

 Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

E. Guerra, J. de Lara, M. Chechik and R. Salay, Property Satisfiability Analysis for
Product Lines of Modelling Languages, in IEEE Transactions on Software
Engineering, vol. 48, no. 2, pp. 397-416

DOI: https://doi.org/10.1109/TSE.2020.2989506

Copyright: © 2022 Institute of Electrical and Electronics Engineers

 El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
https://doi.org/10.1109/TSE.2020.2989506

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 1

Property Satisfiability Analysis for Product Lines
of Modelling Languages

Esther Guerra, Juan de Lara, Marsha Chechik, and Rick Salay

Abstract—Software engineering uses models throughout most phases of the development process. Models are defined using
modelling languages. To make these languages applicable to a wider set of scenarios and customizable to specific needs, researchers
have proposed using product lines to specify modelling language variants. However, there is currently a lack of efficient techniques for
ensuring correctness with respect to properties of the models accepted by a set of language variants. This may prevent detecting
problematic combinations of language variants that produce undesired effects at the model level.
To attack this problem, we first present a classification of instantiability properties for language product lines. Then, we propose a novel
approach to lifting the satisfiability checking of model properties of individual language variants, to the product line level. Finally, we
report on an implementation of our proposal in the MERLIN tool, and demonstrate the efficiency gains of our lifted analysis method
compared to an enumerative analysis of each individual language variant.

Index Terms—Model-Driven Engineering, Software Language Engineering, Product Lines, Meta-Modelling, OCL, Model Finding

F

1 INTRODUCTION

MODELLING is at the core of many software engineering
activities. Models are built using the most suitable

modelling language, either general-purpose (e.g., UML or
Petri nets [1]) or domain-specific (DSL). In model-driven
engineering (MDE) [2], the abstract syntax of a modelling
language is described by a meta-model that defines domain
primitives, their characteristics, relations and constraints. To
express the latter, the OMG provides the standard Object
Constraint Language (OCL) [3].

Modelling languages may admit variants to support
multiple scenarios [4]. For example, we may offer variants
of UML class diagrams for different purposes: while class
operations or interfaces are not needed for analysis, we may
include elements of particular programming languages, like
generics or mixins, for detailed design. Building separate
meta-models for every variant combination leads to a large
meta-model set that, without proper support, is challenging
to construct, analyse, manage and navigate. As an example
of the real impact of this situation, Malavolta et al. [5] report
more than 120 variations of architectural languages.

A way to simplify the management of all variants of a
modelling language is to apply ideas from software product
lines (SPLs) [6] to their construction, analysis and mainte-
nance. SPLs permit expressing and managing collections of
related software systems and their variability. They have
been successfully applied to real-world problems within
companies from varied domains, such as defence or the
automotive industry [7], [8], [9], [10]. In language engineer-
ing, they have been used to handle variability [4], [11] of
the language concrete syntax (i.e., visual representation),
abstract syntax and semantics [11]. We focus on the abstract

• E. Guerra and J. de Lara are with the Universidad Autónoma de Madrid,
Spain. E-mail: {Esther.Guerra, Juan.deLara}@uam.es

• M. Chechik and R. Salay are with the University of Toronto, Canada.
E-mail: {chechik, rsalay}@cs.toronto.edu

Manuscript received June 2019.

syntax (i.e., on meta-models) as the concrete syntax and
semantics are defined on top of it. SPLs enable a compact
representation of the language variants, providing an in-
terface – a feature model [12] – for configuring a concrete
language variant.

As an example, suppose we aim to build a meta-model
product line (MMPL) to describe variants of Petri nets. Fig. 1
shows the meta-model of some of these variants. Variants (a)
and (b) account for alternative realizations of tokens, either
as attributes or objects; variant (c) describes hierarchical
nets, where substitution transitions may contain places and
transitions1; and variant (d) describes state-machine nets,
where transitions have exactly one input and one output
place. The targeted MMPL would encompass these meta-
model variants and their consistent combinations, together
with a feature model governing the presence/absence of
meta-model elements depending on the selected features.

Since a meta-model determines the set of allowed mod-
els, guaranteeing its correctness is crucial. This includes
ensuring that the set of instances of a meta-model satisfy de-
sired properties like instantiability, i.e., having a non-empty
instance set [13]. For this purpose, the most widely used
approach is relying on constraint solving to assess whether
the meta-model instances satisfy the expected properties.
However, if we have an MMPL, the number of meta-
models to analyse (and therefore the analysis time) can
be exponential due to the combinatory nature of feature
models. Hence, our aim is developing efficient techniques
to ensure that some/all instance models of the meta-models
within an MMPL have desired properties, such as mean-
ingful combinations of objects, while ensuring absence of
undesirable properties. Such techniques can be used by lan-
guage designers to assess that a family of meta-models being
developed is free of errors, and by language users to identify

1. While hierarchical nets may also consider fusion places, we leave
this notion out of the example for simplicity of presentation.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 2

 (a) (b)

 (c) (d) (e)

Place
itokens: int

in
Transition

out

*
*

places
1
* trans *

1

PetriNet

Place
in

Transition
out
*
*

Token
tokens *

1

Place
in

Transition
out
* *

places
1
* trans *

1

PetriNet

Token

tokens
*

1 isHierarchical inv:
 (self.places→size()> 0 or
 self.trans→size()> 0)
 implies (self.in→size() +
 self.out→size() = 0)

Place
itokens: int

in

Transition
out

1
1

places
1

trans *
1

PetriNet

*

places
1

trans
1

PetriNet

* *
Place

itokens : int
capacity: int

in

Transition
out

1
1

bounded inv: self.itokens<=capacity

places
1

trans
1

PetriNet

* *

(a) tokens as attributes

Place
in

Transition
out
*
*

Token
tokens *

1

places
1

trans *
1

PetriNet

*

(b) tokens as objects (a) (b)

 (c) (d) (e)

Place
itokens: int

in
Transition

out

*
*

places
1
* trans *

1

PetriNet

Place
in

Transition
out
*
*

Token
tokens *

1

Place
in

Transition
out
* *

places
1
* trans *

1

PetriNet

Token

tokens
*

1 isHierarchical inv:
 (places→size() > 0 or
 trans→size() > 0)
 implies (in→size() +
 out→size() = 0)

Place
itokens: int

in

Transition
out

1
1

places
1

trans *
1

PetriNet

*

places
1

trans
1

PetriNet

* *
Place

itokens: int
capacity: int

in

Transition
out

*
*

bounded inv: itokens<=capacity

places
1

trans
1

PetriNet

* *

(c) hierarchical nets

 (a) (b)

 (c) (d) (e)

Place
itokens: int

in
Transition

out

*
*

places
1
* trans *

1

PetriNet

Place
in

Transition
out
*
*

Token
tokens *

1

Place
in

Transition
out
* *

places
1
* trans *

1

PetriNet

Token

tokens
*

1 isHierarchical inv:
 (self.places→size()> 0 or
 self.trans→size()> 0)
 implies (self.in→size() +
 self.out→size() = 0)

Place
itokens: int

in

Transition
out

1
1

places
1

trans *
1

PetriNet

*

places
1

trans
1

PetriNet

* *
Place

itokens : int
capacity: int

in

Transition
out

1
1

bounded inv: self.itokens<=capacity

places
1

trans
1

PetriNet

* *

(d) state-machine nets

Fig. 1. Variants of a Petri net meta-model.

the subset of meta-models of an MMPL whose instances
fulfil the properties needed for the user purposes. The latter
is especially relevant to enable an informed meta-model
selection on existing meta-model repositories such as [14].
Moreover, given that modelling and modelling languages
are pervasive in software engineering, our techniques be-
come generally applicable.

For example, we might like to ensure that no Petri net
in any variant can have a negative number of tokens, which
is false because some instances of meta-models (a) and (d)
violate this property. However, assessing this property indi-
vidually on each meta-model may be inefficient. Likewise,
we would like to identify non-consistent combinations of
features. Two variants conflict if their integrity constraints
clash, preventing creating any model, or precluding the
use of the primitives each variant offers. In the example,
hierarchical and state-machine nets cannot be meaningfully
combined, as nets with hierarchical transitions cannot be
created: on the one hand, invariant isHierarchical restricts
hierarchical transitions to have no input or output places,
but on the other, state-machine nets require one input and
one output place in all transitions.

Some approaches to MMPLs exist [4], [15], [16], [17], but
we are not aware of techniques for ensuring a consistent
combination of meta-model variants, or an effective analysis
of properties pertaining to a subset of the languages of the
family. While existing work on analysis of product lines of
models [18] permits checking whether each product model
conforms to its meta-model, our goal is to guarantee that the
meta-models in a product line satisfy various instantiability
properties. For this purpose, we cannot reuse existing anal-
yses for model product lines as instantiability is an intrinsic
characteristic of meta-models, not of models.

In this paper, we propose lifting the instantiability anal-
ysis from individual meta-models to product lines, to effi-
ciently analyse satisfiability properties of the meta-models
in an MMPL. To do so, we introduce a declarative notion
of MMPL that is more amenable to automated analysis than
the existing approaches [15], [16]. To check the satisfiability
of properties, we embed the feature model within a meta-

model and use model finders [19], [20] to analyse the satis-
faction of properties expressed in OCL. The analysis returns
a model exemplifying the property, its meta-model, and the
total configuration that yields the meta-model.

This lifted analysis performs well when looking for one
or a few solution meta-models among all meta-models in
an MMPL. However, its efficiency is poor when checking
a property on every meta-model of the MMPL, as it re-
quires a separate call to the model finder for each meta-
model. In such cases, we lift model typing to the product
line level and work with partial configurations, so that
a model can be seen as conformant to the set of meta-
models induced by a partial configuration. This improves
the analysis performance because the analysis can return a
partial configuration. In this case, the result applies to every
meta-model induced by the configuration, hence reducing
the model finder calls needed to check a property for all
meta-models of an MMPL. We provide correctness proofs of
our method and consider two alternative search strategies to
traverse the partial configurations, together with heuristics
to decrease the number of model finder calls.

The paper also characterizes the space of instantiability
properties for MMPLs, including both lifted properties and
mixed properties that can refer to features of the feature
model and be analysed for several meta-models of the
MMPL. The approach is supported by the tool MERLIN,
available at http://miso.es/tools/merlin. We use this tool
to evaluate the performance gains of our lifted analysis
based on total or partial configurations, in comparison to
analysing each meta-model of the MMPL individually.

This paper extends our earlier work [21] as follows: (i)
we propose a new theory based on partial configurations
to improve the performance of the analysis, together with
proofs of its correctness; (ii) we describe search strategies to
traverse the partial configurations and heuristics to reduce
the number of calls to a model finder; (iii) we provide tool
support for the extended theory; (iv) we report on an eval-
uation based on eight MMPLs. The existing material from
[21] is also expanded with proofs of all relevant theorems
and additional examples.

Paper organization. Section 2 introduces MMPLs. Section 3
characterizes instantiability properties for MMPLs. Section 4
lifts satisfiability analysis to MMPLs. Section 5 shows how
to optimize this analysis by using partial configurations.
Section 6 presents tooling, and Section 7 evaluates its ef-
fectiveness. Finally, Section 8 discusses related work, and
Section 9 concludes.

2 META-MODEL PRODUCT LINES

This section introduces our notion of MMPL, using the Petri
nets example as an illustration. Our product lines follow
an annotative approach combined with restricted types of
transformations, which we call modifiers [21], [22]. Hence, in
our approach, all meta-model variants are superimposed in
a so-called 150% meta-model [23], [24], and their elements
are annotated with conditions governing when they should
appear in products. Modifiers express modifications on car-
dinalities and inheritance relations, triggered upon certain
conditions. While some other approaches encode variability
using richer, full-fledged programming languages [15], [16],

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 3

PetriNets

Tokens

Feature
diagram

Simple Object

Hierarchical

FM = { PetriNets, Tokens, Simple, Object, Hierarchical,
 Structure, StateMachine, MarkedGraph },
 PetriNets Tokens ((Simple Object) (Simple Object))
 (Structure (StateMachine MarkedGraph))

Structure

StateMachine MarkedGraph

mandatory optional

alternative or

Legend

Fig. 2. Feature model for the Petri nets example.

[25], our work is applicable to any method that allows
deriving a 150% meta-model.

First, we introduce the notion of feature model – a way to
describe the variability space.

Def. 1 (Feature model [21]). A feature model FM = (F, φ)
consists of a set of features F = {f1, ..., fn} and a proposi-
tional formula φ specifying the valid feature configurations.

Example. Fig. 2 shows a feature model describing the
types of Petri nets in our running example (cf. Fig. 1).
The upper part depicts the feature model using the feature
diagram notation [12], while the bottom uses Def. 1. The
feature model requires choosing a representation for tokens
(Simple or Object, which are alternative), and optionally, any
combination of Hierarchical, StateMachine and MarkedGraph can
be selected. Marked graphs are nets where all places have
exactly one input and one output transition. While we use
this simple example for illustration, real SPLs are normally
bigger and have a significant common part to foster reuse.

We base MMPLs on a standard notion of meta-
model [26] with constraints.

Def. 2 (Meta-model [21]). A meta-model is a tuple MM = (C,
FI,WC, I), where:

• C is a set of classes, some of which may be abstract;
• FI is a set of attributes and references called fields. Each

field has a unique name, is owned by exactly one class,
and has cardinality interval [min..max], with ∞ used to
denote unbound upper limits (i.e., max = ∗);

• WC is a set of well-formedness constraints, called invari-
ants, each of which is assigned to exactly one class; and

• I ⊆ C × C is the class inheritance relation by which a
subclass has all fields and invariants of all its superclasses,
and this relation must be acyclic.

Non-abstract classes define the types of objects that can
appear in a model that is an instance of the meta-model.
Fields of a class can be attributes of a primitive data type
(e.g., int) or references pointing to a class. The cardinality
of a field indicates the minimum and maximum number
of values it can hold in an instance of the owning class.
We define invariants using OCL [3]. These are declared in
the context of a class, and evaluated on all of its instances.
As in [21], we say that a meta-model is well-formed if its
invariants are syntactically correct. Moreover, meta-models
cannot have inheritance cycles. Intuitively, a model is said
to conform to a meta-model if each object is typed by exactly
one non-abstract class, each slot and link is correctly typed
by compatible attributes and references, the cardinality of

fields is preserved, and each object satisfies the invariants
defined in its class and superclasses. We make this intuition
more precise in Section 5.1.

Remark. Cardinalities can be seen as syntactic sugar, as
they can be expressed by means of invariants; however, we
prefer using cardinalities as they are easier to understand.
For simplicity, Def. 2 omits other reference qualifications,
like composition, which can also be expressed as invariants.

