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Deep learning for disordered topological insulators through their entanglement spectrum
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Calculation of topological invariants for crystalline systems is well understood in reciprocal space, allow-
ing for the topological classification of a wide spectrum of materials. In this work, we present a technique
based on the entanglement spectrum, which can be used to identify the hidden topology of systems without
translational invariance. By training a neural network to distinguish between trivial and topological phases
using the entanglement spectrum obtained from crystalline or weakly disordered phases, we can predict the
topological phase diagram for generic disordered systems. This approach becomes particularly useful for gapless
systems, while providing a computational speed-up compared to the commonly used Wilson loop technique for
gapful situations. Our methodology is illustrated in two-dimensional models based on the Wilson-Dirac lattice
Hamiltonian.
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I. INTRODUCTION

Identification of topological materials requires the com-
putation of quantities such as the Berry phase, the Chern
number [1], or the Z2 index [2], the so-called topological
invariants. The evaluation of Wilson loops [3], the most com-
mon methodology used to unveil the presence of invariants,
works well for crystalline systems since they are performed in
reciprocal space, to the point of allowing for high-throughput
screening of materials [4,5]. Other approaches based on re-
ciprocal space to condensed matter topology exist, such as
topological quantum chemistry [6,7], symmetry indicators
[8–10], or the scattering invariant approach [11]. Alterna-
tively, one can resort to the bulk-boundary correspondence:
if the system is topological, we expect the presence of con-
ducting surface states. By calculating different observables,
such as the conductance or the density of states, one strives to
find evidence of the topology, without directly computing any
invariant [12].

The use of the Wilson loop technique requires the existence
of a direct band gap everywhere in the Brillouin zone (e.g., no
band crossings) near the Fermi level. An overall gap does not
need to exist and the system may still be topologically non-
trivial. For disordered or nontranslationally invariant systems
where the bands are not well defined (e.g., in an open system)
or are defined in a very small Brillouin zone (a large supercell
where the spectrum becomes essentially discrete) the direct
gap concept is lost. In the latter case, if an overall gap is clearly
visible, the Wilson loop can still be calculated [13]. However,
the absence of a spectral gap does not preclude a nontrivial
topology [14].
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The recent introduction of topological markers such as the
Chern marker [15] and the Bott index [16,17] has changed
our view that working in the reciprocal space is essential
since they manage to provide information on the topology of
the system based exclusively on real-space computations. For
time-reversal topological insulators, on the other hand, much
less has been reported in this regard, with the exception of a
variant of the Bott index which enables a real-space study of
the Z2 number [16] or a spin Bott index [18] in analogy with
the spin Chern number [19].

Some quantities that have been shown to be related to
the topology of the system are the entanglement spectrum
and entropy [20–31]. These magnitudes measure the degree
of entanglement of our ground state between two halves of
the system. In the presence of translational symmetry, the Z2

index can be defined from the entanglement spectrum [22]
through its flow, much in analogy with the hybrid Wannier
charge center (HWCC) flow [32]. Resorting to the insulating
picture, it is known that a topologically nontrivial ground state
presents in-gap single-particle states that circulate around the
material, wrapping it. The flow of the entanglement spectrum
thus reflects the appearance of surface states upon the separa-
tion of the two halves. Again, however, for disordered systems
where translational symmetry is lost, we cannot resolve the
spectral flow, unless one resorts to inconveniently large super-
cells.

Here we will show that one can still use the entanglement
spectrum for disordered systems where no momentum com-
ponent is conserved with the aid of artificial neural networks
(ANNs). Machine learning (ML) algorithms, and ANNs in
particular, have been shown to accurately predict topological
phases on a wide range on inputs, such as wave functions
[33–35], density matrices [36,37], Berry curvature [38], and
Hamiltonians [39,40]. It was also demonstrated that the en-
tanglement spectrum can be used to train ML algorithms to
identify topology in translationally invariant systems [41,42],
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as a function of disorder in one-dimensional AIII models [43],
or localization phases in interacting systems [44]. In our case,
we consider disordered two-dimensional (2D) time-reversal
topological insulators. By training an ANN to differentiate
between topological and trivial entanglement spectra in mod-
els whose invariant is known or can be computed through
the Wilson loop technique, we show that we can predict the
topology of the system without resorting to the calculation of
momentum-space flows. More importantly, our ANN is blind
to the absence or existence of a gap in the system.

