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In this work, we present the computation of the one-loop electroweak radiative corrections to the
scattering process WW — HH within the context of the Higgs Effective Field Theory (HEFT). We assume
that the fermionic interactions are like in the Standard Model, whereas the beyond Standard Model
interactions in the bosonic sector are given by the electroweak chiral Lagrangian (EChL). The computation
of the one-loop amplitude and the renormalization program is performed in terms of the involved one-
particle-irreducible (1PI) functions and using R, covariant gauges. The renormalization of 1PI functions at
arbitrary external momenta is a more ambitious program than just renormalizing the amplitude with on-
shell external legs, and it has the advantage that they can be used in several scattering amplitudes. In fact,
we use here some of the 1PI functions already computed in our previous work (devoted to WZ — WZ). We
will complement them here with the computation of the new 1PI functions required for WW — HH. From
this renormalization procedure, we will also derive the full set of renormalized coefficients of the EChL that
are relevant for this scattering process. In the last part, we will present the numerical results for the EChL
predictions of the one-loop level cross section, 6(WW — HH)|| ,,p as a function of the center-of-mass
energy, showing the relative size of the one-loop radiative corrections with respect to the tree-level
prediction in terms of the EChL coefficients. The results of the one-loop corrections to WW — HH for the
SM case will be also presented, for comparison with the EChL case, following the same computational
method—i.e., by means of the renormalization of 1PI functions.

DOI: 10.1103/PhysRevD.106.073008

I. INTRODUCTION

The use of effective field theories (EFTs) to study the
phenomenological implications of anomalous Higgs cou-
plings beyond the Standard Model (SM) of particle physics
is nowadays a very common strategy, widely employed, to
test at colliders the new Higgs physics implied by those
anomalous couplings in a model-independent way—
namely, without assuming a particular model of physics
beyond the Standard Model (BSM). The information of the
anomalous Higgs couplings is encoded in a set of effective
operators, built with the SM fields and with the unique
requirement of being invariant under the SM gauge
symmetry, SU(3) x SU(2) x U(1). The coefficients in
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front of these operators (usually called Wilson coefficients)
are generically unknown and encode the information of the
particular underlying fundamental theory that generates
such EFTs at low energies when the new heavy modes of
this theory are integrated out. Depending on the kind of
dynamics involved in the fundamental theory, it is more
appropriate the use of one EFT or another. Usually, the so-
called SMEFT (Standard Model effective theory) is more
appropriate to describe the low-energy behavior of weakly
interacting dynamics, whereas the so-called HEFT (Higgs
effective field theory) is more appropriate to describe
strongly interacting underlying dynamics (for reviews,
see, for instance, Refs. [1,2]). Here we choose this second
case, the HEFT, and focus on the bosonic sector which is
described in terms of the so-called electroweak chiral
Lagrangian (EChL). The fermionic sector will be assumed
to be as in the SM, so that no BSM interactions or effective
operators are considered in the fermionic sector of
the HEFT.

Our main goal here is to determine, within this EChL
context, the size of the one-loop electroweak (EW) radiative
corrections for the subprocess at colliders, W™W~ — HH,
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where two Higgs bosons are produced from the scattering of
two W gauge bosons which are radiated from the initial
colliding particles (also called WW fusion in the literature).
From now on, for brevity, we omit the explicit charges of the
W bosons. This WW scattering subprocess is known to be
relevant for both types of colliders, eTe™ and pp, with
energies at the TeV domain. We also wish to compare in this
work these EW radiative corrections in the EChL context
with the corresponding ones of WW — HH within the SM
context; thus, we perform here the two computations in
parallel. Our calculations of the amplitudes and correspond-
ing cross sections in both cases, the EChL and the SM, are
full bosonic one-loop computations, including all kinds of
diagrams in the loops, and are valid for physical W and H
particles in the external legs, with all possible polarizations
for the W gauge bosons, longitudinal and transverse. That
means that we do not make any approximation for the
external legs, and we do not use the equivalence theorem
(ET) which replaces the external W ’s with the correspond-
ing Goldstone bosons (GBs) and is valid only at high
energies, /s > my. Our computation of the radiative
corrections within the HEFT is therefore valid at all energies,
from the low energies just above the two-Higgs-boson
threshold production, 2my ~ 250 GeV, up to the typical
EFT scale which, in the EChL framework, is set by 4zv ~
3 TeV with v = 246 GeV.

Regarding the technicalities involved in the present
computation, we follow closely our previous work in
Ref. [3], which was addressed to the case of WZ - WZ
scattering. Concretely, we follow the standard Feynman
diagrammatic approach and describe the full renormaliza-
tion program also in terms of one-loop Feynman diagrams.
We organize this computation in terms of the involved one-
particle-irreducible (1PI) Green’s functions, with two,
three, and four external legs, and perform the renormaliza-
tion program of these Green’s functions in covariant
gauges. As we showed in our previous work [3], the
renormalization of the EChL coefficients must be gauge
invariant and therefore independent of the & parameter of
the R; covariant gauges. This is an important point of
performing the analytical computation of the amplitude in
covariant gauges. Regarding the numerical evaluations for
the WW — HH scattering, we will choose here in particu-
lar the Feynman—"t Hooft gauge with £ = 1. The renorm-
alization conditions are also fixed here as in Ref. [3], using
the on-shell scheme for the EW parameters, like the boson
masses My, my, my and gauge couplings, and the MS
scheme for the EChL coefficients. Our work presented here
of the full one-loop corrections for WW — HH in the
EChL is the most complete one in the literature and
improves the previous related works in the literature in
various aspects. The first computation of WW — HH in
Ref. [4] was performed just for the case with external
longitudinal W bosons, which were replaced by external
GBs by using the ET, and includes only scalar particles

both in the external legs and in the loops, working always
with massless GBs. A more recent computation of the one-
loop radiative corrections for WW — HH in the EChL
context, in Ref. [5], also refers to the case of longitudinal
W’s and also uses the ET to replace the external W; with
the GBs, which are taken to be massless. They consider all
kinds of loops for the GB scattering and compute them in
the Landau gauge. They make the additional approximation
of taking as equal the W and Z boson masses (called the
isospin limit in the literature). Our best improvement with
respect to these works is that we do not use the ET—i.e., we
work with external gauge bosons instead of GBs, we do not
take equal masses for W and Z, and we do not take massless
GBs, since we work in the Feynman—"t Hooft gauge.
Consequently, the sets of Feynman one-loop diagrams
considered here and in Refs. [4,5] are also different.
Another important aspect that we cover in a different
way than in those references is the renormalization pro-
gram, which we implement here in terms of general
renormalized Green’s functions, with generic external
momenta, in contrast to Refs. [4,5], which apply the
renormalization program directly to the on-shell scattering
amplitude. The advantage of doing renormalization at the
more general off-shell Green’s function level, is that these
same renormalized functions can be used as well for the
computation of radiative corrections in other observables.
For instance, we have used the same renormalized vertex
function WWH here for WW — HH as in our previous
computation in Ref. [3] for WZ — WZ. The difference is
just in the particular setting of the external legs’ momenta
of the vertex function, which must be done properly for
each case. On the other hand, the renormalization program
using 1PI Green’s functions instead of just on-shell
amplitudes requires the renormalization of a larger set of
EChL coefficients. It is, therefore, also more complete in
this sense. Due to the relevance of this latter issue, we will
devote some part of the present work to the comparison of
our results on the renormalization of the EChL coefficients
with some related previous results [4—7].

The paper is organized as follows: In Sec. I, we briefly
describe the main features of the EChL with R: gauge
fixing and set the relevant operators for the WW — HH
scattering process. The diagrammatic computation by means
of the 1PI functions is presented in Sec. III. Section IV is
devoted to the renormalization program, including the
prescriptions for regularization and renormalization assumed
and the summary of all the divergent counterterms. The
numerical predictions for this observable within the EChL
and the SM are presented and discussed in Sec. V. Finally, we
conclude in Sec. VI.

II. RELEVANT PART OF THE ELECTROWEAK
CHIRAL LAGRANGIAN

In this section, we introduce the part of the bosonic
EChL that is needed for the present computation of the EW
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radiative corrections of the WW — HH scattering, and we
provide some necessary notation. In the EChL context, the
active fields are the EW gauge bosons, B, and Wj
(a =1,2,3); their corresponding GBs z? (a = 1,2, 3);
and the Higgs boson H. The unique requirement for the
building of the EChL is invariance under the EW gauge
transformations, SU(2), x U(1)y. On the other hand, the
scalar sector of the EChL has an additional invariance
under the EW chiral transformation, SU(2); x SU(2)g.
Under this EW chiral transformation, the GBs transform
nonlinearly. This peculiarity implies multiple GB inter-
actions among themselves and also with the other fields.
The Higgs boson field, in contrast, is invariant under all
transformations. Usually the GBs are introduced in a
nonlinear representation via the exponential parametriza-
tion, by means of the matrix U, which transforms linearly
under the EW chiral transformations:

U(n®) = e™*'/7, (2.1)

where 74, a=1,2,3 are the Pauli matrices and
v =246 GeV. On the other hand, the Higgs field is a
singlet of the EW chiral symmetry and the EW gauge
symmetry. Hence, the interactions of H are introduced via
generic polynomials, since there are no limitations from
symmetry arguments on the implementation of this field
and its interactions with itself and with the other fields, in
contrast to linear EFTs such as the SMEFT. Finally, the EW
gauge bosons are introduced by the gauge invariance
principle. Thus, they appear in the following pieces of
the EChL:

B, =gB,7/2, B, =9d,B,-9,B,

W, =gWizt/2, W, =0,W,—ao,W,+iW, W,
p,U=9,U+iW,U-iUB,  V,=(D,UU",
D,0 = 9,0 +i[W,,O|. (2.2)

As usual, the chiral counting arranges the effective
operators in the EChL into terms with increasing chiral
dimension. The most relevant ones are the leading-order
Lagrangian, with chiral dimension two, £,, and the next-to-
leading-order one with chiral dimension four, £4. The
relevant EChL for the present computation can then be
summarized as follows:

Lecn = Ly + Ly. (2.3)

In this chiral dimension counting, it is important to keep in
mind that all derivatives and masses count as momentum—
namely, 0,, my, mz, My, gv, Jv, lv~O(p).