Notation. Given f ∈ FI , target(f) refers to its target class
if f is a reference, or its data type if it is an attribute. We use
the function ownerFI : FI → C to obtain the owner class of
fields, and owner∗FI ⊆ FI × C for the relation representing
all classes that define or inherit a field. We use ancs for the
reflexive-transitive closure of I .

Example. Fig. 1 shows four meta-models. The one in
Fig. 1(c) has four non-abstract classes, five references with
cardinality [0..∗], and one inheritance relation from class
Transition to class PetriNet. Class Transition defines the invariant
isHierarchical which demands every Transition with non-empty
places or trans collections to have empty in and out collections.

Next, we define the notion of a meta-model product line to
represent the meta-model variants of a language family.

Def. 3 (Meta-model product line). A meta-model product line
is a tuple MMPL = (FM,MM,Φ,MC ,MI), where2:
• FM = (F, φMMPL) is a feature model;
• MM = (C,FI,WC, I) is a meta-model, called the 150%

meta-model (150MM in short);
• Φ = (ΦC,ΦFI,ΦWC) is a tuple of mappings from the

feature model to the 150MM. Each mapping ΦX, for
X ∈ {C,FI,WC}, consists of pairs 〈x,Φx〉 mapping
an element (a class, a field or an invariant) x ∈ X to a
propositional formula Φx over features, called its presence
condition (PC). The PC of a field f must be stronger than
that of its owning class Ci (i.e., an implication Φf ⇒ ΦCi
is required), and same for invariants;

• MC = (µmin, µmax) is a tuple of sets of cardinality
modifiers. The set µmin (resp. µmax) consists of tuples
〈f,m,Φmin〉 mapping a field f ∈ FI to a new minimum
(resp. maximum) cardinality m whenever the first-order
formula Φmin (resp. Φmax) is true;

• MI = (µadd, µdel) is a tuple of sets of inheritance modifiers.
The set µadd (resp. µdel) consists of tuples 〈Csub, Csuper,
Φadd〉 adding (resp. deleting) an inheritance relation
(Csub, Csuper) when the first-order formula Φadd (resp.
Φdel) is true.

The 150MM collects all elements appearing in the meta-
models of the MMPL. Its elements are decorated with PCs
which are boolean formulas that may use the features F of
FM. For deriving a concrete product, the elements whose
PC is false are removed from the 150MM. In other words, an
element (class, field, invariant) becomes present in a meta-
model when its PC evaluates to true.

Example. Fig. 3 shows the 150MM for the running example.
Conceptually, it is made of all superimposed meta-model
variants of interest (in our example, those in Fig. 1 and
some others). It is decorated with PCs (blue boxes on top

2. We use MMPL as the acronym of meta-model product line, and
MMPL (in italics) to denote the tuple name.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 4

in

isMarkedGraph inv:
 Transition.allInstances()
 →one(in→includes(self))
 and
 Transition.allInstances()
 →one(out→includes(self))

Place
 itokens : int

PetriNet

Transition
out

places

Simple

1

* trans *

1

Token

tokens *

1

Object

Object

 SEMANTIC ERROR a constraint requring positive tokens is missing for Simple
 SEMANTIC ERROR (after adding presence Condition Hierarchical to invariant isHierarchical): there is no model

illustrating Hierarchical and StateMachine. Hierarchical tries to include Transitions with non-empty places or transitions
(to illustrate the inheritance), in which case in/out should be empty; however, StateMachine requires transitions to have
1 input and 1 output place (modifiers in input/output).

isHierarchical inv:
 (places→size() > 0 or
 trans→size() > 0)
 implies (in→size() +
 out→size() = 0)

MarkedGraph

StateMachine
[min=1, max=1]
StateMachine
[min=1, max=1]

*
*

net net not Hierarchical
[del]

Hierarchical

Fig. 3. 150MM annotated with PCs and modifiers.

of classes, fields and invariants) and modifiers (dashed
blue boxes on top of inheritance relations and references).
For example, the attribute Place.itokens appears when its PC
Simple is true, while the inheritance relation from Transition to
PetriNet is deleted (i.e., it does not appear) when ¬Hierarchical
is satisfied. References Transition.in and Transition.out have two
cardinality modifiers each, making the min and max cardi-
nality of the references equal to 1 when StateMachine is true.

This 150MM is well-formed, i.e., all invariants are syn-
tactically correct. When StateMachine is true, references Tran-
sition.in and Transition.out become mono-valued (i.e., their
max cardinality becomes 1); still, the invariant isHierar-
chical remains valid because in→size() is a shorthand for
in→asSet()→size(), which converts in into a set and permits
applying operator size() to the result. Had we omitted the
inheritance relation from Transition to PetriNet and used a mod-
ifier to add this relation when Hierarchical is true, the invariant
isHierarchical would have been syntactically incorrect as the
class Transition would lack fields trans and places.

Remark. Def. 3 uses modifiers to change element char-
acteristics. Modifiers can be seen as a very restricted form
of transformational PL approach [15], which we combine
with the mechanisms of negative variability. We currently
support modifiers for field cardinalities and inheritance,
and leave the definition of other modifiers (e.g., for the
abstractness of classes or the type of fields) as future work.
Anyhow, modifiers are not strictly necessary as they can
be emulated with PCs. For example, given a modifier of the
cardinality of a field when Φmin is true, it can be represented
as an invariant demanding the satisfaction of the modifier
cardinality and PC Φmin. However, we use modifiers as
this allows reusing existing meta-model editors to build
150MMs. These editors expect meta-models with correct
structure, but are more permissive with the OCL invari-
ants, typically handled as uninterpreted strings. Without
modifiers, we would need editors able to accept inheritance
cycles. Instead, our approach allows attaching any number
of modifiers to classes and fields, e.g., as annotations, which
are supported by widely used meta-model editors like the
Ecore tree editor [27], OCLinEcore [28], Xcore [29] or EM-
Fatic [30]. As modifiers can change the inheritance relations,
the 150MM may include invariants referring to fields that
become inherited only when a modifier is triggered. Hence,
150MMs are meta-models as per Def. 2, but they do not need
to be well-formed.

A feature model defines a set of valid total configura-
tions: assignments of truth values to features that satisfy
the feature model. We also consider partial configurations
with the standard meaning, i.e., where the value of some
features is undefined. We will use these latter configurations
in Section 5. Total configurations permit selecting one meta-
model from the product line, containing all elements in the
150MM whose PC is true.

Def. 4 (Configuration). Given a feature model FM = (F,
φMMPL), a feature configuration ρ = 〈ρ+, ρ−〉 is a tuple of
two disjoint feature sets, with ρ+ the features whose value
is set to true, and ρ− the features whose value is false, s.t.:

1) ρ+ ∪ ρ− ⊆ F ;
2) φMMPL[true/ρ+, false/ρ−] � false

We write ρu = F \ (ρ+ ∪ ρ−) for the set of undefined
features. We call ρ total if ρu = ∅, and call it partial otherwise.
We use P (FM) for the set of all total configurations of FM,
and P̃ (FM) for the set of all its partial configurations.

Remark. In Def. 4, item 2 checks that the feature model
formula φMMPL is not equivalent to false when we substi-
tute all features in ρ+ by true, and those in ρ− by false. In the
following, we use a tilde (ρ̃) to mark partial configurations.

Example. The feature model in Fig. 2 admits 16
valid total configurations, including ρ0 = 〈{PetriNets,
Tokens, Simple}, {Object, Hierarchical, Structure, StateMachine,
MarkedGraph}〉, ρ1 = 〈{PetriNets, Tokens, Object}, {Simple, Hier-
archical, Structure, StateMachine, MarkedGraph}〉, ρ2 = 〈{PetriNets,
Tokens, Object, Hierarchical}, {Simple, Structure, StateMachine,
MarkedGraph}〉, and ρ3 = 〈{PetriNets, Tokens, Simple, Structure,
StateMachine}, {Object, Hierarchical, MarkedGraph}〉.

In addition, it admits 110 partial configurations. For ex-
ample, ρ̃4 = 〈∅, ∅〉 leaves all features undefined, while ρ̃5 =
〈{PetriNets, Structure, StateMachine}, {Hierarchical, MarkedGraph}〉
sets features PetriNets, Structure and StateMachine to true; Hierar-
chical and MarkedGraph to false; and the rest to undefined.

Algorithm 1 describes how to derive a meta-model MMρ

from an MMPL MMPL, given a total configuration ρ. If
an element has no PC, the algorithm assumes that its PC
is true. Lines 1–2 select the 150MM elements whose PC
evaluates to true. Lines 3–5 add the inheritance relations that
have no modifiers and are defined between classes selected
by the configuration. Lines 6–9 evaluate the min and max
cardinality modifiers, updating the cardinality of fields if
needed. The remaining lines handle inheritance modifiers.
An inheritance relation is added to MMρ when it has no
modifier (as seen in lines 3–5), its add modifier evaluates to
true (lines 10–12), or its del modifier evaluates to false (lines
13–15).

Notation. We write Prod(MMPL) for the set of all deriv-
able meta-models from an MMPL.

Example. Fig. 1 shows four meta-models derived from the
MMPL in Figs. 2 and 3 using configurations ρ0 (Fig. 1(a)),
ρ1 (Fig. 1(b)), ρ2 (Fig. 1(c)), and ρ3 (Fig. 1(d)).

Def. 3 does not require the 150MM to be well-formed.
However, a reasonable requirement for an MMPL is that
every derived meta-model is well-formed. We call these
MMPLs well-formed.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 5

input : MMPL, ρ ∈ P (FM)
output: A meta-model MMρ

1 forall e ∈ MMC ∪MMFI ∪MMWC do
2 if Φe[true/ρ+, false/ρ−] then add e to MMρ

3 forall (Csub, Csuper) ∈ MMI with no modifier do
4 if Csub and Csuper are included in MMρ then
5 add (Csub, Csuper) to relation I in MMρ

6 forall 〈f,m,Φmin〉 ∈ µmin do
7 if Φmin[true/ρ+, false/ρ−] then set f.min = m
8 forall 〈f,m,Φmax〉 ∈ µmax do
9 if Φmax[true/ρ+, false/ρ−] then set f.max = m

10 forall 〈Csub, Csuper,Φadd〉 ∈ µadd do
11 if Φadd[true/ρ+, false/ρ−] then
12 add (Csub, Csuper) to relation I in MMρ

13 forall 〈Csub, Csuper,Φdel〉 ∈ µdel do
14 if ¬Φdel[true/ρ+, false/ρ−] then
15 add (Csub, Csuper) to relation I in MMρ

Algorithm 1: Meta-model derivation. Notation is
from Defs. 2, 3 and 4.

Def. 5 (Well-formed MMPL). A product line MMPL is well-
formed iff every MM ∈ Prod(MMPL) is well-formed.

In [21], we showed an efficient way to assess whether a
given MMPL is well-formed by lifting the syntactic analysis
to the MMPL level. In this paper, we assume well-formed
MMPLs and refer to [21] for details.

3 INSTANTIABILITY PROPERTIES OF MMPLS

This section motivates the need for instantiability analysis at
the level of PLs (Section 3.1) and characterizes instantiability
properties for MMPLs (Section 3.2).

3.1 Instantiability Analysis for MMPLs
When designing a language, a syntactically correct meta-
model is not sufficient, but in addition, the set of accepted
models must be the one that the designer intends. Hence, to
validate a meta-model MM, we need to check that its lan-
guage L(MM) does not contain models considered invalid,
and does not miss models considered valid.

Fig. 4(a) shows how this validation process is automated
using model finders [13], [19], [20], [31], [32]. These are tools
that receive a meta-model (including its invariants) and a set
of model properties as input, and use constraint solving to
find a model that conforms to the meta-model and exhibits
the specified properties. This search is typically bound to
models up to a given size. Model finders like USE Valida-
tor [20] and EMFtoCSP [31] allow expressing the desired
model properties in OCL.

Hence, to check a property P on the instances of a meta-
model, the engineer expresses the property using OCL and
uses a model finder to look for a model satisfying P within
the search bounds. If a model is found, then it is a witness
of the property satisfiability by some meta-model instance;
otherwise, the analysis is inconclusive (i.e., it shows that
no model satisfies P within the search bounds, but there
may be some out of these bounds). Checking whether all
models in L(MM) satisfy P is done by checking that no
model satisfies ¬P . In the simplest case, P may be empty,
and the analysis then confirms whether the meta-model is
instantiable (i.e., L(MM) is not empty) and therefore has no
conflicting invariants.

MM property P

m1

m1 P

MM1

property PMMPL

MMi

Prod(MMPL)

… MMn
…

L(MM) L(MM1) L(MMn)L(MMi)

(a) (b)

m1

m1 P

(a) meta-model analysis

MM property P

m1

m1 P

MM1

property PMMPL

MMi

Prod(MMPL)

… MMn
…

L(MM) L(MM1) L(MMn)L(MMi)

(a) (b)

m1

m1 P

(b) meta-model product line analysis

Fig. 4. Analysis of meta-model instance properties.

The analysis of instance properties is a useful and ac-
cepted meta-model validation technique [13], [20], [31], [32],
[33]. While it is applicable to each meta-model in an MMPL,
performing model finding on each meta-model may be
time-consuming. Therefore, we propose lifting instantiabil-
ity analysis to the PL level, as shown in Fig. 4(b). This
involves being able to express properties independently of
the specific meta-model (hence promoting conciseness) and
their efficient checking without generating and checking
each MMPL meta-model. For this purpose, the rest of the
section characterizes analysis of meta-model instance prop-
erties for MMPLs, and Section 4 focuses on their efficient
analysis.

3.2 Classifying Instantiability Analyses for MMPLs
Fig. 5 uses a feature model to characterize the options when
analysing instance properties for some/all meta-models of
an MMPL. The feature model is structured along three
orthogonal aspects. The first one concerns the specification
of the property P to analyse. The second one targets the
analysis scope, i.e., the set of meta-models or models subject
to the analysis. The last aspect is the format of the analysis
result, which may be either a set of witness artefacts or a
simple yes/no assessment. Next, we describe the space of
options for each aspect.
1) Mixed property. The property P to analyse may refer

only to structural meta-model elements, or to features
of the feature model as well. We call the latter prop-
erties mixed. For example, the following mixed prop-
erty checks whether any model that only contains tran-
sitions with one input place belongs to configurations
where feature StateMachine is true: Transition.allInstances()→
forAll(t | t.in→size() = 1) implies StateMachine.

2) Property satisfiability. Given a property P , we may
want to analyse whether the MMPL has some meta-model
of which at least one model satisfies P , or for which no
model satisfies P , or where all its models satisfy P . These
three options correspond to features existsm, notExistsm and
forAllm in Fig. 5.