II. MODEL

Our choice is the Wilson-Dirac lattice fermion model,
which is a discretized version of the Dirac Hamiltonian on a
cubic lattice, with an additional mass term to remove unphys-
ical states when comparing with the continuum Hamiltonian
[45]. In real space, this tight-binding model reads in the fol-
lowing way [46]:

H =
∑
i,μ

[
i
t

2
c†

i+μαμci + r

2
c†

i+μβci + H.c.
]

+ (M − 3r)
∑

i

c†
i βci, (1)

where the index i sums over lattice positions and μ sums over
spatial coordinates (μ = x, y, z). In other words, hopping is
only considered between first neighbors along the Cartesian
axis (a cubic lattice is assumed). {αμ}μ, β denote gamma
matrices, given by αμ = σx ⊗ σμ, β = σz ⊗ I .

In the following, we will fix r = 1 and t = 1 and we
will restrict ourselves to a 2D square lattice. This model
is known to be able to describe topological insulators [47],
with the parameter M tuning the different topological phases.
For 1 > M > 3 and 3 > M > 5, it describes a topological
insulator, while for any other value it corresponds to a triv-
ial insulator. This can be readily checked by computing the
Z2 invariant with the help of the HWCC or eigenvalues of
the Wilson loop W (ky) = ∏

ki∈path Mki,ki+1 , where Mki,ki+1 =
U †(ki, ky)U (ki+1, ky) and U (ki, ky) is the unitary matrix that
diagonalizes the Bloch Hamiltonian in the atomic gauge [48].

It has also been shown that this model can also real-
ize nontrivial topology in disordered systems [33,49–51].
Following [49], we introduce a generalized version of the
Wilson-Dirac model (1) to describe crystalline disorder or
amorphous solids:

H =
∑
i, j

i

2
t (R)c†

i (sin φ sin θαx + sin φ cos θαy

+ cos θαz − iβ )c j +
∑

i

β(M − 3)c†
i ci. (2)

Here, the variables (R, φ, θ ) denote the spherical coordinates
of the vector determined by the relative position between
lattice sites i, j, randomly placed near their original crystal
positions. The degree of disorder is characterized by the pa-
rameter �r, which measures the characteristic distance of the
site from its crystal position. As for the hopping amplitude
t ≡ t (R), we introduce a dependence with the bond length R

through an exponential law:

t (R) = exp
(a − R

a

)
θH (Rc − R),

where a is some reference lattice spacing (which here will
be set a = 1). Thus, when R = a, we recover t = 1 as in
the original model. Note that there is also a Heaviside step
function θH , which serves as a cutoff for bonds between atoms
that are too far apart, with Rc being the cutoff distance. It can
be seen that when the lattice sites are restricted to the cubic
lattice, we recover the same Hamiltonian in (1).

III. ENTANGLEMENT

Entanglement can provide information about correlations
in complex systems, depending on the chosen vector space,
such as orbital, spin, or spatial [28,29]. In the context of
topological materials, it was shown that an entanglement cut
of the system into two halves reveals a nontrivial flow of
the entanglement spectrum, which can be understood as edge
states appearing due to the virtual edge formed by the entan-
glement cut [22,24–27]. Alternatively, it was shown that the
entanglement spectrum can be interpreted as coarse-grained
hybrid Wannier centers [52–54], therefore measuring charge
pumping across the cut [32,55].

The entanglement cut means partitioning our N-particle
Hilbert space H into two subspaces HA,B such that H =
HA ⊗ HB. According to the Schmidt decomposition theo-
rem, any state |ψ〉 ∈ H can be written uniquely as |ψ〉 =∑

i e−Ei |αi〉 ⊗ |βi〉, where {|αi〉}i, {|βi〉}i denote some basis
states from the corresponding Hilbert spaces HA/B, and {Ei}i

form the many-body entanglement spectrum. From the re-
duced density matrix, defined as ρA = TrBρ = e−He , He being
the entanglement Hamiltonian, we extract the entanglement
spectrum as its many-body eigenvalues.