First, the leading-order Lagrangian £, is given by

2 H H\2
L, = % (1 2a—+ b(—) + - -)Tr[DﬂU*D"U]
v v

1 | A
+ 5 0,HOH ~ V(H) - 2—g2Tr[Wm,W’”’]

1 PR
=5 T1[B,,B"] 4+ Lip + Lpp.

- 27 (2.4)

Here, V(H) is the Higgs potential, and L and Lgp are the
gauge-fixing Lagrangian and Fadeev-Popov Lagrangian,
respectively. From now on, the dots in the presentation of
the relevant pieces in the EChL stand for terms that do not
enter into our process of interest, WW — HH, neither at
tree level nor at one-loop level; thus, we omit them. The
Higgs potential in £, is given by

1
V(H) = (—p* + 2*)vH + 3 (=u® + 320%)H?

+K3)~UH3 +K4§H4. (25)
For the posterior discussion on renormalization in this
EChL context, it is convenient to define m%[ = —u? + 3%
then, we can eliminate the y*> parameter in terms of m3. In
this case, the linear term (Higgs tadpole) can be simply
written as

T = (m¥ = 220%)v, (2.6)

and the minimum of the potential, corresponding to a
vanishing tadpole, sets m¥ = 241>

Here, we quantize the EChL as in our previous work [3]—
i.e., using the linear covariant R, gauges [8] with the gauge-
fixing Lagrangian given by

1 1

,CGF:—F_,_F_——F%——F‘%, (27)
2 2
and the gauge-fixing functions given by
1
F.= 72(5”Wf — Emyn™),
1 1
F;=—(0"Z, - Emyn®), Fy=—7=(0"A,). (2.8)

3 VE

Here, & is the generic gauge-fixing parameter of the R;
gauges. Some comments about the &£ dependence are worth
adding here. Notice that in our renormalization program,
we demand the renormalization of all the 1PI functions
involved at arbitrary momentum for the external legs, and
not just the finiteness of the one-loop scattering amplitude.
Thus, in order to demonstrate explicitly the gauge invari-
ance of the renormalized EChL coefficients—i.e., to check
that these are £ independent—the computation of the loop
diagrams involved in the 1PI functions should be per-
formed for an arbitrary & parameter, as was done in our
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previous work [3] devoted to WZ — WZ scattering. All the
final scattering amplitudes with external on-shell particles
are, of course, finite and gauge invariant, but the involved
1PI functions are £ dependent, so the cancellation of the &
dependence in the final one-loop amplitude is an excellent
check of the computation. In the present paper, for all the
numerical estimates of WW — HH, we will choose in
particular the Feynman—"t Hooft gauge, and accordingly,
for definiteness, we set £ = 1 in the presentation of all our
results.

From this previous R; gauge-fixing Lagrangian, one
derives as wusual the corresponding Faddeev-Popov
Lagrangian [9], given by

OF; .
Lgp = ¢l —L¢l, 2.
FP .‘_Z ¢ 5a~c (2.9)
i.j=+.—2ZA J
|
HHO"H
L4 = —agqpy TtV V,| = dgaya

H H?
+ (an +agn . + agpn ?> Te[D, VD, V] -

2
b G ) THlW, ] 4
Agww AHHWW 2 v l

where ¢/ are the ghost fields and a ;i (j=+,—,Z,A) are the
corresponding gauge transformation parameters under
the local transformations SU(2), x U(1), given by L =
eig?~&L(x)/2 and R = eig’r%ay(x)/z‘

Formally, the expressions in Egs. (2.7)—(2.9) and the
gauge bosons’ field transformations are the same as in the
SM. However, the scalar transformations in this nonlinear
EFT differ from the corresponding ones in the SM. This
particularity yields to the absence of interactions among the
Higgs boson and ghost fields, and the presence of new
interactions with multiple GBs and two ghost fields.

Second, the relevant chiral dimension-four Lagrangian
for the computation of all the one-loop 1PI functions
involved in the WW — HH scattering amplitude is
given by

6”H0 H

Tr[VV,]
m? H H?
4H <2aHVV —+ agnpyy 2 ) eV,

H\ o°H
ad2+de2; ;

Tr[WWV”]

UH H\ ¢0/H
+ <61va +anovy ) — TV, V] + (adS +ana ;) TTr[V,,DﬂV" ]
OHOH ¥ Ho,HOH
+ {aoo + aHDD — 5  tuwn—— 53—
v v
mi, m’
+ (aHdd +aaw =5 >+ gz 2) —0"Ho,H. (2.10)
I
These relevant effective operators are taken from the full SV(H ) v? F(H)
HEFT Lagrangian in Refs. [6,10], but we use here a different UH = — SH 4 3H TV, ] =

notation for the EChL coefficients in £4, which are referred
to here generically as a;’s. The correspondence among the
two sets of coefficients, the a;’s here and the coefficients in
Refs. [6,10], can be summarized, in short, by agzy1 <> ¢,
Agqpys <> Co0. A1 <> Coo Apww <> Aws dgpww <> by,
g <> Cs, Apap <> ds, apyy <> €7, apoyy <> dg,
aqz <> C10> Qg3 <> A0, Apoo <> €O, ApO0 <> A0
Agan <> Cams Apyy <> Ao, and agpyy <> be.

It is worth noticing that, in contrast to our one-loop
computation here, for a tree-level computation of the
scattering amplitude (see, for instance, Ref. [11]), the
previous set of operators in £, can be reduced to a smaller
set by the use of the equations of motion (EOMs).
Concretely, one may use the following EOMs involving
the pieces [IH, D,V and F(H) = 1+ 2aZ 4 b(2)%:

2

3 H
= UH = -m}H — §K3mﬁ7 —gvTr[V"Vﬂ]

b
- EHTr[V”V,,],
Tr[e/D, VW F (H) = =Tr[c/ V]9, F (H) =

iﬂW%Whhﬁwm%%ﬂ. (2.11)

Then, one may eliminate the terms in £, involving these
two pieces by rewriting them in terms of the other effective
operators. This reduces in practice the number of effective
operators in £, as follows:
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HJO'H
LM = —(agppp —4a®ay; + 2aay3)

m2

m2

2
4

o
2 Tr[V,V,] - <addVV2 + 5 ddd0

0*Ho,H
a ) T Ty,
v

H
- (apyy — 2apyy + 2aamn) ?TT[V”V;J

2

H
— =R (agpyy — 6K3a0yy — 4agnyy + 4bapp + 6ksaann + 4aayon) ?TT[V”VM]

2 2

2
my H m m5\ H
+ (apaq — addm)—;;a”HauH + (addwv_;v + agaz D—ZZ> ;a”HaﬂH

H H? IR , H\ ¢H _ ..
- <aHWW . + agaww ?) Tr[W,, WH] +i (adz + apa ;) Tr[W,, V¥].

- (2.12)

In this reduced Lagrangian, ay vy, a1, and a,z have been grouped together in the first operator, a ,1» and ag,m in the
second operator, etc. We then redefine these combinations of coefficients as follows:

— - 2
N = Aaayy1 = dgayy — 4a”ay + 2aag;,

. a
0 = Aggyyr = Agayyn + 5 4dd0>

dgyy = agyy — 2apyy + 2aano,

agayy = agpyy — 6K3anyy — 4apnyy + 4bapn + 6k3aapp + 4aapoo,

Apdd = Agad — Ada0-

Notice that in the two first coefficients, we have also used
the alternative notation given by # and &, which is the one
frequently used in some related literature. In particular, the
contributions to the scattering amplitude WW — HH of
these two first operators in the above list with # and &
coefficients were studied first in Refs. [4,5]. We will
compare our results with these and more references in
later sections. Notice also that some coefficients, like agy,
agm1, and ag g3, have disappeared in Eq. (2.12) since, after
the use of the EOMs, they contribute to effective operators
with at least three Higgs bosons which do not enter into the
process of our interest here.

The main consequence of using the EOMs when
computing the scattering amplitude is that these combina-
tions of the EChL coefficients are the ones appearing
precisely in the on-shell scattering amplitudes. On the other
hand, this means that only these combinations of coeffi-
cients are the ones that are really testable at colliders via
this particular WW — HH scattering. In particular, only #
and 0 in Eq. (2.13) and not the separate coefficients, a 1,
ail, ags, Aggyyrs and agym, are the appropriate parameters
for a phenomenological analysis of this scattering WW —
HH process, and similarly for the other combinations
appearing in Eq. (2.12). However, for our most ambitious
computation and renormalization program, where the finite
renormalized one-loop scattering amplitude is obtained in
terms of finite renormalized one-loop 1PI functions, this
reduced Lagrangian is not sufficient, and we must use the
full Lagrangian in Eq. (2.10). As we will see in the
following sections, this full Lagrangian provides not only

(2.13)

|

a finite one-loop amplitude with on-shell external particles
but also finite one-loop 1PI functions with arbitrary
external momenta (generically off shell). This renormali-
zation program in terms of one-loop 1PI functions is also
relevant for the check of the gauge invariance of the final
one-loop amplitude, and to demonstrate the gauge invari-
ance of the renormalized EChL coefficients. The great
advantage of using this procedure by means of the 1PI
functions to compute the radiative corrections in scattering
amplitudes is that the same 1PI one-loop renormalized
functions, once computed at arbitrary external momenta,
can be used for several processes, by just adjusting the
external momenta to those of that particular process,
including the proper on-shell setting for the external legs
when needed. For instance, the one-loop 1PI function
fHWW can be used for both WW — HH and WZ — WZ,
the one-loop 1PI function fHHH can be used for both
WW — HH and HH — HH, and similarly with other
processes. Therefore, our renormalization program based
on 1PI functions is more powerful than just renormalizing
concrete scattering amplitudes.

Finally, to end this section, we remind the reader that in
order to reach the SM tree-level vertices from the above
presented EChL, one has to set the EFT coefficients to the
following reference values: (i) the coefficients in £,, a, b,
k3, and k4 should be set to 1, and (ii) all the a;’s coefficients
in £, should be set to zero. Accordingly, the new BSM
physics encoded in the EChL is parametrized in terms of
the departures from these reference parameter values. The
corresponding derived Feynman rules (FRs) from this
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EChL that are needed for the present computation, together
with the corresponding FRs within the SM, were provided
in our previous work, concretely in Appendix A of Ref. [3],
so we do not repeat them here.

