤ u0 ∈ L1(RN ) (see footnote 6). (Hu0)

The nonlinearity is r �→ rm for some fixed m > 1. (Hm)

We will make repeated use of the Green functions (or fundamental solutions or poten-
tial kernels) Gx0

−L
and Gx0

I−L
of the nonnegative operator −L and the positive operator 

I − L. A crucial assumption throughout the paper is therefore:

For the operator A, there exists a function Gx0
A ∈ L1

loc(RN ) such that: (HG)

0 ≤ Gx0
A = G0

A(· − x0) = G0
A(x0 − ·) a.e. in RN and A[Gx0

A ] = δx0 in D′(RN ).

Remark 2.1. The assumption Gx0
A = G0

A(· − x0) (possibly) excludes x-dependent oper-
ators. To include x-dependent operators, one would instead need Gx0

A = G0
A(·, x0) and 

G0
A(·, x0) continuous in RN \ {x0}. In this case, A−1[f ] cannot be written as a convolu-

tion, but other than that, the proofs go through as before.

Appendix D provides a guide for checking (HG) for specific operators. Let us just men-
tion that when A is of the form (1.1) with a measure μ satisfying (Hμ), then Gx0

A satisfy 
the above under (possibly) some additional properties on the heat kernel associated with 
A. Moreover, for each such operator A, we have A−1 defined as

A−1[f ](y) :=
ˆ

RN

Gy
Af =

ˆ

RN

G0
A(· − y)f = G0

A ∗ f(y) = Gy
A ∗ f,

whenever that integral is convergent. The Green functions that will be used in this paper 
satisfy (with Cp, K1, K2, K3, C1 > 0 all independent of x0) one of the following additional 
assumptions:

For all R > 0, some x0 ∈ RN , and some α ∈ (0, 2], (G1){´
BR(x0) G

x0
−L

(x) dx ≤ K1R
α,

and for a.e. x ∈ RN \BR(x0), Gx0
−L

(x) ≤ K2R
−(N−α).

For all R > 0, some x0 ∈ RN , and some α ∈ (0, 2], (G′
1){´

BR(x0) G
x0
−L

(x) dx ≤ K1R
α,

and for a.e. x ∈ RN \BR(x0), Gx0
−L

(x) ≤ max{K3,K2R
−(N−α)}.

For some x0 ∈ RN , (G2)

‖Gx0
−L

‖L1(RN ) = ‖G0
−L‖L1(RN ) ≤ C1 < ∞.

For some x0 ∈ RN and some p ∈ (1,∞), (G3)

‖Gx0
I−L

‖Lp(RN ) = ‖G0
I−L‖Lp(RN ) ≤ Cp < ∞.
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Remark 2.2.

(a) Note that there is no ambiguity in assumption (G′
1). Indeed, we cannot consider 

Green functions which are merely bounded around x0 since this would contradict 
the integrability condition.

(b) We can view assumption (G3) in two ways: (i) We think of −L �→ I−L in (GPME), 
i.e., c = 1 in (1.1). (ii) We think of −L in (GPME), but we want to use the Green 
function of the resolvent of that operator, i.e., c = 0 in (1.1). In both cases, if −L is 
such that the corresponding heat equation gives L1-decay, then ‖G0

I−L‖L1(RN ) ≤ 1
(see Lemma 7.16). Hence, if we consider item (i), we are actually in the case (G2).

(c) For now, we just remark that the fractional Laplacian/Laplacian −L = (−Δ)α
2 with 

α ∈ (0, 2] satisfy (HG) and (G1)–(G3), while −L of the full form (1.1) (with c > 0) 
satisfies (HG) and (G2). Other important examples can be found in Section 7, where 
heat kernel bounds and Fourier methods are used to obtain Green function bounds.

If we apply the inverse (−L)−1 on each side of the PDE in (GPME), we get

0 = (−L)−1[∂tu] + (−L)−1[(−L)[um]] = ∂t
(
Gx0

−L
∗x u) + um.

We thus define a suitable class of solutions as the following:

Definition 2.1 (Weak dual solution). We say that a nonnegative measurable function u
is a weak dual solution of (GPME) if:

(i) u ∈ C([0, T ]; L1(RN )) and um ∈ L1((0, T ); L1
loc(RN )).

(ii) For a.e. 0 < τ1 ≤ τ2 ≤ T , and all ψ ∈ C1
c ([τ1, τ2]; L∞

c (RN )),

τ2ˆ

τ1

ˆ

RN

(
(−L)−1[u]∂tψ − umψ

)
dx dt

=
ˆ

RN

(−L)−1[u(·, τ2)](x)ψ(x, τ2) dx−
ˆ

RN

(−L)−1[u(·, τ1)](x)ψ(x, τ1) dx.
(2.1)

(iii) u(·, 0) = u0 a.e. in RN .

Remark 2.3.

(a) We need to argue that (−L)−1[u] ∈ C([0, T ]; L1
loc(RN )) in order to make sense of 

the above definition. By using (G1) and (G′
1), we have

(−L)−1[1Br(x0)](x) =
ˆ

Gx0
−L

(x) dx ≤ C
Br(x0)
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which implies that
ˆ

RN

(−L)−1[u(·, t)](x)1Br(x0)(x) dx ≤ C‖u(·, t)‖L1(RN )

for all r > 0 and all x0 ∈ RN . This makes us able to complete the argument as in 
Remark 2.1 in [15]. In the case of (G2), we get the stronger

ˆ

RN

(−L)−1[u(·, t)](x) dx ≤ ‖Gx0
−L

‖L1(RN )‖u(·, t)‖L1(RN ),

and hence, (−L)−1[u] ∈ C([0, T ]; L1(RN )).
(b) Later, we will also use the weak dual formulation for

∂tu + (I − L)[um] = um ⇐⇒ ∂tu− L[um] = 0.

Part (ii) of the above definition then looks like

τ2ˆ

τ1

ˆ

RN

(
(I − L)−1[u]∂tψ − umψ + um(I − L)−1[ψ]

)
dx dt

=
ˆ

RN

(I − L)−1[u(·, τ2)](x)ψ(x, τ2) dx−
ˆ

RN

(I − L)−1[u(·, τ1)](x)ψ(x, τ1) dx.

We again need (I − L)−1[u] ∈ C([0, T ]; L1
loc(RN )). Since

ˆ

RN

(I − L)−1[u(·, t)](x) dx ≤ ‖G0
I−L‖L1(RN )‖u(·, t)‖L1(RN ),

which is finite by Remark 2.2, we get the stronger (I −L)−1[u] ∈ C([0, T ]; L1(RN )).
(c) Regarding uniqueness and very weak solutions. In many cases, weak dual so-

lutions are very weak in the sense of [62,63]. For instance this happens when 
C∞

c ⊂ dom(−L). A simple, and yet technical, proof follows by approximating L[φ]
by a sequence ψn of admissible test functions in (2.1). As a consequence, we can use 
the results of [62,63] to conclude existence and uniqueness of weak dual solutions in 
L1(RN ) since we will show that they are a priori bounded. A general existence result 
for our purposes can be found in Proposition 4.1.

3. Statements of main boundedness results

We present some explicit estimates regarding instantaneous boundedness which rely 
on the assumptions (G1)–(G3). All of our results originate from what is often referred 
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∑N
i=1(−∂2

xixi
)

α

2

(−Δ)
α

2

Lμ such that
|z|−(N+α) � dμ

dz � |z|−(N+α)

‖u(·, t)‖L∞ � t−Nθα‖u0‖αθα

L1 Sobolev

Fig. 1. Operators that fall into the setting of Theorem 3.1, see Section 7. Note that the operator ∑N
i=1(−∂2

xixi
)

α

2 actually enjoys Theorem 3.5, but after a scaling argument, we can deduce the better esti-
mate above (Remark 7.25). According to Section 6 they should furthermore enjoy a Sobolev inequality.

to as fundamental upper bounds, see Theorem 4.6 in Section 4. These bounds provide 
an “almost representation formula” similar to the one given by convolution in the linear 
case (m = 1).

3.1. L1–L∞-smoothing

We start with the assumptions (G1) and (G′
1) which impose the most structure. In 

effect, we deduce well-known results.

Theorem 3.1 (L1–L∞-smoothing). Assume (Hu0)–(HG), and let u be a weak dual solution 
of (GPME) with initial data u0.

(a) If (G1) holds, then

‖u(·, t)‖L∞(RN ) ≤
C(m,α,N)

tNθα
‖u0‖αθαL1(RN ) for a.e. t > 0,

where θα := (α + N(m − 1))−1, C(m) := 2
m

m−1 , and

C(m,α,N) := 2 1
mC(m)Nθα

( m

m− 1

)αθα
K

(N−α)θα
1 Kαθα

2 .

(b) If (G′
1) holds, then

‖u(·, t)‖L∞(RN ) ≤

⎧⎨⎩
C(m,α,N)

tNθα
‖u0‖αθαL1(RN ) if 0 < t ≤ t0 a.e.,

C̃(m)
t

1
m

‖u0‖
1
m

L1(RN ) if t > t0 a.e.,

where C̃(m) := (2m(m − 1)−1C(m)K3)1/m and

t0 := 2m
( m )−(m−1)

C(m)Km
1 K

αm
m−1
2 K

−( αm
m−1+(m−1))

3 ‖u0‖−(m−1)
L1(RN ) .
m− 1
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Remark 3.2.

(a) In this case, we can also get local smoothing estimates, see e.g. Proposition 4.23.
(b) Note that the estimate in Theorem 3.1(a) is invariant under time- and space-scaling. 

Consider e.g. (GPME) with −L = (−Δ)α
2 . If u solves (GPME), then

uκ,Ξ,Λ(x, t) := κu(Ξx,Λt) for all κ,Ξ,Λ > 0

also solves (GPME) as long as κm−1Ξα = Λ. By inserting uκ,Ξ,Λ into Theo-
rem 3.1(b), we see that the estimate remains the same since ‖uκ,Ξ,Λ(·, 0)‖L1(RN ) =
κΞ−N‖u(·, 0)‖L1(RN ).

(c) In a similar way, the second part of the estimate in Theorem 3.1(b) is invariant under 
time-scaling (see Lemma 4.3 below). Even if that estimate might seem a bit unusual, 
it has appeared in the literature before, see e.g. Theorem 2.7 in [15].

(d) Observe also that the constant in front of both estimates blows up as m → 1+.
(e) As expected,

(1
t

)Nθα
≤

(1
t

) 1
m for a.e. t > t0

since the first estimate requires more assumptions at infinity.

We also include smoothing effects when (G1) holds simultaneously for different α ∈
(0, 2].

Theorem 3.3 (L1–L∞-smoothing). Assume (Hu0)–(HG), and let u be a weak dual solution 
of (GPME) with initial data u0. If (G1) holds with α ∈ (0, 2) when 0 < R ≤ 1 and with 
α = 2 when R > 1, then:

‖u(·, t)‖L∞(RN ) ≤ C̃(m)
{
t−Nθα‖u0‖αθαL1(RN ) if 0 < t ≤ ‖u0‖−(m−1)

L1(RN ) a.e.,
t−Nθ2‖u0‖2θ2

L1(RN ) if t > ‖u0‖−(m−1)
L1(RN ) a.e.,

where θα = (α + N(m − 1))−1 (defined for α ∈ (0, 2]) and

C̃(m) := 2
(
(C(m)K1)

m
m−1 + m

m− 1C(m)K2

) 1
m

.

Remark 3.4.

(a) Note that t = ‖u0‖−(m−1)
L1(RN ) gives the bound C̃(m)‖u0‖L1(RN ) in both cases.

(b) We can of course combine other behaviours in a similar way, and as a rule of thumb 
one can say that 0 < R ≤ 1 gives small time behaviour while R > 1 gives large time 
behaviour.
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I − J∗

Lμ such that
|z|−(N+α)1|z|≤1 � dμ

dz � |z|−(N+α)1|z|≤1
dμ
dz � 1|z|>1

‖u(·, t)‖L∞

� t−1/(m−1) + ‖u0‖L1

Weaker than
Sobolev

Fig. 2. Operators that fall into the setting of Theorem 3.5, see Section 7. It is clear that not all of these 
operators enjoy a Sobolev inequality since e.g. I − J∗ does not produce bounded solutions in the linear 
case. The general statement is therefore that they enjoy a functional inequality weaker than the Sobolev.

When we use the test function Gx0
I−L

, we lack “structure” in the sense that we do not 
assume, a priori, any precise behaviour of the Green function at zero nor at infinity. Still, 
we arrive at:

Theorem 3.5 (L1–L∞-smoothing). Assume (Hu0)–(HG), and let u be a weak dual solution 
of (GPME) with initial data u0. If (G3) holds, then

‖u(·, t)‖L∞(RN ) ≤

⎧⎨⎩2(m− 1)−
1

m−1 t−
1

m−1 if 0 < t ≤ t0 a.e.,

2C(m)1−
1
pC

1− 1
p

p ‖u0‖L1(RN ) if t > t0 a.e.,

where

t0 := 1
m− 1

(
C(m)1−

1
pC

1− 1
p

p

)−(m−1)
‖u0‖−(m−1)

L1(RN )

and C(m) := 2(1 + m)
m

m−1 .

Remark 3.6.

(a) The time-scaling (see Lemma 4.3 below) ensures that the above estimate is of an 
invariant form.

(b) Due to the “linear structure” of the fundamental upper bound in Theorem 4.6(b), 
we cannot improve Theorem 3.5 even if we strengthen assumption (G3) in the spirit 
of (G1) or (G′

1).
(c) We would also like to refer the reader to [78,101]. The settings are respectively 

bounded domains or Riemannian manifolds, but (some of) the results have a flavour 
of the above estimate.
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I − L

(I − Δ)
α

2

‖u(·, t)‖L∞ � t−1/(m−1) Poincaré

Fig. 3. Operators that fall into the setting of Theorem 3.7, see Section 7. According to Section 6 they should 
furthermore enjoy a Poincaré inequality. Note that the Poincaré inequality is not strong enough to imply 
absolute bounds (only Lq–Lp-smoothing).

3.2. Absolute bounds

We also include the especially well-behaved case when Gx0
−L

is integrable.

Theorem 3.7 (Absolute bounds). Assume (Hu0)–(HG), and let u be a weak dual solution 
of (GPME) with initial data u0. If (G2) holds, then

‖u(·, t)‖L∞(RN ) ≤ C̃(m)t−1/(m−1) for a.e. t > 0,

where C̃(m) := (2
m

m−1C1)1/(m−1).

Remark 3.8. The above estimate immediately enjoys time-scaling (see Lemma 4.3 below).

3.3. Linear implies nonlinear

Since on-diagonal heat kernel bounds give L1–L∞-smoothing in the linear case, we 
are able to transfer such estimates to the nonlinear setting (GPME) by using GI−L as a 
test function, see the proof in Section 4.8.

Theorem 3.9 (Linear implies nonlinear). Assume p ∈ (1, ∞) and (Hu0)–(HG), and let u
be a weak dual solution of (GPME) with m ≥ 1 and initial data u0. If the operator −L

is such that Hx0
−L

satisfy

0 ≤ Hx0
−L

(x, t) ≤ C(t) with
∞̂

0

e−tC(t)
p−1
p dt < ∞,

then u is bounded on RN × [τ, ∞), for a.e. τ > 0.
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Remark 3.10.

(a) It is not possible to obtain that nonlinear implies linear since we construct a coun-
terexample in Section 5. There we find an operator for which a linear boundedness 
estimate does not hold, but a nonlinear do.

(b) In the case of e.g. −L = −Δ, the on-diagonal heat kernel bound gives

|u(x, t)| ≤
ˆ

RN

|u0(x− y)|Hx0
−Δ(y, t) dy � t−N/2‖u0‖L1(RN ).

(c) By e.g. [94, Theorem 8.16], linear operators satisfying the L1–L∞-smoothing are 
characterized by the Nash inequality when C(t) � t−γ/(1−γ) for some γ ∈ (0, 1). 
Hence, the p needs to be restricted to (1, γ/(2γ − 1)). That is, given −L for which 
C(t) is power-like, we can find p in that interval, and then, the result transfers to 
the nonlinear setting (m > 1) in the sense that u solving (GPME) is bounded. See 
also the discussion in Section 6.1.

4. Proofs in the Green function setting

Starting from the fundamental upper bound, already mentioned in the introduction,

um(x0, t) ≤
1

(m− 1)tG−L(· − x0) ∗x u(·, t) = 1
(m− 1)t

ˆ

RN

G−L(x− x0)u(x, t) dx,

one can indeed deduce L1–L∞-smoothing estimates. To motivate the proofs, let us pro-
vide the formal computations assuming (G1). Split the integral over RN into BR(x0)
and RN \BR(x0), then estimate each part:

um(x0, t) ≤ ‖u(·, t)‖L∞(RN )
1

(m− 1)tK1R
α + ‖u(·, t)‖L1(RN )

1
(m− 1)tK2R

−(N−α)

The Young inequality (1.7) with ϑ = m applied to the first term yields

1
m
‖u(·, t)‖mL∞(RN ) + m− 1

m

( 1
(m− 1)tK1R

α
) m

m−1
.

By taking the supremum, with respect to x0 ∈ RN , on each side of the above inequality 
and using the L1-decay of solutions, we get, for some constant C > 0,

‖u(·, t)‖mL∞(RN ) ≤
1
2C

mR
αm
m−1

t
m

m−1

(
1 +

t
1

m−1 ‖u0‖L1(RN )

R
1

(m−1)θα

)
.

We then have

R =
(
t

1
m−1 ‖u0‖L1(RN )

)(m−1)θα =⇒ ‖u(·, t)‖L∞(RN ) ≤
C ‖u0‖αθα1 N .
tNθα L (R )
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4.1. Properties of weak dual solutions

Our rigorous justification of the above computations starts with collecting some a 
priori results for weak dual solutions of (GPME), which will be a consequence of the 
existence theory—its proof is postponed to Appendix E. Note that the proof requires 
the operator −L to be in a specific class, and that this particular class is at least one of 
the requirements to ensure (HG). A thorough discussion can be found in Appendix D.

Proposition 4.1 (Existence and a priori results). Assume 0 ≤ u0 ∈ (L1 ∩ L∞)(RN ), −L

is densely defined, m-accretive, and Dirichlet in L1(RN ), (Hm)–(HG), and (G1)–(G3).

(a) There exists a weak dual solution u of (GPME) such that

0 ≤ u ∈ (L1 ∩ L∞)(QT ) ∩ C([0, T ];L1(RN )).

(b) Let u, v be weak dual solutions of (GPME) with initial data u0, v0 ∈ (L1∩L∞)(RN ). 
Then:

(i) (Comparison) If u0 ≤ v0 a.e. in RN , then u ≤ v a.e. in QT .
(ii) (Lp-decay) ‖u(·, τ2)‖Lp(RN ) ≤ ‖u(·, τ1)‖Lp(RN ) for all p ∈ [1, ∞] and a.e. 0 ≤

τ1 ≤ τ2 ≤ T .

Remark 4.2.

(a) If u0 ∈ L1(RN ), then Proposition 4.1(b)(i)–(ii) hold also when m = 1 by approxi-
mation, and then also for u0 ∈ TV (RN ).

(b) We provide no general uniqueness proof. However, the constructed solutions are 
unique by definition since they satisfy the comparison principle.

The following scaling property holds independently of the operator L:

Lemma 4.3 (Time-scaling). Assume (Hm) and Λ > 0. If (x, t) �→ u(x, t) solves (GPME)
on RN × (0, T ), then

(x, t) �→ uΛ(x, t) := Λ
1

m−1u(x,Λt)

solves (GPME) on RN × (0, ΛT ) for all Λ > 0.

Proof. Note that

∂tuΛ(x, t) = Λ
m

m−1 ∂tu(x,Λt) and L[um
Λ (·, t)](x) = Λ

m
m−1L[um(·,Λt)](x),

and the proof is finished. �
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Our proofs heavily rely on:

Proposition 4.4 (Time-monotonicity, Theorem 4 in [52]). If u is a solution of (GPME)
with initial data u0, then the function 0 < t �→ t

m
m−1um(·, t) is nondecreasing for a.e. 

x ∈ RN .

Remark 4.5. Let us address the issue of defining exactly what we mean by the mapping 
“0 < t �→ t

m
m−1um(·, t) is nondecreasing for a.e. x ∈ RN”. Of course, if functions are 

continuous (in space and time) this is not an issue, but a priori u is merely integrable, 
hence some remarks are in order.

We shall make a systematical use of the following properties throughout the paper. 
Indeed, for functions f ∈ L∞(QT ) ⊂ L1

loc(QT ), we have that:

(i) If (x0, t0) is a Lebesgue point for f , then it is a Lebesgue point for fm. This follows 
from the fact that f is essentially bounded.

(ii) If (x0, t0) is a Lebesgue point for fm, then it is also a Lebesgue point for f . This 
easily follows from Jensen inequality and from the fact that m > 1, so that the 
power nonlinearity fm is convex.

(iii) We can always choose a version of f which is bounded at every point, and such 
that all points are Lebesgue points. Indeed, we know that the set of “non-Lebesgue 
points” has measure zero, as well as the set where the function is not bounded, hence 
we can just redefine the function at those points as: letting QR(x, t) = BR(x) ×
[t −R, t + R] ⊂ QT we define

f(x, t) := lim
R→0

1
|QR(x, t)|

ˆ

QR(x,t)

f(y, τ) dy dτ,

noting that the latter integral is always finite, since f ∈ L∞(QT ). Hence in this 
case we have a version of f for which all points are Lebesgue points.

(iv) Moreover, if f ∈ C([0, T ]; L1(RN )), we can choose a version such that f : [0, T ] →
L1(RN ) is a continuous mapping, so that for all t ∈ [0, T ], t �→ f(·, t) ∈ L1(RN ).

Throughout the paper we will therefore fix a version of a solution u ∈ L∞(QT ) ∩
C([0, T ]; L1(RN )) to the (GPME) such that all the above properties hold. These prop-
erties provide a precise meaning to the statements that we will often use in the proofs, 
in particular when we use a solution u evaluated at a Lebesgue point (t, x), or at a 
Lebesgue point with respect to one variable, for instance a point (·, t) for a.e. t > 0
or a point (x, ·) for a.e. x ∈ RN . This is clear in view of the fact that we can redefine 
u ∈ L∞(QT ) ∩ C([0, T ]; L1(RN )) so that all space-time points are Lebesgue points, as 
explained above. This will happen for instance in the proof of Theorem 3.5, and also in 
the fundamental upper bounds Theorem 4.6 and its consequences. Sometimes, one can 
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also extend the validity of statements that hold “for a.e. t > 0” to statements that hold 
“for all t > 0”.

Since (GPME) enjoys time-scaling, the framework provided in [52] simplifies. In our 
setting, the proof only relies on the comparison principle. We thus include the argument, 
which we originally learned from Prof. Juan Luis Vázquez (see also [12,113]).

Proof of Proposition 4.4. For all Λ ≥ 1, we have Λ
1

m−1u0 ≥ u0 a.e. in RN . Lemma 4.3
gives that uΛ solves (GPME) with initial data Λ

1
m−1u0, and then the comparison prin-

ciple (Theorem 4.1(b)(i)) implies uΛ ≥ u for (x, t) ∈ QT and all Λ ≥ 1. For any fixed 
t > 0, choose

Λ := t + h

t
= 1 + h

t
for all h ≥ 0.

Then

u(x, t) ≤ uΛ(x, t) = Λ
1

m−1u(x,Λt) =
( t + h

t

) 1
m−1

u(x, t + h).

We conclude by noting that r �→ rm is increasing. �
4.2. Reduction argument

Throughout, we fix τ∗, T > 0 such that 0 < τ∗ < T , and let τ ∈ (τ∗, T ]. We also 
consider the following sequence of approximations {u0,n}n∈N satisfying⎧⎪⎪⎨⎪⎪⎩

0 ≤ u0,n ∈ (L1 ∩ L∞)(RN ) such that
u0,n → u0 in L1(RN ) and
u0,n → u0 a.e. in RN monotonically from below as n → ∞.

(4.1)

When we take u0,n as initial data in (GPME), we denote the corresponding solutions by 
un, and they satisfy Proposition 4.1, Lemma 4.3 and Proposition 4.4.

4.3. Fundamental upper bounds

This section is devoted to prove:

Theorem 4.6 (Fundamental upper bounds). Assume 0 ≤ u0,n ∈ (L1 ∩ L∞)(RN ), (Hm), 
and (HG). If un is a weak dual solution of (GPME) with initial data u0,n, then:

(a) Under assumptions (G1)–(G2), for a.e. τ∗ > 0 and all Lebesgue points x0 ∈ RN ,

um
n (x0, τ∗) ≤ C(m) 1

τ∗

ˆ
un(x, τ∗)Gx0

−L
(x) dx,
RN
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where C(m) := 2
m

m−1 .
(b) Under assumption (G3), for a.e. τ∗ > 0 and all Lebesgue points x0 ∈ RN ,

um
n (x0, τ∗) ≤ C(m)λ

ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx

where

C(m) := 2(1 + m)
m

m−1 and λ := ‖un(·, τ∗)‖m−1
L∞(RN ) >

1
(m− 1)τ∗

.