While in principle we could use this theorem to decompose
the ground state, in practice it is better to use an alternative
approach. It was proven that, for noninteracting systems, the
entanglement spectrum can be obtained from the one-particle
correlation function [56]:

Ci j = 〈
|c†
i c j |
〉 , i, j ∈ A, (3)

where |
〉 = ∏
n,k c†

nk |0〉 is the Fermi sea. The eigenvalues of
C are called single-particle entanglement spectrum and they
are related to the spectrum of ρA via a monotonic function
[56], meaning that we can use either indistinctly. For our
purposes, it suffices to use the single-particle entanglement
spectrum, although the many-body one can be obtained by
filling states in the partitions in all possible combinations [22].

If we define H ′ = 1
2 − C, C evaluated over the whole sys-

tem can be regarded as a flattened Hamiltonian [27], with an
energy band ε = −1/2 for occupied states and ε = 1/2 for
unoccupied states. Then, by virtue of the adiabatic theorem
[57], since both H and H ′ have a gap, they share the same
topology as there is a family of Hamiltonians that interpolate
between them [25]. Thus the restriction of C to a half-space
results in edge states appearing in its spectrum, connecting the
valence and conduction bands.

Following the model we have introduced, the rest of the
discussion will be in 2D. In case our system has translational
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symmetry, the entanglement cut will preserve it in one direc-
tion, meaning that, e.g., ky is a good quantum number. The
one-particle correlation matrix can be calculated as a function
of ky,

Ci j (ky) = 〈
|c†
iky

c jky |
〉 =
∑

kx

ekx (i− j)Pi j (k), (4)

allowing one to obtain the entanglement spectrum as a func-
tion of ky, thus resolving the spectral flow characteristic of the
edge states [22]. Here, Pi j (k) denotes the matrix elements of
the projector onto the ground state.

From a computational standpoint, the k-resolved entan-
glement spectrum approach does not provide an advantage
relative to the computation of HWCC, since both scale as
O((N × N )3 × nk × npaths), where N defines the bidimen-
sional system size. However, for amorphous or disordered
systems, where a supercell is needed, the use of the real-space
entanglement spectrum proves to be advantageous as it dras-
tically reduces the number of diagonalizations needed, while
still allowing us to determine the Z2 invariant. Furthermore,
its use is mandatory when the systems become gapless, as it
usually happens for strong disorder.

IV. NEURAL NETWORK

Our aim now is to extract qualitative features from the
entanglement spectrum where the topology is expected to be
encoded. To be able to tell the spectrum of a trivial case from
that of a topological one, on top of the automated invariant
computation, we introduce an ANN. For topological materials
one would naively expect states within the gap of the en-
tanglement spectrum, although flattened Hamiltonians might
present midgap energies as well without being necessarily
topological [26]. Otherwise, the spectrum does not present
intricate features, meaning that a simple network suffices to
classify correctly the phases. As for the network architec-
ture, our election was a one-dimensional convolutional neural
network, with a sigmoid output for binary classification. To
tackle the three-dimensional case, the output would have to
be a softmax with three neurons, to distinguish between weak
and strong topological phases, and trivial. Training with more
complex networks (e.g., more convolutional layers and/or
more dense layers) does not seem to improve the performance.
One should be aware that inversion-symmetric materials can
present nontrivial spectral flows [24], which could result in
false positives. Since we are dealing with disordered topolog-
ical insulators, this will not be problematic.

The training of the ANN is done by explicitly comput-
ing the Z2 invariant (when possible) and associating it with
its corresponding entanglement spectrum. We first use data
from the crystalline regime (zero disorder), whose invariant is
easy to compute, and then associate it with the entanglement
spectrum corresponding to a supercell big enough so that it
is representative of the actual samples for which we want to
determine the topology. For completeness, we also use spectra
corresponding to the low disorder region (�r < 0.05) to train
the ANN. The only difficulty here is that the computation
of the topological invariant is expensive since a supercell is
needed and cannot be done for strong disorder where the gap
is lost. Nevertheless, as we show below, nontrivial topology

FIG. 1. (Top) Gap diagrams for the Wilson-Fermion model on a
square lattice as a function of the mass parameter M and the displace-
ment �r of the atoms, for two different cutoff distances. (Bottom)
Topological phase diagrams predicted by the ANN, in terms of the
outputted probability. Black lines correspond to contour lines from
the gap diagram for 0.1 eV. (Left) Rc = 1.1. (Right) Rc = 1.4. The
cell size is N = 30 (30 unit cells in each direction).

can be predicted beyond the training set. The neural network
is able to extrapolate to the strong disorder region since it is
learning the shape of the entanglement spectrum, rather than
an explicit dependence on the phase diagram parameters.