III. DIAGRAMMATIC COMPUTATION
USING 1PI GREEN’S FUNCTIONS

In this section, we present our procedure for the
computation of the radiative corrections to the amplitude
A(WW — HH) by means of the 1PI Green’s functions. We
apply this procedure to both cases, the EChL and the SM.

Within the EChL formalism, the full one-loop scattering
amplitude can be split into two parts corresponding to the
leading-order (LO), O(p?), and the next-to-leading-order
contributions (NLO), O(p*), which are denoted as .A®) and

AW respectively, yielding to
AEChLFu“ EA(WW N HH)EChL
= A (WW — HH)

+ AN (WW - HH). (3.1)

In this EChL context, the LO amplitude comes from £, at
the tree level, and the NLO amplitude receives typically
two contributions. One contribution comes from £, at the
tree level, and the other comes from the loops computed
with £,. Thus, these LO and NLO contributions are written
generically as

AO(WW — HH) = ABCHLY, (3.2)

AD(WW - HH) = AFOLSL 4 AEOOLL, (3 3)
The one-loop amplitude in the EChL can also be written in
an alternative way, accounting for the quantum corrections
expansion—i.e., in powers of 7. Then, the full one-loop
amplitude is written as

ABCHLay — ABCHED | AECHLEL, - (3.4)
where the tree level amplitude, O(A°), has contribu-

tions from both £2 and L,, generically written as

(2+4) (4)
AECHLE . pECHLE AFCMhree - whereas the one-loop

correction, O(#'), is obtained by computing loops with just

. . @)
L,, generically written as AFio Remember that within

the EChL framework, the a; coefficients in £, have a double
role and will act as well as counterterms of the extra
divergences generated by these loops which cannot be
absorbed by just the renormalization of the parameters in £,.

On the other hand, we wish to compare the EChL
predictions with the SM ones using the same procedure
of 1PI functions. Thus, we will present in parallel the two
predictions for the EChL and SM cases. To our knowledge,
our SM computation is the first full bosonic one-loop

computation of WW — HH scattering using the R gauges
in the literature. This SM amplitude is defined as the sum of
the LO contribution, which in this case is the tree-level
contribution of O(#%), and the NLO contribution, which is
that of O(n'):

ASMFull — ASMTree + ASMLoop‘ (3.5)

For the technical description of the one-loop radiative
corrections, we then organize the one-loop full amplitude in
terms of the 1PI Green’s functions as follows:

AEChLrar — ALO 4 -Al—leg + -AZ—legs + A3—legs

—+ A4—legs + Ares7 (36)

where A is the result from the LO Lagrangian—i.e.,
ALO = A0 _and A,iegs means the contributions to the
amplitude from the n-legs 1PI functions. The LO contri-
bution is that from £, to tree level, and therefore it is
O(h°). The A, e terms contain the NLO contributions,
including the contributions from the a; coefficients and also
the O(h') contributions from the loop diagrams in the
corresponding 1PI functions. Notice also that we have
separated explicitly the extra contribution to the amplitude
from the finite residues of the external particles A,.
From now on, we fix the notation for the momenta
assignments and Lorentz indexes for the process of interest
as follows:
Wi(p )W, (p) » HkDH(k).  (37)
where p, _ are the incoming momenta of the gauge bosons,
with polarization vectors €/, =¢#(p,) and €“ = ¢“(p_),
respectively, and k;, are the outgoing momenta of the
Higgs bosons (with p_ + p_ = k; + k,). Thus, the ampli-
tude A can be written as
A=A,¢€ e (3.8)
where the tensor amplitude with explicit Lorentz indices is
defined by A,,. Figure 1 collects the full 1PI functions and
full propagators, represented by black balls, that contribute
to the one-loop amplitude A(WW — HH). These full
functions (denoted with a hat) correspond to (i) the full
propagators, A#H A7 AWW AWz A™W AAAand A%,
(11) the full 1PI vertex functions with three legs, FHWW,
FnWHs FHHH’ FAWWs FZWW’ FAHH’ and FZHHs and (iii) the
full 1PI vertex function with four legs, FWWHH. Notice that
some of these full functions receive contributions of both
orders, O(A") and O(h'). However, there are some Green’s
functions that vanish at LO and only receive contributions
from NLO, such as A" A™ T, and [, . This is the
reason why the diagrams in Fig. 1 involving these particular
NLO Green’s functions have only one black ball, since
including two black balls in this case would produce NNLO
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ANANNN == === -
w, H W, H

(+ crossed diagrams T—U)

FIG. 1.

corrections that are not our aim here. For the other
diagrams, not involving these particular 1PI functions,
there can appear the product of several black balls, each
one containing both LO and NLO contributions, and one
has to perform this product accordingly to extract the final
result for the amplitude containing all the terms of both
orders, O(#°) and O(n').

The tensor amplitude in Eq. (3.8) is obtained by adding the
s, t, u, and contact (c¢) channel contributions as repre-
sented in Fig. 1. Notice that through this work we use both
notations to the Mandelstam variables with small and capital
letters equally. These contributions by channels can be
written in terms of the full Green’s functions as follows:

iAY = il i AT iy
il (=) ATy + D% (=) AZZ T
iAY = i (DAY il Sy + i AT
+ inWHAZWiF(;;WW + ifZWHiA””if;WH’
ALY = ifﬁww(_i)ﬁgfwif Hww + irl;-IpWWAZV iy
A i ATV TG T EAT T
V) pa—

(3.9)

At one-loop level, it is convenient to write the full propa-
gators in terms of the self-energies. Following our procedure
and conventions defined in Ref. [3], we get the following
expressions for the full propagators in terms of the LO
propagators and the full self-energies:

tAHH(qZ) = iAHH 4 jAHH (— )iHHzAHH,
iA™(g?) = iA™ + iA™(=i)S, iA™,
—iAYV(g?) = =i AWV — i AWWSL (=) AWV,
—iAPY(q?) = =AY — iAW iShy (—i) APV,
AV7 () = AVT —iAVVE,, iATT, (3.10)

w,r H
W, H
W, H w,r H
ANNNNY = === = - ANNN® -~ - -~ -
T +1 T +1
| |
w* ¥
W, H W, H

Full 1PI functions (black balls) contributing to the full one-loop amplitude A(W*W~ — HH).

where all functions on the right-hand side are functions of ¢,
and the LO propagators in the R gauges are summarized by

i —i

'AHH: , —iAWW: ,
l qz_mH ! q* —m3
N L S Y S N Y
q _5mw q° —é&my,
—i —ié —i
_'AAA:_’ _'AAA:_’ _'AZZ: ,
LAy p LAL 7 Lar 7 —m?
a7z i€
—lAL _512—451/}1% (311)

As commented previously, only A#H AYW AWW “and A7
are involved in the LO contribution to the amplitude in
Eq. (3.1). On the other hand, the relevant vertex functions at
LO are

lFHHH = —3il<'3m]2_1/1j,

iCywyy = ibg g™ /2.

iF’;}’WW = iagmyg"”,
iy = agph, (3.12)

Next, we present the computation of the LO amplitude
using the R; gauges. This can be easily done by plugging
the corresponding LO functions of Egs. (3.11) and (3.12)
into Eq. (3.9)—namely, using I instead of I, and A instead
of A.

The result for the LO amplitude in the R gauge,

corresponding to the tree-level diagrams in Fig. 2, is
given by

A0 = A" + A" + AP + AP, (3.13)

where the contributions by the s, ¢, u, and contact channels
are given, respectively, by
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W, (py) H(ky) Wi(py)
o +
3 =< . w
W, (p-) H (k) W, (p-)
W, (ps) H (k1) Wi (py)
\\ , 7/ 7 |
W=+ \ Tl'i:
7 AN ‘
7 N !
N ANNNNY
Wy (p-) H (k) W (p-)

0
A§ ) = 53(11('3 m€+ c€_,

2 . ke -k
AD — MW €—T+ €+2 ek

A0 _ 2 mie, -e_+ey ke -k ’

2
U - my
2

AY = g—be+ €.

: (3.14)

From this equation, notice that the corresponding result of
the SM amplitude at LO is simply obtained from this same
formula by setting a = b =k3 = 1. We have checked
explicitly the gauge invariance of our LO result above—
namely, that the dependence on ¢ disappears in the final
amplitude as expected. The cancellation of the £-dependent
terms is achieved once the external gauge bosons are on
shell—i.e., by contracting the tensorial amplitude with their
corresponding polarization vectors in .A(?). Concretely, the
cancellation of the £-dependent terms occurs separately in
the two channels 7 and u, and it happens between the

|

C HG) Wips)  H(k)
.
,,,,,, o
H (h2) W, (p-) H (k)
Hik) Wi (p+) H(k)
Hiw) W) i)

contribution of the longitudinal part of the W propagator
and the GB propagator in Eq. (3.9).

