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Abstract

Scene recognition is currently one of the top-challenging research fields in computer vision. This may

be due to the ambiguity between classes: images of several scene classes may share similar objects, which

causes confusion among them. The problem is aggravated when images of a particular scene class are no-

tably different. Convolutional Neural Networks (CNNs) have significantly boosted performance in scene

recognition, albeit it is still far below from other recognition tasks (e.g., object or image recognition). In

this paper, we describe a novel approach for scene recognition based on an end-to-end multi-modal CNN

that combines image and context information by means of an attention module. Context information, in

the shape of a semantic segmentation, is used to gate features extracted from the RGB image by leveraging

on information encoded in the semantic representation: the set of scene objects and stuff, and their relative

locations. This gating process reinforces the learning of indicative scene content and enhances scene disam-

biguation by refocusing the receptive fields of the CNN towards them. Experimental results on three publicly

available datasets show that the proposed approach outperforms every other state-of-the-art method while

significantly reducing the number of network parameters. All the code and data used along this paper is

available at: https://github.com/vpulab/Semantic-Aware-Scene-Recognition

Keywords: Scene recognition, deep learning, convolutional neural networks, semantic segmentation.

1. Motivation and Problem Statement

Scene recognition is a hot research topic whose complexity is, according to reported performances [1], on

top of image understanding challenges. The paradigm shift forced by the advent of Deep Learning methods,

and specifically, of Convolutional Neural Networks (CNNs), has significantly enhanced results, albeit they

are still far below those achieved in tasks as image classification, object detection and semantic segmentation

[2–4].

The complexity of the scene recognition task lies partially on the ambiguity between different scene

categories showing similar appearances and objects’ distributions: inter-scene boundaries can be blurry, as
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Figure 1: Scene recognition performance of CNN-based solutions on the Places-365 Standard Dataset [1]. Each network is

represented by its Top@1 accuracy (vertical axis), its number of layers (horizontal axis) and its number of units (radius of each

circle). Circles’ colors are only for better identification.

the sets of objects that define a scene might be highly similar to another’s. Therefore, scene recognition

should cope with the classical tug-off-war between repeatable (handle intra-class variation) and distinctive

(discriminate among different categories) characterizations. Whereas CNNs have been proved to automat-

ically yield trade-off solutions with success, the complexity of the problem increases with the number of

categories, and specially when training datasets are unbalanced.

Recent studies on the semantic interpretability of CNNs, suggest that the learning of scenes is inherent

to the learning of the objects they include [5]. Object detectors somehow arise as latent-variables in hidden-

units within networks trained to recognize scenes. These detectors operate without constraining the networks

to decompose the scene recognition problem [6]. The number of detectors is, to some extent, larger for deeper

and wider (with a larger number of units) networks. During the last years, the main trend to enhance scene

recognition performance has focused on increasing the number of CNN units. However, performance does

not increase linearly with the increase in the number of network parameters [1]. For instance, DenseNet-

161 is twenty-times deeper than AlexNet, and VGG-16 has twenty-times more units than GoogleNet, but

performances of DenseNet-161 and VGG-16 for scene recognition are only a 2.9% and a 1.6% better than

those of AlexNet and GoogleNet, respectively (see Figure 1).

This paper presents a novel strategy to improve scene recognition: to use object-level information to
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Figure 2: Scene recognition results depending on the input data. (a) RGB image corresponding to the ”Kitchen” scene class.

(b) Semantic segmentation from (a) obtained by a state-of-the-art CNN-based algorithm. (c) Class Activation Map (CAM) [9]

just using the (a) RGB image. (d) CAM just using the (b) semantic segmentation. (e) CAM for the proposed approach, using

both (a) and (b). Top@3 predicted classes are included in the top-left corner of images (c) to (e). Better viewed in color.

guide scene learning during the training process. It is well-known that—probably due to the ImageNet fine-

tuning paradigm [7], widely used models are biased towards the spatial center of the visual representation

(see Figure 2) [8]. The proposed approach relies on semantic-driven attention mechanisms to prioritize the

learning of common scene objects. This strategy achieves the best reported results on the validation set of

the Places365 Standard dataset [1] (see Figure 1) without increasing the network’s width or deepness, i.e.

using 67.13% less units and 62.73% less layers than VGG-16 and DenseNet-161 respectively.

Similar strategies have been recently proposed to constrain scene recognition through histograms of patch-

wise object detections [10–12]. Compared to these strategies, the proposed method naturally exploits the

spatial relationships between objects and emphasizes interpretability by relying on semantic segmentation.

Semantic segmentation can be understood as a dense object detection task. In fact, scene recognition, object

detection and semantic segmentation are interrelated tasks that share a common Branch in the recently

proposed taskonomies or task-similarity branches [13]. However, the performance achieved by semantic

segmentation methods is generally lower than that of object detection ones mainly due to the difference in

size and variety of their respective datasets. Howbeit, the proposed method surmounts this gap and yields a

higher scene recognition performance than object-constrained methods [10, 11], using a substantially smaller

number of units (see Section 4).

In essence, the proposed work aims to enhance scene recognition without increasing network’s capacity

or depth leading to lower training and inference times, as well as to smaller data requirements and training

resources. The specific contributions of these paper are threefold:

1. We propose an end-to-end multi-modal deep learning architecture which gathers both image and

context information using a two-branched CNN architecture.

2. We propose to use semantic segmentation as an additional information source to automatically cre-

ate, through a convolutional neural network, an attention model to reinforce the learning of relevant

contextual information.
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3. We validate the effectiveness of the proposed method yielding state-of-the-art results for the MIT

Indoor 67 [14], SUN 397 [15] and Places365 [1] datasets.

2. Related Works

2.1. Scene Recognition

A variety of works for scene recognition have been proposed during the last years: it is a hot topic.

Existing methods can be broadly organized into two different categories: those based on hand-crafted

feature representations and those based on CNN architectures.

Among the first group, earliest works proposed to design a holistic feature representations. Generalized

Search Trees (GIST) [16] were used to generate a holistic low dimensional representation for each image.

However, precisely due to the holistic approach, GIST lacks of scene’s local structure information. To

overcome this problem, local feature representations were used to exploit the pattern of local patches and

combine their representations in a concatenated feature vector. Census Transform Histogram (CENTRIST)

[17] encodes the local structural properties within an image and suppresses detailed textural information to

boost scene recognition performance. To further increase generalization, Oriented Texture Curves (OTC)

[18] captures patch textures along multiple orientations to be robust to illumination changes, geometric

distortions and local contrast differences. Overall, despite reporting noteworthy results, these hand-crafted

features, either holistic or local, exploit low-level features which may not be discriminative enough for

ambiguous or highly related scenes [1]. Besides, the hand-craft nature of features may hinder their scalability

as ad hoc designs may be required for new domains.

Solutions based on CNNs generally result in higher performances. Recent network architectures, together

with multi-million datasets such as Places-365, crush the results obtained by hand-crafted features [1].

