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Abstract: This work presents a nonlinear model predictive control scheme with a novel structure
of observers aiming to create a methodology that allows feasible implementations in industrial
anaerobic reactors. In this way, a new step-by-step procedure scheme has been proposed and tested
by solving two specific drawbacks reported in the literature responsible for the inefficiencies of those
systems in real environments. Firstly, the implementation of control structures based on modeling
depends on microorganisms’ concentration measurements; the technology that achieves this is not
cost-effective nor viable. Secondly, the reaction rates cannot be considered static because, in the
extended anaerobic digestion model (EAM2), the large fluctuation of parameters is unavoidable. To
face these two drawbacks, the concentration of acidogens and methanogens, and the values of the two
reaction rates considered have been estimated by a structure of two observers using data collected by
sensors. After 90 days of operation, the error in convergence was lower than 5% for both observers.
Four model predictive controller (MPC) configurations are used to test all the previous information
trying to maximize the volume of methane and demonstrate a satisfactory operation in a wide range
of scenarios. The results demonstrate an increase in efficiency, ranging from 17.4% to 24.4%, using as
a reference an open loop configuration. Finally, the operational robustness of the MPC is compared
with simulations performed by traditional alternatives used in industry, the proportional-integral-
derivative (PID) controllers, where some simple operational scenarios to manage for an MPC are
longer sufficient to disrupt a normal operation in a PID controller. For this controller, the simulation
shows an error close to the 100% of the reference value.

Keywords: anaerobic digestion; asymptotic observer; homogeneous reaction systems; kinetic
parameter observer; model predictive control; step-ahead

1. Introduction

The main attribute of industrial processes and manufacturing is the large-scale trans-
formation of mass and energy into high-end valuable specific materials and compounds [1].
In essence, chemical and biological processes are imperative for those purposes because it
is primarily at this stage where the elements in a reaction can be manipulated to achieve
the desired attributes [2–4]. All the above is possible if a control and monitoring scheme
is added to guarantee safe and stable operation [5]. Specifically, in anaerobic systems,
the transformation of substrates into biogas and digestate has attractive advantages in
comparison to classical alternatives such as aerobic digestion or composting [6,7]; it returns
little sludges, has a positive overall energy balance, and also has enormous potential to
reduce challenging and concentrated substrates such as animal wastes [8,9]. However, this
is an elaborated biochemical process that includes diverse microorganisms, making the
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process nonlinear [10]. In this area, it is great of interest to derive models that would be
as sensitive as possible to the lack of phenomenological knowledge [11,12]. Thus, an in-
teresting alternative to represent this phenomenon is the extended anaerobic digestion
mathematical model 2 (EAM2) [13], designed for control and monitoring purposes. It
circumvents the difficulties in locating the biological lack of knowledge in dedicated terms,
namely reaction rates [14]. Additionally, compared with its predecessor, in the anaerobic
digestion mathematical model 2 (AM2), two additionally yield parameters were included
to consider the influence of proteins and aminoacids on the dynamic of alkalinity and
consider more substrates to be modeled.

In order to allocate a strategy that better fits the challenge mentioned above, several
techniques have been proposed from different control areas. Some of them are nonlinear
proportional-integral-derivative (PID) controllers, linear quadratic regulation (LQR) for
nonlinear systems [15], nonlinear model predictive control (NMPC) [16], and receding
horizon controllers [17,18], to name the most relevant cases reported in the literature. Al-
though these strategies have proven to be effective, the remaining inefficiencies surge from
the fact that some of the parameters are not available to be measured online, and the concen-
trations of the microorganisms cannot be measured periodically because on-site analytical
procedures are challenging to perform [5]. A nonlinear model-based control scheme has
been proposed to achieve a satisfactory operation. At the same time, the representation of
anaerobic digestion (AD) processes is reduced to a minimal number of assumptions in the
model-building exercise, maintaining the performance [18,19]. Among the alternatives reg-
istered in the literature, the Model Predictive Control (MPC) [17,18] offers several benefits
compared with traditional methods [14,20,21]. This algorithm uses a mathematical model
to predict and follow the system’s evolution in advance. One of the main advantages is the
explicit use of physical and operational constraints in the controller, allowing it to stand
around working under feasible operational conditions [22,23].

To achieve this objective, a necessary condition must be satisfied to unlock the door
and enable the operation of control schemes based on modeling. All the information needed
from the anaerobic reactor must be available periodically, so a group of reliable sensors
should be considered to measure, in real-time, the evolution of reactions in the homoge-
neous reaction system [24]. Some key variables, the concentrations of microorganisms,
as well as the growth rates of reactions (considered variable due to the large fluctuation of
parameters in AM2 [10]), are usually tested using analytical methods through specialized
laboratories on-site. The cost and duration of these analyses limit the frequency of the
sampling [25]. Additionally, the available online sensors on the market for biomass or
metabolites need to be adequate for regular industrial applications [14]. The previous
assumption sets a significant challenge because collecting this information is critical for the
operation of the controller algorithm. In general, the unavailability of specialized instru-
ments incentive the design and construction of observers dedicated to the reaction process.
Hence, the design of software sensors, based on the available measurements [14,26], allows
to guarantee a streamline of information between the reactor and the control algorithm [27].