3) Configuration scope. A property P may be analysed just
within a certain configuration scope, e.g., if the property
only applies to meta-models of some configurations in the
MMPL. This scope may be explicitly defined, or be in-
ferred from the property. For example, given the property
Place.allInstances()→forAll(p | p.itokens = 0), we can infer that it
applies just to configurations that select the feature Simple,
as the attribute itokens is only present when this feature is
true.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 6

MMPL instance property check

Property

mixed

Solutions

Satisfiability

Scope Result

model config one all

existsm forAllm

Config
scope

Feature
exercising

global partial

notExistsm

Artefact Assessment

existsMM forAllMM

notExistsMM

Type

1 2 3 4

5 6

7

Fig. 5. Options for MMPL instance property analysis.

4) Feature exercising. Sometimes, it is useful to produce
models that contain instances of the elements added by the
selected features to illustrate the meta-model elements that
a configuration makes available, to compare configurations
or to reason about feature interactions. For example, using
this option, models of configurations that select feature
Object need to contain at least one instance of class Token, as
this class is only added when this feature is true.

5) Solutions. Given an MMPL, the analysis may look for all
meta-models having instances that satisfy P , or just for one
of those meta-models.

6) Result type. The analysis may return a model m satisfy-
ing P , the feature configuration that produces the meta-
model of which m is an instance, or both.

7) Assessment. The aim of the analysis may be assessing
whether some, all or no meta-model of the MMPL satisfies
P . These three analysis questions correspond to features
existsMM , forAllMM and notExistsMM in Fig. 5. The answer to
these questions can be yes or no.

This space of options allows expressing many types of
instantiability analyses for the meta-models of an MMPL.
Table 1 illustrates some of them, though other analyses are
possible provided that they follow the rules captured by
the feature model in Fig. 5. In each case, the table lists the
selected analysis options, a description of the analysis, and
an example.

Analyses 1–3 address the instantiability (i.e., the exis-
tence of models) of the meta-models in an MMPL, and
leave the property P empty. The first analysis seeks the
configuration of one instantiable meta-model; the second,
an example model of one instantiable meta-model; and the
third, an example model of each instantiable meta-model.

In addition to instantiability, MMPL validation may
require stronger correctness conditions, e.g., discovering
some/all meta-models without instances (Analysis 4). A
non-instantiable meta-model may indicate that the config-
uration used to create it has incompatible features.

Example. All 16 total configurations in our example yield
instantiable meta-models. This means, among other things,
that there are Petri nets which are both StateMachines and
MarkedGraphs, and there are no incompatible features.

Even if a meta-model has instances, it is reasonable to
require that some of them combine objects coming from
different features in the configuration. Hence, Analysis 5
relies on feature-exercising instance generation to produce
models with instances of all elements activated by the given

pn:PetriNet

t:Transition
:trans

:net

p:Place

:places

:net

card of in = [1..1]
card of out = [1..1]

pn:PetriNet

t:Transition
:trans

:net

p:Place

:in

:net

:places

:out

(a) Hierarchical transition

pn:PetriNet

t:Transition
:trans

:net

p:Place

:places

:net

card of in = [1..1]
card of out = [1..1]

pn:PetriNet

t:Transition
:trans

:net

p:Place

:in

:net

:places

:out

(b) State-machine transition

Fig. 6. Vacuous feature combinations. (a) Hierarchical transitions make
state-machine invariants fail. (b) State-machine transitions do not exer-
cise the elements introduced by feature Hierarchical.

configuration, returning those configurations where no such
models exist. This typically reveals a feature conflict.

Example. Fig. 6 illustrates the subtle problems that Analy-
sis 5 can detect. A model that exercises the feature Hierarchical
must contain hierarchical transitions (i.e., with non-empty
collections places or trans) satisfying the invariant isHierarchical
(i.e., with empty collections in and out). However, if the
configuration also selects the feature StateMachine, the result-
ing meta-model does not accept models with hierarchical
transitions as they violate the cardinality [1..1] of references in
and out (see Fig. 6(a)). Thus, no transition in a state-machine
net can be hierarchical, as Fig. 6(b) shows, and so the
meta-model elements added by the Hierarchical feature are
meaningless when StateMachine is selected as well. Hence,
there is no synergy between these two features, which is
discovered by Analysis 5. This issue can be solved by adding
a modifier that sets the min cardinality of references in and
out to 0 when both StateMachine and Hierarchical are selected.

While Analyses 1–5 leave the property P empty, Anal-
yses 6–12 focus on the satisfiability of properties. This way,
depending on the selected analysis options, it is possi-
ble to assess whether some/every/no meta-model in the
product line (existsMM/forAllMM/notExistsMM) has some/ev-
ery/no instance satisfying a given property (existsm/forAllm/
notExistsm). Table 1 shows examples of these analyses both
in natural language (for comprehension) and in OCL (to
automate validation).

Example. To check whether all meta-models in the MMPL
admit models with more transitions than places, we have
to select the analysis options forAllMM and existsm, and
define the OCL property Transition.allInstances()→size() >
Place.allInstances()→size(). The analysis assesses that this is
not the case, as the configurations that select both features
StateMachine and MarkedGraph do not admit more transitions
than places.

Overall, our classification permits defining different
kinds of instance properties applicable at MMPLs, and
includes new specification options such as mixed properties
with no counterpart in the analysis of plain meta-models.

4 ANALYSING INSTANTIABILITY PROPERTIES

As explained in Section 3.1, checking a property on the
instances of a meta-model amounts to finding a model that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 7

TABLE 1
Examples of instance property analyses for MMPLs. Total configurations only show the features in ρ+ (i.e., with value true).

Analysis options (cf. Fig. 5) Analysis Example (P=property; R=result)
1 one, existsm, global, config Find 1 total configuration that produces an

instantiable MM
R: A total configuration: 〈PetriNets, Tokens, Object, Hierarchical〉

2 one, existsm, global, model Find 1 model of 1 instantiable MM R: A model with a PetriNet and a Place objects
3 all, existsm, global, model Find 1 model of each instantiable MM R: Sixteen example models are populated
4 all, notExistsm, global, config Find all total configurations that produce

a non-instantiable MM
R: Empty set (all configurations are instantiable)

5 all, notExistsm, global,
feature exercising, config

Find all total configurations that produce
a MM with no instances using every MM
element present due to feature selections

R: Four total configurations: 〈PetriNets, Tokens, Simple, StateMa-
chine, Hierarchical〉, 〈PetriNets, Tokens, Object, StateMachine, Hierarchical〉,
〈PetriNets, Tokens, Simple, StateMachine, MarkedGraph, Hierarchical〉,
〈PetriNets, Tokens, Object, StateMachine, MarkedGraph, Hierarchical〉

6 existsm, forAllMM , ... Check if a property is satisfied by some
model of every meta-model in the MMPL

P: all meta-models admit models with more transitions than places;
R: false (StateMachines that are MarkedGraphs do not)
Transition.allInstances()→size() > Place.allInstances()→size()

7 existsm, existsMM , ... Check if a property is satisfied by some
model of some meta-model in the MMPL

P: some meta-models admit models with a start place; R: true
Place.allInstances()→exists(p |

Transition.allInstances()→forAll(t | t.out→excludes(p)))

8 forAllm, forAllMM , ... Check if a property is satisfied by every
model of every meta-model in the MMPL

P: all models have at least one place; R: false
Place.allInstances()→notEmpty()

9 forAllm, existsMM , ... Check if a property is satisfied by every
model of at least one (arbitrary) meta-
model in the MMPL

P: some meta-models only admit models with more places than
transitions; R: false
Place.allInstances()→size() > Transition.allInstances()→size()

10 notExistsm, forAllMM , ... Check if no model of the MMPL satisfies a
property

P: no model has isolated transitions; R: false
Transition.allInstances()→exists(t | t.in→isEmpty() and t.out→isEmpty())

11 notExistsm, existsMM , ... Check if at least one (arbitrary) meta-
model of the MMPL has no model satis-
fying a property

P: some meta-models do not accept models with isolated transitions;
R: true (e.g., for StateMachines)
Transition.allInstances()→exists(t | t.in→isEmpty() and t.out→isEmpty())

12 mixed, ... Check a property mixing meta-model ele-
ments and features (mixed property)

P: transitions with one input are only on StateMachines; R: false
Transition.allInstances()→forAll(t | t.in→size()=1) implies StateMachine

conforms to the meta-model and satisfies the property. This
search is typically performed using model finders. Likewise,
to analyse an instantiability property on an MMPL, we may
perform model finding over each meta-model in the MMPL.
However, this implies solving a model finding problem per
meta-model, which can be time-consuming as the number
of meta-models in an MMPL may grow exponentially.

For this reason, we lift the search over an extended ver-
sion of the 150MM that contains the meta-model elements
of every variant and emulates the feature configurations,
PCs and modifiers using invariants. We call this meta-model
feature explicit meta-model (FEMM). This way, the problem
of checking a property on some/every meta-model of the
MMPL is recasted as finding one or more instances of the
FEMM. By doing so, we reduce the number of model finding
problems to solve, which otherwise can be exponential.
Fig. 7 shows the workflow to perform the analyses intro-
duced in Section 3.2.

In Step 1, we compile the 150MM, the feature model
and the property of interest into an FEMM. This extends
the 150MM with invariants that emulate the semantics of
the PCs and modifiers, an extra class FMC with a boolean
attribute for each feature in the feature model, an invariant
stating the allowed configurations, and the property to
check. Fig. 8 shows the FEMM for the running example
whose construction is explained below.

In Step 2, we use a model finder to search for an instance
of the FEMM which exemplifies (or falsifies if no model is
found) the existence of models satisfying the property. If
an instance of the FEMM is found, then it contains both
a model satisfying the property and an object of type FMC

 150-MM FM
MMPL

feature-explicit MM

compile

«instance of»

«instance of»

1

3
[yes]

[no]

end

+

«configuration»

property
search options

2

:PetriNet

:Place

:Token

:FMC

PetriNets=true
Tokens=true
Simple=false
Object=true
Structure=false
Hierarchical=false
StateMachine=false
MarkedGraph=false

feature-explicit model
:PetriNet

:Place

:Token

model configuration

meta-model

«product of»

p
ro

d
u

ce

model
finder

more
solutions?

extend femm

feature-explicit mm
negated configuration

4

+ extract

Fig. 7. Workflow of instance property analysis.

reporting a feature configuration. In Step 3, we extract the
configuration and the model as two separate artefacts. If
required, the configuration can be applied to the MMPL to
produce the meta-model of which the model is an instance.

Finally, if the user wants to identify further meta-models
satisfying the property, Step 4 extends the FEMM with an
invariant requiring a configuration different from the ones
already found. For this purpose, the invariant disallows
objects of type FMC to take the same attribute values as the
configurations found so far. Then a new search is performed.

Next, we explain the steps to build the FEMM (cf. List-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 8

1 buildFeatureExplicitMM (MMPL : in, FEMM : out)
2 create FEMM = new meta-model
3 add classes, fields, invariants, inheritance in 150MM to FEMM
4
5 // 1) embed feature model in feature-explicit meta-model
6 create FMC = new concrete class
7 create BC = new abstract class
8 create fm = new reference from BC to FMC, with cardinality [1,1]
9 forall feature f in FM do

10 add boolean attribute f to FMC, with cardinality [1,1]
11 add invariant to FMC = formula in FM
12 add BC as superclass to all classes with no parent class
13 add FMC, BC and fm to FEMM
14
15 // 2) emulate presence conditions of classes and invariants
16 forall class c with presence condition pc do
17 add invariant to FMC = ”not pc implies size(c) = 0”
18 forall invariant wc with presence condition pc do
19 set wc = ”pc implies wc”
20
21 // 3) emulate conditions of fields (max modifiers omitted for brevity)
22 forall field f with presence condition pc, or
23 with min modifier m and modifier condition mc do
24 set cond = ”size(f) > f.min”
25 if mc is defined then
26 set cond = ”if mc then size(f) > m else size(f) > f.min endif”
27 if pc is defined then
28 add invariant to owner(f) = ”if pc=false then size(f) = 0
29 else ” + cond + ” endif”
30 set f.min = 0
31 else
32 add invariant to owner(f) = cond
33 set f.min = minimum(f.min, m)
34
35 // 4) emulate inheritance modifiers (add modifiers omitted for brevity)
36 forall inheritance link inh with del modifier condition mc do
37 forall field f inherited through inh do
38 add invariant to subclass = ”mc implies size(f) = 0”
39 forall reference r to the superclass or an ancestor do
40 add invariant to owner(r) = ”mc implies
41 not r.exists(o|o.oclIsKindOf(subclass))”
42 forall invariant wc with pres. cond. pc inherited through inh do
43 add invariant to subclass = ’’pc and not mc implies wc’’
44 set wc = ’’not self.oclIsKindOf(subclass) implies wc’’
45
46 // 5) exercise features (optional, add modifiers omitted for brevity)
47 forall class c with presence condition pc do
48 add invariant to FMC = ”pc implies size(c) > 0”
49 forall field f with presence condition or modifier pc do
50 add invariant to FMC = ”pc implies size(o.f) > 0” for some o
51 forall inheritance link inh with del modifier condition mc do
52 forall field f inherited through inh do
53 add invariant to FMC = ”mc=false implies size(o.f) > 0”
54 for some o

Listing 1. Simplified algorithm to build the FEMM.

ing 1 and Fig. 8) and perform the different analysis types.
1) Embedding the feature model. The FEMM is struc-

turally similar to the 150MM, as it holds the elements in
every possible meta-model variant (lines 2–3 in Listing 1).
Moreover, it embeds the feature model (lines 6–13) rep-
resented as a class FMC with a boolean attribute for each
feature, and an invariant that corresponds to the proposi-
tional formula governing the allowed configurations (see
invariant φMMPL of class FMC in Fig. 8). To make the class
FMC accessible from any other, we create a base class BC for
the rest of classes, and add a reference from it to FMC. This
way, every class has access to the value of the attributes in
FMC, i.e., to the feature configuration. As the cardinality
inscription in class FMC shows, we require exactly one
instance of this class in the model finding process.

2) Emulating the PCs of classes and invariants. PCs are
emulated by extra invariants in the FEMM, as shown in
lines 16–19 of Listing 1.
A PC in a class is converted into an invariant of FMC
ensuring that there are no instances of the class when the
PC is not true. The class FMC is the appropriate context for
the invariant, as we require exactly one object of this class.
As an example, class FMC in Fig. 8 declares the invariant
wc-Token to represent the PC of class Token. The invariant
requires zero objects of type Token when not Object is true.
This captures the fact that the Token class is not included in
meta-models of configurations where Object is not selected.
If a PC affects an invariant, the latter is rewritten so that it
is only checked when the PC is met. For example, invariant
isMarkedGraph in class Place is rewritten to be applicable only
when MarkedGraph is true.