CNNs exploit multi-scale feature representations using convolutional layers and do not require the design of

hand-crafted features as they are implicitly learned through the training process. Besides, CNNs combine

low-level latent information such as color, texture and material with high-level information, e.g., parts and

objects to obtain better scene representations and boost scene recognition performance [5]. Well-consolidated

network architectures, such as AlexNet, GoogLeNet, VGG-16, ResNet-152 and DenseNet-161 have reported

accuracies of 53.17%, 53.63%, 55.24%, 54.74% and 56.10% respectively when classifying images from the

challenging Places-365 Standard dataset [1].

Features extracted from these networks have been also combined with different scene classification meth-

ods. For instance, Xie et al. [19] proposed to use features from AlexNet and VGG with Mid-level Local

Representation (MLR) and Convolutional Fisher Vector representation (CFV) dictionaries to incorporate

local and structural information. Cimpoi et al. [20] used material and texture information extracted from a

CNN-filter bank and from a bag-of-visual-words to increase generalization for enhanced scene recognition.
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Yoo et al. [21] benefited from multi-scale CNN-based activations aggregated by a Fisher kernel framework

to perform significantly better on the MIT Indoor Dataset [14].

While accuracies from this networks and methods are much higher than those reported by methods

based on hand-crafted features, they are far from those achieved by CNNs in other image classification

problems (e.g., ImageNet challenge best reported accuracy is 85.4% [22] while best reported accuracy on

Person Re-Identification task is 95.4% [23]).

As described in Section 1, the increment in capacity (number of units) of CNNs does not, for scene

recognition, lead to a linear rise in performance. This might be explained by the inability of the networks

to handle inter-class similarities [11]: unrelated scene classes may share objects that are prone to produce

alike scene representations weakening the network’s generalization power. To cope with this problem, some

recent methods incorporate context and discriminative object information to constrain scene recognition.

Based on context information, Xie et al. [24] proposed to enhance fine-grained recognition by detecting

part candidates based on saliency detection and by constructing a CNN architecture with local parts and

global discrimination. Zhao et al. [25], similarly, proposed a discriminative discovery network (DisNet) that

generates a discriminative map (Dis-Map) for the input image. This map is further used to select scale-aware

discriminative locations which are then forwarded to a multi-scale pipeline for CNN feature extraction.

In terms of discriminative object information, Herranz-Perdiguero et al. [26] proposed an extension of

the DeepLab semantic segmentation network by introducing SVMs classifiers to perform scene recognition

based on object histograms. In the same vein, Wang et al. [10] designed an architecture where patch-based

features are extracted from customized object-wise and scene-wise CNNs to construct semantic represen-

tations of the scene. A scene recognition method built on these representations (Vectors of Semantically

Aggregated Descriptors (VSAD)) yields excellent performance on standard scene recognition benchmarks.

VSAD’s performance has been recently enhanced by measuring correlations between objects among different

scene classes [11]. These correlations are then used to reduce the effect of common objects in scene miss-

classification and enhance the effect of discriminative objects through a Semantic Descriptor with Objectness

(SDO).

Even though these methods constitute state-of-the-art in scene recognition, their dependency of ob-

ject information, obtained by using patch-based object classification techniques, entails severe and reactive

parametrization (scale, patch-size, stride, overlapping...). Moreover, their descriptors are object-centered

and lack of information on the spatial-interrelations between object instances. We instead propose to use an

end-to-end CNN that exploits spatial relationships by using semantic segmentation instead of object infor-

mation to guide network’s attention. This proves to provide equal or better performance while significantly

reducing the number of network units and hyper-parameters.
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2.2. Semantic Segmentation

Semantic segmentation is the task of assigning a unique object (or stuff) label to every pixel of an

image. As reported in several benchmarks (MIT Scene Parsing Benchmark [3], CityScapes Dataset [4], and

COCO Challenge [27]), top-performing strategies, which are completely based on end-to-end deep learning

architectures, are year by year getting closer to human accuracy.

Among the top performing strategies, Wang et al. proposed to use a dense up-sampling CNN to gen-

erate pixel-level predictions within a hybrid dilated convolution framework [28]. In this vein, the Unified

Perceptual Parsing [29] benefits from a multi-task framework to recognize several visual concepts given a

single image (semantic segmentation, materials, texture). By regularization, when multiple tasks are trained

simultaneously, their individual results are boosted. Zhao et al. modelled contextual information between

different semantic labels proposing the Pyramid Pooling Module [30]—e.g., an airplane is likely to be on a

runway or flying across the sky but rarely over the water. These spatial relationships allow reducing the

complexity associated with large sets of object labels, generally improving performance. Guo et al. [31] pro-

posed the Inter-Class Shared Boundary (ISB) Encoder which aims to encode the level of spatial adjacency

between object-class pairs into the segmentation network to obtain higher accuracy for classes associated

with small objects.

Motivated by the success of modelling contextual information and spatial relationships, we decided

to explore the use of semantic segmentation as an additional modality of information to confront scene

recognition.

2.3. Multi-Modal Deep Learning Architectures

The use of complementary image modalities (e.g., depth, optical flow or heat maps) as additional sources

of information to multi-modal classification models has been recently proposed to boost several computer

vision tasks: pedestrian detection [32–35], action recognition [36, 37] and hand-gesture recognition [38].

Regarding pedestrian detection, a plethora of solutions have been proposed to include additional sources

of information besides the RGB one [32–35]. Park et al. proposed the incorporation of optical-flow-based

features to model motion through a decision-forest detection scheme [32]. Convolutional Channel Features

(CCF) [33] rely on extracted low-level features from VGG-16 network as an additional input channel to

enhance pedestrian detection. Daniel et al. [34] used short range and long range multiresolution channel

features obtained by eight different individual classifiers to propose a detector, obtaining state-of-the-art

results at a higher speed. An extensive study of the features that may help pedestrian detection has

been carried out by Mao et al. [35]. Authors suggest that mono-modal pedestrian detection results are

improved when depth, heat-maps, optical flow, or segmentation representations are integrated as additional

information modalities into a CNN-based pedestrian detector.
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The effectiveness of modelling temporal features using multi-modal networks has been also studied [36,

37]. Simonyan et al. [36] and Park et al. [37] proposed to incorporate optical flow as an additional input for

action recognition. These methods lead to state-of-the-art performance when classifying actions in videos.

Similarly, hand-gesture recognition has also benefited from the use of optical-flow [38].

In this paper, we propose to combine RGB images and their corresponding semantic segmentation. Ad-

ditionally, instead of using traditional combinations—linear combination, feature concatenation or averaging

[35–37], we propose to use a CNN architecture based on a novel attention mechanism.

2.4. Attention Networks

CNNs with architectures based on attention modules have been recently shown to improve performances

on a wide and varied set of tasks [39]. These attention modules are inspired by saliency theories on the

human visual system, and aim to enhance CNNs by refocusing them onto task-relevant image content,

emphasizing the learning of this content [40].

