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We present a validation of the Dark Energy Survey Year 3 (DES Y3) 3 × 2-point analysis choices by
testing them on BUZZARD2.0, a new suite of cosmological simulations that is tailored for the testing and
validation of combined galaxy clustering and weak-lensing analyses. We show that the BUZZARD2.0

simulations accurately reproduce many important aspects of the DES Y3 data, including photometric
redshift and magnitude distributions, and the relevant set of two-point clustering and weak-lensing
statistics. We then show that our model for the 3 × 2-point data vector is accurate enough to recover the true
cosmology in simulated surveys assuming the true redshift distributions for our source and lens samples,
demonstrating robustness to uncertainties in the modeling of the nonlinear matter power spectrum,
nonlinear galaxy bias, and higher-order lensing corrections. Additionally, we demonstrate for the first time
that our photometric redshift calibration methodology, including information from photometry, spectros-
copy, clustering cross-correlations, and galaxy–galaxy lensing ratios, is accurate enough to recover the true
cosmology in simulated surveys in the presence of realistic photometric redshift uncertainties.

DOI: 10.1103/PhysRevD.105.123520

I. INTRODUCTION

Having effectively exhausted the information encoded in
the linear modes probed by the cosmic microwave back-
ground, cosmologists have lately turned to wide-field
galaxy surveys as their preferred tool for studying dark
matter and dark energy. These galaxy surveys, which probe
the distribution of matter in the low-redshift universe,
encode a great deal of cosmological information, but their
complex observational and modeling systematics pose
significant challenges to unbiased inference.
Recently, combinations of galaxy clustering and weak

lensing have been realized as powerful mechanisms for
extracting cosmological information from photometric
galaxy surveys such as the Dark Energy Survey1 (DES),
Kilo Degree Survey,2 and Hyper Suprime Cam.3 In
particular, the combination of shear-shear [cosmic shear,
ξ�ðθÞ], galaxy position–galaxy position [galaxy clustering,
wðθÞ], and tangential shear–galaxy position [galaxy–
galaxy lensing, γtðθÞ] two-point functions into a 3 × 2-
point analysis has proven powerful, in part because of its
ability to break degeneracies between nuisance parameters
and cosmological parameters [1,2]. The resultant increase
in constraining power comes at a cost, though: great care
must be taken to ensure that all of the components that feed
into the 3 × 2-point analysis are robustly determined, lest
the inferred cosmological constraints be biased.

While some analysis validation can be undertaken
analytically [3], or using the data itself [4], validation
against realistic cosmological simulations is an essential
component of modern galaxy survey cosmology analyses
[5–8]. In this work, we validate three main components of
the 3 × 2-point analysis being performed on the first three
years of DES data (DES Y3): the two-point function
measurement pipeline, photometric redshift calibration
methodology, and the likelihood and modeling framework
used to obtain cosmological constraints from two-point
functions and redshift distributions.
The first challenge that must be overcome in 3 × 2-point

analyses is the accurate measurement of the cosmic shear,
galaxy–galaxy lensing, and galaxy angular clustering
statistics that make up the 3 × 2-point data vector. The
measurement of galaxy ellipticities is especially important
for weak-lensing analyses, and dedicated image simula-
tions that test for and constrain biases that appear in this
process are an essential ingredient for modern weak-lensing
analyses [5,9–13]. In this work, we focus on ensuring that
our two-point measurement pipelines deliver unbiased
correlation functions in the absence of these shear system-
atics. Mitigating angular systematics imprinted on galaxy
clustering and galaxy–galaxy lensing statistics by survey
and foreground inhomogeneities is also important, and
while we do imprint DES depth variations on our simu-
lations that lead to systematics of this kind, the DES Y3
methodology for removing such systematics is thoroughly
investigated independently in Refs. [14–16].
The next key component required for accurate cosmo-

logical inference is a characterization of the source and lens
galaxy sample redshift distributions. The robust calibration
of source redshift distributions is a challenge shared by all
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weak-lensing surveys [17–19]. A critical component of
such a calibration is correctly accounting for incomplete-
ness of the spectroscopic galaxy catalogs that form the
foundation of all photometric redshift estimation. Previous
versions of the simulations presented in this work have
been used to study these effects [20], but here we assume
that we have complete, albeit realistically sized, spectro-
scopic redshift catalogs, upon which we build our photo-
metric redshift estimations. We proceed to test the three
separate components of the DES Y3 photometric redshift
calibration: photometric redshift estimation using self-
organizing maps [self-organizing map photometric redshift
(SOMPZ) and three-step dirichlet sampling (3sDir)], clus-
tering redshifts [Clustering redshift (WZ)], and the ratios of
galaxy–galaxy lensing signals (shear ratios). These three
components are thoroughly validated by Amon et al. [21],
Gatti et al. [22], Myles et al. [18], Sánchez et al. [23], and
Sánchez et al. [24]. In this work, we present further tests
showing that the combination of these three methods is
self-consistent and unbiased in our simulations and for the
first time show that the source redshift distributions
calibrated using these methods deliver unbiased cosmo-
logical constraints in simulations.
The challenge of lens galaxy photometric redshift

estimation is also formidable. The lens sample that we
use in this work, REDMAGIC, is a sample of luminous red
galaxies selected to be constant in comoving number
density as a function of redshift. As they are a bright
subset of galaxies, photometric redshift estimation is
relatively straightforward compared to that for source
galaxy, but nonetheless must be thoroughly validated. In
the DES Y3 data, clustering redshifts are again used for this
task, and this methodology is tested using the simulations
presented here by Cawthon et al. [25]. The REDMAGIC

redshift estimation is further validated in this work, where
we show that use of REDMAGIC photometric redshift
distributions does not bias our cosmological inference.
We note that after unblinding the DES Y3 REDMAGIC

analysis, the fiducial DES Y3 analysis was shifted to
use a different lens galaxy sample, called the MAGLIM

sample [26,27]. Validation of that analysis, including the
use of one of the simulations, described in this work is
presented by Porredon et al. [26].
With robust two-point function and redshift distribution

measurements in hand, one remaining challenge is to
accurately predict the dependence of the 3 × 2-point data
vector on the cosmological parameters of interest. Weak
lensing is particularly sensitive to nonlinearities induced by
gravitational collapse during the process of large-scale
structure formation, and so validation of the assumed
matter power spectrum model is a particularly important
aspect of 3 × 2-point analyses. The N-body simulations
used in this work were run with different settings and
resolutions than those used in the Halofit model for the
matter power spectrum that the DES Y3 3 × 2-point

analysis employs and thus provide an independent vali-
dation of this modeling alongside that presented by Krause
et al. [28]. The ray-tracing algorithm that we employ [29]
allows us to incorporate higher-order lensing effects such as
magnification, angular deflection, and reduced shear in the
two-point functions that we measure in our simulations,
validating the approximations of these effects that are made
in our modeling framework that are also validated by Elvin-
Poole et al. [30], Krause et al. [28], and Prat et al. [15].
Robust marginalization over astrophysical nuisance

parameters such as galaxy bias, redshift-space distortions
(RSDs), galaxy intrinsic alignments, and baryonic effects
on the matter distribution is another important challenge
when interpreting the measurements made in 3 × 2-point
analyses. As the models used for these effects in the DES
Y3 3 × 2-point analysis are largely perturbative in nature, it
is essential to validate them against fully nonlinear sol-
utions for these physical processes as implemented in
cosmological simulations. In this work, we focus on testing
our models for galaxy bias and RSD, while Krause et al.
[28] and Seccof et al. [31] test our models for intrinsic
alignments and baryonic effects. These tests complement
those performed by Pandey et al. [6], further validating the
bias modeling choices that are used in the analysis of the
DES Y3 data by Pandey et al. [32] and the accompanying
2 × 2-point analyses. In particular, we show here that the
scale cuts used for our analyses are robust to nonlinearities
beyond those assumed in our model, by showing that the
cosmological constraints obtained from the measurements
on our simulations are unbiased at high significance.
Our presentation will be organized as follows. In Sec. II,

we describe the BUZZARD2.0 simulations, which represent a
significant upgrade over the simulations used in DES
Year 1 analyses. In Sec. III, we describe how 3 × 2-point
measurements are made and how redshift distributions are
estimated in our simulated analyses. In Sec. IVA, we
describe the model used to obtain cosmological constraints
from the DES Y3 3 × 2-point measurements that we wish
to test on these simulations. In Sec. V, we present the results
of our simulated analyses, including varying levels of
realism. Finally, in Sec. VI, we summarize our work and
conclude by discussing future directions for improvement.

II. BUZZARD2.0 SIMULATIONS

In this work, we make use of a suite of 18 N-body
simulations that are designed to reproduce the lens and
source samples used in the DES Y3 3 × 2-point analysis.
These are a new version of the BUZZARD simulations [33],
implementing a number of improvements over those used
in analyses of the first year of DES data (DES Y1). In this
section, we briefly summarize the pertinent details from
DeRose et al. [33] and outline the main improvements,
relegating a more detailed description of these changes
to Appedixes A–C. The main improvements of the
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simulations presented in this work over those used in DES
Y1 analyses are as follows:
(1) improved color-dependent clustering, based on a

conditional abundance matching model;
(2) explicit matching of red-sequence color distributions

to the DES data;
(3) more realistic photometric errors enabled by the

BALROG [9] image simulation framework.
Each BUZZARD simulation is constructed from three

independent N-body simulations, with sizes of 1.053,
2.63, and 4.03 h−3 Gpc3 and particle loads of 14003,
20483, and 20483, respectively. All simulations were run
using the L-GADGET2 code [34] and initialized with inde-
pendent seeds at z ¼ 50 using second-order Lagrangian
perturbation theory as implemented in 2LPTIC [35] and
linear power spectra computed with CAMB [36], assuming
a flat Lambda Cold Dark Matter (LCDM) cosmology
with Ωm ¼ 0.286, Ωb ¼ 0.046, h ¼ 0.7, ns ¼ 0.96, and
σ8 ¼ 0.82. A single set of these simulations is sufficient
to generate a unique light conewith an area of 10,413 square
degrees out to z ¼ 2.35. For further details regarding
simulation specifications and validation of relevant observ-
ables, see Secs. 3.1 and 3.2 in DeRose et al. [33].
Galaxies are included in these light cones using the

ADDGALS algorithm [37], which imbues each galaxy with a
position, velocity, size, ellipticity, and spectral energy
distribution. Functionally, the algorithm for producing
our source and lens galaxy samples proceeds as follows:
(1) Assign galaxy positions, velocities, and absolute

magnitudes.
(2) Assign galaxy Spectral Energy Distributions (SEDs).
(3) Assign intrinsic galaxy sizes and ellipticities.
(4) Perform ray tracing and lensing of the galaxy catalog.
(5) Generate survey-specific photometry and ellipticities.
(6) Select source and lens galaxy samples.
Step 1 is unchanged from previous versions of the

BUZZARD simulations and is fully explained by Wechsler
et al. [37]. We generate a list of galaxy absolute magnitudes
by integrating a luminosity function that has been fit to a
variety of spectroscopic datasets. Additionally, we have
optimized the luminosity function in order to match
observed galaxy counts as a function of magnitude in
the DES Y3 data, using an algorithm analogous to that used
in DES Y1, described in Appendix E.1 of the work
byDeRose et al. [33]. Galaxies from this list are assigned
phase-space coordinates using a model for PðδjMr; zÞ that
is tuned to a subhalo abundance matching model, where
PðδjMr; zÞ is the probability that a galaxy in the simulation
with an absolute magnitude Mr is found in an overdensity
δ. In practice, δ is defined as the inverse of the radius
enclosing a 3 × 1013 h−1M⊙. In halo masses around and
below this mass, ADDGALS tends to be slightly less accurate
as described by Wechsler et al. [37].
One of the main galaxy samples used for DES cosmo-

logical constraints is the REDMAGIC sample, which is

designed to have robust photometric redshifts made possible
by preferentially selecting bright red galaxies whose redshift
distributions have been shown to be accurately and precisely
characterized [25,38,39]. To better model this sample, we
have made significant improvements to the color-dependent
clustering model with respect to previous versions of these
simulations. In particular, we adopt a conditional abundance
matching algorithm that assigns SEDs from the SloanDigital
Sky Survey (SDSS) Main Galaxy Sample with redder rest
frame g − r colors to galaxies that are closer to dark matter
halos with masses greater than M200b ∼ 1013h−1 M⊙.
A more detailed description of this algorithm can be found
in Appendix A as well as in the work byWechsler et al. [37]
and DeRose et al. [40].
Following this procedure, we compute broadband mag-

nitudes by integrating each SED over DES ugrizY and
VISTA JHK bandpasses. This procedure leads to color
distributions that well approximate those observed in the
DES Y3 data. In particular, color distributions for BUZZARD
and the DES Y3 deep field data are compared in Fig. 1, in
which we have binned the deep field data in redshift using
the most precise redshift estimate available for each galaxy.
Agreement is excellent except for in u − g, where there are
known deficiencies in the SED templates used in our
simulations [33].
In DeRose et al. [33], we showed that the galaxy red

sequence, e.g., Pðr − ijzÞ for red galaxies, in the DES Y1
BUZZARD simulations was significantly narrower than that
found in the DES Y1 data. This led to overoptimistic
photometric redshift uncertainties for red-sequence gal-
axies such as the REDMAGIC sample, as the uncertainty in

FIG. 1. Comparison of ugrizJHK color distributions as a
function of redshift between BUZZARD (blue) and the DES Y3
redshift sample (black). Different rows depict color distributions
for different band combinations (listed in the left column), while
different columns show different redshift bins. Agreement is good,
except for in the u-band and at redshifts z > 1, where the SED
templates used in BUZZARD are poorly constrained by data [41].
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these photometric redshift estimates is directly proportional
to the width of the red sequence. Additionally, at high
redshifts, galaxies in the DES Y1 BUZZARD simulations
were significantly redder than those found in the data,
leading to a deficit of bright, red galaxies. To remedy these
issues, we explicitly force the mean and width of the red
sequence to match that found in the data. The agreement
between the BUZZARD2.0 simulations and the DES Y3 data
in this respect is shown in Fig. 2. The algorithm for
performing this matching is described in Appendix B.
Once SEDs have been assigned and magnitudes generated

in each DES bandpass, we assign galaxy half-light radii and
intrinsic ellipticities as a function of observed i-band magni-
tude as described in Appendix E3 in DeRose et al. [33]. After
this step, we have a catalog of galaxies with true positions,
velocities, SEDs, DES magnitudes sizes, and ellipticities.
Before applying any survey-specific masking or photo-

metric errors to our simulations, we compute weak-lensing
quantities by ray tracing through our simulations with the
CALCLENS code [29] using the same configuration as
described in DeRose et al. [33]. We then compute deflec-
tion, rotation, shear, and magnification for each galaxy
from the lensing distortion tensor at the position of that
galaxy. These quantities are then used to deflect the angular
positions, rotate and shear the intrinsic ellipticities, and
magnify the sizes and magnitudes of each galaxy.
After lensing has been performed, the simulations are

rotated into the DES Y3 footprint and masked using the
DES Y3 REDMAGIC mask. We are able to cut two DES Y3
footprints per 10,000 square degree light cone, each with an
area of 4143.17 square degrees.

