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In this work, we present the computation of the one-loop electroweak radiative corrections to the
scattering processWW → HH within the context of the Higgs Effective Field Theory (HEFT). We assume
that the fermionic interactions are like in the Standard Model, whereas the beyond Standard Model
interactions in the bosonic sector are given by the electroweak chiral Lagrangian (EChL). The computation
of the one-loop amplitude and the renormalization program is performed in terms of the involved one-
particle-irreducible (1PI) functions and using Rξ covariant gauges. The renormalization of 1PI functions at
arbitrary external momenta is a more ambitious program than just renormalizing the amplitude with on-
shell external legs, and it has the advantage that they can be used in several scattering amplitudes. In fact,
we use here some of the 1PI functions already computed in our previous work (devoted toWZ → WZ). We
will complement them here with the computation of the new 1PI functions required forWW → HH. From
this renormalization procedure, we will also derive the full set of renormalized coefficients of the EChL that
are relevant for this scattering process. In the last part, we will present the numerical results for the EChL
predictions of the one-loop level cross section, σðWW → HHÞj1-loop, as a function of the center-of-mass
energy, showing the relative size of the one-loop radiative corrections with respect to the tree-level
prediction in terms of the EChL coefficients. The results of the one-loop corrections toWW → HH for the
SM case will be also presented, for comparison with the EChL case, following the same computational
method—i.e., by means of the renormalization of 1PI functions.

DOI: 10.1103/PhysRevD.106.073008

I. INTRODUCTION

The use of effective field theories (EFTs) to study the
phenomenological implications of anomalous Higgs cou-
plings beyond the Standard Model (SM) of particle physics
is nowadays a very common strategy, widely employed, to
test at colliders the new Higgs physics implied by those
anomalous couplings in a model-independent way—
namely, without assuming a particular model of physics
beyond the Standard Model (BSM). The information of the
anomalous Higgs couplings is encoded in a set of effective
operators, built with the SM fields and with the unique
requirement of being invariant under the SM gauge
symmetry, SUð3Þ × SUð2Þ ×Uð1Þ. The coefficients in

front of these operators (usually called Wilson coefficients)
are generically unknown and encode the information of the
particular underlying fundamental theory that generates
such EFTs at low energies when the new heavy modes of
this theory are integrated out. Depending on the kind of
dynamics involved in the fundamental theory, it is more
appropriate the use of one EFT or another. Usually, the so-
called SMEFT (Standard Model effective theory) is more
appropriate to describe the low-energy behavior of weakly
interacting dynamics, whereas the so-called HEFT (Higgs
effective field theory) is more appropriate to describe
strongly interacting underlying dynamics (for reviews,
see, for instance, Refs. [1,2]). Here we choose this second
case, the HEFT, and focus on the bosonic sector which is
described in terms of the so-called electroweak chiral
Lagrangian (EChL). The fermionic sector will be assumed
to be as in the SM, so that no BSM interactions or effective
operators are considered in the fermionic sector of
the HEFT.
Our main goal here is to determine, within this EChL

context, the size of the one-loop electroweak (EW) radiative
corrections for the subprocess at colliders, WþW− → HH,
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where two Higgs bosons are produced from the scattering of
two W gauge bosons which are radiated from the initial
colliding particles (also called WW fusion in the literature).
From now on, for brevity, we omit the explicit charges of the
W bosons. This WW scattering subprocess is known to be
relevant for both types of colliders, eþe− and pp, with
energies at the TeV domain. We also wish to compare in this
work these EW radiative corrections in the EChL context
with the corresponding ones of WW → HH within the SM
context; thus, we perform here the two computations in
parallel. Our calculations of the amplitudes and correspond-
ing cross sections in both cases, the EChL and the SM, are
full bosonic one-loop computations, including all kinds of
diagrams in the loops, and are valid for physical W and H
particles in the external legs, with all possible polarizations
for the W gauge bosons, longitudinal and transverse. That
means that we do not make any approximation for the
external legs, and we do not use the equivalence theorem
(ET) which replaces the externalWL’s with the correspond-
ing Goldstone bosons (GBs) and is valid only at high
energies,

ffiffiffi
s

p
≫ mW. Our computation of the radiative

corrections within the HEFT is therefore valid at all energies,
from the low energies just above the two-Higgs-boson
threshold production, 2mH ∼ 250 GeV, up to the typical
EFT scale which, in the EChL framework, is set by 4πv ∼
3 TeV with v ¼ 246 GeV.
Regarding the technicalities involved in the present

computation, we follow closely our previous work in
Ref. [3], which was addressed to the case of WZ → WZ
scattering. Concretely, we follow the standard Feynman
diagrammatic approach and describe the full renormaliza-
tion program also in terms of one-loop Feynman diagrams.
We organize this computation in terms of the involved one-
particle-irreducible (1PI) Green’s functions, with two,
three, and four external legs, and perform the renormaliza-
tion program of these Green’s functions in covariant
gauges. As we showed in our previous work [3], the
renormalization of the EChL coefficients must be gauge
invariant and therefore independent of the ξ parameter of
the Rξ covariant gauges. This is an important point of
performing the analytical computation of the amplitude in
covariant gauges. Regarding the numerical evaluations for
the WW → HH scattering, we will choose here in particu-
lar the Feynman–’t Hooft gauge with ξ ¼ 1. The renorm-
alization conditions are also fixed here as in Ref. [3], using
the on-shell scheme for the EW parameters, like the boson
masses mW, mZ, mH and gauge couplings, and the MS
scheme for the EChL coefficients. Our work presented here
of the full one-loop corrections for WW → HH in the
EChL is the most complete one in the literature and
improves the previous related works in the literature in
various aspects. The first computation of WW → HH in
Ref. [4] was performed just for the case with external
longitudinal W bosons, which were replaced by external
GBs by using the ET, and includes only scalar particles

both in the external legs and in the loops, working always
with massless GBs. A more recent computation of the one-
loop radiative corrections for WW → HH in the EChL
context, in Ref. [5], also refers to the case of longitudinal
W’s and also uses the ET to replace the external WL with
the GBs, which are taken to be massless. They consider all
kinds of loops for the GB scattering and compute them in
the Landau gauge. They make the additional approximation
of taking as equal the W and Z boson masses (called the
isospin limit in the literature). Our best improvement with
respect to these works is that we do not use the ET—i.e., we
work with external gauge bosons instead of GBs, we do not
take equal masses forW and Z, and we do not take massless
GBs, since we work in the Feynman–’t Hooft gauge.
Consequently, the sets of Feynman one-loop diagrams
considered here and in Refs. [4,5] are also different.
Another important aspect that we cover in a different
way than in those references is the renormalization pro-
gram, which we implement here in terms of general
renormalized Green’s functions, with generic external
momenta, in contrast to Refs. [4,5], which apply the
renormalization program directly to the on-shell scattering
amplitude. The advantage of doing renormalization at the
more general off-shell Green’s function level, is that these
same renormalized functions can be used as well for the
computation of radiative corrections in other observables.
For instance, we have used the same renormalized vertex
function WWH here for WW → HH as in our previous
computation in Ref. [3] for WZ → WZ. The difference is
just in the particular setting of the external legs’ momenta
of the vertex function, which must be done properly for
each case. On the other hand, the renormalization program
using 1PI Green’s functions instead of just on-shell
amplitudes requires the renormalization of a larger set of
EChL coefficients. It is, therefore, also more complete in
this sense. Due to the relevance of this latter issue, we will
devote some part of the present work to the comparison of
our results on the renormalization of the EChL coefficients
with some related previous results [4–7].
The paper is organized as follows: In Sec. II, we briefly

describe the main features of the EChL with Rξ gauge
fixing and set the relevant operators for the WW → HH
scattering process. The diagrammatic computation bymeans
of the 1PI functions is presented in Sec. III. Section IV is
devoted to the renormalization program, including the
prescriptions for regularization and renormalization assumed
and the summary of all the divergent counterterms. The
numerical predictions for this observable within the EChL
and the SMare presented and discussed in Sec. V. Finally, we
conclude in Sec. VI.

II. RELEVANT PART OF THE ELECTROWEAK
CHIRAL LAGRANGIAN

In this section, we introduce the part of the bosonic
EChL that is needed for the present computation of the EW
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radiative corrections of the WW → HH scattering, and we
provide some necessary notation. In the EChL context, the
active fields are the EW gauge bosons, Bμ and Wa

μ

(a ¼ 1; 2; 3); their corresponding GBs πa (a ¼ 1; 2; 3);
and the Higgs boson H. The unique requirement for the
building of the EChL is invariance under the EW gauge
transformations, SUð2ÞL × Uð1ÞY . On the other hand, the
scalar sector of the EChL has an additional invariance
under the EW chiral transformation, SUð2ÞL × SUð2ÞR.
Under this EW chiral transformation, the GBs transform
nonlinearly. This peculiarity implies multiple GB inter-
actions among themselves and also with the other fields.
The Higgs boson field, in contrast, is invariant under all
transformations. Usually the GBs are introduced in a
nonlinear representation via the exponential parametriza-
tion, by means of the matrix U, which transforms linearly
under the EW chiral transformations:

UðπaÞ ¼ eiπ
aτa=v; ð2:1Þ

where τa, a ¼ 1; 2; 3 are the Pauli matrices and
v ¼ 246 GeV. On the other hand, the Higgs field is a
singlet of the EW chiral symmetry and the EW gauge
symmetry. Hence, the interactions of H are introduced via
generic polynomials, since there are no limitations from
symmetry arguments on the implementation of this field
and its interactions with itself and with the other fields, in
contrast to linear EFTs such as the SMEFT. Finally, the EW
gauge bosons are introduced by the gauge invariance
principle. Thus, they appear in the following pieces of
the EChL:

B̂μ ¼ g0Bμτ
3=2; B̂μν ¼ ∂μB̂ν − ∂νB̂μ;

Ŵμ ¼ gWa
μτ

a=2; Ŵμν ¼ ∂μŴν − ∂νŴμ þ i½Ŵμ; Ŵν�;
DμU ¼ ∂μU þ iŴμU − iUB̂μ; Vμ ¼ ðDμUÞU†;

DμO ¼ ∂μOþ i½Ŵμ; O�: ð2:2Þ

As usual, the chiral counting arranges the effective
operators in the EChL into terms with increasing chiral
dimension. The most relevant ones are the leading-order
Lagrangian, with chiral dimension two,L2, and the next-to-
leading-order one with chiral dimension four, L4. The
relevant EChL for the present computation can then be
summarized as follows:

LEChL ¼ L2 þ L4: ð2:3Þ

In this chiral dimension counting, it is important to keep in
mind that all derivatives and masses count as momentum—
namely, ∂μ, mW, mZ, mH, gv, g0v, λv ∼OðpÞ.