Remark 4.7.

(a) Theorem 4.6(a) corresponds to equation (5.3) in [26].
(b) Theorem 4.6(b) somehow corresponds to the mentioned equation (5.3) as well, how-

ever, the inequality has a “linear structure” due to the presence of λ.

We begin by choosing the test function in the weak dual formulation.

Lemma 4.8. Assume (HG). Then there is a constant C depending on the Green function 
such that:

(a) If (G1) or (G′
1) holds, then

‖(−L)−1[ψ]‖L∞(RN ) ≤ C(‖ψ‖L∞(RN ) + ‖ψ‖L1(RN )) for all ψ ∈ (L1 ∩ L∞)(RN ).

(b) If (G2) or (G3) holds, then, for A = −L or A = I − L respectively,

‖A−1[ψ]‖L1(RN ) ≤ C‖ψ‖L1(RN ) for all ψ ∈ L1(RN ).

Proof. (a) To incorporate the assumptions (G1)–(G′
1), we split the integral over the sets 

BR(x) and RN \BR(x) and change the variable x − y �→ y to obtain

|(−L)−1[ψ](x)| ≤
ˆ

RN

G0
−L(x− y)|ψ(y)|dy

=
ˆ

BR(0)

G0
−L(y)|ψ(x− y)|dy +

ˆ

RN\BR(0)

G0
−L(y)|ψ(x− y)|dy

≤ ‖ψ‖L∞(RN )

ˆ

BR(0)

G0
−L(y) dy + C‖ψ‖L1(RN ).

The bound in L∞ then follows.

(b) We simply use that G0
A ∈ L1(RN ), see Remark 2.2. �
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Proposition 4.9. Assume 0 ≤ u0,n ∈ (L1 ∩ L∞)(RN ), (Hm), (HG), and (G1)–(G2). Let 
0 ≤ ψ ∈ L∞

c (RN ) and 0 ≤ Θ ∈ C1
b([τ∗, τ ]). If un is a weak dual solution of (GPME)

with initial data u0,n, then, for a.e. τ ∈ (τ∗, T ],

τ̂

τ∗

Θ(t)
ˆ

RN

um
n (x, t)ψ(x) dx dt =

τ̂

τ∗

Θ′(t)
ˆ

RN

(−L)−1[un(·, t)](x)ψ(x) dx dt

+ Θ(τ∗)
ˆ

RN

(−L)−1[un(·, τ∗)](x)ψ(x) dx− Θ(τ)
ˆ

RN

(−L)−1[un(·, τ)](x)ψ(x) dx.
(4.2)

Proof. Define γ(x, t) := Θ(t)ψ(x). Consider a sequence {ψk}k∈N ⊂ C∞
c (RN × [τ∗, τ ])

(i.e., a mollifying sequence) such that ψk → γ and ∂tψk → ∂tγ a.e. as k → ∞. By 
Definition 2.1 (with τ1 := τ∗, τ2 := τ , and ψ = ψk),

ˆ

RN

(−L)−1[un(·, τ)](x)ψk(x, τ) dx

=
ˆ

RN

(−L)−1[un(·, τ∗)]ψk(x, τ∗) dx +
τ̂

τ∗

ˆ

RN

(
(−L)−1[un]∂tψk − um

n ψk

)
dx dt

holds for a.e. τ ∈ (τ∗, T ]. Since un ∈ L∞(RN×[τ∗, τ ]), (−L)−1[un] ∈ C([τ∗, τ ]; L1
loc(RN )), 

and ψk is compactly supported, we can take the limit in the above equality to get the 
result. �
Corollary 4.10 (Limit estimate 1). Under the assumptions of Proposition 4.9, let ψ ap-
proximate δx0 and choose Θ ≡ 1. Then

τ̂

τ∗

um
n (x0, t) dt =

ˆ

RN

un(x, τ∗)Gx0
−L

(x) dx−
ˆ

RN

un(x, τ)Gx0
−L

(x) dx,

for all Lebesgue points x0 ∈ RN .

Proof. Since we choose Θ ≡ 1, equation (4.2) becomes

τ̂

τ∗

ˆ

RN

um
n (x, t)ψ(x) dx dt

=
ˆ

RN

(−L)−1[un(·, τ∗)](x)ψ(x) dx−
ˆ

RN

(−L)−1[un(·, τ)](x)ψ(x) dx

=
ˆ

un(x, τ∗)(−L)−1[ψ](x) dx−
ˆ

un(x, τ)(−L)−1[ψ](x) dx.

RN RN
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Now, fix x0 ∈ RN and choose

ψ
(x0)
k =

1B1/k(x0)

|B1/k(x0)|
∈ L∞

c (RN ),

as a test function in the above equality. Since um
n (·, t) ∈ L1

loc(RN ), and by the definition 
of a Lebesgue point,

τ̂

τ∗

ˆ

RN

um
n (x, t)ψ(x0)

k (x) dx dt →
τ̂

τ∗

um
n (x0, t) dt as k → ∞.

For the remaining two terms, the argument is bit more involved, but let us start with 
the simplest case, in which Gx0

−L
satisfies (G2). Since Gx0

−L
is symmetric and integrable, 

we get

∣∣∣∣ ˆ
RN

un(x, τ)(−L)−1[ψ(x0)
k ](x) dx−

ˆ

RN

un(x, τ)Gx0
−L

(x) dx
∣∣∣∣

=
∣∣∣∣ ˆ
RN

un(x, τ)
(  

B1/k(x0)

Gx
−L(y) dy −Gx0

−L
(x)

)
dx

∣∣∣∣
≤ ‖un(·, τ)‖L∞(RN )

ˆ

RN

 

B1/k(x0)

|G0
−L(y − x) −G0

−L(x0 − x)|dy dx

= ‖un(·, τ)‖L∞(RN )

 

B1/k(x0)

ˆ

RN

|G0
−L(z) −G0

−L(z + (x0 − y))|dz dy

≤ ‖un(·, τ)‖L∞(RN ) sup
|x0−y|≤1/k

‖G0
−L −G0

−L(· + (x0 − y))‖L1(RN ),

which goes to zero as k → ∞ by the continuity of the L1-translation.
In the case of (G1) and (G′

1), we still have that G0
−L ∈ L1

loc(RN ), and hence,

(−L)−1[ψ(x0)
k ](x) = 1

|B1/k(x0)|

ˆ

B1/k(x0)

Gx
−L(y) dy → Gx

−L(x0) = Gx0
−L

(x)

for a.e. x ∈ RN as k → ∞. However, we cannot simply apply the Lebesgue dominated 
convergence theorem since the L∞-bound of (−L)−1[ψ(x0)

k ] depends on ‖ψ(x0)
k ‖L∞ � kN

coming from the estimate in BR(x0) by Lemma 4.8. We therefore split the integral over 
the sets BR(x0) and RN \BR(x0):
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∣∣∣∣ ˆ
RN

un(x, τ)(−L)−1[ψ(x0)
k ](x) dx−

ˆ

RN

un(x, τ)Gx0
−L

(x) dx
∣∣∣∣

=
∣∣∣∣ ˆ

BR(x0)

un(x, τ)(−L)−1[ψ(x0)
k ](x) dx−

ˆ

BR(x0)

un(x, τ)Gx0
−L

(x) dx
∣∣∣∣

+
∣∣∣∣ ˆ

RN\BR(x0)

un(x, τ)(−L)−1[ψ(x0)
k ](x) dx−

ˆ

RN\BR(x0)

un(x, τ)Gx0
−L

(x) dx
∣∣∣∣

=: I1 + I2.

The integral I1 can be handled more or less as for (G2). Indeed, since |x − x0| ≤ R and 
|x − y| ≤ (3/2)R (in the latter we assume that k ≥ 2/R), we estimate I1 as

I1 ≤ ‖un(·, τ)‖L∞(RN )

 

B1/k(x0)

ˆ

B(3/2)R(0)

|G0
−L(z) −G0

−L(z + (x0 − y))|dz dy

= ‖un(·, τ)‖L∞(RN )×
× sup

|x0−y|≤1/k

∥∥(G0
−L1B(5/2)R(0)

)
−

(
G0

−L1B(5/2)R(0)
)
(· + (x0 − y))

∥∥
L1(RN ),

which goes to zero as k → ∞ by the continuity of the L1-translation. To estimate I2, we 
consider

I2 ≤
ˆ

RN\BR(x0)

|un(x, τ)|
∣∣(−L)−1[ψ(x0)

k ](x) −Gx0
−L

(x)
∣∣dx.

Now, since |x −x0| ≥ R and |y−x0| ≤ 1/k ≤ (1/2)R, we use the triangle inequality to get 
|x − y| ≥ |x − x0| − 1/k ≥ (1/2)R. Hence, both (−L)−1[ψ(x0)

k ](x) =
ffl
B1/k(x0) G

x
−L(y) dy

and Gx0
−L

(x) are uniformly bounded in k by (G1) and (G′
1). The conclusion then follows 

by the Lebesgue dominated convergence theorem. �

In the case of Gx0
I−L

, we note that we can obtain a similar result as in Proposition 4.9
(see also Remark 2.3(b)):
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τ̂

τ∗

Θ(t)
ˆ

RN

um
n (x, t)ψ(x) dx dt

=
τ̂

τ∗

ˆ

RN

(
Θ′(t) + um−1

n (x, t)Θ(t)
)
un(x, t)(I − L)−1[ψ](x) dx dt

+ Θ(τ∗)
ˆ

RN

(I − L)−1[un(·, τ∗)](x)ψ(x) dx

− Θ(τ)
ˆ

RN

(I − L)−1[un(·, τ)](x)ψ(x) dx.

(4.3)

To find a suitable Θ, we need to fix τ∗ > 0 and T (λ) := τ∗ + m
λ(m−1) > τ∗. The latter 

is denoted by T from now on.

Lemma 4.11. Assume 0 ≤ u0,n ∈ (L1 ∩ L∞)(RN ) and (Hm). Let un be a weak dual 
solution of (GPME) with initial data u0,n, t ∈ [τ∗, T ], and define

Θ(t) := (T − t)
m

m−1 .

Then 0 ≤ Θ ∈ C1
b([τ∗, T ]) and solves

Θ′(t) + um−1(x, t)Θ(t) ≤ 0 for a.e. t ∈ [τ∗, T ] and a.e. x ∈ RN .

Remark 4.12.

(a) In particular, the choice τ = T = τ∗ + m
λ(m−1) will be used throughout the rest of 

the paper.
(b) The exponent m

m−1 is chosen to match the one of the time-monotonicity (Proposi-
tion 4.4).

Proof of Lemma 4.11. A direct computation gives

Θ′(t) = m

m− 1(T − t)
m

m−1−1(−1) = − m

(m− 1)(T − t)Θ(t).

By Proposition 4.1(b)(ii) with p = ∞,

0 ≤ um−1
n (x, t) ≤ ‖un‖m−1

L∞(RN×(τ∗,T )) ≤ λ

and then

Θ′(t) + um−1
n (x, t)Θ(t) ≤

(
λ− m )

Θ(t) ≤ 0,
(m− 1)(T − t)
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where, in the last inequality, we used that λ is such that

λ <
m

(m− 1)(T − t) for all t ∈ [τ∗, T ].

This finished the proof. �
By following the proof of Corollary 4.10 as for the assumption (G2), we get:

Corollary 4.13 (Limit estimate 2). Assume 0 ≤ u0,n ∈ (L1∩L∞)(RN ), (Hm), (HG), and 
(G3). Let un be a weak dual solution of (GPME) with initial data u0,n, let ψ approximate 
δx0 , and choose Θ as in Lemma 4.11. Then

T̂

τ∗

Θ(t)um
n (x0, t) dt ≤ Θ(τ∗)

ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx

for all Lebesgue points x0 ∈ RN .

Remark 4.14. We note that Corollaries 4.10 and 4.13 reveal that another proper func-
tional setting is the one where

ˆ

RN

un(x, t)Gx0(x) dx < ∞ for a.e. t > 0.

We are ready to prove the fundamental upper bounds.

Proof of Theorem 4.6. We begin the proof by noting the following consequence of Propo-
sition 4.4: For a.e. t ∈ [τ∗, τ ] and all Lebesgue points x0 ∈ RN ,

τ
m

m−1
∗ um

n (x0, τ∗) ≤ t
m

m−1um
n (x0, t) ≤ τ

m
m−1um

n (x0, τ). (4.4)

(a) For a.e. τ ≥ τ∗ > 0, we combine Corollary 4.10 and (4.4) to get

τ
m

m−1
∗ um

n (x0, τ∗)
τ̂

τ∗

1
t

m
m−1

dt ≤
τ̂

τ∗

1
t

m
m−1

t
m

m−1um
n (x0, t) dt

≤
ˆ

RN

un(x, τ∗)Gx0
−L

(x) dx,

or
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um
n (x0, τ∗) ≤

1
τ

m
m−1
∗

( τ̂

τ∗

1
t

m
m−1

dt
)−1 ˆ

RN

un(x, τ∗)Gx0
−L

(x) dx

= 1

(m− 1)τ
m

m−1
∗

((
1
τ∗

) 1
m−1

−
(

1
τ

) 1
m−1

)−1 ˆ

RN

un(x, τ∗)Gx0
−L

(x) dx.

Note that t �→ t−
1

m−1 is convex when m > 1, and hence,

(
1
τ∗

) 1
m−1

−
(

1
τ

) 1
m−1

≥ 1
m− 1

(
1
τ

) m
m−1 (

τ − τ∗
)
.

Moreover,

um
n (x0, τ∗) ≤

(
τ

τ∗

) m
m−1 1

τ − τ∗

ˆ

RN

un(x, τ∗)Gx0
−L

(x) dx.

We conclude by choosing τ = 2τ∗.

(b) For some fixed T > τ∗, we combine Corollary 4.13 and (4.4) to get

τ
m

m−1
∗ um

n (x0, τ∗)
T̂

τ∗

Θ(t)
t

m
m−1

dt ≤
T̂

τ∗

Θ(t)
t

m
m−1

t
m

m−1um
n (x0, t) dt

≤
ˆ

RN

un(x, τ∗)Θ(τ∗)Gx0
I−L

(x) dx,

or

um
n (x0, τ∗) ≤

(T − τ∗)
m

m−1

τ
m

m−1
∗

( T̂

τ∗

(τ − t)
m

m−1

t
m

m−1
dt

)−1 ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx

=
(T − τ∗

τ∗

) m
m−1

( T̂

τ∗

(τ − t

t

) m
m−1 dt

)−1 ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx

≤
(
1 + m

m− 1

)(
T

τ∗

) m
m−1 1

T − τ∗

ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx.

The last step follows from the estimate

(T − τ∗
τ∗

) m
m−1

( T̂ (τ − t

t

) m
m−1 dt

)−1

≤
(
1 + m

m− 1

)(
T

τ∗

) m
m−1 1

T − τ∗

τ∗
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which can be proven as follows:

( τ∗
T − τ∗

) m
m−1

T̂

τ∗

(T − t

t

) m
m−1 dt ≥

( τ∗
T − τ∗

) m
m−1

T̂

τ∗

(T − t

T

) m
m−1 dt

=
(τ∗
T

) m
m−1 1

(T − τ∗)
m

m−1

T̂

τ∗

(
T − t

) m
m−1 dt =

(
1 + m

m− 1

)−1(τ∗
T

) m
m−1 (T − τ∗)

m
m−1+1

(T − τ∗)
m

m−1
.

We thus have

um
n (x0, τ∗) ≤

(
1 + m

m− 1

)(
T

τ∗

) m
m−1 1

T − τ∗

ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx.

The choice T = τ∗ + m
λ(m−1) and the assumption λ−1 < (m − 1)τ∗ readily give

um
n (x0, τ∗) ≤

(
1 + m− 1

m

)(
1 + m

λ(m− 1)τ∗

) m
m−1

λ

ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx

≤
(
2 − 1

m

)
(1 + m)

m
m−1λ

ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx

≤ 2(1 + m)
m

m−1λ

ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx,

which is the desired result. �
4.4. Boundedness under (G3)

Recall that the fundamental upper bound (Theorem 4.6(b)) was only valid when 
λ > ((m − 1)τ∗)−1. Hence, we need to combine that case with λ ≤ ((m − 1)τ∗)−1 to 
reach a finial conclusion. Under the latter assumption, however, we immediately have

‖un(·, τ∗)‖L∞(RN ) ≤
( 1

(m− 1)τ∗

) 1
m−1 for a.e. τ∗ > 0.

Let us therefore continue with λ > ((m − 1)τ∗)−1.

Lemma 4.15 (Lq–L∞-smoothing). Let p, q ∈ (1, ∞) be such that 1
p + 1

q = 1. Under the 
assumptions of Theorem 4.6 and (G3), we have that

‖un(·, τ∗)‖L∞(RN ) ≤ C(m)Cp‖un(·, τ∗)‖Lq(RN ) for a.e. τ∗ > 0.
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Proof. By Theorem 4.6(b), we get

um
n (x0, τ∗) ≤ C(m)λ

ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx.

Now, take the essential supremum over x0 ∈ RN on both sides and use the Young 
inequality (1.7) with ϑ = m/(m − 1) > 1 to get

‖un(·, τ∗)‖mL∞(RN ) ≤
m− 1
m

λ
m

m−1 + 1
m

(
C(m) ess sup

x0∈RN

ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx
)m

,

or, since λ = ‖un(·, τ∗)‖m−1
L∞(RN ),

‖un(·, τ∗)‖L∞(RN ) ≤ C(m) ess sup
x0∈RN

ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx.

By assumption,
ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx ≤ ‖un(·, τ∗)‖Lq(RN )‖G0
I−L‖Lp(RN ),

and the result follows. �
So, un(·, t) is in fact bounded whenever un(·, t) ∈ Lq for some q ∈ (1, ∞). We exploit 

this in the next result.

Lemma 4.16 (L1–L∞-smoothing). Let p, q ∈ (1, ∞) be such that 1
p + 1

q = 1. Under the 
assumptions of Theorem 4.6 and (G3), we have that

‖un(·, τ∗)‖L∞(RN ) ≤ C(m)qCq
p‖un(·, τ∗)‖L1(RN ) for a.e. τ∗ > 0.

Proof. We use the Hölder inequality in the proof of the Lemma 4.15 to get

λ

ˆ

RN

un(x, τ∗)Gx0
I−L

(x) dx ≤ λ‖un(·, τ∗)‖Lq(RN )‖G0
I−L‖Lp(RN )

≤ ‖un(·, τ∗)‖
(m−1)q+q−1

q

L∞(RN ) ‖un(·, τ∗)‖
1
q

L1(RN )‖G
0
I−L‖Lp(RN ).

Now, the Young inequality (1.7) with ϑ = mq > 1 gives

‖un(·, τ∗)‖
mq−1

q

L∞ C(m)‖un(·, τ∗)‖
1
q

L1‖Gx0
I−L

‖Lp

≤ mq − 1‖un(·, τ∗)‖mL∞ + 1
C(m)mq‖un(·, τ∗)‖mL1‖Gx0

I−L
‖mq
Lp .
mq mq
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Combining the above yields

‖un(·, τ∗)‖mL∞ ≤ C(m)mqCmq
p ‖un(·, τ∗)‖mL1 . �

We sum up the results in the following theorem:

Proposition 4.17 (Smoothing effects). Let p, q ∈ (1, ∞) be such that 1
p + 1

q = 1. Under 
the assumptions of Theorem 4.6 and (G3), we have that:

(a) (Lq–L∞-smoothing)

‖un(·, τ∗)‖L∞(RN ) ≤
( 1

(m− 1)τ∗

) 1
m−1 + C(m)Cp‖un(·, τ∗)‖Lq(RN ) for a.e. τ∗ > 0.

(b) (L1–L∞-smoothing)

‖un(·, τ∗)‖L∞(RN ) ≤
( 1

(m− 1)τ∗

) 1
m−1 +C(m)qCq

p‖un(·, τ∗)‖L1(RN ) for a.e. τ∗ > 0.

The above results are not invariant under time-scaling (Lemma 4.3). We thus rewrite 
them in a proper form:

Proposition 4.18 (Scaling-invariant smoothing effects). Let p, q ∈ (1, ∞) be such that 
1
p + 1

q = 1. Under the assumptions of Theorem 4.6 and (G3), we have that:

(a) (Lq–L∞-smoothing)

‖un(·, t)‖L∞(RN ) ≤
{

2((m− 1)t)−
1

m−1 if 0 < t ≤ t0,n a.e.,
2C(m)Cp‖u0,n‖Lq(RN ) if t > t0,n a.e.,

where

t0,n := 1
m− 1

(
C(m)Cp‖u0,n‖Lq(RN )

)−(m−1)
.

(b) (L1–L∞-smoothing)

‖un(·, t)‖L∞(RN ) ≤
{

2((m− 1)t)−
1

m−1 if 0 < t ≤ t0,n a.e.,
2C(m)qCq

p‖u0,n‖L1(RN ) if t > t0,n a.e.,

where

t0,n := 1 (
C(m)qCq

p‖u0,n‖L1(RN )

)−(m−1)
.

m− 1
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Proof. We only provide a proof for part (a) since part (b) is similar.
Proposition 4.17(a) gives

‖un(·, τ∗)‖L∞ ≤
( 1

(m− 1)τ∗

) 1
m−1 + C(m)Cp‖un(·, τ∗)‖Lq for a.e. τ∗ > 0,

but this result is not respecting the time-scaling (Lemma 4.3):

Λ
1

m−1 ‖un(·,Λτ∗)‖L∞ ≤ Λ
1

m−1

( 1
(m− 1)Λτ∗

) 1
m−1 + Λ

1
m−1C(m)Cp‖un(·,Λτ∗)‖Lq .

By Proposition 4.1(b)(ii) with p = q, we can optimize by requiring that

( 1
(m− 1)Λτ∗

) 1
m−1 = C(m)Cp‖u0,n‖Lq ,

or

Λτ∗ = 1
m− 1

( 1
C(m)Cp‖u0,n‖Lq

)m−1
=: t0,n.

We obtain that

‖un(·, t0,n)‖L∞ ≤ 2C(m)Cp‖u0,n‖Lq .

Now, if 0 < t ≤ t0,n, we use time-monotonicity (Lemma 4.4)

un(·, t) ≤
( t0,n

t

) 1
m−1

un(·, t0,n)

to get

‖un(·, t)‖L∞ ≤
( t0,n

t

) 1
m−1 ‖un(·, t0,n)‖L∞ ≤

( t0,n
t

) 1
m−1 2C(m)Cp‖u0,n‖Lq

= 2
( 1

(m− 1)t

) 1
m−1

.

And, if t > t0,n, we use Proposition 4.1(b)(ii) with p = ∞

‖un(·, t)‖L∞ ≤ ‖un(·, t0,n)‖L∞

to get

‖un(·, t)‖L∞ ≤ ‖un(·, t0,n)‖L∞ ≤ 2C(m)Cp‖u0,n‖Lq . �
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Proof of Theorem 3.5. By the proof of Proposition 4.1, we know that for every u0,n, 
there is a unique mild solution un enjoying comparison and Lp-decay, and this solution 
is moreover a weak dual solution in the sense of Definition 2.1. As a consequence, the 
L1–L∞-smoothing of Proposition 4.18(b) holds for un. By construction, we have that 
0 ≤ u0,n ≤ u0,n+1 ≤ u0 a.e. in RN for all n ∈ N (see (4.1)), so that Proposition 4.1(b)(i) 
yields

0 ≤ un ≤ un+1 a.e. in QT for all n ∈ N.

By monotonicity, the pointwise limit of {un}n∈N always exists (possibly being +∞ on a 
set of measure zero), and we then define our candidate limit solution as

u(x, t) := lim inf
n→∞

un(x, t).

Moreover, by the Fatou lemma and Proposition 4.1(b)(ii), we immediately have that

‖u(·, t)‖L1(RN ) ≤ lim inf
n→∞

‖un(·, t)‖L1(RN ) ≤ ‖u0,n‖L1(RN ) ≤ ‖u0‖L1(RN ).

As a consequence, the set {(x, t) ∈ QT : u(x, t) = ∞} has measure zero, so that the 
convergence above holds a.e. in QT , and 0 ≤ un ≤ u a.e. in QT . Note that, for a.e. 
x ∈ RN and a.e. t > 0, we have

u(x, t) = lim inf
n→∞

un(x, t) ≤ lim inf
n→∞

‖un(·, t)‖L∞(RN ) .