In addition to these improvements, we have implemented
a more realistic model for photometric errors in order to
provide a better testing ground for the photometric redshift
methodologies employed in the DES Y3 3 × 2-point
analysis. Along with the Gaussian photometric errors that
we produce using the model described in Appendix E.4 of
DeRose et al. [33], we produce independent realizations of
photometric errors by making use of the photometric error
distributions measured by the BALROG image simulation
framework [4,9]. BALROG injects low-noise images of
galaxies observed in the DES deep fields [42] into wide-
field images and remeasures their photometry. This allows
for estimates of detection efficiency and photometric errors
as a function of the nearly noiseless deep-field galaxy
properties. These relationships are precisely what are
required in order to apply photometric errors to our
simulations. For each simulated galaxy, we find a
BALROG injected galaxy that is closest in riz bands and
apply the magnitude offsets between the true BALROG

injected photometry and the measured wide-field
detection. For a detailed description of this algorithm,
see Appendix C. At this point, we have galaxy catalogs
with lensed positions, velocities, SEDs, sizes, ellipticities,
and ugrizYJHK magnitudes with realistic noise from
which we can select DES-like galaxy samples.

III. MEASUREMENT OF THE 3 × 2-POINT
DATA VECTOR

The 3 × 2-point data vector consists of the combination
of galaxy ellipticity and galaxy density autocorrelations,
the cross-correlation between galaxy density and galaxy
ellipticities, and the associated source and lens galaxy
redshift distributions. In our simulations, we have kept as
close as possible to the measurement pipelines used in the
DES Y3 data, with the main exception being that our
simulated source catalog does not have inverse variance
weights or METACALIBRATION shear responses [4,43]. We
have also opted to measure all shear correlation functions
without shape noise in order to maximize the constraining
power afforded us by this suite of simulations. Appendix D
describes how we select source and lens galaxy catalogs
from the BUZZARD simulations, and Appendix E describes
the estimators used to construct the two-point functions that
make up the 3 × 2-point data vector.
In Figs. 3 and 4, we compare the mean 3 × 2-point data

vector from the BUZZARD simulations to the 3 × 2-point
data vector measured from the DES Y3 data, finding
agreement at the 10%–20% level for nearly all scales
and redshift bins. The first redshift bin in wðθÞ is the major
exception; here, the BUZZARD simulations disagree with the
DES Y3 measurements by a factor of approximately 1.5 on
large scales. This bin contains the intrinsically faintest lens
galaxies in our sample, so it is possible that this is a sign of
a breakdown in our color-dependent galaxy clustering
model at fainter magnitudes than the samples used to

FIG. 2. Comparison of red-sequence colors between BUZZARD

and DES Y3 as measured by REDMAPPER. Top: mean red-
sequence color as a function of redshift for the DES Y3 data
(black) compared to the BUZZARD simulations (blue). The largest
differences occur at high redshift in g − r, where the mean color is
poorly constrained in the data. Bottom: scatter in red-sequence
colors as a function of redshift for the DES Y3 data and
BUZZARD.

J. DEROSE et al. PHYS. REV. D 105, 123520 (2022)

123520-6



constrain the model parameters in the work by DeRose
et al. [40]. It is also interesting to note that the BUZZARD

predictions for γtðθÞ in this lens bin match the data quite
well. In light of the observed 12% discrepancy between the
bias inferred from γtðθÞ and wðθÞ in the DES Y3 REDMAGIC

sample [44], the fact that BUZZARD agrees with the DES Y3
REDMAGIC γtðθÞ measurement in the first lens bin implies
that we should see a 24% discrepancy in wðθÞ on large
scales under the assumption of LCDM and linear bias,
which is approximately what is observed.

FIG. 3. Comparison of γtðθÞ and wðθÞ between BUZZARD (lines) and the measurements from the Y3 data using the REDMAGIC lens
sample (points), with error bars given by the fiducial Y3 covariance matrix. Shaded regions indicate the angular scale cuts applied in the
fiducial 3 × 2-point analysis. Rows alternate between showing the measured signals and the fractional difference between data and
simulations. Numbers in each panel label the bin combinations shown, with the numbers in the γtðθÞ panels representing the lens-source
bin pair and numbers in wðθÞ panels denoting the lens bins alone. The intent of this comparison is to gauge how well the galaxy
clustering and lensing properties in BUZZARD match those observed in the data, with the caveat that disagreement may arise due to
differences in cosmology, and source and lens galaxy redshift distributions. Agreement in wðθÞ is generally better than for γtðθÞ
especially for the second through fifth lens bins, which may be a result of slightly different source redshift distributions between the
simulations and data, especially where there is significant overlap between source and lens redshift distributions. We also observe a
marked deficit of power on small scales in γtðθÞ for the first lens bin at smaller scales than those used in the analysis, part of which is
likely due to resolution effects in BUZZARD. The excellent match between γtðθÞ on larger scales in the first lens bin is interesting in light
of the large discrepancy in the amplitude of wðθÞ between the DES Y3 data and BUZZARD for this lens bin. The DES Collaboration [44]
demonstrates that under the assumption of LCDM the REDMAGIC wðθÞ and γtðθÞ imply bias values that differ by 12%, so this may play
some role in the discrepancies seen between the BUZZARD and DES Y3 wðθÞ measurements in the first lens bin.
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We also see that there is a deficit of power in the
BUZZARD measurements on small scales in γtðθÞ for bin
combinations that include the first lens bin. This deficit is
likely a result of resolution effects in our N-body simu-
lations on one-halo scales, as these measurements probe the
smallest physical scales shown in these figures due to the
nonlocal nature of γtðθÞ. We note that for ξ�ðθÞ there are no
large deviations from our simulation measurements on
scales smaller than the DES Y3 scale cuts, as one might
expect from baryonic effects on the matter power spectrum,
which have been shown to affect the matter power spectrum
at the 10%–30% level [45].
To confront our two-point function measurements with

theoretical predictions, we require estimates of the redshift
distributions of our source and lens galaxies for each
tomographic bin. We have made validation of these
algorithms on the simulations presented here a focus for
the DES Y3 3 × 2-point analysis. Each component of our
redshift estimation framework including photometric
redshift estimation and tomographic binning with SOMPZ

[18,46], redshift distribution uncertainty propagation with
3SDIR [18,24], and complementary redshift distribution
information from clustering cross-correlations [22,25]
and galaxy–galaxy lensing ratios [23] has been tested
extensively on the BUZZARD simulations. Here, we briefly
summarize how redshift distributions are obtained from our
simulations, relegating a more extensive discussion to
Appendix F and the papers where each individual redshift
estimation component are validated and applied to the DES
Y3 dataset [10,12,27,47,48].
Our lens galaxy photometric redshift estimation is

relatively unchanged from that used in DES Y1. We briefly
describe it here and refer the reader to the work by Rozo
et al. [39], Cawthon et al. [25], and Rodríguez-Monroy
et al. [16] for more details. As the REDMAGIC sample is a set
of bright galaxies for which we have abundant spectros-
copy, we place significant confidence in REDMAGIC in the
photometric redshift estimates provided by the algorithm
itself, pðzredMaGiCÞ. These are obtained by constructing a
red-sequence spectral template from a combination of

FIG. 4. Comparison of ξ�ðθÞ between BUZZARD and the DES Y3 data. As in Fig. 3, rows alternate between ξ�ðθÞ and the fractional
difference between simulations and data, while the numbers in each panel denote which source bin pairs are plotted. The intent of this
comparison is to show that the cosmic shear measurements from our simulations largely agree with those in the DES Y3 data, so
analyses performed on the simulations can be trusted to have similar constraining power to those performed on the DES Y3 data. The
residuals shown here are largely scale independent, which is likely a representation of the imperfect match in source redshift
distributions between our simulations and data, along with a small difference in the best-fit cosmology from the ξ�ðθÞ analysis in the
DES Y3 data and that used in the BUZZARD simulations.
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spectroscopy and galaxy cluster members. In our simu-
lations, we assume that we have a sparse, but unbiased,
spectroscopic training set of similar size to that used in the
data. We bin lens galaxies into five tomographic bins with
edges, f0.15; 0.35; 0.5; 0.65; 0.8; 0.9g, using the mean of
pðzredMaGiCÞ. To estimate the nðzÞ for each tomographic
bin, we stack four Monte Carlo samples drawn from the
pðzredMaGiCÞ for each galaxy.
Source galaxy tomographic binning and mean redshift

distribution estimation is performed by a self-organizing-
map-based algorithm called SOMPZ. SOMPZ leverages
information from many-band photometry taken in small
deep fields in the DES Y3 footprint in combination with
secure spectroscopic and multiband photometric redshifts
from PAUþ COSMOS [49] to estimate the redshift dis-
tributions of wide field weak-lensing source galaxies,
accounting for selection and noise biases using the
BALROG image simulation framework. All of these pieces
of information are included in our BUZZARD simulations,
with the simplifying assumption that the redshift catalog

that is used by sompz is sparse but unbiased. We use 3SDIR

to generate samples of nðzÞ for each source tomographic
bin, propagating sample variance and shot noise errors.
Clustering cross-correlations between lens and source
galaxies are then used to select 1000nðzÞ samples, and
the distribution of the means of these samples is used as a
prior for the analyses presented in Sec. V D.
The top row of Fig. 5 compares the source and lens

redshift distributions measured from a single realization of
the BUZZARD simulations to those measured in the DES Y3
data. The agreement between the source redshift distribu-
tions in BUZZARD and the DES Y3 data is quite good; the
mean redshifts of each tomographic bin in BUZZARD are
½0.326; 0.511; 0.744; 0.871� compared with ½0.382; 0.563;
0.759; 0.913� in the Y3 data. The high- and low-redshift
tails are also captured well in the simulations, except in the
last source bin where there is a tail to high redshift in the
DES Y3 data that is not as extended in the BUZZARD

simulations. This discrepancy is consistent with the obser-
vation that colors in BUZZARD approximate DES data more

FIG. 5. Top: comparison of source (left) and lens (right) redshift distributions in BUZZARD (dashed) to DES Y3 data (solid). The mean
redshifts of the source tomographic bins are ½0.326; 0.511; 0.744; 0.871� in BUZZARD compared with ½0.382; 0.563; 0.759; 0.913� in the
Y3 data. We have matched the effective source number density and shape noise in BUZZARD to that found in the DES Y3
MATACALIBRATION sample [10]. In combination with the close match in mean redshifts of each tomographic bin, this means that the total
signal to noise of our lensing measurements in BUZZARD should be approximately the same as that found in the DES Y3 data. Bottom:
comparison between true (solid) and photometric (dashed) redshift distributions in BUZZARD for sources (left) and lenses (right). The
differences between true and photometric redshift distributions illustrated here are shown to be negligible for the simulated analyses
presented in this work in Sec. V D.
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poorly at z > 1, as seen in Fig. 1. A key component
necessary for obtaining this level of agreement in redshift
distributions was the implementation of a more realistic
photometric error model, described in Appendix C. The
agreement between the lens redshift distributions in our
simulations and those found in the data is near perfect.
Tuning of the red-sequence color model using the algo-
rithm described in Sec. II and Appendix B was necessary in
order to obtain this level of agreement.

IV. 3 × 2-POINT LIKELIHOOD

In this section, we describe the theoretical model that that
we employ in the simulated analysis of the BUZZARD2.0

3 × 2-point measurements.