Finally, we present the result for the complete amplitude
to tree level—i.e.,

(244

) (2) (4)
.AEChL.l.rcc — AEChLTwc + AEChLTm’ (31 5)

@ . .

where A1 = A(©) s given in Eqs. (3.13) and (3.14),
@ . .

and AFre is computed from £, and contains the a;

coefficients. As we have explained in the previous section,

this can be written in two ways, depending on whether one

uses the EOMs to reduce the list of operators or not. We

provide here the short version—i.e., using £;F°™* in
Eq. (2.12):

4) (4) (4) (4)
AEChLTree = AEChLTree |S —|— AEChLTree | t —|— AEChLTree |M

(4)
+ AEChLTree o

(3.16)

where the contributions by channels are

2
@ g 1
AEChLy = Y —) (31<3ad2m12_1(S€+ ce_—2¢,-p_e_-p,)
i
+ 6k3agwwmiy (S —2m¥)e, -e_ —2e, - p_e_-p,)
— (Brzagyymiy + al@ggam¥ + agawmay + agazm3)(S + 2m))ey - €_),
2
AEChLy 9 4 A2 mie. - UT 4+ 3m — m2e. - kie -k
Tre| 2T — 2 (ag(4myympe, - e_ +2(T +3m§ —mig)e, - kie_ - ky
- my

—4miy(ey ke p, +e,pe k)

= Bagwwmyy (T + miy — mj

Jer-e-+ep ke -pyt+ey-pe k)

—dagyymp(mie, e +ep ke k),
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4)
ree

( @
AFCHLL | = ABChLy |

with T - U and k; < ks,

2
(4)
AEChLTrcc |C = —g 5
2v

+ (=284qpva (S = 2miy) + 4apaww (S = 2myy) + agaS — agpyymig)e, - e

(=2a4qy1 (e - koe_ - ky + ey - ke - ky)

—2(apar +4appww)és - P-€_ - py)- (3.17)

|
Notice that we have used the new coefficients defined in ~ checked the full agreement in the contributions from the
Eq. (2.13). Notice also that the above results are given in  coefficients, dygy (= 1), dggs (= 6), agpn (= byy), and
terms of the polarization vectors of the initial W gauge  ap, (= 2b,y) with their results. The other coefficients in
bosons. Therefore, our results above apply to all the possible  our result of Eq. (3.17) were not considered in Ref. [5].
polarized channels, WxWy — HH, with XY = LL,TT,  On the other hand, the results of Ref. [4] in terms of § and 7
LT,TL by just inserting the proper polarization vectors  were provided using the equivalence theorem, so they
€y ande_. can only be compared for the longitudinal modes and in
We next comment shortly on the comparison of our  the high-energy regime /s > my,, my. By an exploration
analytical results in this section for the tree-level amplitude ¢ oyr amplitudes for the case of the longitudinal modes
within the EChL with the previous literature. First of all, the  j, that high-energy regime, we have also checked the
LO amplitude in Egs. (3.13) and (3.14) is in full agreement  ;0rcement of the 7 and & contributions with that reference.
with Ref. [12]. Secondly, regarding AECMLLL  we have  The other parameters were not studied either in that
compared our results with those in Ref. [5]. We have reference.

1 .
Tree level 6;.:[150 (WW — HH) : n effect Tree level Gt:TEIOI(WW — HH) : § effect
7
Wl— 1 =01 — 1N =000l Tota] — 6 =-01 — & =0001 Total
108] = n =-0.01 n = 0.01 107] —— o =-0.01 5 =0.01
— N =-0.001 — g5 =01 —_  § =-0.001 — 5 =01
3105 — 1 =-0.0001 —— SM = —  § =-0.0001 —— SM
2‘ —_ n =0.0001 i-;lOS —_— S =0.0001
T 104
10 I )
t J—
3
§ 10 § 103
102 s
10! — 10
100
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
V3 (GeV) VS (GeV)
Tree level cr}jzl(WW — HH) : n effect Tree level UEZ‘(WW — HH) : ¢ effect
7
0 — =01 — g =0001 g — 5 =01 — & =o0000 ;g
15 — 1 =-0.01 N =0.01 107/ — & =-0.01 § =001
— 3 =-0001 — p =01 — 5§ =-0001 «—
S105) — 1 =-0.0001 —— SM = — § =-0.0001
— (=] —
s — 75 =0.0001 S10s] — & =0.0001
4
T10 T
1 1
3
§ 10 § 103
v 102 ®
101 101
10°
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
V3 (GeV) VS (GeV)

FIG. 3. Tree-level cross section predictions for W W~ — HH within the EChL, setting @ = b = k3 = k4 = 1. All EChL coefficients
in the NLO Lagrangian are set to zero except for n and é. Plots in the left column are for nonvanishing #, and plots in the right column are
for nonvanishing §. The predictions for the total unpolarized case are displayed in the plots of the first row, and those for the polarized
LL case in the second row. The SM predictions are displayed in all the plots for comparison.
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Finally, it is important to keep in mind the existent
hierarchy among the various polarization channels and
among the relevance of the various coefficients for each
polarization channel. First, it is well known the dominance
in the total cross section for this WW — HH process
of the longitudinal polarized modes over the transverse
modes. Namely, c(WW — HH) is fully dominated by
o(W, W, - HH). The other polarization channels with
initial WyW¢ or W; Wy are highly subdominant at the
center-of-mass energies in the TeV domain. Therefore, by
studying the longitudinal polarized case, one can approxi-
mate quite well the total cross section. This dominance of
o(W, W, — HH) over the other polarized channels also
happens in the EChL case, in the tree-level estimates of the
cross section, at both orders—the LO and the NLO ones. A
recent phenomenological study of the corresponding BSM
effects in Ref. [11] for all the polarized channels, and
considering all the EChL coefficients in Eq. (3.17), has
shown that the most relevant coefficients of the EChL, for
the LL modes and at the tree-level NLO, are indeed # and 6.
Here, by “the most relevant coefficients” we mean those
EChL coefficients in £, that lead to the largest cross
sections in this WW — HH scattering process at the TeV
energy domain. For definiteness here, and to summarize
this LL dominance in the tree-level NLO prediction from
the EChL, we show in Fig. 3 our predictions, as a function
of the center-of-mass energy /s, of the cross sections (i) for
the total unpolarized case (the two plots on the first row),
and (ii) for the LL polarized case (the two plots on
the second row). We display in this figure the BSM
departures with respect to the SM predictions from the
separate effects of the two most relevant coefficients,
assuming different numerical values for those coefficients
+(0.1,0.01,0.001,0.0001). (i) The effect from 7 is dis-
played in the plots in the first column, and (ii) the effect from
o is displayed in the plots in the second column. We can
clearly see in these plots that the cross section for the LL case
fully dominates the total (unpolarized) cross section for all
the studied cases. Indeed, the two lines for L L and for “total”
practically coincide in the studied TeV domain (up to the
obvious reducing 1/9 factor in the unpolarized result due to
the average over the possible initial helicities). The other
evident conclusion from this figure is that large values of the
cross sections and large departures from the SM predictions
can be reached at TeV energies for the cases with the larger
input coefficients # and 8. For a more devoted study of the
phenomenological consequences of these tree-level predic-
tions within the EChL at NLO, we address the reader to
Ref. [11]. In particular, the relevance of these predictions for
the di-Higgs production at future e*e™ colliders via WW
fusion has also been explored in that reference. In the
following part of the present work, we do not go further
in these phenomenological issues and focus instead in our
main purpose here: the computation of the EW radiative
corrections for the WW — HH scattering process.

IV. RENORMALIZATION PROCEDURE

A. Generalities

In this section, we present our renormalization pro-
gram to compute the renormalized 1PI functions within
the EChL in covariant R gauges using a diagrammatic
approach. These renormalized 1PI functions, denoted here
generically by I, receive contributions from the tree-level
Lagrangian £, + £4, I'™™®; from the one-loop diagrams
using the interaction vertices of £, only, I'"°°P; and from all
the counterterms of £, + £, I'°T:

i __ 7 Tree Loop CT
1—‘n-legs - Fn-legs + Fn—legs + l—‘n»legs‘

(4.1)
Notice again the double role of £, in the chiral Lagrangian
approach: on the one hand, it contributes to a tree-level
scattering amplitude, and on the other hand it also acts as a
source of new counterterms in order to remove the extra
divergences emerging from the loops computed with £,,
which are not removable by a simple redefinition of the
parameters in this part of the Lagrangian.

Our analytical computation here is performed with the
various software associated with Wolfram Mathematica
[13] and starts by implementing our model in FeynRules
[14], generating and drawing the Feynman diagrams with
FeynArts [15] and performing the main calculations with
FormCalc and LoopTools [16]. Some extra checks of the
involved one-loop divergences were made using FeynCalc
[17] and Package-X [18]. The SM results were obtained by
following the same steps.

The renormalization program followed in this work is
similar to the one we already presented in Ref. [3] in the
EChL context for vector boson scattering (VBS) processes
like WZ — WZ, etc. Next, we briefly summarize the main
aspects of the regularization and multiplicative renormal-
ization prescriptions, as well as the renormalization con-
ditions; and then we present the new one-loop diagrams,
the new divergences, and the solutions for all the counter-
terms relevant for WW — HH scattering.

B. Regularization and renormalization
prescriptions

As usual, our regularization procedure of the loop
contributions is performed with dimensional regularization
[19,20] in D = 4 — ¢ dimensions. This method preserves
all the relevant symmetries in the bosonic sector of the
theory, including chiral invariance (Dirac y5 is not involved
in this work, since we do not consider the fermionic
contributions). Consequently, the scale of dimensional
regularization is set to u, and all the one-loop divergences
are expressed in terms of

2
A, = o ve + log(4n). (4.2)
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Concerning the renormalization procedure, we generate the
counterterms of all the parameters and fields appearing in
the tree-level Lagrangian, £, 4+ L4, by the usual multipli-
cative renormalization prescription that relates the bare
|

H(): ZHH, BO# —

vy =/ Z,(v + 6v),
2

dh=25"(g +59). 9=

a® = a + éa, b0 = b+ 6b,

ZpB,,

where Z; = 1 4 6Z; are the usual renormalization multi-
plicative constants, and we use the generic notation dp (da;)
for the counterterm of each involved EW parameter p
(effective coefficient a;).

With these definitions, our final results for both the
renormalized 1PI functions and the WW — HH scattering
amplitude are expressed in terms of the renormalized
quantities: my, my, my, ¢, ¢, v, a, b, k3, A, and the
a;’s. Notice that k4 and the ghost counterterms do not enter
into the present computation, and we omit them for brevity.
On the other hand, the renormalization of the covariant
gauge-fixing parameters have set a common renormalized &
parameter for all the involved EW gauge bosons. For more
details on the technicalities of our renormalization method,
see Ref. [3].

Next, we summarize the renormalization conditions. As
in Ref. [3], we adopt here a hybrid prescription in which we
choose the on-shell (OS) scheme for the EW parameters in
the lowest-order Lagrangian £, and the MS scheme for all
the EChL coefficients. The list of conditions are as follows:

(1) Vanishing (Higgs) tadpole:

T=o0. (4.4)

(2) The pole of the renormalized propagator of the
Higgs boson lies at mf, and the corresponding

residue is equal to 1:

Ay
dq?