First, the leading-order Lagrangian L2 is given by

L2 ¼
v2

4

�
1þ 2a

H
v
þ b

�
H
v

�
2

þ � � �
�
Tr½DμU†DμU�

þ 1

2
∂μH∂

μH − VðHÞ − 1

2g2
Tr½ŴμνŴ

μν�

−
1

2g02
Tr½B̂μνB̂

μν� þ LGF þ LFP: ð2:4Þ

Here, VðHÞ is the Higgs potential, and LGF and LFP are the
gauge-fixing Lagrangian and Fadeev-Popov Lagrangian,
respectively. From now on, the dots in the presentation of
the relevant pieces in the EChL stand for terms that do not
enter into our process of interest, WW → HH, neither at
tree level nor at one-loop level; thus, we omit them. The
Higgs potential in L2 is given by

VðHÞ ¼ ð−μ2 þ λv2ÞvH þ 1

2
ð−μ2 þ 3λv2ÞH2

þ κ3λvH3 þ κ4
λ

4
H4: ð2:5Þ

For the posterior discussion on renormalization in this
EChL context, it is convenient to definem2

H ¼ −μ2 þ 3λv2;
then, we can eliminate the μ2 parameter in terms of m2

H. In
this case, the linear term (Higgs tadpole) can be simply
written as

T ¼ ðm2
H − 2λv2Þv; ð2:6Þ

and the minimum of the potential, corresponding to a
vanishing tadpole, sets m2

H ¼ 2λv2.
Here, we quantize the EChL as in our previouswork [3]—

i.e., using the linear covariant Rξ gauges [8] with the gauge-
fixing Lagrangian given by

LGF ¼ −FþF− −
1

2
F2
Z −

1

2
F2
A; ð2:7Þ

and the gauge-fixing functions given by

F� ¼ 1ffiffiffi
ξ

p ð∂μW�
μ − ξmWπ

�Þ;

FZ ¼ 1ffiffiffi
ξ

p ð∂μZμ − ξmZπ
3Þ; FA ¼ 1ffiffiffi

ξ
p ð∂μAμÞ: ð2:8Þ

Here, ξ is the generic gauge-fixing parameter of the Rξ

gauges. Some comments about the ξ dependence are worth
adding here. Notice that in our renormalization program,
we demand the renormalization of all the 1PI functions
involved at arbitrary momentum for the external legs, and
not just the finiteness of the one-loop scattering amplitude.
Thus, in order to demonstrate explicitly the gauge invari-
ance of the renormalized EChL coefficients—i.e., to check
that these are ξ independent—the computation of the loop
diagrams involved in the 1PI functions should be per-
formed for an arbitrary ξ parameter, as was done in our
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previous work [3] devoted toWZ → WZ scattering. All the
final scattering amplitudes with external on-shell particles
are, of course, finite and gauge invariant, but the involved
1PI functions are ξ dependent, so the cancellation of the ξ
dependence in the final one-loop amplitude is an excellent
check of the computation. In the present paper, for all the
numerical estimates of WW → HH, we will choose in
particular the Feynman–’t Hooft gauge, and accordingly,
for definiteness, we set ξ ¼ 1 in the presentation of all our
results.
From this previous Rξ gauge-fixing Lagrangian, one

derives as usual the corresponding Faddeev-Popov
Lagrangian [9], given by

LFP ¼
X

i;j¼þ;−;Z;A
c̄i
δFi

δαj
cj; ð2:9Þ

where cj are the ghost fields and αj (j ¼ þ;−; Z; A) are the
corresponding gauge transformation parameters under
the local transformations SUð2ÞL ×Uð1ÞY given by L ¼
eigτ⃗·α⃗LðxÞ=2 and R ¼ eig

0τ3αYðxÞ=2.
Formally, the expressions in Eqs. (2.7)–(2.9) and the

gauge bosons’ field transformations are the same as in the
SM. However, the scalar transformations in this nonlinear
EFT differ from the corresponding ones in the SM. This
particularity yields to the absence of interactions among the
Higgs boson and ghost fields, and the presence of new
interactions with multiple GBs and two ghost fields.
Second, the relevant chiral dimension-four Lagrangian

for the computation of all the one-loop 1PI functions
involved in the WW → HH scattering amplitude is
given by

L4 ¼ −addVV1
∂
μH∂

νH
v2

Tr½VμVν� − addVV2
∂
μH∂μH

v2
Tr½VνVν�

þ
�
a11 þ aH11

H
v
þ aHH11

H2

v2

�
Tr½DμVμDνVν� −m2

H

4

�
2aHVV

H
v
þ aHHVV

H2

v2

�
Tr½VμVμ�

−
�
aHWW

H
v
þ aHHWW

H2

v2

�
Tr½ŴμνŴ

μν� þ i

�
ad2 þ aHd2

H
v

�
∂
νH
v

Tr½ŴμνVμ�

þ
�
a□VV þ aH□VV

H
v

�
□H
v

Tr½VμVμ� þ
�
ad3 þ aHd3

H
v

�
∂
νH
v

Tr½VνDμVμ�

þ
�
a□□ þ aH□□

H
v

�
□H□H

v2
þ add□

∂
μH∂μH□H

v3

þ
�
aHdd

m2
H

v2
þ addW

m2
W

v2
þ addZ

m2
Z

v2

�
H
v
∂
μH∂μH: ð2:10Þ

These relevant effective operators are taken from the full
HEFT Lagrangian in Refs. [6,10], but we use here a different
notation for the EChL coefficients in L4, which are referred
to here generically as ai’s. The correspondence among the
two sets of coefficients, the ai’s here and the coefficients in
Refs. [6,10], can be summarized, in short, by addVV1 ↔ c8,
addVV2 ↔ c20, a11 ↔ c9, aHWW ↔ aW , aHHWW ↔bW ,
ad2↔c5, aHd2↔a5, a□VV ↔ c7, aH□VV ↔ a7,
ad3 ↔ c10, aHd3 ↔ a10, a□□ ↔ c□H, aH□□ ↔ a□H,
add□ ↔ cΔH, aHVV ↔ aC, and aHHVV ↔ bC.
It is worth noticing that, in contrast to our one-loop

computation here, for a tree-level computation of the
scattering amplitude (see, for instance, Ref. [11]), the
previous set of operators in L4 can be reduced to a smaller
set by the use of the equations of motion (EOMs).
Concretely, one may use the following EOMs involving
the pieces □H, DμVμ and F ðHÞ ¼ 1þ 2a H

v þ bðHvÞ2:

□H ¼ −
δVðHÞ
δH

−
v2

4

F ðHÞ
δH

Tr½VμVμ� ⇒

⇒ □H ¼ −m2
HH −

3

2
κ3m2

H
H2

v
−
a
2
vTr½VμVμ�

−
b
2
HTr½VμVμ�;

Tr½τjDμVμ�F ðHÞ ¼ −Tr½τjVμ�∂μF ðHÞ ⇒

⇒ Tr½τjDμVμ� ¼ −Tr½τjVμ� 2a
v
∂μH: ð2:11Þ

Then, one may eliminate the terms in L4 involving these
two pieces by rewriting them in terms of the other effective
operators. This reduces in practice the number of effective
operators in L4 as follows:
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LþEOMs
4 ¼ −ðaddVV1 − 4a2a11 þ 2aad3Þ

∂
μH∂

νH
v2

Tr½VμVν� −
�
addVV2 þ

a
2
add□

�
∂
μH∂μH

v2
Tr½VνVν�

−
m2

H

2
ðaHVV − 2a□VV þ 2aa□□Þ

H
v
Tr½VμVμ�

−
m2

H

4
ðaHHVV − 6κ3a□VV − 4aH□VV þ 4ba□□ þ 6κ3aa□□ þ 4aaH□□Þ

H2

v2
Tr½VμVμ�

þ ðaHdd − add□Þ
m2

H

v2
H
v
∂
μH∂μH þ

�
addW

m2
W

v2
þ addZ

m2
Z

v2

�
H
v
∂
μH∂μH

−
�
aHWW

H
v
þ aHHWW

H2

v2

�
Tr½ŴμνŴ

μν� þ i

�
ad2 þ aHd2

H
v

�
∂
νH
v

Tr½ŴμνVμ�: ð2:12Þ

In this reduced Lagrangian, addVV1, a11, and ad3 have been grouped together in the first operator, addVV2 and add□ in the
second operator, etc. We then redefine these combinations of coefficients as follows:

η ¼ ãddVV1 ≡ addVV1 − 4a2a11 þ 2aad3;

δ ¼ ãddVV2 ≡ addVV2 þ
a
2
add□;

ãHVV ≡ aHVV − 2a□VV þ 2aa□□;

ãHHVV ≡ aHHVV − 6κ3a□VV − 4aH□VV þ 4ba□□ þ 6κ3aa□□ þ 4aaH□□;

ãHdd ≡ aHdd − add□: ð2:13Þ

Notice that in the two first coefficients, we have also used
the alternative notation given by η and δ, which is the one
frequently used in some related literature. In particular, the
contributions to the scattering amplitude WW → HH of
these two first operators in the above list with η and δ
coefficients were studied first in Refs. [4,5]. We will
compare our results with these and more references in
later sections. Notice also that some coefficients, like aH11,
aHH11, and aHd3, have disappeared in Eq. (2.12) since, after
the use of the EOMs, they contribute to effective operators
with at least three Higgs bosons which do not enter into the
process of our interest here.
The main consequence of using the EOMs when

computing the scattering amplitude is that these combina-
tions of the EChL coefficients are the ones appearing
precisely in the on-shell scattering amplitudes. On the other
hand, this means that only these combinations of coeffi-
cients are the ones that are really testable at colliders via
this particular WW → HH scattering. In particular, only η
and δ in Eq. (2.13) and not the separate coefficients, addVV1,
a11, ad3, addVV2, and add□, are the appropriate parameters
for a phenomenological analysis of this scattering WW →
HH process, and similarly for the other combinations
appearing in Eq. (2.12). However, for our most ambitious
computation and renormalization program, where the finite
renormalized one-loop scattering amplitude is obtained in
terms of finite renormalized one-loop 1PI functions, this
reduced Lagrangian is not sufficient, and we must use the
full Lagrangian in Eq. (2.10). As we will see in the
following sections, this full Lagrangian provides not only

a finite one-loop amplitude with on-shell external particles
but also finite one-loop 1PI functions with arbitrary
external momenta (generically off shell). This renormali-
zation program in terms of one-loop 1PI functions is also
relevant for the check of the gauge invariance of the final
one-loop amplitude, and to demonstrate the gauge invari-
ance of the renormalized EChL coefficients. The great
advantage of using this procedure by means of the 1PI
functions to compute the radiative corrections in scattering
amplitudes is that the same 1PI one-loop renormalized
functions, once computed at arbitrary external momenta,
can be used for several processes, by just adjusting the
external momenta to those of that particular process,
including the proper on-shell setting for the external legs
when needed. For instance, the one-loop 1PI function
Γ̂HWW can be used for both WW→HH and WZ → WZ,
the one-loop 1PI function Γ̂HHH can be used for both
WW → HH and HH → HH, and similarly with other
processes. Therefore, our renormalization program based
on 1PI functions is more powerful than just renormalizing
concrete scattering amplitudes.
Finally, to end this section, we remind the reader that in

order to reach the SM tree-level vertices from the above
presented EChL, one has to set the EFT coefficients to the
following reference values: (i) the coefficients in L2, a, b,
κ3, and κ4 should be set to 1, and (ii) all the ai’s coefficients
in L4 should be set to zero. Accordingly, the new BSM
physics encoded in the EChL is parametrized in terms of
the departures from these reference parameter values. The
corresponding derived Feynman rules (FRs) from this
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EChL that are needed for the present computation, together
with the corresponding FRs within the SM, were provided
in our previous work, concretely in Appendix A of Ref. [3],
so we do not repeat them here.