State and parameter observers established over accurate and strict models are the
best alternatives to find a way to obtain the lack of the data needed [28–30]. For anaer-
obic reaction processes, the nonlinear AM2 has been widely proven for monitoring and
control purposes [10,13]. This model, constructed under a mass-balance framework, can
adapt its dynamics to various AD configurations of reactors and elude the drawback
related to the absence of phenomenological knowledge, concentrating this information
in non-sensitiveness-dedicated terms named reaction rates [10,23]. The complexity of
the biochemical process considers different types of microorganisms, making the process
nonlinear and unpredictable, impractical for the traditional online estimation strategies,
especially if the operation of the homogeneous system is conditioned by constraints [5].
To deal with these inconveniences, a sequential structure in cascade has been proposed [14].
The main idea is to estimate the concentration of acidogens and methanogens in the absence
of reaction rates. Then, the next step is to use this information to perform a new observation
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that estimates the reaction rates. Acquiring in-depth knowledge of the evolution of reaction
rates represents a challenge since it reveals the degree of completion of both reactions
during the process [5,31].

This paper is organized as follows. Section 2 explains the extended AM2 mathematical
model used for control purposes, where additional terms are included due to the influence
of proteins and aminoacids on the dynamics of alkalinity. The modification of the AM2
model [10] unlocks the door to add a broad spectrum of substrates allowed to be used
by the control algorithm. Then, Section 3 presents the parameter identification procedure
based on optimization that uses a novel step-ahead algorithm to considerably improve
the efficiency of adjusting the dynamics of the model to the data. The asymptotic state
observer that operates without information on the reaction rates is presented to estimate
the concentrations of acidogens and methanogens. Next, using the previous information,
a second observer estimates the evolution of the two reaction rates considered. In Section 4,
the information taken from observers and the reactor’s measurements is used to enable the
operation of the MPC. Finally, Section 5 shows the improvement achieved by using the MPC
controller, measuring the increase in the volume of methane produced. The robustness of
the MPC proposed is compared with the PID controller.

2. Optimal Parameter Identification Algorithm

The model EAM2, initially proposed by Bernard et al. [10] as AM2 in 2002 and modified
by Cortés et al. [13] in 2022, was selected to support the new monitoring and control
structure presented in this paper. The new model solves two issues documented in the
literature as the main drawbacks in implementing automated decision support systems on
anaerobic reactors [11]. First, the necessity to characterize the inlet substrate [10]. EAM2
considers a wider range of substrates than AM2 because it takes into account the effect of
ammonium produced from proteins and aminoacids that affect the dynamics of alkalinity.
Second, the concentrations of acidogens and methanogens are estimated using a specific
state observer. The above-mentioned solutions allow balancing the absence of reliable
sensors or analytical methods to obtain the needed information periodically [10].

2.1. Proposed Mass-Balance Mathematical Model for Anaerobic Reactors

The extended mathematical model used in this paper is based on the AD represented
by two main groups of microorganisms. Two consecutive process describe the AD phe-
nomenon on reactors, the acidogenic bacteria (represented by X1) that consume the organic
substrate (represented by S1) and produce mainly volatile fatty acids (mainly acid acetic,
represented by S2). Thus, the second group of microorganisms, the methanogenic archaea
(represented by X2), consumes S2 and produces CO2 and CH4.

Two yield parameters were added to represent the generation of ammonium due
to the fermentation of aminoacids or the consumption by the growth of microorganisms.
The terms added are KZ,1 and KZ,2, respectively. The model presented in Cortés et al. [13]
considers the following dynamical equations:

dX1

dt
= X1(µ1 − αD) (1)

dX2

dt
= X2(µ2 − αD) (2)

dS1

dt
= D(S1in − S1)− k1ψ1

(
S1

KS1 + S1

)
(3)

dS2

dt
= D(S2in − S2) + k2ψ1

(
S1

KS1 + S1

)
− k3ψ2

(
S2

KS2 + S2

)
(4)
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dZ′

dt
= D(Zin − Z) + kZ,1ψ1

(
S1

KS1 + S1

)
+ kZ,2ψ2

(
S2

KS2 + S2

)
(5)

dC
dt

= D(Cin − C)− qC + k4µ1X1 + k5µ2X2 (6)

where X1 is the concentration of acidogens (kg/m3), X2 is the concentration of methanogens
(kg/m3), S1 is the concentration of organic substrate characterized by chemical oxygen
demand (COD) (kg/m3), S2 is the concentration of volatile fatty acids (VFA) (g acetic
acid/L), Z is the total alkalinity (kg/m3), and C is the concentration of total inorganic carbon
(kg/m3). The variables S1in, S2in, Cin, and Zin are, respectively, the influent concentrations
of S1, S2, C, and Z. The variable α is related to the reactor design, with values ranging
between 0 and 1. The value 0 corresponds to an ideal fixed-bed reactor, and α = 1, to an
ideal continuously stirred tank reactor (CSTR). D is the dilution rate (d−1) and is the
inverse to the hydraulic retention time, HRT = 1/D, ψ1 is the maximum acidogenic bacteria
growing rate (d−1), ψ2 is the maximum methanogenic archaea growing rate (d−1), KS1 is the
half-saturation constant of S1 (kg/m3), and KS2 is the half-saturation constant of S2 (g acetic
acid/L). The yield parameter k1 is a constant for substrate degradation, k2 is a constant
for VFA production (mmol/kg), k3 is a constant for VFA consumption (mmol/kg), k4 is a
constant for CO2 production (mmol/kg), k5 is a constant for CO2 production (mmol/kg),
and k6 is a constant for CH4 production (mmol/kg). The Monod-type Equations (7) and (8)
are characterized by the following two reaction rates:

µ1 = ψ1
S1

KS1 + S1
(7)

and,

µ2 = ψ2
S2

KS2 + S2
(8)