Re[Eyy (m3)] = 0, R% (m@]za (4.5)

(3) Properties of the photon: the residue equals 1, there
are no A — Z mixing propagators, and the electric
charge is defined like in QED, since there is a
remnant U(1),,, electromagnetic gauge symmetry:

dizﬁ‘A _ T _ U I H
Re i (0)] =0, 274(0)=0.  Dyee|os =ier”.

(4.6)

W123
Jo = Z2(A + 82),
Zy (g + 89),

0 _
K34 = K34 1 OK3 4,

quantities (here denoted by a specific sub- or superscript
with a label 0) and the renormalized ones (here with no
specific sub- or superscript labels). We have the following
relations:

\/_W123, 123 \/—7[123

&, =&+ 6¢12),

a? = a; + ba;, (4.3)

[
(4) The poles of the transverse renormalized propaga-
tors of the W and Z bosons lie at ¢g> = m§, and

q* = m%, respectively:

Re[Shw(m}y)] =0, Re[f,(m))]=0. (4.7)
(5) The poles of the renormalized propagators in
the unphysical charged sector {W*, z%} lie at

q* = Em,. Therefore,

Re[Sfw (mf)] = 0. Re[E(6my)] = 0. (4.8)
(6) MS scheme for all the involved EChL coefficients:
In particular, this applies for a, b, k3, k4 in Eq. (2.4)

and the a;’s in Eq. (2.10).

The above renormalization conditions on all the EChL
parameters determine both the divergent and finite parts
involved in all the 1PI functions, and therefore also in the
one-loop scattering amplitudes. Notice that the residues for
the Higgs and photon fields are set to 1 in the previous
conditions, but the resulting residues Zy(z) of the gauge
bosons W(Z) are different from 1. Since each external W
provides a factor Z%z to the observable S matrix, the
corresponding contribution from the residues [A., in
Eq. (3.6)] of the two external W’s in WW — HH scattering
is given by

T
A —Re {dZWW (m%v)] AO), (4.9)

dq2

In addition, the Higgs tadpole enters into many parts of the
different diagrams contributing to the amplitude. However,
with the renormalization condition of Eq. (4.4), the A, in
Eq. (3.6) vanishes.

C. Summary of contributions to the
renormalized 1PI functions

We emphasize again that our renormalization program
in the R; gauges makes finite all the relevant 1PI Green’s
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functions for arbitrary momentum of the external legs
(hence, generically, off shell); and no transversality con-
dition for the EW gauge bosons, p; - ¢(p;) = 0, is applied
for those 1PI results. This means that our renormalization
program is more demanding than the usual renormalization
program, which gets just finite results for the scattering
amplitudes with on-shell external legs. Notice also that in
this latter case, the transversality conditions for the external
gauge bosons are usually used as well.

In the following part of this section, we collect the
various contributions to the renormalized 1PI functions,
already mentioned in Sec. III, that enter into WW — HH
scattering and that were not involved in our previous
computation [3], which was addressed to the WZ — WZ
case. In particular, we exhibit now the results for the

|

2 2
s ..om L ..om
iUy = —3ik; TH + Ly — 3iks A

%+6m12{ 0Z, ©ov

-

Green’s functions involving Higgs bosons in the external
legs, corresponding to the vertices HHH, HWW, zWH,
AHH,ZHH, and WWHH. And, for completeness, we also
include in Appendix A a short summary of the other
renormalized 1PI functions derived in Ref. [3] that also
enter here for the WW — HH scattering. For definiteness,
all the explicit analytical results presented in the present
paper (and in the appendices) are provided in the
Feynman—"t Hooft gauge with £ = 1.

The results of the three-legs functions corresponding
to H(p\)H(ps)H(ps). H(g)W*(k))W*(ky). x(q)W* (py)
H(py), and V?(q)H(p1)H(p,) (with V = A, Z) are given
by the sum of the LO part (if any), loop contributions,
EFT coefficients’ contributions, and CT contributions, as
follows:

i
— (agan (Pt + P4+ P3) + 2(apon — aqan) (P13 + P3P3 + P3pT)

_l’_
2
+ (agaamiy + Gaawmly + agazmz)(p7 + p3 + p3)).

20g ov OZy OZ,

+—+—+—+—>g"”
v 2

g 2

— iZ2—((—Qapww + ag + 2acyy)q* + 2apww (k} + k3) + agyymiy) ¢

+ (g + ags) (YK + K5KS) + 2(as — ap) KK + 22apww + agn)K5kY),

R 2 5
g = ia g irlg, + 427 (%
2 2 a
gz
2v
it -y = —iag(pw + pu)* + iCeyh — iag

9

éa o
(Z‘l + ;g +6Zy/2 + 5Z,,/2> (Pw + pu)*

+ i (=2(ply + Piy) Qacyypl + anply — asq® — amyymi)

292

+ Pya*(apn — 3ag +4apn) + Piy(an + as) (Pl — Ph)),

l.FLoop

s
Lapn = T agn

T _ .-Loop
2y = U zpp-

(4.10)

Similarly, the result of the four-legs function corresponding to W*(p,)W*(p,)H (p3)H(p,) is given by the sum of the LO
part, the loop contributions, the EFT coefficients contributions, and the CT contributions as follows:

A bg?
iy ey-ag = i%gﬂy + irlﬁf‘(a)f};ﬁm +i—=-

bg? (51) 25¢
2

b

—+7+5ZH)9””

. 2
g
pEy (¢ (=(p3 + P7)(2a4mv2 + 4auuww + 2auoyy) + (P1 + P2)*(=2aumv2 — aua)

+4((p1 + p3)* + (p1 + pa)?)aunww + agmymiy)
+ 4(appn — 2appww) P50y — (aua — apas + Saguww) Ph(Ps + p4)

+ (@pa = apas + 4aguww)(Ps + Py Ps + (ana + anss)(Psps + Pirh)

+ (=2aapv1 + apan + anas)(P504 + Phps))-

(4.11)
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In all the previous expressions above, in Egs. (4.10) and
(4.11), the explicit a; coefficients entering are the bare a?
coefficients, but for shortness we have dropped the super-
index 0. Therefore, the a;’s included in these equations
must be all understood rather as (a; + 8a;), with these a;’s
being the renormalized coefficients in the MS, and oa;
being the corresponding divergent CT needed to cancel the
new divergences from the loops of the 1PI functions. As we
have said, the computation of the loop contributions to all
these 1PI functions is performed with the help of FormCalc
and LoopTools. For illustrative purposes, we show in
|

Figs. 6 and 7 all the generic one-loop diagrams entering
into the computation of the previous I'*°P functions. Notice
that since we are working with covariant R: gauges, we
have considered all the possible particles propagating in the
loops—namely, GBs, Higgs, EW gauge bosons, and ghosts.

Next, we provide our results for the divergent (singular)
parts of these loop contributions for the relevant 1PI
functions in Egs. (4.10) and (4.11). All these divergent
contributions will set the values of the O(A,) counterterms,
both for the EW parameters and the a; coefficients, that are
relevant for our computation. We get the following results:

-2d3(pip3 + pip} + pipi)

—2(2my + m3)(pi + p3 + p3)))-

= b)(ki + k3)

- 00 . Ag 3
lFLI;H%'div = 1@2—1;3 (9x3kymfy + 12ab(2ms, + m)
—a(a* = b)(pi + p3 + ps
.1—~L00] . A€ 92
Tilay = 16515, (32 +a))g + a(@
—3(a® - b)(2a — 3k3)m} — 18abm}y, + T8am?, — 18am3) g
+2a(a® + 2b) (KK + KAKS) + 1203 K4 RY),
A,
L A g
zFﬂ(v)&)}; div =1 1622 602 ((phy + p#vlv)(_g(az _ b)K3mH

a*(3py; + Py — 6mi; + 3¢%)

a(—6p% — 34m¥, + 14m2 + b(p3, — 6m3 + 18m3;, — 3¢%)))

+ phya((2 + a® 4+ 2b) p3 —
} L
lrJX(;;)mdiv = zFZ‘,’;’IE’, dgiv =0,
A7
—i I
1672 1202

irdﬁi;)‘(a)/HH|div =

+3b((6b — 26)m5, + 6m3)(p3 + p3)a’

a*(ply — 11¢%) + 2(my + m} —

(¢ (3(=8a* + 12a*ks — 12abks; + a*(10b — 3k,)

b(piy +4%)))).

—2b% 4+ 3bky)m
(6 + 6a> — 3b)

+6(p1 + p2)>(1 + a®)(a® = b) + ((p1 + p3)* + (p1 + pa)?) (4a* = 5a°b + b?))
—8(4a* — 5a%b + b?) phpl + 2(4a* + a®b — 2b%) ph(p4 + pY)
—2(20a* = 19a%b + 2b%)(ps + ph)ps + 2(4a* + a*b — 2b%) (P ps + Phry)

+6a%(2a + b)(Psp4 + Pipk))-

(4.12)

Finally, we present the corresponding results in the SM for the Green’s functions that are involved in the WW — HH
computation and were not given in Ref. [3]. We use the “bar” notation for all the 1PI functions in the SM, not to be confused
with the previous functions of the HEFT. Notice that, contrary to the HEFT, in the SM case, the multiplicative
renormalization constant for the Higgs and GBs fields are the same (Z), since they form a doublet. We get the following

SM results:

19 0
i —3z—+ Tk — 3i 7 ( i +6Z, ——U>

lrLoop .

€
L= —
HHH |div 167 21}3

i HW*W-*lgz_QW‘i‘ F]Iil%?/%l/—'— -

IFLOOP = Ae
HWW ldiv 167[2

mH

3
— (6my; + 6(2my, + m3) — my(2m3,; + m3)),

G (289 v
2

++0Z )g"

g v

073008-13



M. J. HERRERO and R. A. MORALES

PHYS. REV. D 106, 073008 (2022)

g = .9 (69
iLown = —IE(PW +2py )t + lr;(v)l?fl —iy <; + 5Z¢) (pw +2pp)t,

_ A
=L . g
Fﬂ(V)i?IE)I div = ~¢ 16;2F( 3

By l:Loop

.=Loop . Ae 92 2 2 v
T ywwawlay =1 162 02 (6my, —m3z)g",

= _ .=Loop
Lapg = iU g,
.~Loop _
il syl = 0,

= _ .=Loop
Uzuyn = iUhh,

.~Loop o
T7h e = 0.