III. DIAGRAMMATIC COMPUTATION
USING 1PI GREEN’S FUNCTIONS

In this section, we present our procedure for the
computation of the radiative corrections to the amplitude
AðWW → HHÞ by means of the 1PI Green’s functions. We
apply this procedure to both cases, the EChL and the SM.
Within the EChL formalism, the full one-loop scattering

amplitude can be split into two parts corresponding to the
leading-order (LO), Oðp2Þ, and the next-to-leading-order
contributions (NLO),Oðp4Þ, which are denoted asAð0Þ and
Að1Þ, respectively, yielding to

AEChLFull ≡AðWW → HHÞEChL
¼ Að0ÞðWW → HHÞ
þAð1ÞðWW → HHÞ: ð3:1Þ

In this EChL context, the LO amplitude comes from L2 at
the tree level, and the NLO amplitude receives typically
two contributions. One contribution comes from L4 at the
tree level, and the other comes from the loops computed
with L2. Thus, these LO and NLO contributions are written
generically as

Að0ÞðWW → HHÞ≡AEChLð2Þ
Tree ; ð3:2Þ

Að1ÞðWW → HHÞ≡AEChLð4Þ
Tree þAEChLð2Þ

Loop : ð3:3Þ

The one-loop amplitude in the EChL can also be written in
an alternative way, accounting for the quantum corrections
expansion—i.e., in powers of ℏ. Then, the full one-loop
amplitude is written as

AEChLFull ¼ AEChLð2þ4Þ
Tree þAEChLð2Þ

Loop ; ð3:4Þ
where the tree level amplitude, Oðℏ0Þ, has contribu-
tions from both L2 and L4, generically written as

AEChLð2þ4Þ
Tree ¼ AEChLð2Þ

Tree þAEChLð4Þ
Tree , whereas the one-loop

correction,Oðℏ1Þ, is obtained by computing loops with just

L2, generically written as AEChLð2Þ
Loop . Remember that within

the EChL framework, the ai coefficients inL4 have a double
role and will act as well as counterterms of the extra
divergences generated by these loops which cannot be
absorbed by just the renormalization of the parameters inL2.
On the other hand, we wish to compare the EChL

predictions with the SM ones using the same procedure
of 1PI functions. Thus, we will present in parallel the two
predictions for the EChL and SM cases. To our knowledge,
our SM computation is the first full bosonic one-loop

computation ofWW → HH scattering using the Rξ gauges
in the literature. This SM amplitude is defined as the sum of
the LO contribution, which in this case is the tree-level
contribution of Oðℏ0Þ, and the NLO contribution, which is
that of Oðℏ1Þ:

ASMFull ¼ ASMTree þASMLoop : ð3:5Þ
For the technical description of the one-loop radiative

corrections, we then organize the one-loop full amplitude in
terms of the 1PI Green’s functions as follows:

AEChLFull ¼ ALO þA1-leg þA2-legs þA3-legs

þA4-legs þAres; ð3:6Þ
where ALO is the result from the LO Lagrangian—i.e.,
ALO ¼ Að0Þ—and An-legs means the contributions to the
amplitude from the n-legs 1PI functions. The LO contri-
bution is that from L2 to tree level, and therefore it is
Oðℏ0Þ. The An-legs terms contain the NLO contributions,
including the contributions from the ai coefficients and also
the Oðℏ1Þ contributions from the loop diagrams in the
corresponding 1PI functions. Notice also that we have
separated explicitly the extra contribution to the amplitude
from the finite residues of the external particles Ares.
From now on, we fix the notation for the momenta

assignments and Lorentz indexes for the process of interest
as follows:

Wþ
μ ðpþÞW−

ν ðp−Þ → Hðk1ÞHðk2Þ; ð3:7Þ

where pþ;− are the incoming momenta of the gauge bosons,
with polarization vectors ϵμþ ≡ ϵμðpþÞ and ϵν− ≡ ϵνðp−Þ,
respectively, and k1;2 are the outgoing momenta of the
Higgs bosons (with pþ þ p− ¼ k1 þ k2). Thus, the ampli-
tude A can be written as

A ¼ Aμνϵ
μ
þϵν−; ð3:8Þ

where the tensor amplitude with explicit Lorentz indices is
defined by Aμν. Figure 1 collects the full 1PI functions and
full propagators, represented by black balls, that contribute
to the one-loop amplitude AðWW → HHÞ. These full
functions (denoted with a hat) correspond to (i) the full
propagators, Δ̂HH, Δ̂ππ , Δ̂WW , Δ̂Wπ, Δ̂πW , Δ̂AA, and Δ̂ZZ;
(ii) the full 1PI vertex functions with three legs, Γ̂HWW ,
Γ̂πWH, Γ̂HHH, Γ̂AWW , Γ̂ZWW , Γ̂AHH, and Γ̂ZHH; and (iii) the
full 1PI vertex function with four legs, Γ̂WWHH. Notice that
some of these full functions receive contributions of both
orders,Oðℏ0Þ andOðℏ1Þ. However, there are some Green’s
functions that vanish at LO and only receive contributions
from NLO, such as Δ̂Wπ , Δ̂πW , Γ̂AHH, and Γ̂ZHH. This is the
reason why the diagrams in Fig. 1 involving these particular
NLO Green’s functions have only one black ball, since
including two black balls in this case would produce NNLO
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corrections that are not our aim here. For the other
diagrams, not involving these particular 1PI functions,
there can appear the product of several black balls, each
one containing both LO and NLO contributions, and one
has to perform this product accordingly to extract the final
result for the amplitude containing all the terms of both
orders, Oðℏ0Þ and Oðℏ1Þ.
The tensor amplitude in Eq. (3.8) is obtained by adding the

s, t, u, and contact (c) channel contributions as repre-
sented in Fig. 1. Notice that through this work we use both
notations to theMandelstam variables with small and capital
letters equally. These contributions by channels can be
written in terms of the full Green’s functions as follows:

iAμν
s ¼ iΓ̂μν

HWWiΔ̂
HHiΓ̂HHH

þ iΓ̂μνρ
WWAð−iÞΔ̂AA

ρσ iΓ̂σ
AHH þ iΓ̂μνρ

WWZð−iÞΔ̂ZZ
ρσ iΓ̂σ

ZHH;

iAμν
t ¼ iΓ̂μρ

HWWð−iÞΔ̂WW
ρσ iΓ̂σν

HWW þ iΓμρ
HWWΔ̂

Wπ
ρ iΓν

πWH

þ iΓμ
πWHΔ̂

πW
σ iΓσν

HWW þ iΓ̂μ
πWHiΔ̂

ππiΓ̂ν
πWH;

iAμν
u ¼ iΓ̂μρ

HWWð−iÞΔ̂WW
ρσ iΓ̂σν

HWW þ iΓμρ
HWWΔ̂

Wπ
ρ iΓν

πWH

þ iΓμ
πWHΔ̂

πW
σ iΓσν

HWW þ iΓ̂μ
πWHiΔ̂

ππiΓ̂ν
πWH;

iAμν
c ¼ iΓ̂μν

WWHH: ð3:9Þ

At one-loop level, it is convenient to write the full propa-
gators in terms of the self-energies. Following our procedure
and conventions defined in Ref. [3], we get the following
expressions for the full propagators in terms of the LO
propagators and the full self-energies:

iΔ̂HHðq2Þ ¼ iΔHH þ iΔHHð−iÞΣ̂HHiΔHH;

iΔ̂ππðq2Þ ¼ iΔππ þ iΔππð−iÞΣ̂ππiΔππ;

−iΔ̂WW
T ðq2Þ ¼ −iΔWW

T − iΔWW
T iΣ̂T

WWð−iÞΔWW
T ;

−iΔ̂WW
L ðq2Þ ¼ −iΔWW

L − iΔWW
L iΣ̂L

WWð−iÞΔWW
L ;

Δ̂Wπðq2Þ ¼ ΔWπ − iΔWW
L Σ̂WπiΔππ; ð3:10Þ

where all functions on the right-hand side are functions ofq2,
and the LO propagators in the Rξ gauges are summarized by

iΔHH ¼ i
q2−m2

H
; −iΔWW

T ¼ −i
q2−m2

W
;

−iΔWW
L ¼ −iξ

q2− ξm2
W
; iΔππ ¼ i

q2 − ξm2
W
; ΔWπ ¼ 0.

−iΔAA
T ¼−i

q2
; −iΔAA

L ¼−iξ
q2

; −iΔZZ
T ¼ −i

q2 −m2
Z
;

−iΔZZ
L ¼ −iξ

q2− ξm2
Z
: ð3:11Þ

As commented previously, only ΔHH, ΔWW
T , ΔWW

L , and Δππ

are involved in the LO contribution to the amplitude in
Eq. (3.1). On the other hand, the relevant vertex functions at
LO are

iΓμν
HWW ¼ iagmWgμν; iΓHHH ¼ −3iκ3m2

H=v;

iΓμ
πWH ¼ agpμ

π; iΓμν
WWHH ¼ ibg2gμν=2: ð3:12Þ

Next, we present the computation of the LO amplitude
using the Rξ gauges. This can be easily done by plugging
the corresponding LO functions of Eqs. (3.11) and (3.12)
into Eq. (3.9)—namely, using Γ instead of Γ̂, and Δ instead
of Δ̂.
The result for the LO amplitude in the Rξ gauge,

corresponding to the tree-level diagrams in Fig. 2, is
given by

Að0Þ ¼ Að0Þ
s þ Að0Þ

t þ Að0Þ
u þ Að0Þ

c ; ð3:13Þ

where the contributions by the s, t, u, and contact channels
are given, respectively, by

FIG. 1. Full 1PI functions (black balls) contributing to the full one-loop amplitude AðWþW− → HHÞ.
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Að0Þ
s ¼ g2

2
3aκ3

m2
H

S −m2
H
ϵþ · ϵ−;

Að0Þ
t ¼ g2a2

m2
Wϵþ · ϵ− þ ϵþ · k1ϵ− · k2

T −m2
W

;

Að0Þ
u ¼ g2a2

m2
Wϵþ · ϵ− þ ϵþ · k2ϵ− · k1

U −m2
W

;

Að0Þ
c ¼ g2

2
bϵþ · ϵ−: ð3:14Þ

From this equation, notice that the corresponding result of
the SM amplitude at LO is simply obtained from this same
formula by setting a ¼ b ¼ κ3 ¼ 1. We have checked
explicitly the gauge invariance of our LO result above—
namely, that the dependence on ξ disappears in the final
amplitude as expected. The cancellation of the ξ-dependent
terms is achieved once the external gauge bosons are on
shell—i.e., by contracting the tensorial amplitude with their
corresponding polarization vectors in Að0Þ. Concretely, the
cancellation of the ξ-dependent terms occurs separately in
the two channels t and u, and it happens between the

contribution of the longitudinal part of the W propagator
and the GB propagator in Eq. (3.9).
Finally, we present the result for the complete amplitude

to tree level—i.e.,

AEChLð2þ4Þ
Tree ¼ AEChLð2Þ

Tree þAEChLð4Þ
Tree ; ð3:15Þ

where AEChLð2Þ
Tree ¼ Að0Þ is given in Eqs. (3.13) and (3.14),

and AEChLð4Þ
Tree is computed from L4 and contains the ai

coefficients. As we have explained in the previous section,
this can be written in two ways, depending on whether one
uses the EOMs to reduce the list of operators or not. We
provide here the short version—i.e., using LþEOMs

4 in
Eq. (2.12):

AEChLð4Þ
Tree ¼ AEChLð4Þ

Tree js þAEChLð4Þ
Tree jt þAEChLð4Þ

Tree ju
þAEChLð4Þ

Tree jc; ð3:16Þ

where the contributions by channels are

AEChLð4Þ
Tree js ¼

g2

2v2
1

S −m2
H
ð3κ3ad2m2

HðSϵþ · ϵ− − 2ϵþ · p−ϵ− · pþÞ

þ 6κ3aHWWm2
HððS − 2m2

WÞϵþ · ϵ− − 2ϵþ · p−ϵ− · pþÞ
− ð3κ3ãHVVm4

H þ aðãHddm2
H þ addWm2

W þ addZm2
ZÞðSþ 2m2

HÞÞϵþ · ϵ−Þ;

AEChLð4Þ
Tree jt ¼

g2

2v2
a

T −m2
W
ðad2ð4m2

Wm
2
Hϵþ · ϵ− þ 2ðT þ 3m2

W −m2
HÞϵþ · k1ϵ− · k2

− 4m2
Wðϵþ · k1ϵ− · pþ þ ϵþ · p−ϵ− · k2ÞÞ

− 8aHWWm4
WððT þm2

W −m2
HÞϵþ · ϵ− þ ϵþ · k1ϵ− · pþ þ ϵþ · p−ϵ− · k2Þ

− 4ãHVVm2
Hðm2

Wϵþ · ϵ− þ ϵþ · k1ϵ− · k2ÞÞ;

FIG. 2. Diagrams at LO contributing to WþW− → HH in the covariant Rξ gauges.