Two different systems will be studied with this methodol-
ogy: first, a square lattice which is increasingly deformed by
random displacements of the atoms, to the point of the crystal
becoming amorphous. Second, a fractal lattice, specifically
the Bethe lattice. We will show that in both cases we are
able to predict the presence of topological phases by means
of the entanglement spectrum, as confirmed by the direct
observation of edge states.

FIG. 2. (Left) Edge state. (a) Energy spectrum for both open
and periodic boundary conditions and (b) entanglement spectrum for
M = 3, Rc = 1.4, and �r = 0.5.
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FIG. 3. (a) Gap for �r = 0.25 and different system sizes. (b) Co-
ordination number of the solid for different cutoff distances as the
disorder increases. (c) Average edge occupation of the lowest 21
eigenstates in energy for Rc = 1.1. (d) Same as (c) for Rc = 1.4.

V. AMORPHOUS SOLID

The specific disorder model we use is set in the follow-
ing way. Given a maximum displacement value �r, which
we take as the disorder parameter, we define the following
random variables:

r ∼ U (0,�r), θ ∼ U (0, π ), φ ∼ U (0, 2π ),

where U (a, b) denotes a uniform distribution between a, b and
a < b. Note that out-of-plane displacements are allowed. Out
of one sample of these variables, we generate a displacement
vector given by �r = r(sin θ sin φ, sin θ cos φ, cosθ ), so the
final position of each atom in the supercell is ri = r0

i + �r,
where r0

i denotes the position if the lattice were crystalline.
As we increase the value of �r, the lattice becomes more dis-
ordered until long-range order is lost. The topological phase
diagram will be obtained as a function of the maximum dis-
placement �r and the mass parameter M. In the following we
will work with one supercell only, imposing periodic bound-
ary conditions.

To obtain the phase diagrams, first we have to generate
data, both for training and for prediction. We compute the
entanglement spectrum for all combinations of M and �r [see
Supplemental Material [58], Figs. 2(c) and 4(c)]. The training
set will be given by the points corresponding to zero or very
low disorder for Rc = 1.1. As long as the functional form
of the Hamiltonian remains the same, we expect the neural
network to be valid even if it has not seen data from the system
with Rc = 1.4.

In Fig. 1 we show the topological phase diagrams obtained
with the trained model for the largest systems studied (lower
panels). We also show the gap (upper panels), which shows a
weak dependence with the system size [see Fig. 3(a)]. Here,
we choose to plot the output of the ANN as an estimator of
the probability of being in the topological phase. As com-
monly accepted, for probabilities higher than 0.5 the system is
considered to be topological. The model predicts the existence

FIG. 4. (Left) Edge state. (a) Energy spectrum for both OBC
and PBC and (b) entanglement spectrum for M = 3, Rc = 1.1, and
�r = 0.5.

of topological states even in regions where the gap has van-
ished.

To verify the predictions of the ANN, we look for edge
states near the Fermi energy where the ANN predicts non-
trivial topology for disorder values outside the training set. In
Fig. 2(a) we show an edge state obtained from one instance of
the model near zero energy for Rc = 1.4 and disorder �r =
0.5. The gapful spectrum for this particular case is shown
in Fig. 2(b) for periodic and open boundary conditions. We
see a standard edge state in the sense that it is delocalized
around the edge of the solid, as it would be expected. If we
take a look at the bonds between atoms, the crystal has a
high percolation due to more bonds appearing as we increase
disorder. However, for the smaller cutoff distance Rc = 1.1,
the solid starts to break, as shown by the diminishing coor-
dination number in Fig. 3(b). This means that there are less
paths available for a state to spread along, or equivalently that
it has a lower percolation. If we now take a look at some edge
state in the regions predicted to be nontrivial by the ANN, as in
Fig. 4(a), we see that the occupation is not that we would have
expected for an edge state, that is, around the borders of the
solid. Still, looking closely we see that the electronic density
appears mainly at the end of chains, which is the behavior we
would expect for one-dimensional topological systems. This
clearly indicates that the system has undergone a transition
from 2D to quasi-1D as it becomes increasingly disordered
(due to the imposed cutoff between neighbors), while keeping
a nontrivial topological nature. In this case, as Fig. 4(b) shows,
there is no gap.