A. Theoretical model

Here, we provide an overview of the model that we will
use to describe the 3 × 2-point measurements and refer the
reader to the work of Amon et al. [21], Elvin-Poole et al.
[30], Krause et al. [28], Pandey et al. [32], Prat et al. [15],
and Secco et al. [31] for complete technical specifications
of the model.

1. Field-level description

There are two main fields that we must accurately
describe in order to model 3 × 2-point measurements:
the scalar projected galaxy overdensity field measured in
a tomographic bin i at position n̂, δiobsðn̂Þ, and the spin-2
galaxy shape field in tomographic bin j at position
n̂, γjαðn̂Þ.
We account for three contributions to the galaxy over-

density field,

δiobsðn̂Þ¼
Z

dχWi
δðχÞδð3DÞ

g ðn̂χ;χÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δiDðn̂Þ

þδiRSDðn̂Þþδiμðn̂Þ; ð1Þ

where χ is the comoving distance and Wi
δ ¼ niðzÞdz=dχ is

the normalized radial window function for galaxies in
tomographic bin i. The first term in this sum, δiDðn̂Þ, is the
projection of the three-dimensional (3D) density contrast,

δð3DÞ
g , and the following two terms are contributions from
RSD and magnification, respectively.
The configuration-space three-dimensional density con-

trast can be perturbatively expanded in terms of operators
that satisfy the symmetries of general relativity. We account
for the following dependencies in this work,

δ3Dg ∼ fðδm;∇i∇jΦ;∇ivjÞ
∼ fð1ÞðδmÞ þ fð2Þðδ2m; s2Þ þ fð3Þðδ3m; δms2;ψ ; stÞ; ð2Þ

where δm, Φ. and v are the three-dimensional matter
density contrast, potential, and velocity fields and ψ , s2

and t are the scalar quantities constructed from contractions
of the shear and velocity divergences∇i∇jΦ and∇ivj [50].
On the right-hand side of Eq. (2), we have organized these
fields by the order at which they contribute to the galaxy
density contrast, where all arguments of the function fi

contribute at ith order. If we remain agnostic about the
absolute magnitude of the contribution from these fields to
the total galaxy density contrast and treat them to one-loop
order in perturbation theory, then we must introduce four
bias coefficients per lens bin: b1, b2, b3nl, and bs2 [50,51].
The parameters b1 and b2 describe the dependence of the
galaxy density contrast on the matter density contrast and
its square, b3nl governs the dependence of all third-order
fields that contribute at one loop, and bs2 dictates the
dependence on s2. Pandey et al. [6] showed that for the
accuracy of DES Y3 it is sufficient to leave only b1 and b2
entirely free and to relate b3nl and bs2 to b1 through the so-
called Lagrangian coevolution relations [52]:

bs2 ¼ ð−4=7Þ × ðb1 − 1Þ ð3Þ

b3nl ¼ b1 − 1: ð4Þ

Additionally, we multiply b1 by the fully nonlinear matter
density contrast, whose power spectrum is modeled using
Halofit [53,54]. In Sec. V, we explore a fiducial model that
assumes only linear bias, as well as a higher-order bias
model that leaves bi1 and bi2 free per lens bin, where the
superscript enumerates the lens redshift bin that each
coefficient contributes to.
RSD contributes to this projected field through the

apparent bulk motion of galaxies across redshift bins
due to the large-scale coherent infall of galaxies towards
each other [55]. As our redshift bins are broad, this effect
can be treated at linear order and thus depends only on the
linear matter density field and the Hubble parameter, HðzÞ.
As such, inclusion of RSD contributes no additional free
parameters to our model. During the preparation of this
work, a bug in the implementation of RSD in the BUZZARD

simulations was identified. As our analysis was quite
advanced, we opted to correct for this by adjusting our
model to account for it, rather than correcting our simu-
lations. Additional details are contained in Appendix H.
The magnification contribution to δiobs is sourced by

gravitational lensing of galaxies by matter along the line of
sight and contributes to the density both in a purely
geometric manner by increasing/decreasing the apparent
surface area around dense/underdense lines of sight and by
modulating the galaxy selection function through the
(de)magnification of galaxy magnitudes and sizes around
(under)dense lines of sight. The first of these effects
depends only on the underlying cosmological model and
matter power spectrum, but the second depends on the
number density of the galaxy sample in question as a
function of flux and size. To account for this dependence,
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we introduce the proportionality constant Ci and write the
magnification term as

δiμðn̂Þ ¼ Ciκiðn̂Þ; ð5Þ

where Ci ¼ 2½αiðmÞ − 1� and α is the slope of the intrinsic
magnitude–size distribution, nintrðmÞ:

α ¼ 2.5
d
dm

½log nintrðmÞ�: ð6Þ

We have also introduced the tomographic convergence field

κiðn̂Þ ¼
Z

dχWi
κðχÞδm ðn̂χ; χÞ; ð7Þ

where δm is the 3D matter density contrast, and the
tomographic lensing efficiency

Wi
κðχÞ ¼

3ΩmH2
0

2

Z
χH

χ
dχ0niðχ0Þ χ

aðχÞ
χ0 − χ

χ0
: ð8Þ

It is important to note that we assume constant galaxy
bias, magnification, and enclosed mass (see Appendix G)
parameters in each lens bin. The validity of this assumption
is tested in our simulated analyses.
We can write the galaxy shape field as

γjαðn̂Þ ¼ γjG;αðn̂Þ þ ϵjI;αðn̂Þ þ ϵj0;αðn̂Þ; ð9Þ

where γjG;α is the contribution sourced by the gravitational
field, i.e., the gravitational lensing signal, and the latter two
terms are sourced by the intrinsic shapes of galaxies, where
we have decomposed this contribution into a spatially
coherent alignment with the large-scale matter distribution
ϵjI;αðn̂Þ and a stochastic contribution ϵj0;αðn̂Þ which will
only contribute to the noise in our correlation function
measurements.
To model the spatially coherent “intrinsic alignment”

(IA) term, ϵjI;αðn̂Þ, we first construct a three-dimensional
shape field γ̄IAij using the tidal alignment and tidal torquing
(TATT) model as [31]

γ̄IAij ¼ A1sij þ A1δδsij þ A2sikskj þ � � � ; ð10Þ

where sij is the traceless tidal field tensor. This three-
dimensional field must then be projected to obtain the two-
dimensional field described in Eq. (9), which is then used to
compute angular correlation functions.
We let the coefficients in Eq. (10) evolve as a power law

in redshift:

A1ðzÞ ¼ −a1C̄1

ρcritΩm

DðzÞ
�
1þ z
1þ z0

�
η1
; ð11Þ

A2ðzÞ ¼ 5a2C̄1

ρcritΩm

D2ðzÞ
�
1þ z
1þ z0

�
η2
; ð12Þ

C̄1 is a normalization constant, by convention fixed
at a value C̄1 ¼ 5 × 10−14 M⊙ h−2Mpc2, obtained from
SuperCOSMOS (see the work by Brown et al. [56]). The
parameter z0 is a pivot redshift, which we fix to the value
0.62; ρcrit is the critical density; and DðzÞ is the linear
growth function.
We then relate A1δ to A1 via

A1δ ¼ bTAA1; ð13Þ

where bTA can be interpreted as the source galaxy bias,
although we have allowed it to assume a broader prior than
would be physically possible if it were a galaxy bias
parameter in order to give this term more flexibility in our
intrinsic alignment (IA) model. In total, we have five IA
parameters: three amplitude parameters in a1, a2, bTA and
two parameters governing their redshift evolution, α1 and
α2. This three-dimensional field can be projected into the
two-dimensional shape field that is observed.
Note that we include modeling of IAs in our simulated

analyses solely for sake of comparison with the expected
constraining power of the analyses being performed on the
data. No IA signal is included in the BUZZARD simulations.
Marginalizing over the full IA model significantly impacts
the constraining power of cosmic shear analyses, but its
impact on 3 × 2-point is much less severe [31,44].
Nevertheless, we have verified that none of the results
presented here changes in a qualitative way when we do not
marginalize over IAs.

2. Angular two-point statistics

We are not interested in these fields themselves but rather
in their angular two-point auto- and cross-correlations. In
general, an angular two-point function ξijABðθÞ, where i and
j are tomographic bin indices and A and B specify the fields
being correlated, can be related to its corresponding angular
power spectrum Cij

ABðlÞ via the relation

ξijABðθÞ ¼
X
l

2lþ 1

4π
Cij
ABðlÞdmnðθÞ; ð14Þ

where dmn is the Wigner D matrix andm ¼ n ¼ 0 for wðθÞ;
m ¼ 0, n ¼ 2 for γt; and m ¼ 2, n ¼ �2 for ξ�.
We compute bin-averaged predictions for these two-

point functions by computing dmnðθÞ averaged over the
width of the angular bin as described by Krause et al. [28].
The angular power spectra are in turn computed by
projecting three-dimensional power spectra PAB along
the line of sight weighted by the relevant projection kernels.
For ξ� and γt, we use the Limber approximation [57]
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Cij
ABðlÞ ¼

Z
dχ

Wi
AðχÞWj

BðχÞ
χ2

PAB

�
k ¼ lþ 0.5

χ
; zðχÞ

�
;

ð15Þ

but for wðθÞ, the accuracy of the DES Y3 data demands that
we compute the full non-Limber projection integral on
large scales as described by Fang et al. [47] and Krause
et al. [28]. Our simulations do not assume the Limber
approximation for wðθÞ, but our ray-tracing algorithm does
implicitly assume it, and thus the γtðθÞ and ξ�ðθÞ mea-
surements in our simulations also use the Limber approxi-
mation. Additionally, wherever the nonlinear matter power
spectrum appears in our analysis, we use the recalibrated
Halofit model [53], as described by Takahashi et al. [54].
We also wish to mitigate the nonlocal nature of the

galaxy–galaxy lensing signal, as γtðθÞ at a fixed value of θ
is sensitive to the total mass enclosed at all angles less than
θ. There are a number of similar methods that aim to
remove the sensitivity of γtðθÞ to this enclosed mass
[5,58,59], but we opt to analytically marginalize over a
single parameter in each lens bin in order to account for
this,

γijt ðθÞ ¼ γijt;modelðθÞ þ
Cij

θ2
; ð16Þ

where

Cij ¼ Bi

Z
dzldzsniðzlÞnjðzsÞΣ−1

critðzl; zsÞD−2
A ðzlÞ ð17Þ

≡ Biβij; ð18Þ

where Bi is a free parameter describing the mass enclosed
within the minimum scale used in the γtðθÞ part of our data
vector per lens bin, Σcrit is the critical surface mass density,
and DAðzlÞ is the angular diameter distance to zl. Notably,
we have made the assumption that this enclosed mass does
not evolve significantly over the width of our lens redshift
bin, an assumption that is implicitly tested in this work.
Instead of sampling over these additional enclosed mass

parameters, analytically marginalize over them by adding
an extra component to our covariance matrix as described
in Appendix G.

B. Scale cuts

We have determined a set of scale cuts such that our
fiducial linear bias modeling choices detailed above are
sufficient to deliver unbiased cosmological constraints in a
series of simulated analyses on noiseless data vectors.
When making choices about whether a particular analysis
assumption is acceptable for the constraining power
afforded us by the DES Y3 data, we set a criterion that
the assumption under consideration must result in no
greater than a 0.3σ bias in the two-dimensional spaces

of S8 −Ωm and w −Ωm for LCDM and wCDM analyses,
respectively. Formally, our criterion can be expressed as

PðŜ8; Ω̂mjdfidÞ > 0.235; ð19Þ

where ðŜ8; Ω̂mÞ ¼ E½PðS8;ΩmjdcontÞ� for the LCDM case
and likewise for w −Ωm for the wCDM case. Procedurally,
this test is performed as follows. We generate a data vector,
dcont, by breaking a set of assumptions that are made in our
fiducial analysis. We then analyze dcont using the fiducial
model where those assumptions hold, producing the
posterior PðS8;ΩmjdcontÞ. We then generate a data vector
using COSMOSIS, dfid, using the same cosmology as that
assumed when generating dcont, but now making the
assumptions that were previously broken. We analyze
this with the same model, giving us the posterior
PðS8;ΩmjdfidÞ. Our scale cut criterion, Eq. (19), then
requires that E½PðS8;ΩmjdcontÞ� must fall within the 0.3σ
(P > 0.235) confidence region of PðS8;ΩmjdfidÞ.
The contaminated data vector that we use, dcont, breaks

our matter power spectrum and linear bias assumptions.
Instead of our fiducial assumptions, we use a model for the
nonlinear matter power spectrum that takes into account
baryonic effects as measured in the Overwhelmingly Large
Simulations (OWLS) Active Galactic Nuclei (AGN) sim-
ulation [60]. OWLs AGN possesses feedback effects that
are more significant than many more recent hydrodynamic
simulations but are still within the realm of possibility.
Additionally, we contaminate with the nonlinear bias model
described in Sec IVA and bias coefficients as described by
Pandey et al. [32].
We have determined that scale cuts on ξ�ðθÞ that yield a

χ2 difference between our contaminated and fiducial
models for ξ�ðθÞ of 0.5 are sufficient to pass Eq. (19).
For γtðθÞ and wðθÞ, we make angular scale cuts that
correspond to 6 h−1Mpc and 8 h−1Mpc [or 4 h−1Mpc
for both γtðθÞ and wðθÞ when testing nonlinear bias
modeling], respectively, at the low edge of the redshift
range for each lens bin. This procedure, along with a
number of additional stress tests of our fiducial model,
including tests of different matter power spectra, higher-
order lensing effects, and a more complex IA redshift
scaling, are discussed further by Krause et al. [28].