M. J. HERRERO and R. A. MORALES PHYS. REV. D 106, 073008 (2022)

073008-8



AEChLð4Þ
Tree ju ¼ AEChLð4Þ

Tree jt with T → U and k1 ↔ k2;

AEChLð4Þ
Tree jc ¼

g2

2v2
ð−2ãddVV1ðϵþ · k2ϵ− · k1 þ ϵþ · k1ϵ− · k2Þ

þ ð−2ãddVV2ðS − 2m2
HÞ þ 4aHHWWðS − 2m2

WÞ þ aHd2S − ãHHVVm2
HÞϵþ · ϵ−

− 2ðaHd2 þ 4aHHWWÞϵþ · p−ϵ− · pþÞ: ð3:17Þ

Notice that we have used the new coefficients defined in
Eq. (2.13). Notice also that the above results are given in
terms of the polarization vectors of the initial W gauge
bosons. Therefore, our results above apply to all the possible
polarized channels, WXWY → HH, with XY ¼ LL; TT;
LT; TL by just inserting the proper polarization vectors
ϵþ and ϵ−.
We next comment shortly on the comparison of our

analytical results in this section for the tree-level amplitude
within the EChL with the previous literature. First of all, the
LO amplitude in Eqs. (3.13) and (3.14) is in full agreement

with Ref. [12]. Secondly, regarding AEChLð4Þ
Tree , we have

compared our results with those in Ref. [5]. We have

checked the full agreement in the contributions from the
coefficients, ãddVV1 (¼ η), ãddVV2 (¼ δ), ad2 (¼ b1χ), and
aHd2 (¼ 2b2χ) with their results. The other coefficients in
our result of Eq. (3.17) were not considered in Ref. [5].
On the other hand, the results of Ref. [4] in terms of δ and η
were provided using the equivalence theorem, so they
can only be compared for the longitudinal modes and in
the high-energy regime

ffiffiffi
s

p
≫ mW; mH. By an exploration

of our amplitudes for the case of the longitudinal modes
in that high-energy regime, we have also checked the
agreement of the η and δ contributions with that reference.
The other parameters were not studied either in that
reference.

FIG. 3. Tree-level cross section predictions forWþW− → HH within the EChL, setting a ¼ b ¼ κ3 ¼ κ4 ¼ 1. All EChL coefficients
in the NLO Lagrangian are set to zero except for η and δ. Plots in the left column are for nonvanishing η, and plots in the right column are
for nonvanishing δ. The predictions for the total unpolarized case are displayed in the plots of the first row, and those for the polarized
LL case in the second row. The SM predictions are displayed in all the plots for comparison.
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Finally, it is important to keep in mind the existent
hierarchy among the various polarization channels and
among the relevance of the various coefficients for each
polarization channel. First, it is well known the dominance
in the total cross section for this WW → HH process
of the longitudinal polarized modes over the transverse
modes. Namely, σðWW → HHÞ is fully dominated by
σðWLWL → HHÞ. The other polarization channels with
initial WTWT or WLWT are highly subdominant at the
center-of-mass energies in the TeV domain. Therefore, by
studying the longitudinal polarized case, one can approxi-
mate quite well the total cross section. This dominance of
σðWLWL → HHÞ over the other polarized channels also
happens in the EChL case, in the tree-level estimates of the
cross section, at both orders—the LO and the NLO ones. A
recent phenomenological study of the corresponding BSM
effects in Ref. [11] for all the polarized channels, and
considering all the EChL coefficients in Eq. (3.17), has
shown that the most relevant coefficients of the EChL, for
the LLmodes and at the tree-level NLO, are indeed η and δ.
Here, by “the most relevant coefficients” we mean those
EChL coefficients in L4 that lead to the largest cross
sections in this WW → HH scattering process at the TeV
energy domain. For definiteness here, and to summarize
this LL dominance in the tree-level NLO prediction from
the EChL, we show in Fig. 3 our predictions, as a function
of the center-of-mass energy

ffiffiffi
s

p
, of the cross sections (i) for

the total unpolarized case (the two plots on the first row),
and (ii) for the LL polarized case (the two plots on
the second row). We display in this figure the BSM
departures with respect to the SM predictions from the
separate effects of the two most relevant coefficients,
assuming different numerical values for those coefficients
�ð0.1; 0.01; 0.001; 0.0001Þ. (i) The effect from η is dis-
played in the plots in the first column, and (ii) the effect from
δ is displayed in the plots in the second column. We can
clearly see in these plots that the cross section for theLL case
fully dominates the total (unpolarized) cross section for all
the studied cases. Indeed, the two lines forLL and for “total”
practically coincide in the studied TeV domain (up to the
obvious reducing 1=9 factor in the unpolarized result due to
the average over the possible initial helicities). The other
evident conclusion from this figure is that large values of the
cross sections and large departures from the SM predictions
can be reached at TeVenergies for the cases with the larger
input coefficients η and δ. For a more devoted study of the
phenomenological consequences of these tree-level predic-
tions within the EChL at NLO, we address the reader to
Ref. [11]. In particular, the relevance of these predictions for
the di-Higgs production at future eþe− colliders via WW
fusion has also been explored in that reference. In the
following part of the present work, we do not go further
in these phenomenological issues and focus instead in our
main purpose here: the computation of the EW radiative
corrections for the WW → HH scattering process.

IV. RENORMALIZATION PROCEDURE

A. Generalities

In this section, we present our renormalization pro-
gram to compute the renormalized 1PI functions within
the EChL in covariant Rξ gauges using a diagrammatic
approach. These renormalized 1PI functions, denoted here
generically by Γ̂, receive contributions from the tree-level
Lagrangian L2 þ L4, ΓTree; from the one-loop diagrams
using the interaction vertices of L2 only, ΓLoop; and from all
the counterterms of L2 þ L4, ΓCT:

Γ̂n-legs ¼ ΓTree
n-legs þ ΓLoop

n-legs þ ΓCT
n-legs: ð4:1Þ

Notice again the double role of L4 in the chiral Lagrangian
approach: on the one hand, it contributes to a tree-level
scattering amplitude, and on the other hand it also acts as a
source of new counterterms in order to remove the extra
divergences emerging from the loops computed with L2,
which are not removable by a simple redefinition of the
parameters in this part of the Lagrangian.
Our analytical computation here is performed with the

various software associated with Wolfram Mathematica
[13] and starts by implementing our model in FeynRules
[14], generating and drawing the Feynman diagrams with
FeynArts [15] and performing the main calculations with
FormCalc and LoopTools [16]. Some extra checks of the
involved one-loop divergences were made using FeynCalc
[17] and Package-X [18]. The SM results were obtained by
following the same steps.
The renormalization program followed in this work is

similar to the one we already presented in Ref. [3] in the
EChL context for vector boson scattering (VBS) processes
like WZ → WZ, etc. Next, we briefly summarize the main
aspects of the regularization and multiplicative renormal-
ization prescriptions, as well as the renormalization con-
ditions; and then we present the new one-loop diagrams,
the new divergences, and the solutions for all the counter-
terms relevant for WW → HH scattering.

B. Regularization and renormalization
prescriptions

As usual, our regularization procedure of the loop
contributions is performed with dimensional regularization
[19,20] in D ¼ 4 − ϵ dimensions. This method preserves
all the relevant symmetries in the bosonic sector of the
theory, including chiral invariance (Dirac γ5 is not involved
in this work, since we do not consider the fermionic
contributions). Consequently, the scale of dimensional
regularization is set to μ, and all the one-loop divergences
are expressed in terms of

Δϵ ¼
2

ϵ
− γE þ logð4πÞ: ð4:2Þ
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Concerning the renormalization procedure, we generate the
counterterms of all the parameters and fields appearing in
the tree-level Lagrangian, L2 þ L4, by the usual multipli-
cative renormalization prescription that relates the bare

quantities (here denoted by a specific sub- or superscript
with a label 0) and the renormalized ones (here with no
specific sub- or superscript labels). We have the following
relations:

H0 ¼
ffiffiffiffiffiffi
ZH

p
H; B0μ ¼

ffiffiffiffiffiffi
ZB

p
Bμ; W1;2;3

0μ ¼
ffiffiffiffiffiffiffi
ZW

p
W1;2;3

μ ; π1;2;30 ¼
ffiffiffiffiffiffi
Zπ

p
π1;2;3;

v0 ¼
ffiffiffiffiffiffi
Zπ

p
ðvþ δvÞ; λ0 ¼ Z−2

H ðλþ δλÞ;
g00 ¼ Z−1=2

B ðg0 þ δg0Þ; g0 ¼ Z−1=2
W ðgþ δgÞ; ξ01;2 ¼ ξð1þ δξ1;2Þ;

a0 ¼ aþ δa; b0 ¼ bþ δb; κ03;4 ¼ κ3;4 þ δκ3;4; a0i ¼ ai þ δai; ð4:3Þ

where Zi ¼ 1þ δZi are the usual renormalization multi-
plicative constants, and we use the generic notation δp (δai)
for the counterterm of each involved EW parameter p
(effective coefficient ai).
With these definitions, our final results for both the

renormalized 1PI functions and the WW → HH scattering
amplitude are expressed in terms of the renormalized
quantities: mW, mZ, mH, g, g0, v, a, b, κ3, λ, and the
ai’s. Notice that κ4 and the ghost counterterms do not enter
into the present computation, and we omit them for brevity.
On the other hand, the renormalization of the covariant
gauge-fixing parameters have set a common renormalized ξ
parameter for all the involved EW gauge bosons. For more
details on the technicalities of our renormalization method,
see Ref. [3].
Next, we summarize the renormalization conditions. As

in Ref. [3], we adopt here a hybrid prescription in which we
choose the on-shell (OS) scheme for the EW parameters in
the lowest-order Lagrangian L2 and the MS scheme for all
the EChL coefficients. The list of conditions are as follows:
(1) Vanishing (Higgs) tadpole:

T̂ ¼ 0: ð4:4Þ

(2) The pole of the renormalized propagator of the
Higgs boson lies at m2

H, and the corresponding
residue is equal to 1:

Re½Σ̂HHðm2
HÞ� ¼ 0; Re

�
dΣ̂HH

dq2
ðm2

HÞ
�
¼ 0: ð4:5Þ

(3) Properties of the photon: the residue equals 1, there
are no A − Z mixing propagators, and the electric
charge is defined like in QED, since there is a
remnant Uð1Þem electromagnetic gauge symmetry:

Re

�
dΣ̂T

AA

dq2
ð0Þ

�
¼ 0; Σ̂T

ZAð0Þ¼ 0; Γ̂μ
γeejOS¼ ieγμ:

ð4:6Þ

(4) The poles of the transverse renormalized propaga-
tors of the W and Z bosons lie at q2 ¼ m2

W and
q2 ¼ m2

Z, respectively:

Re½Σ̂T
WWðm2

WÞ� ¼ 0; Re½Σ̂T
ZZðm2

ZÞ� ¼ 0: ð4:7Þ

(5) The poles of the renormalized propagators in
the unphysical charged sector fW�; π�g lie at
q2 ¼ ξm2

W. Therefore,

Re½Σ̂L
WWðξm2

WÞ� ¼ 0; Re½Σ̂ππðξm2
WÞ� ¼ 0: ð4:8Þ

(6) MS scheme for all the involved EChL coefficients:
In particular, this applies for a, b, κ3, κ4 in Eq. (2.4)
and the ai’s in Eq. (2.10).