As a consequence, u inherits from un the mentioned L1–L∞-smoothing effect of Propo-
sition 4.18(b) since (4.1) gives

‖u0,n‖L1(RN ) → ‖u0‖L1(RN ) and t0,n → t0 as n → ∞.

It remains to check that the constructed limit u is indeed a weak dual solution. 
To that end, note that the regularity assumptions um ∈ L1((0, T ); L1

loc(RN )) and u ∈
L∞((0, T ); L1(RN )) are straightforward consequences of the fact that u ∈ L1(QT ) ∩
L∞(RN × [τ, T )) for a.e. τ > 0. Moreover, 0 ≤ un ≤ un+1 ≤ u a.e. and un → u a.e. 
as n → ∞ yield that a simple use of the monotone convergence theorem ensures that 
parts (ii) and (iii) of Definition 2.1 are true for u (the limit integrals are all finite). It 
only remains to prove that u ∈ C([0, T ]; L1(RN )). Let us begin with t ∈ (0, T ). We shall 
use that, for all n ∈ N, un ∈ C([0, T ]; L1(RN )) satisfies the following time-monotonicity 
estimate (cf. Proposition 4.4):

t
1

m−1
0 un(x, t0) ≤ t

1
m−1
1 un(x, t1), for a.e. t1 ≥ t0 > 0 and a.e. x ∈ RN ,

which can be rearranged to
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un(x, t1) − un(x, t0) ≥
( t0
t1

) 1
m−1

un(x, t0) − un(x, t0) = −
(
1 −

( t0
t1

) 1
m−1

)
un(x, t0).

Now, recall that |f | = 2f− + f = 2(− min{f, 0}) + f , so that

‖un(·, t1) − un(·, t0)‖L1(RN )

= 2
ˆ

RN

(
un(x, t1) − un(x, t0)

)− dx +
ˆ

RN

(
un(x, t1) − un(x, t0)

)
dx

≤ 2
(
1 −

( t0
t1

) 1
m−1

)
‖un(·, t0)‖L1(RN ) + ‖un(·, t1)‖L1(RN ) − ‖un(·, t0)‖L1(RN )

≤
2‖u0‖L1(RN )

t
1

m−1
1

(
t

1
m−1
1 − t

1
m−1
0

)
,

where we used that un ≥ 0, the L1-decay of un, and u0,n ≤ u0. Changing the roles of t0
and t1 reveals that the estimate also holds when 0 < t1 ≤ t0, i.e.,

‖un(·, t1) − un(·, t0)‖L1(RN ) ≤
2‖u0‖L1(RN )

t
1

m−1
1

∣∣t 1
m−1
1 − t

1
m−1
0

∣∣.
Moreover, since un(·, t) → u(·, t) a.e. in RN for a.e. t > 0, we get that |un(·, t1) −
un(·, t0)| → |u(·, t1) − u(·, t0)|. Then a simple application of the Fatou lemma yields

‖u(·, t1) − u(·, t0)‖L1(RN ) ≤ lim inf
n→∞

‖un(·, t1) − un(·, t0)‖L1(RN )

≤
2‖u0‖L1(RN )

t
1

m−1
1

∣∣t 1
m−1
1 − t

1
m−1
0

∣∣,
so that u ∈ C((0, T ]; L1(RN )).

The continuity at t = 0 is a consequence of the triangle inequality. Indeed, for a.e. 
t ∈ (0, T ],

‖u(·, t) − u0‖L1(RN ) ≤ ‖u(·, t) − un(·, t)‖L1(RN ) + ‖un(·, t) − u0,n‖L1(RN )

+ ‖u0,n − u0‖L1(RN ).

The last two terms go to zero as n → ∞ since un ∈ C([0, T ]; L1(RN )) and by the 
assumption (4.1) on u0,n. Finally, the first term goes to zero by the Lebesgue dominated 
convergence theorem, noting that |u(·, t) − un(·, t)| ≤ 2|u(·, t)| ∈ L1(RN ). �
Remark 4.19. Note that we never used any of the particular assumptions on the Green 
function (G1)–(G3) here. This will be important later when we want repeat the above 
argument in slightly different settings.
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4.5. Boundedness under (G1) and (G′
1)

Proposition 4.20 (Smoothing effects). Under the assumptions of Theorem 4.6, we have 
that:

(a) If (G1) holds, then

‖un(·, τ∗)‖L∞(RN ) ≤
C(m,α,N)

τNθ
∗

‖u0,n‖αθL1(RN ) for a.e. τ∗ > 0,

where θ := (α + N(m − 1))−1 and

C(m,α,N) := 2 1
mC(m)Nθ

( m

m− 1

)αθ

K
(N−α)θ
1 Kαθ

2 .

(b) If (G′
1) holds, then

‖un(·, τ∗)‖L∞(RN ) ≤

⎧⎨⎩
C(m,α,N)

τNθ
∗

‖u0,n‖αθL1(RN ) if 0 < τ∗ ≤ t0,n a.e.,(
C̃(m)

(m−1)τ∗

) 1
m ‖u0,n‖

1
m

L1(RN ) if τ∗ > t0,n a.e.,

where C̃(m) := 2mC(m)K3 and

t0,n := 2m
( m

m− 1

)−(m−1)θ
C(m)Km

1 K
αm
m−1
2 K

−( αm
m−1+(m−1))

3 ‖u0,n‖−(m−1)
L1(RN ) .

The proof is based on the following intermediate results:

Proposition 4.21 (Local smoothing effects). Under the assumptions of Theorem 4.6, and 
that, for all ρ > 0 and all α ∈ (0, 2],

ˆ

Bρ(x0)

Gx0
−L

(x) dx ≤ K1ρ
α and

ˆ

RN\Bρ(x0)

un(x, τ∗)Gx0
−L

(x) dx < ∞,

we get, for a.e. τ∗ > 0, a.e. z ∈ RN , and all 0 < R̄ < R < 2R̄,

‖un(·, τ∗)‖mL∞(BR̄(z))

≤ AR
αm
m−1 + ess sup

x0∈BR(z)

m

m− 1
C(m)
τ∗

ˆ

RN\BR(x0)

un(x, τ∗)Gx0
−L

(x) dx,

where

A :=
(2C(m)

K1

) m
m−1

.

τ∗
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Remark 4.22.

(a) By Corollary 4.10,

ˆ

RN

un(x, τ∗)Gx0
−L

(x) dx ≤
ˆ

RN

u0,n(x)Gx0
−L

(x) dx.

(b) The above assumptions are analogous to the space Lα(RN ) discussed in [91].

Proof of Proposition 4.21. Fix 0 < R̄ < R < 2R̄. We split the integral in Theorem 4.6(a) 
and use assumption (G1) to obtain

um
n (x0, τ∗)

≤ C(m)
τ∗

ˆ

BR̄(x0)

un(x, τ∗)Gx0
−L

(x) dx + C(m)
τ∗

ˆ

BR(x0)\BR̄(x0)

un(x, τ∗)Gx0
−L

(x) dx

+ C(m)
τ∗

ˆ

RN\BR(x0)

un(x, τ∗)Gx0
−L

(x) dx

≤
(
‖un(·, τ∗)‖L∞(BR̄(x0)) + ‖un(·, τ∗)‖L∞(BR(x0)\BR̄(x0))

)C(m)
τ∗

K1R
α

+ C(m)
τ∗

ˆ

RN\BR(x0)

un(x, τ∗)Gx0
−L

(x) dx.

The Young inequality (1.7) with ϑ = m applied to the first term yields

1
2m‖un(·, τ∗)‖mL∞(BR̄(x0)) + 1

2m‖un(·, τ∗)‖mL∞(BR(x0)\BR̄(x0))

+ 21+ 1
m−1 (m− 1)

m

(C(m)
τ∗

K1R
α
) m

m−1
.

By taking the supremum on each side with respect to x0 ∈ BR̄(z) and using that

ess sup
x0∈BR̄(z)

‖un(·, τ∗)‖L∞(BR̄(x0)) ≤ ‖un(·, τ∗)‖L∞(B2R̄(z)) ≤ ‖un(·, τ∗)‖L∞(B3R̄(z))

and

ess sup
x0∈BR̄(z)

‖un(·, τ∗)‖L∞(BR(x0)\BR̄(x0)) ≤ ‖un(·, τ∗)‖L∞(BR+R̄(z)) ≤ ‖un(·, τ∗)‖L∞(B3R̄(z)),

we get
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‖un(·, τ∗)‖mL∞(BR̄(z)) ≤
1
m
‖un(·, τ∗)‖mL∞(B3R̄(z)) + m− 1

m
AR

αm
m−1

+ ess sup
x0∈BR(z)

C(m)
τ∗

ˆ

RN\BR(x0)

un(x, τ∗)Gx0
−L

(x) dx.

To conclude, we absorb the term ‖un(·, τ∗)‖mL∞(B3R̄(z)) due to a classical lemma (cf. 
Lemma A.2). �
Proposition 4.23 (Local smoothing effects 2). Under the assumptions of Theorem 4.6, 
and for all z ∈ RN and all R̄ > 0 small enough, we have that:

(a) If (G1) holds, then

‖un(·, τ∗)‖L∞(BR̄(z)) ≤
C(m,α,N)

τNθ
∗

‖u0,n‖αθL1(RN ) for a.e. τ∗ > 0,

where θ := (α + N(m − 1))−1 and

C(m,α,N) := 2 1
m+(N−α)θC(m)Nθ

( m

m− 1

)αθ

K
(N−α)θ
1 Kαθ

2 .

(b) If (G′
1) holds, then

‖un(·, τ∗)‖L∞(BR̄(z)) ≤

⎧⎨⎩
C(m,α,N)

τNθ
∗

‖u0,n‖αθL1(RN ) if 0 < τ∗ ≤ t0,n a.e.,(
C̃(m)

(m−1)τ∗

) 1
m ‖u0,n‖

1
m

L1(RN ) if τ∗ > t0,n a.e.,

where C̃(m) := 2mC(m)K3 and

t0,n := 2m
( m

m− 1

)−(m−1)
C(m)Km

1 K
αm
m−1
2 K

−( αm
m−1+(m−1))

3 ‖u0,n‖−(m−1)
L1(RN ) .

Proof. (a) Recall that we fixed 0 < R̄ < R < 2R̄. Now, estimate

ess sup
x0∈BR(z)

m

m− 1
C(m)
τ∗

ˆ

RN\BR(x0)

un(x, τ∗)Gx0
−L

(x) dx

in Proposition 4.21 by using (G1) to get

m

m− 1
C(m)
τ∗

K2R
−(N−α)‖un(·, τ∗)‖L1(RN ) =: BK2R

−(N−α).

Optimizing in R gives

R =
(BK2

)(m−1)θ
,

A
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and

‖un(·, τ∗)‖mL∞(BR̄(z))

≤ 2A1−αmθ(BK2)αmθ

= 21+(N−α)mθC(m)Nmθ
( m

m− 1

)αmθ

K
(N−α)mθ
1 Kαmθ

2
1

τNmθ
∗

‖un(·, τ∗)‖αmθ
L1(RN ).

(b) According to assumption (G′
1), we have power-like behaviour of the Green function 

when

0 < R ≤
(K2

K3

) 1
N−α

,

and power-like behaviour around x = x0 and constant around x → ∞ when

R >
(K2

K3

) 1
N−α

.

Let us then first consider the case of small R. Following part (a), we have

‖un(·, τ∗)‖mL∞(BR̄(z)) ≤ AR
αm
m−1 + BK2R

−(N−α).

Optimizing in R gives

R =
(BK2

A

)(m−1)θ
,

and also the L1–L∞-smoothing of part (a). However, this can only hold when

(BK2

A

)(m−1)θ
≤

(K2

K3

) 1
N−α ⇐⇒ τ∗ ≤ t0,n.

Now, we turn our attention to the case of big R. Following part (a), we instead have

‖un(·, τ∗)‖mL∞(BR̄(z)) ≤ AR
αm
m−1 + BK3.

Optimizing in R gives

R =
(BK3

A

)m−1
αm

,

and

‖un(·, τ∗)‖mL∞(BR̄(z)) ≤ 2BK3 = 2m
m− 1C(m)K3

1
τ∗

‖un(·, τ∗)‖L1(RN ).

Similarly as in the case of small R, the above estimate can now only hold when τ∗ >

t0,n. �
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Proof of Proposition 4.20. We simply take the supremum over z ∈ RN . �
The proof of Theorem 3.1 follows as for Theorem 3.5.

4.6. Boundedness under combinations of (G1)

Proposition 4.24 (Combined smoothing effects). Under the assumptions of Theorem 4.6, 
we have that: If (G1) holds with α ∈ (0, 2) when 0 < R ≤ 1 and with α = 2 when R > 1, 
then:

‖un(·, τ∗)‖L∞(RN ) ≤ C̃(m)
{
τ−Nθα∗ ‖u0,n‖αθαL1(RN ) if 0 < τ∗ ≤ ‖u0,n‖−(m−1)

L1(RN ) a.e.,
τ−Nθ2∗ ‖u0,n‖2θ2

L1(RN ) if τ∗ > ‖u0,n‖−(m−1)
L1(RN ) a.e.,

where θα = (α + N(m − 1))−1 (defined for α ∈ (0, 2]) and

C̃(m) := 2
(
(C(m)K1)

m
m−1 + m

m− 1C(m)K2

) 1
m

.

Proof. Fix 0 < R ≤ 1 (to be determined). We split the integral in Theorem 4.6(a) and 
use assumption (G1) to obtain

um
n (x0, τ∗)

≤ C(m)
τ∗

ˆ

BR(x0)

un(x, τ∗)Gx0
−L

(x) dx + C(m)
τ∗

ˆ

RN\BR(x0)

un(x, τ∗)Gx0
−L

(x) dx

≤ ‖un(·, τ∗)‖L∞(RN )
C(m)
τ∗

K1R
α + ‖un(·, τ∗)‖L1(RN )

C(m)
τ∗

K2R
−(N−α).

We then proceed as in the beginning of Section 4 to obtain

‖un(·, τ∗)‖L∞(RN ) ≤
C̃(m)
τNθα∗

‖u0,n‖αθαL1(RN )

as long as

(
τ

1
m−1
∗ ‖u0‖L1(RN )

)(m−1)θα ≤ 1 ⇐⇒ τ∗ ≤ ‖u0‖−(m−1)
L1(RN ) .

Now, fix R > 1 (to be determined). By simply repeating the above calculations (re-
placing α by 2), the choice

R =
(
τ

1
m−1
∗ ‖u0‖L1(RN )

)(m−1)θ2

gives
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‖un(·, τ∗)‖L∞(RN ) ≤
C̃(m)
τNθ2∗

‖u0,n‖2θ2
L1(RN )

as long as

(
τ

1
m−1
∗ ‖u0‖L1(RN )

)(m−1)θ2
> 1 ⇐⇒ τ∗ > ‖u0‖−(m−1)

L1(RN ) . �
The proof of Theorem 3.3 follows as for Theorem 3.5.

4.7. Boundedness under (G2)

Proposition 4.25 (Absolute bounds). Under the assumptions of Theorem 4.6 and (G2), 
we have that

‖un(·, τ∗)‖L∞(RN ) ≤
(C(m)C1

τ∗

) 1
m−1 for a.e. τ∗ > 0.

Proof. By Theorem 4.6(a), we get

um
n (x0, τ∗) ≤ C(m) 1

τ∗

ˆ
un(x, τ∗)Gx0

−L
(x) dx ≤ C(m)

τ∗
‖un(·, τ∗)‖L∞‖G0

−L‖L1 .

Now, the Young inequality (1.7) with ϑ = m gives

(
1 − 1

m

)
‖un(·, τ∗)‖mL∞ ≤ m− 1

m

(C(m)C1

τ∗

) m
m−1

,

and hence, the result follows. �
The proof of Theorem 3.7 follows as for Theorem 3.5.

4.8. Linear implies nonlinear

Proof of Theorem 3.9. Linear smoothing effects hold due to Theorem 6.1 below. As for 
the nonlinear case, to be in the setting of Theorem 3.5, we only need to check that (G3)
holds. By Proposition D.3 and the Minkowski inequality for integrals (cf. Theorem 2.4 
in [94]),
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‖Gx0
I−L

‖Lp(RN ) = ‖G0
I−L‖Lp(RN ) =

( ˆ

RN

( ∞̂

0

e−tH0
−L(x, t) dt

)p

dx
) 1

p

≤
∞̂

0

( ˆ

RN

(
e−tH0

−L(x, t)
)p

dx
) 1

p

dt

=
∞̂

0

e−t

( ˆ

RN

(
H0

−L(x, t)
)p

dx
) 1

p

dt

=
∞̂

0

e−t‖H0
−L(·, t)‖Lp(RN ) dt.

(4.5)

Finally,

‖H0
−L(·, t)‖Lp(RN ) ≤ ‖H0

−L(·, t)‖
p−1
p

L∞(RN )‖H
0
−L(·, t)‖L1(RN ) ≤ ‖H0

−L(·, t)‖
p−1
p

L∞(RN )

≤ C(t)
p−1
p

completes the proof. �
5. Boundedness results for 0-order operators

We need some assumptions regarding 0-order or nonsingular operators, i.e., operators 
of the form −L = −Lμ with dμ = J dz where:

J ≥ 0 a.e. on RN , symmetric, and ‖J‖L1(RN ) = 1. (J1)

‖J‖Lp(RN ) ≤ CJ,p < ∞ for some p ∈ (1,∞]. (J2)

I.e., we consider convolution type operators −L = I − J∗ (which we will denote by 
−LJ ). The nonlinear equation (GPME) with such operators has been studied in e.g. 
[67]. Assumption (J2) ensures that J is far away from being concentrated. Therefore, 
we cannot consider discrete measures μ, and thus, operators like the discrete Laplacian. 
The smoothing takes the following form:

Theorem 5.1 (L1–L∞-smoothing). Assume (Hu0), (Hm), and q = p/(p −1) ∈ [1, ∞), and 
let u be a very weak solution of (GPME) with initial data u0. If (J1) and (J2) hold, then

‖u(·, t)‖L∞(RN ) ≤

⎧⎨⎩2(mqC(m)
m

m−1 ) 1
m t−

1
m−1 if 0 < t ≤ t0 a.e.,

2
(

mC(m)
m−1 CJ,p

)q

‖u0‖L1(RN ) if t > t0 a.e.,

where C(m) := 2
m

m−1 and
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t0 := (mq)
m−1
m

( m

m− 1CJ,p

)−q(m−1)
C(m)1−q(m−1)‖u0‖−(m−1)

L1(RN ) .

Remark 5.2. The time-scaling (Lemma 4.3) ensures that the above estimate is of the 
proper form.

The 0-order or nonsingular operators have a particularly simple approach. In contrast 
to general singular Lévy operators in this paper which maps W 2,p(RN ) to Lp(RN ), 
0-order operators −L = −LJ are well-defined for merely Lp(RN )-functions:

−LJ : Lp(RN ) → Lp(RN ) for all p ∈ [1,∞].

We then define very weak solutions:

Definition 5.1 (Very weak solution). Assume −L = −LJ . We say that a nonnegative 
measurable function u is a very weak solution of (GPME) if:

(i) u ∈ L1(QT ) ∩ C([0, T ]; L1
loc(RN )) and um ∈ L1(QT ).

(ii) For a.e. 0 < τ1 ≤ τ2 ≤ T , and all ψ ∈ C∞
c (RN × [τ1, τ2]),

τ2ˆ

τ1

ˆ

RN

(
u∂tψ − (−LJ)[um]ψ

)
dx dt

=
ˆ

RN

u(x, τ2)ψ(x, τ2) dx−
ˆ

RN

u(x, τ1)ψ(x, τ1) dx.

(iii) u(·, 0) = u0 a.e. in RN .

Remark 5.3. For general Lévy operators, see (1.1), we need to put the operator on the 
test function instead.

We collect some known a priori results for (GPME) which will be useful in the proofs, 
see e.g. Theorem 2.3 in [62].

Lemma 5.4 (Known a priori results). Assume 0 ≤ u0 ∈ (L1 ∩ L∞)(RN ), (Hm), and 
−L = −LJ .

(a) There exists a unique very weak solution u of (GPME) with initial data u0 such that

0 ≤ u ∈ (L1 ∩ L∞)(QT ) ∩ C([0, T ];L1
loc(RN )).

(b) Let u, v be very weak solutions of (GPME) with initial data u0, v0 ∈ (L1∩L∞)(RN ). 
Then:
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(i) (Comparison) If u0 ≤ v0 a.e. in RN , then u ≤ v a.e. in QT .
(ii) (Lp-decay) ‖u(·, τ2)‖Lp(RN ) ≤ ‖u(·, τ1)‖Lp(RN ) for all p ∈ [1, ∞] and a.e. 0 ≤

τ1 ≤ τ2 ≤ T .

Remark 5.5. If u0 ∈ L1(RN ), then Lemma 5.4(b)(i)–(ii) hold also when m = 1 by 
approximation, and then also for u0 ∈ TV (RN ).

Again, we fix τ∗, T > 0 such that 0 < τ∗ < T , and let τ ∈ (τ∗, T ]. We also consider 
the following sequence of approximations {u0,n}n∈N satisfying

⎧⎪⎪⎨⎪⎪⎩
0 ≤ u0,n ∈ (L1 ∩ L∞)(RN ) such that
u0,n → u0 in L1(RN ), and
u0,n → u0 a.e. in RN monotonically from below as n → ∞.

When we take u0,n as initial data in (GPME), we denote the corresponding solutions by 
un, and they satisfy Lemmas 5.4, 4.3 and Proposition 4.4.

Proposition 5.6. Assume 0 ≤ u0,n ∈ (L1 ∩ L∞)(RN ), (Hm), −L = −LJ , and (J1). Let 
0 ≤ v ∈ L1(RN ) and 0 ≤ Θ ∈ C1

b([τ∗, τ ]). If un is a very weak solution of (GPME) with 
initial data u0,n, then, for a.e. τ ∈ (τ∗, T ],

τ̂

τ∗

Θ(t)
ˆ

RN

(−LJ )[um
n (·, t)](x)v(x) dx dt =

τ̂

τ∗

Θ′(t)
ˆ

RN

un(x, t)v(x) dx dt

+ Θ(τ∗)
ˆ

RN

un(x, τ∗)v(x) dx− Θ(τ)
ˆ

RN

un(x, τ)v(x) dx.
(5.1)

Corollary 5.7 (Limit estimate 3). Under the assumptions of Proposition 5.6, let

vR(x) :=
1B(x0,R)(x)
|B(x0, R)| with R > 0

approximate δx0“= Gx0
I ” and choose Θ ≡ 1. Then

τ̂

τ∗

(−LJ )[um
n (·, t)](x0) dt = un(x0, τ∗) − un(x0, τ)

for all Lebesgue points x0 ∈ RN .

Proof. Simply apply the Lebesgue differentiation theorem as R → 0+ in (5.1). �
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Theorem 5.8 (Fundamental upper bound). Assume 0 ≤ u0,n ∈ (L1 ∩ L∞)(RN ), (Hm), 
−L = −LJ , and (J1). If un is a very weak solution of (GPME) with initial data u0,n, 
then, for a.e. τ∗ > 0 and all Lebesgue points x0 ∈ RN ,

um
n (x0, τ∗) ≤ C(m)

(
un(x0, τ∗)

τ∗
+ 1

τ∗

2τ∗ˆ

τ∗

ˆ

RN

um
n (x, t)Jx0(x) dx dt

)
,

where Jx0(x) = J(x − x0) and C(m) = 2
m

m−1 .

Remark 5.9. This is a completely new result, but we see that Jx0 somehow takes the 
role of Gx0 .

Proof of Theorem 5.8. We begin the proof by noting the following consequence of Propo-
sition 4.4: For a.e. t ∈ [τ∗, τ ] and all Lebesgue points x0 ∈ RN ,

τ
m

m−1
∗ um

n (x0, τ∗) ≤ t
m

m−1um
n (x0, t) ≤ τ

m
m−1um

n (x0, τ). (5.2)

We rearrange the result in Corollary 5.7:

τ̂

τ∗

um
n (x0, t) dt = un(x0, τ∗) − un(x0, τ) +

τ̂

τ∗

ˆ

RN

um
n (x, t)Jx0(x) dx dt

≤ u(x0, τ∗) +
τ̂

τ∗

ˆ

RN

um
n (x, t)Jx0(x) dx dt.

Arguing by time-monotonicity (5.2), as in the proof of Theorem 4.6(a), leads to

um
n (x0, τ∗) ≤

(
τ

τ∗

) m
m−1 1

τ − τ∗

(
un(x0, τ∗) +

τ̂

τ∗

ˆ

RN

um
n (x, t)Jx0(x) dx dt

)
.