V. VALIDATION OF THE DES
Y3 3 × 2-POINT ANALYSIS

We now proceed to investigate whether the models
described in Sec. IV are sufficient to recover unbiased
constraints on cosmological parameters in our simulations.
We investigate four different analysis configurations:
(A) fixed cosmology;
(B) linear bias, true redshift distributions;
(C) nonlinear bias, true redshift distributions;
(D) linear bias, calibrated photo-z distributions.
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The results of these tests are described in the following
subsections. The parameters that we leave free for each of
these configurations are listed with their priors in Table I.
We also list the part of the data vector that each parameter
contributes to, i.e., ξ�ðθÞ, wðθÞ, or γtðθÞ.
The simulations presented in this work contain complex-

ities beyond the assumptions made in our fiducial model,
including
(1) beyond one-loop galaxy bias, including stochas-

ticity;
(2) redshift evolution of galaxy bias within each

lens bin;
(3) redshift evolution of enclosed mass parameter, Bi,

within each lens bin;

(4) source galaxy clustering;
(5) reduced shear;
(6) source galaxy magnification;
(7) multiple lens plane deflection (“beyond Born”

approximation);
(8) anisotropic source and lens nðzÞ;
(9) non-Gaussian distributed data vectors.
For all posterior parameter distributions presented in

this paper, we make use of the POLYCHORD nested
sampler [61] with the same settings used by the DES
Collaboration [44], which have been shown to yield
converged posteriors and evidences. All fits are done on
data vectors with the fiducial scale cuts described in
Sec. IV B unless explicitly stated otherwise. We make

TABLE I. Parameters and priors.

Parameter Prior Data vector Analysis configuration

Cosmology
Ωm Flat (0.1, 0.9) ξ�ðθÞ, wðθÞ, γtðθÞ B, C, D
As Flat (5 × 10−10, 5 × 10−9) ξ�ðθÞ, wðθÞ, γtðθÞ B, C, D
ns Flat (0.87,1.07) ξ�ðθÞ, wðθÞ, γtðθÞ B, C, D
Ωb Flat (0.03,0.07) ξ�ðθÞ, wðθÞ, γtðθÞ B, C, D
h Flat (0.55, 0.91) ξ�ðθÞ, wðθÞ, γtðθÞ B, C, D

Lens galaxy bias
bi1 (i ¼ 1, 5)a Flat (0,3.0) wðθÞ, γtðθÞ A1/2, B, C, D
bi2 (i ¼ 1, 5)b Flat (−5, 5) wðθÞ, γtðθÞ A2, C

Intrinsic alignment
a1 Flat (−5, 5) ξ�ðθÞ, γtðθÞ B, C, D
a2 Flat (−5, 5) ξ�ðθÞ, γtðθÞ B, C, D
α1 Flat (−5, 5) ξ�ðθÞ, γtðθÞ B, C, D
α2 Flat (−5, 5) ξ�ðθÞ, γtðθÞ B, C, D
bta Flat (0,2) ξ�ðθÞ, γtðθÞ B, C, D

Magnification
αimag Flat ð−4; 4Þ γtðθÞ, wðθÞ A1/2

Point mass
Bi Flat ð−50; 50Þ γtðθÞ A1/2c

Lens photo-z
Δz1l Gauss (0.000, 0.004) wðθÞ, γtðθÞ D
Δz2l Gauss (0.000, 0.003) wðθÞ, γtðθÞ D
Δz3l Gauss (0.000, 0.003) wðθÞ, γtðθÞ D
Δz4l Gauss (0.000, 0.005) wðθÞ, γtðθÞ D
Δz5l Gauss (0.000, 0.01) wðθÞ, γtðθÞ D
σz5l Gauss (1.000, 0.054) wðθÞ, γtðθÞ D

Source photo-z
Δz1s Gauss (0.000, 0.018) ξ�ðθÞ, γtðθÞ D
Δz2s Gauss (0.000, 0.013) ξ�ðθÞ, γtðθÞ D
Δz3s Gauss (0.000, 0.006) ξ�ðθÞ, γtðθÞ D
Δz4s Gauss (0.000, 0.013) ξ�ðθÞ, γtðθÞ D

Shear calibration
mi (i ¼ 1, 4) Gauss (0.0, 0.015) ξ�ðθÞ, γtðθÞ D

aAnalysis setup C samples over bi1σ8.
bAnalysis setup C samples over bi2σ

2
8.cMarginalized over analytically in B/C/D.
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use of the COSMOSIS
4 likelihood and sampling framework

[62], which is one of two essentially interchangeable
implementations of the model described in Scc. IVA,
along with COSMOLIKE [63]. COSMOSIS makes use of the
CAMB Boltzmann solver [36,64].
We make use of the covariance matrix appropriate for a

single survey realization even though we are fitting to the
mean of 18 simulations. This is because we wish to keep as
close to the actual analysis that will be performed on the
DES Y3 data as possible. Analyzing each of the 18
simulations independently with this covariance matrix
and taking the product of their posteriors would have
yielded the closest approximation to the analyses per-
formed on the DES Y3 data, but doing so would have
proven extremely computationally expensive. Instead, we
have opted to run analyses on the mean data vector from all
18 simulations but use a covariance matrix appropriate for a
single realization. This is in the spirit of the rest of the
simulated analyses used to validate the DES Y3 cosmo-
logical constraints.
Because of this choice, we are susceptible to the same

parameter projection effects in marginalized posteriors as
those discussed by Krause et al. [28] and Appendix I. These
parameter projection effects are a consequence of correla-
tions between cosmological parameters and poorly con-
strained nuisance parameters, such that when the nuisance
parameters are marginalized over they impart a bias in the
marginalized posterior mean of a parameter of interest. We
emphasize that these effects are not a systematic error, in
the sense that they decrease in size as the constraining
power of an analysis increases. For a concrete example of
parameter projection effects, see the discussion in Sec. V B
and Appendix I.
As such, we always compare posteriors obtained from

our BUZZARD simulated data vectors with posteriors
obtained by running the same analysis on a synthetic data
vector generated by COSMOSIS assuming the BUZZARD

cosmology, true redshift distributions, and best-fit nuisance
parameters from analysis configuration A1 or A2, as
defined in Sec. VA, depending on whether the analysis
under consideration uses a linear or nonlinear bias model.
We will often refer to the COSMOSIS simulated data vector
as an uncontaminated data vector, as it is produced from the
same model that is being used to perform the analysis.
When comparing the posteriors obtained from the
BUZZARD simulated data vector to those obtained from
the uncontaminated data vector, we can disentangle the
parameter biases resulting from parameter projection
effects that will be present in both marginalized posteriors
from parameter biases resulting from unmodeled system-
atics in BUZZARD which will only be present in the
BUZZARD posteriors.

To illustrate the increased constraining power available
to us through the use of the mean measurement from 18
simulations, we show 1=

ffiffiffiffiffi
18

p
σ and 2=

ffiffiffiffiffi
18

p
σ confidence

intervals when plotting constraints run on the BUZZARD

data vectors. These roughly correspond to the 1σ and 2σ
confidence intervals that we would have obtained had we
performed analyses using the single Y3 covariance scaled
by the inverse of the number of simulations. In fact, these
sets of confidence intervals are identical in the limit of flat
priors, which we use for the majority of our parameters. If
our inference framework worked perfectly, we would
expect the mean of the posteriors derived from 18 simu-
lations to match the mean of the posteriors from the
uncontaminated analysis at a level defined by these tighter
confidence regions, even though the uncertainties from a
Y3-sized data set are a factor of

ffiffiffiffiffi
18

p
larger.

Because we have a finite number of simulations, we need
to apply a slightly different criterion than Eq. (19) in order
to validate our analysis assumptions. In particular, consid-
ering the data vector generated by taking the mean over all
of our simulations as dcont in Eq. (19), we note that the
quantity E½PðS8;ΩmjdcontÞ� now has an uncertainty asso-
ciated with it due to the noise that remains in dcont even
after averaging over 18 simulations. We wish to take this
uncertainty into account when determining whether an
analysis passes or fails our criterion. To do this, we can
generalize Eq. (19) to

PTE≡ 1 −
Z
PðS8;ΩmjdfidÞ>0.235

PðS8;Ωmjdcont;Σ=NÞdθ

≈ 1 −
Z
PðS8;ΩmjdfidÞ>0.235

PðS8;Ωmjdcont;ΣÞNdθ; ð20Þ

where Σ is the covariance for a single Y3 BUZZARD

realization and N is the number of simulation realizations
(18). The proportionality in the second line holds in the
limit that the prior in the two-dimensional space of S8 −Ωm
is flat over the region where PðS8;ΩmjdfidÞ > 0.235, and
dfid is the uncontaminated data vector generated by
COSMOSIS. This quantity is the probability that the analysis
performed on the mean buzzard data vector, dcont, results in
a parameter bias that is more than 0.3σ, i.e., a probability to
exceed (PTE) 0.3σ cosmological parameter bias.
Values for these probabilities are quoted in Table II, and

these constitute the main result of this paper. In particular,
we find that in all cases the probability for any analysis to
exceed a 0.3σð1σ) bias is less than 62% (2%) for LCDM
and 58% (1%) in wCDM. In the following subsections, we
break these results down by analysis configuration.
We supplement these values by calculating the mean

two-dimensional offsets in Ωm − S8 and S8 − w in Table III
for LCDM and wCDM, respectively. These offsets are
given by4https://bitbucket.org/joezuntz/cosmosis/.
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jX̂fid − X̂contj
σX;fid

;

where

X̂fid ¼ argmax½PðXjdfidÞ�
X̂cont ¼ argmax½PðXjdcontÞ�;

X is either ðΩm; wÞ or ðS8;ΩmÞ, and σX;fid is the 1σ

confidence interval in the direction of X̂fid − X̂cont.
These mean biases are more easily interpretable, but we

caution that these are less robust than the PTE values, as the
mean posterior values for the BUZZARD chains have non-
negligible uncertainty of approximately 1=

ffiffiffiffiffi
18

p
σ due to

residual noise in the mean BUZZARD data vector. That
uncertainty is an upper bound on the actual uncertainty on
these numbers, since our measurements do not include
shape noise, while our covariance matrix does.

A. Fixed cosmology

Before we obtain cosmological constraints from our
simulated measurements, we first wish to demonstrate that
our models for galaxy bias and lens magnification provide
good fits to our measurements when the cosmology in our
model is fixed to the true cosmology of our simulations.
Additionally, we fix all photometric redshift and shear
calibration parameters and use the measured true source
and lens redshift distributions to make our model predic-
tions. We set all IA parameters to zero as our simulations
contain no IA contribution. We refer to this as analysis
configuration A.
Within this configuration, we consider two variants: one

using a linear bias model and one using our full nonlinear
bias model described in Sec. IVA, which we refer to as
configurations A1 and A2, respectively. A1 assumes one
linear bias coefficient bi1 and one magnification coefficient
Ci for each lens bin. Analysis configuration A2 also fits for
one second-order bias parameter per lens bin, bi2. In this

configuration, we also sample over the enclosed-mass
parameters, Bi, described in Sec. IVA, rather than analyti-
cally marginalizing over them in order to aid in presentation
of our results. Analytic marginalization results in the same
best-fit likelihood values as sampling over the enclosed-
mass parameters, but interpreting model residuals in a
visual format is made much easier if we can obtain best-fit
values for these parameters. The priors that we assume on
our bias, magnification, and enclosed-mass parameters are
listed in Table I.
The best-fit models for configurations A1 and A2 are

shown in Figs. 6 and 7, and the error bars are obtained from
the covariance of a single Y3 simulation, which is what is
used to fit these models. The prediction for ξ�ðθÞ has no
free parameters in this configuration, and we find a chi-
squared of 1.4 for 207 data points. The differences on large
scales in ξ�ðθÞ are likely caused by a combination of source
galaxy clustering and source galaxy magnification [28,31].
On scales below the scale cuts used in this analysis, the
observed differences are likely sourced by ray-tracing
resolution effects [33]. For analysis configurations A1
and A2, the predictions for wðθÞ and γtðθÞ have 15 and
20 free parameters, respectively, with 53 and 232 data
points for wðθÞ and γtðθÞ for A1 and 68 and 272 data points
for wðθÞ and γtðθÞ for the rmin ¼ 4 h−1 Mpc scale cuts used
for the A2 analysis. A1 results in a chi-squared of 4.5 and
9.1 for wðθÞ and γtðθÞ, while A2 results in chi-squared
values for wðθÞ and γtðθÞ of 7.2 and 8.4. The fact that the
reduced chi-squared values for wðθÞ and γtðθÞ are larger
than for ξ�ðθÞ is expected, as wðθÞ and γtðθÞ have an
additional contribution from shot noise in the lens galaxy
sample, which is not present in ξ�ðθÞ. In all cases, the
residuals are significantly smaller than the expected errors
on our Y3 measurements. In the following sections, we
investigate the effect of these residuals on cosmological
parameter constraints, where we have formal requirements
on acceptable parameter biases. We have also checked that
the values for the magnification coefficients obtained in
these analyses are consistent with the expected values, as

TABLE II. PTE 0.3=1σ cosmological parameter bias. PTE values less than 1% are indicated as <0.01.