The above renormalization conditions on all the EChL
parameters determine both the divergent and finite parts
involved in all the 1PI functions, and therefore also in the
one-loop scattering amplitudes. Notice that the residues for
the Higgs and photon fields are set to 1 in the previous
conditions, but the resulting residues ZWðZÞ of the gauge
bosons WðZÞ are different from 1. Since each external W
provides a factor Z1=2

W to the observable S matrix, the
corresponding contribution from the residues [Ares in
Eq. (3.6)] of the two externalW’s inWW → HH scattering
is given by

Ares ¼ Re

�
dΣ̂T

WW

dq2
ðm2

WÞ
�
Að0Þ: ð4:9Þ

In addition, the Higgs tadpole enters into many parts of the
different diagrams contributing to the amplitude. However,
with the renormalization condition of Eq. (4.4), theA1-leg in
Eq. (3.6) vanishes.

C. Summary of contributions to the
renormalized 1PI functions

We emphasize again that our renormalization program
in the Rξ gauges makes finite all the relevant 1PI Green’s
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functions for arbitrary momentum of the external legs
(hence, generically, off shell); and no transversality con-
dition for the EW gauge bosons, pi · ϵðpiÞ ¼ 0, is applied
for those 1PI results. This means that our renormalization
program is more demanding than the usual renormalization
program, which gets just finite results for the scattering
amplitudes with on-shell external legs. Notice also that in
this latter case, the transversality conditions for the external
gauge bosons are usually used as well.
In the following part of this section, we collect the

various contributions to the renormalized 1PI functions,
already mentioned in Sec. III, that enter into WW → HH
scattering and that were not involved in our previous
computation [3], which was addressed to the WZ → WZ
case. In particular, we exhibit now the results for the

Green’s functions involving Higgs bosons in the external
legs, corresponding to the vertices HHH, HWW, πWH,
AHH, ZHH, andWWHH. And, for completeness, we also
include in Appendix A a short summary of the other
renormalized 1PI functions derived in Ref. [3] that also
enter here for the WW → HH scattering. For definiteness,
all the explicit analytical results presented in the present
paper (and in the appendices) are provided in the
Feynman–’t Hooft gauge with ξ ¼ 1.
The results of the three-legs functions corresponding

to Hðp1ÞHðp2ÞHðp3Þ, HðqÞWμðk1ÞWνðk2Þ, πðqÞWμðpWÞ
HðpHÞ, and VρðqÞHðp1ÞHðp2Þ (with V ¼ A, Z) are given
by the sum of the LO part (if any), loop contributions,
EFT coefficients’ contributions, and CT contributions, as
follows:

iΓ̂HHH ¼ −3iκ3
m2

H

v
þ iΓLoop

HHH − 3iκ3
m2

H

v

�
δκ3
κ3

þ δm2
H

m2
H
−
δZπ

2
−
δv
v
þ 3δZH

2

�

þ i
v3

ðadd□ðp4
1 þ p4

2 þ p4
3Þ þ 2ðaH□□ − add□Þðp2

1p
2
2 þ p2

2p
2
3 þ p2

3p
2
1Þ

þ ðaHddm2
H þ addWm2

W þ addZm2
ZÞðp2

1 þ p2
2 þ p2

3ÞÞ;

iΓ̂μν
HW−Wþ ¼ ia

g2v
2

gμν þ iΓLoop
HWW þ i

ag2v
2

�
δa
a
þ 2δg

g
þ δv

v
þ δZH

2
þ δZπ

2

�
gμν

− i
g2

2v
ðð−ð2aHWW þ ad2 þ 2a□VVÞq2 þ 2aHWWðk21 þ k22Þ þ aHVVm2

HÞgμν

þ ðad2 þ ad3Þðkμ1kν1 þ kμ2k
ν
2Þ þ 2ðad3 − aH11Þkμ1kν2 þ 2ð2aHWW þ ad2Þkμ2kν1Þ;

iΓ̂μ
πþW−H ¼ −iagðpW þ pHÞμ þ iΓLoop

πWH − iag
�
δa
a
þ δg

g
þ δZH=2þ δZπ=2

�
ðpW þ pHÞμ

þ i
g
2v2

ð−2ðpμ
H þ pμ

WÞð2a□VVp2
H þ ad2p2

W − ad3q2 − aHVVm2
HÞ

þ pμ
Wq

2ðad2 − 3ad3 þ 4aH11Þ þ pμ
Wðad2 þ ad3Þðp2

W − p2
HÞÞ;

iΓ̂ρ
AHH ¼ iΓLoop

AHH;

iΓ̂ρ
ZHH ¼ iΓLoop

ZHH: ð4:10Þ

Similarly, the result of the four-legs function corresponding to Wμðp1ÞWνðp2ÞHðp3ÞHðp4Þ is given by the sum of the LO
part, the loop contributions, the EFT coefficients contributions, and the CT contributions as follows:

iΓ̂μν
WþW−HH ¼ i

bg2

2
gμν þ iΓLoop

WWHH þ i
bg2

2

�
δb
b
þ 2δg

g
þ δZH

�
gμν

−
ig2

2v2
ðgμνð−ðp2

3 þ p2
4Þð−2addVV2 þ 4aHHWW þ 2aH□VVÞ þ ðp1 þ p2Þ2ð−2addVV2 − aHd2Þ

þ 4ððp1 þ p3Þ2 þ ðp1 þ p4Þ2ÞaHHWW þ aHHVVm2
HÞ

þ 4ðaHH11 − 2aHHWWÞpμ
2p

ν
2 − ðaHd2 − aHd3 þ 8aHHWWÞpμ

2ðpν
3 þ pν

4Þ
þ ðaHd2 − aHd3 þ 4aHHWWÞðpμ

3 þ pμ
4Þpν

2 þ ðaHd2 þ aHd3Þðpμ
3p

ν
3 þ pμ

4p
ν
4Þ

þ ð−2addVV1 þ aHd2 þ aHd3Þðpμ
3p

ν
4 þ pμ

4p
ν
3ÞÞ: ð4:11Þ
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In all the previous expressions above, in Eqs. (4.10) and
(4.11), the explicit ai coefficients entering are the bare a0i
coefficients, but for shortness we have dropped the super-
index 0. Therefore, the ai’s included in these equations
must be all understood rather as ðai þ δaiÞ, with these ai’s
being the renormalized coefficients in the MS, and δai
being the corresponding divergent CT needed to cancel the
new divergences from the loops of the 1PI functions. As we
have said, the computation of the loop contributions to all
these 1PI functions is performed with the help of FormCalc
and LoopTools. For illustrative purposes, we show in

Figs. 6 and 7 all the generic one-loop diagrams entering
into the computation of the previous Γloop functions. Notice
that since we are working with covariant Rξ gauges, we
have considered all the possible particles propagating in the
loops—namely, GBs, Higgs, EW gauge bosons, and ghosts.
Next, we provide our results for the divergent (singular)

parts of these loop contributions for the relevant 1PI
functions in Eqs. (4.10) and (4.11). All these divergent
contributions will set the values of theOðΔϵÞ counterterms,
both for the EW parameters and the ai coefficients, that are
relevant for our computation. We get the following results:

iΓLoop
HHHjdiv ¼ i

Δϵ

16π2
3

2v3
ð9κ3κ4m4

H þ 12abð2m4
W þm4

ZÞ − 2a3ðp2
1p

2
2 þ p2

2p
2
3 þ p2

3p
2
1Þ

− aða2 − bÞðp4
1 þ p4

2 þ p4
3 − 2ð2m2

W þm2
ZÞðp2

1 þ p2
2 þ p2

3ÞÞÞ;

iΓLoop
HWW jdiv ¼ i

Δϵ

16π2
g2

12v
ðð3að2þ a2Þq2 þ aða2 − bÞðk21 þ k22Þ

− 3ða2 − bÞð2a − 3κ3Þm2
H − 18abm2

W þ 78am2
W − 18am2

ZÞgμν
þ 2aða2 þ 2bÞðkμ1kν1 þ kμ2k

ν
2Þ þ 12a3kμ1k

ν
2Þ;

iΓLoop
πWHjdiv ¼ i

Δϵ

16π2
g
6v2

ððpμ
H þ pμ

WÞð−9ða2 − bÞκ3m2
H − a3ð3p2

H þ p2
W − 6m2

H þ 3q2Þ
þ að−6p2

H − 34m2
W þ 14m2

Z þ bðp2
W − 6m2

H þ 18m2
W − 3q2ÞÞÞ

þ pμ
Waðð2þ a2 þ 2bÞp2

H − a2ðp2
W − 11q2Þ þ 2ðm2

W þm2
Z − bðp2

W þ q2ÞÞÞÞ;
iΓLoop

AHHjdiv ¼ iΓLoop
ZHHjdiv ¼ 0;

iΓLoop
WWHHjdiv ¼ −i

Δϵ

16π2
g2

12v2
ðgμνð3ð−8a4 þ 12a3κ3 − 12abκ3 þ a2ð10b − 3κ4Þ − 2b2 þ 3bκ4Þm2

H

þ 3bðð6b − 26Þm2
W þ 6m2

ZÞðp2
3 þ p2

4Þa2ð6þ 6a2 − 3bÞ
þ 6ðp1 þ p2Þ2ð1þ a2Þða2 − bÞ þ ððp1 þ p3Þ2 þ ðp1 þ p4Þ2Þð4a4 − 5a2bþ b2ÞÞ
− 8ð4a4 − 5a2bþ b2Þpμ

2p
ν
2 þ 2ð4a4 þ a2b − 2b2Þpμ

2ðpν
3 þ pν

4Þ
− 2ð20a4 − 19a2bþ 2b2Þðpμ

3 þ pμ
4Þpν

2 þ 2ð4a4 þ a2b − 2b2Þðpμ
3p

ν
3 þ pμ

4p
ν
4Þ

þ 6a2ð2a2 þ bÞðpμ
3p

ν
4 þ pμ

4p
ν
3ÞÞ: ð4:12Þ

Finally, we present the corresponding results in the SM for the Green’s functions that are involved in the WW → HH
computation and were not given in Ref. [3]. We use the “bar” notation for all the 1PI functions in the SM, not to be confused
with the previous functions of the HEFT. Notice that, contrary to the HEFT, in the SM case, the multiplicative
renormalization constant for the Higgs and GBs fields are the same (Zϕ), since they form a doublet. We get the following
SM results:

i ˆ̄ΓHHH ¼ −3i
m2

H

v
þ iΓ̄Loop

HHH − 3i
m2

H

v

�
δm2

H

m2
H
þ δZϕ −

δv
v

�
;

iΓ̄Loop
HHHjdiv ¼ i

Δϵ

16π2
3

v3
ð6m4

H þ 6ð2m4
W þm4

ZÞ −m2
Hð2m2

W þm2
ZÞÞ;

i ˆ̄Γμν
HWþW− ¼ i

g2v
2

gμν þ iΓ̄Loop
HWW þ i

g2v
2

�
2δg
g

þ δv
v
þ δZϕ

�
gμν;

iΓ̄Loop
HWW jdiv ¼ i

Δϵ

16π2
g2

2v
ð10m2

W − 3m2
ZÞgμν;
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i ˆ̄Γμ
πWH ¼ −i

g
2
ðpW þ 2pHÞμ þ iΓ̄Loop

πWH − i
g
2

�
δg
g
þ δZϕ

�
ðpW þ 2pHÞμ;

iΓ̄Loop
πWHjdiv ¼ −i

Δϵ

16π2
g
v2

ð2m2
W −m2

ZÞðpW þ 2pHÞμ;

i ˆ̄Γμν
WWHH ¼ i

g2

2
gμν þ iΓ̄Loop

WWHH þ i
g2

2

�
2δg
g

þ δZϕ

�
gμν;

iΓ̄Loop
WWHHjdiv ¼ i

Δϵ

16π2
g2

v2
ð6m2

W −m2
ZÞgμν;