Choose τ = 2τ∗ to obtain, for all τ∗ > 0,

um
n (x0, τ∗) ≤ 2

m
m−1

(
un(x0, τ∗)

τ∗
+ 1

τ∗

2τ∗ˆ

τ∗

ˆ

RN

um
n (x, t)Jx0(x) dx dt

)
.

This completes the proof. �
Proposition 5.10 (Smoothing effects). Assume q = p/(p − 1) ∈ [1, ∞) and r ∈ (1, m]. 
Under the assumptions of Theorem 5.8 and (J2), we have that:
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(a) (Lr–L∞-smoothing) For a.e. τ∗ > 0,

‖un(·, τ∗)‖L∞(RN ) ≤
(q(m− 1)

2m−1
m−1

r − 1

) 1
m
( C(m)

(m− 1)

) 1
m−1

τ
− 1

m−1
∗

+
(rC(m)m

r

r − 1 C
m
r

J,p

) q
m ‖un(·, τ∗)‖Lr(RN )

where C(m) = 2
m

m−1 .
(b) (L1–L∞-smoothing) For a.e. τ∗ > 0,

‖un(·, τ∗)‖L∞(RN ) ≤ (mqC(m)
m

m−1 ) 1
m τ

− 1
m−1

∗ +
(mC(m)

m− 1 CJ,p

)q

‖un(·, τ∗)‖L1(RN ).

Proof. By Theorem 5.8,

um
n (x0, τ∗) ≤

C(m)
τ∗

un(x0, τ∗) + C(m)
τ∗

2τ∗ˆ

τ∗

ˆ

RN

um
n (x, t)Jx0(x) dx dt =: I + II.

(a) We use Lemma 5.4(b)(ii) with p = ∞ to get

II ≤ ‖un(·, τ∗)‖m−r
L∞(RN )

C(m)
τ∗

2τ∗ˆ

τ∗

ˆ

RN

ur
n(x, t)Jx0(x) dx dt.

By the Young inequality (1.7) with ϑ = m
r and ϑ = m, we estimate

II ≤ m− r

m
‖un(·, τ∗)‖mL∞(RN ) + r

m

(
C(m)
τ∗

2τ∗ˆ

τ∗

ˆ

RN

ur
n(x, t)Jx0(x) dx dt

)m
r

and

I ≤ 1
m
um
n (x0, τ∗) + m− 1

m

(C(m)
τ∗

) m
m−1

.

Collecting the terms yields
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um
n (x0, τ∗) ≤

m

m− 1
m− r

m
‖un(·, τ∗)‖mL∞ + m

m− 1
m− 1
m

(C(m)
τ∗

) m
m−1

+ m

m− 1
r

m

(
C(m)
τ∗

2τ∗ˆ

τ∗

ˆ

RN

ur
n(x, t)Jx0(x) dx dt

)m
r

= m− r

m− 1‖un(·, τ∗)‖mL∞ +
(C(m)

τ∗

) m
m−1

+ r

m− 1

(
C(m)
τ∗

2τ∗ˆ

τ∗

ˆ

RN

ur
n(x, t)Jx0(x) dx dt

)m
r

.

Since

m− r

m− 1 = m− 1 + 1 − r

m− 1 = 1 − r − 1
m− 1 ,

we can only absorb the L∞-norm on the left-hand side when r > 1. Indeed,

‖un(·, τ∗)‖mL∞(RN ) ≤
m− 1
r − 1

(C(m)
τ∗

) m
m−1

+ r

r − 1 ess sup
x0∈RN

(
C(m)
τ∗

2τ∗ˆ

τ∗

ˆ

RN

ur
n(x, t)Jx0(x) dx dt

)m
r

,

and since ‖Jx0‖Lp(RN ) = ‖J‖Lp(RN ), we obtain by the Hölder inequality and Lem-
ma 5.4(b)(ii) with p = q that

‖un(·, τ∗)‖mL∞ ≤ m− 1
r − 1

(C(m)
τ∗

) m
m−1 + rC(m)m

r

r − 1 ‖J‖
m
r

Lp‖ur
n(·, τ∗)‖

m
r

Lq

≤ m− 1
r − 1

(C(m)
τ∗

) m
m−1 + rC(m)m

r

r − 1 ‖J‖
m
r

Lp‖un(·, τ∗)‖
m(q−1)

q

L∞ ‖un(·, τ∗)‖
m
q

Lr .

Apply the Young inequality (1.7) with ϑ = q to obtain

‖un(·, τ∗)‖mL∞ ≤ m− 1
r − 1

(C(m)
τ∗

) m
m−1 + q − 1

q
‖un(·, τ∗)‖mL∞

+ rqC(m)mq
r

q(r − 1)q ‖J‖
mq
r

Lp ‖un(·, τ∗)‖mLr ,

or,

‖un(·, τ∗)‖mL∞(RN ) ≤
q(m− 1)1+

m
m−1

r − 1

( C(m)
(m− 1)τ∗

) m
m−1

+
(rC(m)m

r

‖J‖
m
r

Lp(RN )

)q

‖un(·, τ∗)‖mLr(RN ).

(5.3)
r − 1
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Finally, since m > 1, x �→ x
1
m is concave and sub-additive on [0, ∞), and we conclude.

(b) The Hölder inequality yields

‖un(·, τ∗)‖mLm ≤ ‖un(·, τ∗)‖m−1
L∞ ‖un(·, τ∗)‖L1 .

Inserting this estimate into (5.3) with r = m, and then applying the Young inequalities 
with ϑ = m give

‖un(·, τ∗)‖mL∞ ≤ q(m− 1)1+
m

m−1

m− 1

( C(m)
(m− 1)τ∗

) m
m−1

+ m− 1
m

‖un(·, τ∗)‖mL∞ + 1
m

((mC(m)m
m

m− 1 ‖J‖
m
m

Lp

)q

‖un(·, τ∗)‖L1

)m

,

or

‖un(·, τ∗)‖mL∞ ≤m
q(m− 1)1+

m
m−1

m− 1

( C(m)
(m− 1)τ∗

) m
m−1

+
((mC(m)

m− 1 ‖J‖Lp

)q

‖un(·, τ∗)‖L1

)m

,

which concludes the proof since x �→ x
1
m is sub-additive. �

The above results are not invariant under time-scaling (Lemma 4.3). We thus rewrite 
them in a proper form:

Proposition 5.11 (Scaling-invariant smoothing effects). Assume q = p/(p − 1) ∈ [1, ∞)
and r ∈ (1, m]. Under the assumptions of Theorem 5.8 and (J2), we have that:

(a) (Lr–L∞-smoothing)

‖un(·, t)‖L∞(RN ) ≤

⎧⎪⎨⎪⎩2
(

q(m−1)
2m−1
m−1

r−1

) 1
m
(

C(m)
(m−1)

) 1
m−1

t−
1

m−1 if 0 < t ≤ t0,n a.e.,

2
(

rC(m)
m
r

r−1 C
m
r

J,p

) q
m ‖u0,n‖Lr(RN ) if t > t0,n a.e.,

where

t0,n := C(m)
r−q(m−1)

r C
− q(m−1)

r

J,p

(q(r − 1)q−1(m− 1)
rq

)m−1
m ‖u0,n‖−(m−1)

Lr(RN ) .

(b) (L1–L∞-smoothing)

‖un(·, t)‖L∞(RN ) ≤

⎧⎨⎩2(mqC(m)
m

m−1 ) 1
m t−

1
m−1 if 0 < t ≤ t0,n a.e.,

2
(

mC(m)
m−1 CJ,p

)q

‖u0,n‖L1(RN ) if t > t0,n a.e.,
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where

t0,n := (mq)
m−1
m

( m

m− 1CJ,p

)−q(m−1)
C(m)1−q(m−1)‖u0,n‖−(m−1)

L1(RN ) .

Proof. We only provide a proof for part (a) since (b) is similar.
Proposition 5.10(a) gives

‖un(·, τ∗)‖L∞ ≤
(q(m− 1)

2m−1
m−1 C(m)

m
m−1

r − 1

) 1
m
( 1

(m− 1)τ∗

) 1
m−1

+
(rC(m)m

r

r − 1 C
m
r

J,p

) q
m ‖un(·, τ∗)‖Lr ,

but this result is not respecting the time-scaling (Lemma 4.3):

Λ
1

m−1 ‖un(·,Λτ∗)‖L∞ ≤
(q(m− 1)

2m−1
m−1 C(m)

m
m−1

r − 1

) 1
m Λ

1
m−1

( 1
(m− 1)Λτ∗

) 1
m−1

+
(rC(m)m

r

r − 1 C
m
r

J,p

) q
m Λ

1
m−1 ‖un(·,Λτ∗)‖Lr .

By Lemma 5.4(b)(ii) with p = r, we can optimize by requiring that

(q(m− 1)
2m−1
m−1 C(m)

m
m−1

r − 1

) 1
m
( 1

(m− 1)Λτ∗

) 1
m−1 =

(rC(m)m
r

r − 1 C
m
r

J,p

) q
m ‖u0,n‖Lr ,

or

Λτ∗ = C(m)
r−q(m−1)

r C
− q(m−1)

r

J,p

(q(r − 1)q−1(m− 1)
rq‖u0,n‖mLr

)m−1
m =: t0,n.

We obtain that

‖un(·, t0,n)‖L∞ ≤ 2
(rC(m)m

r

r − 1 C
m
r

J,p

) q
m ‖u0,n‖Lr .

To finish, we follow the proof of Proposition 4.18. �
The proof of Theorem 5.1 follows as for Theorem 3.5, except that we verify that the 

limit is a very weak solution in the sense of Definition 5.1 here.

6. Smoothing effects VS Gagliardo-Nirenberg-Sobolev inequalities

In this section we investigate the connections between the validity of smoothing effects 
for solutions to diffusion equations and the validity of suitable functional inequalities of 
Gagliardo-Nirenberg-Sobolev (GNS) type, together with some limiting cases, and their 
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dual counterparts, the Hardy-Littlewood-Sobolev (HLS) type inequalities. As already 
mentioned, it is well-known since the celebrated work of Nash [97] that the ultracontrac-
tive estimate for solutions of the heat equation, i.e. (GPME) with m = 1, are equivalent 
to a special GNS inequality. There has been an extensive literature on this nowadays 
classical topic, and theorems analogous to Theorem 6.1 below can be found in analysis 
textbooks, e.g., [94,102].

In the nonlinear setting much less is known, a first result in this direction has been 
given in [21] where, adapting the Gross method to the nonlinear setting, logarith-
mic Sobolev (LS) inequalities (of Euclidean type) implied L1–L∞-smoothing effects for 
porous medium-type equations (also on Riemannian manifolds). Indeed, LS inequalities 
are limiting cases of GNS inequalities, hence it is shown there how GNS inequalities 
imply smoothing effects. Later the equivalence between GNS and smoothing effects was 
established in [28,75,76], see also [50]. In the nonlinear case, the Nash method does not 
work, and the classical alternative is provided by the celebrated Moser iteration, which 
was first introduced for linear parabolic equations [95,96], then extended by various 
authors to the nonlinear setting, see [23,24,34,54,77,81,84–86,92,98]. Another classical 
possibility is the DeGiorgi method, which can be adapted to the nonlinear setting. It 
also shows how functional inequalities imply regularity properties of solutions, see for 
instance [68,69]. Once GNS imply smoothing, it is often possible to prove the converse 
implication, establishing equivalence, cf. Theorem 6.11.

In the pioneering paper [7], see also [102], the equivalences of different Sobolev, GNS, 
Nash, LS, and Poincaré inequalities are established. We recall some of the precise results 
in Lemma 6.15. Roughly speaking, the idea is that all functional inequalities that can be 
true with a suitable quadratic form are equivalent: We will analyze mainly two classes 
that we call Sobolev or Poincaré, since they are equivalent respectively to Lq–L∞- or to 
Lq–Lp-smoothing effects for the associated linear equation, i.e., (GPME) with m = 1. 
We add other equivalences and implications related to (GPME) with m > 1, which is the 
main purpose of this section, see Fig. 5. Let us also mention that a more direct proof of 
the equivalence between Nash and LS can be obtained by the methods of [36] combined 
with the 4-norm inequality of [22].

We want to emphasize that sometimes the nonlinear diffusion enjoys smoothing while 
the linear counterpart does not. The nonlinear smoothing must then be equivalent to 
a functional inequality that has to be weaker than any GNS (or any other functional 
inequality equivalent to Sobolev), otherwise it would imply smoothing in the linear case. 
We provided explicit examples of this phenomenon in Section 5. This allowed to conclude 
that while linear smoothing implies nonlinear smoothing, the viceversa is not true in 
general, see Theorem 3.9 and Remark 3.10. The crucial ingredient to prove the smoothing 
for the nonlinear (when the linear does not smooth) is the Green function method, 
developed in the previous sections.

So far, the panorama of implications does not include Green functions, only heat 
kernels. It can, however, be shown using Legendre transform that Sobolev and HLS are 
equivalent, see Lemma 6.7. Dual norms indeed involve Green functions, and an upper 
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bound on the Green function implies the HLS, hence a Sobolev inequality. The Green 
function method thus replaces the use of Sobolev inequalities and iterations à la Moser 
or à la DeGiorgi with simpler integral estimates, and provides a solid alternative to those 
methods. Moreover, having at disposal estimates on the Green function seems to be more 
versatile in the sense that the method surprisingly works when the linear counterpart 
does not smooth. The latter must indicate that the Green function estimate cannot 
always provide strong functional inequalities which would imply smoothing in the linear 
case.

In many examples, the Green function estimates necessary for the method to work, 
are derived from heat kernel bounds, or via Fourier transform, see Section 7. As we shall 
explain below, in the nonlocal case, GNS is not sufficient to prove smoothing effects 
via Moser iterations. One also needs the Stroock-Varopoulos inequality [107,111], which 
somehow replaces the Sobolev chain rule in the local case.

One of the merits of this paper is represented from the fact that having Green func-
tion estimates—and then also boundedness estimates—allow to prove GNS (with the 
quadratic form already adjusted to the operator) that then have many other applica-
tions. In the nonlocal case, proving GNS is not an easy task for general quadratic forms, 
see [10,43,70]. We provide here a PDE proof of many functional inequalities that can 
have their own interest. We also prove the validity of some weak GNS, as a consequence 
of the nonlinear smoothing. See Section 7 for a rich list of examples of operators included 
in our theory.

Optimal or explicit constants in fractional GNS type inequalities are mostly an un-
explored topic. In the local case, the sharp classical Nash inequality has been proven 
in [36,41] by different methods. Sharp GNS have been proven in [61] by entropy meth-
ods and nonlinear flows, and by mass transportation techniques in [48]. Quantitative 
and constructive stability for GNS has recently been proven in [34], to which we refer 
the reader for thorough historical and bibliographical information, also on Sobolev and 
related inequalities. We refrain from a thorough discussion here. As for functional in-
equalities related to nonlocal operators or fractional Sobolev spaces, to the best of our 
knowledge only a few contributions are present in literature: optimal fractional Sobolev 
inequalities are discussed in [49], while optimal fractional GNS in [10]. Fractional Hardy 
inequalities are studied in [70]. Improved Sobolev have been studied in [99] by means 
of concentration compactness methods. We apologize in advance, in case we are miss-
ing important contributions in these directions, but in this paper we do not address 
the question of optimal inequalities, we just establish their validity with a (computable) 
constant.

Throughout this section, C > 0 is a constant (that might change) which depends on 
N , α, m, and the underlying Green function, but not on any norm of u or u0. We will 
use the notation

Q−L[f, g] :=
ˆ

f(−L)[g] and Q−L[f ] := Q−L[f, f ],
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and we will write, for q > 0,

( ˆ

RN

|f(x)|q dx
) 1

q

= ‖f‖Lq(RN )

even though it is not a proper norm when q ∈ (0, 1).

6.1. The well-known linear case (m = 1)

We state and prove the following form of the Nash-type theorem [97], adapted to our 
setting.

Theorem 6.1 (Linear equivalences). Assume α ∈ (0, 2] and 2∗ = 2N/(N − α). The fol-
lowing statements are equivalent:

(a) (L1–L∞-smoothing) Let u be a solution of (GPME) with m = 1 and initial data 
u0 ∈ L1(RN ), then

‖u(·, t)‖L∞(RN ) ≤ Ct−
N
α ‖u0‖L1(RN ).

(b) (Sobolev) For all f ∈ L1(RN ) ∩ dom(Q−L),

‖f‖L2∗ (RN ) ≤ CQ−L[f ] 1
2 .

(c) (Nash) For all f ∈ L1(RN ) ∩ dom(Q−L),

‖f‖L2(RN ) ≤ C‖f‖ϑL1(RN )Q−L[f ] 1
2 (1−ϑ) where ϑ := 1

2
2∗ − 2
2∗ − 1 .

(d) (On-diagonal heat kernel bounds) The heat kernel Hx0
−L

satisfies

0 ≤ Hx0
−L

(x) ≤ Ct−
N
α .

Remark 6.2. The case α = 2 is well-known, and we refer the reader to e.g. Lemma 2.1.2 
and Theorem 2.4.6 in [55] (see also [94]). In the context of Lévy operators L = Lμ with 
an absolutely continuous measure μ, it is worth mentioning that as long as

dμ
dz (z) � 1

|z|N+α

in (Hμ), we are in the case α ∈ (0, 2), cf. [74, Proposition 2.6]. One can also replace N/α

by 
∑N

i=1(αi)−1 as in the Sobolev inequality corresponding to the sum of onedimensional 
fractional Laplacians [43, Theorem 2.4]. Examples of (some of the above) equivalences 
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Gx0
−L

(x)
� |x − x0|−(N−α) Sobolev inequality

L1–L∞-smoothing Nash inequality

On-diagonal
heat kernel bounds

Off-diagonal
heat kernel bounds

Via HLS
Lp-interp.

Via HLS

Hx0
−L

(·, 0) = δx0

Energy est.

Dual L∞

Representation
formula

Definition

Integration

Fig. 4. Implications in the linear case. Note that off-diagonal heat kernel bounds provide the strongest 
information unless we know how to deduce those bounds from the on-diagonal ones (like in [55, Section 3]
and [42, Theorem 3.25]). In the latter case, any piece of information is equivalent.

in the nonpower case can be found in e.g. Proposition 3 and Lemma 5 in [90]. We also 
refer to [37] which explores various equivalences between Nash inequalities and Lq–Lp-
smoothing estimates for Lévy operators (see also [42]).

The proof is divided into several independent results. By interpolation in Lp, we 
immediately have:

Lemma 6.3 (Sobolev implies Nash). Assume α ∈ (0, 2] and 2∗ = 2N/(N − α). If

‖f‖L2∗ (RN ) ≤ CQ−L[f ] 1
2 ,

then

‖f‖L2(RN ) ≤ C‖f‖ϑL1(RN )Q−L[f ] 1
2 (1−ϑ) where ϑ := 1

2
2∗ − 2
2∗ − 1 .

Lemma 6.4 (L1–L∞-smoothing VS Nash inequality). Under the assumptions of Theo-
rem 6.1, the following are equivalent:

(a) (L1–L∞-smoothing)

‖u(·, t)‖L∞(RN ) ≤ Ct−
N
α ‖u0‖L1(RN ).

(b) (Nash)

‖f‖L2(RN ) ≤ C‖f‖ϑL1(RN )Q−L[f ] 1
2 (1−ϑ) where ϑ := 1 2∗ − 2

∗ .
2 2 − 1
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Proof. Follows by Theorem 8.16 in [94]7 (see also Section 4.1 in [102]). There, the Nash 
inequality is equivalent with an L1–L∞-smoothing effect. An intermediate step is the 
L1–L2-smoothing effect, which can be extended to L∞ by the Nash duality trick:

‖u(t)‖L∞ = sup
‖φ‖L1=1

∣∣∣∣ ˆ u(t)φ
∣∣∣∣ = sup

‖φ‖L1=1

∣∣∣∣ ˆ St[u0]φ
∣∣∣∣ = sup

‖φ‖L1=1

∣∣∣∣ ˆ S t
2
[S t

2
[u0]]φ

∣∣∣∣
= sup

‖φ‖L1=1

∣∣∣∣ ˆ S t
2
[u0]S t

2
[φ]

∣∣∣∣ ≤ sup
‖φ‖L1=1

‖S t
2
[u0]‖L2‖S t

2
[φ]‖L2 .

Here we used that the semigroup St is self-adjoint, and the Cauchy-Schwarz inequal-
ity. �
Remark 6.5. To obtain the L1–L∞-smoothing in the nonlinear case (m > 1), the Nash 
inequality is usually replaced by the Gagliardo-Nirenberg-Sobolev inequality:

‖f‖Lp(RN ) ≤ C‖f‖ϑLq(RN )Q−L[f ] 1
2 (1−ϑ),

where

2 ≤ p < 2∗, 1 ≤ q < p, ϑ := q

p

2∗ − p

2∗ − q
.

Then the Moser iteration can be used to obtain the desired result. In the next section, 
we show that we indeed need less than the above inequality to perform all the necessary 
steps.

Lemma 6.6 (L1–L∞-smoothing and heat kernel bounds). Under the assumptions of The-
orem 6.1, the following are equivalent:

(a) (L1–L∞-smoothing)

‖u(·, t)‖L∞(RN ) ≤ Ct−
N
α ‖u0‖L1(RN ).

(b) (On-diagonal heat kernel bounds)

0 ≤ Hx0
−L

(x, t) ≤ Ct−
N
α

Proof. (a)=⇒(b). We apply Theorem 2.6.20 in [82]. Formally, Hx0
−L

solves (GPME) with 
m = 1 and δx0 as initial data. Hence, by an approximation argument and the lower 
semicontinuity of the L∞-norm, we arrive at part (b).

7 We warn the reader about a small typo in the remark after Theorem 8.16 in [94]: (f, Lf) =
´
fLf is 

indeed ‖∇f‖2
L2 when L = −Δ.
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(b)=⇒(a). Since C∞
c (RN )-initial data produce solutions that satisfy the representation 

formula u(x, t) = Hx0
−L

(·, t) ∗ u0(x) and

|u(x, t)| ≤ Hx0
−L

(·, t) ∗ |u0|(x) ≤ Ct−
N
α ‖u0‖L1(RN ),

we can again do an approximation argument to show (a). �
It remains to prove that the Nash inequality implies the Sobolev inequality. For C∞

c -
functions, such a result can be found in [7]. However, for semigroups in L2, we will 
consider an indirect path through the inverse of the square root of the operator.

Legendre duality allows to establish equivalences between Sobolev and Hardy-
Littlewood-Sobolev (HLS) inequalities:

Lemma 6.7 (Sobolev VS HLS). Assume α ∈ (0, 2], 2∗ = 2N/(N − α), and (2∗)′ :=
2∗/(2∗ − 1) = 2N/(N + α). The following inequalities are equivalent:

(a) (Sobolev) For all f ∈ L1(RN ) ∩ dom(Q−L),

‖f‖L2∗ (RN ) ≤ C‖(−L) 1
2 [f ]‖L2(RN ).

(b) (HLS) For all g ∈ L1(RN ) ∩ dom(Q−L),

‖(−L)− 1
2 [g]‖L2(RN ) ≤ C‖g‖L(2∗)′ (RN ).

The proof is based on the Legendre transform, see e.g. Proposition 7.4 in [29], that 
we learned by Lieb [93]. Lemma 6.4 already established that the Nash inequality implies 
the L1–L∞-smoothing. The next lemma then finishes the proof of Theorem 6.1.

Lemma 6.8 (L1–L∞-smoothing VS HLS). Assume α ∈ (0, 2] and (2∗)′ := 2∗/(2∗ − 1) =
2N/(N + α). Then the following are equivalent:

(a) (L1–L∞-smoothing) Let u be a solution of (GPME) with m = 1 and initial data 
u0 ∈ L1(RN ), then

‖u(·, t)‖L∞(RN ) ≤ Ct−
N
α ‖u0‖L1(RN ).

(b) (HLS) For all g ∈ L1(RN ) ∩ dom(Q−L),

‖(−L)− 1
2 [g]‖L2(RN ) ≤ C‖g‖L(2∗)′ (RN ).

Proof. (a)=⇒ (b). We apply Theorem II.2.7 in [112] with ζ = γ = 1 and p = (2∗)′.

(b)=⇒(a). Follows by Lemmas 6.7, 6.3, and 6.4. �
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Finally, we relate Green function estimates with all of the above equivalences.