LCDM B wCDM B LCDM C wCDM C LCDM D wCDM D

ξ�ðθÞ 0.43=<0.01 0.19=<0.01 … … 0.14=<0.01 0.24=<0.01
wðθÞ,γtðθÞ 0.25=<0.01 0.35=<0.01 0.20=<0.01 0.26=<0.01 0.08=<0.01 0.05=<0.01
ξ�ðθÞ, wðθÞ, γtðθÞ 0.61=0.02 0.49=<0.01 0.35=<0.01 0.58=0.01 0.15=<0.01 0.12=<0.01

TABLE III. Mean Ωm − S8=w − S8 parameter bias.

LCDM B wCDM B LCDM C wCDM C LCDM D wCDM D

ξ�ðθÞ 0.19σ 0.04σ … … 0.07σ 0.15σ
wðθÞ, γtðθÞ 0.13σ 0.14σ 0.05σ 0.11σ 0.01σ 0.01σ
ξ�ðθÞ, wðθÞ, γtðθÞ 0.23σ 0.18σ 0.09σ 0.21σ 0.07σ 0.05σ
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further explored by Elvin-Poole et al. [30]. These results
are summarized in Table IV.

B. Linear bias

We proceed to analyze our simulations assuming the true
measured redshift distributions with analysis configuration
B. Configuration B samples over LCDM or wCDM
cosmological parameters, linear galaxy bias and the
TATT IA model while fixing nuisance parameters related
to photometric redshift uncertainty and weak-lensing shear
calibration. We also fix the parameters describing lens
magnification to the values obtained for the BUZZARD

simulations by Elvin-Poole et al. [30].
The results of this analysis are summarized in the top row

of panels in Figs. 8 and 9, in which we display posteriors
obtained from analyses of ξ�ðθÞ, wðθÞ þ γtðθÞ, and
ξ�ðθÞ þ wðθÞ þ γtðθÞ in the three different subfigures for
a LCDM and wCDM analysis, respectively. The solid
contours in these figures are obtained by running analyses
on dcont, i.e., the mean BUZZARD data vector, and the inner
and outer contours represent the 1=

ffiffiffiffiffi
18

p
σ and 2=

ffiffiffiffiffi
18

p
σ

confidence regions using a covariance matrix appropriate
for a single simulation realization. We emphasize that these
confidence regions are equivalent to the 1σ and 2σ
confidence regions we would have obtained using a
covariance appropriate for the mean of 18 simulations in
the limit of flat priors.
The dashed contours in each panel are constraints

obtained by running on an uncontaminated data vector
assuming the covariance of a single Y3 simulation and so
approximately represent the uncertainties on S8, Ωm, and w
that we would expect from the Y3 data in the absence of
photometric redshift and shear calibration systematics. The
PTE values obtained by plugging these posteriors into
Eq. (20) are summarized in the first two columns of
Table II. All three analyses pass the criterion in
Eq. (20). We also quote biases in the mean Ωm − S8 and
w −Ωm posteriors for the LCDM and wCDM analyses with
respect to the black uncontaminated posteriors in Table III.
We find that all data combinations result in mean posterior
biases that are less than 0.3σ.
In wCDM, we see that the uncontaminated black-dashed

posteriors are biased with respect to the truth for

FIG. 6. Comparison of our fiducial ξ�ðθÞmodel prediction (lines) at the true BUZZARD cosmology to the mean measurement from our
simulations without shape noise (points). Rows alternate between the signals themselves and fractional deviations between models and
simulations, and the gray regions are our fiducial scale cuts. We find χ2 ¼ 0.78 for ξþ and χ2 ¼ 0.59 for ξ−. The differences on large
scales are likely caused by a combination of source galaxy clustering and source galaxy magnification [28,31]. On scales below the scale
cuts used in this analysis, the observed differences are likely sourced by ray-tracing resolution effects [33].
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2 × 2-point and 3 × 2-point analyses. This is a so-called
projection effect that results from degeneracies between our
nuisance parameters and cosmological parameters, particu-
larly w and S8. In configuration B, poorly constrained

nonlinear IA parameters in our TATT model couple with S8
and w, such that when we marginalize over these IA
parameters differences in posterior volume sourced by
correlations between IA parameters and S8 and w lead to
apparent biases. It is for this reason that it is important to
quote offsets with respect to the uncontaminated posteriors,
rather than the true parameter values in our simulations, lest
we neglect the impact of these projection effects. The
direction and size of these projection effects depends
sensitively on the mean nuisance and cosmological param-
eter values assumed when generating our data vectors, as
they are entirely a function of the parameter volume that is
projected over to obtain marginalized posteriors. As such,

FIG. 7. Same as Fig. 6, but for γtðθÞ and wðθÞ. Best-fit configuration A1 (linear bias, blue) and A2 (nonlinear bias, yellow) models
fixed to the true BUZZARD cosmology are compared to the mean BUZZARD data vector without shape noise. Rows alternate between the
signals themselves and fractional deviations between models and simulations. For configuration A1, we find χ2 ¼ 4.5 for γtðθÞ and
χ2 ¼ 9.1 for wðθÞ for our fiducial scale cuts, shown as light gray shaded regions. For A2, we find χ2 ¼ 7.2 for γtðθÞ and χ2 ¼ 8.4 for
wðθÞ using rmin ¼ 4 h−1 Mpc scale cuts, depicted by the dark gray shaded regions.

TABLE IV. Best-fit configuration A1=2 χ2/data vector dimen-
sionality (NDV)/number of free parameters (Nparam).

A1 χ2 A1 NDV A1 Nparam A2 χ2 A2 NDV A2 Nparam

ξ�ðθÞ 1.4 207 0 … …
wðθÞ 4.5 53 15 7.2 68 20
γtðθÞ 9.1 232 15 8.4 272 20
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it is also important that our data vector that is used to obtain
uncontaminated posteriors is generated with nuisance
parameters that match those found in the BUZZARD sim-
ulations. For a concrete demonstration of these effects in
the case where they are most significant in our analyses, see
Appendix I.
If our forward model exactly matched the BUZZARD

measurements at the true BUZZARD cosmology, then the
projection effects in the contaminated and uncontaminated
posteriors would match, as the posteriors would then agree
perfectly and thus projection effects would be identical.
Because we do not have an analytic forward model that
exactly describes the BUZZARD measurements, this sets a
limit on the precision with which we can perform the tests
presented in this work because differences in projection
effects in combination with biases in our model can then
source marginalized posterior offsets. This is particularly
true in the limit where parameter projection effects are
large, as the PTE values and parameter offsets that we quote
depend on the nuisance parameter values assumed in our
uncontaminated data vectors.
While these effects are counterintuitive and limit our

ability to interpret posteriors at the precision of fractions of
1σ, we can take solace in the fact that they are not a
systematic bias, as the size of these effects will shrink
proportionally to the constraining power of the data.

C. Nonlinear bias

In configuration C, we add nonlinear bias to the model
used in configuration B. In particular, we use the nonlinear
bias model described in Sec. IVA and sample over σ8bi1
and σ28b

i
2 rather than the bare bias parameters in order to

mitigate parameter projection effects as discussed in
Ref. [32]. We again assume the true measured redshift
distributions and fix nuisance parameters related to photo-
metric redshift uncertainty and weak-lensing shear calibra-
tion. In this case, we relax our angular scale cuts so that
they correspond to rmin ¼ 4h−1 Mpc at the low edge of
each lens redshift bin for wðθÞ and γtðθÞ, as motivated by
Pandey et al. [6].
The results of this analysis are shown in the middle rows

of Figs. 8 and 9 for LCDM and wCDM, respectively. The
posteriors here are analogous to those produced using
analysis configuration B. The PTE values obtained by
plugging these posteriors into Eq. (20) are summarized in
the third and fourth columns of Table II. Biases in the mean
Ωm − S8 and w −Ωm posteriors for the LCDM and wCDM
analyses with respect to the black uncontaminated poste-
riors are quoted in Table III. There is a moderate decrease in
Ωm − S8 parameter bias for the full 3 × 2-point analysis in
this configuration compared with the constraints obtained
using configuration B, but the shift that we observe is
approximately the same size as that expected from the tests
performed by Pandey et al. [32], ∼0.2σ, that were

originally used to determine the scale cuts that we are
further testing here.
In wCDM, we see that the PTE values and w −Ωm

parameter biases increase with respect to those found in
configuration B. This is likely a result of a mismatch in
projection effects occurring in our BUZZARD analysis and
our uncontaminated analysis. The first piece of evidence for
this is that we see the opposite effect, i.e., a decrease in PTE
and parameter biases in our configuration C LCDM
analyses where projection effects are less important.
Furthermore, we see no evidence that our nonlinear bias
model is a worse fit for the relaxed scale cuts used in
analysis C than our linear bias model is when using our
fiducial scale cuts. This is evidenced by the very small
change in reduced chi-squared values between configura-
tions A1 and A2, as described in Sec. VA. Finally, the
maximum likelihood w value for the configuration C
BUZZARD 3 × 2-point analysis is −1, indicating that there
are indeed large projection effects in this analysis, as this
maximum likelihood value is significantly offset from the
mean of the w posterior in the middle right panel of Fig. 9.
In light of this, we caution against overinterpretation of the
larger PTE and parameter bias values for these wCDM
constraints. This issue further emphasizes the importance
of quoting parameter constraints where the effects of
parameter projection effects are minimized, as has been
a focus for the DES Y3 analyses.

D. Calibrated photometric redshifts

Finally, we test whether our photometric redshift mar-
ginalization methodology is sufficient to recover unbiased
cosmological constraints on our simulations in the presence
of realistic photometric redshift uncertainties. The meth-
odology for obtaining the calibrated photometric redshift
distributions that we employ in this analysis is described in
detail in Appendix F as well as in the work by Buchs et al.
[46], Cawthon et al. [25], Gatti et al. [22], Myles et al. [18],
Sánchez et al. [23], and Sánchez et al. [24]. In summary,
we use lens redshift distributions as estimated by the
REDMAGIC algorithm and samples of our source redshift
distributions generated by the 3SDIR algorithm [18,24]
using the SOMPZ redshift distribution estimates, weighted
by the likelihood of those samples given the cross-
correlation of our source galaxies with REDMAGIC and
spectroscopic galaxies.
We have made a significant simplifying assumption in

our simulations: that we have sparse but unbiased spectro-
scopic redshift calibration samples for both REDMAGIC and
our source photo-z estimation methodology. This is not
assumed in the Y3 analysis on data, where we have added
additional uncertainty in order to encapsulate possible
biases in these calibration samples.
The lens photo-z uncertainties are incorporated by

shifting the means of the fiducial lens nðzÞ estimates, an
approximation that has been shown to be sufficient for the
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REDMAGIC lens sample in the work by Rodríguez-Monroy
et al. [16]. We also marginalize over a rescaling of the width
of nðzÞ for the highest redshift lens bin, as was determined
necessary in Cawthon et al. [25]. The source redshift
distributions have significantly more uncertainty than our
lens redshift distributions, and so we have developed
methodology that enables us to explicitly marginalize
over samples of this redshift distribution that encapsulate
complexity that is more significant than shifts in the
means of our redshift distributions. Cordero et al. [65]

have shown that this additional uncertainty is negligible for
our DES Y3 analysis and that marginalizing over shifts in
the means of our source redshift distributions is sufficient
both in the BUZZARD simulations and in the DES Y3 data.
As such, for this analysis, we marginalize over a Gaussian
prior on these mean shift parameters. Priors on all photo-
metric redshift related parameters are listed in Table I. In
particular, we assume values for these priors based on
preliminary characterizations of these effects in the DES
Y3 data, although we note that the size of these priors

FIG. 8. Constraints on S8 and Ωm from 1 × 2- (left), 2 × 2- (middle), and 3 × 2-point (right) analyses on the mean data vector from the
full suite of simulations. Top: constraints marginalizing over only cosmology, linear bias, and IAs, assuming the true source and lens
redshift distributions. Posteriors obtained using the mean BUZZARD data vector are shown as solid lines, while dashed contours use a data
vector generated at the true cosmology of the simulations with the best-fit linear bias model from analysis configuration A1, i.e., the blue
line in Fig. 7. The shaded BUZZARD contours are the 1=

ffiffiffiffiffi
18

p
and 2=

ffiffiffiffiffi
18

p
confidence regions, while the dashed contours represent the 0.3

and 1σ confidence regions for a single simulation realization. The crosshairs represent the true BUZZARD cosmology, and the difference
between the dashed contours and these is a product of parameter projection effects. Middle: same as the top row, but posteriors are
obtained using analysis configuration C (nonlinear bias), where the uncontaminated data vector is the best-fit nonlinear bias model from
analysis configuration A2, i.e., the yellow line in Fig. 7. Bottom: same as the top and middle rows, but using analysis configuration D,
i.e., using calibrated photometric redshift distributions to make our model predictions, and marginalizing over source and lens
photometric redshift uncertainties. This isolates the effect of photometric redshift biases on our analysis. Dashed contours are the same
as the solid contours in the top row, but scaled to represent the constraining power of a single Y3 simulation. In all cases, the probability
to exceed a parameter bias of more than 0.3σ is less than 60%, as summarized in Tables II and III.
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contributes negligibly to the size of our posteriors, as
IA- and bias-related nuisance parameters are our dominant
systematics.
Additional information on our redshift distributions as

well as IA parameters is gained through the inclusion of
small-scale shear-ratiomeasurements at the likelihood level,
as described in Appendix F 4 and by Sánchez et al. [23]. We
also marginalize over multiplicative shear biases in this
analysis configuration, with uncertainties determined by a
preliminary estimate of these on our Y3 data [66]. These
multiplicative biases have no discernible impact on our
posteriors due to their very small uncertainties.
Results of this analysis are summarized in the bottom

rows of Figs. 8 and 9, where now we compare the posteriors
obtained using analysis configuration D (solid) with
those obtained with configuration B (dashed). The
dashed contours are now approximately the 0.3σ and 1σ

constraining power of a single Y3 analysis. We choose to
compare configuration D to configuration B rather than an
uncontaminated analysis because we wish to isolate param-
eter biases that are sourced by photometric redshift
(mis)estimation. We see that in all cases the shifts in
posteriors are negligible, indicating that our photometric
redshift calibration methodology has been successful in
encapsulating the photo-z biases contained in our simu-
lations. PTE values and parameter biases for analysis
configuration D are listed in Tables II and III.

