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Abstract 

Accelerated longitudinal designs (ALDs) allow examining developmental 

changes over a period of time longer than the duration of the study. In ALDs, 

participants enter the study at different ages (i.e., different cohorts), and provide 

measures during a time frame shorter than the total study. They key assumption is that 

participants from the different cohorts come from the same population and, therefore, 

can be assumed to share the same general trajectory. The consequences of not meeting 

that assumption have not been examined systematically. In this paper, we propose an 

approach to detect and control for cohort differences in ALDs using Latent Change 

Score models in both discrete and continuous time. We evaluated the effectiveness of 

such a method through a Monte Carlo study. Our results indicate that, in a broad set of 

empirically relevant conditions, both LCS specifications can adequately estimate cohort 

effects ranging from very small to very large, with slightly better performance of the 

continuous-time version. Across all conditions, cohort effects on the asymptotic level 

(dAs) caused much larger bias than on the latent initial level (d0). When cohort 

differences were present, including them in the model led to unbiased estimates. In 

contrast, not including them led to tenable results only when such differences were not 

large (d0 ≤ 1 and dAs ≤ 0.2). Among the sampling schedules evaluated, those including at 

least three measurements per participant over 4 years or more led to the best 

performance. Based on our findings, we offer recommendations regarding study designs 

and data analysis.  

 

Keywords: accelerated longitudinal design, state-space models, latent change score 

models, continuous time models 

  



  Cohort effects in ALDs with LCS models  -  3 

Translational Abstract 

In this paper we propose an approach to identify and control for cohort effects in 

accelerated longitudinal designs. We use a simulation study to examine conditions 

related to sampling design, effect size of cohort effect, parameters affected by cohort 

effects, and modeling approach. Specifically, we extended a popular dynamic 

longitudinal model, the Latent Change Score (LCS) model, specified in discrete- and 

continuous-time. Our findings indicate that the proposed extension is effective for 

detecting and controlling for cohorts effects equivalent to those documented in the 

literature. Specifically, both discrete and continuous-time LCS specifications that 

included parameters to account for existing cohort effects were able to estimate such 

effects in all sampling conditions, particularly those with three or more measurements 

per person.  However, when models did not include parameters specified to account for 

cohort effects, the parameter estimates were recovered with bias, which depended on the 

size of the existing cohort effects in the data. Finally, in situations when cohort effects 

did not exist in the data, the models that included parameters to account for cohort 

effects correctly estimated them as null in most scenarios. Based on these results, when 

examining ALD data in which researchers suspect there might be cohort effects, we 

recommend using models that include parameters to account for such effects, especially 

LCS models in continuous time. 
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Controlling for cohort effects in accelerated longitudinal designs by means of 

continuous- and discrete-time dynamic models 

 

Accelerated longitudinal designs (ALD; Bell, 1953, 1954; S. C. Duncan et al., 

1996), also called cohort-sequential (Nesselroade & Baltes, 1979), or cross-sequential 

designs (Schaie, 1965), are particularly useful yet underused designs for conducting 

longitudinal research. Their main purpose is to allow the researcher to examine the 

development of a process that unfolds over a long period of time, usually spanning 

years, in a much-reduced time frame. The key aspect for achieving such a purpose is the 

fact that different participants enter the study at different ages (i.e., come from different 

age cohorts). Each participant typically provides several repeated measures on the 

variables of interest during a time frame that covers only a fraction of the total period 

under study. Then, the features defining the general populational trajectory are 

estimated through the aggregation of the longitudinal information provided by the 

individuals, and the cross-sectional information provided by the cohorts (Bell, 1953, 

1954). 

In an ALD, none of the participants are followed during the complete time range 

of interest. Because of this, ALDs allow conducting longitudinal research for a fraction 

of the cost of a conventional study. Consider, for example, the large scale National 

Institutes of Health Magnetic Resonance Imaging (NIH MRI) study of normal brain 

development (Evans, 2006). This study examined the development of several cognitive 

abilities and brain features. Each participant was expected to provide three repeated 

measures, with an average interval of approximately two years between measures. The 

mean age at time 1 was 10.6 years, (Sd = 3.6). Therefore, participants with initial age 

equal to the sample mean were 10.6 years old at t1, and were measured again at ages 
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12.6 (t2) and 14.6 (t3), whereas participants one standard deviation above and below the 

mean were 14.2, 16.2, and 18.2 years old, and 7, 9, and 11 years old, respectively. The 

total duration of the study was 5 years, but the total age range spanned from 6 to 21 

years, approximately. Figure 1 depicts an example of simulated trajectories in an ALD. 

The top panels in Figure 1 depict the latent (left) and manifest (right) individual 

trajectories if participants were followed during the whole age range. The bottom panels 

depict the information from such trajectories that would be available in an ALD 

spanning five years. 