Both Monod-type kinetics describe the growth of acidogenic bacteria ψ1 and methanogenic
archaea ψ2 because, during the fermentation process, the biomass does not register possible
VFA accumulation and consequently inhibition. Finally, the methane flow rate produced,
qM, is proportional to the reaction rate of methanogenesis, as shown in Equation (9):

qM = k6ψ2

(
S2

KS2 + S2

)
(9)

2.2. Experimental Data Results

The data considered for modeling purposes [32] were used previously in Cortés et al. [13]
to characterize a CSTR pilot thermophilic digester (150 L) using the AM2 extended mathe-
matical model. The total extension of the experiment was 338 days, where the effect of solid
retention time (SRT) and the dynamics of the system in a wide range of operational condi-
tions were studied. However, only a specific range of data was used, where the acidogens
and methanogens operated under stable and homogeneous conditions discarding unstable
scenarios unfavorable for modeling purposes (see the conditions argued to discard the
data). Finally, the data considered represent a total of 207 days. The values of COD at the
inlet and VFA and COD at the effluent are shown in Cortés et al. [13].

3. Optimal Parameter Identification and Online Measurements
3.1. Parameter Identification Using Pattern Search by Step-Ahead

Every sampling time, the parameter identification algorithm step-ahead uses the
EAM2 to calculate the following value of the system in advance. The procedure established
that on the following step, the predicted value is compared with the same variable measured.
The difference in magnitude of both represents the cumulative error. The procedure is
performed during all the experiment. The following vector E stores all this information.
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E = [error1, error2, . . . , errorn] (10)

n represents the total number of days evaluated. Finally, an optimization problem is solved
aiming to minimize all the errors calculated along the simulation.

min
p(k)

E

subject to:

nm(k + 1) = f (nm(k), u(k)), (11)

nnm(k + 1) = f (nnm(k), u(k)),

0 6 p(k) 6 pmax, ∀ k = 1, . . . , t f

nm represents all the states values measured S1, S2, C, and Z. nnm represents all the
non-measurable states X1 and X2. The parameters considered to be identified are p(k)
ε {µ1max, µ2max, KS1 , KS2 , k1, k2, k3, k4, k5, k6, KZ1 , KZ2 , Zin}. pmax represents the maximum
value affordable by each parameter. This algorithm has already been used in a previous
work with the same elements, real data, and phenomenological models [13].

3.2. Asymptotic Estimator When Reaction Rates Are Unknown

The absence of information due to the lack of reliable sensors or analysis results opens
up an opportunity to substitute the uncertainty by the design of software sensors. In anaer-
obic reactors, this technology estimates the concentration of acidogens and methanogens
without the information of the reaction rates [11]. It results in a particular category of
observer-denominated asymptotics, because two conditions support its operation; the
system is still not exponentially observable, and the reaction kinetics are unknown [14].
The detailed information of the design is presented in Cortés et al. [13].

In the following, we present the conditions that affect the design of the algorithm:
the information of the matrix φ is unknown, the yield coefficients from K are fully known,
and the number of qstate, the number of measured state variables, is the same or higher
than the rank of the matrix K (that is, qstate = dim(ξ1) ≥ rank(K)). Hence, based on the
previous information, the general equation of homogeneous reaction systems described by
a general nonlinear state space model is presented:

dξ

dt
= Kφ(ξ, t)− Dξ −Q(ξ) + F (12)

where dim(ξ) = dim(F) = dim(Q) = N, dim(φ) = M and dim(K) = N ×M. Thus, the general
nonlinear model Equation (12) can be divided as

dξa

dt
= Kaφ(ξa, ξb)− Dξa −Qa + Fa (13)

dξb
dt

= Kbφ(ξa, ξb)− Dξb −Qb + Fb (14)

where the rank of K is p. The submatrix Ka results from a section of K with p × M.
The submatrix Kb has the remaining information of K. Finally, the matrices (ξa, ξb), (Qa, Qb),
and (Fa, Fb) are the corresponding parts of ξ, Q, and F caused by the influence of Ka and Kb.
The previous formulation has the following feature:

Zob = A0ξa + ξb (15)

There exists a transformation that considers Zob as a linear combination of ξa and ξb as seen
in Equation (15). Finally, after processing Equations (13)–(15), the new state space model is
equivalent to:
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dξa

dt
= Kaφ(ξa, ξb)− Dξa −Qa + Fa (16)

dZob
dt

= −DZob + A0(Fa −Qa) + (Fb −Qb) (17)

The expression Fa − Qa = 0 means the partition made by Equations (13) and (14) are
appropriate since the new dynamics on Zob are independent from K and φ. In Equation
(16), the independence of ξ̇a from φ is stated. To extend for detailed information, check the
complete demonstration in Cortés et al. [13].