For image classification, the Residual Attention Network [41], based on encoder-decoder stacked attention

modules, increases classification performance by generating attention-aware features. The Convolutional

Block Attention Module (CBAM) [40] infers both spatial and channel attention maps to refine features at

all levels while obtaining top performance on ImageNet classification tasks and on MS COCO and VOC2007

object detection datasets. An evaluation benchmark proposed by Kiela et al. [42], suggested that the

incorporation of different multi-modal attention methods, including additive, max-pooling, and bilinear

models is highly beneficial for image classification algorithms.

In terms of action recognition and video analysis, attention is used to focus on relevant content over

time. Yang et al. proposed to use soft attention models by combining a convolutional Long Short-Term

Memory Network (LSTM) with a hierarchical architecture to improve action recognition metrics [43].

Guided by the broad range and impact of attention mechanisms, in this paper we propose to train an

attention mechanism based on semantic information. For the semantic segmentation of a given image, this

mechanism returns a map based on prior learning. This map promises to reinforce the learning of features

derived from common scene objects and to hinder the effect of features produced by non-specific objects in

the scene.

3. Proposed Architecture

This paper proposes a multi-modal deep-learning scene recognition system composed of a two-branched

CNN and an Attention Module (see Figure 3).

7



Network Architecture Legend

Convolutional 2D  + 
Batch Normalization

ReLu
Activation

Average Pooling

Max Pooling

Residual 
Connection

Feature Tensor
Fully Connected 

Layer

Sigmoid 
Activation

Channel Attention 
Module (ChAM) [19]

Figuras Auxiliares

𝐈 ∈ ℝ𝑤×ℎ×3

𝑭𝐼 ∈ ℝ
𝑤𝑜×ℎ𝑜×𝑐𝑜

𝑭𝑀 ∈ ℝ𝑤𝑜×ℎ𝑜×𝑐𝑜

Diseño 3.2 Final Major Revision

Attention Module Bedroom

𝑭𝑨 ∈ ℝ𝑤𝑎×ℎ𝑎×𝑐𝑎

Semantic 
Segmentation Network

𝐌 ∈ ℝ𝑤×ℎ×𝐿

Semantic Branch

RGB Branch

Channel Attention Module (ChAM) [19]

𝑚𝑐
𝑭

Attention Module

𝑭𝑀

𝑭𝐼

𝑭𝑨

ChAM ChAM ChAM

Figure 3: Architecture of the multi-modal deep-learning scene recognition model. The architecture is composed of a Semantic

Branch, a RGB Branch and an Attention Module. The semantic branch aims to extract meaningful features from a semantic

segmentation score map. This Branch aims to convey an attention map only based on meaningful and representative scene

objects and their relationships. The RGB Branch extracts features from the color image. These features are then gated by the

semantic-based attention map in the Attention Module. Through this process, the network is automatically refocused towards

the meaningful objects learned as relevant for recognition by the Semantic Branch. Better viewed in color.

3.1. Motivations

The basic idea behind the design is that features extracted from RGB and semantic segmentation domains

complement each other for scene recognition. If we train a CNN to recognize scenes just based on the

semantic segmentation of an input RGB image (see top Branch in Figure 3), this network tends to focus on

representative and discriminative scene objects, yielding genuine-semantic representations based on objects

and stuff classes. We propose to use these representations to train an attention map. This map is then

used to gate RGB-extracted representations (see bottom Branch in Figure 3), hence refocusing them on the

learned scene content.

The effect of this attention mechanism is that the receptive field of the most probable neuron at the final

classification layer—known as class-activation map [9]—is enlarged and displaced towards scene discrimi-

native elements that have been learned by the Semantic Branch. An example of this behavior is depicted

in Figure 2: the RGB Branch is focused on the center of the image; the Semantic Branch mainly focuses

on the oven for predicting the scene class; the combined network includes the oven and other ”Kitchen”

discriminative objects as the stove and the cabinet for prediction.

3.2. Preliminaries

The proposed network architecture is presented in Figure 3. Let I ∈ Rw×h×3 be a normalized RGB

image and let M ∈ Rw×h×L be a score tensor representing I’s semantic segmentation, where Mi,j ∈ R1×1×L

represents the probability distribution for the i, j-th pixel on the L-set of learned semantic labels.
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Figure 4: Architecture of a Channel Attention Module (ChAM) [40]. ChAM is fed with an arbitrary size feature map F ∈

Rw′×h′×c′ and infers a 1D channel attention map mc ∈ R1×1×c′ . Better viewed in color.

The network is composed of a Semantic Branch (Figure 3 top) and a RGB Branch (Figure 3 bottom).

Their output is a pair of feature tensors, FM and FI respectively, which are fed to the Attention Module

to obtain the final feature tensor FA. This is fed to a linear classifier to obtain the final prediction for a

K-class scene recognition problem.

3.3. RGB Branch

It consists of a complete ResNet-18 architecture. This Branch is fed with I and returns a set of RGB-

based features FI ∈ Rwo×ho×co where wo, ho and co are the width, the height and the number of channels

of the output feature map. This Branch includes the original ResNet-18’s Basic Blocks with three of them

(Basic Blocks 2, 3 and 4) implementing residual connections. FI , which is obtained from Basic Block 4, is

then forwarded into the Attention Module.

3.4. Semantic Branch

Given I, a semantic segmentation network is used to infer a semantic segmentation score tensor M which

is then fed to the Semantic Branch. M encodes information of the set of meaningful and representative

objects, their spatial relations and their location in the scene. This Branch returns a set of semantic-based

features FM ∈ Rwo×ho×co that model the set of semantic labels and their semantic inter-dependencies in

spatial and channel dimensions.

The architecture of the Semantic Branch is a shallow network whose output size exactly matches that of

a ResNet-18 feature map (i.e, before the linear classifier). The use of a shallow network is here preferred, as

its input M lacks of texture information. Nonetheless, we compare the effect of using deeper networks for

this Branch in section 4.4.

To reinforce the semantic classes that are relevant for a given image, three Channel Attention Modules

(ChAM) [40] are introduced between convolutional blocks in the Semantic Branch. The ChAM module (see

Figure 4) exploits the inter-channel relationships between features and results on a per-channel attention

map. In this map, some feature channels are reinforced and some inhibited after the sigmoid layer. As

each channel represents the probability of a semantic class, ChAM forces the network to focus on certain
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Name Output Size Blocks

att conv I 512 × 5 × 5 3 × 3, 512, stride 1

att conv M 512 × 5 × 5 3 × 3, 512, stride 1

att conv2 I 1024 × 3 × 3 3 × 3, 1024, stride 1

att conv2 M 1024 × 3 × 3 3 × 3, 1024, stride 1

attention 1024 × 3 × 3 Hadamard product

avg pool 1024 × 1 × 1 Average Pooling

classifier K × 1 Dropout, K-dimensional FC, Softmax

Table 1: Layers and output sizes for the Attention Module.

classes. Specifically, ChAM is fed with an arbitrary size feature map F ∈ Rw′×h′×c′ and infers a 1D channel

attention map mc ∈ R1×1×c′ . F is squeezed along the spatial dimension by using both average-pooling and

max-pooling operations, obtaining feature vectors favg and fmax. These vectors are combined via two shared

fully connected networks separated by a ReLu activation layer. Resulting vectors f1 and f2 are then added

and regularized via a sigmoid layer to yield the 1D channel attention map mc:

f1 = WC2 · φ(WC1 · favg)

f2 = WC2 · φ(WC1 · fmax)

mc(F) = σ(f1 + f2),

(1)

where σ and φ are Sigmoid and ReLU activation functions respectively, WC1 ∈ Rc/r×c and WC2 ∈ Rc×r/c

are the weights of the fully connected layers, and r is a reduction ratio parameter.