i ˆ̄Γρ
AHH ¼ iΓ̄Loop

AHH;

iΓ̄Loop
AHHjdiv ¼ 0;

i ˆ̄Γρ
ZHH ¼ iΓ̄Loop

ZHH;

iΓ̄Loop
ZHHjdiv ¼ 0: ð4:13Þ

D. Renormalization of the EFT parameters

In this section, we present the results for the renormal-
ization of the EFT parameters. These include the EW
parameters entering in L2, like g, g0, etc., and the EChL
coefficients—namely, a, b, κ3 entering in L2, and the ai
coefficients entering in L4.
First, we determine the divergent parts (called in short δϵ)

of all the counterterms, requiring that all the renormalized
1PI functions at arbitrary values of the external leg
momenta (generically off-shell) results be finite. This
procedure leads to a system of equations, which must be
solved sequentially, by demanding the cancellation of the
OðΔϵÞ contributions for the involved Lorentz structure and
momentum dependence of each Green’s functions. The
CTs corresponding to theL2 parameters in Eq. (2.4), except
for b, κ3, and λ, and some of the ai coefficients in
Eq. (2.10), were already derived in our previous work
[3]. With respect to this reference, we add now the Green’s
functions with Higgs bosons corresponding to the vertices
HHH, HWW, πWH, and WWHH (notice that the corre-
sponding ones for AHH and ZHH are finite and do not
have new EChL coefficients). In particular, we derive δϵλ
from the tadpole’s counterterm; Γ̂HHH sets δϵκ3, δϵadd□,
δϵaH□□, and δϵaHdd; Γ̂HWW sets δϵaHWW , δϵad2, δϵa□VV ,
δϵaHVV , δϵad3, and δϵaH11; Γ̂WWHH sets δϵb, δϵaddVV1,

δϵaddVV2, δϵaHHWW , δϵaHH11, δϵaH□VV , δϵaHd2, δϵaHd3,
and δϵaHHVV ; and with the singular parts of all the CTs, we
check that Γ̂πWH gives a finite contribution to the scattering
amplitude.
Second, these divergent parts of the CTs can also be

determined by using the renormalization conditions of
Eqs. (4.4)–(4.8). They allow us to write the counterterms
as functions of the undressed 1PI functions. Then we have
used this second procedure as a check of our results that we
obtain solving the system described in the previous para-
graph. Also, with this second procedure, we can determine
the finite contributions to the counterterms (if any), and we
use them in the final numerical computation of the one-loop
cross section in the next section. Therefore, we postpone
the estimates of the finite contributions to the next section
and focus here on the derivation of the singular parts of the
EChL counterterms. For completeness, we also provide the
divergent counterterms for the EW parameters derived in
our previous work together with δϵλ (that enters now in the
s channel) in Eq. (A5). The corresponding SM results,
obtained from the one-leg and two-leg Green’s functions,
were presented and compared with the EChL in Ref. [3],
and we do not repeat them here.
Our results for the divergent parts of the full set of EChL

coefficients are then summarized as follows:

δϵa ¼ Δϵ

16π2
3

2v2
ðða2 − bÞða − κ3Þm2

H þ aðð1 − 3a2 þ 2bÞm2
W þ ð1 − a2Þm2

ZÞÞ;

δϵb ¼ −
Δϵ

16π2
1

2v2
ðða2 − bÞð8a2 − 2b − 12aκ3 þ 3κ4Þm2

H

þ 6a2bð2m2
W þm2

ZÞ − 6bðm2
W þm2

ZÞ − 6b2m2
WÞ;

δϵκ3 ¼ −
Δϵ

16π2
1

2m2
Hv

2
ðκ3ða2 − bþ 9κ23 − 6κ4Þm4

H − 3ð1 − a2Þκ3m2
Hðm2

W þm2
ZÞÞ;
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δϵaddVV1 ¼ −
Δϵ

16π2
a4 þ a2bþ b2

3
; δϵaddVV2 ¼ −

Δϵ

16π2
ða2 − bÞð2a2 þ bþ 6Þ

12
;

δϵa11 ¼
Δϵ

16π2
a2

4
; δϵaH11 ¼

Δϵ

16π2
aða2 − bÞ

2
; δϵaHH11 ¼

Δϵ

16π2
4a4 − 5a2bþ b2

4
;

δϵaHWW ¼ Δϵ

16π2
aða2 − bÞ

12
; δϵaHHWW ¼ −

Δϵ

16π2
4a4 − 5a2bþ b2

24
;

δϵad2 ¼ −
Δϵ

16π2
aða2 − bÞ

6
; δϵaHd2 ¼

Δϵ

16π2
4a4 − 5a2bþ b2

6
;

δϵa□VV ¼ −
Δϵ

16π2
að2þ a2Þ

4
; δϵaH□VV ¼ Δϵ

16π2
4a4 þ a2ð4 − 3bÞ − 2b

4
;

δϵad3 ¼
Δϵ

16π2
aða2 þ bÞ

2
; δϵaHd3 ¼

Δϵ

16π2
−4a4 þ a2bþ b2

2
;

δϵa□□ ¼ −
Δϵ

16π2
3a2

4
; δϵaH□□ ¼ Δϵ

16π2
3að2a2 − bÞ

2
;

δϵadd□ ¼ Δϵ

16π2
3aða2 − bÞ

2
; δϵaHdd ¼ 0; δϵaddW=2 ¼ δϵaddZ ¼ −

Δϵ

16π2
3aða2 − bÞ;

δϵaHVV ¼ δϵaHHVV ¼ 0; ð4:14Þ

where we have used the bold notation for the new EChL
coefficients in this computation with respect to Ref. [3]. As
is expected from the SUð2ÞL ×Uð1ÞY gauge-invariant
construction of L4, we have found no ξ dependence in
any of the CTs of the EChL coefficients (in contrast to the
results for the CTs of the EW parameters, like δg, etc., that
are in general ξ dependent; see Ref. [3]). We also see in
these results that some of these CTs vanish for the choice
a ¼ b ¼ κ3 ¼ κ4 ¼ 1, and others do not, like addVV1,
addVV2, a11, a□VV , aH□VV , ad3, aHd3, a□□, and aH□□.
Some comments about the previous results in Eq. (4.14)

are in order. First, we wish to note that these results, to our
knowledge, are the only ones within the EChL that apply to
the most general and complete renormalization program of
off-shell, one-loop 1PI functions while including all types
of bosonic loop diagrams in the Rξ gauges. However, it is
pertinent to compare our results with some previous results
of the EChL one-loop divergences and counterterms in the
literature. We will summarize this comparison as follows:
First, we compare with previous works that compute
the one-loop scattering amplitude. The renormalization
of the WLWL → HH process was studied to one loop
within the EChL previously in Ref. [4]. It was done by
means of the ET—i.e., replacing the externalWL’s with the
w GBs and studying the corresponding ww → HH scatter-
ing with just chiral loops (meaning loops with only GBs
and Higgs in the internal propagators), and assuming
massless GBs (as in the Landau gauge, i.e., for ξ ¼ 0).
More recently, in Ref. [5], the loop contributions to the
WLWL → HH scattering amplitude were computed as well
by means of the ET—i.e., also for ww → HH scattering,

but improving upon the previous computation of Ref. [4]
by considering all kinds of bosonic one-loop diagrams in
this scattering of GBs. They also used the Landau gauge—
i.e., with massless GBs—and they simplify the computa-
tion by assuming the so-called isospin limit with
mW ¼ mZ. We have further improved these two computa-
tions in several aspects. We do not use the ET—i.e., we
consider gauge bosons in the external legs, we work in
generic Rξ gauges (i.e., with massive GBs), and we do not
work in the isospin limit—i.e., for us mW and mZ are
different, as they correspond to the physical on-shell gauge
boson masses. Furthermore, we consider the full set of 1PI
functions involved in the amplitude and include all kinds of
diagrams in those functions. The full set of one-loop
diagrams computed here are in consequence different than
in Ref. [5]. However, we can make contact with some of its
results by specifying our results for the particular assump-
tions and approximations of that reference. For instance,
taking into account the differences in the conventions, and
settingmZ ¼ mW, we find agreement for the CTs of a, b, λ,
κ3, and ad2. On the other hand, to compare with this
reference, it is convenient to use the reduced set of NLO
coefficients that, as explained in the previous sections, can
be obtained by the use of the equations of motion.
Concretely, the EChL NLO coefficients appearing in the
scattering amplitude are those presented in Eq. (3.17), and
they appear within the particular combinations of coeffi-
cients given in Eq. (2.13). Therefore, these are the ones that
should be compared with Ref. [5]. From our results in
Eq. (4.14), our prediction for the divergences of these
combinations are
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δϵη ¼ δϵãddVV1 ¼ δϵðaddVV1 − 4a2a11 þ 2aad3Þ ¼ −
Δϵ

16π2
ða2 − bÞ2

3
;

δϵδ ¼ δϵãddVV2 ¼ δϵ

�
addVV2 þ

a
2
add□

�
¼ Δϵ

16π2
ða2 − bÞð7a2 − b − 6Þ

12
;

δϵðaHVV − 2a□VV þ 2aa□□Þ ¼
Δϵ

16π2
að1 − a2Þ;

δϵðaHHVV − 6κ3a□VV − 4aH□VV þ 4ba□□ þ 6κ3aa□□ þ 4aaH□□Þ ¼
Δϵ

16π2
ð3κ3að1 − a2Þ þ 2b − 2a2ð2þ 3bÞ þ 8a4Þ;

δϵðaHdd − add□Þ ¼ −
Δϵ

16π2
3aða2 − bÞ

2
: ð4:15Þ

The first two lines in the above equation are in agreement
with the result for η and δ in Refs. [4,5], where a11, ad3,
and add□ were not considered. It is interesting to remark
that the combinations in Eq. (4.15) indeed vanish for
a ¼ b ¼ κ3 ¼ 1, as expected in the comparison with
the SM.
Second, we compare our results with Ref. [6]. In this

work, the renormalization of one-loop 1PI functions was
performed for off-shell external legs, but they considered
the pure scalar theory—i.e., only the Higgs and GBs sector
of the EChL—and worked with massless GBs (as in the
Landau gauge, with ξ ¼ 0). No gauge or ghost fields were
included, and therefore no gauge-fixing. We find agreement
in the divergences found for the subset of ai ’s involved in
the scalar sector (the coefficients in the notation of Ref. [6]
are specified inside the parentheses). Concretely, we agree
in a (aC), b (bC), κ3 (μ3), addVV1 (c8), addVV2 (c20), a11 (c9),
aH11 (a9), aHH11 (b9), add□ (cΔH), a□VV (c7), aH□VV (a7),
ad3 (c10), aHd3 (a10), a□□ (c□H), and aH□□ (a□H).
Third, we compare our results with others that do

not study scattering amplitudes but are devoted to the
renormalization of the Lagrangian. In particular, the
renormalization of the EChL was studied in the path
integral formalism, using the background field method,
in Refs. [7,21,22]. The most complete comparison of our
results should be performed with the bosonic loop results
of Refs. [7,22], since these also included all loops of scalar
and gauge particles. However, the comparison with the
path integral results is tricky, since they use the equations
of motion to reduce the number of operators in the
Lagrangian. Therefore, some off-shell divergences do
not appear in their results, and some others are redefined
by the use of the equations of motion. They also use
redefinitions of the fields (in particular, the Higgs field) to
reach the canonical kinetic term in the Lagrangian. On the
other hand, the parametrization used in Refs. [7,22] is also
very different from that used here and is not straightfor-
ward to compare with. For example, the divergence
canceled by our addW, addZ, and aHdd in the HHH
Green’s function is absorbed via the Higgs field redefini-
tion in their context.