Observer Design

Using the nonlinear EAM2, the following equations describe the decoupled subsystem
conducted by the state variables X1, X2, S1, and S2:

ξ =


X1
X2
S1
S2

, F =


0
0

DS1in
DS2in

, Q =


0
0
0
0

, K =


1 0
0 1
−k1 0
k2 −k3

, φ =

[
µ1X1
µ2X2

]
(18)

Considering the previous subsystem, the subsequent state equation is structured as follows:

d
dt


X1
X2
S1
S2

 =


1 0
0 1
−k1 0
k2 −k3

[φ1
φ2

]
− D


X1
X2
S1
S2

+


0
0

DS1in
DS2in

 (19)

where ξa and ξb group the measurable and non-measurable states, respectively. Thus, using
the equations described in Cortés et al. [13], the expression of Zob is as follows:

dZob
dt

= −DZob + A0(Fa−Qa) + (Fb −Qb) (20)

where the matrices related to the equation are:

ξb =

[
X1
X2

]
, Zob =

[
Zob1
Zob2

]
, A0 =

[
1
k1

0
k2

k1k3
1
k3

]
, ξa =

[
S1
S2

]
(21)

Fa =

[
DS1in
DS2in

]
, Fb =

[
0
0

]
(22)

with:

Zob =

[
Zob1
Zob2

]
=
[
A0ξa + ξb

]
=

[
1
k1

0
k2

k1k3
1
k3

][
S1
S2

]
+

[
X1
X2

]
(23)

3.3. Kinetic Parameter Reaction Estimator

This section presents an additional tool that complements the lack of measurements in
the reactor. The goal is to estimate the kinetic reactions coming from the reaction system.
Figure 1 shows the structure proposed to obtain all the information needed to feed the
mathematical model contained in the control scheme strategy.
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Figure 1. The controller and the observer structure proposed for the anaerobic reactor.

The discontinuous line represents the information generated by the observers. At the
end, the measured variables nm and the estimated ones converge to feed the controller
algorithm. In order to design the kinetic estimator algorithm, the following nonlinear
equation that represents the system must be considered:

ξ̇ = Kφ− Dφ−Q + F (24)

Equation (24) assumes that the coefficients from K are known, while the dilution rate
D, the input flows F, and the gas output flows Q are measured in real-time. Additionally, it
is assumed that ξ is fully-known because the non-measured dynamics are reconstructed by
the previous asymptotic observer. The vector φ is partially known and is divided as follows:

φ = Hρ (25)

The matrix H contains the information from the known kinetic reactions, and ρ contains
the remaining information, the unknown kinetic reactions. Thus, using Equation (25) in
Equation (24) results in Equation (26).

ξ̇ = KHρ− Dφ−Q + F (26)

The estimation of reaction kinetics, r1 and r2, is equivalent to estimating the entire vector ρ.
Hence, following the structure proposed by Bastin et al. [14], a new dynamic of the system
is presented as follows:

˙̂ξ =KHρ̂− Dξ −Q + F−Ω(ξ − ξ̂), (27)
˙̂ρ =(KH)TΓ(ξ − ξ̂) (28)

where ρ̂ represents the real-time estimation of ρ. When ξ − ξ̂ ∼= 0 occurs in Equation (28), it
means that ˙̂ρ ∼= 0 results in a perfect tendency process of convergence to desirable reaction
kinetics values ρ̂ ∼= ρ. There is a mandatory condition. Equation (27) that represents the
kinetic reaction estimator has an equivalent structure to the Luenberger observer used in
homogeneous reaction systems [14].

˙̂ξ = Aξ̂ + Bu︸ ︷︷ ︸
1∗

+Ω(ξ − ξ̂) (29)
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The underlined term 1∗ in Equation (29), Aξ̂ + Bu, is equivalent to the term KHρ̂−Dξ−Q + F
in Equation (27). Thus, the above-mentioned comparison results in Equation (30):

˙̂ξ = KHρ̂− Dξ −Q + F︸ ︷︷ ︸
1∗

−Ω(ξ − ξ̂) (30)

In this way, Equation (30) represents the nonlinear system, while Equation (29) is the
equivalent linearized system.

Observer Design

To design the kinetic reaction estimator, only the measured and estimated states on ξ̇
are needed, while the term ξ− ξ̂ is used as a reference to monitor and follow the estimator’s
performance. ξ̂ should converge to ξ as soon as possible (ξ ≈ ξ̂). The dynamics of ˆ̇ξ
depends on the evolution of the dynamics of the error ė = (A − Ω L)e. Thus, the references
(the known values) that assist in tuning the kinetic reaction estimator are ξ, ξ̂, K, and H.
For better understanding, the following definitions are proposed: the term e = ξ − ξ̂ means
the observation error, and the term ρ̃ = ρ − ρ̂ means the tracking error. Hence, using
Equations (31) and (32):

˙̂ξ =KHρ̂− Dξ −Q + F−Ω(ξ − ξ̂) (31)

ξ̇ =Kφ− Dξ −Q + F (32)

Deriving on both sides of e and ρ̃, it results in ė = ξ̇ − ˙̂ξ and ˙̃ρ = ρ̇− ˙̂ρ. Taking Equations
(31) and (32) and replacing them by ė results in:

ė =Kφ− Dξ −Q + F− KHρ̂ + Dξ + Q− F + Ω(ξ − ξ̂) (33)

ė =Kφ− KHρ̂ + Ωe (34)

ė =KHρ− KHρ̂ + Ωe (35)

ė =KH(ρ− ρ̂) + Ωe (36)

ė =KHρ̃ + Ωe (37)

In the same way, the dynamic of the tracking error is as follows:

˙̃ρ = −(KH)TΓe +
dρ

dt
(38)

Merging Equations (37) and (38) results in the following dynamic system:[
ė
˙̃ρ

]
=

[
KHρ̃ + Ωe

−(KH)TΓe + dρ
dt

]
(39)

Thus, after organizing the previous equation, it results in the following system:[
ė
˙̃ρ

]
=

[
Ω KH

−HTKTΓ 0

][
e
ρ̃

]
+

[
0
dρ
dt

]
(40)

Replacing the matrices:

A =

[
Ω KH

−HTKTΓ 0

]
(41)