This channel-attention map is used to weight F by:

F′ = mc(F)� F, (2)

where (�) represents a Hadamard product.

3.5. Attention Module

The Attention Module is used to obtain a set of semantic-weighted features FA ∈ Rwa×ha×ca which are

forwarded to a linear classifier to obtain the final scene posterior probabilities. The architecture and design

parameters of the proposed Semantic Attention Module are depicted in Figure 5 and detailed in Table 1.

Alternative attention mechanisms have been evaluated (see Section 4.4). Hereinafter, we describe the one

that yields the highest performance.
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Figure 5: Architecture of the Attention Module. It aims to obtain a set of semantic-weighed features FA ∈ Rwa×ha×ca , based

on RGB and semantic representations FM and FI . Better viewed in color.

Semantic gating representations FM,A are obtained from the output of the Semantic Branch FM by a

double convolutional block followed by a sigmoid module:

FM,A = σ
(
φ
(
WA2

M

(
φ
(
WA1

M FM + bA1

M

))
+ bA2

M

))
, (3)

where σ and φ are again Sigmoid and ReLU activation functions respectively, WA1

M , bA1

M and WA2

M , bA1

M

are the weights and biases of the two convolutional layers.

Similarly, RGB features to be gated (FI,A) are obtained from the output of the RGB Branch FI by:

FI,A = φ
(
WA2

I

(
φ
(
WA1

I FI + bA1

I

))
+ bA2

I

)
, (4)

where WA1

I , bA1

I and WA2

I , bA1

I are the weights of the two convolutional layers of this Branch.

Gating is performed by simply multiplying these two representations:

FA = FI,A � FM,A. (5)

FA is then forwarded to a classifier composed of an average pooling, a dropout, and a fully connected

layer, generating a feature vector f ∈ RK . The inference of scene posterior probabilities y ∈ RK from f is

achieved by using a logarithmic normalized exponential (logarithmic softmax ) function γ(f) : RK → RK :

yk = γ(f) = log

(
exp(fk)∑
i exp(fi)

)
, ∀i = 1, ...,K, (6)

where yk is the posterior probability for class k given the feature vector f.

3.6. Training Procedure and Loss

A two-stage learning procedure has been followed paying particular attention to prevent one of the

branches dominating the training process.
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Observe that some training examples might be better classified using either RGB or semantic features. In

our experiments, when both branches were jointly trained, and one of the branches was more discriminative

than the other, the overall loss was small, hindering the optimization of the less discriminative Branch. To

avoid this situation, during the first stage, both RGB and Semantic Branches are separately trained for a

given scenario (both branches are initialized with Places pretrained weights). At the second training step,

trained RGB and semantic branches are frozen while the Attention Module and the linear classifier are fully

trained from scratch.

Both training stages are optimized minimizing the following logistic function:

arg min
1

N

N∑
i=1

−log(γ(f)), (7)

where ψ denotes the trainable parameters, −log(·) is the Negative Log-Likelihood (NLL) loss and N is the

number of training samples for a given batch.

4. Experiments and Results

In this section, we evaluate the proposed scene recognition network on four well-known and publicly

available datasets: ADE20K [3], MIT Indoor 67 [14], SUN 397 [15] and Places365 [1]. To ease the repro-

ducibility of the method, the implementation design of the proposed method is first explained and common

evaluation metrics for all the experiments are presented. Then, to assess the effect of each design decision,

we perform a varied set of ablation studies. The section closes with a comparison against state-of-the-art

approaches on three publicly available datasets.

4.1. Implementation Design

Data Dimensions: Each input RGB image I is spatially adapted to the network input by re-sizing the

smaller edge to 256 and then cropping to a square shape of 224× 224× 3 dimension. In the training stage,

this cropping is randomized as part of the data augmentation protocol, whereas in the validation stage, we

follow a ten-crop evaluation protocol as described in [1]. The Semantic Branch inherits this adaptation.

RGB and Semantic Branches produce features FI and FM respectively, both with dimensions 512× 7× 7.

After the Attention Module, a 1024× 3× 3 attention representation FA is obtained. This representation is

fed to the linear classifier, yielding a probability vector y with dimensions K × 1, being K the number of

scene classes of a given dataset.

Semantic Segmentation: It is performed by an UPerNet-50 network [29] fully trained on the ADE20K

dataset with L = 150 objects and stuff classes. This fixed Semantic Segmentation Network (see Fig. 3) is

used throughout these experiments without further adaptation to any dataset.
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Figure 6: Image examples extracted from ADE20K [3] (top row) and MIT Indoor 67 [14] (bottom row) datasets. Notice the

large inter-class similarity between some of the scenes in both datasets. Better viewed in color.

Its output (a 150 vector per pixel, indicating its probability distribution) is the score tensor M. To ease

storage and convergence, this tensor is sparsified, i.e. all the Mi,j-th probability distributions which are not

among the three top for pixel (i, j) are set to zero.

Data Augmentation: These techniques are used in order to reduce model overfitting and to increase

network generalization. Specifically, for the RGB image, we use regular random crop, horizontal flipping,

Gaussian blur, contrast normalization, Gaussian noise and bright changes. Due to their nature, for the

semantic segmentation tensors, we only apply regular random crop and horizontal flipping. The training

dataset is shuffled at each epoch.

Hyper-parameters: To minimize the loss function in equation 7 and optimize the network’s trainable

parameters ψ, the Deep Frank-Wolfe (DFW) [44] algorithm is used. DFW is a first-order optimization

algorithm for deep neural learning which, contrary to the Stochastic Gradient Descend (SGD), only requires

the initial learning rate hyper-parameter and not a hand-crafted decay schedule. In all our experiments the

initial learning rate was set to 0.1. The use of alternative values did not improve learning performance. The

use of DFW resulted in similar performance to using SGD with a learning-rate decay schedule suited for each

dataset in around the same number of epochs. However, by suppressing the decay policy hyper-parameter,

the training process was lightened, as the number of parameters to sweep was simplified. Momentum was

set to 0.9 and weight decay was set to 0.0001 for the two stages in the training procedure (Section 3.6).