Finally, we summarize in the following the main results
regarding the renormalization group running equations
(RGEs) for the NLO EChL coefficients, which complement
those given in our previous work [3]. These RGEs can be
easily derived from the previous results in Eq. (4.14) and
taking into account the relation between the renormalized
and bare coefficients given by a0i ¼ ai þ δai. In the MS
scheme (with μ being the scale of dimensional regulariza-
tion in D ¼ 4 − ϵ dimensions), the running aiðμÞ can be
written as follows:

aiðμÞ ¼ a0i − δaiðμÞ; δaiðμÞ ¼ δϵai −
γai
16π2

log μ2;

δϵai ¼
Δϵ

16π2
γai ; ð4:16Þ

where the divergent δϵai is written in terms of the
anomalous dimension γai of the corresponding effective
operator. The running and renormalized ai’s can then be
related, in practice, by

aiðμÞ ¼ ai þ
γai
16π2

log μ2: ð4:17Þ

The set of RGEs for all the ai’s then immediately follows:

aiðμÞ ¼ aiðμ0Þ þ
1

16π2
γai log

�
μ2

μ02

�
; ð4:18Þ

where the specific value of γai for each coefficient can be read
from Eq. (4.14). For instance, in the case of the two most
relevantNLO-EChL coefficients for the presentWW → HH
scattering, η and δ, we get the following RGEs:

ηðμÞ ¼ ηðμ0Þ − 1

16π2
1

3
ða2 − bÞ2 log

�
μ2

μ02

�
;

δðμÞ ¼ δðμ0Þ þ 1

16π2
1

12
ða2 − bÞð7a2 − b − 6Þ log

�
μ2

μ02

�
;

ð4:19Þ
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which are in agreement with the RGEs given in Ref. [4].
Notice that, in particular for a ¼ b ¼ 1, these two EChL
coefficients η and δ do not run; therefore, they are RGE
invariants.

V. NUMERICAL RESULTS FOR W +
L W

−
L → HH

In this section, we study the numerical predictions from
the EChL for the cross section of the scattering process
WW → HH and compare the tree-level rates with the
one-loop rates. We also compare these rates with the
SM case which have been computed independently here
following the same procedure as for the EChL case. It is

also interesting to compare this SM case with previous
SM results in the literature [23]. Since, as we have
already said, the dominant contribution to this scattering
process in the TeV domain is that coming from the
longitudinally polarized gauge boson modes, we will focus
in this section on this most relevant cross section—i.e., on
σðWþ

LW
−
L → HHÞ. In addition, this numerical study of the

radiative corrections will be devoted to the most relevant
coefficients of the NLO-EChL, which, as already said, are
the parameters η and δ. For simplicity, the LO-EChL
parameters will be set here to the SM default values—
i.e., in the following we set a ¼ b ¼ κ3 ¼ κ4 ¼ 1. All
the numerical computations presented here have been

FIG. 4. Cross section prediction forWþ
LW

−
L → HH as a function of the energy

ffiffiffi
s

p
within the EChL at one-loop level (solid lines) and

comparison with the tree-level prediction (dashed lines). The effect of the NLO parameter η is displayed, assuming values for this
parameter of�10−2 and�10−3. The LO parameters are set to a ¼ b ¼ κ3 ¼ κ4 ¼ 1. The other NLO parameters are set to zero. The SM
predictions at tree level (pink) and one-loop level (red) are also included. The relative size of the one-loop prediction with respect to the
tree-level prediction, defined by means of δ1-loop in Eq. (5.1), is displayed at the bottom of this figure. The color code is red (SM), orange
(EChL, η ¼ 10−3), brown (EChL, η ¼ −10−3), bright green (EChL, η ¼ 10−2), and green (EChL, η ¼ −10−2).
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performed with the help of FormCalc and LoopTools, and
for definiteness, we choose the Feynman–’t Hooft gauge—
i.e., we fix ξ ¼ 1.
First of all, it is worth mentioning that we have done a

numerical check of the finiteness of the predicted one-loop
cross section in both cases, the EChL and the SM. This is
done indirectly, by checking numerically the renormaliza-
tion μ-scale independence of the result. This is not a trivial
check at all, since the computation of the one-loop
amplitude from the 1PI functions amounts to the evaluation
of more than 500 one-loop diagrams, where each one
depends on this μ scale. Thus, the cancellation of the μ
dependence among the various diagrams found in the final

result is a quite convincing check. Notice that for the
studied case here of a ¼ b ¼ 1, the two parameters δ and η,
as already said, do not run; therefore, they have equal value
at any assumed μ scale.
We next summarize our numerical results for

σðWþ
LW

−
L → HHÞ as a function of the center-of-mass

energy
ffiffiffi
s

p
in the two Figs. 4 and 5. In Fig. 4, we study

the effect of η, and in Fig. 5, we study the effect of δ. In both
cases, we have explored the following values for those
coefficients, �0.01 and �0.001, which are allowed by
present experimental data. In both plots we have included,
for comparison, the following rates: (i) the tree level
predictions for the EChL, EChLð2þ4Þ

Tree ; (ii) the full one-loop

FIG. 5. Cross section prediction forWþ
LW

−
L → HH as a function of the energy

ffiffiffi
s

p
within the EChL at one-loop level (solid lines) and

comparison with the tree-level prediction (dashed lines). The effect of the NLO parameter δ is displayed, assuming values for this
parameter of�10−2 and�10−3. The LO parameters are set to a ¼ b ¼ κ3 ¼ κ4 ¼ 1. The other NLO parameters are set to zero. The SM
predictions at tree level (pink) and one-loop level (red) are also included. The relative size of the one-loop prediction with respect to the
tree-level prediction, defined by means of δ1-loop in Eq. (5.1), is displayed at the bottom of this figure. The color code is red (SM), orange
(EChL, δ ¼ 10−3), brown (EChL, δ ¼ −10−3), bright green (EChL, δ ¼ 10−2), and green (EChL, δ ¼ −10−2).
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predictions for the EChL, EChLFull; (iii) the tree level
predictions for the SM, SMTree (which coincides with the
LO result in the EChL, EChLð2Þ

Tree); and (iv) the full one-loop
predictions for the SM, SMFull. In the lower parts of these
plots, we display the predictions for the relative size of the
one-loop correction with respect to the tree-level predic-
tion, by means of δ1-loop, which is defined by

δ1-loop ¼
ðσFull − σTreeÞ

σTree
. ð5:1Þ

The main features learned from these two figures are the
following:
(1) We get a one-loop correction in the SM case that is

negative and increases in size with energy. The size
of δ1-loop can be up to ∼−20% at the maximum
energy studied of

ffiffiffi
s

p ¼ 3 TeV, and it is in accor-
dance with Ref. [23].

(2) The predictions from the EChL, both at tree level
and one-loop level, show a clear departure from the
corresponding SM prediction. The largest deviations
occur for the largest jδj and/or jηj considered values.

(3) We get a one-loop correction in the EChL case that
can be either negative or positive depending on the
value of the coefficient and the value of the energy.
For η, we find it to be negative for�10−3 andþ10−2

at all the studied energies. But it is positive for
−10−2 in the interval 1.3 TeV <

ffiffiffi
s

p
< 3 TeV. For

δ, we find it to be negative for þ10−2 and þ10−3 at
all the studied energies. But it is positive for −10−2
in the interval 0.9 TeV <

ffiffiffi
s

p
< 3 TeV and for

−10−3 in the interval 2.5 TeV <
ffiffiffi
s

p
< 3 TeV.

(4) Overall, we see that the maximum size of the
radiative one-loop correction found in the EChL
is about −15% in both the η and δ cases. This is a bit
lower than in the SM case.

(5) Finally, we notice that the values of the coefficients η
and δ specified in these plots refer to the renormalized
parameter values. However, since we have taken in
these plots a ¼ b ¼ 1, they do not depend on the μ
scale. This, together with the previously mentioned μ
independence of the sum of all the contributing one-
loop diagrams, complements the check of μ-scale
invariance of the total cross section result.

VI. CONCLUSIONS

In this work, we have computed the one-loop electro-
weak radiative corrections to the scattering processWW →
HH within the context of the Higgs effective field theory,
considering that the new Higgs physics beyond the SM
enters only in the bosonic sector, and it is given by the
electroweak chiral Lagrangian. We consider this EChL with
all the relevant effective operators of chiral dimensions two
and four and present the computation in terms of the
involved 1PI Green’s functions in covariant Rξ gauges. An

ambitious renormalization program for all these one-loop
1PI functions involved is developed, considering the most
general case with arbitrary momenta for the external
particle legs. This renormalization procedure is more
demanding than just requiring a finite result for the one-
loop amplitude with external on-shell particles, and it has
the advantage of being applicable to several processes
sharing some of those 1PI functions with the amplitude
under study here. We have applied this same procedure for
both cases, the EChL and the SM. In particular, we have
used here for WW → HH scattering some of the previous
renormalized 1PI functions computed in our previous work
devoted to WZ → WZ scattering. We have used those
functions also here, and then we have complemented them
with the new one-loop 1PI functions for the new vertices
involving the Higgs particle, HHH, HWW, πWH, AHH,
ZHH, and WWHH, whose results are presented here.
One of themost important results contained in this work is

the full set of divergent counterterms derived for the EChL
coefficients, summarized in Eqs. (4.14) and (4.15). This set
of divergences also determines the corresponding set of
RGEs for the involved HEFT coefficients, according to
Eqs. (4.16)–(4.19). A small subset of these results have been
cross-checked with previous results in the literature which
were found following a very different approach to ours, and
we have found agreement with these. A discussion on this
comparison has also been included in the present work.
The final part of this paper has been devoted to the

numerical computation of the one-loop radiative correc-
tions to the cross section of the WLWL → HH scattering
process. Again, we have done in parallel both the compu-
tation for the EChL and that for the SM. In the case of the
SM, we have found agreement with the previous result in
Ref. [23]. Our estimate of the one-loop correction with
respect to the tree-level cross section in the SM gives a
negative value whose maximum size is reached at the
largest energy studied of

ffiffiffi
s

p ¼ 3 TeV and is about
δ1-loop ∼ −20%. In the EChL case, where we have consid-
ered the effects from the two most relevant parameters η
and δ, we find also important one-loop corrections, with a
maximum of about δ1-loop ∼ −15%, a bit lower than in the
SM case. The size of this correction depends on the energy
and the particular values of the EChL coefficients. The
largest departures of the HEFT with respect to the SM
prediction are found for the largest studied values of δ and/
or η. There are also some input values for these parameters
and energy ranges that provide a positive one-loop cor-
rection, although small, being below 5%. All these numeri-
cal results are summarized in Figs. 4 and 5.
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APPENDIX A: SUMMARY OF
COMPLEMENTARY 1PI FUNCTIONS

For completeness, we summarize in this appendix the
renormalized 1PI functions already derived in Ref. [3] that
also enter into the present WW → HH scattering. We have
taken these analytical results from that previous reference,
but we have displayed them here by setting ξ ¼ 1, as in the
main results of this paper. The definition of the EChL
coefficients, parameters, and functions entering into these
complementary functions can be found in Ref. [3].
Starting with the EChL, the one-leg function (Higgs

tadpole) is

iT̂ ¼ iTLoop − iδT; δT ¼ ðδm2
H −m2

Hð−2δZH þ δλ=λþ Zπ þ 2δv=vÞÞv: ðA1Þ
Notice that now we are fixing a typo in this counterterm with respect to our previous publication.
The two-leg functions are

−iΣ̂HHðq2Þ ¼ −iΣLoop
HH ðq2Þ þ iðδZHðq2 −m2

HÞ − δm2
HÞ þ i

2a□□

v2
q4;

iΣ̂T
WWðq2Þ ¼ iΣTLoop

WW ðq2Þ − iðδZWðq2 −m2
WÞ − δm2

WÞ;
iΣ̂L

WWðq2Þ ¼ iΣLLoop
WW ðq2Þ þ ið−ðq2 −m2

WÞδZW þ δm2
W þ q2δξ1Þ − iq2g2a11;