3) Emulating the PCs and modifiers of fields. Lines 22–33
of Listing 1 handle the PCs and modifiers of fields. A
PC in a field is represented as an invariant in the field’s
owner class which ensures that the field is empty (in case
of references) or undefined (for attributes) when the PC is
false. Moreover, the min cardinality of the field is set to 0, as
the field could never be empty otherwise. As an example,
the invariant wc-itokens in class Place is derived from the PC
of Place.itokens. The invariant requires the attribute to be
undefined when the PC is not satisfied, but to have a value
(because of the original min cardinality 1) otherwise. The
min cardinality of the attribute, which was 1 in the 150MM,
becomes 0.
If a field has cardinality modifiers then the created invari-
ant also ensures the satisfaction of the modifier cardinality
when the modifier condition is true, or the cardinality
specified in the 150MM otherwise. For example, invariants
wc-in-min and wc-in-max in class Transition are derived from the
min and max modifiers in reference Transition.in. In addition,
the min cardinality of the field is set to the minimum
between its original value, the values given by its min
cardinality modifiers, and 0 if the field has a PC; while its
max cardinality becomes the maximum between its origi-
nal value and its max cardinality modifiers. In the example,
Transition.in does not change its cardinality as it originally
had the minimum and maximum possible values ([0..*]).

4) Emulating the inheritance modifiers. Inheritance modi-
fiers are handled in lines 36–44 of Listing 1. A modifier
deleting (resp. adding) an inheritance link is translated
into an invariant in the subclass requiring that any field
inherited through the inheritance link has no value when
the modifier condition is true (resp. false). As an example,
invariant wc-del-inh in class Transition is derived from the
inheritance modifier in the 150MM. In both cases, the
inheritance link is added to the FEMM. This limits the
applicability of our approach to the cases where the FEMM
has no inheritance cycles, condition that can be detected a-
priori statically. Moreover, for each incoming reference to
the superclass or an ancestor, additional invariants check
that the reference does not contain instances of the subclass
when the modifier condition is true (resp. false). Invariants
wc-net in classes Place and Transition are generated for this
reason, each one coming from an incoming reference net
to the superclass PetriNet. Finally, any invariant defined

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 9

in
Place

itokens: int [0..1]

PetriNet

Transition

out

places

1

* trans

*

1

Token
tokens *

1
*

*

BC 1
fm

FMC
PetriNets: boolean
Tokens: boolean
Simple: boolean
Object: boolean
Hierarchical: boolean
Structure: boolean
StateMachine: boolean
MarkedGraph: boolean

net net

isHierarchical inv:
 fm.Hierarchical implies
 ((places→size() > 0 or trans→size() > 0)
 implies (in→size() + out→size() = 0))

original invariants

wc-in-min inv: if fm.StateMachine then in→size()>=1 else
 in→size()>=0 endif

wc-in-max inv: if fm.StateMachine then in→size()<=1 else true endif

wc-out-min inv: if fm.StateMachine then out→size()>=1 else
 out→size()>=0 endif

wc-out-max inv: if fm.StateMachine then out→size()<=1 else true endif

cardinality modifiers

inheritance modifiers

wc-del-inh inv: not fm.Hierarchical implies
 (places→size() = 0 and trans→size() = 0)

wc-net inv: not fm.Hierarchical implies not net.oclIsKindOf(Transition)

ΦMMPL inv:
 PetriNets and Tokens and
 ((Simple and not Object) or
 (not Simple and Object)) and
 (not StateMachine or Structure) and
 (not MarkedGraph or Structure)

wc-Token inv:
 not Object implies
 Token.allInstances()→size() = 0

feature model formula

class PCs

[1..1]

wc-net inv:
 not fm.Hierarchical implies
 not net.oclIsKindOf(Transition)

inheritance modifiers

field PC semantics

wc-tokens inv:
 if not fm.Object
 then tokens→size() = 0
 else tokens→size() >= 0
 endif

wc-itokens inv:
 if not fm.Simple
 then itokens.oclIsUndefined()
 else not itokens.oclIsUndefined()
 endif

isMarkedGraph inv:
 fm.MarkedGraph implies
 Transition.allInstances()
 →one(in→includes(self)) and
 Transition.allInstances()
 →one(out→includes(self))

original invariants

Fig. 8. FEMM derived from the MMPL in Figs. 2 and 3.

in the superclass or an ancestor is rewritten to avoid its
application on the subclass instances, and a copy of the
invariant is added to the subclass, modified so that it is
only checked when the modifier condition is false (resp.
true).

5) Exercising features (optional). Exercising features al-
lows illustrating the meta-model elements specific to the
features selected in a configuration. For this purpose,
when choosing this option, class FMC is added invariants
enforcing the existence of instances of the classes and fields
activated by the selected features (lines 47–54 in Listing 1).
A PC annotating a class becomes an invariant requiring
at least one object of the class when the PC is true (so
that the class is exercised). A PC or a modifier on a field
is translated into an invariant requiring the field to have
a non-empty value in some object when the presence or
modifier condition is true (so that the field is exercised).
A modifier deleting (resp. adding) an inheritance link
is translated into an invariant requiring that, when the
modifier condition is false (resp. true), the inherited fields
have a non-empty value in some object. Fig. 8 omits these
invariants for clarity.
For example, when exercising features, the invariant Object
implies Token.allInstances()→size()>0 is added to class FMC.
As a consequence, any example model of a configuration
that selects the feature Object needs to have Token objects.

6) Embedding the property. The property to analyse and
the configuration scope (when partial) are added as invari-
ants to class FMC. Even if the property is mixed, it can be
embedded without changes because the class FMC defines
the feature values as attributes, so they are accessible from
the added invariant. If the aim is checking whether the
property is satisfiable by all instances of a meta-model,
then the property is negated.
As an example, to embed a property applicable to config-
urations where the feature StateMachine is selected, we add
the invariant self.StateMachine to class FMC.

7) Analysing the property. Once the FEMM has been con-
structed, we look for an instance of it using a model finder.
We require this instance to contain exactly one object of
type FMC, which will hold a valid total configuration.
To analyse whether some meta-model in the MMPL has
instances satisfying a property (feature existsMM in Fig. 5),
we invoke the finder with the FEMM as input. If a result
is found, it becomes a witness to the satisfiability of the
property by some instance of a meta-model of the MMPL.
Since the finder returns an instance of the FEMM, we need
to extract the actual model and configuration (i.e., the at-
tribute values in the FMC object) from it. Next, the model’s
meta-model is produced from the obtained configuration.
Altogether, this process yields a configuration, the corre-
sponding meta-model, and an instance model satisfying
the property. Finding the configuration of another solution
meta-model is done by adding an invariant that disallows
the found configurations to class FMC, and invoking the
finder again. This process can be iterated until the finder
returns no further configurations. In Section 7.2, we eval-
uate the performance of this iterative search according to
different strategies.
Example. Fig. 7 illustrates the analysis process: the finder
outputs an instance of the FEMM (lower-right), from
which a model, a configuration and a meta-model are
extracted (lower-left). To obtain another solution meta-
model, we disallow the found configuration by adding to
the FEMM the invariant not (PetriNets and Tokens and not
Simple and Object and not Structure and not Hierarchical and not
StateMachine and not MarkedGraph). Then we perform a new
model search.
To assess that no meta-model in the MMPL has instances
that satisfy a property (feature notExistsMM), the model
finder is invoked iteratively, each time excluding the pre-
viously found configurations. When the finder does not
find new results, the analysis returns the remaining valid
configurations not found by the solver. These identify the
meta-models with no instances satisfying the property.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 10

Finally, assessing whether all meta-models in an MMPL
have instances satisfying a property (feature forAllMM) is
similar to checking that no meta-model has such instances.
The differences are that the property is negated, and the
remaining configurations identify the meta-models with
all their instances satisfying the property.

The described lifted analysis permits finding a total
configuration ρ and a model M satisfying a property P
efficiently by performing a single model search. Otherwise,
we would need to enumerate and analyse each meta-model
MMρ ∈ Prod(MMPL) until finding one with instances satis-
fying P . In the worst case, if no model satisfies P , our lifted
analysis finishes after one call to a model finder, while the
enumerative approach requires as many calls as there are
meta-models in the MMPL.

However, to get all meta-models MMρ ∈ Prod(MMPL)
with instances satisfying P , our approach requires as many
calls to a model finder as there are satisfying meta-models.
If all meta-models satisfy P , then it requires as many calls
as there are meta-models in the MMPL. In this case, our
lifted analysis may be less efficient than the enumerative
approach, as model finding is generally more expensive
over the FEMM than over a meta-model of the MMPL.
Hence, the next section presents the main contribution of
the paper, which is an extension of the presented analysis
to improve its efficiency to deal with this latter case. The
idea is allowing partial configurations as results of the
model search, accounting for several total configurations.
This permits reducing number of model finder calls.

5 ANALYSIS VIA PARTIAL CONFIGURATIONS

A partial configuration is a configuration where some fea-
ture values are undefined. Thus, it represents a set of total
configurations: those that result from substituting the unde-
fined values with true or false, whenever the feature model
formula allows it. Formally, equiv(ρ̃) = {ρi ∈ P (FM) | ρ+ ⊆
ρ+i ∧ρ− ⊆ ρ

−
i } is the set of total configurations ρi equivalent

to the partial configuration ρ̃, with ρ+ and ρ− the sets of
features from ρ̃ set to true and false (cf. Def. 4).

We improve the efficiency of our lifted analysis by al-
lowing reasoning over partial configurations. Theoretically,
we do so by defining a concretization operation which, given
an MMPL and a partial configuration, resolves any pres-
ence and modifier conditions that are not undefined under
the given configuration, updating the 150MM accordingly.
Then, we do model finding on the modified MMPL to obtain
a witness model. This model can be sliced by an operation
similar to a pullback [34] to obtain a valid instance of each
meta-model in the modified MMPL.

We implement this approach by enabling the model
finder to return, in addition to a witness model of the
satisfiability of a property, a partial configuration instead
of a total one. Then, for each total configuration ρi derivable
from the partial one, we build a model M that is an instance
of the meta-model MMρi . We propose two approaches,
called hard and soft, to achieve this behaviour, as well as
heuristics to guide the model search.

Interestingly, the new version of our analysis over partial
configurations does not impose any additional restrictions

input : MMPL = (FM = (F, φMMPL),MM,Φ,MC ,MI),
ρ̃ = 〈ρ+, ρ−〉 ∈ P̃ (FM)

output: MMPLρ̃ = (FMρ̃,MMρ̃,Φρ̃,M ρ̃
C ,M

ρ̃
I)

1 set FMρ̃ = (F \ (ρ+ ∪ ρ−), φρ̃MMPL)

2 forall x ∈ MMC ∪MMFI ∪MMWC do
3 if Φρ̃x 6∼= false then add x to MMρ̃

4 forall (Csub, Csuper) ∈ MMI with no modifier do
5 if {Csub, Csuper} ⊆ Cρ̃ then
6 add (Csub, Csuper) to relation I ρ̃
7 forall 〈f,m,Φmin〉 ∈ µmin do
8 if Φρ̃min

∼= true then set f.min = m
9 forall 〈f,m,Φmax〉 ∈ µmax do

10 if Φρ̃max ∼= true then set f.max = m
11 forall 〈Csub, Csuper,Φadd〉 ∈ µadd do
12 if Φρ̃add 6

∼= false then add (Csub, Csuper) to relation I ρ̃

13 forall 〈Csub, Csuper,Φdel〉 ∈ µdel do
14 if Φρ̃del 6

∼= true then add (Csub, Csuper) to relation I ρ̃

15 set Φρ̃X = {〈x,Φρ̃x〉 | 〈x,Φx〉 ∈ ΦX} for X ∈ {C, FI,WC}
16 set µρ̃M = {〈f,m,Φρ̃M 〉 | 〈f,m,ΦM 〉 ∈ µM ∧ Φρ̃M � false
17 ∧ Φρ̃M � true} for M ∈ {min,max}
18 set µρ̃N = {〈Csub, Csuper,Φ

ρ̃
N 〉 | 〈Csub, Csuper,ΦN 〉 ∈ µN

19 ∧ Φρ̃N � false ∧ Φρ̃N � true} for N ∈ {add, del}
Algorithm 2: MMPL concretization. Notation is from
Defs. 2, 3 and 4.

compared to the analysis over total configurations, and the
application scope remains the same.

Next, we define product line concretizations via partial
configurations in Section 5.1, and enable model finding with
partial configurations in Section 5.2.

5.1 MMPL Concretizations via Partial Configurations

We define a concretization operation which, given an MMPL
MMPL and a (partial) configuration ρ̃, produces an MMPL
MMPLρ̃ resulting from the partial evaluation of its for-
mulas. Algorithm 2 describes this operation. Given a for-
mula Φ, the algorithm uses Φρ̃ to denote the substitution
Φ[true/ρ+, false/ρ−] that replaces all variables that refer to
features in ρ+ by true, and to features in ρ− by false. In
addition, it uses ∼= to check whether such a substitution
makes a formula true or false. Line 1 adds to the feature
model FMρ̃ all undefined features, and partially evaluates
φMMPL. Lines 2–3 add to the 150MM of MMPLρ̃ all meta-
model elements whose PC is not false under the given
substitution. Lines 4–6 add the inheritance relations with no
modifiers, if they relate classes added in the previous step.
Lines 7–10 modify the field cardinalities according to the
min and max modifiers, whenever their conditions evaluate
to true under the given substitution. Similarly, lines 11–14
add all inheritance relations with non-false add modifiers, or
non-true del modifiers. Finally, lines 15–19 build all presence
and modifier conditions in MMPLρ̃.

Example. Fig. 9 concretizes the MMPL MMPL through the
partial configuration ρ̃ = 〈{PetriNets, Structure, StateMachine},
{Hierarchical, MarkedGraph}〉 yielding MMPLρ̃. The resulting
150MM includes only the meta-model classes, fields and
invariants whose PC is not false when PetriNets, Structure
and StateMachine are substituted by true, and Hierarchical and
MarkedGraph by false. The inheritance relation from Transition
to PetriNet is deleted because the condition of the del modifier

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 11

in
Place

 itokens: int

PetriNet

Transition
out

places

Simple

1

* trans *

1

Token
tokens

* 1

Object
Object 1

1

net net

= +={PetriNets, Structure, StateMachine},
 - ={Hierarchical, MarkedGraph}

Tokens

Simple Object

~

MMPL
~

PetriNets

Tokens

Simple Object

Hierarchical Structure

StateMachine MarkedGraph

MMPL
in

isMarkedGraph inv: …

Place
 itokens : int

PetriNet

Transition
out

places

Simple

1

* trans *

1

Token

tokens *

1

Object

Object

isHierarchical inv: …

MarkedGraph

StateMachine
[min=1, max=1]
StateMachine
[min=1, max=1]

*
*

net net not Hierarchical
[del]

Hierarchical

MMPL

Fig. 9. An example MMPL concretization.

becomes true when substituting Hierarchical by false. The car-
dinality of references in and out becomes 1 as their cardinality
modifiers are true under the configuration ρ̃. Finally, in the
presence and modifier conditions, the feature names are
substituted by their values when the features are defined,
and the conditions are deleted when they become true or
false (e.g., the cardinality modifiers for in and out).