Hardware and Software: The model design, training and evaluation has been implemented using

PyTorch 1.1.0 Deep Learning framework [45] running on a PC using a 12 Cores CPU and a NVIDIA TITAN

Xp 12GB Graphics Processing Unit. Given this hardware specifications, the proposed architecture increases
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Figure 7: Image examples extracted from SUN 397 [15] (top row) and Places 365 [1] (bottom row) datasets. Notice the large

inter-class similarity between some of the scenes in both datasets. Better viewed in color.

the training computational time in a 21.4% with respect to the RGB baseline: a 6.78% due to the training

of the semantic branch and a 14.62% due to the training of the attention module. When evaluating the

proposed network, inference time is increased by a 37.5% with respect to the RGB baseline.

4.2. Datasets

ADE20K Scene Parsing Dataset: The scene parsing dataset ADE20K [3] contains 22210 scene-

centric images exhaustively annotated with objects. The dataset is divided into 20210 images for training and

2.000 images for validation. ADE20K is a semantic segmentation benchmark with ground-truth for L = 150

semantic categories provided for each image, hence enabling its use for training semantic segmentation

algorithms (Section 4.1-Semantic Segmentation). This dataset is used in our ablation studies (Section 4.4)

to reduce the influence of semantic segmentation quality in the evaluation results. Additionally, the dataset

includes ground truth for the classification of K = 1055 scene classes. Therefore, it can also be used as a

scene recognition benchmark, albeit data composition of scene classes is notably unbalanced. The top row

of Figure 6 depicts example images and scene classes of this dataset.

MIT Indoor 67 Dataset: MIT Indoor 67 dataset [14] contains 15620 RGB images of indoor places

arranged onto K = 67 scene classes. In the reported experiments, we followed the division between train

and validation sets proposed by the authors [14]: 80 training images and 20 images for validation per scene

class. The bottom row of Figure 6 represents example images and scene classes of the dataset.

SUN 397 Dataset: SUN 397 Dataset [15] is a large-scale scene recognition dataset composed by 39700

RGB images divided into K = 397 scene classes, covering a large variety of environmental scenes both indoor

and outdoor. An evaluation protocol to divide the full dataset into both train a validation sets is provided
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Backbone
Channel Attention

Module [40]
Pretraining

Number of

Parameters
Top@1 Top@2 Top@5 MCA

ResNet-18 Scratch 12 M 49.58 60.21 71.87 11.55

ResNet-18 X Scratch 12 M 50.60 60.45 72.10 12.17

ResNet-18 X ImageNet 12 M 52.17 61.86 71.75 15.54

3 Convolutional Layers Scratch 6.4 M 49.80 60.55 72.53 11.37

3 Convolutional Layers X Scratch 6.5 M 50.00 60.95 73.53 11.67

4 Convolutional Layers Scratch 2.5 M 49.90 60.50 71.70 12.94

4 Convolutional Layers X Scratch 2.6 M 50.35 60.90 72.55 13.53

Table 2: Ablation results for different architectures for the Semantic Branch.

with the dataset [15]. Following such protocol, the dataset is divided into 50 training and validation images

per scene class. The top row of Figure 7 reproduces examples images and scene classes of this dataset.

Places 365 Database: Places365 dataset [1] is explicitly designed for scene recognition. It is composed

of 10 million images comprising 434 scene classes. There are two versions of the dataset: Places365-Standard

with 1.8 million train and 36000 validation images from K = 365 scene classes, and Places365-Challenge-

2016, in which the size of the training set is increased up to 6.2 million extra images, including 69 new scene

classes (leading to a total of 8 million train images from 434 scene classes). In this paper, experiments are

carried out using the Places365-Standard dataset. The bottom row of Figure 7, presents example images

and scene classes of this dataset.

4.3. Evaluation Metrics

Scene recognition benchmarks are generally evaluated via the Top@k accuracy metric with k ∈ [1,K].

In this paper, Top@{k = 1, 2, 5} accuracy metrics have been chosen. The Top@1 accuracy measures the

percentage of validation/testing images whose top-scored class coincides with the ground-truth label. Top@2

and Top@5 accuracies, are the percentage of validation images whose ground-truth label corresponds to any

of the 2 and 5 top-scored classes respectively.

The Top@k accuracy metrics are biased to classes over-represented in the validation set; or, in other

words, under-represented classes barely affect these metrics. In order to cope with unbalanced validation

sets (e.g., ADE20K for scene recognition), we propose to use an additional performance metric, the Mean

Class Accuracy (MCA):

MCA =

∑
i Topi@1

K
∀i = 1, ...,K, (8)

where Topi@1 is the Top@1 metric for scene class i. Note that MCA equals Top@1 for perfectly balanced

datasets.
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4.4. Ablation Studies

The aim of this section is to gauge the influence of different design elements that constitute significant

aspects of the proposed method. First, the effect of different Semantic Branch architectures is evaluated.

Second, the effect of variations in both the attention mechanism and the attention module architecture is

assessed and analyzed. Third, the influence of the multi-modal architecture and the attention module with

respect to the RGB Branch is quantified. As stated in Section 4.2, all the ablation studies are carried out

using the ADE20K dataset.

Influence of the Semantic Branch Architecture

Table 2 presents results when semantic representations (FM ) are solely used for scene-recognition. Seven

configurations for the Semantic Branch that result from the combination of three design parameters (varia-

tion of the network architecture, employment of ChAM modules [40], and use of pre-trained models) have

been explored.

Results from Table 2 suggest that the inference capabilities of deeper and wider CNNs are not fully

exploited, as similar results can be achieved with shallower networks. For instance, when trained from

scratch, there is not a significant difference in terms of Top@k and MCA metrics between using ResNet-18

or a shallower network, e.g., a relative improvement of 0.49% with respect to the 4-convolutional layers

configuration. Configurations using 3 or 4 convolutional layers yield similar performance. However, for a

given input, a network with 3 convolutional layers (with its associated 3 spatial down-sampling steps) requires

larger kernels than a network with 4 convolutional layers (4 down-sampling steps) to obtain a feature output

of the same size due to the kernels’ size, hence leading to a higher number of parameters. Using a pre-trained

network moderately improves performance: ResNet-18 pre-trained on ImageNet performs a 3.00% (Top@1)

and a 21.6% (MCA) better than ResNet-18 from scratch, but not drastically, due to the non-RGB nature

of the semantic domain. The use of ChAM modules (as in Figure 3 for the shallow networks and as in [40]

for ResNet-18) slightly improves between a 2.6% and 5.4% in terms of MCA, without implying a significant

increase in complexity (0.1 Million additional units on average).

In the light of these experiments, we opted for using the 4 convolutional layer architecture for the

Semantic Branch as a trade-off solution between performance and complexity. This architecture yields a

comparable performance to ResNet-18 (−3.61% and −14.86% for Top@1 and MCA respectively), given that

substantially less units are used (−78.3%).