V =

[
0
dρ
dt

]
(42)

This results in: [
ė
˙̃ρ

]
= A

[
e
ρ̃

]
+ V (43)
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According to the information described, the estimation procedure is performed as follows:

Ka =

[
−k1 0
k2 −k3

]
, Kb =

[
1 0
0 1

]
, Fa =

[
DS1in
DS2in

]
, Fb =

[
0
0

]
(44)

The next step is to calculate the matrix A0; thus, it means that:

A0 = −KbK−1
a (45)

In the following equations, the system is divided into the dynamic states to be estimated,
using the data from the asymptotic observer, Z1 and Z2, and the measured data S1 and S2.
Solving ξb from Equation (15), we obtain:

ξb = Zob − A0ξa (46)

Equation (46) allows to calculate the following matrices:

K =

[
Kb
Ka

]
, H =

[
1 0
0 1

]
, ξ =

ξb
S1
S2

, F =

[
Fb
Fa

]
(47)

Finally, all the information needed to supply Equations (27) and (28) are obtained above.

4. Nonlinear Model Predictive Controller (Mpc)

As it is shown in Figure 1, the observer structure calculates the non-measurable
dynamic states, the concentrations of X1 and X2 (with the asymptotic observer), and the
kinetic reaction rates r1 and r2 (with the reaction rate observer). Once the information from
measurements and virtual sensors has been delivered to the controller, the algorithm is
ready to start calculating the control actions after receiving the rest of the information: the
operational and physical instructions, as well as the control objectives.

4.1. Controller Design

The subsequent conditions emerge as the required rules to take into consideration to
design the controller.

• The reactor has to be balanced to react against perturbations, always working within
the physical and operational boundaries.

• Methane production needs to be maximized all the time.
• The environmental regulations and the capacity of the reactor to reduce the concen-

tration of substrates at the inlet, S1 and S2, conditioned the programming. Therefore,
the rule S1(t) + S2(t)≤ Ktd, where Ktd denotes the maximum effluent concentration of
the both substrates considered, has to be followed.

• The reactor has to be protected against failures due to unexpected high variations on
VFA, and in consequence, inhibitions on the metabolism of microorganisms. Thus,
an alternative is to use alkalinity as a base to neutralize the level of acids.

S2(t)
Z(t)

= λ (48)

Equation (48) tries to preserve a relation between VFA and Z during the operation
of the reactor. According to the literature, λ has to be within 0.1 and 0.3, to maintain the
microorganisms in a zone of comfort in regard to the level of acids [11].

4.2. Structure of the Controller

Finally, the structure of the controller is shown in Figure 2. The dilution rate D
controls the amount of substrate at the inlet. It results in uC, the variables used by the
MPC to manipulate the dynamics of the reactor. ui represents the non-controller variables
considered as inlet: S1in, S2in, Cin, and Zin. upert holds the information about the inputs
considered as disturbances. y contains the information of the variables available to be
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measured. nm are the state dynamics that can be measured: S1, S2, Z, and C. The value of pH
is measured directly from the reactor. nnm are the state dynamics that cannot be measured
directly from the reactor: X1 and X2. The algorithm Virtual sensors allocates the two
observers that estimate the variables nnm and the reaction rates r1 and r2. The Asymptotic
observer uses the information from y, ui, and D in the absence of the reaction rates. At the
same time, nnm is used by the Reaction rate observer to calculate the reaction rates r1 and
r2. All the previous information is inserted into the MPC. Finally, the instructions about the
objectives and constraints are detailed in Equation (49) [5].

Figure 2. Model Predictive Control structure for the anaerobic digester.

We consider the mathematical model x(k + 1) = f (x(k), u(k)) described in Section 2.1.
x(k) ε Rn and u(k) ε Rm are the state and input matrices, respectively, of the dynamical
system at step-time k. f (·) is the nonlinear function that describes the dynamic system to
be controlled.

max
u(k),...,u(k+Nc)

J(x(k), u(k))

subject to:

x(k + 1) = f (x(k), u(k)),

y(k) = g(x(k), u(k)),

xmin 6 x(k), ∀ k = 1, . . . , Np, (49)

umin 6 u(k) 6 umax, ∀ k = 1, . . . , Nu,

S2(k)
Z(k)

6 λ, ∀ k = 1, . . . , Np
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where J(·), x(k), u(k), y(k), and g(·) are the functional cost that contains the information of
the control objectives, the dynamics of the system, the controller inputs, the output function,
and the function of the output, respectively [33]. xmin represents the lower boundaries
of the dynamics states. umin and umax are the lower and upper boundary limits of the
control action, the dilution rate. The last condition is the buffer capacity, the indicator that
quantifies the capacity reserved by the reactor to resist the acidity level. The dilution rate
D can reach values from 0 to 1. Equation (50) shows the functional cost proposed, i.e., the
total sum, along the simulation, of the volume of methane produced every day by the
anaerobic reactor.