A product line MMPLρ̃ is called ground if F ρ̃ = ∅ (i.e., it
has an empty set of features) and thus it is equivalent to a
regular meta-model. Hence, we can recast the set of product
meta-models Prod(MMPL) as the set of ground MMPL
concretizations using all possible non-partial configurations.
Lemma 1 captures this intuition.

Lemma 1 (Ground concretizations are products). Given a
product line MMPL and a total configuration ρ, MMPLρ =
(FMρ,MMρ,Φρ,Mρ

C ,M
ρ
I) is a ground MMPL, and MMρ ∈

Prod(MMPL).

Proof. To prove the lemma, we have to show that (i) con-
cretizations by total configurations lead to ground MMPLs,
and (ii) if MMPLρ is a concretization of MMPL, the 150MM
of MMPLρ is a product of MMPL.

We prove (i) by noting that a total configuration ρ has
no undefined features, i.e., ρu = ∅. Hence, in line 1 of
Algorithm 2, F \ (ρ+ ∪ ρ−) = ρu = ∅, and φρMMPL = true.

For (ii), as ρ is total, any presence or modifier condition
Φρ evaluates to true or false. Hence, in line 3 of Algorithm 2,
checking Φρ̃x � false is equivalent to checking Φρ̃x, and as
in Algorithm 1, the elements whose PC is true are kept,
and the inheritance relations between the selected classes
are maintained. The checks in lines 8, 10, 12 and 14 of
Algorithm 2 (Φρ̃min

∼= true, Φρ̃max ∼= true, Φρ̃add � false,
Φρ̃del � true) are equivalent to those in lines 7, 9, 11 and
14 of Algorithm 1 (Φρ̃min, Φρ̃max, Φρ̃add, ¬Φρ̃del), respectively, and
so both meta-models are equal.

The next step is to lift the conformance between a model
and a meta-model to the MMPL level. For this purpose, we
first define a simple notion of a model.

in
Place

itokens: int

PetriNet

Transition
out

places

1

* trans *

1

1
1

net net

MM

type pl: Place
itokens=1

tr:
Transition

pn: PetriNet
:places :trans

:net :net

:in

M

:out

Fig. 10. Model type example.

Def. 6 (Model). A model is a tuple M = (O,SL), where O is
a set of objects and SL is a set of slots and links, each owned
by exactly one object.

Slots and links represent instances of attributes and refer-
ences, respectively. We sometimes use a function ownerSL :
SL → O to indicate the owner object of slots and links, the
way we do for fields in meta-models. Given a slot or a link
sl ∈ SL, we use target(sl) to refer to the target object of the
link, or the value of the slot. Next, we define the type of a
model as a function from the model to a meta-model.

Def. 7 (Model type). Given a meta-model MM = (C, FI,
WC, I) and a model M = (O,SL), we define the model type
of M as the function type : M → MM, which is a tuple
type = 〈typeO, typeSL〉 consisting of two functions:
• typeO : O → C mapping objects to non-abstract classes;
• typeSL : SL→ FI mapping slots to attributes and links

to references, keeping their source/target compatibility:
1) typeO ◦ ownerSL ⊆ owner∗FI ◦ typeSL, and
2) for each link l ∈ SL · target(typeSL(l)) ∈

ancs(typeO(target(l))).

As in most type systems, typeO does not allow typing
objects by abstract classes. The first condition for typeSL
ensures that the type of a link (or slot) is owned or inherited
by the type of the link’s owner (recall that owner∗FI is
the relation representing all classes that define or inherit a
field). The second condition requires each link target to be
compatible with the target class of the link type (recall that
ancs is the reflexive-transitive closure of I). We deliberately
leave out a similar compatibility condition for slots, as it is
not relevant for our theory.

Example. Fig. 10 shows a model type example type =
〈typeO = {(pn, PetriNet), (pl, Place), (tr, Transition)}, typeSL =
{(pn.places, PetriNet.places), (pn.trans, PetriNet.trans), (pl.itokens,
Place.itokens), (tr.in, Transition.in), (tr.out, Transition.out)}〉.

Next, we define the notion of model conformance. Given
a model typed by a meta-model, we say that the model
conforms to the meta-model if every slot and link in the
model respects the cardinality of its type (an attribute or a
reference, respectively), and every model object satisfies the
invariants defined by the object’s type and supertypes.

Def. 8 (Conformance). Given a model type type : M → MM,
M conforms to MM via type, written M |=type MM, iff:

1) slots and links respect the cardinality of their type:
∀o ∈ O, ∀f ∈ FI s.t. typeO(o) ∈ owner∗FI(f) · min ≤
|{sl | typeSL(sl) = f ∧ ownerSL(sl) = o}| ≤ max, with
[min,max] the cardinality of f , and

2) each object o ∈ O satisfies the invariants defined by
typeO(o), and its supertypes.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 12

1={Tokens,Simple,StateMachine}, {Object}

in
Place
itokens: int

PetriNet

Transition
out

places

Simple

1

* trans *

1

Token
tokens *

1

Object

Object

*
*

net net

Tokens

Simple Object

MMPL

in
Place

itokens: int

PetriNet

Transition
out

places

1

* trans *

1

1
1

net net

MMPL

pl: Place
itokens=1

tr: Transition

pn: PetriNet
:places :trans

:net:net

:in

M

type type1

1

~

~

tk: Token

:to
ke

ns :out
pl: Place
itokens=1

tr: Transition

pn: PetriNet
:places :trans

:net:net

:in

M

:out

~

1
~

StateMachine
[min=1, max=1]
StateMachine
[min=1, max=1]

StateMachine

Fig. 11. Model slicing and conformance example.

Example. In Fig. 10, we have that M |=type MM because
all slots and links of pn, pl and tr satisfy their cardinality
constraints, and MM has no invariants.

Next, we lift our notion of conformance to the product
line level. This way, we say that a model M conforms
to an MMPL if it conforms to all product meta-models
represented by the MMPL. We call this universal conformance.

Def. 9 (Universal conformance). Given a product line
MMPL = (FM,MM,Φ,MC ,MI) and a model type
type : M → MM , M conforms to MMPL via type, written
M |=type MMPL, iff:

1) slots and links respect the cardinality and modifiers of
their type: ∀o ∈ O, ∀f ∈ FI s.t. typeO(o) ∈ owner∗FI(f)·
hmin ≤ |{sl | typeSL(sl) = f ∧ ownerSL(sl) = o}| ≤
lmax, with hmin being the highest of all min cardinalities
of f , and lmax being the lowest of its max cardinalities,
and

2) each object o ∈ O satisfies the invariants defined by
typeO(o), and its supertypes.

Example. On the left hand side of Fig. 11, M |=type MMPL.
This is the case as the function type is a model type (cf.
Def. 7), and tr.in and tr.out satisfy both the cardinality and
modifiers of their reference types. If MMPL had invariants
with PC, the model M should satisfy them as well.

Next, we define an operation slice which slices a model
M conforming to an MMPL so that the resulting model slice
is typed by a concretization of the MMPL (i.e., it contains
the instances of the meta-model elements that belong to the
concretization).

Def. 10 (Model slice). Given a product line MMPL, a partial
configuration ρ̃, a concretization MMPLρ̃, and a model M =
(O,SL) s.t. M |=type MMPL, a slice of M w.r.t. MMPLρ̃,
written M |MMPLρ̃ = (Oρ̃, SLρ̃), is comprised of:

• the objects typed by classes of MMρ̃: Oρ̃ = {o ∈
O | typeO(o) ∈ MMρ̃

C}, and
• the slots and links typed by fields of MMρ̃: SLρ̃ =
{sl ∈ SL | typeSL(sl) ∈ MMρ̃

F I ∧ ownerSL(sl) ∈
Oρ̃ ∧ target(sl) ∈ Oρ̃}.

Remark. This operation also defines the restriction of
M w.r.t. a meta-model MMρ ∈ Prod(MMPL) since ground

MMPL

M type

inc

1 = 1
+ ={PetriNets,

Modular},
1

- ={Hierarchical}

type1

inc

Transition

PetriNet
pn

Module
Modular

not Hierarchical
[del]

M
od

ul
ar

*

has1MMPL

Transition

PetriNet
pn
1

Module

*has

PetriNets

Modular

Hierarchical

2MMPL

Transition

PetriNet
pn 1

:has
m: Module

n: Modulet: Transition
:pn

1M

1

:has
m: Module

n: Modulet: Transition
:pn

type22M

t: Transition

2 = 2
+ ={PetriNets},

2
- = {Modular,

Hierarchical}

Fig. 12. Slice with invalid model type (left), and non-conformance (right).

concretizations are products.

Example. Fig. 11 shows a model slice Mρ̃1 derived from
a model M |=type MMPL and a partial configuration ρ̃1
(shown on top). Mρ̃1 is the restriction of M to the elements
in MMρ̃1 . This way, according to Def. 10, the slice contains
the objects of M typed by classes of MMρ̃1 (set Oρ̃ in the
definition) as well as the slots and links typed by fields of
MMρ̃1 (set SLρ̃ in the definition).

Given a model type M |=type MMPL and a con-
cretization MMPLρ̃, the restriction of type to MMρ̃, written
typeρ̃ : M |MMPLρ̃ → MMρ̃, may not fulfil the conditions for
a model type (cf. Def. 7). The left hand side of Fig. 12 shows
an example. Mρ1 is a slice of M built using the configuration
ρ1. However, typeρ1 is not a model type: since ρ1 selects
feature Modular but not Hierarchical, links of type Module.has
can no longer contain Module objects, and Module objects can
no longer be assigned to links of type Transition.pn. Next, we
introduce a notion of monotonicity for references to ensure
a correct type for model slices. A reference may be non-
monotonic if the set of compatible classes with its source
and target classes can change due to inheritance modifiers.

Def. 11 (Non-monotonic reference). Let r be a reference
with PC Φr , ownerFI(r) = Cs and target(r) = Ct. Let ΦC’x
be the condition, induced by inheritance modifiers, for a
class C ′x with Cx ∈ ancs(C ′x) to be no longer a subclass
of Cx (for x = {s, t}). We say that r is non-monotonic if
ΦC’s 6⇒ ¬Φr or ΦC’t 6⇒ ¬Φr .

Example. In Fig. 12, reference Module.has is non-monotonic:
when not Hierarchical is true, Module is not compatible with
PetriNet. This makes models where some has link contains
Module objects (e.g., Mρ1) ill-typed. The reference would be
monotonic if it had PC Hierarchical and Modular. Similarly,
Transition.pn is non-monotonic: when not Hierarchical is true,
class Module becomes incompatible with the reference target.
Hence, models in which some Module object receives a link pn
(e.g., Mρ1) are ill-typed. In contrast, all references in Fig. 11
are monotonic so slicing yields a valid model type.

Given a model conformant to an MMPL without non-
monotonic references, any slice of the model built as de-
scribed in Def. 10 is well-typed. The next theorem captures
this fact.

Thrm. 1 (Slicing yields model types). Given a product
line MMPL, a partial configuration ρ̃, and a model M s.t.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 13

M |=type MMPL, typeρ̃ : M |MMPLρ̃ → MMρ̃ is a model type
iff MMPL does not contain non-monotonic references.

Proof. We start by assuming that MMPL has only monotonic
references, and show that typeρ̃ is a model type according to
Def. 7. First, no object o can have an abstract type through
typeρ̃, since type is a model type. Second, since every ref-
erence is monotonic, Condition 1 for links in Def. 7 holds:
given any reference r, for each subclass C ′s of ownerFI(r),
we have ΦC’s ⇒ ¬Φr , with ΦC’s as in Def. 11. Then, in any
slice that contains r, Φr is true, but ΦC’s cannot be true since
ΦC’s ⇒ ¬Φr and we would have a contradiction. Hence, C ′s
is a subclass of ownerFI(r) in these slices, and Condition 1
holds for typeρ̃, since it holds for type. The same reasoning
applies to target(r), so Condition 2 of Def. 7 holds.

Next, we assume that MMPL has a non-monotonic refer-
ence r due to a subclass C ′s of ownerFI(r). Then, Condition 1
for links in Def. 7 will not hold for those slices in which
ΦC’s is true and some C ′s object owns links of type r, since
C ′s does not inherit r when ΦC’s is true. A similar reasoning
for target(r) causes failure of Condition 2.

An MMPL without non-monotonic references yields cor-
rectly typed model slices, but does not guarantee confor-
mance, as the right side of Fig. 12 shows. Since object m is
removed from the slice Mρ2 , object t violates the cardinality
of reference Transition.pn. The reason for non-conformance is
that the constraints affecting Module (the cardinality of Tran-
sition.pn) still exist when Modular is false. The next definition
characterizes this kind of cardinality and well-formedness
constraints which we also call non-monotonic.

Def. 12 (Monotonic MMPL). An invariant wc with PC Φwc
is non-monotonic if it affects objects of a class A with PC ΦA
s.t. Φwc 6⇒ ΦA. A (min or max) cardinality constraint d of a
reference r is non-monotonic if:
• d 6∈ {0,∞}, and
• r can contain objects of a class A when ΦA is true, and

Φd 6⇒ ΦA, where Φd is the condition of the cardinality
modifier setting the min or max cardinality of r to d, or
Φr if r has no cardinality modifiers.

A product line MMPL is monotonic if it has no non-
monotonic references, invariants or cardinalities.

Remark. In the condition for non-monotonic cardinalities,
ΦA can either be the PC of the class A or the conjunction
of the inheritance modifiers of an inheritance path lead-
ing to target(r). The case of non-monotonic cardinalities
can be reduced to the case of non-monotonic invariants
since cardinality constraints can be expressed as invariants.
Monotonic references can have non-monotonic cardinality,
since non-monotonicity in references is concerned with the
modification of inheritance relations, while in cardinalities it
is concerned with the deletion of subclasses. Non-monotonic
references, cardinalities and invariants are problematic only
in those models that have instances of the classes that cause
non-monotonicity (e.g., Module in Fig. 12).

Example. The min cardinality of Transition.pn in Fig. 12 is non-
monotonic because true 6⇒ Modular ∧ Hierarchical. Hence, it
may lead to non-conformant slices such asMρ2 . Should class
Transition have the invariant PetriNet.allInstances()→notEmpty()
with PC true, it would be non-monotonic because it affects

objects of class Module when Modular ∧ Hierarchical is true, but
this is not implied by true.