Influence of the Attention Module

We have performed two ablation studies on the influence of the attention module. First, we evaluated

the effect of using different attention mechanisms all of them sharing a similar network architecture: two

convolutional layers for each Branch using 3 × 3 × 512 and 3 × 3 × 1024 kernels. Then, once selected an

attention mechanism, we further explore the use of alternative network architectures to drive the attention.
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Figure 8: Different attention mechanisms architectures used for the attention module ablation study. Better viewed in color.

Attention Mechanisms

Table 3 presents an extensive study on attention mechanisms to validate their effectiveness and perfor-

mance, which is compared with the RGB Baseline. To ease the analysis, Figure 8 graphically depicts each

of the evaluated attention mechanisms.

Results from Table 3 suggest that attention mechanisms generally outperform the RGB baseline in

terms of MCA. Additionally, those based on Hadamard combination, either gated or not, perform better

than additive and concatenation mechanisms. Additive combination results in a 4.94% and a 6.46% decrease

in terms of Top@1 and MCA with respect to the Gated RGB Hadamard combination (G-RGB-H). Similarly,

attention based on feature concatenation performs a 1.13% (Top@1) and a 6.38% (MCA) worse than G-

RGB-H. Besides, concatenation increases the complexity of the linear classifier by generating a larger input

to this module. In our opinion, the decreases in performance may be indicative of the inability of additive

and concatenation mechanisms to favorable scale scene-relevant information.

Focusing on Hadamard combination, the use of a gated RGB combination (G-RGB-H) slightly improves

the non-gated one (a 4.31% for Top@1 and a 2.35% for MCA) thanks to the normalized semantic attention

obtained after the sigmoid activation layer. The effect of this normalized map is to gate RGB information,

hence maintaining its numerical range instead of scaling it as in the non-gated Hadamard combination.

Moreover, gating may also serve to nullify not-relevant RGB information, easing the learning process. Addi-

tionally, we tested gating attention contrariwise, i.e. using RGB features to gate semantic features (see Figure

8 right and Table 3 bottom). In this case, feature representations were obtained from the semantic domain,

which lacks texture and color information, and the attention map was inferred from RGB domain—which

lacks objects’ labels and clear boundaries. These representation problems deteriorate performance a 9.59%

and a 25.51% for Top@1 and MCA respectively. However, this Gated Sem combination improves the per-

formance of the Semantic Branch itself (compare Table 2 third row and Table 3 last row). In conclusion,
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Attention Mechanism Top@1 Top@2 Top@5 MCA

RGB Baseline 56.90 67.25 78.00 20.80

Additive Combination 59.60 70.60 80.60 25.36

Concatenation 61.85 72.25 81.60 25.38

Hadamard Combination 62.25 71.95 81.30 26.38

Gated RGB Hadamard Combination (G-RGB-H) 62.55 73.25 82.75 27.00

Gated Sem Hadamard Combination 56.55 66.30 75.45 20.11

Table 3: Ablation results for different attention mechanisms.

we opted for the top-performing G-RGB-H attention mechanism.

Architecture of the G-RGB-H Module

Table 4 presents comparative results for several variations of this module’s architecture: straightly gating

without adaptation (No Conv layers), using 2 or 3 convolutional layers, and using 1× 1 channel-increasing

layers.

Results indicate that the inclusion of convolutional layers to adapt FI and FM before the attention

mechanism improves performance. The lack of convolutional layers compared with a 2-layer configuration

leads to a decrease in performance of a 2.73% for Top@1 and a 10.37% for MCA. In our opinion, this owes

to the two-stage learning procedure that we follow (see Section 3.6): if no convolutional layers are used,

features from the semantic and the RGB Branches are not adapted, hindering the learning process. On

the other hand, the use of a deeper attention module (using 3 instead of 2 layers) produces a decrease in

performance of 2.15% and 7.77% in terms of Top@1 and MCA respectively, suggesting training over-fitting.

Regarding kernel nature, the use of 1 × 1 channel-increasing layers improves performance with respect

to using no layers at all, but its performance is still behind to that obtained by considering also the width

and height dimensions (3× 3 spatial kernels).

In conclusion, we opted for a G-RGB-H attention strategy based on two convolutional layers composed

of 3× 3× 512 and 3× 3× 1024 kernels at each Branch.

Influence of Semantic Segmentation in Scene Recognition

Table 5 gauges the effectiveness of the proposed architecture when compared to the solely use of either

the RGB Branch or the Semantic Branch. Comparative performances show that the RGB and semantic

branches highly complement each other when used for scene recognition. The proposed architecture (Table

5 last row) outperforms the RGB baseline (Table 5 first row): a 9.92% in terms of Top@1 performance and

a 29.80% in terms of MCA. Note that, due to the unbalanced dataset, the MCA metric is more adequate

for comparison.
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Conv Layers Kernel Size Top@1 Top@2 Top@5 MCA

No Conv Layers 60.84 70.55 80.22 24.20

2
1 × 1 × 512

61.00 72.30 81.95 24.92
1 × 1 × 1024

2
3 × 3 × 512

62.55 73.25 82.75 27.00
3 × 3 × 1024

3

3 × 3 × 512

61.20 71.150 81.750 24.903 × 3 × 1024

3 × 3 × 1024

Table 4: Ablation results for different G-RGB-H architectures.

RGB Semantic Top@1 Top@2 Top@5 MCA

X 56.90 67.25 78.00 20.80

X 50.60 60.45 72.10 12.17

X X 62.55 73.25 82.75 27.00

Table 5: Scene recognition results on ADE20K.

In order to extend this result, we have further evaluated the impact of decreasing the number of semantic

classes (L, initially 150 classes) in the method’s performance. To this aim, two randomly selected sets of

semantic classes (L = 50 and L = 100) have been used to train the proposed method. The selected sets

were incremental, i.e. the set of L = 50 semantic classes was contained within the set of L = 100 classes.

In order to reduce a potential bias of the random selection, three different experiments with three different

random seeds have been carried out. For these experiments, Figure 9 represents average results by bars’

heights and standard deviations via error bars. These indicate that a decrease in the number of semantic

classes reduces the performance of the proposed method. If the number of semantic classes is reduced to

L = 100, Top@1 and MCA metrics reduce by 15.28% and by 16.59%, respectively, compared to considering

all classes, but still outperforms the baseline in terms of MCA by a 8.26%. When the number of semantic

classes is further reduced to L = 50, performance reduces by 2.00% in terms of MCA compared with the

ResNet-18 baseline. These results indicate that the performance of the proposed method is reduced if we

use few semantic classes, but also suggest that performance might increase if we had more than L = 150

semantic classes.

4.5. State-of-the-art Comparison

Along this section the proposed method is compared with 19 state-of-the-art approaches, ranging from

common CNN architectures trained for scene recognition to methods using objects to drive scene recognition.