VI. SUMMARY AND CONCLUSIONS

We have presented the BUZZARD2.0 simulations, a suite
of 18 synthetic DES Y3 galaxy catalogs tailored for the
validation of combined clustering and lensing analyses. We
have used these simulations to test the robustness of a

FIG. 9. Same as Fig. 8, but for a wCDM parameter space, showing constraints on Ωm and w. In all cases, the probability to exceed a
parameter bias of more than 0.3σ is less than 59%, as summarized in Table II. The wCDM constraints in the presence of nonlinear bias as
shown for configuration C (middle row) are impacted by parameter projection effects, as discussed further in Sec. V C. The inclusion of
shear ratios improves the constraining power of ξ�ðθÞ alone in configuration D (bottom left) with respect to configuration B, mostly by
partially breaking degeneracies with intrinsic alignment parameters, even though configuration D also marginalizes over additional
nuisance parameters.

J. DEROSE et al. PHYS. REV. D 105, 123520 (2022)

123520-20



number of choices made in the DES Y3 3 × 2-point
analysis, showing in particular the following:
(1) Our model can fit the measurements from our

simulations at the simulations’ true cosmology.
(2) Using the true redshift distributions in our simula-

tions and sampling over cosmology, linear bias, and
intrinsic alignments, we can recover the true cos-
mology of our simulations using cosmic shear alone,
2 × 2-point, and 3 × 2-point analyses.

(3) Using the true redshift distributions in our simula-
tions and sampling over cosmology, nonlinear bias,
and intrinsic alignments, we can recover the true
cosmology of our simulations, using 2 × 2-point and
3 × 2-point analyses.

(4) We are able to recover unbiased cosmological
constraints when assuming calibrated photometric
redshift distributions, making use of the full cali-
bration methodology applied to the Y3 data.

In Sec. II, we describe the new suite of BUZZARD

simulations used in this work and elsewhere in our DES
Y3 analyses, highlighting the improvements that have been
made over the simulations used in DES Y1. In particular,
we demonstrate improved agreement between color and
magnitude distributions for our source and lens galaxy
samples in Figs. 1, 2, and 10.
In Sec. III, we describe how we measure our 3 × 2-point

data vectors, including the photometric redshift calibration
methodology that was applied to the simulations.We present
comparisons between redshift distributions for source and
lens galaxies (Fig. 5) and the 3 × 2-point measurements
(Figs. 3 and 4), showing significant improvements in the
level of agreement from similar comparisons in DESY1.We
also highlight the four-step calibration that is applied to the
source photometric redshift distributions in our simulations:
Self-organizing map (SOM)-based photometric redshift
estimation via SOMPZ and 3SDIR, clustering redshifts, and
shear ratios.Wehave kept as close to theprocedure employed
in the DES Y3 data as possible, and we note the important
aspects of these algorithms that were validated using the
BUZZARD simulations that are presented in greater detail by
Alarcon et al. [49], Cawthon et al. [25], Gatti et al. [22],
Myles et al. [18], Sánchez et al. [23], and Sánchez et al. [24].
In Sec. IVA, we describe the models applied to the

simulations, and in Sec. V, we show that these models
produce constraints on S8, Ωm, and w that are biased at
<0.3σ (1σ) with a probability of at least 38%(98%) in
LCDM and 42%(99%) in wCDM, while accounting for
residual noise in the measurements from our simulations.
These results are summarized in Table II and Figs. 8 and 9.
Mean two-dimensional parameter biases are less than 0.3σ
for all analysis configurations and are summarized in
Table III. These results demonstrate that our 3 × 2-point
analysis is robust to the assumptions made regarding bias
modeling, nonlinearities in the matter distribution, higher-
order lensing effects, non-Gaussianity of the likelihood

function, and approximations made in photometric redshift
estimation in a realistic simulated analysis setting.
We note that the probabilities quoted above would

asymptote to either 0 or 1 in the limit of infinite simu-
lations, which suggests the question of why we have not
made an effort to generate more simulations in order to
more precisely determine our systematic biases. The reason
for this choice is partially pragmatic, as generating these
simulations requires significant computational and human
time. An equally important reason is that the analyses
presented in this work suffer from systematic errors that
contribute non-negligible uncertainty to these probabilities.
One such systematic, namely, interpretation of posterior

probability distributions in the presence of projection
effects, has already been discussed and argued to be
important for many of the analyses presented here.
Significant effort has been made to minimize projection
effects in these analyses. For example, wherever possible,
we have reduced the complexity of our models by remov-
ing additional parameters that are not required at the
precision of our data. Although these projection effects
limit the interpretability of our posteriors at the fraction of
1σ level, we reiterate that they are not a systematic bias in
the traditional sense, as the size of these effects will
decrease proportionally to the constraining power of our
analyses.
In addition to systematics intrinsic to our posterior

distributions, systematics in our simulations are also
important. It is necessary to make simplifying assumptions
when generating large suites of simulations as we have
done here, and ruling out the contribution of these
assumptions to the parameter offsets in this analysis is a
time-intensive task. Efforts to systematize these tasks [67]
are extremely important to the continued ability to perform
analysis validation tests such as those presented in
this work.
A number of important effects have been left out of these

simulations, including shear calibration biases, spectro-
scopic incompleteness in photo-z calibration, more realistic
survey inhomogeneity, galaxy intrinsic alignments, and
baryonic effects on the matter distribution. The treatment of
these effects is thoroughly validated elsewhere for our DES
Y3 3 × 2-point analysis, but work is ongoing to incorporate
many of these into future versions of these simulations.
With significant investment, we anticipate that improve-
ments in the methodologies used to generate these simu-
lations will continue to meet the validation needs of
upcoming joint clustering and lensing analyses.
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APPENDIX A: COLOR-DEPENDENT
CLUSTERING

We impart a color-dependent clustering signal to our
simulations in a two-step manner. First, SEDs are assigned
to each simulated galaxy by finding a galaxy in the SDSS
Main Galaxy Sample (MGS) with a close match in Mr and
assigning its SED to the simulated galaxy, preferentially
choosing blue SEDs over red ones proportional to fredðzÞ

fredðz¼0Þ,
where fredðzÞ is the fraction of red galaxies found at
redshift z as described in Appendix E.2 in DeRose et al.
[33]. Each SED is represented in our simulations by a set of
five KCORRECT templates [41].
Once each galaxy has a SED, we perform a conditional

abundance matching procedure. In particular, for every
galaxy, we compute Rh, the distance to the nearest halo
above a mass cut of Mh;cut. We then shuffle SEDs between
galaxies in order to enforce the relation

Pð< g − rjMrÞ ¼ Pð< RhjMrÞ; ðA1Þ

where g − r is the rest frame g − r color of each galaxy. In
practice, we introduce an extra parameter in this model to
allow for a nonunity correlation, r between Rh and g − r, as
described in Eqs. (12) and (13) in the work by DeRose et al.
[40]. We use the best-fit values of r andMh;cut from DeRose
et al. [40], where this model is fit to SDSS MGS redshift
space clustering measurements. This procedure makes use
of conditional abundance matching algorithms imple-
mented by Hearin et al. [68].

APPENDIX B: RED-SEQUENCE COLOR MODEL

We match the mean and scatter of the red-sequence in
our simulations to that observed in DES Y3 data by
applying the following algorithm:

for galaxy g with redshift z and absolute magnitude Mr do
if g − r > 0.095 − 0.035Mr then

for band b ∈ fr; i; zg do
Add mean offset, hΔcbðzÞi, to magnitude mb
Add noise with variance ΔσbðzÞ2 to mb
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Here, hΔcbðzÞi and Δσ2b are the mean offset in in red-
sequence color and difference between scatter in the red-
sequence as a function of z between theDESY3 data and the
unaltered version of these simulations. Since there are four
photometric bands in DES, but only three unique colors, we
can assign themean differences in g − r, r − i, and i − z to r,
i, and z without loss of generality. When adding additional
noise to the magnitudes in our simulations, we must account
for the fact that noise in a band b contributes to two colors
X − b and b − Y, where X and Y are adjacent bands to b.
Thus, to match the width of PðX − bjzÞ and Pðb − YjzÞ, we
must take ΔσbðzÞ2 ¼ σðX − bjzÞ2 − σðb − YjzÞ2. This pro-
cedure leads to very good matches to the mean and scatter of
the red sequence observed in DES Y3 as shown in Fig. 2.

APPENDIX C: PHOTOMETRIC ERROR MODEL

We make use of the relationship between true photom-
etry and noisy wide-field photometry as measured by
BALROG to add photometric noise to our simulations.
The algorithm for doing so is as follows:

1: for each simulated galaxy g do
2: Find galaxy g0 in DES Y3 deep fields by matching mg
3: Randomly choose a wide-field injection ĝ0 of g0
4: If ĝ0 was not detected then
5: Set all of g’s observed magnitudes to 99
6: else
7: Compute error in the wide-field magnitudes Δmg0

8: Add Δmg0 to true simulated magnitudes mg

wheremg are rizmagnitudes of the simulated galaxy g and
Δmg0 is the difference between the true injected riz
magnitudes from g0 and the magnitudes measured from
the wide-field injection ĝ0. In this way, we reproduce the
relation pðΔmgjmgÞmeasured in the DES Y3 data exactly.

APPENDIX D: DES Y3 SOURCE AND LENS
GALAXY SAMPLE SELECTION

In this work, we focus on reproducing the properties of
the METACALIBRATION source galaxy sample [10] and
REDMAGIC lens galaxy sample [16] in order to mimic the
fiducial DES Y3 3 × 2-point analysis. The REDMAGIC

galaxy sample is selected using wide-field griz photometry,
and so we are able to apply the same selection algorithm
described by Rozo et al. [39] and Rodríguez-Monroy et al.
[16] to our simulated galaxy catalogs. In particular, we
select two different REDMAGIC catalogs, that we refer to as
the HIGHDENS and HIGHLUM samples.
The first of these has the highest number density and is

used for the first three lens bins of our 3 × 2-point data
vector. The second is lower number density but can be
selected out to z < 0.9 and so is used for our two higher
redshift lens bins. Applying this procedure results in
magnitude and photometric redshift distributions that are

nearly identical to those found in the DES Y3 data, as
shown in the right panels of Figs. 5 and 10.
Selecting a source galaxy sample that matches the

properties of the DES Y3 METACALIBRATION sample is
more challenging. This is partially due to the fact that this
sample pushes up against the detection limit of the wide-
field survey and so includes implicit selection on many
properties such as surface brightness, morphology, prox-
imity to bright objects, and observing conditions that are
not modeled in our simulations. This is also a fainter
sample than REDMAGIC in general and so involves galaxies
in our simulations that are more sparsely observed in the
spectroscopic samples that we use to inform our simulated
galaxy samples. Given these limitations, we focus on
constructing a simulated source sample that matches the
effective number density, shape noise, and redshift distri-
butions of the DES Y3 METACALIBRATION sample, as these
are the properties that largely govern the cosmological
constraining power of the cosmic shear and galaxy–galaxy
lensing measurements that we wish to analyze.
To do this, we apply two cuts to our simulated galaxy

sample motivated by cuts that are performed to construct
the DES Y3 METACALIBRATION sample:
(1) 10 < fi=σðfiÞ < 1000,
(2) reff=rpsf > x1=ð1þ x2zÞ þ x3.
One of the main cuts that influences the number density

of the Y3 METACALIBRATION sample is a cut on signal-to-
noise ratio (SNR), 10 < SNR < 1000. The first cut above
approximates this SNR cut, where we compute SNR as
SNR ¼ fi=σðfiÞ and fi is the noisy simulated i-band flux
and σðfiÞ is the error in that flux, computed as described in

FIG. 10. Comparison of magnitude distributions for sources
(top) and REDMAGIC lenses (bottom) between BUZZARD (dashed)
and the DES Y3 data (solid). Different colors represent different
photometric bands, where we compare riz for sources and griz
for lenses, because these are the bands that are used for each
respective selection. Overall agreement is good, with fractional
differences between BUZZARD and the DES Y3 data not exceed-
ing 20%.