Lemma 6.9 (Green VS HLS). Assume (HG), α ∈ (0, 2], and (2∗)′ = 2∗/(2∗ − 1) =
2N/(N + α). If

0 ≤ Gx0
−L

(x) ≤ C|x− x0|−(N−α),

then, for all g ∈ L1(RN ) ∩ dom(Q−L),

‖(−L)− 1
2 [g]‖L2(RN ) ≤ C‖g‖L(2∗)′ (RN ).

Remark 6.10. The above assumption on the Green function is stronger than (G1). We 
refer the reader to [89] for a discussion on the validity of such an upper bound.

Proof of Lemma 6.9. This is essentially Theorem 7.5 in [29], which we restate here for 
completeness.

A direct calculation gives

‖(−L)− 1
2 [f ]‖2

L2(RN ) =
ˆ

RN

(−L)− 1
2 [f ](−L)− 1

2 [f ] dx =
ˆ

RN

f(−L)−1[f ] dx

=
ˆ

RN

f(x)
( ˆ

RN

Gx
−L(y)f(y) dy

)
dx ≤ C

ˆ

RN

f(x)
( ˆ

RN

|x− y|−(N−α)f(y) dy
)

dx

= C‖(−Δ)−α
4 [f ]‖2

L2(RN ).

The classical Hardy-Littlewood-Sobolev

‖(−Δ)−α
4 [f ]‖L2(RN ) ≤ C‖f‖L(2∗)′ (RN )

then provides the result. �
6.2. The nonlinear case (m > 1)

While in the linear case, the Nash method works perfectly, in the nonlinear case, the 
Nash method simply does not work since the “nonlinear heat semigroup” is not symmet-
ric. On the other hand, the Moser iteration, which provides an alternative proof in the 
linear case, can be adapted to work also in the nonlinear case, and it shows how to prove 
smoothing effects from GNS inequalities also in the nonlinear setting. However GNS are 
not sufficient to perform Moser iteration in the nonlocal setting, another ingredient is 
needed: the so-called Stroock-Varopoulos inequalities. Let us briefly explain how this 
works.

Assume that there exists 2∗ ≥ 2 such that the Sobolev-Poincaré type inequality holds 
(2∗ = 2 being the Poincaré case)
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Fig. 5. Implications in the nonlinear case. Note that still the off-diagonal heat kernel bounds provide the 
strongest piece of information. However, we also see that because of (G3), on-diagonal heat kernel bounds 
ensure a closed loop in the nonlinear case, assuming that [7] applies.

‖f‖2
L2∗ (RN ) ≤ C

ˆ

RN

f(−L)f dx = CQ−L[f ] = C‖(−L) 1
2 [u]‖2

L2(RN ),

where the last equality is true whenever the operator −L has an extension to L2(RN ). 
By simple interpolation of Lp-norms, for p̃ ∈ [(1 + m)/m, 2) and q̃ ∈ [1/m, p̃),

‖f‖Lp̃(RN ) ≤ C‖f‖ϑLq̃(RN )Q−L[f ] 1
2 (1−ϑ) where ϑ := ϑ(2∗).

When dealing with energy estimates in the local case, a calculus equality allows us to do 
the Moser iteration:

ˆ

RN

up−1(−Δ)[um] dx =
ˆ

RN

∇up−1 · ∇um dx = 4m(p− 1)
(p + m− 1)2

ˆ

RN

∣∣∇u
p+m−1

2
∣∣2 dx.

However, we just need an inequality, which in the nonlocal case has been proven by 
Stroock and Varopoulos [107,111] (cf. [37, Proposition 4.11] or [64, Lemma 4.10]): For 
the same constant as above,

ˆ

RN

up−1(−L)[um] dx �
ˆ

RN

u
p+m−1

2 (−L)[u
p+m−1

2 ] dx �

∥∥(−L) 1
2 [u

p+m−1
2 ]

∥∥2
L2(RN ).

Combining the two above inequalities, one gets

ˆ
up−1(−L)[um] ≥ 4m(p− 1)

(p + m− 1)2Q−L[u
p+m−1

2 ] ≥ 4m(p− 1)
C2(p + m− 1)2

‖u‖
2

1−ϑ
p+m−1

2

Lp̃
p+m−1

2

‖u‖
2ϑ

1−ϑ
p+m−1

2

Lq̃
p+m−1

2

. (M)

The above condition is the key to prove the following:
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Theorem 6.11 (Green functions satisfying (G1)). Assume (Hm). Then the following state-
ments are equivalent:

(i) (L1–L∞-smoothing) Let u be a weak dual solution of (GPME) with initial data 
u0 ∈ L1(RN ), then

‖u(·, t)‖L∞(RN ) ≤ Ct−Nθ1‖u0‖αθ1L1(RN ),

where θ1 = (α + N(m − 1))−1.
(ii) (Subcritical GNS) For p̃ ∈ [(1 + m)/m, 2) and q̃ ∈ [1/m, p̃), and for all f ∈

Lq̃(RN ) ∩ dom(Q−L) we have

‖f‖Lp̃(RN ) ≤ C‖f‖ϑLq̃(RN )Q−L[f ] 1
2 (1−ϑ) where ϑ := q̃

p̃

2∗ − p̃

2∗ − q̃
.

When we have at our disposal Green functions satisfying (G1) then, by Theo-
rem 3.1(a), we have the above nonlinear smoothing effect. This turns out to be equivalent 
to a family of subcritical Gagliardo-Nirenberg-Sobolev, which then are equivalent to 
Sobolev, see Lemma 6.15 below. In order to show that subcritical GNS imply nonlinear 
smoothing, we will perform a Moser iteration. We refer to [35, Section 3] for a more 
detailed exposition of the Moser iteration in the fast diffusion case 0 < m < 1, in the 
context of bounded domains. It also contains a detailed discussion about the Green 
function method versus the Moser iteration.

When we have integrable Green functions (G2), we can obtain absolute bounds (i.e. 
independent of the initial datum), as in the case of bounded domains [26,27,33]. Such 
bounds imply weak GNS inequalities, which are equivalent to Poincaré inequalities 
(Lemma 6.15). We notice that it is not possible (to the best of our knowledge) to prove 
the converse implication via the Moser iteration. In fact, the constant simply blows up 
at the limit p → ∞. A similar discussion can be found in [75,76]. However we have seen 
in Theorem 3.7 a simple proof of the absolute bounds with the Green function method, 
so that we can conclude that integrable Green functions imply Poincaré-type inequalities 
as follows:

Proposition 6.12 (Green functions satisfying (G2)). Assume (Hm). Given the following 
statements:

(i) (Absolute bound) Let u be a weak dual solution of (GPME) with initial data u0, 
then

‖u(·, t)‖L∞(RN ) ≤ Ct−1/(m−1).

(ii) (Subcritical GNS) For p̃ ∈ [(1 + m)/m, 2) and q̃ ∈ [1/m, p̃), and for all f ∈
Lq̃(RN ) ∩ dom(Q−L) we have
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‖f‖Lp̃(RN ) ≤ C‖f‖ϑLq̃(RN )Q−L[f ] 1
2 (1−ϑ) where ϑ := q̃

p̃

2 − p̃

2 − q̃
.

Then (i)=⇒(ii).

In order to prove the above theorem and proposition, we need a few results that we 
prefer to state and prove separately since they have their own interest. We shall start with 
the fact that (any) GNS is equivalent to some Lq–Lp-smoothing. This can be directly 
seen by the Stroock-Varopoulos inequality.

Proposition 6.13 (Lq–Lp-smoothing VS subcritical GNS). Assume (Hm).

(a) (Green functions satisfying (G1)) The following statements are equivalent:

(i) (Lq–Lp-smoothing) For p ∈ [1 + m, ∞) and q ∈ [1, p), let u be a weak dual 
solution of (GPME) with initial data u0 ∈ Lq(RN ), then

‖u(·, t)‖Lp(RN ) ≤ C

(
(p + m− 1)2

4m(m− 1)(p− 1)
1
t

)N(p−q)θq
p

‖u0‖
q
p

θq
θp

Lq(RN ),

where θr := (αr + N(m − 1))−1 and C > 0 is independent of p, q.
(ii) (Subcritical GNS) For p̃ ∈ [(1 + m)/m, 2) and q̃ ∈ [1/m, p̃), and for all f ∈

Lq̃(RN ) ∩ dom(Q−L) we have

‖f‖Lp̃(RN ) ≤ C‖f‖ϑLq̃(RN )Q−L[f ] 1
2 (1−ϑ) where ϑ := q̃

p̃

2∗ − p̃

2∗ − q̃
.

(b) (Green functions satisfying (G2)) The following statements are equivalent:

(i) (Lq–Lp-smoothing) For p ∈ [1 + m, ∞) and q ∈ [1, p), let u be a weak dual 
solution of (GPME) with initial data u0 ∈ Lq(RN ), then

‖u(·, t)‖Lp(RN ) ≤ C

(
(p + m− 1)2

4m(m− 1)(p− 1)
1
t

) p−q
p(m−1)

‖u0‖
q
p

Lq(RN ),

where C > 0 is independent of p, q.
(ii) (Subcritical GNS) For p̃ ∈ [(1 + m)/m, 2) and q̃ ∈ [1/m, p̃), and for all f ∈

Lq̃(RN ) ∩ dom(Q−L) we have

‖f‖Lp̃(RN ) ≤ C‖f‖ϑLq̃(RN )Q−L[f ] 1
2 (1−ϑ) where ϑ := q̃

p̃

2 − p̃

2 − q̃
.

Remark 6.14.
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(a) Let us make some comments on part (a). First of all, note that ϑ is nothing but the 
standard quantity appearing in interpolation between Lp-norms with q̃ < p̃ < 2∗. 
We also see that when formally m → 1−, p̃ = 2 and q̃ = 1 in the above subcritical 
GNS inequality, and we recover the critical Nash inequality (see Section 6.1). In our 
case m > 1, and that is why we call it subcritical. Note, however, that the standard 
GNS inequality (see Remark 6.5) is not included as a special case here.

(b) The proof reveals that GNS inequalities always imply Lq–Lp-smoothing effects, but 
the opposite implication requires further assumptions. Actually, the equivalence 
which is always true is the one between L1–Lm+1-smoothing effects and subcriti-
cal Nash inequalities. In fact, even operators only yielding boundedness estimates in 
the form of Theorem 3.5 (see also Theorem 5.1), still enjoy the latter equivalence.

To provide a proof, we need:

Lemma 6.15 ([7,102]). Assume (Hm) and f ∈ C∞
c (RN ). Then:

(a) (Sobolev) The following statements are equivalent:

(i) (Sobolev)

‖f‖L2∗ (RN ) ≤ CQ−L[f ] 1
2 .

(ii) (Subcritical GNS) For p̃ ∈ [(1 + m)/m, 2) and q̃ ∈ [1/m, p̃),

‖f‖Lp̃(RN ) ≤ C‖f‖ϑLq̃(RN )Q−L[f ] 1
2 (1−ϑ) where ϑ := q̃

p̃

2∗ − p̃

2∗ − q̃
.

(b) (Poincaré) The following statements are equivalent:

(i) (Poincaré)

‖f‖L2(RN ) ≤ CQ−L[f ] 1
2 .

(ii) (Subcritical GNS) For p̃ ∈ [(1 + m)/m, 2) and q̃ ∈ [1/m, p̃),

‖f‖Lp̃(RN ) ≤ C‖f‖ϑLq̃(RN )Q−L[f ] 1
2 (1−ϑ) where ϑ := q̃

p̃

2 − p̃

2 − q̃
.

Remark 6.16.

(a) In both cases, we simply check that q in [7] is respectively given by 2∗ and 2. It is also 
worth noting, that “any” family of Sobolev/Poincaré-type inequalities is equivalent 
with the Sobolev/Poincaré inequality. As a consequence, subcritical GNS inequalities 
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are equivalent with subcritical Nash inequalities, and then also equivalent with the 
standard Nash and GNS inequalities, respectively. However, the subcritical ones 
might be easier to prove in the nonlinear setting.

(b) The case q = 2 is kind of curious since it yields a Poincaré inequality in RN . Such 
an inequality is not fulfilled in e.g. the case L = Δ as the spectrum is nonnegative. 
Hence, it provides the intuition that absolute bounds holds if the spectrum of the 
operator is positive (e.g. as in the case −L = (I − Δ)α

2 ).

Proof of Proposition 6.13. (a) (i)=⇒(ii). By the particular choices 1 = q < p = m + 1, 
we immediately have the corresponding L1–Lm+1-smoothing effect. Then, direct and 
formal8 computations show that

d
dt

ˆ
um+1 =

ˆ
∂t(um+1) = (m + 1)

ˆ
um∂tu = −(m + 1)

ˆ
um(−L)[um], (6.1)

and also, since L is symmetric and u solves (GPME),

d
dt

ˆ
um(−L)[um] = 2

ˆ
∂t(um)(−L)[um] = 2m

ˆ
um−1∂tu(−L)[um]

= −2m
ˆ

um−1
(
(−L)[um]

)2
≤ 0.

(6.2)

Hence, by (6.2), we obtain in (6.1) that

d
dt

ˆ
um+1 ≥ −(m + 1)

ˆ
um

0 (−L)[um
0 ] = −(m + 1)Q−L[um

0 ].

We then integrate over (0, T ) and use L1–Lm+1-smoothing effect to get

−(m + 1)Q−L[um
0 ]T ≤ ‖u(T )‖m+1

Lm+1 − ‖u0‖m+1
Lm+1

≤ CT−N((m+1)−1)θ1‖u0‖
θ1

θm+1
L1 − ‖u0‖m+1

Lm+1 ,

or, by taking f := um
0 ,

‖f‖
m+1
m

L
m+1
m

≤ F (T ) := C‖f‖
1
m

θ1
θm+1

L
1
m

T−N((m+1)−1)θ1 + (m + 1)Q−L[f ]T.

8 We have decided to present the differential version of these estimates because the main idea is easier to 
follow. This is rigorous for strong solutions, for instance when ∂tu ∈ L1. It often happens that bounded weak 
solutions are strong, possibly under some additional assumptions on L, see [56]. These formal computations 
can be justified rigorously in several different ways. One possibility is to use Steklov averages and Grönwall-
type inequalities. It is beyond the scope of this paper to justify these computations, but we remark that they 
can be shown to hold for the mild solutions constructed in Appendix E, through standard approximations. 
The energy computations, namely the ones involving the Lm+1 norm, are always true for weak energy 
solutions (of which mild solutions are a subclass of).
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The inequality is still valid if we infimize F over T > 0, and this gives the subcritical 
Nash inequality, i.e., p̃ = (1 + m)/m and q̃ = 1/m in the stated subcritical GNS. Since 
the subcritical Nash inequality is a subfamily of the subcritical GNS, it is equivalent 
with the Sobolev inequality and then equivalent with GNS by Lemma 6.15.
(a) (ii)=⇒(i). Note that (ii) with f = u

p+m−1
2 and the Stroock-Varopoulos inequality 

gives (M). Direct and formal9 calculations and the Lp-decay (Proposition 4.1(b)(ii)) give

d
dt

ˆ
up =

ˆ
∂t(up) = p

ˆ
up−1∂tu = −p

ˆ
up−1(−L)[um]

≤ − 4mp(p− 1)
C2(p + m− 1)2

‖u‖
2

1−ϑ
p+m−1

2

Lp̃
p+m−1

2

‖u0‖
2ϑ

1−ϑ
p+m−1

2

Lq̃
p+m−1

2

= − 4mp(p− 1)
C2(p + m− 1)2

‖u‖1+σ
Lp

‖u0‖
2(2∗−p̃)
2∗(p̃−q̃) q

Lq

(6.3)

Where we have chosen:

p̃ := 2p
p + m− 1 , q̃ := 2q

p + m− 1 and σ := 2∗(2 − p̃) + q̃(2∗ − 2)
2∗(p̃− q̃) ,

and this choice is consistent with our assumptions. We also have that

2
1 − ϑ

p + m− 1
2 = 2(2∗ − q̃)

2∗(p̃− q̃)p and 2ϑ
1 − ϑ

p + m− 1
2 = 2(2∗ − p̃)

2∗(p̃− q̃)q,

so that, integrating the differential inequality we get (i). The proof of part (a) is con-
cluded.
(b) (i)=⇒(ii). Follows by a similar argument as in (a) (i)=⇒(ii), except that

F (T ) := C‖f‖
1
m

L
1
m
T− m

m−1 + (m + 1)Q−L[f ]T.

(b) (ii)=⇒(i). We argue exactly as in (a) (ii)=⇒(i), but now

2
1 − ϑ

p + m− 1
2 = 2 − q̃

p̃− q̃
p,

2ϑ
1 − ϑ

p + m− 1
2 = 2 − p̃

p̃− q̃
q,

1
σ

= p− q

m− 1 , and 2 − p̃

p̃− q̃

1
σ

= 1.

This yields the desired estimate. �
Proof of Theorem 6.11. (ii)=⇒(i). In what follows, we will just sketch the essential parts 
of the proof, in order to focus on the main ideas. The proof can moreover be made rigorous 

9 Again, it is beyond the scope of this paper to justify these computations, but they hold for e.g. the 
mild solutions constructed in Appendix E under some possibly additional assumptions on L. See also the 
previous footnote.
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by standard approximation techniques. Let us first remark that it is enough to prove the 
following Lm+1–L∞-smoothing effect:

‖u(t)‖L∞(RN ) ≤ Ct−Nθm+1‖u0‖α(m+1)θm+1
Lm+1(RN ) . (6.4)

Indeed, the claimed L1–L∞-smoothing effects are then deduced by applying Lemma B.2
of Appendix B.

In order to prove the smoothing effect (6.4), we will iterate “Moser style” the Lp–Lq-
smoothing effects Proposition 6.13(a)(i): Let us define p0 = m + 1 and pk = 2kp0 for 
each k ≥ 1, and tk such that tk − tk−1 = t−t0

2k , so that inequality Proposition 6.13(a)(i) 
becomes

‖u(tk)‖Lpk ≤ I
N(pk−pk−1)

pk
θk−1

k ‖u(tk−1)‖
pk−1 θk−1

pk θk

Lpk−1 with Ik �

pk
tk − tk−1

� 4k

where θk := θpk
= (αpk + N(m − 1))−1. More precisely, we have that we can estimate 

Ik uniformly as follows:

Ik := C
(pk + m− 1)2

4m(m− 1)(pk − 1)
1

tk − tk−1
≤ 4k C

t− t0
,

for some constant C > 0 that depends only on m, N .
Then we iterate

‖u(tk)‖Lpk ≤ I
N(pk−pk−1)

pk
θk−1

k ‖u(tk−1)‖
pk−1 θk−1

pk θk

Lpk−1

≤ I
N(pk−pk−1)

pk
θk−1

k I

N(pk−1−pk−2)

��pk−1
θk−2��pk−1θk−1

pkθk

k−1 ‖u(tk−2)‖
pk−2θk−2
��pk−1��θk−1

��pk−1��θk−1
pk θk

Lpk−2

...

≤
k∏

j=1
I

N(pj−pj−1)
pk

θjθj−1
θk

j ‖u(t0)‖
p0 θp0
pkθk

Lp0

≤

⎡⎣ k∏
j=1

(
4j c

t− t0

)N(θj−1−θj)
α

⎤⎦
1

pkθk

‖u(t0)‖
p0 θp0
pkθk

Lp0 .

Finally, letting k → ∞, it is easy to see that

k∏
j=1

(
4j C

t− t0

)N(θj−1−θj)
α

≤ 2
N

α2p0 pkθk

(
C

t− t0

)N(θp0−θk)
α

so that, using the lower semicontinuity of the L∞ norm, we get
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‖u(t)‖L∞ ≤ lim
k→∞

‖u(tk)‖Lpk

≤ lim
k→∞

⎛⎝2
N

α2p0 pkθk

(
C

t− t0

)N(θp0−θk)
α

⎞⎠
1

pkθk

‖u(t0)‖
p0 θp0
pkθk

Lp0 ≤ C
‖u(t0)‖

αp0 θp0
Lp0

(t− t0)Nθp0
.

This proves the desired inequality (6.4) and concludes the proof of (ii)=⇒(i).
(i)=⇒(ii). Follows by Theorem B.1 of Appendix B, which states that L1–L∞ imply 
Lp–Lq-smoothing effects, which in turn imply subcritical GNS, by Proposition 6.13(a). 
This concludes the proof. �
Remark 6.17. This proof holds for all m ≥ 1, so in particular it also shows that subcritical 
GNS imply smoothing also in the linear case m = 1, providing an alternative proof 
of the implication (b)=⇒(a) or (c)=⇒(a) in Theorem 6.1. When m ∈ (0, 1), which 
corresponds to the fast diffusion case, the same proof works as well, but we need to 
require further integrability on the initial datum in order to perform the iteration, as 
thoroughly explained in e.g. [35, Section 3] (and also [23,24,54] for the local case).

Finally, we have:

Proof of Proposition 6.12. By Lemma B.2 (with γ = 0) of Appendix B, item (i) implies 
Proposition 6.13(b)(i), and hence, item (ii) holds. �
7. Various examples

This section is devoted to study the operators whose Green functions satisfy assump-
tions (G1)–(G3), and hence, which smoothing effects are satisfied by such operators. As 
a consequence of Proposition D.3, we have:

Proposition 7.1. Assume that the operator −L is linear, symmetric, nonnegative, and 
moreover, densely defined, m-accretive, and Dirichlet in L1(RN ). Then (HG) holds, and 
the Green functions of −L and I − L are respectively given by

Gx0
−L

(x) =
∞̂

0

Hx0
−L

(x, t) dt

and

Gx0
I−L

(x) =
∞̂

0

e−tHx0
−L

(x, t) dt,

where Hx0
−L

is the corresponding heat kernel of −L.
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Let us illustrate these formulas through Fourier analysis. Denote by σ−L the Fourier 
symbol of the operator −L. Then the heat kernel can be expressed as

Hx0
−L

(x, t) = F−1[e−σ−L(·)t](x− x0) =
ˆ

RN

e−σ−L(ξ)te2πi(x−x0)·ξ dξ,

and

Gx0
−L

(x) =
∞̂

0

Hx0
−L

(x, t) dt =
ˆ

RN

( ∞̂

0

e−σ−L(ξ)t dt
)

e2πi(x−x0)·ξ dξ

=
ˆ

RN

1
σ−L(ξ)e2πi(x−x0)·ξ dξ = F−1

[ 1
σ−L(ξ)

]
(x− x0).

We also refer to the well-written book [19], which provides many examples of Green 
functions and a good introduction to potential theory.

In the examples that follows, we will need

∞̂

0

e−trrϑ dr = Γ(ϑ + 1)
tϑ+1 < ∞ whenever ϑ > −1, (7.1)

where Γ is the gamma function.

7.1. On the assumption (G1)

As demonstrated in Theorem 3.1, assumption (G1) leads to the estimate

‖u(·, t)‖L∞(RN ) � t−Nθα‖u0‖αθαL1(RN ) for a.e. t > 0

for weak dual solutions of (GPME) with initial data u0. Let us provide some concrete 
examples of operators −L in (GPME) whose Green functions satisfy (G1).

Lemma 7.2. The fractional Laplacian/Laplacian (−Δ)α
2 with α ∈ (0, 2] has a Green 

function which satisfies (G1).

Remark 7.3. Let us mention that heat kernel estimates for the Laplacian and the frac-
tional Laplacian date back to Fourier [73, Chapter IX Section II] (see also [71, Section 
2.3]) and Blumenthal and Getoor [16], respectively.

Proof of Lemma 7.2. Assume α ∈ (0, 2). By Lemma 2 in Chapter V.1 in [106],

Gx0
α (x) = F−1[| · |−α

]
(x− x0) � |x− x0|−(N−α).
(−Δ) 2
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Now,

ˆ

BR(x0)

Gx0

(−Δ)
α
2
(x) dx �

R̂

0

r−(N−α)rN−1 dr � Rα.

Moreover, for any x ∈ RN \BR(x0),

Gx0

(−Δ)
α
2
(x) � R−(N−α),

and the result follows.
Assume α = 2. The result is classical and can e.g. be found in [55, Section 1.1.8]. We 

get that Gx0
−Δ(x) � |x − x0|−(N−2) which satisfies (G1) with α = 2. �

Corollary 7.4. Any operator L whose Green function satisfies

Gx0
−L

(x) � |x− x0|−(N−α) for some α ∈ (0, 2]

will fulfil (G1).

Remark 7.5. By Lemma 6.9, the above assumption on the Green function implies that 
the corresponding operator satisfies the Sobolev inequality. Again, we also refer to [89]
for a further discussion.

Lemma 7.6. Assume that the real matrix [aij ]i,j=1,...,N is nonnegative and symmetric and 
L =

∑N
i,j=1 aij∂

2
xixj

. Given the following statements:

(i) There exist constants C, c > 0 such that

c|y|2 ≤
N∑

i,j=1
aijyiyj ≤ C|y|2.