Comparison is performed on three datasets: MIT Indoor 67 [14], SUN 397 [15] and Places365 [1]. Unless
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Figure 9: Influence of the number of semantic classes in the performance of the proposed method. For comparison, ResNet-18

RGB baseline is also included in the figure. Average Top@1 metric for the three different random seeds is represented by blue

bars and the blue axis. Average Mean Class Accuracy (MCA) is represented by orange bars and the orange axis. Error bars

in models with L = 50 and L = 100 semantic classes are representing standard deviation valuess.

explicitly mentioned, results of all the approaches are extracted from their respective papers.

Evaluation on MIT Indoor 67 and SUN 397

Tables 6 and 7 agglutinate performances of scene recognition methods for the MIT Indoor 67 and the

SUN 397 datasets respectively. As these datasets are balanced, we only include the Top@1 metric. All the

compared algorithms are based on CNNs (see the Backbone column for details). For this evaluation, and just

to offer a fair comparison in terms of network complexity, we also present results for a version of the proposed

method (Ours) using a ResNet-50 network, instead of a ResNet-18 one, for the RGB Branch (Ours*). Note

that, ResNet-50 is preferred over a higher-capacity network as VGG-19. The reason for this choice lies on

the distribution of the discriminative power in each architecture. Regarding only the learnable layers, VGG-

19 is composed of 16 convolutional layers, followed by a powerful classification module made up of three

fully connected layers that constitute around 86% of the learnable capacity of the network. Consequently,

during the training process a relevant fraction of the discriminative power is learned by the classifier. In

our experiments, we noticed that this unbalanced distribution conveys features of a lower interpretability at

the output of the convolutional layers that, in turn, are less useful for the proposed scheme. Differently, the

convolutional layers of ResNet-50 represent around 97% of the learnable capacity of the network, providing

a high interpretability power to the features entering the attention module. The results of these experiments

agree with the neuron interpretability profiles discussed on [5].

Results on MIT Indoor 67 dataset (see Table 6) are in line with those of Table 5, suggesting a high com-
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Method Backbone
Number of

Parameters
Top@1

PlaceNet Places-CNN ∼ 62 M 68.24

MOP-CNN CaffeNet ∼ 62 M 68.90

CNNaug-SVM OverFeat ∼ 145 M 69.00

HybridNet Places-CNN ∼ 62 M 70.80

URDL + CNNaug AlexNet ∼ 62 M 71.90

MPP-FCR2 (7 scales) AlexNet ∼ 62 M 75.67

DSFL + CNN AlexNet ∼ 62 M 76.23

MPP + DSF AlexNet ∼ 62 M 80.78

CFV VGG-19 ∼ 143 M 81.00

CS VGG-19 ∼ 143 M 82.24

SDO (1 scale) [11] 2×VGG-19 ∼ 276 M 83.98

VSAD [10] 2×VGG-19 ∼ 276 M 86.20

SDO (9 scales) [11] 2×VGG-19 ∼ 276 M 86.76

RGB Branch ResNet-18 ∼ 12 M 82.68

RGB Branch* ResNet-50 ∼ 25 M 84.40

Semantic Branch 4 Conv ∼ 2.6 M 73.43

Ours RGB Branch + Sem Branch + G-RGB-H ∼ 47 M 85.58

Ours* RGB Branch* + Sem Branch + G-RGB-H ∼ 85 M 87.10

Table 6: State-of-the-art results on MIT Indoor 67 dataset. All stated results with no reference have been extracted from [11].

Methods using objects to drive scene recognition include: [10–12], Semantic Branch, Ours, Ours* and Ours**.

plementarity between the RGB and the semantic representations. The proposed method increases Top@1

performance of the RGB Branch by a 3.50% and a 3.19% for ResNet-18 and ResNet-50 backbones respec-

tively. These relative increments are smaller than those reported in Table 5 as the semantic segmentation

model, trained with the ADE20K dataset, is less tailored to the MIT scenarios. The proposed method (Ours)

performs better than most of state-of-the-art algorithms while using a substantially smaller number of pa-

rameters. e.g., a 1.90% improvement over the single scale SDO [11] (a method similar in spirit) while reducing

a 82.97% the number of parameters. The ResNet-50 backbone version of our method (Ours*) outperforms

every other state-of-the-art method, providing relative performance increments of 1.10% and 0.40% with

respect to VSAD and multi-scale SDO, still with a significant reduction in the model’s complexity—69.20%

less parameters. Additionally, whereas multi-scale patch-based algorithms require severe parametrization of

the size, stride and scale of each of the explored patches, the proposed algorithm is only parametrized in

terms of training hyper-parameters, highly simplifying its learning process.

A similar discussion applies to the SUN 397 Dataset (see Table 7). The proposed method (Ours)
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Method Backbone
Number of

Parameters
Top@1

Decaf AlexNet ∼ 62 M 40.94

MOP-CNN CaffeNet ∼ 62 M 51.98

HybridNet Places-CNN ∼ 62 M 53.86

Places-CNN Places-CNN ∼ 62 M 54.23

Places-CNN ft Places-CNN ∼ 62 M 56.20

CS VGG-19 ∼ 143 M 64.53

SDO (1 scale) [11] 2×VGG-19 ∼ 276 M 66.98

VSAD [10] 2×VGG-19 ∼ 276 M 73.00

SDO (9 scales) [11] 2×VGG-19 ∼ 276 M 73.41

RGB Branch ResNet-18 ∼ 12 M 67.65

RGB Branch* ResNet-50 ∼ 25 M 70.87

Semantic Branch 4 Conv ∼ 2.6 M 51.32

Ours RGB Branch + Sem Branch + G-RGB-H ∼ 47 M 71.25

Ours* RGB Branch* + Sem Branch + G-RGB-H ∼ 85 M 74.04

Table 7: State-of-the-art results on SUN 397 dataset. All stated results with no reference have been extracted from [11].

Methods using objects to drive scene recognition include: [10, 11], Semantic Branch, Ours, Ours* and Ours**.

Network
Number of

Parameters
Top@1 Top@2 Top@5 MCA

AlexNet ∼ 62 M 47.45 62.33 78.39 49.15

AlexNet @[1] ∼ 62 M 53.17 - 82.89 -

GoogLeNet @[1] ∼ 7 M 53.63 - 83.88 -

ResNet-18 ∼ 12 M 53.05 68.87 83.86 54.40

ResNet-50 ∼ 25 M 55.47 70.40 85.36 55.47

ResNet-50 @[1] ∼ 25 M 54.74 - 85.08 -

VGG-19 @[1] ∼ 143 M 55.24 - 84.91 -

DenseNet-161 ∼ 29 M 56.12 71.48 86.12 56.12

Semantic Branch ∼ 2.6 M 36.20 50.11 68.48 36.20

Ours ∼ 47 M 56.51 71.57 86.00 56.51

Table 8: State-of-the-art results on Places-365 Dataset (%). (@[1] stands for performance metrics reported in [1]).

outperforms most of state-of-the-art approaches, maintaining lower complexity; and if we go for a more

complex network for the RGB Branch (Ours*), the proposed method outperforms all reported methods still

using less than 1/3 of parameters.
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Figure 10: Qualitative results. First and second column represent the RGB and semantic segmentation images for selected

examples of the ADE20K, the SUN 397 and the Places 365 validation sets. The third, fourth and fifth columns depict the

Class Activation Map (CAM) [9] obtained by using features extracted from: the RGB Branch used baseline (ResNet-18), the

Semantic Branch and the proposed method (Ours). CAM represents the image areas that produce a greater activation of the

network (the redder the larger). CAM images also indicate the ground-truth label and the Top 3 predictions. Better viewed in

color.