Next, we show that, given a model M , a monotonic
product line MMPL such that M |=type MMPL, and any con-
cretization MMPLρ̃ of MMPL, the slice of M w.r.t. MMPLρ̃

conforms to MMPLρ̃.

Thrm. 2 (Universal conformance yields concretization
conformance). Given a monotonic product line MMPL
and a model M s.t. M |=type MMPL, ∀ρ̃ ∈
P̃ (FM) · M |MMPLρ̃ |=typeρ̃ MMPLρ̃.

Proof. Given a model M = (O,SL) with M |=type MMPL,
a concretization MMPLρ̃ for partial configuration ρ̃ ∈
P̃ (FM), and the slice M |MMPLρ̃ = (Oρ̃, SLρ̃), we know that
the type restriction is a model type by Theorem 1. Hence,
we only need to show that the two conditions in Def. 9 hold
for M |MMPLρ̃ |=typeρ̃ MMPLρ̃.

Condition 1: We exploit the remark after Def. 3 that
cardinality modifiers can be expressed as invariants. This
reduces Condition 1 to a special case of Condition 2.

Condition 2: Let wc be an invariant in MMPLρ̃. Then its
PC Φwc cannot be false in MMPLρ̃. Since M |=type MMPL,
M satisfies wc, and the only way for M |MMPLρ̃ to violate
wc is when the slice deletes an object, link or slot. Suppose
that wc is violated due to deleting an object o ∈ O \ Oρ̃
with typeO(o) = C , where the PC ΦC evaluates to false in ρ̃.
If wc is violated due to deleting o, then wc must affect the
class C . Since MMPL is monotonic, then by Def. 12, Φwc ⇒
ΦC. Thus, since ΦC is false, Φwc must be false. But this is
a contradiction because wc cannot be false. Therefore, wc
cannot be violated by the deletion of o. A similar argument
by contradiction can be made for links and slots deleted by
the slice. Therefore, Condition 2 is met.

As ground concretizations are products, we have the
following corollary:

Corollary 1 (Universal conformance yields meta-model
conformance). Given a monotonic product line MMPL
and a model M s.t. M |=type MMPL, ∀MMρi ∈
Prod(MMPL) · M |MMρi

|=typeρi
MMρi .

Next, we show how to deal with non-monotonic MM-
PLs and propose concretization strategies that reduce the
number of calls to a model finder.

5.2 Search Strategies for Partial Configurations

In this section, we extend the lifted analysis presented in
Section 4 to deal with partial configurations. The overall
process remains the same: we use a model finder to seek an
instance of a FEMM, from which we extract a configuration
ρ and a model M (see Fig. 7). However, we use a different
FEMM than in Section 4 in order to obtain partial configura-
tions as a result of the model search. This FEMM can be built
using two strategies which we call hard and soft. Under the
hard strategy, the model M returned by the finder conforms
to any ground concretization (i.e., a product meta-model) of
the MMPL for the configuration. Under the soft strategy, we
apply Def. 10 to produce slices of the model M conformant
to the different ground MMPL concretizations.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 14

FEMM

in
Place

itokens: int [0..1]

PetriNet

Transition

out

places
1
* trans

*

1

Token
tokens *

1
*

*

BC 1
fm

FMC
PetriNets: boolean[0..1]
Tokens: boolean[0..1]
Simple: boolean[0..1]
Object: boolean[0..1]
Hierarchical: boolean[0..1]
Structure: boolean[0..1]
StateMachine: boolean[0..1]
MarkedGraph: boolean[0..1]

net net

[1..1]

wc-Token inv:
not Object implies
Token.allInstances()→size() = 0

soft
wc-Token inv:
not Object or Object.oclIsUndefined() implies
Token.allInstances()→size() = 0

hard

:PetriNet

:Place

:FMC

PetriNets=undef
Tokens=undef
Simple=undef
Object=undef
Structure=undef
Hierarchical=undef
StateMachine=undef
MarkedGraph=undef

feature-explicit model: hard

:PetriNet

:Place

:Token

:FMC

PetriNets=undef
Tokens=undef
Simple=undef
Object=undef
Structure=undef
Hierarchical=undef
StateMachine=undef
MarkedGraph=undef

feature-explicit model: soft

:PetriNet

:Place:Token

:PetriNet

:Place

1={PetriNets,
Tokens,
Object},

{Simple}

~
2= {PetriNets,

Tokens,
Simple},

{Object}

~

……

… …

M~2

sliceslice

M~1

Fig. 13. Example of hard and soft search strategies.

Example. Fig. 13 illustrates the difference between the hard
and soft strategies. The FEMM encodes the PCs and modi-
fiers in the MMPL according to the strategy. The left side
of the figure shows a model and a partial configuration
returned by the finder, where all features are undefined.
Since the strategy is hard, the model conforms to every
meta-model of the MMPL. The model on the right side was
obtained using the soft strategy and needs to be sliced for
every ground concretization of the MMPL. The figure shows
two such slices. Mρ̃2 corresponds to configurations where
Object is false, and hence the Token object is deleted.

We use a modified version of the algorithm in Listing 1
to generate the FEMM (in the following, line numbers refer
to this listing). Specifically, the attributes emulating features
in class FMC are set cardinality [0..1], so that they can be true,
false or undefined (line 10). Moreover, the invariants derived
from PCs and modifiers are updated as follows to account
for undefined features and the hard and soft strategies:
PC of classes (line 17) and fields (lines 28–29). The hard

strategy requires that a class have no instances if its PC
is false or undefined (i.e., (not pc or pc=undef) implies size(c)=0),
and similarly for fields. The soft strategy requires empty
fields and class instance sets only when their PCs are false,
as in Listing 1. As an example, Fig. 13 shows the invariant
wc-Token derived from the PC of Token for both strategies.
For non-monotonic MMPLs and the soft strategy, we re-
quire two additional conditions to prevent constructing
non-conformant model slices. First, the operation size in
the previous invariants needs to count the instances of the
class but not of its subclasses. Second, if a class with a PC
inherits a reference or it inherits from the target class of a
reference, we use the hard strategy to build the invariant of
the class. For example, in Fig. 12, class Module inherits from

PetriNet which is the target of pn; hence, we use the hard
strategy to derive the invariant (not Modular or Modular=undef)
implies size(Module)=0. This way, models can only contain
instances of Module when feature Modular is true, ensuring
a correct slice.

PC of invariants (lines 19, 43–44). Both strategies require
that an invariant holds if its PC is true (i.e., pc=true implies
wc). However, when its PC is undefined, the hard strategy
considers that the invariant does not hold (i.e., pc=undef
implies false), while the soft strategy requires the invariant
to hold (i.e., pc=undef implies wc). The former implies that
no objects of a class with undefined PC get populated. The
latter ensures universal conformance (cf. Def. 9).

Cardinality modifiers (line 26). We handle both strategies
the same way by adding an extra case: if the condition in
a cardinality modifier is undefined, then both the original
feature cardinality (f.min) and the modifier cardinality (m)
must be satisfied, as required by the notion of universal
conformance in Def. 9. In the running example, it means
that partial configurations where StateMachine is undefined
require the size of references in and out to be at least 0 and
equal to 1, the latter condition being stronger.

Inheritance modifiers (lines 38, 40–41). The soft strategy
uses the same invariants as in Listing 1, while the hard
strategy requires the consequences in the invariants to hold
even when the premise is undefined.

Formula in FMC (line 11). Regardless of the strategy, we
relax the formula implied by the feature model to avoid
overconstraining the search and enable finding partial
configurations. Hence, we only require the following: if a
feature is true, then all of its mandatory children are true; if
a feature is undefined, then all of its children are undefined;
if an alternative-feature is true, then one of its children is
true and the rest are false; and if an or-feature is true, then
at least one of its children is true.

These changes to the algorithm in Listing 1 allow obtain-
ing partial configurations as a result of the model finding.
As explained in Section 4, finding all meta-models satisfying
a property requires calling the model finder several times.
When the finder returns a total configuration, we forbid it
as a valid result in the next search. If the configuration is
partial, then we also forbid any total configuration that can
be built from the partial one.

Note that, in each search, the model finder can return any
valid configuration. To reduce the number of model finder
calls, we guide the search to start with the partial configu-
rations which represent the biggest total configuration sets.
With this goal, we use the method in Listing 2 to obtain
the features that should be undefined or not in the next
search, adding an invariant to class FMC to enforce it. The
first search requires that the root feature in the feature model
be undefined (line 4 in Listing 2). This way, if the search yields
a solution, then the process ends as this partial configuration
represents all total ones. Otherwise, we call the method
again to obtain a less permissive partial configuration (lines
7–14). In such a case, the method receives all features set
to undefined in the last method call (the first time is just
the root feature), selects the one with the most children
features (line 7), forces it not to be undefined (line 8), and
sets all of its children features but the one with the least

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 15

1 nextPartialConfiguration (FM : in, undef : inout, def : inout)
2 // base case: set root feature to undefined
3 if size(undef)==0 and size(def)==0 then
4 add FM.rootFeature to undef
5 else if size(undef)>0 then
6 // set undefined feature with more children to defined
7 set f1 = feature with more descendants ∈ undef
8 move f1 from undef to def
9 // set its nonleaf child with fewer descendants to defined,

10 // and the rest of children to undefined
11 set f2 = nonleaf feature with fewer descendants ∈ f1.children
12 forall child ∈ f1.children do
13 if child == f2 then add f2 to def
14 else if size(child.children)>0 then add f2 to undef

Listing 2. Heuristic construction of partial configuration in each search.

children to undefined (lines 11-14). This heuristic maximizes
the number of undefined features and obtains the remaining
partial configurations that represent more total ones. Then,
we modify the invariant in FMC reflecting those features
that need to be undefined and perform a new search. This
process is repeated as needed. Section 7.2 shows how this
heuristic effectively reduces the number of invocations to
the model finder in the lifted analysis.

Example. In our example, the first search looks for a config-
uration where the root feature is undefined (invariant PetriNets
= undef). If a model is found (as is the case), then it is a
witness to every product meta-model. Otherwise, the next
search looks for a configuration where the root feature and
exactly one of its children are not undefined (invariant not
PetriNets = undef and not Tokens = undef and Structure = undef).

6 TOOL SUPPORT

We have realized our approach as an Eclipse plugin called
MERLIN, available at http://miso.es/tools/merlin. MERLIN
extends FeatureIDE [35] to create feature models, handle
configurations and build products. It integrates EMF for de-
scribing meta-models [27], the USE Validator [20] for model
finding, and the Eclipse OCL project [36] and Sat4J [37] for
the static analysis of OCL expressions [21].

Fig. 14 shows a screenshot of the tool. To build an MMPL,
the user first needs to create a FeatureIDE project, selecting
the MERLIN extension. Label 1 in the figure shows the
package explorer with a few MERLIN projects. Then the user
builds the feature model with FeatureIDE (label 2), and the
150MM with the OCLinEcore meta-model editor (label 3).
The PCs and modifiers are defined as annotations within
the Ecore-based 150MMs. The tool allows discovering un-
satisfiable PCs and modifiers by relying on SAT solving
and taking into account the formula implied by the feature
model (see [21]). For example, a PC Simple ∧ Object is not
satisfiable in the running example, which gets reported as
an error in the Eclipse problem view (label 4).

Label 5 in the figure shows the wizard for the instance
property analysis. Here the user can enter structural and
mixed properties, and configure the different search and
result options. Given a property, the tool can extract its
implied PC, which can be used to reduce the search scope.
The results returned by the model finder are parsed back
into EMF models and FeatureIDE configuration files.

Fig. 14. Using MERLIN to analyse the running example.

7 EVALUATION

This section reports on the evaluation of the scalability of
our proposal, driven by the following research question: Is
the lifted property satisfiability analysis on the MMPL faster than
analysing each meta-model in the MMPL separately?

Looking at the analysis options in the feature model
of Fig. 5, there is only one major factor that affects the
analysis performance: whether the analysis must return
just one meta-model of the MMPL satisfying the given
property (Solutions=one) or all of them (Solutions=all). The
rationale is that this makes a difference to the number of
invocations to the solver that the analysis has to perform.
Hence, the evaluation has two parts: Section 7.1 evaluates
the lifted analysis when looking for one solution meta-
model, and Section 7.2 focuses on the problem of looking
for all meta-models. The latter experiment evaluates the
core contribution of the paper, i.e., the efficiency gains of
the lifted analysis with partial configurations, including
our guided search strategies of partial configurations (cf.
Section 5.2), compared to either using the lifted analysis
with total configurations or analysing each meta-model
in an MMPL separately. The MMPLs used in the eval-
uation and the raw data of the results are available at
http://miso.es/tools/merlin/evaluation tse.

7.1 Efficiency when Looking for One Meta-Model

Our first experiment deals with the problem of finding
one meta-model having instances with a given property
(i.e., Solutions=one in the analysis space of Fig. 5). As a
representative case, we consider the property to analyse
to be “true”, and hence the analysis consists of finding a
configuration that yields an instantiable meta-model. This
way, we compare the performance of our lifted analysis to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 16

1

10

100

1000

10000

100000

0 20 40 60 80 100

TIME (MS)

% INSTANTIABLE META-MODELS

Lifted average
Naive average
Naive best
Naive worst

Fig. 15. Lifted and naive analyses, finding one solution meta-model.

find one instantiable meta-model in an MMPL, w.r.t. a naive
enumerative approach that generates one meta-model of the
MMPL at a time, checks its instantiability and finishes if
it has instances. The sooner an instantiable meta-model is
found, the faster the analysis concludes. Hence, the analysis
time in the naive approach depends on the percentage
of instantiable meta-models in the MMPL: if many meta-
models are instantiable, the likelihood of finding one soon
increases. For this reason, this experiment considers MMPLs
with different instantiability ratios.

In particular, we use an MMPL created by us to represent
automata, which comprises 2 016 meta-models. Its feature
model has 20 features, and its 150MM contains 6 classes,
5 invariants and 18 PCs. While all 2 016 meta-models in
this MMPL have instances, we manually built 22 versions
of the MMPL, each one producing a different percentage
of instantiable meta-models (i.e., one version had one in-
stantiable meta-model out of 2 016, another had two, and
so on). This was done to emulate MMPLs with different
meta-model instantiability ratios. Technically, we built each
MMPL version by adding to the classes in its 150MM the
invariant “false”, annotated with a PC satisfied by the de-
sired percentage of possible feature configurations. Then we
used both approaches (lifted and naive) to analyse MMPL
instantiability of each version, 40 times each, computing
the average time. We used the variant of the lifted analysis
that does not use partial configurations, as it is sufficient to
find one meta-model. In the naive approach, the traversal
of the meta-models in the MMPL was randomized in each
analysis. We conducted the experiment on a Windows 10
computer with i7-6500U processor and 16Gb of memory.