(ii) There exist constants C, c > 0 such that

Hx0
−Lμ(x, t) ≤ ct−

N
2 exp

(
− C

|x− x0|2
t

)
.

(iii) There exists a constant C > 0 such that

Gx0
−Lμ(x) ≤ C|x− x0|−(N−2).

We have (i)=⇒(ii)=⇒(iii).
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Remark 7.7.

(a) The heat kernel bound is (up to constants) the same as for the regular Laplacian. 
This is not surprising in the constant coefficient case since the operator is, up to a 
translation, the Laplacian. The more interesting case is of course when the coefficients 
are (x, t)-dependent, see also [83, Section 2.9] and the classical [3]. For a similar result 
in the fractional setting, we refer to [87].

(b) The upper bound in statement (i) might seem superfluous, but the constant inside 
the exponential function in (ii) depends on it.

Proof of Lemma 7.6. (i)=⇒(ii). Follows by [55, Corollary 3.2.8] (see also [3]).

(ii)=⇒(iii). Follows by [55, Theorem 3.1.1] (see also [3]). �
The nonlocal counterpart is somehow when the Lévy measure is comparable to the 

measure of the fractional Laplacian.

Lemma 7.8. Assume L = Lμ and (Hμ). Given the following statements, for α ∈ (0, 2):

(i) There exist constants C, c > 0 such that

c

|z|N+α
≤ dμ

dz (z) ≤ C

|z|N+α
.

(ii) There exists a constant C > 0 such that

Hx0
−Lμ(x, t) ≤ C min

{
t−

N
α , t|x− x0|−(N+α)}.

(iii) There exists a constant C > 0 such that

Gx0
−Lμ(x) ≤ C|x− x0|−(N−α).

We have (i)=⇒(ii)=⇒(iii).

Remark 7.9. We can also slightly weaken the assumption on the lower bound: There 
exist constants C, c > 0 such that

cε−α ≤
ˆ

|z|>ε

dμ(z) ∀ ε > 0 and dμ
dz (z) ≤ C

|z|N+α
.

The estimates on the heat kernel and Green function still hold [108, Theorem 2] with 
f(x, y) = f(|y − x|) = dμ/ dz, see also the recent [89].
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Proof of Lemma 7.8. (i)=⇒(ii). Follows by [44, Theorem 1.2] with ρ(x, y) = |x − y|, 
V (r) = rN , γ1 = γ2 = 0, ψ(r) = 1, and φ1(r) = rα.
(ii)=⇒(iii). By direct computations,

Gx0
−Lμ(x) =

∞̂

0

Hx0
−Lμ(x, t) dt

�
|x−x0|αˆ

0

t|x− x0|−(N+α) dt +
∞̂

|x−x0|α

t−
N
α dt

� |x− x0|−(N−α). �
7.2. Combinations of assumption (G1)

Sometimes the Green function has different power behaviours at zero and at infinity. 
As demonstrated in Theorem 3.3, such a case leads to the estimate

‖u(·, t)‖L∞(RN ) � t−Nθα‖u0‖αθαL1(RN ) + t−Nθ2‖u0‖2θ2
L1(RN ) for a.e. t > 0

for weak dual solutions of (GPME) with initial data u0. Let us provide some concrete 
examples of operators −L in (GPME) whose Green functions satisfy combinations of 
(G1).

We start with one of the most basic operators giving such an estimate:

Lemma 7.10. Assume α ∈ (0, 2) and −L = (−Δ) + (−Δ)α
2 =: (−Δ) + (−Lμ). Given the 

following statements:

(i) For some constant C > 0, we consider

dμ
dz (z) = C

|z|N+α
.

(ii) There exists a constant C > 0 such that

Hx0
−L

(x, t) ≤ C

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(x− x0, t) + Hx0

(−Δ)
α
2
(x, t) if 0 < t < |x− x0|2 ≤ 1,

Hx0
−Δ(x, t) if |x− x0|2 < t < |x− x0|α ≤ 1,

Hx0
−Δ(x, t) if |x− x0|α ≤ t ≤ 1,

Hx0

(−Δ)
α
2
(x, t) if t ≥ 1 or |x− x0| ≥ 1,

where f(x − x0, t) := (4πt)−N/2exp(−|x − x0|2/(16t)).
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(iii) There exists a constant C > 0 such that

Gx0
−L

(x) ≤ C

{
|x− x0|−(N−2) if |x| ≤ 1,
|x− x0|−(N−α) if |x| > 1.

We have (i)=⇒(ii)=⇒(iii).

Remark 7.11. Note that when 0 < R ≤ 1, we get
ˆ

BR(x0)

Gx0
−L

(x) dx � R2, Gx0
−L

(x) � R−(N−2) for x ∈ RN \BR(x0),

and when R > 1,
ˆ

BR(x0)

Gx0
−L

(x) dx � Rα, Gx0
−L

(x) � R−(N−α) for x ∈ RN \BR(x0).

Hence, we are in the setting of Theorem 3.3 although in this example the small time 
behaviour is governed by the Laplacian and the large time by the fractional Laplacian.

Proof of Lemma 7.10. (i)=⇒(ii). Follows by [105, Theorem 2.13].
(ii)=⇒(iii). Assume |x| ≤ 1. Then

G0
−L(x) =

∞̂

0

H0
−L(x, t) dt =

( |x|2ˆ

0

+
|x|αˆ

|x|2

+
1ˆ

|x|α

+
∞̂

1

)
H0

−L(x, t) dt.

Let us start with the integral involving f(x, t). The change of variables |x|2/(16t) �→ t

gives

|x|2ˆ

0

f(x, t) dt �
|x|2ˆ

0

t−N/2e
−|x|2
16t dt =

( |x|2
16

)−N
2 +1

∞̂

1
16

τ
N
2 −2e−τ dτ � |x|−(N−2),

where we estimated the final integral by (7.1). The integrals involving H0
−Δ can be 

estimated in a similar way. It remains to estimate the contribution from H0
(−Δ)

α
2
:

( |x|2ˆ

0

+
∞̂

1

)
H0

(−Δ)
α
2
(x, t) dt �

( |x|2ˆ

0

+
∞̂

1

)
min{t−N/α, t|x|−N−α} dt

=
|x|2ˆ

t|x|−N−α dt +
∞̂

t−N/α dt � |x|−(N−2)+2−α + 1.

0 1
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Since |x| ≤ 1, we have |x|−(N−2)+2−α ≤ |x|−(N−2) and 1 ≤ |x|−(N−2).
Assume |x| > 1. Then

G0
−L(x) =

∞̂

0

H0
−L(x, t) dt �

∞̂

0

H0
(−Δ)

α
2
(x, t) dt � |x|−(N−α).

We combine the results to complete the proof. �
Let us now consider the relativistic Schrödinger type operators like

(κ2I − Δ)α
2 − καI with κ > 0 and α ∈ (0, 2) (7.2)

are Lévy operators [100, Lemma 2] (see also [79] and [72, Appendix B]), i.e., they can 
be written on the form Lμ, see (1.1), with a measure satisfying (Hμ).

Lemma 7.12. Assume −L is given by (7.2). Given the following statements, for α ∈ (0, 2):

(i) For some constant C > 0, we consider

dμ
dz (z) = C

|z|N+α
2

KN+α
2

(κ|z|),

where Ka is the modified Bessel function of the second kind with index a ∈ R.
(ii) There exists a constant C > 0 such that, for all γ > 2 − α,

Hx0
−Lμ(x, t) ≤ C min

{
t−

N
α ,

t

|x− x0|N+α(1 + |x− x0|)γ
}

if 0 < t < 1,

and

Hx0
−Lμ(x, t) ≤ C min

{
t−

N
2 ,

t

|x− x0|N+α(1 + |x− x0|)γ
}

if t > 1.

(iii) There exists a constant C > 0 such that

Gx0
−Lμ(x) ≤ C

(
|x− x0|−(N−α) + |x− x0|−(N−2)).

We have (i)=⇒(ii)=⇒(iii).

Remark 7.13. It is interesting to note that

dμ
dz (z) � 1

|z|N+α
as |z| → 0 and dμ

dz (z) � 1
N+α+1

2
e−κ|z| as |z| → ∞.
|z|
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Proof of Lemma 7.12. (i)=⇒(ii). Follows by [109, Section 5].
(ii)=⇒(iii). Since

G0
−Lμ(x) =

∞̂

0

H0
−Lμ(x, t) dt,

we will have to consider three cases

(I) t

|x|N+α(1 + |x|)γ > t ⇐⇒ |x|N+α(1 + |x|)γ < 1,

(II) t

|x|N+α(1 + |x|)γ = t ⇐⇒ |x|N+α(1 + |x|)γ = 1,

and

(III) t

|x|N+α(1 + |x|)γ < t ⇐⇒ |x|N+α(1 + |x|)γ > 1.

In the case of (I), we have three different behaviours:

G0
−Lμ(x) �

|x|α(1+|x|)γ
α

N+αˆ

0

t

|x|N+α(1 + |x|)γ dt +
1ˆ

|x|α(1+|x|)γ
α

N+α

t−
N
α dt +

∞̂

1

t−
N
2 dt

= 1
2 |x|

−(N−α)(1 + |x|)−γ N−α
N+α + α

N − α
|x|−(N−α)(1 + |x|)−γ N−α

N+α

− α

N − α
+ 2

N − 2

= 1
2
N − α

N + α
|x|−(N−α)(1 + |x|)−γ N−α

N+α + N(2 − α)
(N − 2)(N − α)

≤
(1

2
N − α

N + α
+ N(2 − α)

(N − 2)(N − α)

)
|x|−(N−α) in {x : |x|N+α(1 + |x|)γ < 1},

were we used 1 + |x| ≥ 1 to get

1
(1 + |x|)γ

N−α
N+α

≤ 1.

In the case of (II), we have two different behaviours:

G0
−Lμ(x) �

1ˆ
t dt +

∞̂

t−
N
2 dt = 1

2 + 2
N − 2 = 1

2
N − 2
N + 2 .
0 1
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In the case of (III), we have two different behaviours:

G0
−Lμ(x) �

|x|(N+α) 2
N+2 (1+|x|)γ

2
N+2ˆ

0

t

|x|N+α(1 + |x|)γ dt +
∞̂

|x|(N+α) 2
N+2 (1+|x|)γ

2
N+2

t−
N
2 dt

= 1
2 |x|

−(N−2)
( |x|2−α

(1 + |x|)γ
)N−2

N+2 + 2
N − 2 |x|

−(N−2)
( |x|2−α

(1 + |x|)γ
)N−2

N+2

= 1
2
N − 2
N + 2 |x|

−(N−2)
( |x|2−α

(1 + |x|)γ
)N−2

N+2
.

By the assumption γ > 2 − α, we get

G0
−Lμ(x) � |x|−(N−2) in {x : |x|N+α(1 + |x|)γ > 1}.

We then collect the three cases in one estimate to complete the proof. �
Finally, we also consider the generator of a finite range isotropically symmetric α-

stable process in RN with jumps of size larger than 1 removed.

Lemma 7.14. Assume L = Lμ with a measure μ satisfying (Hμ). Given the following 
statements, for α ∈ (0, 2):

(i) There exists a constant C > 0 such that

dμ
dz (z) = C

|z|N+α
1|z|≤1.

(ii) There exist constants C, c > 0 and 0 < C∗, R∗ < 1 such that,

Hx0
−Lμ(x, t) ≤ C min

{
t−

N
α , t|x− x0|−(N+α)}, 0 < t < Rα

∗ , |x− x0| ≤ R∗,

Hx0
−Lμ(x, t) ≤ C exp

(
− c|x− x0| log

( |x− x0|
t

))
, |x− x0| ≥ max{t/C∗, R∗},

and

Hx0
−Lμ(x, t) ≤ Ct−

N
2 exp

(
− c

|x− x0|2
t

)
, t > Rα

∗ , |x− x0| ≤ t/C∗.

(iii) There exists a constant C > 0 such that

Gx0
−Lμ(x) ≤ C

(
|x− x0|−(N−α) + |x− x0|−(N−2)).

We have (i)=⇒(ii)=⇒(iii).
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Remark 7.15. We are again in the setting of Theorem 3.3 by Remark 7.11.

Proof of Lemma 7.14. (i)=⇒(ii). Follows by [45, Proposition 2.1 and Theorem 2.3].
(ii)=⇒(iii). Follows by the proof of [45, Theorem 4.7]. �
7.3. On the assumption (G2)

If the Green function decays fast enough at infinity, the function itself will not only 
be L1

loc but indeed L1, see (G2). As demonstrated in Theorem 3.7, such a case leads to 
the estimate

‖u(·, t)‖L∞(RN ) � t−1/(m−1) for a.e. t > 0,

for weak dual solutions of (GPME) with initial data u0. Let us provide some concrete 
examples of operators −L in (GPME) whose Green functions satisfy (G2). Actually, any 
operator of the form I−L has a Green function satisfying (G2). In what follows, we will 
explain this result, and illustrate it with other examples as well.

Lemma 7.16. Under the assumptions of Proposition 7.1,

‖Gx0
I−L

‖L1(RN ) = ‖G0
I−L‖L1(RN ) ≤ 1.

Hence, the operator I − L has a Green function which satisfies (G2).

Proof. Assumption (HG), an application of the Tonelli lemma, and the fact that, by 
Remark 4.2 (i.e., decay of L1-norm), 

´
Hx0

−L
(·, t) =

´
H0

−L(·, t) ≤ 1 for every fixed t > 0
concludes the proof. �
Remark 7.17. We immediately see that the presence of the identity operator is cru-
cial. In fact, if −L is such that the corresponding heat equation preserves mass, then 
‖Gx0

−L
‖L1(RN ) = ∞ (cf. Proposition 7.1). Examples of mass preserving operators are 

Lévy operators (1.1) with c = 0.

Let us begin by considering the extreme case −L = I for which the PDE in (GPME)
reads

∂tu = −um.

For any function t �→ Y (t), that equation is an ODE of the form

Y ′(t) = −Y (t)1+(m−1) =⇒ Y (t) ≤
( 1 ) 1

m−1
.
(m− 1)t
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Hence, by the comparison principle for (GPME) with −L = I (where we take Y (0) = ∞), 
we get the absolute bound

‖u(·, t)‖L∞(RN ) ≤ Y (t) ≤
( 1

(m− 1)t

) 1
m−1

.

See also Section III.C in [117]. The above is also contained in the following lemma:

Lemma 7.18. The identity operator −L = I has a Green function which satisfies (G2), 
i.e.,

‖Gx0
I ‖L1(RN ) = ‖G0

I‖L1(RN ) ≤ C1 < ∞.

Proof. We obtain

d
dt

ˆ

RN

Hx0
I (x, t) dx = −

ˆ

RN

Hx0
I (x, t) dx,

i.e., 
´
Hx0

I (·, t) = e−t for all t > 0. By the definition of the Green function (cf. Proposi-
tion 7.1), we conclude. �
Remark 7.19.

(a) The proof also demonstrates that the operator −L = I is not conserving mass. 
Indeed, in the corresponding heat equation, it decays with time.

(b) Moreover, it provides a trivial example of an operator which yields boundedness in 
the nonlinear case (m > 1), but not in the linear case (m = 1).

Of course, we can reapply the same strategy of comparison with Y (t) for (GPME)
with −L �→ I − L to get

‖u(·, t)‖L∞(RN ) ≤ Y (t) ≤
( 1

(m− 1)t

) 1
m−1

independently of L!

Remark 7.20. When m = 1, we need to adapt another strategy (since Y (t) = Y (0)e−t), 
but recall that by defining

u(x, t) := e−tv(x, t)

where v solves (GPME) with m = 1, then u solves{
∂tu− L[u] + u = 0 in RN × (0, T ],
u(·, 0) = u on RN .
0
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Hence, in this case, L1–L∞-smoothing follows as long as it holds for v, i.e., as long as L
is strong enough to provide it.

When κ = 1 in (7.2), we get the Lévy operator

−LμRS := (I − Δ)α
2 − I,

i.e., (I − Δ)α
2 is of the form (I − LμRS). Hence:

Lemma 7.21. The operator −L = (I − Δ)α
2 with α ∈ (0, 2) has a Green function which 

satisfies (G2), i.e.,

‖Gx0

(I−Δ)
α
2
‖L1(RN ) = ‖G0

(I−Δ)
α
2
‖L1(RN ) ≤ C1 < ∞.

Remark 7.22. The operator −L = (I −Δ)α
2 with α = 1 appears e.g. in [6] for the linear 

equation (GPME) with m = 1. Since the mentioned operator is of the form (I − LμRS), 
L1–L∞-smoothing holds whenever it holds for LμRS (see Remark 7.20). The heat kernel 
bounds of Lemma 7.12 then provides the result through Theorem 6.1. In the nonlinear 
case (m > 1), however, the above lemma ensures that (G2) holds and we deduce absolute 
bounds.

Proof of Lemma 7.21. Note that

Gx0

(I−Δ)
α
2
(x) = F−1[(1 + | · |2)−α

2
]
(x− x0),

i.e., the Bessel potential. The result then follows by Proposition 2 in Chapter V.3 in 
[106]. Or, we can simply note that Gx0

(I−Δ)α/2 = Gx0
I−LμRS and −LμRS is such that the 

heat equation has L1-decay, cf. Lemma 7.16. �
Again, the operator related to the Bessel potential does not conserve mass since 

(I − Δ)α
2 − I does so. Moreover, in the latter case, assumption (G2) cannot hold (cf. 

Remark 7.17) and we can write the PDE in (GPME) as

∂tu + (I − Δ)α
2 [um] = um.

This is in contrast with the operators I − L in Lemma 7.16 which satisfies the PDE

∂tu− L[um] = −um.

Taking −L = (I − Δ)α
2 in the latter, we see that assumption (G2) relies on either the 

(strong) absorption term being present or the operator itself being positive, or also both 
being present of course.
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7.4. On the assumption (G3)

By Corollary D.6, Gx0
I−L

has at least as good integrability properties as Gx0
−L

. It is, 
moreover, always defined for descent operators −L, see the discussion in Appendix D. 
There should therefore be no surprise that assumption (G3) is quite general, however, 
as shown in Theorem 3.5, it provides a rather poor smoothing estimate:

‖u(·, t)‖L∞(RN ) � t−
1

m−1 + ‖u0‖L1(RN ) for a.e. t > 0, (7.3)

for weak dual solutions of (GPME) with initial data u0. Let us provide some concrete 
examples of operators −L in (GPME) whose Green functions satisfy (G3), and let us 
also see how to improve the above estimate. To continue, we advice the reader to recall 
(4.5).

Lemma 7.23. The fractional Laplacian/Laplacian (−Δ)α
2 with α ∈ (0, 2] has a Green 

function which satisfies (G3), i.e.,

‖Gx0

I+(−Δ)
α
2
‖Lp(RN ) = ‖G0

I+(−Δ)
α
2
‖Lp(RN ) ≤ Cp < ∞

for some p ∈ (1, N/(N − α)).

Proof. We use (7.1) with ϑ := N
α − 1 to obtain

‖H0
(−Δ)

α
2
(·, t)‖L∞(RN ) = ‖F−1[e−t|ξ|α ]‖L∞(RN ) ≤

ˆ

RN

e−t|ξ|α dξ

�

∞̂

0

e−trαrN−1 dr = 1
α

∞̂

0

e−trrϑ dr = 1
α
t−

N
α Γ

(N
α

)
,

(7.4)

and hence, by Remark 4.2 (i.e., L1-decay for m = 1),

‖G0
I+(−Δ)

α
2
‖Lp(RN ) ≤

∞̂

0

e−t‖H0
(−Δ)

α
2
(·, t)‖Lp(RN ) dt

≤
∞̂

0

e−t‖H0
(−Δ)

α
2
(·, t)‖

p−1
p

L∞(RN )‖H
0
(−Δ)

α
2
(·, t)‖

1
p

L1(RN ) dt

�
∞̂

0

e−tt−
N
α

p−1
p dt = τ−

N
α

p−1
p +1

∞̂

0

e−τrr−
N
α

p−1
p dr,

which is finite if p < N/(N − α) due to (7.1) again. �
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The fractional Laplacian, however, satisfies our strongest assumption (G1) as well. 
We will therefore consider an operator which satisfies (G3), but for which it is not 
possible to verify (G1) or (G′

1). To that end, consider the sum of onedimensional fractional 
Laplacians:

−L =
N∑
i=1

(−∂2
xixi

)
αi
2 with αi ∈ (0, 2). (7.5)

It can be written on the form Lμ with μ, for some constant C > 0, given by

dμ(z) = C
N∑
i=1

1
|zi|1+αi

dzi
∏
j �=i

dδ0(zj).

This measure satisfies (Hμ) since each onedimensional fractional Laplacian measure does, 
and we have:

Lemma 7.24. Assume L is given by (7.5) and

N∑
i=1

1
αi

> 1 where αi ∈ (0, 2).

Then

‖Gx0
I−Lμ‖Lp(RN ) = ‖G0

I−Lμ‖Lp(RN ) ≤ Cp < ∞

for some

p ∈
(
1,

∑N
i=1

1
αi∑N

i=1
1
αi

− 1

)
.

Remark 7.25.

(a) Note that if αi = α for all i ∈ {1, . . . , N}, then

N∑
i=1

1
αi

> 1 =⇒ N

α
> 1.

We thus recover the condition of Lemma 7.23.
(b) Various extensions within the framework of anisotropic fractional Laplacians can be 

found in [18,20,110,118].
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(c) By [9, Section 3],

Hx0
−Lμ(x, t) =

N∏
i=1

Hx0

(−∂2
xixi

)
αi
2

(x, t) ≤ C

N∏
i=1

ρ
x0,i
i (xi, t), (7.6)

where10

ρ
x0,i
i (xi, t) = min

{
t
− 1

αi , t|xi − x0,i|−(1+αi)
}
.

However, the example stated at the end of [17] shows that for αi = α with α ≤
(N − 1)/2 < N , small times (hence all times), and the choice x = ξe1 with ξ > 0, 
yields G0

−Lμ(x, t) = ∞. We thus conclude that at least in this case, it is not possible 
to verify the second parts of (G1) or (G′

1).
(d) Solutions of (GPME) with −L defined by (7.5) satisfy (7.3). Once this estimate is 

established, we can, moreover, use the scaling of the operator to get it on an invariant 
form. We restrict to the case αi = α for all i ∈ {1, . . . , N}. As in Remark 3.2, if u
solves (GPME), then

uκ,Ξ,Λ(x, t) := κu(Ξx,Λt) for all κ,Ξ,Λ > 0

also solves (GPME) as long as κm−1Ξα = Λ. This means that

‖uκ,Ξ,Λ(·, t)‖L∞(RN ) � t−
1

m−1 + ‖uκ,Ξ,Λ(·, 0)‖L1(RN )

or

‖u(Ξ·,Λt)‖L∞(RN ) � Ξ
α

m−1 (Λt)−
1

m−1 + Ξ−N‖u(·, 0)‖L1(RN ).

The choice Ξ = ‖u0‖(m−1)θ
L1(RN )(Λt)

θ and Λt �→ t, then gives

‖u(·, t)‖L∞(RN ) ≤
C

tNθ
‖u0‖αθL1(RN ) for a.e. t > 0,

where θ = (α + N(m − 1))−1 and C now depending on Cp instead of K1 and K2.11
This in turn implies the corresponding Nash inequality (see Section 6.2). Note that, 
even in the case αi �= αj , one can deduce the Sobolev inequality, from which the 
Nash inequality follows, by scratch [43, Theorem 2.4]. This will then ensure the 
L1–L∞-smoothing estimate both in the linear and nonlinear case.

10 Optimal bounds when αi = α can be found in [88].
11 In the case αi = α for all i ∈ {1, . . . , N}, the bilinear form of the operator (7.5) is comparable to the 
bilinear form of the fractional Laplacian, and one could instead use the Sobolev inequality for the latter 
operator (see e.g. [60]) together with a Moser iteration to obtain the L1–L∞-smoothing.
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Proof of Lemma 7.24. Recall that the heat kernel is given by (7.6). Since we are consid-
ering a Lévy operator, it provides L1-decay, and by (7.4) with N = 1, we get

‖G0
I−Lμ‖Lp(RN ) ≤

∞̂

0

e−t‖H0
−Lμ(·, t)‖Lp(RN ) dt

≤
∞̂

0

e−t‖H0
−Lμ(·, t)‖

p−1
p

L∞(RN )‖H
0
−Lμ(·, t)‖

1
p

L1(RN ) dt

=
∞̂

0

e−t

∥∥∥∥ N∏
i=1

H0
(−∂2

xixi
)αi/2(·i, t)

∥∥∥∥
p−1
p

L∞(RN )
dt

≤
∞̂

0

e−t
N∏
i=1

‖H0
(−∂2

xixi
)αi/2(·i, t)‖

p−1
p

L∞(R) dt �
∞̂

0

e−t
N∏
i=1

(
1
αi

t
− 1

αi Γ
( 1
αi

)) p−1
p

dt

�

∞̂

0

e−tt
− p−1

p

∑n
i=1

1
αi dt.