D. Renormalization of the EFT parameters

In this section, we present the results for the renormal-
ization of the EFT parameters. These include the EW
parameters entering in £,, like g, ¢, etc., and the EChL
coefficients—namely, a, b, k3 entering in £,, and the a;
coefficients entering in L.

First, we determine the divergent parts (called in short 6,.)
of all the counterterms, requiring that all the renormalized
1PI functions at arbitrary values of the external leg
momenta (generically off-shell) results be finite. This
procedure leads to a system of equations, which must be
solved sequentially, by demanding the cancellation of the
O(A,) contributions for the involved Lorentz structure and
momentum dependence of each Green’s functions. The
CTs corresponding to the £, parameters in Eq. (2.4), except
for b, k3, and A, and some of the a; coefficients in
Eq. (2.10), were already derived in our previous work
[3]. With respect to this reference, we add now the Green’s
functions with Higgs bosons corresponding to the vertices
HHH, HWW, nWH, and WWHH (notice that the corre-
sponding ones for AHH and ZHH are finite and do not
have new EChL coefficients). In particular, we derive 5.4
from the tadpole’s counterterm; Uy sets 8.3, 8.0,
Scapon, and Seapaa; Unww St Scanww, Sedars Sy,
Scagyy, Scaqs, and Scapyi; Uwwan sets 6¢b, Scaqanyn,
|

2
[ WWHHIIEQ”D‘H wwHH T 15

2m3y; — m3)(pw + 2pn)*,

26
(55 m)o

(4.13)

6€addVV23 5eaHHWW’ 5€aHHlls 5eaHDVV3 5€aHd2’ 5eaHd39
and 6.apyyyy; and with the singular parts of all the CTs, we
check that fﬂWH gives a finite contribution to the scattering
amplitude.

Second, these divergent parts of the CTs can also be
determined by using the renormalization conditions of
Eqgs. (4.4)—(4.8). They allow us to write the counterterms
as functions of the undressed 1PI functions. Then we have
used this second procedure as a check of our results that we
obtain solving the system described in the previous para-
graph. Also, with this second procedure, we can determine
the finite contributions to the counterterms (if any), and we
use them in the final numerical computation of the one-loop
cross section in the next section. Therefore, we postpone
the estimates of the finite contributions to the next section
and focus here on the derivation of the singular parts of the
EChL counterterms. For completeness, we also provide the
divergent counterterms for the EW parameters derived in
our previous work together with J.4 (that enters now in the
s channel) in Eq. (AS). The corresponding SM results,
obtained from the one-leg and two-leg Green’s functions,
were presented and compared with the EChL in Ref. [3],
and we do not repeat them here.

Our results for the divergent parts of the full set of EChL
coefficients are then summarized as follows:

A, 3
S.a = 62252 ((a*> = b)(a —k3)mf + a((1 = 3a*> + 2b)m3y; + (1 — a®)m3)),
A, 1
o.b = —@2—”2(@12 — b)(8a* = 2b — 12aky + 3k4)m¥
+ 6a2b(2m3, + m%) — 6b(md, + m%) — 6b>m3,),
A 1
Ocky = ———5 > (k3(a” — b+ 9x5 — 6Ky )mfy — 3(1 — a®)kzmiy (miy + m3)),

1677 2mA0?
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A, a*+a*b + b?

A, (a*-b)(2a> +b+6)

bcagpyv1 = — 1622 3 , Olynnyy = — 622 B .
A, a? A, a(a®>-b) A, 4a* —5a°b + b?
5ea]l - —167[21, 56611_”] = —1677:2 2 s 6€aHH11 = 1671.2 4 ,
5 A, a(a®>-b) 5.a A, 4a* —5a*b + b?
a = 7 ; - _ ,
YW T 6n 12 HEWW =" 1622 24
A, a(a*-b A, 4a* —5a%b + b2
6€ad2:__1662a(a7)’ (Sea,],dz:m‘2 a Z + ,
7T T
5 A, a2+ a?) b A, 4a*+a*(4-3b) - 2b
Ay = 5 AHOVY = 77 5 ,
167 4 167 4
5 A, a(a®>+b) 50 A, —4a* +da®b + b?
A = —s—"—~, — ’
e%d3 T o2 2 e@Hd3 = 1¢ 3 3
A, 3a? A, 3a(2a® - b)
ban =g g D =qga— 5
A, 3a(a®>-b A,
Octtyur = Fﬂ'z(f) Ocapaa =0, Ocgaw/2 = 6caaz = —@30(612 —b).

Ocagyy = 6cappyy =0,

where we have used the bold notation for the new EChL
coefficients in this computation with respect to Ref. [3]. As
is expected from the SU(2), x U(1), gauge-invariant
construction of £, we have found no ¢ dependence in
any of the CTs of the EChL coefficients (in contrast to the
results for the CTs of the EW parameters, like dg, etc., that
are in general ¢ dependent; see Ref. [3]). We also see in
these results that some of these CTs vanish for the choice
a=b=x3 =4 =1, and others do not, like ayzp1,
Agavyas A11> Aoyys Auayys dass dgass oo, and agop.
Some comments about the previous results in Eq. (4.14)
are in order. First, we wish to note that these results, to our
knowledge, are the only ones within the EChL that apply to
the most general and complete renormalization program of
off-shell, one-loop 1PI functions while including all types
of bosonic loop diagrams in the R, gauges. However, it is
pertinent to compare our results with some previous results
of the EChL one-loop divergences and counterterms in the
literature. We will summarize this comparison as follows:
First, we compare with previous works that compute
the one-loop scattering amplitude. The renormalization
of the W, W; — HH process was studied to one loop
within the EChL previously in Ref. [4]. It was done by
means of the ET—i.e., replacing the external W, ’s with the
w GBs and studying the corresponding ww — HH scatter-
ing with just chiral loops (meaning loops with only GBs
and Higgs in the internal propagators), and assuming
massless GBs (as in the Landau gauge, i.e., for £ = 0).
More recently, in Ref. [5], the loop contributions to the
W, W; — HH scattering amplitude were computed as well
by means of the ET—i.e., also for ww — HH scattering,

(4.14)

I

but improving upon the previous computation of Ref. [4]
by considering all kinds of bosonic one-loop diagrams in
this scattering of GBs. They also used the Landau gauge—
i.e., with massless GBs—and they simplify the computa-
tion by assuming the so-called isospin limit with
my = myz. We have further improved these two computa-
tions in several aspects. We do not use the ET—i.e., we
consider gauge bosons in the external legs, we work in
generic R; gauges (i.e., with massive GBs), and we do not
work in the isospin limit—i.e., for us my and my are
different, as they correspond to the physical on-shell gauge
boson masses. Furthermore, we consider the full set of 1PI
functions involved in the amplitude and include all kinds of
diagrams in those functions. The full set of one-loop
diagrams computed here are in consequence different than
in Ref. [5]. However, we can make contact with some of its
results by specifying our results for the particular assump-
tions and approximations of that reference. For instance,
taking into account the differences in the conventions, and
setting m; = myy, we find agreement for the CTs of a, b, 4,
K3, and ag. On the other hand, to compare with this
reference, it is convenient to use the reduced set of NLO
coefficients that, as explained in the previous sections, can
be obtained by the use of the equations of motion.
Concretely, the EChL NLO coefficients appearing in the
scattering amplitude are those presented in Eq. (3.17), and
they appear within the particular combinations of coeffi-
cients given in Eq. (2.13). Therefore, these are the ones that
should be compared with Ref. [5]. From our results in
Eq. (4.14), our prediction for the divergences of these
combinations are
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el = Beligpyyy = be(agayy — 4a*ay + 2aags) = —

5 a
0¢0 = Ol gayyr = O (addVVZ =+ E‘Md[l) =

A (a2 - b)z
1622 3
A, (a®>—b)(7a*> —b—6)
167° 12 '

A,
Se(amyy = 2apyy + 2aamn) = —Fa(l - @),

Sc(appvy — 6k3amyy — 4aymyy + 4baqn + 6ksaarn + 4aayqn) =

5e(aHdd - addD) =

The first two lines in the above equation are in agreement
with the result for # and 6 in Refs. [4,5], where a;, a3,
and ay,n were not considered. It is interesting to remark
that the combinations in Eq. (4.15) indeed vanish for
a=b=x3=1, as expected in the comparison with
the SM.

Second, we compare our results with Ref. [6]. In this
work, the renormalization of one-loop 1PI functions was
performed for off-shell external legs, but they considered
the pure scalar theory—i.e., only the Higgs and GBs sector
of the EChL—and worked with massless GBs (as in the
Landau gauge, with £ = 0). No gauge or ghost fields were
included, and therefore no gauge-fixing. We find agreement
in the divergences found for the subset of a;’s involved in
the scalar sector (the coefficients in the notation of Ref. [6]
are specified inside the parentheses). Concretely, we agree
ina(ac), b (be), k3 (13); Agavyr (€3), daayya (€20), a1y (¢o),
agn (ag), agm (bo), agqny (can)s agyy (¢7), agoyy (a7),

ags (€10), anas (aro), aon (cop), and ayon (agp).-
Third, we compare our results with others that do

not study scattering amplitudes but are devoted to the
renormalization of the Lagrangian. In particular, the
renormalization of the EChL was studied in the path
integral formalism, using the background field method,
in Refs. [7,21,22]. The most complete comparison of our
results should be performed with the bosonic loop results
of Refs. [7,22], since these also included all loops of scalar
and gauge particles. However, the comparison with the
path integral results is tricky, since they use the equations
of motion to reduce the number of operators in the
Lagrangian. Therefore, some off-shell divergences do
not appear in their results, and some others are redefined
by the use of the equations of motion. They also use
redefinitions of the fields (in particular, the Higgs field) to
reach the canonical kinetic term in the Lagrangian. On the
other hand, the parametrization used in Refs. [7,22] is also
very different from that used here and is not straightfor-
ward to compare with. For example, the divergence
canceled by our auuw, aguz, and apg, in the HHH
Green’s function is absorbed via the Higgs field redefini-
tion in their context.