J(x̃(k), ũ(k)) =
k+NP−1

∑
h=k

X2(h + 1|k)µ2(h + 1|k)k6 (50)

where X2(h|k) represents the predicted values of the acidogenic bacteria. µ2(h|k) has
implicitly the value of the dynamic of VFA S2(h|k) (see Equation (4)). h represents the
current time at time step k. u(h) denotes the control input D. x̃(k) = [xT(k + 1|k), . . . , xT(k +
NP|k)]T , and ũ(k) = [uT(k + 1|k), . . . , uT(k + NP|k)]T , where x(k|k) = x(k), and u(h) = u(k
+ NC − 1), for h = k + NC, . . . , k + NP − 1. NC and NP are, respectively, the control and
prediction horizons, where NC ≤ NP. According to the above-mentioned, x̃(k) and ũ(k)
are the predictions of the states and input matrices over the time horizon NP. Two step
changes in the profile inputs are considered to test the performance of the proposed MPC.
The changes at the inlet simulate an unexpected overload trying to drive the system closer
to the operational limits [11]. The simulations performed have been meticulously selected
in agreement to a sufficiently range of operating conditions. The focus is to inspect the
control actions calculated trying to preserve the operation under the limits. Two MPC are
programmed to run without any operational restrictions. One of them, used as a reference,
is programmed to run without the multistart function (a mesh of random points that
start the solver from multiple points to find multiple local minima), while a second MPC,
with the same characteristics as the previous, operates with the multistart function. Two
additional MPCs are configured to operate under the same conditions but with operational
restrictions. In this way, the progress of the system operating under stressful situations
can be checked. An industrial PID controller is used to analyze, compare, and discuss the
performance of the MPC schemes proposed [34].

5. Simulation Results and Analysis

Let us consider a system such as the reactor shown in Figure 2. Numerous simulations
are performed to validate the methods suggested in this paper. The control horizon NC and
the predictive horizon NP of the MPC are set to 5 and 7 days, respectively. The values of
S1in, S2in, and Zin are the same as the ones used in Cortés et al. [13]. The machine used to
perform the simulations has the following specifications: Intel® Core™ i7-1165G7 processor
(12 MB Cache). RAM memory 8 GB (1 × 8 GB) DDR 4 3200 MHz. Storage capacity SSD 512
GB CL35 M.2. Graphics NVIDIA® GeForce® MX 330 2 GB GDDR 5.

The reaction rates (considered as static in previous works [11]) changed over time,
are calculated from the Reaction rate observer [10]. In addition, this section evaluates the
performance of both configurations; the Asymptotic observer that estimates the concen-
trations of acidogens and methanogens, and the reaction rate observer that estimates the
two kinetic reactions used at EAM2. In a second stage, with the observers under operation
connected to the controller, the performance of the MPC is tested using four different
configurations. This section employs the same profile inputs and the initial conditions used
in the parametric identification procedure detailed in Cortés et al. [13].

5.1. Asymptotic Observer

This category of observers is named asymptotic because it estimates the non-existing
measurable states based on two conditions; the system is still not exponentially observable,
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and the reaction kinetics are unknown [14]. To overpass the lack of information needed
by the controller, the first step is checking the operation of the observer that estimates X1
and X2.

The results obtained by the algorithm are complied elsewhere [13]. To test the ob-
server’s performance, the starting point of both simulations, the observer and the dynamical
model, were set on different values in order to confirm the convergence [13].

5.2. Kinetic Parameter Reaction Estimator

The good results obtained from the Asymptotic observer far exceed the minimum
standard requirements needed for its use. Now, to unlock the calculus of the kinetic
reaction rates (r1 and r2), the information of the previous estimations are all inserted with
the measurements of the states nm and pH from the reactor [27,28]. In order to test the
efficiency (and convergence) of the Reaction rate observer, the results are compared with
the measurements held by the calculus of the same variables on EAM2 (see Figure 3a). Both
simulations are subjected to the same changes in the profile inputs. From day 0 until day 50
of the simulation, the value of D is 0.03 d−1. Then, from the day 51, D changed to 0.07 d−1

and maintained its value until day 100, when the last change situated D at 0.05 d−1.

(a) (b)

(c) (d)

Figure 3. Process of convergence in the estimation of reaction rates. (a) Values of r1; (b) values of r2;
(c) zoom in r1; (d) zoom in r2.

Due to a difference in scale magnitude, it is not possible to closely follow the process of
convergence. Hence, Figure 3c,d shows a zoom, focusing the view on the step changes and
the processes of convergence. The results of the state dynamic observer are shown in Fig-
ure 4. Despite the values of the dynamic observer started from different points, the process
of convergence shows successful results after 100 days. As expected, the dynamic states S1
and S2 from the observer are directly obtained by EAM2 following the same results.
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(a) (b)

(c) (d)

Figure 4. Kinetic reaction estimator to state variables considered. (a) Acidogens concentration X1;
(b) methenogens concentration X2; (c) chemical oxygen demand; (d) volatile fatty acids.

5.3. Pid Controller Performance on Anerobic Digesters

This section explores the performance of the PID controller used in the anaerobic
reactor, aiming to establish a coherence in a comparative analysis between the control
strategies studied. The simplicity of its controller is used to evaluate the decisions taken
from the four MPC configurations. The main difference is that the PID controller reacts in
correspondence to the current situation sensed from the reactor, while the MPC calculates
the control actions aiming to maximize the methane produced. The algorithm used by the
MPC has the information of the physical and operational restrictions that conditioned the
calculus of the control actions.