Fig. 15 shows the average analysis time of each approach
in milliseconds (vertical axis in logarithmic scale) with re-
spect to the ratio of instantiable meta-models in the MMPL
(horizontal axis). It also shows the best and worst times for
the naive approach, but not for the lifted one because the
variance in this case is minimal.

We can see that the lifted analysis was faster than
the naive one when fewer than 85% meta-models were
instantiable, being 1 000x faster when this percentage was
under 10%. In practice, this may occur when the language
designer is creating an MMPL and defines an incorrect
invariant, likely in the common part of the 150MM, making

many meta-model variants non-instantiable. Moreover, note
that meta-model instantiability corresponds to analysing the
satisfiability of the OCL property “true”. However, we may
analyse other OCL properties that few meta-models satisfy
(e.g., disallow a negative number of tokens). These results
show that our lifted analysis is most useful in such cases.

For MMPLs with more than 85% instantiable meta-
models, the performance of the lifted analysis was slightly
slower than the naive one but still reasonable (100ms vs
120ms). The best case for the naive approach corresponds
to finding an instantiable meta-model at the first attempt, in
which case, it was up to 3x faster than the lifted analysis
because the constraint solving problem is easier. Hence,
overall the lifted analysis was only slightly slower than the
best case of the naive approach, but it was several orders of
magnitude faster than the corresponding worst case.

Threats to validity. These results provide some evidence of
the benefits of lifting the analysis of instance properties to
the product line level. However, a threat to their generality
is the low number of artefacts used in the evaluation, and
the fact that we have created them synthetically by hand.
Moreover, the experiment only considers the analysis of the
property “true” (i.e., meta-model instantiability). However,
we believe that analysing a different OCL-expressed prop-
erty would yield a similar result, as this amounts to adding
the property as another invariant to the FEMM, while the
analysis method remains the same.

7.2 Efficiency when Looking for All Meta-Models

The goal of the second experiment is to assess whether
using partial configurations in our lifted analysis entails
an improvement in the analysis performance. For this pur-
pose, we apply our lifted analysis and a naive enumerative
approach to the problem of finding all instantiable meta-
models in an MMPL (i.e., Solutions=all in Fig. 5). The naive
approach implies generating and analysing the instantia-
bility of every meta-model of the MMPL separately. The
lifted approach implies building the FEMM and invoking
the model finder iteratively, each time disallowing previ-
ously found configurations. We consider three variants for
the lifted analysis: using total configurations, using partial
configurations with the strategy hard, and using partial
configurations with the strategy soft.

The eight MMPLs considered in the experiment are
given in Table 2. The second to fourth columns show their
complexity metrics: the number of features in the feature
model (from 4 to 48); the number of product meta-models
(from 5 to more than 2 million); and the number of classes,
invariants, PCs and modifiers in the 150MM. Three of these
MMPLs were created by us (Automata, the running example
and State machines); one was created from a set of existing
meta-models (Relational DDBB); and four came from the liter-
ature (GPL, Graph algs, Process modelling and Role modelling). The
Automata MMPL is the one used in the evaluation in Section
7.1. The Graph algs product line is a common benchmark
in the SPL community [38], [41], but as we focus on the
language and not on the algorithms, we included features
related to its structure and some invariants. We created the
Relational DDBB MMPL from nine third-party meta-models

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 17

TABLE 2
Lifted and naive analyses, finding all solution meta-models.

150MM Analysis time Invocations to solver Different instances

Name Feats MMs classes/invs/
PCs/modifs Naive Lifted

total

Lifted
partial
hard

Lifted
partial

soft
Naive Lifted

total

Lifted
partial
hard

Lifted
partial

soft
Naive Lifted

total

Lifted
partial
hard

Lifted
partial

soft
Automata 20 2 016 6/5/18/0 174.7s >5h 2.7s 3.1s 2 016 2 017 1 1 824 1 378 a 1 1
GPL [38] 38 840 16/6/42/4 108.4s 1 656.9s 5.7s 3.2s 840 841 15 1 524 840 2 12

Graph algs [39] 15 192 4/1/8/3 19s 55.1s 2.4s 2.3s 192 193 1 1 29 192 1 2
Process modelling [40] 18 960 11/2/9/1 140.3s 4 908.3s 2.3s 2.4s 960 961 1 1 260 960 1 1

Relational DDBB 10 24 7/0/17/0 4.1s 4.6s 2.2s 2.3s 24 25 1 1 24 24 1 24
Role modelling [16] 48 >2 395 000 40/0/32/9 >5h 3 807s e 4.9s 4.1s >2 395 000 1 491 e 1 1 13 b 1 490 c 1 4 d

Running example 8 16 4/2/5/3 4.9s 3.7s 2.5s 2.3s 16 17 1 1 16 16 1 1
State machines 4 5 5/0/5/0 3s 3.9s 2.2s 2.5s 5 6 1 1 5 5 1 2

a Calculated over the set of 1 378 models generated in 5 hours. b Calculated over the set of 3 405 models generated in 5 hours.
c Calculated over the set of 1 490 models generated in 3 807 seconds. d Calculated over the set of 4 178 models generated in 5 hours.
e Data collected until the constraint solver crashes with a memory exception.

available in the ATL meta-model zoo3. Altogether, the eval-
uation includes MMPLs of different sizes (small, medium
and large) and provenance (constructed by us and from the
literature).

In the experiment, the search space of the model finder
was configured with a bound of at most five instances of
each class, and a timeout of five hours. To discard cache
effects, we restarted the system after each analysis.

Table 2 shows the results obtained for each approach:
analysis time, the number of invocations to the solver (i.e.,
the number of model finding problems solved), and the
number of different instance models produced by the anal-
ysis.

The lifted analyses with partial configurations (Lifted
partial hard and Lifted partial soft) were always the fastest,
with an analysis time generally lower than 5 seconds. The
speedup w.r.t. the naive approach ranged between 1.3x (State
machines) to 63x (Automata), being more than 4 300x for Role
modelling. Actually, the naive analysis of the latter MMPL
did not finish within the five hours timeout, while it took
less than 5 seconds using the lifted analysis with partial
configurations. Both strategies hard and soft had similar
performances except for GPL. The reason is that the hard
strategy required invoking the solver 15 times whereas the
soft strategy did it just once. In general, the hard strategy
requires more invocations to the solver than soft whenever
the meta-models in the MMPL do not share instances.

The lifted analysis based on total configurations had by
far the worst performance and did not finish in two cases:
Automata due to the timeout, and Role modelling due to a
memory exception raised by the model finder. The lifted
analysis using partial configurations was up to 2 000 times
faster than using only total configurations.

Finally, we look at the diversity of the produced witness
models. The naive approach makes one model finder call
per each meta-model in the MMPL; however, on average,
only one third of the models returned by the finder were
different. Strategies hard and soft invoked the finder just
once (except for GPL); however, while the hard strategy
produced only a (very simple) witness model, the soft one
resulted in a variety of more intricate and diverse models.
Lifted analysis with total configurations produced the most
diverse model set.

3. http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore

Threats to validity. The experiment shows that lifting the
instantiability analysis to the MMPL and considering partial
configurations improves the analysis performance for the
eight MMPLs in our setup. Although the evaluation uses
a low number of MMPLs constructed by us, they have
widely varying sizes and origin, with half of them coming
from the literature. This reduces the risk that our findings
cannot be generalized. As in the previous experiment, we
have evaluated meta-model instantiability but not the other
property types; however, we believe that the results would
not be significantly different.

8 RELATED WORK

Next, we review the three main lines of related work: model-
based PLs, variability in modelling languages, and analysis
techniques for model-based PLs.

Model-based PLs. SPLs allow expressing variability in MDE
artefacts. For example, model-based product lines can be an
intermediate step towards code generation [42], and some
companies (e.g., in defence, embedded and automotive do-
mains) use SPLs to manage the variability across their model
assets [8], [9], [10]. Other researchers have proposed PLs
for models of specific formalisms, like uses cases [43], Petri
nets [44] or Statecharts [45]. All these works apply SPLs to
specific modelling languages, at the model level. Instead, we
work at the meta-model level, defining PLs of languages.

Variability in modelling languages. Model-driven solutions
based on the use of DSLs and code generators can be
seen as an open PL mechanism to automate software pro-
duction [46]. While most of these solutions have a fixed
DSL, many researchers have recognized the need to ex-
press variability in modelling languages [11], [41], [47],
[48], [49]. PLs have been defined for languages like Petri
nets [21], architectural languages [49], state machines [50],
feature modelling notations [51] and role-based modelling
languages [16], among many others. The UML specification
includes informal but explicit semantic variation points to ad-
dress different usage contexts [50], [52]. To tackle this issue,
[53] proposed meta-model templates to enable language
specialization and composition via parameter binding.

With the aim of offering a closed set of language variants,
some language engineering approaches propose document-
ing semantic variations as feature models [54]. Beyond mere

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 18

documentation, MMPLs have been applied to the reuse of
domain-specific modelling languages [4] and their trans-
formations [17]. Language workbenches for the definition
of textual languages, like MontiCore [47], [55] support the
definition of language PLs. Unfortunately, these works lack
means to ensure that the resulting language definitions are
correct. However, building a language PL can be challenging
and error-prone if there are many features or invariants
to consider. This makes analysis techniques like the ones
proposed in this paper necessary.

A key ingredient of model-based SPLs is the way to
express model variability and automate product derivation.
Some UML-specific approaches [43] rely on stereotypes to
express variability [56] or modify the language definition
in an intrusive way [44]. In contrast, approaches such as
delta-modelling [15], [16], [57] and VML∗ [25] favour the
separation of concerns. They are language-independent and
can be applied to SPLs of models or meta-models. Moreover,
within the ABS language, delta-modelling has also been
applied to express variability of code bases [57]. The focus
of those approaches is on expressivity, which enables the
use of arbitrary operations to synthesize a product, though
this makes ensuring syntactic and semantic correctness chal-
lenging. Instead, our approach based on PCs and modifiers
facilitates analysis and enables instance property analysis
by model finding, at the cost of expressiveness. However,
without analysis techniques, feature incompatibilities (e.g.,
StateMachine and Hierarchical in our running example) may go
unnoticed and percolate to the final system, creating errors.

Analysis of model-based SPLs. Many analysis techniques for
SPLs have been proposed. Von Rehin et al. [58] argue that
the analysis of each variant in an SPL cannot be made
efficiently with standard techniques. This has given rise
to variability-aware techniques that lift analyses from single
artefacts to the product line level, and sampling heuristics
to analyse a subset of all derivable products, like prioriti-
zation [59], [60] or pairwise testing (see [61] for a classifica-
tion and survey). Both syntactic [62], [63] and behavioural
analyses (e.g., model checking [64], [65], [66] and domain-
specific analyses such as for component fault diagrams [67])
have been lifted to SPLs. For programming languages, static
analyses based on the control-flow graph have been lifted to
SPLs [68], [69]. As demonstrated in [58], the advantages of
variability-aware techniques such as lifting are a better effi-
ciency and efficacy than enumerative approaches. Moreover,
they enable richer specification means like mixed properties.

Some works analyse well-formedness of PLs of models,
at the PL level. For example, [45] uses delta-modelling to
define PLs of statecharts and analyses well-formedness of
each derivable statechart at the PL level. In a more general
setting, PLs of models are analysed to ensure that each
model conforms to its meta-model and fulfils its integrity
constraints in [18]. This corresponds to a syntactic analy-
sis lifting. Instead, our lifted analyses tackle meta-models
and ensure that each product meta-model has the required
instantiability properties. Moreover, we characterize the in-
stantiability analyses that can be done at the MMPL level.

In [70], the authors present the tool Clafer, which unifies
meta-models and feature models. It supports the lifted anal-
ysis of the instantiability of the meta-models in an MMPL

via a compilation into Alloy. However, it does not support
lifted analyses of other instance properties, as we do in our
paper. In [71], the authors synthesize random, erroneous
model-based SPLs for a modelling language, to showcase
typical errors in the SPL design.

Altogether, we note that analysis techniques for MMPLs
at the PL level are currently lacking. For this reason, we have
lifted meta-model validation techniques based on constraint
solving to MMPLs. To the best of our knowledge, the lifting
process using both total and partial configurations and
the classification of instance property analyses are novel
contributions of our work.

9 CONCLUSIONS

In this paper, we have argued for the need to analyse
instantiability properties of language product lines. For this
purpose, we have proposed a classification of instance prop-
erty types, and then lifted the property analysis to MMPLs,
optimized by the use of partial configurations. We have
implemented the approach in a tool called MERLIN, and
reported on experiments showing the scalability benefits
w.r.t. an explicit analysis of each product in the MMPL.

This work opens the door to a wider use of variability
techniques within MDE to foster reusability. For instance,
building on MMPLs would allow the creation of product
lines of model transformations [39], code generators and
model editors, reusable for each meta-model of the MMPL.

Our approach currently supports modifiers for field car-
dinalities and inheritance, but to improve expressiveness,
we plan to include other modifiers to control the abstract-
ness of classes or the type of fields. We also plan to expand
our analyses to check subsumption of language variants.
For example, in the case of Petri nets, all StateMachine nets
are also FreeChoice nets, but not vice versa [1]. This analysis
will help in constraining the feature model to reduce the
configuration space and reflect expected language relations.
Finally, performing a user study is also future work.

ACKNOWLEDGMENTS

This work has been funded by the Spanish Ministry of
Science (RTI2018-095255-B-I00), the R&D programme of
Madrid (P2018/TCS-4314), and by NSERC. We thank the
anonymous referees for their useful comments.

REFERENCES

[1] T. Murata, “Petri nets: Properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[2] D. C. Schmidt, “Guest editor’s introduction: Model-driven engi-
neering,” Computer, vol. 39, no. 2, pp. 25–31, Feb. 2006.

[3] OCL, http://www.omg.org/spec/OCL/, 2014.
[4] J. White, J. H. Hill, J. Gray, S. Tambe, A. S. Gokhale, and D. C.

Schmidt, “Improving domain-specific language reuse with soft-
ware product line techniques,” IEEE Software, vol. 26, no. 4, pp.
47–53, 2009.

[5] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang,
“What industry needs from architectural languages: A survey,”
IEEE Trans. Software Eng., vol. 39, no. 6, pp. 869–891, 2013.

[6] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering. Foundations, Principles and Techniques. Springer-Verlag
Berlin Heidelberg, 2005.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 19

[7] F. J. v. d. Linden, K. Schmid, and E. Rommes, Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering.
Springer-Verlag, 2007.

[8] B. Young, J. Cheatwood, T. Peterson, R. Flores, and P. C. Clements,
“Product line engineering meets model based engineering in the
defense and automotive industries,” in Proc. of SPLC’17. ACM,
2017, pp. 175–179.