Σ̂Wπðq2Þ ¼ ΣLoop
Wπ ðq2Þ þ δξ2 − δξ1

2
m2

W þ q2g2a11;

−iΣ̂ππðq2Þ ¼ −iΣLoop
ππ ðq2Þ þ iððq2 −m2

WÞδZπ − δm2
W −m2

Wδξ2Þ − i
g2

m2
W
q4a11: ðA2Þ

In these formulas above, the ai coefficients must be understood again as ai þ δai.
On the other hand, the three-leg functions corresponding to Wμðk1ÞWνðk2ÞVρðqÞ (with V ¼ A, Z) enter into the present

work just at the LO; therefore, they take the usual tree-level expression:

iΓμνρ
WþW−A ¼ −igswðgμνðk1 − k2Þρ þ gνρðk2 − qÞμ þ gρμðq − k1ÞνÞ;

iΓμνρ
WþW−Z ¼ −igcwðgμνðk1 − k2Þρ þ gνρðk2 − qÞμ þ gρμðq − k1ÞνÞ: ðA3Þ

In contrast, the AHH and ZHH 1PI functions in the second diagram of Fig. 1 vanish at LO, and they get only NLO
contributions that are finite.
Next, we summarize the loop divergences of all the above 1PI functions. These are

iTLoopjdiv ¼ i
Δϵ

16π2
3

2v
ðκ3m4

H þ 2að2m4
W þm4

ZÞÞ;

−iΣLoop
HH ðq2Þjdiv ¼ i

Δϵ

16π2
3

2v2
ða2q4 − 2a2ð2m2

W þm2
ZÞq2 þ ð3κ23 þ κ4Þm4

H þ ð4a2 þ 2bÞð2m4
W þm4

ZÞÞ;

iΣTLoop
WW ðq2Þjdiv ¼ i

Δϵ

16π2
g2

12
ðð39 − a2Þq2 þ 3ða2 − bÞm2

H þ 3ð13 − 3a2Þm2
W − 9m2

ZÞ;

iΣLLoop
WW ðq2Þjdiv ¼ i

Δϵ

16π2
g2

4
ða2q2 þ ða2 − bÞm2

H þ ð13 − 3a2Þm2
W − 3m2

ZÞ;

iΣLoop
Wπ ðq2Þjdiv ¼ i

Δϵ

16π2
g2

4
ð−a2q2 − ða2 − bÞm2

H − ð17=3 − 3a2Þm2
W þ ð7=3Þm2

ZÞ;

−iΣLoop
ππ ðq2Þjdiv ¼ i

Δϵ

16π2

�
a2

v2
q4 þ q2

v2
ðða2 − bÞm2

H − ð5=3þ 3a2Þm2
W − ð5=3Þm2

ZÞ
�
: ðA4Þ
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The resulting divergent part of the EChL counterterms for the EW parameters was also derived in Ref. [3]. We include those
results here, including now explicitly δϵλ, setting ξ ¼ 1:

δϵZH ¼ Δϵ

16π2
3a2

v2
ð2m2

W þm2
ZÞ; δϵT ¼ Δϵ

16π2
3

2v
ðκ3m4

H þ 2að2m4
W þm4

ZÞÞ;

δϵm2
H ¼ Δϵ

16π2
3

2v2
ðð3κ23 þ κ4Þm4

H − 2a2m2
Hð2m2

W þm2
ZÞ þ ð4a2 þ 2bÞð2m4

W þm4
ZÞÞ;

δϵZB ¼ −
Δϵ

16π2
g02

12
ð1þ a2Þ; δϵZW ¼ Δϵ

16π2
g2

12
ð39 − a2Þ;

δϵm2
W ¼ −

Δϵ

16π2
g2

12
ð3ða2 − bÞm2

H þ ð78 − 10a2Þm2
W − 9m2

ZÞ;

δϵm2
Z ¼ Δϵ

16π2
g2

12c2w
ð−3ða2 − bÞm2

H þ ð7ð1þ a2Þ þ 2ð−43þ a2Þc2wÞm2
W þ ð10þ a2Þm2

ZÞ;

δϵg0=g0 ¼ 0; δϵg=g ¼ −
Δϵ

16π2
2g2;

δϵξ1 ¼
Δϵ

16π2
g2

12
ð39 − a2Þ;

δϵξ2 ¼
Δϵ

16π2
1

3v2
ð6ða2 − bÞm2

H þ ð73 − 19a2Þm2
W − 14m2

ZÞ;

δϵZπ ¼ −
Δϵ

16π2
1

v2
ðða2 − bÞm2

H − ð5=3þ 3a2Þm2
W − ð5=3Þm2

ZÞ;

δϵv=v ¼ Δϵ

16π2
2ðm2

W þm2
ZÞ

3v2
;

δϵλ ¼
Δϵ

16π2
1

4v4
ð2a2ðm4

H þ 3m2
Hðm2

W þm2
ZÞ þ 6ð2m4

W þm4
ZÞÞ − 6að2m4

W þm4
ZÞ

−2bðm4
H − 3ð2m4

W þm4
ZÞÞ þ 3ð3κ23 − κ3m4

H þ κ4Þm4
H − 6m2

Hðm2
W þm2

ZÞÞ: ðA5Þ

Finally, the corresponding results in the SM with ξ ¼ 1 are

i ˆ̄T ¼ iT̄Loop − iδT̄; δT̄ ¼ ðδm2
H −m2

Hð−δZϕ þ δλ=λþ 2δv=vÞÞv;
−i ˆ̄ΣHHðq2Þ ¼ −iΣ̄Loop

HH ðq2Þ þ iðδZϕðq2 −m2
HÞ − δm2

HÞ;
i ˆ̄ΣT

WWðq2Þ ¼ iΣ̄TLoop
WW ðq2Þ − iðδZWðq2 −m2

WÞ − δm2
WÞ;

i ˆ̄ΣL
WWðq2Þ ¼ iΣ̄LLoop

WW ðq2Þ þ ið−ðq2 −m2
WÞδZW þ δm2

W þ q2δξ1Þ;
ˆ̄ΣWπðq2Þ ¼ Σ̄Loop

Wπ ðq2Þ þ δξ2 − δξ1
2

m2
W;

−i ˆ̄Σππðq2Þ ¼ −iΣ̄Loop
ππ ðq2Þ þ iððq2 −m2

WÞδZϕ − δm2
W −m2

Wδξ2 − δT̄=vÞ; ðA6Þ

and again the WWA and the WWZ vertices enter only at the tree level in this amplitude, therefore

iΓ̄μνρ
WþW−A ¼ −igswðgμνðk1 − k2Þρ þ gνρðk2 − qÞμ þ gρμðq − k1ÞνÞ;

iΓ̄μνρ
WþW−Z ¼ −igcwðgμνðk1 − k2Þρ þ gνρðk2 − qÞμ þ gρμðq − k1ÞνÞ; ðA7Þ

whereas the AHH and ZHH vertices vanish at the tree level, and these 1PI functions only get one-loop corrections that are
finite.
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The loop divergences of the above 1PI functions in the SM are

iT̄Loopjdiv ¼ i
Δϵ

16π2
1

2v
ð3m4

H þ 6ð2m4
W þm4

ZÞ þm2
Hð2m2

W þm2
ZÞÞ;

−iΣ̄Loop
HH ðq2Þjdiv ¼ i

Δϵ

16π2
1

2v2
ð−4ð2m2

W þm2
ZÞq2 þ 15m4

H þ 18ð2m4
W þm4

ZÞ þm2
Hð2m2

W þm2
ZÞÞ;

iΣ̄TLoop
WW ðq2Þjdiv ¼ i

Δϵ

16π2
g2

6
ð19q2 þ 6ð2m2

W −m2
ZÞÞ;

iΣ̄LLoop
WW ðq2Þjdiv ¼ i

Δϵ

16π2
g2ð2m2

W −m2
ZÞ;

iΣ̄Loop
Wπ ðq2Þjdiv ¼ i

Δϵ

16π2
g2

4
ð−2m2

W þ 3m2
ZÞ;

−iΣ̄Loop
ππ ðq2Þjdiv ¼ i

Δϵ

16π2
g2

2
ð−4ð2m2

W þm2
ZÞq2 þ 3m4

H þ 12m4
W þ 6m4

Z þm2
Hð2m2

W þm2
ZÞÞ; ðA8Þ

and the resulting divergences of the counterterms are

δϵZϕ ¼ Δϵ

16π2
2

v2
ð2m2

W þm2
ZÞ; δϵT̄ ¼ Δϵ

16π2
1

2v
ð3m4

H þ 6ð2m4
W þm4

ZÞ þm2
Hð2m2

W þm2
ZÞÞ;

δϵm2
H ¼ Δϵ

16π2
3

2v2
ð5m4

H −m2
Hð2m2

W þm2
ZÞ þ 6ð2m4

W þm4
ZÞÞ;

δϵZB ¼ −
Δϵ

16π2
g02

6
; δϵZW ¼ Δϵ

16π2
19g2

6
;

δϵm2
W ¼ −

Δϵ

16π2
g2

6
ð31m2

W − 6m2
ZÞ;

δϵm2
Z ¼ Δϵ

16π2
g2

6c2w
ðð10 − 42c2wÞm2

W þ 7m2
ZÞ;

δϵg0=g0 ¼ 0; δϵg=g ¼ −
Δϵ

16π2
2g2;

δϵξ1 ¼
Δϵ

16π2
19g2

6
; δϵξ2 ¼

Δϵ

16π2
2

3v2
ð25m2

W − 9m2
ZÞ;

δϵv=v ¼ Δϵ

16π2
2m2

W þm2
Z

v2
;

δϵλ ¼
Δϵ

16π2
1

v4
ð3m4

H −m2
Hð2m2

W þm2
ZÞ þ 3ð2m4

W þm4
ZÞÞ: ðA9Þ

APPENDIX B: RELEVANT
ONE-LOOP DIAGRAMS

In this appendix, we present the relevant one-loop
diagrams entering into the computation of the 1PI functions
for WW → HH scattering within the EChL. In particular,
we give the corresponding diagrams to the new Green’s
functions, ΓHHH, ΓπWH, ΓAHH, ΓZHH, and ΓWWHH, with
respect to our previous computation in Ref. [3]. These
diagrams were generated with FeynArts [15], and we
collect them by different topologies using a generic
notation for the internal propagators: dashed lines refer
to either Higgs bosons or Goldstone bosons, and wavy lines

refer to all possible EW gauge bosons. Notice the absence
of ghost fields, since the Higgs boson does not interact with
them in the EChL, but they are present in the SM
computation.
The loop diagrams of ΓHHH are shown in the first

column of Fig. 6. Differently from the SM, the results
in the EChL depend on a, b, κ3, and κ4, and there is a
different (nontrivial) momentum dependence due to the
behavior of the scalar loop diagrams in the EChL and
the SM. The same conclusions apply for the diagrams in the
second column corresponding to ΓπWH, but there is no κ4
dependence here.
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FIG. 6. Generic loop diagrams for the HHH and πWH Green’s functions in the EChL. The topologies for AHH and ZHH are the
same as for πWH.
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FIG. 7. Generic loop diagrams for the WWHH Green’s functions in the EChL.
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Regarding the AHH and ZHH Green’s functions, they
have the same generic topologies as ΓπWH, but they give
finite results in both the EChL and SM. We omit the
corresponding diagrams for brevity.

Finally, the one-loop diagrams for the WWHH 1PI
Green’s function are presented in Fig. 7. Also, the results
in the EChL depend on a, b, κ3, and κ4, and again there is a
different (nontrivial) momentum dependence.
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