Three different scenarios are performed by the PID controller to follow the reference
methane produced. Using step changes in a reference, the PID controller is evaluated in
its capabilities to guide the production under feasible scenarios. The PID control scheme
tests its robustness under moderate, medium, and extreme scenarios in the objective to
produce methane (see Figure 5). The changes occurred at day 50 and remained constant
until day 100. After that, the reference goes back to the previous value to check the
controller’s capacity to be recovered (black line). The discontinuous blue line represents
the methane production using the profile inputs in the parameter identification procedure,
Cortés et al. [13]. The objective is to use these results as a reference to compare the different
performances (discontinuous red line). Figure 5a,c shows the capacity for the controller
to follow the reference in moderate and medium scenarios. Before day 50, the controller
maintained its operation closer to the reference. However, when the references change to
18 × 10−3 m3/d and 28 × 10−3 m3/d, respectively, the controller shows the capacity to
follow new requirements. Nevertheless, Figure 5e shows that the controller is not capable to
follow the reference (when the values change up to 43× 10−3 m3/d). The system falls into a
destabilization region, where methane production dropped below even when the reference
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returned to the previous state. As expected, since the controller does not have information
about the physical and operational restrictions, the system, under certain unfavorable
condition scenarios, could operate outside the boundaries beyond permissible limits.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Performance of PID control after step changes. (a) Low change in CH4; (b) D values after a
low change in CH4; (c) medium change in CH4; (d) D values after a medium change in CH4; (e) high
change in CH4; (f) D values after a high change in CH4.

The correspondent values of dilution rate D over the three scenarios are shown in
Figure 5b,d,f. Figure 5b,d shows a normal operation of D just before the day 100 when the
system crashed because the value of D dropped below zero.

Once again, the values of pH linked to the PID controller operate beyond the right lim-
its. The previous analysis induces to prepare and incorporate future strategies that contain
the drawbacks associated with unusual values in λ, and in consequence, S2. Figure 6b,d,f,
shows the value of λ along the simulation for the three correspondent cases. Below the
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limit recommended (0.8) by some authors in the literature [11], λ in the first two cases
(Figure 6b,d) corresponds to correct values. However, when the limits are exceeded, see
Figure 6f, the value of S2 far exceeds the limits, resulting in values of λ closer to 4. As stated
in previous results, the PID controller cannot manage the system within physical and
operational boundaries. Based on previous results, the alternative proposed in this paper,
the MPC controller, becomes a reasonable option because its algorithm considers valuable
characteristics that help the system to preserve in order to maintain the microorganisms
under feasible scenarios [18].

(a) (b)

(c) (d)

(e) (f)

Figure 6. Performance of PID controller after step changes. (a) pH values after a low change in CH4;
(b) λ values after a low change in CH4; (c) pH values after a medium change in CH4; (d) λ values
after a medium change in CH4; (e) pH values after a high change in CH4; (f) λ values after a high
change in CH4.
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5.4. Mpc Controller without Restrictions

Figure 7 shows the results of maximizing the methane produced by the reactor using
an MPC without the operational and physical restrictions shown in Equation (49).

(a) (b)

(c) (d)

(e) (f)

Figure 7. MPC controller without restrictions, maximizing the volume of CH4. Time course of (a) vol-
ume of CH4; (b) dilution rate D; (c) value of pH; (d) dynamic of VFA; (e) values of λ; (f) dynamics of
S2 and Z.

Figure 7a shows a substantial increase in the volume of methane produced (see discon-
tinuous red line), where the black line acts as the reference (volume of methane produced
due to profile inputs used in parametric optimization), to measure the improvements on ef-
ficiency. The correspondent control actions calculated are shown in Figure 7b. The absence
of restrictions in the algorithm allows the controller to calculate control actions, neglecting
strong changes in operation that could affect the stability of the reactor. As can be seen,
maximizing the objective turns the values of D extreme; showing oscillations from one
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extreme to the other. Several times the value of D decreases to zero and suddenly rise to
the maximum. In the same way, pH had severe changes even beyond the operational limits
(see Figure 7c). The relationship between pH and VFA is clear in Figure 7c,d showing a
correlation along the simulation. This algorithm exposes high external risks in operation
because there exists a lack of information over the system’s operation. Figure 7e shows
the corresponding values of λ along the simulation; it appears that the values go beyond
the limits repeatedly. As it seems in Figure 7f, the value of alkalinity Z exceeds the value
of S2 where at this point, the value of λ goes beyond 1, meaning the reaction system
runs inadequately.

Given the previous results in Figure 7, the maximization of methane without restric-
tions leads the system to operate beyond non-feasible limits. Therefore, it is necessary to
include extra information about the process to avoid inhibitors along the simulation.

Figure 8 shows the results obtained due to the operation of the MPC without the
restriction of buffering capacity (λ) and without the multistart function. Figure 8a shows
the volume of methane produced by both the reference (black line), and the MPC (red
discontinuous line). A significant increase in the volume of methane produced compared
to the reference is observed. Figure 8b shows the control actions calculated by the MPC.
As it is shown, the oscillation is severe, however, the results are reliable. Figure 8c,d shows
the results of the pH and S2. As expected, the oscillation of values is intense around the
reference (black line) but not attractive for control purposes. Finally, Figure 8e shows the
evolution of the non-restricted parameter λ. As expected, due to the absence of restrictions
on programming, the maximum value of λ has been exceeded once.

(a) (b)

(c) (d)

Figure 8. Cont.
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(e) (f)

Figure 8. MPC controller without restrictions. (a) Volume of CH4; (b) dilution rate D; (c) value of pH;
(d) dynamic of VFA; (e) values of λ; (f) dynamics of S2 and Z.