Evaluation on Places 365

Table 8 presents results for the challenging Places365 Dataset. This Table includes both results from the

original Places365 paper (@[1] in Table 8) and those we obtained after the downloading and evaluation of
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the publicly available network models.

The proposed method (Ours) obtains the best results while maintaining relatively low complexity. Its

performance improves those of the deepest network, DenseNet-161, by a 0.73% in terms of Top@1 accuracy

and it surpasses the highest-capacity network, VGG-19, by a 2.29% reducing the number of parameters a

67.13%.

4.6. Qualitative Interpretation of the Attention Module

Class Activation Maps: To qualitatively analyze the benefits of the attention module, Figure 10

depicts intermediate results of our method, including, from left to right: the original color image, its semantic

segmentation and Class Activation Maps (CAMs) [9] at the output of the RGB Branch, through the FI

features, the Semantic Branch, via the FM features, and after the attention module, using the FA features.

CAMs are here represented normalized in color with dark-red and dark-blue representing maximum (1) and

minimum (0) activation respectively. Top 3 predicted classes for each Branch are included at the top-left

corner of each image.

The automatic refocusing capability of the attention module can be observed at first glance. Whereas

CAMs of the RGB Branch are clearly biased towards the image center, after the attention module, the

attention is focused on human-accountable concepts that can be indicative of the scene class, e.g., the

microwave for the kitchen, the animals for the chicken farm or the mirror for the bathroom. This refocusing

is specially useful for the disambiguation between similar classes—e.g., the runway to correct the airport

prediction at the second row, and to drive attention towards discriminative objects in conflicting scenes—e.g.,

the mirror can be used to recognize the bathroom at the last row.

Owing to the trained convolutional layers in the attention module (see Section 3.5) the final CAM is

not derived from the straight multiplication of the RGB and the Semantic CAMs. Instead, the effect of

the Semantic CAM—together with refocusing, is generally an enlargement of the focus area (compare third

and fifth columns in the Figure 10); hence, increasing the amount of information that may be used to

discriminate between scene classes. This may be a consequence of the larger CAMs yielded by the Semantic

Branch: as the semantic segmentation contains less information than the color image, the Semantic Branch

tends to focus on either small discriminative objects or on large areas containing objects’ transitions.

Correlation between scene and objects: Using the Class Activation Maps described in the previous

section we can obtain the correlation between objects and scene concepts, by taking into account the activa-

tion received by each object/stuff class in both the MIT Indoor 67 and the SUN 397 datasets. Accumulated

attentions along the dataset are depicted in Figure 11. The horizontal axis represents the set of semantic

classes assigned a larger focus—according to the CAMs—for both datasets. Objects/stuff are divided into

3 separate subsets: purple color is used to represent objects that are common in Indoor scenarios, green

objects are those that can be found in Outdoor scenarios, and black ones are those that may be found in
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Figure 11: Correlation between objects and scene concepts in both MIT Indoor 67 (top bar graph) and SUN 397 datasets

(bottom bar graph) for ResNet-18 Baseline and for the proposed method (Ours). Objects/stuff are divided into 3 separate

subsets. Purple color is used to represent objects that are Indoors, green objects are Outdoors, and black ones are those that

lie in Both indoors and outdoors. Better viewed in color.

Both scenarios.

The top graph in Figure 11 suggests that, for MIT Indoor 67 dataset, the proposed network (blue

bars) is essentially focused on stuff/objects associated with the Indoor (purple) and Both (black) subsets.

Comparing with the Baseline (orange bars), the attention received by Outdoor semantic classes decreases,

e.g. see “road”, “railing”, “bus” or “land”. These results are consistent with the MIT Indoor dataset which

only includes indoor scenarios. Moreover, the correlation between objects and scene concepts for the SUN

397 dataset (Figure 11 bottom graph) suggests a more evenly distributed attention towards stuff/objects

from Indoor, Outdoor and Both sets—disregarding objects’ sizes.

Results for MIT Indoor and SUN 397 datasets suggest that the most attended semantic classes depend on

whether the dataset’s scenes are from Indoor, Outdoor or Both scenarios. We believe that this preliminary

analysis sets a base for forthcoming interpretability studies that will be part of our future work.

4.7. Limitations of the Proposed Method

According to the reported results, semantic segmentation is useful to gate the process of scene recognition

on RGB images. However, if semantic segmentation is flawed or imprecise, the proposed method may not
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Figure 12: Examples of limitations of the proposed method. In some cases, when semantic segmentation is insufficient (top

row) or incorrect (bottom row) network predictions are erroneous. In the top row, the presence of a cabinet and the absence

of the computer in the semantic segmentation leads to a kitchen prediction. In the bottom row, the erroneous segmentation of

the floor as water leads to water-related scene predictions.

be able to surpass the erroneous information.

Figure 12 depicts two qualitative examples of these problems. In the top row, the semantic image lacks

information on discriminative objects e.g., the computer. In the absence of these objects, the cabinet object,

which is correctly segmented, dominates the gating process and drives an erroneous recognition: a ”Kitchen”

instead of an ”Office”. The bottom row contains another problematic situation. The semantic segmentator

miss-classifies the court as water (probably due to its color and texture). The proposed network, guided by

the primary presence of water, infers that the 3 most probable scenes classes are those in which water is

preeminent, hence failing.

5. Conclusions

This paper describes a novel approach to scene recognition based on an end-to-end multi-modal con-

volutional neural network. The proposed method gathers both image and context information using a

two-branched CNN (the traditional RGB branch and a complementary semantic information branch) whose

features are combined via an attention module. Several attention strategies have been explored including

classical additive and concatenating strategies as well as novel strategies based on fully trained convolu-

tional layers followed by a Hadamard product. Among these last, the top performing strategy relies on a

softmax transformation of the convolved Semantic Branch features. These transformed features are used to

gate convolved features of the RGB Branch, which results in the reinforcement of the learning of relevant

context information by changing the focus of attention towards human-accountable concepts indicative of
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scene classes.

Results on publicly available datasets (ADE20K, MIT Indoor 67, SUN 397 and Places 365) confirm that

the proposed method outperforms every reported state-of-the-art method while significantly reducing the

number of network parameters. This model simplification decreases training and inference times and the

amount of necessary data for the learning stage. Overall, results confirm that the combination of both RGB

and semantic segmentation modalities generally benefits scene recognition.
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