DARK ENERGY SURVEY YEAR 3 RESULTS: COSMOLOGY FROM … PHYS. REV. D 105, 123520 (2022)

123520-23



Appendix C. Applying only this cut results in a sample
with an overabundance of galaxies, so we apply an addi-
tional cut on galaxy size, motivated by the cut in the ratio of
galaxy size to Point spread function (PSF) size applied to
the Y3 data. Here, we approximate the Gaussian size used
in the Y3 data with the simulated half-light radius reff
where reff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r250 þ r2psf

q
is the PSF convolved galaxy half-

light radius, r50, and the PSF size, rpsf , is taken from the
DES Y3 maps of PSF size at the position of the simulated
galaxy. We empirically found this functional form to
provide a good fit to the tomographic source number
densities in the DES Y3 data. The xi are free parameters
in this cut that we fit to the total response and inverse
variance weighted number density of a preliminary version
of the DES Y3 METACALIBRATION catalog, neff ¼ 5.9. This
fit yields a number density in our simulations of
neff ¼ 5.84. Before measuring correlation functions with
this source catalog, we also explicitly match the effective
shape noise, σe ¼ ½0.247; 0.266; 0.263; 0.314�, in the four
tomographic bins used. This procedure is performed in two
steps. First, we assign ellipticities using the method
described in Appendix E.3 of DeRose et al. [33]. As the
ellipticity distribution sampled from in this process is not
binned in redshift, the resulting tomographic shape noise
values do not exactly match those observed in the DES Y3
METACALIBRATION catalog and coincidentally are always
an underestimate of those found in the data. Thus, to match
the tomographic shape noise values measured in the data
perfectly, we compute

σe;off;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2e;data;i − σ2e;fid;i

q
;

where σe;data;i and σe;fid;i are the shape noise in the ith
tomographic bin in the DES Y3 METACALIBRATION catalog
and the fiducial shape noise in the BUZZARD simulations,
respectively. We then add an additional random component
to the unlensed ellipticities of galaxies binned tomograph-
ically in the simulations with mean zero and variance equal
to σ2e;off;i, thus matching correcting the tomographic shape
noise values in the simulations to match those in the data by
definition.
This full procedure leads to good matches to the

magnitude and redshift distributions observed in the
DES Y3 Metacalibration sample as shown in Figs. 5 and
10. The photometric redshift estimation methodology for
the simulated source sample is discussed at more length in
Sec. F and in the work by Myles et al. [18].

APPENDIX E: TWO-POINT
FUNCTION ESTIMATION

To compute the galaxy angular autocorrelation function
for a single tomographic bin, wðθÞ, we use the Landy-
Szalay estimator [69]

ŵðθÞ ¼ DD − 2DRþ RR
RR

¼
X
ab

wawb

NLðNL − 1Þ − 2
X
aR

wa

NLNR

þ
X
RR

1

NRðNR − 1Þ :

The first sum runs over pairs of lens galaxies separated by
an angle θmin < θ < θmax, where θmin and θmax are the
edges of the angular bin, wa=b are the systematic weights
associated with galaxies a and b, andNL is the total number
of lens galaxies in the tomographic bin under consideration.
The lens weights are determined using the same algorithm
described in Ref. [16]. The second and third sums run over
lens-random and random-random pairs in the same angular
bin, andNR is the total number of randoms. We always take
this to be NR ¼ 20NL, as opposed to the NR ¼ 40NL used
in the measurements on the data. We work with the mean
measurement from many simulations, so extra noise
resulting from the use of fewer randoms per lens galaxy
is offset by this fact and allows us to save a significant
amount of computing time when measuring angular clus-
tering in the BUZZARD simulations.
Following the choices made in the DES Y3 data, we bin

the REDMAGIC sample into five distinct redshift bins, with
edges z ¼ f0.15; 0.35; 0.5; 0.65; 0.8; 0.9g. Galaxies are
divided between these bins using the mean of the
REDMAGIC photometric redshift Probability distribution
function (PDF), zmean;redMaGiC. For the first three bins,
we use the REDMAGIC HIGHDens sample; the two highest
redshift bins use the REDMAGIC HIGHLUM sample.
Our estimator for tangential shear around lens galaxies

includes boost factors and random point subtraction as

γ̂tðθÞ ¼ γ̂t;no boostsðθÞBðθÞ − γ̂t;rand ðE1Þ

¼ Nr

Nl

P
LSwLϵt;LSðθÞ

Nrs
−
P

RSϵt;RSðθÞ
Nrs

; ðE2Þ

where in Eq. (E1) we have written the estimator in terms of
the uncorrected tangential shear estimator γ̂t;no boosts, the
boost factor BðθÞ, and the estimator for tangential shear
around random points γ̂t;rand. We further expand this in
Eq. (E2), where Nr is the number of randoms, Nl ¼

P
wL

is the effective number of lenses given by the sum over the
lens weights for all lens galaxies wl, ϵt;LS is the tangential
shear of a source-lens pair, ϵt;RS is the tangential shear of a
source-random pair, and Nrs is the number of random-
source pairs. This expression is a simplified version of that
shown by Prat et al. [15], where we have set all
Metacalibration responses as well as source and random
weights to 1. We measure γt for each of four source galaxy
tomographic bins, as described in Sec. F, around the five
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tomographic lens galaxy bins, resulting in a total of 20
unique cross-correlation measurements.
The estimator of the shear-shear correlation functions

can be written in terms of the measured radial, ϵx, and
tangential, ϵt, components of ellipticities defined per galaxy
pair along the line of separation between the galaxies:

ξ̂�ðθÞ ¼ hϵtϵt � ϵ×ϵ×iðθÞ: ðE3Þ

This is determined by averaging over all galaxy pairs ða; bÞ
separated by an angle θ as

ξ̂�ðθÞ ¼
P

ab½ϵt;aϵt;b � ϵ×;aϵ×;b�
Npair

; ðE4Þ

where Npair is the number of galaxy pairs separated by an
angle θ. This is again a simplified version of the expression
used in the measurements on the DES Y3 data, as we do not
use METACALIBRATION responses or inverse variance
weights in our simulations. We measure all ten unique
auto- and cross-correlations of the four tomographic source
galaxy bins.
In all cases, correlation functions are measured in 20

logarithmically spaced bins between 2.5 and 250 arc min,
and the mean angle of the bin is reported as the pair-count
averaged separation within that bin. We describe our
redshift binning algorithms for our source and lens galaxy
samples in the following Appendix.

APPENDIX F: PHOTOMETRIC
REDSHIFT CALIBRATION

Compared with our source galaxy photometric redshift
estimation algorithm, our lens galaxy photometric redshift
estimation is relatively unchanged from that used in DES
Y1. We briefly describe it here and refer the reader to the
work by Rozo et al. [39], Cawthon et al. [25], and
Rodríguez- Monroy et al. [16] for more details. As the
REDMAGIC sample is a set of bright galaxies with abundant
spectroscopy, we place significant confidence in the
REDMAGIC photometric redshift estimates provided by
the algorithm itself, pðzredMaGicÞ. These are obtained by
constructing a red-sequence spectral template from a
combination of spectroscopy and galaxy cluster members.
In our simulations, we assume that we have a sparse but
unbiased spectroscopic training set of similar size to that
used in the data. We bin lens galaxies into five tomographic
bins with edges, f0.15; 0.35; 0.5; 0.65; 0.8; 0.9g, using the
mean of pðzredMaGicÞ. To estimate the nðzÞ for each
tomographic bin, we stack four Monte Carlo samples
drawn from the pðzredMaGicÞ for each galaxy.
We now describe how the source galaxy photometric

redshift calibration is performed in our simulations, high-
lighting important similarities and differences to what is
done in the data. As this methodology is new to DES Y3,
much of it was developed and tested against the simulations

presented here. The calibration methodology, excluding
calibration internal to the 3 × 2 point, is broken into four
distinct steps described in the following four sections.
These individual steps are described in significantly greater
detail by Buchs et al. [46], Myles et al. [18], Alarcon et al.
[49], Sánchez et al. [24], Gatti et al. [22], and Sánchez
et al. [23].

1. SOMPZ

We aim to determine the redshift distribution nðzÞ of the
source galaxy sample, proportional to the probability, pðzÞ,
that a galaxy in that sample is at redshift z. We estimate
nðzÞ by reweighting the redshift distribution of a sample
with known redshift information in a suitable way. In the
DES Y3 data, this reweighting is performed in two steps
using three different galaxy samples: a sample of wide-field
galaxies that form our weak-lensing source sample (the
weak-lensing source sample); a set of galaxies with deep,
many-band photometry (the deep-field sample); and a
sample with deep, many-band photometry as well as
securely determined redshifts (the redshift sample).
First, we characterize the redshift distributions of low

noise galaxy detections from our deep-field photometry
where we have additional photometric information in the
form of near-infrared photometric measurements in yJHK
from the Ultra Vista survey. We discretize the ugrizYJHK
color space spanned by this deep-field sample using a self-
organizing map (SOM) [70]. We then estimate the redshift
distribution, pðzjcÞ in each cell, c, of the so-called deep
SOM by stacking redshift estimates from our redshift
sample. This sample is a combination of spectroscopic
surveys and COSMOSþ PAU galaxies with photometric
redshifts [49,71]. In our simulations, we construct analogs
of these deep-field photometric catalogs by selecting
patches of a single BUZZARD simulation with the same
area as the deep-field catalogs in the DES Y3 data. We
apply a constant level of photometric noise to these
catalogs, derived from the median depth in each deep field
and construct the deep SOM from this photometry. To
estimate pðzjcÞ, we assume that we have a redshift sample
that is free of selection biases and is the same size as the
redshift sample used to estimate pðzjcÞ in the DES Y3 data.
Analogously, we construct a wide-field SOM using our

entire wide-field galaxy catalog, labeling cells in this SOM
as ĉ. We wish to estimate pðzjm⃗Þ where m⃗ is a vector of
wide-field magnitudes, or in the same SOM language,
pðzjĉÞ, where ĉ is the SOM cell, or phenotype, that m⃗ is
placed in. This process is complicated by the fact that the
wide-field sample has significantly larger photometric
uncertainties than the deep-field sample and is not supple-
mented by the near-IR photometry. As such, we must
connect the magnitudes that we measure for our wide-field
sample to those measured in our deep fields. In the data,
this is performed by injecting deep-field galaxies into wide-
field observations with BALROG allowing for the estimation
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of pðcjĉÞ, i.e., the probability that a wide-field galaxy that
is placed in the wide-field SOM cell ĉ would be placed in
the deep-field SOM cell c, had it been observed in the deep
fields rather than the wide field. In our simulations, we can
estimate pðcjĉÞ, by determining which deep SOM cell c
each wide-field galaxy in cell ĉ falls into. This relation is
determined using the same number of galaxies in our
simulations as we have BALROG injections in DES Y3 data.
Once galaxies have been assigned to cells ĉ based on

their photometric information, we construct tomographic
bins and assign each cell to a bin. For our fiducial redshift
distributions, we construct these bins according to the
following procedure:
(1) To construct a set of n tomographic bins b̂, begin

with an arbitrary set of nþ 1 bin edge values ej.
(2) Assign each galaxy in the redshift sample to the

tomographic bin b̂ that contains the median of its
pðzÞ (or its spectroscopic redshift z, if it has one).
This yields a set of Nspec;ðĉ;b̂Þ galaxies satisfying the
dual condition of membership in a wide SOM cell ĉ
and a tomographic bin b̂. This can be written as a
sum over BALROG realizations i of redshift galaxies:

Nspec;ðĉ;b̂Þ ¼
X
i

δĉ;ĉiδb̂;b̂i : ðF1Þ

(3) Assign each wide cell ĉ to the bin b̂ to which a
majority of its constituent redshift sample galaxies
are assigned:

b̂ ¼ fĉjargmaxb̂Nspec;ðĉ;b̂Þg: ðF2Þ

(4) Adjust the edge values ej such that the numbers of
galaxies in each tomographic bin b̂ are approxi-
mately equal and repeat the procedure from step
(ii) with the final edges ej.