5.5. Model Predictive Controller with Restrictions

The information about operational and physical restrictions is added to the MPC
aiming to maintain the microorganisms under feasible operational conditions. As shown in
Figure 9a, the discontinuous red line shows the volume of methane produced. The efficiency
is maintained despite the restrictions; therefore, this option better fits the system under
stable conditions. The correspondent control actions calculated by the optimizer (see
Figure 9b) shows a slight attenuation compared with previous simulations. The results
of pH in Figure 9c show that the range of values becomes closer to the reference than the
previous results. Compared with the previous results, the acidification level is much lower
(see Figure 9d). In Figure 9e, the discontinuous blue line represents the limit stated for a
regular operation. As it is shown, the discontinuous red line never surpasses the limits
beyond λ = 0.8; in some cases, it gets closer. However, it is because the reactor is producing
a high amount of methane closer to the operational limits. Figure 9f shows the evolution of
the balance between VFA and Z. It is clear that the buffer capacity is always under control.
Although the algorithm is restricted, the amount of methane CH4 produced is higher than
the reference.

Finally, Figure 10 shows similar results to those shown in Figure 8 but programmed
without the multistart function. Despite the decrease in efficiency, the results show an
adequate operation.

(a) (b)

Figure 9. Cont.
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(c) (d)

(e) (f)

Figure 9. MPC controller with restrictions, maximizing the volume of CH4. (a) Volume of CH4;
(b) dilution rate D; (c) value of pH; (d) dynamic of VFA; (e) values of λ; (f) dynamics of S2 and Z.

(a) (b)

(c) (d)

Figure 10. Cont.
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(e) (f)

Figure 10. MPC controller with restrictions. (a) CH4 evolution; (b) D values calculated by optimizer;
(c) pH values; (d) VFA values; (e) λ over the process; (f) evolution of S2 and Z.

Table 1 shows a condensed vision of the previous results. Two same alternatives were
simulated without the multistart function. As expected, there is a reduction in efficiency
because the algorithm chose a random initial point to start the process. The black line
is used as a reference to compare easily the results from the methane produced by the
MPC [13]. In the case of the MPC controller that operates without operational restrictions,
the improvement achieved was 17.4% and 24.4%, respectively, for the algorithm with no
multistart and the multistart function.

The reactor that operates with operational restrictions shows an improvement of 18.8%
and 20.8% for both MPC schemes, without and with the multistart function, respectively.
Although the performance is reduced significantly because of the insertion of restrictions,
the continuous operation of the reactor is not broken and can run permanently.

Table 1. Improvement in the methane produced by each MPC control scheme.

Schemes
Without Restrictions With Restrictions

No Multistart Multistart No Multistart Multistart

Increase on efficiency 17.4 % 24.4% 18.8% 20.9%

6. Conclusions

A structure of two observers demonstrates to be effectively solving two specific draw-
backs responsible for the inefficiencies implementing control schemes based on modeling.
The Asymptotic observer that operates in the absence of the reaction rates demonstrates
an error of convergence less than 5% estimating the concentrations of acidogens and
methanogens. Then, the previous information enables an upstream operation feeding the
kinetic observer that estimates the reaction rates with an error of convergence lower than
5%. In the following, the rest of the parameters, considered as static due to their correlation
with the specific biochemical characteristics of the organic matter, were calculated using
algorithms based on optimization. All the above-mentioned aspects represent the key that
makes it possible to operate MPCs in the industry. Four MPC configurations were used
to test the observer and identification structure proposed. The objective was to maximize
the volume of methane. While the controller without the operational restrictions showed a
considerable increase in efficiency, after operational limits were added to the algorithm,
the efficiency of the controller slightly decreased. However, its reduction on efficiency
is affordable because the algorithm helped the system to stay in operation continuously.
Without operational restrictions, the efficiency reached 24.4%, while the restricted algorithm
showed an efficiency of 20.9%. The exhaustiveness in the methodology proposed is worth
using because the added information guarantees robustness in operation and an increase
in efficiency compared with traditional control alternatives.
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Nomenclature

C, Cin Total inorganic carbon concentration (kg/m3)
D Dilution rate (d−1)
k1 Yield substrate degradation
k2 Yield for VFA production
k3 Yield for VFA consumption
k4 Yield for CO2 production
k5 Yield for CO2 production
k6 Yield for CH4 production (m3)
KS1 Half-saturation constant (kg/m3)
KS2 Half-saturation constant (kg/m3)
KZ,1 Yield for ammonium production (kg/m3)
KZ,2 Yield for ammonium production (kg/m3)
qC Carbon dioxide flow rate (m3/d)
qM Methane flow rate (m3/d)
r1, r2 Reaction rates (d−1)
S1, S1in Organic substrate concentration (kg acid acetic/m3)
S2, S2in Volatile fatty acids concentration (kg/m3)
X1 Concentration of acidogenic bacteria (kg/m3)
X2 Concentration of methanogenic bacteria (kg/m3)
Z, Zin Total alkalinity (kg/m3)
α Fraction of bacteria in the liquid phase
µ1 Specific growth rate of acidogenic bacteria (d−1)
µ2 Specific growth rate of methanogenic bacteria (d−1)
ψ1 Maximum acidogenic bacteria growth rate (d−1)
ψ2 Maximum methanogenic bacteria growth rate (d−1)
nm Vector of measured state variables
nnm Vector of non-measurable state variables
p, pmax Vector of parameters
u, umin, umax Control action (d−1)
ξ Vector of state variables
K Matrix with the kinetics of the biochemical
φ Microbiological reactions involved on system
Q Gaseous rate of mass outflow from reactor
F Mass feed rate due to external substrates
ρ Unknown functions of all states
H Known functions of all the states
Γ Gain matrix of the updating law
Ω Square gain convergence matrix

https://doi.org/10.1016/j.procbio.2005.03.073
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λ Buffer capacity
Np Prediction horizon (d)
Nu Control horizon (d)
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