Again, by (7.1), the result follows. �
Note that we have exploited the fact that Hx0

−Lμ(x, t) indeed has the on-diagonal upper 
bound t−

∑N
i=1

1
αi , see e.g. Corollary 3.2 in [118]. Since the off-diagonal bound cannot give 

a useful Green function estimate (in all cases), we resort to our assumption (G3). We 
refer the reader to Remark 6.2 which provides various examples of on-diagonal bounds.

Let us turn our attention to another interesting example where only a useful on-
diagonal bound can be deduced:

Lemma 7.26. Assume L = Lμ with a measure μ satisfying (Hμ) and, for α ∈ (0, 2) and 
constants C1, C2, C3 > 0,

C1

|z|N+α
1|z|≤1 ≤ dμ

dz (z) ≤ C2

|z|N+α
1|z|≤1 and dμ

dz (z) ≤ C31|z|>1.

Then, there exists a constant C > 0 such that

Hx0
−Lμ(x, t) ≤ Ct−

N
α et,

and, moreover,

‖Gx0
I−Lμ‖Lp(RN ) = ‖G0

I−Lμ‖Lp(RN ) ≤ Cp < ∞

for some p ∈ (1, N/(N − α)).
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Proof. The estimate on the heat kernel follows by the beginning of Section 2 in [46] with 
V (r) = rN and φ(r) = rα, and since the heat kernel is proven to be Hölder continuous 
in Section 3 of the same reference (so that the exceptional set is empty). Note that the 
proof uses that Hx0

−Lμ(x, t) = etHx0
I−Lμ(x, t). We then get

‖G0
I−Lμ‖Lp(RN ) ≤

∞̂

0

e−t‖H0
−Lμ(·, t)‖Lp(RN ) dt

≤
∞̂

0

e−t‖H0
−Lμ(·, t)‖

p−1
p

L∞(RN )‖H
0
−Lμ(·, t)‖

1
p

L1(RN ) dt

�

∞̂

0

e−t
(
t−

N
α et

) p−1
p dt =

∞̂

0

e−
t
p t−

N
α

p−1
p dt.

Again, by (7.1), the result follows. �
7.5. A nonexample of our theory

We will now consider a Lévy operator which does not satisfy any of (G1)–(G3).
Consider the generator of a subordinate Brownian motion with Fourier symbol φ(|ξ|2)

where φ(λ) := log(1 + λ
α
2 ). This process is known as a rotationally invariant geometric

α-stable process, see Section 5 in [19].

Lemma 7.27. Assume L = Lμ with a measure μ satisfying (Hμ). If Lμ has Fourier symbol 
given by

log(1 + |ξ|α),

then the heat kernel is given by

Hx0
−Lμ(x, t) = 1

Γ(t)

∞̂

0

Hx0

(−Δ)
α
2
(x, s)st−1e−s ds.

Moreover,

‖Gx0
I−Lμ‖L1(RN ) = ‖G0

I−Lμ‖L1(RN ) ≤ C1 < ∞.

Remark 7.28. The operator is indeed a Lévy operator, therefore it is not surprising that 
it provides L1-decay. It is, moreover, worth noting that Theorems 5.45 and 5.46 in [19]
establish that the density of the Lévy measure corresponding to the rotationally invariant 
geometric α-stable process satisfies
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dμ
dz (z) � 1

|z|N as |z| → 0 and dμ
dz (z) � 1

|z|N+α
as |z| → ∞.

In fact,

dμ
dz (z) =

∞̂

0

H0
(−Δ)

α
2
(z, s)s−1e−s ds,

see equation (5.69) in [19].

Proof of Lemma 7.27. The formula for the heat kernel is given by equation (5.68) in [19]. 
Moreover, since (−Δ)α

2 actually provides conservation of mass, we get

‖G0
I−Lμ‖L1(RN ) =

∞̂

0

e−t‖H0
−Lμ(·, t)‖L1(RN ) dt

=
∞̂

0

e−t 1
Γ(t)

∞̂

0

‖H0
(−Δ)

α
2
(·, s)‖L1(RN )s

t−1e−s dsdt

=
∞̂

0

e−t 1
Γ(t)

∞̂

0

st−1e−s dsdt =
∞̂

0

e−tΓ(t)
Γ(t) dt = 1. �

The proof also demonstrates that (G2) cannot hold, and moreover, neither can (G1), 
(G′

1), and (G3):

Lemma 7.29. Assume L = Lμ with a measure μ satisfying (Hμ). If Lμ has Fourier symbol 
given by

log(1 + |ξ|α),

then there is some R > 0 such that
ˆ

BR(x0)

Gx0
−Lμ(x) dx > CRα for all α ∈ (0, 2) and all C > 0,

and

‖Gx0
I−Lμ‖Lp(RN ) = ‖G0

I−Lμ‖Lp(RN ) = ∞ for all p > 1.

Proof. By Theorem 5.35 in [19],

G0
−Lμ(x) � |x− x0|−N

(
− log(|x|2))−2

� |x− x0|−N
(
log(|x|))−2 as |x| → 0.
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Then for small enough 0 < R << 1,

ˆ

BR(0)

G0
−Lμ(x) dx �

R̂

0

r−1(log(r))−2 dr �

(
log

( 1
R

))−1
.

Now, the statement

(
log

( 1
R

))−1
> CRα for some 0 < R << 1

is equivalent to

1
R

< exp
(
C
( 1
R

)α)
for some 0 < R << 1,

which is clearly true for all α ∈ (0, 2) and all C > 0.
We already know that

‖G0
I−Lμ‖Lp(RN ) =

∞̂

0

e−t‖H0
−Lμ(·, t)‖Lp(RN ) dt.

By Theorem 5.5.2 in [19], for all 0 < t ≤ min{1, N/(2α)},

‖H0
−Lμ(·, t)‖p

Lp(RN ) ≥ Ctp
( ˆ

|x|<1

|x|−p(N−tα) dx +
ˆ

|x|>1

|x|−p(N+α) dx
)

� tp
1ˆ

0

rN−1−p(N−tα) dr.

If 1 < p ≤ 2, then

N

α

p− 1
p

≤ min
{

1, N2α

}
,

and

‖G0
I−Lμ‖Lp(RN ) ≥

N
α

p−1
pˆ

0

e−t‖H0
−Lμ(·, t)‖Lp(RN ) dt

�

N
α

p−1
pˆ

e−tt

(
tp lim

ξ→0+

1ˆ
rN−1−p(N−tα) dr

) 1
p

dt

0 ξ
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=

N
α

p−1
pˆ

0

e−tt2
(

1
pα

1
N
α

(p−1)
p − t

) 1
p
(

lim
ξ→0+

1
ξpα(N

α
p−1
p −t)

− 1
) 1

p

dt

≥

N
α

p−1
pˆ

0

e−tt2
(

1
N(p− 1)

) 1
p
(

lim
ξ→0+

1
ξpα(N

α
p−1
p −t)

− 1
) 1

p

dt = ∞.

If p > 2, then

N

α

p− 1
p

>
N

α

1
2 ,

and we simply consider

‖G0
I−Lμ‖Lp(RN ) ≥

min{1,N/(2α)}ˆ

0

e−t‖H0
−Lμ(·, t)‖Lp(RN ) dt

to reach the same conclusion. �
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Appendix A. Technical lemmas

Implicitly, we use the following in the Moser iteration:

Lemma A.1. Assume K(p) > 0 is such that limp→∞ K(p) < ∞, p0 ≥ 1, and

ψ ∈ Lp(RN ) and ‖ψ‖Lp(RN ) ≤ K(p) for all p ∈ [p0,∞).

Then ψ ∈ L∞(RN ), and moreover,

‖ψ‖L∞(RN ) ≤ lim
p→∞

K(p).

Proof. Define K(∞) := limp→∞ K(p), and consider

Ψ := |ψ|1{|ψ|≤K(∞)+1} + (K(∞) + 1)1{|ψ|>K(∞)+1} = min{|ψ|,K(∞) + 1}

from which it follows that Ψ ≤ K(∞) +1 and Ψ ≤ |ψ|. Then Ψ ∈ L∞(RN ) and ‖Ψ‖Lp ≤
‖ψ‖Lp ≤ K(p) for all p ∈ [p0, ∞), and hence, ‖Ψ‖L∞ = limp→∞ ‖Ψ‖Lp ≤ K(∞). But 
then min{|ψ|, K(∞) + 1} ≤ K(∞) which implies ‖ψ‖L∞ ≤ K(∞). �

The next lemma is classical, but we state and prove it for completeness.

Lemma A.2 (A DeGiorgi-type lemma). Assume that z ∈ RN , and that f ∈ L∞(B3R(z))
with R > 0 fixed. If, for any R ≤ ρ < ρ̄ ≤ 3R, some δ ∈ (0, 1), and some M > 0
independent of ρ, ρ̄, we have that

‖f‖L∞(Bρ(z)) ≤ δ‖f‖L∞(Bρ̄(z)) + M,

then

‖f‖L∞(Bρ(z)) ≤
1

1 − δ
M.

Proof. We follow the proof of Lemma 1.2 in Chapter 4 of [80]. Fix ρ ≥ R. For some 
0 < η < 1 we consider the sequence {ρi} defined recursively by

ρ0 = ρ and ρi+1 := ρi + (1 − η)ηiρ.

Note that ρ∞ = 2ρ. Since 2ρ = ρ∞ > . . . > ρ1 > ρ0 = ρ,
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‖f‖L∞(Bρ(z)) = ‖f‖L∞(Bρ0 (z)) ≤ δ‖f‖L∞(Bρ1 (z)) + M ≤ δ2‖f‖L∞(Bρ2 (z)) + (1 + δ)M

≤ . . . ≤ δk‖f‖L∞(Bρk
(z)) + M

k−1∑
i=0

δi.

The conclusion follows by letting k → ∞. �
Appendix B. L1–L∞-smoothing controls Lq–Lp-smoothing

Throughout this section, F > 0 is some nonincreasing function and C > 0 is some 
constant (which might change from line to line) not depending on any norm of u.

Theorem B.1. Assume that 0 ≤ u0 = u(·, 0) ∈ (L1 ∩ L∞)(RN ), and that, for a.e. t1 >

t0 ≥ 0,

‖u(t1)‖L∞ ≤ F (t1 − t0)‖u(t0)‖γLq for some 0 ≤ γ < 1 and q ∈ [1,∞).

Then, for all 1 ≤ q ≤ p ≤ ∞,

‖u(t1)‖Lp ≤ G(t1 − t0)H(‖u(t0)‖Lq ),

where G, H ≥ 0 are functions depending on F, γ, p, q and γ, p, q, respectively, which has 
to be determined in each case.

The proof is a consequence of several results in this section. We start by investi-
gating immediate consequences of Lq–L∞-smoothing effects through Young and Hölder 
inequalities, in addition to a DeGiorgi type lemma.

Lemma B.2. Assume that 0 ≤ u0 = u(·, 0) ∈ (L1∩L∞)(RN ), and that, for a.e. t1 > t0 ≥
0,

‖u(t1)‖L∞ ≤ F (t1 − t0)‖u(t0)‖γLq for some 0 ≤ γ < 1 and q ∈ [1,∞).

Then:

(a) (L≤q–L∞-smoothing)

‖u(t1)‖L∞ ≤ CF (t1 − t0)
q

(1−γ)q+γr ‖u(t0)‖
γr

(1−γ)q+γr

Lr for r ∈ [1, q].

(b) (L≤q–L>q-smoothing)

‖u(t1)‖Lp ≤ CF (t1−t0)
q
p

p−r
(1−γ)q+γr ‖u(t0)‖

r
p

(1−γ)q+γp
(1−γ)q+γr

Lr for p ∈ (r,∞) and r ∈ [1, q].
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Remark B.3. The homogeneous smoothing estimates (cf. Theorem 3.1(a) and Theo-
rem 3.7) can respectively be recovered by choosing q = 1 = r and:

(i) If γ = αθ, then

γ(p− 1) + 1
p

= 1
p

θ1

θp
.

(ii) If γ = 0, then

γ(p− 1) + 1
p

= 1
p
.

Proof of Lemma B.2. (a) Since q ≥ r ≥ 1, we have

‖u(t0)‖γLq ≤ ‖u(t0)‖
γ(q−r)

q

L∞ ‖u(t0)‖
γr
q

Lr .

Applying the Young inequality (1.7) with ϑ = q
γ(q−r) > 1 yields

‖u(t1)‖L∞ ≤ γ(q − r)
q

‖u(t0)‖L∞ + CF (t1 − t0)
q

(1−γ)q+γr ‖u(t0)‖
γr

(1−γ)q+γr

Lr .

Since γ(q − r)/q < 1, we can reabsorb the L∞-norm by a variant of a classical lemma 
due to DeGiorgi (cf. Lemma A.2).
(b) When p ≥ r ≥ 1, we use Proposition 4.1(b)(ii) to get

‖u(t1)‖Lp ≤ ‖u(t1)‖
p−r
p

L∞ ‖u(t1)‖
r
p

Lr ≤ ‖u(t1)‖
p−r
p

L∞ ‖u(t0)‖
r
p

Lr .

Now, part (a) yields

‖u(t1)‖Lp ≤ CF (t1 − t0)
q

(1−γ)q+γr
p−r
p ‖u(t0)‖

γr
(1−γ)q+γr

p−r
p

Lr ‖u(t0)‖
r
p

Lr

= CF (t1 − t0)
q
p

p−r
(1−γ)q+γr ‖u(t0)‖

r
p

(1−γ)q+γp
(1−γ)q+γr

Lr .

The proof is complete. �
As we saw, the easy consequences of smoothing effects, is to lose integrability on the 

right-hand side. Now, we instead want to gain integrability, i.e., we want L1–L∞ to 
L≥1–L∞.

To gain integrability, however, requires a refined technique. In bounded domains |Ω| <
∞, this is usually accomplished by the fact that Lq̃ ⊆ Lq with 1 ≤ q ≤ q̃ ≤ ∞, i.e., by 
the Hölder inequality
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‖u‖qLq(Ω) =
ˆ

Ω

|u|q dx ≤
(ˆ

Ω

(
|u|q

) q̃
q dx

) q
q̃
( ˆ

Ω

(
1
) q̃

q̃−q dx
) q̃−q

q̃

= ‖u‖qLq̃(Ω)|Ω|
q̃−q
q̃ .

So, while such a statement is trivial in bounded domains, the story is quite different in 
RN . The reason for this can be seen by the following estimate:

‖u‖qLq =
ˆ

BR(0)

|u|q +
ˆ

RN\BR(0)

|u|q.

On the small ball, we use that Lq̃ ⊆ Lq, but what to do on the complementary set? In 
fact, there the “natural” ordering is

1
(1 + |x|)q̃ ≤ 1

(1 + |x|)q ,

i.e., opposite of the small ball. Hence,

ˆ

RN\BR(0)

|u|q ≤ CR

( ˆ

RN\BR(0)

|u|q̃
) q

q̃

cannot be true for all functions, and must be a property of the equation itself.
We therefore rely on a nice idea taken from Section 3.1 in [113]: Consider (GPME)

with the nonlinearity

ϕ : r �→ (r + ε)m − εm for some ε > 0 and some m > 1.

In the case of Lévy operators (1.1) with c = 0, this equation has been studied in [63], 
and in the case of the more general setting of possibly x-dependent m-accretive oper-
ators, this equation has been studied in detail in e.g. [30, Appendix B] and [58]. E.g., 
existence, uniqueness, and the comparison principle holds for sign-changing solutions. In 
our setting, we also have:

Lemma B.4. Assume (Hm) and ε > 0. Let u be a weak dual solution of (GPME) with 
initial data 0 ≤ u0 ∈ L1(RN ), and v be a weak dual solution of (GPME) with nonlinearity 
ϕ and initial data 0 ≤ v0 ∈ L1(RN ). Under suitable assumptions on the associated Green 
function:
(i) For a.e. t1 > t0 ≥ 0,

‖u(t1)‖L∞ ≤ F (t1 − t0)‖u(t0)‖γL1 for some 0 ≤ γ < 1.

If, moreover, u(x, t) ≤ v(x, t) + ε for a.e. (x, t) ∈ QT , then:



M. Bonforte, J. Endal / Journal of Functional Analysis 284 (2023) 109831 85
(ii) For a.e. t1 > t0 ≥ 0,

‖v(t1)‖L∞ ≤ F (t1 − t0)‖v(t0)‖γL1 + Cε,

with the same F, γ as given above.

Proof. (i) This already holds, see Theorems 3.1 and 3.7.
(ii) Even though the nonlinearity ϕ(r) is different from rm, we will see that we can repeat 
the steps leading up to Theorems 3.1 and 3.7 when we in addition know that u ≤ v + ε.

Recall that by Lemma 4.4, we have

t �→ t
m

m−1um(·, t) is nondecreasing for a.e. x ∈ RN ,

and since u ≤ v + ε, we get the following time-monotonicity for v + ε:

t �→ t
m

m−1 (v(·, t) + ε)m is nondecreasing for a.e. x ∈ RN .

Then

τ̂

τ∗

(v(x0, t) + ε)m dt− εm(τ − τ∗) =
τ̂

τ∗

ϕ(v(x0, t)) dt

=
ˆ

RN

v(x, τ∗)Gx0
−L

(x) dx−
ˆ

RN

v(x, τ)Gx0
−L

(x) dx ≤
ˆ

RN

v(x, τ∗)Gx0
−L

(x) dx,

or

τ̂

τ∗

(v(x0, t) + ε)m dt ≤
ˆ

RN

v(x, τ∗)Gx0
−L

(x) dx + εm(τ − τ∗).

By the time-monotonicity,

(v(x0, τ∗) + ε)m ≤ C(m)
τ∗

ˆ

RN

v(x, τ∗)Gx0
−L

(x) dx + C(m)εm.

Since r �→ rm is superadditive on R+, we also get

vm(x0, τ∗) ≤
C(m)
τ∗

ˆ

RN

v(x, τ∗)Gx0
−L

(x) dx + (C(m) − 1)εm.

Hence, we get the stated L1–L∞-smoothing for v by simply following the proof for u, 
and using that r �→ r

1
m is subadditive on R+. �
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Proposition B.5. Assume that 0 ≤ u0 = u(·, 0) ∈ (L1 ∩ Lp)(RN ) for some p ∈ (1, ∞), 
and that, for a.e. t1 > t0 ≥ 0,

‖u(t1)‖L∞ ≤ F (t1 − t0)‖u(t0)‖γL1 for some γ ∈ [0, 1).

Moreover, if the comparison principle holds for sign-changing weak dual solutions of 
(GPME) with the nonlinearity ϕ, then

‖u(t1)‖L∞ ≤ CF (t1 − t0)
1

γ(p−1)+1 ‖u(t0)‖
γp

γ(p−1)+1
Lp .

Remark B.6. The comparison principle indeed holds for sign-changing weak dual solu-
tions of (GPME) with the nonlinearity ϕ: We simply repeat the existence proof in this 
setting.

Remark B.7. Let us check that we indeed recover the different homogeneous cases:

(i) If γ1 = γ = αθ, F (t) = Ct−γ2 , and γ2 = Nθ, then

γ1p

γ1(p− 1) + 1 = αpθp and γ2

γ1(p− 1) + 1 = Nθp.

(ii) If γ1 = γ = 0, F (t) = Ct−γ2 , and γ2 = 1/(m − 1), then

γ1p

γ1(p− 1) + 1 = 0 and γ2

γ1(p− 1) + 1 = 1
m− 1 .

Proof of Proposition B.5. Consider the function vε := u − ε with ε > 0, where u solves 
(GPME) with initial data u0 ≥ 0. Note that vε also solves (GPME) with ϕ as nonlinearity 
(we have subtracted the term εm for normalization purposes), and unsigned initial data 
u0 − ε.

Now, consider the solution ṽε of (GPME) with nonlinearity ϕ and initial data (u0−ε)+. 
Due to the Hölder inequality,

ˆ
(u0 − ε)+ =

ˆ

{u0>ε}

(u0 − ε) ≤
ˆ

{u0>ε}

u0 =
ˆ

u01{u0>ε} ≤ ‖u0‖Lp |{u0 > ε}|
p−1
p .

Moreover, for any f ≥ 0,

‖f‖pLp =
ˆ

{0≤f≤ε}

|f |p +
ˆ

{f>ε}

|f |p ≥
ˆ

{f>ε}

fp ≥ εp|{f > ε}|.

Hence,
ˆ

(u0 − ε)+ ≤ ‖u0‖pLp

p−1 .

ε
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In particular, (u0 − ε)+ ∈ L1 as long as u0 ∈ Lp.
The comparison principle for sign-changing solutions of (GPME) with nonlinearity ϕ

then gives

u0(x) − ε ≤ (u0(x) − ε)+ =⇒ vε(x, t) ≤ ṽε(x, t).

From which we conclude that

u(x, t) ≤ ṽε(x, t) + ε =⇒ ‖u(t)‖L∞ ≤ ‖ṽε(t)‖L∞ + ε.

We are then in the setting of Lemma B.4, and, for all ε > 0,

‖u(t)‖L∞ ≤ ‖ṽε(t)‖L∞ + ε ≤ F (t)‖(u0 − ε)+‖γL1 + cε ≤ F (t)‖u0‖γpLpε
−γ(p−1) + cε.

To conclude, we infimize over ε > 0. �
Appendix C. Densely defined, m-accretive, and Dirichlet in L1(RN)

The existence proof for weak dual solutions is based on the concept of mild solutions, 
which again relies on finding a.e.-solutions (!) of the corresponding elliptic problem

∀λ > 0 u + λA[um] = f in RN .

We will therefore study so-called m-accretive operators A.

C.1. The setting of abstract solutions

The Laplacian (−Δ) (as well as r �→ (−Δ)[rm]) is a well-known example of an operator 
which is m-accretive in L1(RN ) [114, Section 10.3.2]. Now, we want to establish that any 
symmetric, nonlocal and constant coefficient Lévy operator

(−Lμ)[ψ] = −P.V.

ˆ

RN\{0}

(
ψ(x + z) − ψ(x)

)
dμ(z)

is also m-accretive in L1(RN ). Since that operator is moreover Dirichlet, we get by 
Propositions 1 and 2 in [52], that r �→ (−Lμ)[rm] is also m-accretive and Dirichlet in 
L1(RN ). Indeed, such a result should be well-known, but we did not manage to find a 
useful reference for it.

Throughout this section, we stick to the usual notation A := (−Lμ).

Theorem C.1. Assume (Hμ). Then the linear operator A : D(A) ⊂ L1(RN ) → L1(RN )
satisfies:
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(i) D(A)
‖·‖L1(RN ) = L1(RN ).

(ii) A is accretive in L1(RN ).
(iii) R(I + λA) = L1(RN ) for all λ > 0.
(iv) If f ∈ L1(RN ) and a, b ∈ R such that a ≤ f ≤ b a.e., then a ≤ (I + λA)−1f ≤ b

a.e.

That is, the linear operator A is densely defined, m-accretive, and Dirichlet in L1(RN ).

Remark C.2.

(a) Since D(A) ⊂ L1(RN ), we define

D(A) := {ψ ∈ L1(RN ) : Ã[ψ] ∈ L1(RN )}

where Ã is the extension of A to L1(RN ) (see (C.2) below). Moreover, in our case it 
is well-known that

A : C∞
c (RN ) ⊂ L1(RN ) → Lp(RN ) for all p ∈ [1,∞].

Hence, C∞
c (RN ) ⊂ D(A), and thus, we have already proven Theorem C.1(i). How-

ever, we need to make sure that when we define the extension Ã (see (C.2) below), 
we have

Ã|C∞
c (RN ) = A a.e. in RN .

(b) In our RN -case, the numbers a, b in Theorem C.1(iv) have the natural restriction 
a ≤ b, a ≤ 0, and b ≥ 0.

Corollary C.3 ([52, Propositions 1 and 2]). Assume (Hμ) and (Hm). Then the nonlinear 
operator r �→ Arm : D(Arm) ⊂ L1(RN ) → L1(RN ) is densely defined, m-accretive, and 
Dirichlet in L1(RN ).

In particular, for all f ∈ L1(RN ) such that a ≤ f ≤ b, there exists a unique u ∈
L1(RN ) which satisfies a ≤ u ≤ b, the comparison principle, Lp-decay estimate, and

u + λÃ[um] = f a.e. in RN .