Finally, we can quantify the edge character in the transition
from trivial to topological by looking at the average edge
localization of eigenstates near zero energy as a function of
M, as shown in Figs. 3(c) and 3(d). As we approach the
boundary between phases predicted by the ANN, there is a
drastic change in edge localization, which is indicative of the
phase transition.

VI. BETHE LATTICE

We consider next a different type of system without trans-
lational symmetry, namely a Bethe lattice, which is a type of
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FIG. 5. (Left) Gap diagram for the Bethe lattice with z = 3 and
depth = 8. (Right) Topological phase diagram for the same model as
predicted by the ANN trained with the Wilson-fermion model. Black
lines correspond to contour lines from the gap diagram for 0.1 eV.

fractal lattice where the Z2 invariant cannot be computed by
standard means. Since the underlying model Hamiltonian is
the same, we expect the previously trained neural network
to predict the topological phase diagram of this system as
well. The Bethe lattice is defined by a coordination number
z, which specifies the number of neighbors each atom has.
Then, starting from a central node, the number of nodes in
each consecutive layer is given by

Nk = z(z − 1)k−1, k > 0, (5)

where k denotes the kth layer, e.g., in layer 1 there are
three nodes. It is important to mention that, mathematically
speaking, the Bethe lattice is realized if the above equation is
fulfilled. For us, however, the specific arrangement of the
atoms is relevant since the generalized Wilson model depends
explicitly on the angles between the atoms. Thus we arrange
the atoms of each layer such that the angular spacing between
them is uniform. Also, the distance between every connected
pair of atoms is fixed. These two constraints, with the coordi-
nation number, reproduce the lattice shown in Fig. 6.

With the model established, we proceed in a analogous
fashion as with the amorphous lattice. To obtain an equiv-
alent topological phase diagram, first we must choose some
parameters that define the parameter space. As opposed to the
amorphous model, for the Bethe lattice there is not a disorder
parameter since the lattice is fixed. Instead, we choose the
bond length. The bond length affects the hopping amplitude,
effectively changing the electronic structure. The correspond-
ing gap diagram is shown in Fig. 5(a).

The entanglement spectrum for different combinations of
the mass and bond length parameters is fed into the neural
network, which predicts the phase diagram shown in Fig. 5(b).
In this case, the whole topological region has a negligible gap.
To verify that the neural network is predicting correctly the
different phases, we may represent eigenstates near the Fermi
energy. In Fig. 6(a) we see how an edge state appears, similar
to the ones in the amorphous system for Rc = 1.1 (note that
the probability density is located mainly at the end of the
different branches, which in this case happens to be also the

FIG. 6. (a) Edge state for M = 2.5 and l = 0.7. (b) Lowest abso-
lute energy eigenstate for M = 1 and l = 1.4. Inset: edge occupation
as a function of M for different bond lengths l .

outermost atoms). For comparison, a trivial state is also shown
in Fig. 6(b), as well as the average edge occupation for several
eigenstates close to the Fermi level. In all cases the results are
consistent with the diagram predicted by the ANN.

VII. CONCLUSIONS

We have shown that it is possible to use the entanglement
spectrum of a nontranslationally invariant system to train a
neural network to predict topological and trivial phases. We
have applied it, in particular, to the case of a disordered,
even amorphous lattice and to a Bethe lattice with an un-
derlying Wilson-Dirac fermion model. This method reduces
the computational time for the calculation of the invariant
once we have an ANN already trained, as opposed to using,
e.g., the Wilson loop technique. More importantly, it can be
used with gapless systems where no other method is cur-
rently available. Additionally, this methodology could also be
applied to interacting systems, where it has been shown to
work in the many-body localization context [44]. We expect
that this method will allow one to explore realistic models of
disordered topological insulators, such as alloys as a function
of the composition, topological metals, and disorder-induced
phase transitions in general.
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