1672
A,
ﬁ (3xza(1 — a®) + 2b — 2a*(2 + 3b) + 8a*),
7
A, 3a(a*-b)
o 2 (4.15)

Finally, we summarize in the following the main results
regarding the renormalization group running equations
(RGEs) for the NLO EChL coefficients, which complement
those given in our previous work [3]. These RGEs can be
easily derived from the previous results in Eq. (4.14) and
taking into account the relation between the renormalized
and bare coefficients given by a? = a; + da;. In the MS
scheme (with y being the scale of dimensional regulariza-
tion in D = 4 — ¢ dimensions), the running a;(u) can be
written as follows:

Y
a;(p) = a? —da;(p), da;(u) = dea; — ) log u?,
167
A
S.a; = — , 4.16
i = Tog2 (4.16)

where the divergent S.a; is written in terms of the
anomalous dimension y, of the corresponding effective
operator. The running and renormalized a;’s can then be
related, in practice, by

Ya
“log p?.

ai(u) = a; + Ton

(4.17)

The set of RGEs for all the a;’s then immediately follows:

1 u?
a;(u) = a;(u') + o2l log (F) (4.18)

where the specific value of y,,. for each coefficient can be read
from Eq. (4.14). For instance, in the case of the two most
relevant NLO-EChL coefficients for the present WW — HH
scattering, n and &, we get the following RGEs:

n(p) =n') - #— (a* = b)*log <”—,2>
S(u) =o(u') + #% (a®> — b)(7a> — b — 6) log (;‘,2>

(4.19)

073008-16



ONE-LOOP CORRECTIONS FOR WW TO HH IN HIGGS ...

PHYS. REV. D 106, 073008 (2022)

which are in agreement with the RGEs given in Ref. [4].
Notice that, in particular for a = b = 1, these two EChL
coefficients # and 6 do not run; therefore, they are RGE
invariants.

V. NUMERICAL RESULTS FOR W/ W; — HH

In this section, we study the numerical predictions from
the EChL for the cross section of the scattering process
WW — HH and compare the tree-level rates with the
one-loop rates. We also compare these rates with the
SM case which have been computed independently here
following the same procedure as for the EChL case. It is

also interesting to compare this SM case with previous
SM results in the literature [23]. Since, as we have
already said, the dominant contribution to this scattering
process in the TeV domain is that coming from the
longitudinally polarized gauge boson modes, we will focus
in this section on this most relevant cross section—i.e., on
o(Wf Wy — HH). In addition, this numerical study of the
radiative corrections will be devoted to the most relevant
coefficients of the NLO-EChL, which, as already said, are
the parameters 7 and 6. For simplicity, the LO-EChL
parameters will be set here to the SM default values—
i.e., in the following we set a =b =x3 =x; = 1. All
the numerical computations presented here have been

One - loop EChL versus SM : 7 effect

105
SMree = EChLE,,
SMgui = EChLgyuy (7=0)
EChLfie.'(7=10")
EChLgyi (7=1073)

10% — — = EChLZD(n=—-1073)
EChLpu (7=—107%)
— — = EChLZY(n=1072)
EChLpu (7=102)
— — = EChLZY(n=-10"2)
EChLgu (n=—1072%)

1000

o(W;W;-HH) [pb]

100

—_
o
T

-15¢
-20F

51—loop [%]

500 1000

1500

2000 2500

Vs [GeV]

FIG. 4. Cross section prediction for W; W; — HH as a function of the energy /s within the EChL at one-loop level (solid lines) and
comparison with the tree-level prediction (dashed lines). The effect of the NLO parameter # is displayed, assuming values for this
parameter of £1072 and +1073. The LO parameters are setto a = b = k3 = k4 = 1. The other NLO parameters are set to zero. The SM
predictions at tree level (pink) and one-loop level (red) are also included. The relative size of the one-loop prediction with respect to the
tree-level prediction, defined by means of 6.1, in Eq. (5.1), is displayed at the bottom of this figure. The color code is red (SM), orange
(EChL, = 1073), brown (EChL, = —1073), bright green (EChL, n = 1072), and green (EChL, = —1072).
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performed with the help of FormCalc and LoopTools, and
for definiteness, we choose the Feynman—"t Hooft gauge—
ie., we fix £ = 1.

First of all, it is worth mentioning that we have done a
numerical check of the finiteness of the predicted one-loop
cross section in both cases, the EChL and the SM. This is
done indirectly, by checking numerically the renormaliza-
tion u-scale independence of the result. This is not a trivial
check at all, since the computation of the one-loop
amplitude from the 1PI functions amounts to the evaluation
of more than 500 one-loop diagrams, where each one
depends on this g scale. Thus, the cancellation of the u
dependence among the various diagrams found in the final

result is a quite convincing check. Notice that for the
studied case here of @ = b = 1, the two parameters 6 and 7,
as already said, do not run; therefore, they have equal value
at any assumed p scale.

We next summarize our numerical results for
c(WfW; — HH) as a function of the center-of-mass
energy +/s in the two Figs. 4 and 5. In Fig. 4, we study
the effect of 7, and in Fig. 5, we study the effect of 6. In both
cases, we have explored the following values for those
coefficients, +0.01 and £0.001, which are allowed by
present experimental data. In both plots we have included,
for comparison, the following rates: (i) the tree level

predictions for the EChL, EChL\>"Y:

Tree °

(ii) the full one-loop

One - loop EChL versus SM : ¢ effect

105;
SMiree = EChL e
SMEun = EChLgyy (6=0)
EChLE:2(6=1073)
EChLgy (6=1079)
— — = EChLE(6=-1073)

4l
10 [ EChLgy (6=-107%)

— — = EChL D (6=10"2)

S EChLFull (6:1072)
& — — = EChL{d(6=-107%)
o) EChLg (6=—1072)
% 1000}

'§‘ .

T

b

100

_
o
T

-15¢

51—loop [%]

-20F

FIG. 5.

560 1 0‘00 1 560
Vs [GeV]

Cross section prediction for W; W; — HH as a function of the energy /s within the EChL at one-loop level (solid lines) and

2000 2500 3000

comparison with the tree-level prediction (dashed lines). The effect of the NLO parameter ¢ is displayed, assuming values for this
parameter of £1072 and 1073 The LO parameters are setto a = b = k3 = k4 = 1. The other NLO parameters are set to zero. The SM
predictions at tree level (pink) and one-loop level (red) are also included. The relative size of the one-loop prediction with respect to the
tree-level prediction, defined by means of 6.1, in Eq. (5.1), is displayed at the bottom of this figure. The color code is red (SM), orange
(EChL, § = 1073), brown (EChL, § = —1073), bright green (EChL, § = 1072?), and green (EChL, § = —1072).
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predictions for the EChL, EChLg,; (iii) the tree level
predictions for the SM, SMr,.. (Which coincides with the

LO result in the EChL, EChL{?). ); and (iv) the full one-loop
predictions for the SM, SMg,;. In the lower parts of these
plots, we display the predictions for the relative size of the
one-loop correction with respect to the tree-level predic-

tion, by means of §;_,0p, Which is defined by

5 _ (GFuu - UTree)
1-loop = T-
ree

(5.1)

The main features learned from these two figures are the
following:

(1) We get a one-loop correction in the SM case that is
negative and increases in size with energy. The size
of Jyo0p can be up to ~—20% at the maximum
energy studied of /s =3 TeV, and it is in accor-
dance with Ref. [23].

(2) The predictions from the EChL, both at tree level
and one-loop level, show a clear departure from the
corresponding SM prediction. The largest deviations
occur for the largest || and/or |n| considered values.

(3) We get a one-loop correction in the EChL case that
can be either negative or positive depending on the
value of the coefficient and the value of the energy.
For 7, we find it to be negative for 1073 and 41072
at all the studied energies. But it is positive for
—1072 in the interval 1.3 TeV < /s < 3 TeV. For
5, we find it to be negative for 41072 and +1073 at
all the studied energies. But it is positive for —1072
in the interval 0.9 TeV < /s <3 TeV and for
—1073 in the interval 2.5 TeV < /s < 3 TeV.

(4) Overall, we see that the maximum size of the
radiative one-loop correction found in the EChL
is about —15% in both the  and & cases. This is a bit
lower than in the SM case.

(5) Finally, we notice that the values of the coefficients #
and 6 specified in these plots refer to the renormalized
parameter values. However, since we have taken in
these plots a = b = 1, they do not depend on the u
scale. This, together with the previously mentioned
independence of the sum of all the contributing one-
loop diagrams, complements the check of u-scale
invariance of the total cross section result.

VI. CONCLUSIONS

In this work, we have computed the one-loop electro-
weak radiative corrections to the scattering process WW —
HH within the context of the Higgs effective field theory,
considering that the new Higgs physics beyond the SM
enters only in the bosonic sector, and it is given by the
electroweak chiral Lagrangian. We consider this EChL with
all the relevant effective operators of chiral dimensions two
and four and present the computation in terms of the
involved 1PI Green’s functions in covariant R, gauges. An

ambitious renormalization program for all these one-loop
1PI functions involved is developed, considering the most
general case with arbitrary momenta for the external
particle legs. This renormalization procedure is more
demanding than just requiring a finite result for the one-
loop amplitude with external on-shell particles, and it has
the advantage of being applicable to several processes
sharing some of those 1PI functions with the amplitude
under study here. We have applied this same procedure for
both cases, the EChL and the SM. In particular, we have
used here for WW — HH scattering some of the previous
renormalized 1PI functions computed in our previous work
devoted to WZ — WZ scattering. We have used those
functions also here, and then we have complemented them
with the new one-loop 1PI functions for the new vertices
involving the Higgs particle, HHH, HWW, zWH, AHH,
ZHH, and WWHH, whose results are presented here.