[9] A. Schlie, D. Wille, S. Schulze, L. Cleophas, and I. Schaefer, “De-
tecting variability in MATLAB/Simulink models: An industry-
inspired technique and its evaluation,” in Proc. of SPLC’17. ACM,
2017, pp. 215–224.

[10] S. Trujillo, J. M. Garate, R. E. Lopez-Herrejon, X. Mendialdua,
A. Rosado, A. Egyed, C. W. Krueger, and J. D. Sosa, “Coping with
variability in model-based systems engineering: An experience
in green energy,” in Proc. of ECMFA’10, ser. LNCS, vol. 6138.
Springer, 2010, pp. 293–304.

[11] D. Méndez-Acuña, J. A. Galindo, T. Degueule, B. Combemale, and
B. Baudry, “Leveraging software product lines engineering in the
development of external DSLs: A systematic literature review,”
Comp. Langs., Systems & Structures, vol. 46, pp. 206–235, 2016.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
Tech. Rep. CMU/SEI-90-TR-021, 1990.

[13] J. Cabot, R. Clarisó, and D. Riera, “On the verification of UM-
L/OCL class diagrams using constraint programming,” Journal of
Systems and Software, vol. 93, pp. 1–23, 2014.

[14] F. Basciani, J. di Rocco, D. di Ruscio, L. Iovino, and A. Pierantonio,
“Automated clustering of metamodel repositories,” in Proc. of
CAiSE’16, ser. LNCS, vol. 9694. Springer, 2016, pp. 342–358.

[15] C. Seidl, I. Schaefer, and U. Aßmann, “DeltaEcore – a model-based
delta language generation framework,” in Modellierung, ser. LNI,
vol. 225. Bonn: GI, 2014, pp. 81–96.

[16] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann, “A
metamodel family for role-based modeling and programming
languages,” in Proc. of SLE’14, ser. LNCS, vol. 8706. Springer,
2014, pp. 141–160.

[17] G. Perrouin, M. Amrani, M. Acher, B. Combemale, A. Legay, and
P. Schobbens, “Featured model types: Towards systematic reuse in
modelling language engineering,” in Proc. of MiSE@ICSE’16. New
York, NY, USA: ACM, 2016, pp. 1–7.

[18] K. Czarnecki and K. Pietroszek, “Verifying feature-based model
templates against well-formedness OCL constraints,” in Proc. of
GPCE’06. New York, NY, USA: ACM, 2006, pp. 211–220.

[19] D. Jackson, Software Abstractions - Logic, Language, and Analysis.
London, England: MIT Press, 2006, see also http://alloy.mit.edu/.

[20] M. Kuhlmann and M. Gogolla, “From UML and OCL to relational
logic and back,” in Proc. of MODELS’12, ser. LNCS, vol. 7590.
Springer, 2012, pp. 415–431.

[21] E. Guerra, J. de Lara, M. Chechik, and R. Salay, “Analysing meta-
model product lines,” in Proc. of SLE’18. ACM, 2018, pp. 160–173.

[22] R. Salay, M. Famelis, J. Rubin, A. D. Sandro, and M. Chechik, “Lift-
ing model transformations to product lines,” in Proc. of ICSE’14.
New York, NY, USA: ACM, 2014, pp. 117–128.

[23] S. Apel, F. Janda, S. Trujillo, and C. Kästner, “Model superimpo-
sition in software product lines,” in Proc. of ICMT’09, ser. LNCS,
vol. 5563. Springer, 2009, pp. 4–19.

[24] K. Czarnecki and M. Antkiewicz, “Mapping features to models:
A template approach based on superimposed variants,” in Proc. of
GPCE’05, ser. LNCS, vol. 3676. Springer, 2005, pp. 422–437.

[25] S. Zschaler, P. Sánchez, J. P. Santos, M. Alférez, A. Rashid,
L. Fuentes, A. Moreira, J. Araújo, and U. Kulesza, “VML* - a family
of languages for variability management in software product
lines,” in Proc. of SLE’09, ser. LNCS, vol. 5969. Springer, 2009,
pp. 82–102.

[26] MOF, http://www.omg.org/spec/MOF, 2016.
[27] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:

Eclipse Modeling Framework, 2nd Edition. Upper Saddle River, NJ:
Addison-Wesley Professional, 2008.

[28] OCLinEcore, https://wiki.eclipse.org/OCL/OCLinEcore, 2018.
[29] Xcore, https://wiki.eclipse.org/Xcore, 2018.
[30] EMFatic, https://www.eclipse.org/emfatic/, 2012.
[31] C. A. González, F. Büttner, R. Clarisó, and J. Cabot, “EMFtoCSP:

A tool for the lightweight verification of EMF models,” in Proc. of
FormSERA’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 44–50.

[32] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using boolean satisfiability,” in
Proc. of DATE’10. IEEE Computer Society, 2010, pp. 1341–1344.

[33] M. Balaban and A. Maraee, “Finite satisfiability of UML class
diagrams with constrained class hierarchy,” ACM Trans. Softw.
Eng. Methodol., vol. 22, no. 3, pp. 24:1–24:42, 2013.

[34] S. MacLane, Categories for the Working Mathematician. Springer-
Verlag, 1971.

[35] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich, and
G. Saake, Mastering Software Variability with FeatureIDE. Springer,
2017, see also https://featureide.github.io/.

[36] Eclipse OCL project, http://wiki.eclipse.org/OCL, 2018.
[37] D. L. Berre and A. Parrain, “The Sat4j library, release 2.2,” JSAT,

vol. 7, no. 2-3, pp. 59–6, 2010.
[38] R. E. Lopez-Herrejon and D. Batory, “A standard problem for

evaluating product-line methodologies,” in Proc. of GCSE’01, ser.
LNCS, vol. 2186. Springer, 2001, pp. 10–24.

[39] J. de Lara, E. Guerra, M. Chechik, and R. Salay, “Model transfor-
mation product lines,” in Proc. of MODELS’18. ACM, 2018, pp.
67–77.

[40] J. S. Cuadrado, E. Guerra, and J. de Lara, “A component model for
model transformations,” IEEE Trans. Software Eng., vol. 40, no. 11,
pp. 1042–1060, 2014.

[41] T. Buchmann and F. Schwägerl, “Advancing negative variability
in model-driven software product line engineering,” in ENASE
Revised Selected Papers, ser. Comm. in Comp. and Inf. Sci., vol. 703.
Springer, 2016, pp. 1–26.

[42] S. Trujillo, D. S. Batory, and O. Dı́az, “Feature oriented model
driven development: A case study for portlets,” in Proc. of ICSE’07.
IEEE Computer Society, 2007, pp. 44–53.

[43] I. Hajri, A. Goknil, L. C. Briand, and T. Stephany, “Configuring
use case models in product families,” SoSyM, vol. 17, no. 3, pp.
939–971, 2018.

[44] R. Muschevici, J. Proença, and D. Clarke, “Feature nets: be-
havioural modelling of software product lines,” SoSyM, vol. 15,
no. 4, pp. 1181–1206, 2016.

[45] M. Lienhardt, F. Damiani, L. Testa, and G. Turin, “On checking
delta-oriented product lines of statecharts,” Sci. Comput. Program.,
vol. 166, pp. 3–34, 2018.

[46] J. Tolvanen and S. Kelly, “Defining domain-specific modeling
languages to automate product derivation: Collected experiences,”
in Proc. of SPLC’05, ser. LNCS, vol. 3714. Springer, 2005, pp. 198–
209.

[47] M. V. Cengarle, H. Grönniger, and B. Rumpe, “Variability within
modeling language definitions,” in Proc. of MODELS’09, ser.
LNCS, vol. 5795. Springer, 2009, pp. 670–684.

[48] N. I. Altintas, S. Cetin, A. H. Dogru, and H. Oguztüzün, “Model-
ing product line software assets using domain-specific kits,” IEEE
Trans. Software Eng., vol. 38, no. 6, pp. 1376–1402, 2012.

[49] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and A. Wortmann,
“Modeling language variability with reusable language compo-
nents,” in Proc. of SPLC’18. ACM, 2018, pp. 65–75.

[50] A. Taleghani and J. M. Atlee, “Semantic variations among UML
statemachines,” in Proc. of MODELS’06, ser. LNCS, vol. 4199.
Springer, 2006, pp. 245–259.

[51] C. Seidl, T. Winkelmann, and I. Schaefer, “A software product
line of feature modeling notations and cross-tree constraint lan-
guages,” in Proc. of Modellierung, ser. LNI, vol. P-254. GI, 2016,
pp. 157–172.

[52] F. Chauvel and J. Jézéquel, “Code generation from UML models
with semantic variation points,” in Proc. of MODELS’05, ser. LNCS,
vol. 3713. Springer, 2005, pp. 54–68.

[53] A. Cuccuru, C. Mraidha, F. Terrier, and S. Gérard, “Templatable
metamodels for semantic variation points,” in Proc. of ECMDA-
FA’07, ser. LNCS, vol. 4530. Springer, 2007, pp. 68–82.

[54] H. Grönniger and B. Rumpe, “Modeling language variability,” in
Proc. of Monterey Workshop on Foundations of Computer Software, ser.
LNCS, vol. 6662. Springer, 2010, pp. 17–32.

[55] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and A. Wortmann,
“Systematic composition of independent language features,” Jour-
nal of Systems and Software, vol. 152, pp. 50–69, 2019.

[56] T. Ziadi and J. Jézéquel, “Software product line engineering with
the UML: deriving products,” in Software Product Lines - Research
Issues in Engineering and Management. Springer, 2006, pp. 557–588.

[57] D. Clarke, R. Muschevici, J. Proença, I. Schaefer, and R. Schlatte,
“Variability modelling in the ABS language,” in Proc. of FMCO’10,
ser. LNCS, vol. 6957. Springer, 2010, pp. 204–224.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING ... 2019 20

[58] A. von Rhein, J. Liebig, A. Janker, C. Kästner, and S. Apel,
“Variability-aware static analysis at scale: An empirical study,”
ACM Trans. Sof. Eng. Meth., vol. 27, no. 4, pp. 18:1–18:33, 2018.

[59] X. Devroey, G. Perrouin, M. Cordy, H. Samih, A. Legay,
P. Schobbens, and P. Heymans, “Statistical prioritization for soft-
ware product line testing: an experience report,” SoSyM, vol. 16,
no. 1, pp. 153–171, 2017.

[60] M. Al-Hajjaji, T. Thüm, M. Lochau, J. Meinicke, and G. Saake,
“Effective product-line testing using similarity-based product pri-
oritization,” SoSyM, vol. 18, no. 1, pp. 499–521, 2019.

[61] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A clas-
sification and survey of analysis strategies for software product
lines,” ACM Comput. Surv., vol. 47, no. 1, pp. 6:1–6:45, 2014.

[62] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. S. Batory,
“Guaranteeing syntactic correctness for all product line variants: A
language-independent approach,” in Proc. of TOOLS EUROPE’09,
ser. LNBIP, vol. 33. Springer, 2009, pp. 175–194.

[63] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type checking
annotation-based product lines,” ACM Trans. Softw. Eng. Methodol.,
vol. 21, no. 3, pp. 14:1–14:39, 2012.

[64] M. H. ter Beek, E. P. de Vink, and T. A. C. Willemse, “Family-based
model checking with mCRL2,” in Proc. of FASE’17, ser. LNCS, vol.
10202. Springer, 2017, pp. 387–405.

[65] A. S. Dimovski and A. Wasowski, “Variability-specific abstraction
refinement for family-based model checking,” in Proc. of FASE’17,
ser. LNCS, vol. 10202. Springer, 2017, pp. 406–423.

[66] M. Lochau, J. Bürdek, S. Hölzle, and A. Schürr, “Specification
and automated validation of staged reconfiguration processes for
dynamic software product lines,” SoSyM, vol. 16, no. 1, pp. 125–
152, 2017.

[67] C. Seidl, I. Schaefer, and U. Aßmann, “Variability-aware safety
analysis using delta component fault diagrams,” in Proc. of SPLC
workshops. ACM, 2013, pp. 2–9.

[68] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and
M. Mezini, “Spllift: statically analyzing software product lines in
minutes instead of years,” in Proc. of PLDI’13. ACM, 2013, pp.
355–364.

[69] F. Angerer, P. Grünbacher, H. Prähofer, and L. Linsbauer, “An ex-
periment comparing lifted and delayed variability-aware program
analysis,” in Proc. of ICSME’17. IEEE Computer Society, 2017, pp.
148–158.

[70] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski,
“Clafer: Unifying class and feature modeling,” SoSyM, vol. 15,
no. 3, pp. 811–845, 2016.

[71] J. B. F. Filho, O. Barais, M. Acher, J. Le Noir, A. Legay, and
B. Baudry, “Generating counterexamples of model-based software
product lines,” STTT, vol. 17, no. 5, pp. 585–600, 2015.

Esther Guerra is Professor at the Universi-
dad Autónoma in Madrid, where she leads the
“Modelling and Software Engineering” research
group (http://www.miso.es) together with J. de
Lara. She has been a doctoral researcher at TU
Berlin and “Sapienza” University of Rome, and
a visiting professor at the Universities of York,
Toronto and McGill. She is interested in Model-
Driven Engineering, primarily in model transfor-
mations, transformation testing, meta-modelling
and domain-specific languages.

Juan de Lara is Professor at the Universidad
Autónoma of Madrid, where he works in Model-
driven Engineering. He has published more than
200 papers in international journals and confer-
ences and has been the PC co-Chair of ICMT12,
FASE12, ICGT17, and will be the PC co-Chair of
MODELS20 and SLE20. He is associate editor
of the Journal on Software and Systems Model-
ing, JOT and IET Software.

Marsha Chechik is Professor at the Univer-
sity of Toronto. She is interested in the appli-
cation of formal methods to improve the quality
of software. She is a member of IFIP WG 2.9
on Requirements Engineering and an associate
editor in chief of Journal on Software and Sys-
tems Modeling. She has been an associate ed-
itor of IEEE TSE in 2003-07 and 2010-13. She
has been PC co-Chair of ICSE18, TACAS16,
VSTTE16, ASE14, CONCUR08, CASCON08
and FASE09. She will be PC co-Chair of ES-

EC/FSE21.

Rick Salay is a researcher in software modeling
with over 40 peer-reviewed papers in the area.
He has conducted and led internationally rec-
ognized research in modelling on topics includ-
ing safety assurance modeling, model manage-
ment, model uncertainty and model transforma-
tions. Currently he plays senior roles in projects
related to the safety of automated driving sys-
tems and machine learning.

	portada propperty guerra.pdf
	Copyright: © 2022 Institute of Electrical and Electronics Engineers

	property_guerra_TS_ps.pdf