After completing this procedure, our final bin edges are
z ¼[0.0, 0.358, 0.631, 0.872, 2.0] for the Y3 weak-lensing
source catalog. Because of slight differences in the Y3
source galaxy catalog and the simulated BUZZARD equiv-
alent, the bin edges in the equivalent BUZZARD catalog
are z ¼ ½0.0; 0.346; 0.628; 0.832; 2.0�.
Finally, we combine all these pieces of information

together into the redshift distribution for each bin b̂:

pðzjb̂; ŝÞ ≈
X
ĉ∈b̂

X
c

pðzjc; b̂; ŝÞpðcjĉ; ŝÞpðĉjŝÞ ðF3Þ

2. 3SDIR

Once we have the SOMPZ formalism in place, we can
estimate the redshift distribution of a tomographic bin using
Eq. (F3). An alternative way of writing that equation,
highlighting which sample is used to inform each term, is

pðzjb̂; ŝÞ ≈
X
ĉ∈b̂

X
c

pðzjcÞ|fflffl{zfflffl}
Redshift

pðcÞ|ffl{zffl}
Deep

pðc; ĉÞ
pðcÞpðĉÞ|fflfflfflfflffl{zfflfflfflfflffl}

Balrog

pðĉÞ|ffl{zffl}
Wide

; ðF4Þ

where the b̂; ŝ selections are implicit in the rhs terms. One
of the main uncertainties on our estimate of nðzÞ comes
from the sample variance and shot noise present in the deep
and redshift samples, which inform the probabilities pðzjcÞ
and pðcÞ. We denote the joint probability of redshift and
color informed by the deep and redshift galaxy samples
as a set of coefficients ffzcg, with 0 ≤ fzc ≤ 1 andP

zc fzc ¼ 1, where z represents a redshift bin, and c a
deep SOM color cell.
We implement the 3SDIR method, an approximate model

that produces samples of ffzcg given the observed number
counts of redshift and color from the deep and redshift
samples including the uncertainty from shot noise and
sample variance [18]. This method was developed and
validated first in simulations [24], but for a nontomographic
sample with a different selection than the DES Y3 source
sample, where all galaxies in the deep fields had redshift
information, and without a transfer function to reweight the
colors in the deep field. Here, we test this method with
simulations tailored to the DES Y3 samples, using an
extended version of 3SDIR described by Myles et al. [18].
For each sample of the coefficients ffzcg, we can compute a
sample of the redshift distribution in each tomographic bin,
propagating the uncertainty to the full shape of the nðzÞ.
To test the performance of the 3SDIR method, we perform

a similar test to what was used to validate the SOMPZ

algorithm, using the 300 BUZZARD realizations of the deep
fields. In each realization, we draw 104 samples of the
coefficients ffizc; i ¼ 1;…; 104g using 3SDIR and the mea-
sured number counts of redshift and color in this realiza-
tion. From it, we estimate the mean redshift of each fiz
sample, zi ¼ P

z zf
i
z, and its average value z̄3sDir ≡ hz̄ii in

each BUZZARD realization. We also compute the z̄SOMPZ

value of the single nðzÞ from SOMPZ in each realization,
which we obtain by fixing the probabilities to the number
counts. We are able to verify that the expected value of the
mean redshift across the 300 realizations agrees between
3SDIR and SOMPZ. We also find the pull distribution
between individual z̄ samples from 3SDIR and the fiducial
SOMPZ z̄ to be very close to a Gaussian with zero mean and
unit variance.
Note that we are changing how we parametrize the

uncertainty; instead of fixing the nðzÞ and modeling the
uncertainty with a shift to the distribution, we are modeling
the uncertainty in pðz; cÞ observed in the deep fields and
fully propagating it to an uncertainty on the shape of the
nðzÞ. Therefore, it is particularly important to show that no
significant biases are introduced to the mean redshift,
which is the nðzÞ’s leading-order statistic affecting the
cosmological constraints of cosmic shear analysis. We have
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verified this point using the BUZZARD simulations; here, we
can marginalize over the effects of sample variance by
producing multiple versions of the DES deep fields in
different lines of sight. For a more detailed presentation of
these results, we refer the reader to the work by Myles
et al. [18].

3. Clustering redshifts

We use clustering redshift methods to further constrain
the nðzÞ samples produced by 3SDIR. Clustering redshift
methods exploit the 3D overlap between a target sample
(the weak-lensing sample) and a reference sample with
accurate redshift estimates to infer the nðzÞ of the former.
Clustering redshift methods have been used in the past both
to provide independent estimates of the nðzÞ and to
calibrate the mean of the redshift distributions obtained
from photometric estimates [17,38,48,72–76].
We fully describe the DES Y3 clustering methodology

for the source sample in Ref. [22]. We make use of two
reference samples: red, luminous REDMAGIC galaxies with
high quality photo-z estimates [16,39] and spectroscopic
galaxies from the BOSS and eBOSS surveys [77–80]. The
two samples complement each other. The former has a
higher number density and covers the full DES Y3 foot-
print, but it has a limited redshift coverage, and it comes
with a small uncertainty related to the REDMAGIC photo-z
estimates. The latter is a spectroscopic sample and spans a
larger redshift interval, allowing us to calibrate redshift
distributions at higher redshift, but has a lower number
density and only ∼700 squrea degrees of overlap with the
DES Y3 footprint. Both samples have been reproduced in
the simulations, and the BOSS and eBOSS selections are
described by Gatti et al. [22].
For DES Y3, we explored two different approaches to

using clustering redshift information. The first approach
computes the mean redshift each tomographic bin in order
to compare these estimates with the mean redshifts of the
3SDIR nðzÞ samples. The mean redshift is only estimated in
a limited redshift interval covered by the reference samples,
excluding the tail of the distributions to mitigate the effect
of magnification. This first approach is only used to cross-
check the nðzÞ from the 3SDIR.
The second method includes the clustering redshift

information in a likelihood analysis, joint with sample
variance and shot noise from the 3SDIR method, that returns
samples of probable redshift distributions, while margin-
alizing over a flexible model of the redshift evolution of
source galaxy clustering bias, the dominant systematic in
such clustering redshift studies. The second method gen-
erates an ensemble of redshift distributions used in the DES
Y3 cosmological analysis [18], and it is shown to vastly
improve the accuracy of the shape of nðzÞ derived from
photometric data alone. Both methods have been tested in
simulations and proved unbiased within uncertainties prior
to application to data [22].

4. Shear ratio

In the DES Y3 cosmological analysis, we use the ratios
of small-scale galaxy–galaxy lensing measurements shar-
ing the same lens redshift bin and two different source
tomographic bins to constrain redshift uncertainties and
other systematics or nuisance parameters of our model. We
briefly summarize this probe and direct the reader to
detailed description by Sánchez et al. [23] for more
information and robustness tests.
Lensing ratios or shear ratios have the advantage that if

the lens galaxies are tightly binned in redshift they are
mostly geometrical and can be modeled in the small,
nonlinear scale regime where we are not able to accurately
model the original tangential shear quantity. Lensing ratios
at small scales are therefore able to provide very valuable
independent information that otherwise would be dis-
carded. These shear-ratio measurements have been used
before, especially as a test of the source redshift distribu-
tions, but this is the first time they are fully integrated as an
additional probe within the 3 × 2-point project. This
permits us to use the entire constraining power of the
lensing ratios, not only exploiting the dependency on the
redshift distributions.
The shear-ratio data vector consists of nine numbers,

each one corresponding to the scale-averaged lensing ratio
for a given lens and two source bins. In this work, we use
three lens redshift bins and four source redshift bins. Note
that the DES Y3 3 × 2-point project uses five lens bins, but
we choose to discard the two highest redshift bins to
construct lensing ratios both because they do not increase
the S/N substantially and because the impact of lens
magnification is much stronger for the highest redshift
lens bins, and we prefer not to be dominated by lens
magnification even though it is included in the modeling.
From these redshift bins, given that we construct ratios of
tangential shear measurements with a given fixed lens bin
and two different source bins for each lens bin we can
construct three independent ratios to make a total set of nine
independent ratios. Regarding the angular scales, we
measure the lensing ratios in the same angular binning
used for the 3 × 2-point analysis, and then we apply the
scale cuts as detailed in Table 2 in the work by Sánchez
et al. [23]. Summarizing, we discard the scales already used
in the 3 × 2-point analysis for the galaxy–galaxy lensing
probe and scales where the IA model is not applicable for
the ratio combinations that have significant overlap
between source and lens galaxy redshift distributions, as
these are most affected by IA.
This data vector is used in a separate lensing ratio

likelihood, assumed to be Gaussian. The covariance for this
data vector comes from the propagation of the theoretical
galaxy–galaxy lensing covariance and is independent of the
3 × 2-point covariance, as detailed and validated by
Sánchez et al. [23]. The constraints on the mean redshifts
of each source tomographic bin from this likelihood are
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used as an independent validation of the SOMPZ and WZ
estimates of these values. Furthermore, we combine this
shear-ratio likelihood with the 3 × 2-point likelihood
described below to self-consistently constrain source red-
shift distributions, as well as other parameters, such as
shear multiplicative biases and intrinsic alignments. The
BUZZARD simulations were used to validate a number of
assumptions made when using shear-ratio data, as
described by Sánchez et al. [23], and we further validate
the use of this information in this work showing that its
combination with all other redshift information leads to
unbiased cosmological constraints in our BUZZARD simu-
lated analyses.

APPENDIX G: COVARIANCE MATRIX

We model the statistical uncertainties of the two-point
function measurements considered in this paper as a
multivariate Gaussian distribution. Our model of the dis-
connected four-point function part of the covariance matrix
of that distribution (also known as the Gaussian part of the
covariance) is described by Friedrich et al. [81] and
includes analytic treatment of bin averaging and sky
curvature. The connected four-point function part of the
covariance matrix and the contribution from supersample
covariance are modeled as described by Krause and
Eifler [63].
In Friedrich et al. [81], we demonstrate the robustness of

our analysis with respect to the details of our covariance
model and show that deviations from the Gaussian like-
lihood assumption are negligible in our analysis setup. In
that paper, we identify approximations in our treatment of
survey geometry to be the main source of inaccuracy in the
covariance model. When considering the full 3 × 2-point
data vector, this leads to an underestimation of our
uncertainties in key cosmological parameters by about
3%–4%, and on average it also increases the χ2 between
measurements and the corresponding maximum likelihood
models by about 4%.
We analytically marginalize over all enclosed mass

parameters, which is possible under our assumptions of
a Gaussian likelihood and a Gaussian prior for these
parameters, characterized by a width of σBi . We use very
broad priors on these parameters, as motivated by Pandey
et al. [32]. This would make our covariance numerically
unstable to invert. To circumvent this, we use the
Shermann-Morrison formula to analytically marginalize
over Bi directly in the inverse covariance matrix, N−1, via

N−1 ¼ C−1UðI þ UTC−1UÞ−1UTC−1; ðG1Þ

where C−1 is the inverse covariance matrix without the
enclosed mass contribution, I is the identity matrix, and U
is an Nd × Nlens with ith column given by σBi ⃗ti and

tia ¼
�
0 if lens redshift bin for element a is not i

βijθa otherwise;
;

ðG2Þ

where a is the data vector index, j is the source galaxy bin,
and θa is the angular separation associated with the ath
element of the data vector. We take σBi ¼ 10000 for all i.
We generate the covariance used for all of the analyses

in this work using true BUZZARD cosmology, source and
lens number densities, shape noise values, and redshift
distributions.

APPENDIX H: REDSHIFT-SPACE
DISTORTIONS IN BUZZARD

In the process of preparing this paper for publication, an
error in our implementation of redshift space distortions
was discovered. Specifically, the proper motions of gal-
axies were included in their observed redshifts as

zobs ¼ zcos þ
vLOS
c

ðH1Þ

instead of using the correct expression

FIG. 11. 1 and 0.3σ posteriors of our analysis configuration C,
wCDM model fit to uncontaminated 2 × 2-point and 3 × 2-point
data vectors. These are the same posteriors as the dashed lines in
the second and third columns of the middle row of fig. 9. There is
a degeneracy between b12 (the b2 nonlinear bias parameter in the
first lens bin) and w in both cases. In the less-constraining 2 × 2-
point case, there is a tail to high values of b12, which correlate with
low values of w. When including the cosmic shear data, this tail is
truncated, symmetrizing the b12 posterior and thus reducing the
projection effect on the w posterior.
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zobs ¼ zcos þ ð1þ zÞ vLOS
c

; ðH2Þ

where zcos is the pure cosmological redshift and vLOS is the
line-of-sight velocity. This error impacts the effect of
redshift-space distortions on wðθÞ and γtðθÞ measurements.
As our analysis was nearly completed when we discovered
this error, we opted to correct for this effect in our model for
RSD rather than change our simulations. This is accom-
plished by rescaling the linear growth rate that is used in the
Kaiser model for RSD by a factor of (1þ z), i.e., f → f

ð1þzÞ.
The impact of this error on the analyses presented in this

work is negligible; not accounting for this error increases
the chi-squared for the analyses presented in Sec. VA by
2.1 for wðθÞ, and the impact on all posteriors presented in
this work is virtually unnoticeable.

APPENDIX I: PROJECTION EFFECTS

We have argued that projection effects cause offsets
between the maxima of our one- and two-dimensional
posteriors and the input cosmology of our simulations.
Such effects arise because of correlations between param-
eters of interest, such as cosmological parameters, and
asymmetrically constrained nuisance parameters. When

the nuisance parameters are marginalized over, the asym-
metry of the constraint on these parameters leads to more
posterior volume in one direction in the parameter of interest
than the other, thus shifting the mean of the posterior of the
parameter of interest away from its true value.
Figure 11 demonstrates this effect using the uncontami-

nated posteriors from the analysis configuration C, wCDM
model. The less constraining 2 × 2-point analysis shows
very significant projection effects, with the true cosmology
of the simulated data vectors lying on the edge of the 1σ
w −Ωm posterior, while the more constraining 3 × 2-point
analysis is affected less significantly by projection effects.
There is a large degeneracy betweenw and the b2 parameter
in the first lens bin for both analyses, although it is less
apparent for the 3 × 2-point analysis where b12 is much
better constrained. In the 2 × 2-point case, the correlation
between b12 and w in conjunction with the long tail to high
b2 prevents very negative values of w from being ruled out.
When marginalizing over b2, this shifts the mean of the
one-dimensional posterior of w to more negative values. In
the 3 × 2-point case, high values of b12 are ruled out, and so
the tail to small w is removed, thus reducing the projection
effect on this analysis compared with the 2 × 2-point
analysis.
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