One of the most important results contained in this work is
the full set of divergent counterterms derived for the EChL
coefficients, summarized in Eqgs. (4.14) and (4.15). This set
of divergences also determines the corresponding set of
RGEs for the involved HEFT coefficients, according to
Egs. (4.16)—(4.19). A small subset of these results have been
cross-checked with previous results in the literature which
were found following a very different approach to ours, and
we have found agreement with these. A discussion on this
comparison has also been included in the present work.

The final part of this paper has been devoted to the
numerical computation of the one-loop radiative correc-
tions to the cross section of the W; W; — HH scattering
process. Again, we have done in parallel both the compu-
tation for the EChL and that for the SM. In the case of the
SM, we have found agreement with the previous result in
Ref. [23]. Our estimate of the one-loop correction with
respect to the tree-level cross section in the SM gives a
negative value whose maximum size is reached at the
largest energy studied of /s =3 TeV and is about
O1-100p ~ —20%. In the EChL case, where we have consid-
ered the effects from the two most relevant parameters 7
and &, we find also important one-loop corrections, with a
maximum of about 6y.joep ~ —15%, a bit lower than in the
SM case. The size of this correction depends on the energy
and the particular values of the EChL coefficients. The
largest departures of the HEFT with respect to the SM
prediction are found for the largest studied values of 6 and/
or 5. There are also some input values for these parameters
and energy ranges that provide a positive one-loop cor-
rection, although small, being below 5%. All these numeri-
cal results are summarized in Figs. 4 and 5.
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APPENDIX A: SUMMARY OF
COMPLEMENTARY 1PI FUNCTIONS

For completeness, we summarize in this appendix the
renormalized 1PI functions already derived in Ref. [3] that
also enter into the present WW — HH scattering. We have
taken these analytical results from that previous reference,
but we have displayed them here by setting £ = 1, as in the
main results of this paper. The definition of the EChL
coefficients, parameters, and functions entering into these
complementary functions can be found in Ref. [3].

Starting with the EChL, the one-leg function (Higgs
tadpole) is

iT = iT — 8T, ST = (6miy — m3(=26Zy + SA/A + Z, + 26v/v))v. (A1)
Notice that now we are fixing a typo in this counterterm with respect to our previous publication.
The two-leg functions are
& . 2a
_lZHH(q2) = _lEIZIOOP( 2) +1 (5ZH(CI - mH) 5mH) +1 UED q*,
iZhw (%) = iZyy ™ (¢7) = i(6Zw(q? — miy) = om3y).
iZhw(q?) = iZyw™ (@) + i(=(q* — m})5Zy + omdy + q*6&,) — iq*PPay,,
- 0&, — 0&
Yya(q?) = Zlvdlj);p(qz) +=2 2 : my + g ar,
2
8 (q?) = =iZ52(q?) + i((* = m}y)5Z, — Smiy — myd8,) — i g'ayy. (A2)
w

In these formulas above, the a; coefficients must be understood again as a; + dq;.

On the other hand, the three-leg functions corresponding to W# (k;)W¥(k,)V?(g) (with V = A, Z) enter into the present
work just at the LO; therefore, they take the usual tree-level expression:

i s = —igsy (¢ (ky — k)P + ¢ (ky
lr;‘jll//fw 7= lng(g’w(

—ky)P + g (ks

—q)+9"(q—k)"),

@)+ " (q—k)"). (A3)

In contrast, the AHH and ZHH 1PI functions in the second diagram of Fig. 1 vanish at LO, and they get only NLO

contributions that are finite.

Next, we summarize the loop divergences of all the above 1PI functions. These are

T = g5,
A
e .
_lZHOHop(qz)ldiv = 1@2—02
A 2

~TL ;
lzwvgop(qzﬂdiv = 16 162212

. A 7

Zy () = 65 (@ + (¢ = by +

. 00 A 2

R () = i1y (@ = (@ = b)m
A,

P = i (S + (@ - b

3
(a*q* = 2a*(2myy + m3)q* + (363 + Ky )iy +

—(17/3 = 3a*)m}

- (5/3 + 3a*)m}

3
(g + 2a(2my + mi)),

(4a* +2b)(2m$, + m3)),

I ((39 - a?)q* + 3(a? —b)ymi +3(13 = 3a*)m3, — 9m3),

(13 = 3a®)m3, — 3m3),

+(7/3)m3),
- <5/3>m%>).
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The resulting divergent part of the EChL counterterms for the EW parameters was also derived in Ref. [3]. We include those
results here, including now explicitly 6.4, setting & = 1:

A, 3a? A. 3
Oly =g 377 @mi +mz). 6T = 162220 (k3my + 2a(2mi, + m3)),
3
oy = 52 (368 + ki — 202 (2 + ) + (4a + 20) 2y + i),
A, ¢? A, ¢
0cZp = =737 (1 8 Zw = —=5(39 - a?).
¢“~B 6 12 ( +a ) e~W 1671'2 12( a)
2 A g a2 2 2y,.2 2
Semyy = — 6—6(3( — b)mi + (78 — 10a*)m3, — 9m3),
A, 2
e 1502 (=3(a® = bYymd + (1(1 + a®) + 2(=43 + a®)2)mdy + (10 + a?)m3),

A,
5.9/9 =0,  S.9/9=- 247,

1672
A, ¢
5.6 == 9 39_ g2
T TS
Ae 1 2 2 2 2 2
5562 = @m (6(61 - b)mH + (73 - 19a )mw — ]4]’}12),
A, 1
52, =~ L (@ = by = (513 + 36— (5/3)m),
A, 2(m + m3)
5.0/ v = ,
v/ 1672 302
A1
56/1 16;’ 4 o7 (232(7”].[ + 3mH(mW + mz) + 6(2mW + mz)) — 6a(2m%v + m%)

=2b(mfy —3(2m3y + m3)) + 3(3K3 — kymiy + k4 )miy — 6mE (m3y, + m3)). (AS)

Finally, the corresponding results in the SM with £ =1 are

iT = iTloor —isT, 6T = (5m — m(—6Z + 64/ + 260/ v))v,
_lZHH(q )= _12L00p< ?) +i(6Z4(q* — miy) — 6myy),
Sy (%) = iy (%) = i(6Zw (g> — my) — 5m3y).
S (a?) = iSw™(@%) + i(—(g> — m§)6Zy + om, + 4581,
Bua(a?) = St (q?) + 2,
—i2a(q%) = iS5 (g7) + i((q7 — m)6Z,, — 5y, — miy 6, — T /v), (A6)

and again the WWA and the WWZ vertices enter only at the tree level in this amplitude, therefore

iDL g = =igsu(9 (= ko) + ¢ (ks = @) + (g = k1)"),
iDLy, = =igew (9 (k= ko)’ + ¢ (ky = @) + (q = k1 )"). (A7)

whereas the AHH and ZH H vertices vanish at the tree level, and these 1PI functions only get one-loop corrections that are
finite.
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The loop divergences of the above 1PI functions in the SM are

iT |, = 16 22
. A,

=L
_le(}gp(qzﬂdiv = 1@272

- A7
En (@) gy = 7 (19¢2 + 6(2m3y — m3)),

(3mH + 6(2mW + mz) +

mi (2mg, + m3)),

1
(—4(2m3, + m%)q* + 15miy + 18(2m3y, + my) + my(2m3, 4+ m3)),

1672 6
.sLLoop, 2 . Ae 2 2
Zyw (47 )|aw = lmf(zmw —my),
+~L.00] ~ AE g
E (@ = iz (—2miy + 3m3),
< L0O AE
IERP) gy = 1oy L (<A + ) I+ 12+ G+ 2y + ). (A8)
and the resulting divergences of the counterterms are
A 2 2 7 Ac 2 2 2
6.2y = 162 22 (2my, + m3), 5.1 = 62 (3mH +6(2mYy + m3) + m¥(2me, + m3)),
A, 3
oy = <oy (Sl = i (2m ) + 6(2my + ).
A, g7 A, 194
5 Z -, 56 =,
BT 16n7 6 Y lenr 6
A 7
Semzy = — 16 76 = (31m}, — 6m2),
S.m2 — 92 2Y,.2 2
M5 = 6—((10—42cw)mw +Tm3),
6.9/qd =0, : —-—S 242,
d /g 9/ 9 T2 29
A, 19¢g A
5.6 = —5——, 5.6 = —= 25 9m3),
1 1622 6 ) 16223 2( m mz)
A, 2m3, + m>
Fy o € Y v ,
A T
A, 1 4
Och = 1622 0 (3myy — myg (2msy + mz) + 3(2my, + my)) (A9)

APPENDIX B: RELEVANT
ONE-LOOP DIAGRAMS

In this appendix, we present the relevant one-loop
diagrams entering into the computation of the 1PI functions
for WW — HH scattering within the EChL. In particular,
we give the corresponding diagrams to the new Green’s
funCtionS, FHHH’ F]TWH’ FAHH’ FZHH’ and FWWHH’ with
respect to our previous computation in Ref. [3]. These
diagrams were generated with FeynArts [15], and we
collect them by different topologies using a generic
notation for the internal propagators: dashed lines refer
to either Higgs bosons or Goldstone bosons, and wavy lines

refer to all possible EW gauge bosons. Notice the absence
of ghost fields, since the Higgs boson does not interact with
them in the EChL, but they are present in the SM
computation.

The loop diagrams of I'yyy are shown in the first
column of Fig. 6. Differently from the SM, the results
in the EChL depend on a, b, k3, and k4, and there is a
different (nontrivial) momentum dependence due to the
behavior of the scalar loop diagrams in the EChL and
the SM. The same conclusions apply for the diagrams in the
second column corresponding to Iy, but there is no x4
dependence here.
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FIG. 6. Generic loop diagrams for the HHH and zWH Green’s functions in the EChL. The topologies for AHH and ZHH are the
same as for zWH.
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FIG. 7. Generic loop diagrams for the WWHH Green’s functions in the EChL.
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Regarding the AHH and ZHH Green’s functions, they
have the same generic topologies as Iy, but they give
finite results in both the EChL and SM. We omit the
corresponding diagrams for brevity.

Finally, the one-loop diagrams for the WWHH 1PI
Green’s function are presented in Fig. 7. Also, the results
in the EChL depend on a, b, k3, and k4, and again there is a
different (nontrivial) momentum dependence.
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