Let us start by proving the range condition. To do so, consider

∀λ > 0 u + λA[u] = f in RN . (C.1)

Definition C.1 (Very weak solutions). Assume (Hμ). We say that u ∈ L1
loc(RN ) is a very 

weak solution of (C.1) with right-hand side f ∈ L1
loc(RN ) if
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ˆ

RN

uψ dx + λ

ˆ

RN

uA[ψ] dx =
ˆ

RN

fψ dx for all ψ ∈ C∞
c (RN ).

We need the following result (take u �→ λu for all λ > 0 and choose ε = 1/λ):

Lemma C.4 ([63, Theorem 3.1]). Assume (Hμ).

(a) If f ∈ C∞
b (RN ), then there exists a unique classical solution u ∈ C∞

b (RN ) of (C.1). 
Moreover, for each multiindex α ∈ NN ,

‖Dαu‖L∞(RN ) ≤ ‖Dαf‖L∞(RN ).

(b) If f ∈ L∞(RN ), then there exists a unique classical solution u ∈ L∞(RN ) of (C.1). 
Moreover,

‖u‖L∞(RN ) ≤ ‖f‖L∞(RN ).

(c) If f ∈ L1(RN ), then there exists a unique classical solution u ∈ L1(RN ) of (C.1). 
Moreover,

‖u‖L1(RN ) ≤ ‖f‖L1(RN ).

Remark C.5. Theorem 6.15 in [63] gives comparison (or T -contraction) as well: If f ∈
L1

loc(RN ) such that (f)+ ∈ L1(RN ) and u ∈ L1
loc(RN ) is a very weak solution of (C.1), 

then
ˆ

RN

(u)+ dx ≤
ˆ

RN

(f)+ dx.

Lemma C.6. Assume (Hμ), p ∈ (1, ∞], f ∈ (L1 ∩ L∞)(RN ). Let u be the very weak 
solution of (C.1) with right-hand side f . Then

λ‖Ã[u]‖Lp(RN ) ≤ 2‖f‖Lp(RN ),

where the extension Ã : D(A) ∩ Lp(RN ) → Lp(RN ) satisfies
ˆ

RN

Ã[u]ψ dx =
ˆ

RN

uA[ψ] dx for all ψ ∈ C∞
c (RN ). (C.2)

The proof follows after an immediate consequence.

Corollary C.7. Assume (Hμ), p ∈ (1, ∞], f ∈ (L1 ∩ L∞)(RN ). Then the equation (C.1)
(with A �→ Ã) holds a.e. in RN .
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Proof of Lemma C.6. Definition C.1 gives

λ

ˆ

RN

Ã[u]ψ dx = λ

ˆ

RN

uA[ψ] dx =
ˆ

RN

(f − u)ψ dx.

Now, take q ∈ [1, ∞) such that p−1 + q−1 = 1. We recall Theorem 2.14 in [94],

‖φ‖Lp(RN ) = sup
‖ψ‖Lq(RN )≤1

∣∣∣∣ ˆ
RN

φ(x)ψ(x) dx
∣∣∣∣,

to obtain, by the Hölder inequality,

λ‖Ã[u]‖Lp(RN ) = λ sup
‖ψ‖Lq(RN )≤1

∣∣∣∣ ˆ
RN

Ã[u]ψ dx
∣∣∣∣ = sup

‖ψ‖Lq(RN )≤1

∣∣∣∣ ˆ
RN

(f − u)ψ dx
∣∣∣∣

≤ sup
‖ψ‖Lq(RN )≤1

{
‖f − u‖Lp(RN )‖ψ‖Lq(RN )

}
≤ ‖f − u‖Lp(RN )

≤ 2‖f‖Lp(RN ).

The proof is complete. �
Another consequence is that we can also extend Ã to L1(RN ), and then make sense 

of the equation in L1(RN ). To do so, we follow [40].

Corollary C.8. Assume (Hμ) and f ∈ (L1 ∩ L∞)(RN ). Then

λ‖Ã[u]‖L1(RN ) ≤ 2‖f‖L1(RN ).

Proof. Since f ∈ (L1 ∩ L∞)(RN ) ⊂ L1(RN ), Lemma C.4(c) yields

‖u‖L1(RN ) ≤ ‖f‖L1(RN ).

Moreover, by Corollary C.7, equation (C.1) holds pointwise, i.e.,

‖f − λÃ[u]‖L1(RN ) ≤ ‖f‖L1(RN ).

The reverse triangle inequality then provides the result. �
We are now ready to prove Theorem C.1(iii).

Proposition C.9. Assume (Hμ). For all f ∈ L1(RN ), there exists a very weak solution 
u ∈ L1(RN ) of (C.1) such that, for all λ > 0,

u + λÃ[u] = f a.e. in RN ,
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where Ã is the extension to L1(RN ) of A defined through the relation (C.2).

Proof. Take {fn}n∈N ⊂ (L1 ∩ L∞)(RN ) such that fn → f in L1(RN ) as n → ∞. By 
Lemma C.4(c),

‖un − um‖L1(RN ) ≤ ‖fn − fm‖L1(RN ).

Hence, {un}n∈N is Cauchy in L1(RN ) and there exists a u ∈ L1(RN ) such that un → u

in L1(RN ). In a similar way, through Corollary C.8, {Ã[un]}n∈N is Cauchy in L1(RN )
and there exists a U ∈ L1(RN ) such that Ã[un] → U in L1(RN ). The definition of Ã
(C.2) then yields

ˆ

RN

Ã[un]ψ dx =
ˆ

RN

unA[ψ] dx for all ψ ∈ C∞
c (RN ).

Moreover, since ψ, A[ψ] ∈ L∞(RN ), the L1-convergence gives U = Ã[u]. Finally, we take 
the L1-limit in Definition C.1 and use that fact that all the terms of the equation are 
elements in L1 ⊂ L1

loc. �
Remark C.10. In the literature, the property

un → u in L1(RN ) =⇒ Ã[un] → Ã[u] in L1(RN )

is referred to as the operator A being closed in L1(RN ). Here it automatically follows 
by the symmetry of the operator and that A : C∞

c (RN ) → L∞(RN ).

Theorem C.1(ii) is a consequence of the L1-contraction obtained in Lemma C.4(c) 
and Proposition C.9 since then

‖(I + λÃ)[u]‖L1(RN ) = ‖f‖L1(RN ) ≥ ‖u‖L1(RN ). (C.3)

We are then in the setting of the classical result:

Proposition C.11 (Hille-Yosida/Lumer-Phillips [82, Theorem 4.1.33]). A linear operator 
(A, D(A)) on L1(RN ) is the generator of a strongly continuous contraction semigroup 
(Tt)t≥0 on L1(RN ) if and only if A satisfies Theorem C.1(i)–(iii).

We, moreover, have that our operators are maximal accretive, i.e.:

Proposition C.12 ([13, Proposition 8.3]). If A is m-accretive, then Ã = A.

Remark C.13. Hence, a posteriori, L1(RN ) � u �→ A[u] can be identified in a unique way 
as a limit point in L1(RN ). See also Theorem 4.1.40 in [82].
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Our next task is Theorem C.1(iv), which follows by:

Proposition C.14. Assume (Hμ) and a, b ∈ R such that a ≤ b, a ≤ 0, and b ≥ 0. For all 
f ∈ L1(RN ) such that

a ≤ f ≤ b a.e.,

the unique very weak solution u ∈ L1(RN ) of (C.1) satisfies

a ≤ u ≤ b a.e.

Proof. By Remark C.5, the T -contraction holds for L1
loc-very weak solutions of (C.1). On 

one hand, f ≤ b yields (f − b)+ = 0 ∈ L1(RN ) and then the T -contraction gives u ≤ b. 
On the other hand, a ≤ f yields (a − f)+ = 0 ∈ L1(RN ) and then the T -contraction 
gives a ≤ u.

Here, we used that a, b are very weak solutions with a, b as right-hand side, and that 
bounded very weak solutions are unique. �

We have then proven that our operator A satisfies Theorem C.1(i)–(iv), which is 
exactly the setting of [52].

Finally, let us recall why the above works for our operator A = (−Lμ). To deduce 
the L1-contraction—or rather the T -contraction—needed to obtain (C.3), we employed 
a more fundamental result:

Lemma C.15. Assume (Hμ). For all u ∈ C∞
c (RN ),

ˆ

RN

Ã[u] sign+(u) dx ≥ 0.

Remark C.16. This implies the condition stated as Corollary A.13 in [2] or in Proposition 
4.6.12 in [82] (see also [103] for p = 1) from which it follows that A is accretive.

Proof. Remark C.2(a) gives Ã = A. By a convex inequality,

A[u] sign+(u) ≥ A[(u)+] a.e. in RN .

Now, multiply each side by a smooth cut-off function XR ∈ C∞
c (RN ) satisfying 0 ≤

XR ≤ 1 and XR → 1 pointwise as R → ∞, integrate, use symmetry, and that A[XR] → 0
pointwise as R → ∞. �
Corollary C.17. Assume (Hμ). For all u ∈ C∞

c (RN ),
ˆ

Ã[u] sign+(u− 1) dx ≥ 0.

RN
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Remark C.18. Operators satisfying the above are called Dirichlet operators, see Defini-
tion 4.6.7 in [82] (and also [103] for p = 1). Moreover, according to Proposition 4.6.9 in 
[82] Dirichlet operators imply Theorem C.1(iv) for both the semigroup and the resolvent 
of the semigroup generated by the operator, i.e., the semigroup and the resolvent of the 
semigroup are sub-Markovian.

Proof. The result can be found as Corollary 3.2 in [103], which actually provides an 
equivalence between the two conditions in our setting. Let us include a proof for com-
pleteness.

Again, Remark C.2(a) gives Ã = A. Now, take u − XR ∈ C∞
c (RN ) in Lemma C.15. 

Since sign+(u − 1) ≤ sign+(u −XR), we have that
ˆ

RN

A[u] sign+(u−XR) dx

≥
ˆ

RN

A[XR] sign+(u−XR) dx ≥
ˆ

RN

A[XR] sign+(u− 1) dx.

Moreover,
ˆ

RN

sign+(u− 1) dx =
ˆ

{u>1}

1 dx <

ˆ

{u>1}

u dx ≤
ˆ

RN

|u|dx,

which means that we can, again, use that A[XR] → 0 pointwise as R → ∞ on the 
right-hand side. While on the left-hand side we simply use the Lebesgue dominated 
convergence theorem. �
Remark C.19. Lemma C.4 is also true for the general operator (possibly local, nonlocal, 
or a combination) Lσ,μ defined by (1.1) with c = 0, see [62]. Moreover, if u solves

εu + (−Lσ,μ)[u] = f in RN for all ε > 0,

then u solves

(ε− 1)u + (I − Lσ,μ)[u] = f in RN for all ε > 1.

Now, take u �→ λu and choose ε = 1 + 1/λ to obtain that u solves

u + λ(I − Lσ,μ)[u] = f in RN for all λ > 0.

Hence, (−Lσ,μ) and (I−Lσ,μ) are also m-accretive. The latter is exactly (1.1) with c = 1.
To prove the Dirichlet property, we used that A[const] = 0 in Corollary C.14. This 

is of course true for (−Lσ,μ), while for (I − Lσ,μ), we have that f = const gives u =
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const/(1 + λ) as a solution. Arguing as before, however, we still have f ≥ 0 (resp. ≤ 0) 
implies u ≥ 0 (resp. ≤ 0). According to Remark C.2, it remains to check b > 0, a < 0
and a ≤ f ≤ b: We readily get a/(1 + λ) ≤ u ≤ b/(1 + λ), i.e., a ≤ u ≤ b since λ > 0.

We then conclude that both (−Lσ,μ) and (I−Lσ,μ) satisfy Theorem C.1, Corollary C.3, 
and Proposition C.12. So, indeed the whole class of symmetric Lévy operators with 
constant coefficients are within the above framework.

C.2. The setting of very weak solutions

We will now provide an a priori different approach to the one developed in the previous 
subsection.

Very weak solutions of

∀λ > 0 u + λA[um] = f in RN (C.4)

can be given as:

Definition C.2 (Very weak solutions). Assume (Hμ). We say that u ∈ L1
loc(RN ) is a very 

weak solution of (C.4) with right-hand side f ∈ L1
loc(RN ) if um ∈ L1

loc(RN ) and

ˆ

RN

uψ dx + λ

ˆ

RN

umA[ψ] dx =
ˆ

RN

fψ dx for all ψ ∈ C∞
c (RN ).

We collect uniqueness from [62, Theorem 3.2], and a priori estimates from [65, Remark 
5.10].

Theorem C.20. Assume 0 ≤ f ∈ (L1 ∩ L∞)(RN ), (Hm), (Hμ), and A = (−Lσ,μ).

(a) There exists a unique very weak solution 0 ≤ u ∈ (L1 ∩ L∞)(RN ) of (C.4) with 
right-hand side f .

(b) Let u, v be two very weak solutions of (C.4) with respective right-hand sides f, g. 
Then:

(i) (Comparison) If f ≤ g, then u ≤ v.
(ii) (Lp-decay) ‖u‖Lp(RN ) ≤ ‖f‖Lp(RN ) for all p ∈ [1, ∞].

C.3. Comparison between abstract and very weak solutions

If f ∈ L1(RN ) only, it is hard to see how to construct very weak solutions of (C.4), 
but as in the abstract setting we could require that a ≤ f ≤ b for a, b ∈ R. We in any 
case have:
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Lemma C.21. Assume 0 ≤ f ∈ (L1 ∩ L∞)(RN ), (Hm), and (Hμ). If the operator A has 
an extension Ã to L1(RN ), then very weak and a.e.-solutions of (C.4) coincide.

Remark C.22. Here we discover the advantage of m-accretive operators: By Proposi-
tion C.12, Ã = A, and thus we obtain an a.e.-equation involving the operator itself! 
In addition, the abstract setting does not see the difference between A = (−Lσ,μ) and 
A = (I − Lσ,μ) since they are both m-accretive.

Proof. By Corollary C.3, we have a.e.-solutions of (C.4) (with A �→ Ã). Multiplying 
by ψ ∈ C∞

c (RN ), integrating over RN , and using the definition of the extension of 
the operator (C.2), shows that those a.e.-solutions are actually very weak solutions in 
the sense of Definition C.2. However, we can also start with very weak solutions by 
Theorem C.20, use the L1-extension of the operator (C.2), and see that the equation 
(with A �→ Ã) actually holds a.e. Hence, the equivalence between the elliptic problems 
is settled. �
Appendix D. The inverse of a densely defined, m-accretive, Dirichlet operator

This section is devoted to showing that a densely defined, m-accretive, Dirichlet op-
erator in L1(RN ) has an inverse such that (HG) holds, under (possibly) some additional 
assumptions on the heat kernel associated with the operator.

Consider a strongly continuous contraction semigroup (Tt)t≥0 in L1(RN ) which is 
moreover sub-Markovian. The discussion before Definition 3.5.17 in [83] gives that the 
resolvent (Rλ)λ>0 of the semigroup is well-defined for functions in L1(RN ), i.e.,

Rλ[ψ] :=
∞̂

0

e−λtTt[ψ] dt < ∞ for all ψ ∈ L1(RN ).

Moreover, the Green (or potential) operator G associated with (Tt)t≥0 is defined as

G[ψ] := lim
λ→0+

Rλψ for all 0 ≤ ψ ∈ L1(RN ).

Definition D.1 (Transient). A strongly continuous sub-Markovian contraction semigroup 
(Tt)t≥0 in L1(RN ) which is moreover sub-Markovian is called transient if

G[ψ](x) =
∞̂

0

Tt[ψ] dt < ∞ for all 0 ≤ ψ ∈ L1(RN ).

By Proposition C.11, Theorem C.1, and Remark C.19, the operators (−Lσ,μ)
and (I − Lσ,μ) generate the respective strongly continuous contraction semigroups 
(T−L

σ,μ

t )t≥0 and (T I−L
σ,μ

t )t≥0 in L1(RN ) which are moreover sub-Markovian. Note 
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that by uniqueness of strongly continuous semigroups (cf. Corollary 4.1.35 in [82]), 
(T I−L

σ,μ

t )t≥0 = (e−tT−L
σ,μ

t )t≥0. An immediate consequence of Example 3.5.30 in [83]
is:

Lemma D.1. The semigroup (e−tT−L
σ,μ

t )t≥0 associated with (I − Lσ,μ), which satisfies 
Proposition C.11 and Theorem C.1, is transient.

For the operator (−Lσ,μ), we note that the semigroup defined as

Tt[ψ] :=
ˆ

RN

ψ(x− y)Ht(y) dy for all ψ ∈ L1(RN )

is a strongly continuous sub-Markovian contraction semigroup in L1(RN ) with (−Lσ,μ)
as generator. This can easily be seen since (−Lσ,μ) admits a symmetric and positive 
heat kernel satisfying Ht ∈ L1(RN ) due to the fact that the corresponding heat equa-
tion enjoys mass conservation, L1-decay, the comparison principle, and has solutions in 
C([0, T ]; L1(RN )). By Corollary 4.1.35 in [82], again, this semigroup must coincide with 
(T−L

σ,μ

t )t≥0. Moreover:

Lemma D.2 ([83, Theorem 3.5.51]). The semigroup (T−L
σ,μ

t )t≥0 associated with (−Lσ,μ), 
which satisfies Proposition C.11 and Theorem C.1, is transient if and only if, for all 
compact K ⊂ RN ,

∞̂

0

ˆ

K

Ht(x) dx dt < ∞.

At this point G is a good candidate for A−1, but we need additional properties like 
e.g. G : Lp → D(A). The rigorous answer can be found in Proposition 3.5.79 in [83]. We 
simply check that

lim
t→∞

Tt[ψ] → 0 for all ψ ∈ L1(RN ).

For convolution semigroups with a symmetric positive kernel Ht, we get

|Tt[ψ](x)| ≤
ˆ

RN

|ψ(x− y)|Ht(y) dy,

and hence, this is really a condition on the kernel by the Lebesgue dominated conver-
gence theorem. Note that we can immediately conclude for I − Lσ,μ since T I−L

σ,μ

t [ψ] =
e−tT−L

σ,μ

t [ψ], ‖T−L
σ,μ

t [ψ]‖L1(RN ) ≤ ‖ψ‖L1(RN ), and hence, we obtain the stronger prop-
erty
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e−tT−L
σ,μ

t [ψ] → 0 in L1(RN ) as t → ∞.

The above can then be summarized as:

Proposition D.3 (The inverse operator A−1).

(a) The semigroup (e−tT−L
σ,μ

t )t≥0 associated with (I − Lσ,μ), which satisfies Proposi-
tion C.11 and Theorem C.1, has an inverse operator given, for all 0 ≤ ψ ∈ L1(RN ), 
by

(I − Lσ,μ)−1[ψ] =
∞̂

0

e−tT−L
σ,μ

t [ψ] dt,

and (I − Lσ,μ)−1[(I − Lσ,μ)[ψ]] = ψ.
(b) Assume that the semigroup (T−L

σ,μ

t )t≥0 associated with (−Lσ,μ), which satisfies 
Proposition C.11 and Theorem C.1, has a symmetric and positive kernel Ht sat-
isfying, for all compact K ⊂ RN ,

∞̂

0

ˆ

K

Ht(x) dx dt < ∞ and lim
t→∞

Ht(x) → 0 for a.e. x ∈ RN .

Then (−Lσ,μ) has an inverse operator given, for all 0 ≤ ψ ∈ L1(RN ), by

(−Lσ,μ)−1[ψ] =
∞̂

0

T−L
σ,μ

t [ψ] dt =
ˆ

RN

( ∞̂

0

Ht(y) dt
)
ψ(x− y) dy

and (−Lσ,μ)−1[(−Lσ,μ)[ψ]] = ψ.

Remark D.4.

(a) We immediately see that, in the setting of part (b) above,

Gx0
−Lσ,μ(x) :=

∞̂

0

Hx0
t (x) dt.

Moreover, if we apply the setting of part (b) to part (a), then we also have that

Gx0
I−Lσ,μ(x) :=

∞̂

0

e−tHx0
t (x) dt.

Of course, the latter is well-defined for a larger class of kernels than the former.
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(b) We can then check that all the examples considered in Section 7 have inverses.

The positivity assumption of (HG) is then very natural since it is related to the fact 
that the operator ensures the comparison principle.

Corollary D.5. Under the assumptions of Proposition D.3,

Gx0
−L

(x),Gx0
I−L

(x) ≥ 0 for a.e. x ∈ RN .

Proof. Since the comparison principle holds for solutions of the heat equation, 
Hx0

−L
(x, t) ≥ 0. �

In fact, we only need to assume that the resolvent is nonnegative since e−t ≤ 1:

Corollary D.6. Under the assumptions of Proposition D.3,

0 ≤ Gx0
I−L

(x) ≤ Gx0
−L

(x) for a.e. x ∈ RN .

Appendix E. Existence and a priori results for weak dual solutions

Although this is not the main point of the paper, we will illustrate that our assump-
tions (G1)–(G3) do not lead to an empty theory. Let us therefore prove Proposition 4.1. 
To do so, we rely on the theory of abstract solutions for the corresponding elliptic prob-
lem of (GPME). Recall Lemma 4.8, and due to (HG), we also have:

Lemma E.1. Consider A := (−L) or A := (I − L). Then A[Gy
A] = δy in D′(RN ),

A−1[ψ] =
ˆ

RN

G0
A(x− y)ψ(y) dy,

and A[A−1[ψ]] = ψ for all ψ ∈ C∞
c (RN ).

Proof of Proposition 4.1. (a) Consider a uniform grid in time such that 0 = t0 < t1 <

· · · < tJ = T . Let J := {1, . . . , J}, and denote the time steps by Δt = tj − tj−1 for all 
j ∈ J . The piecewise constant time interpolant uΔt is, for (x, t) ∈ QT , given as

uΔt(x, t) := uj(x) where t ∈ (tj−1, tj ] for all j ∈ J ,

and uΔt(x, 0) := u0(x). Now, each uj is defined recursively as the solution of the following 
elliptic equation:

uj + ΔtA[um
j ] = uj−1 in RN ,
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which of course is another way of expressing (C.4). Since A is densely defined, m-accretive, 
and Dirichlet in L1(RN ), the above equation has an a.e.-solution (cf. Theorem C.1 and 
Proposition C.12). Then rewriting the equation, multiplying by A−1[ψ(·, tj−1)] with ψ ∈
C∞

c (RN × (0, T )), integrating over RN , using

ˆ

RN

A[um
j ]A−1[ψ(·, tj−1)] =

ˆ

RN

um
j A[A−1[ψ(·, tj−1)]] =

ˆ

RN

um
j ψ(·, tj−1),

and summing over j, we obtain that

∑
j∈J

ˆ

RN

uj − uj−1

Δt
A−1[ψ(tj−1)] dxΔt +

∑
j∈J

ˆ

RN

um
j ψ(tj−1) dxΔt = 0.

We now perform summation by parts, use the symmetry of A−1, and use that ψ has 
compact support in (0, T ) (so that it vanishes for small enough Δt for some n, m ∈ J) 
to obtain

−
m−1∑
j=n

ˆ

RN

A−1[uj ]
ψ(tj) − ψ(tj−1)

Δt
dxΔt +

m−1∑
j=n

ˆ

RN

um
j ψ(tj−1) dxΔt = 0.

At this point, we can follow the proof of Proposition 5.2 in [15] since, in our case, we 
have that A−1[uj ] ∈ C([0, T ]; L1

loc(RN )) ∩ L∞(QT ) and e.g.

|um
j − um(tj)| ≤ 2‖u0‖m−1

L∞(RN )|uj − u(tj)|.

That is, u ∈ (L1 ∩ L∞)(QT ) ∩ C([0, T ]; L1(RN )) satisfies

T̂

0

ˆ

RN

(
A−1[u]∂tψ − umψ

)
dx dt = 0 for all ψ ∈ C∞

c (QT ).

Assume 0 < τ1 ≤ τ2 ≤ T , and choose ψ(x, t) �→ θn(t)ψ(x, t) where the new ψ is in 
C1

c ([τ1, τ2]; L∞
c (RN )) and θn is an approximation of the square pulse with support in 

[τ1, τ2]. The above expression is still well-defined for this choice, and moreover, since e.g. 
A−1[u] ∈ C([0, T ]; L1

loc(RN )), we can take the limit as n → ∞. This concludes that u is 
a weak dual solution according to Definition 2.1.

(b) The comparison principle and the Lp-decay are immediately inherited from the el-
liptic problem, see e.g. the proofs of Propositions 5.1 and 5.2 in [15]. �
Remark E.2. We have in fact shown that mild/integral solutions (i.e., the limit points of 
the time-discretized problem) of (GPME) are weak dual solutions.
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