INSERT FIGURE 1 HERE 

ALDs have been used successfully in different areas of research. For example, 

various studies have used data from ALDs to examine developmental changes in a 

range of cognitive abilities (McArdle et al., 2002), fluid reasoning (Ferrer, 2019; Ferrer 

et al., 2009; Green et al., 2017; Wendelken et al., 2017), memory (Fandakova et al., 

2017), as well as developmental sequences linking brain structure and functioning to 

general cognitive ability (Estrada et al., 2019), among others. Other implementations of 

ALDs include the study of changes in adolescent alcohol use (T. E. Duncan et al., 

1994), adolescent perceptions and values associated with English and math (Watt, 

2008), or the use of homophobic epithets by adolescents (Poteat et al., 2012). 

 

Cohort equivalence  

The key assumption in an ALD is that the different cohorts included in the study 

come from the same population.1 Such an assumption is typically termed convergence 

of the cohort-specific trajectories to the same general trajectory (Bell, 1953, 1954). 

However, in the context of statistical modeling, the term “convergence” also refers to 

 
1 ALD share other usual assumptions of between-person designs. For example, homogeneity of persons is 

also built into ALDs. That is, people within a cohort are randomly equivalent to one another. 
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finding the optimum set of values in an iterative process of model estimation. Therefore, 

in this manuscript we refer to this key assumption as cohort equivalence. Such an 

assumption implies that, if we could follow the youngest participants during the whole 

age range, their trajectories would be similar to those of the oldest participants. 

Similarly, if we had been able to measure the oldest individuals when they were young, 

they would have looked like the youngest cohort. If the age span of the study is not 

much longer than its actual time span, the equivalence assumption is reasonable. 

However, when the age span is much broader (e.g., in  McArdle et al., 2002), the 

equivalence assumption may not be tenable. In fact, if there is a large age difference 

between the oldest and youngest cohorts, substantial differences between them are 

possible due to various factors, such as changes in the educational system, 

environmental resources, and historical events, to name a few. Although age is typically 

used to define cohort, as in birth cohort, it is these social and economic factors that are 

indeed responsible for differences in cohorts. Indeed, the term “cohort” can be used in 

reference to any group of individuals who share a defining feature. However, because 

developmental researchers are often interested in characterizing changes as a function of 

biological age, in this study we use “cohort” to refer to participants born in the same 

year (i.e., birth cohort), as is typically the case in ALDs. 

Previous research has shown that, when the assumption of cohort equivalence is 

met and thus there are no cohort differences, the parameters of the generating process 

can be adequately recovered. For example, Estrada & Ferrer (2019) showed that, with 

sample sizes above 200 cases, the application of various ALD sampling schedules 

allowed recovering the parameters defining the population’s trajectory with a latent 

change score model (LCS; McArdle, 2009). However, Estrada & Ferrer (2019) also 

found that, in the presence of cohort effects, several parameters defining key features of 
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the population trajectory were recovered with substantial bias. This bias led to poor 

confidence interval coverage rates, and was found for parameters that differed across 

cohorts, and importantly, also for parameters that were cohort-invariant. That study, 

however, did not include a systematic examination of how cohort effects of different 

sizes, affecting different parts of the trajectory, impact the recovery of the generating 

parameters. The main goal of the present study is to propose an approach to detect and 

control for cohort differences in accelerated longitudinal designs. Specifically, we focus 

on two theoretically-informed types of cohort differences based on the developmental 

literature, in the context of cognitive development during childhood, adolescence, and 

early adulthood. 

Most cognitive abilities show a fast growth during the first years of life followed 

by a gradual deceleration, until a maximum point somewhere between 20 and 30 years –

the exact age depends on the specific ability and the specific individual (McArdle et al., 

2002). After this point, some abilities such as processing speed, working memory 

capacity, fluid reasoning, slowly decrease (Ferrer & McArdle, 2004; Kail, 1991; Kail & 

Park, 1992; Kail & Salthouse, 1994; Salthouse & Kail, 1983), whereas others such as 

crystallized intelligence, continue to rise at a very low rate (McArdle et al., 2002). 

Many ALDs focus on development from childhood to early adulthood. In this 

age range, all cognitive abilities show decelerated growth, which can be modeled as an 

exponential trajectory. In this context, cohorts can differ in at least two critical aspects: 

the initial mean and the maximum level. The first aspect, the initial mean, represents the 

average cognitive level when t = 0. Nonequivalence in the initial mean would imply 

systematic differences in ability at this timepoint between individuals born in different 

years. This is depicted in the left panels of Figure 2. The second critical aspect is the 

asymptotic or maximum level to which the mean trajectory tends. Non-equivalence here 
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would imply systematic differences in the mean peak level of ability between different 

cohorts. This type of non-equivalence is depicted in the right panels of Figure 2. 

INSERT FIGURE 2 HERE  

The trajectories in Figure 2 represent higher average levels achieved by younger 

cohorts (i.e., individuals born later). In other words, younger individuals would achieve 

higher performance levels than older individuals. Effects along these lines have been 

reported in the literature of cognitive abilities. For example, it is well established that IQ 

scores have raised during the twentieth century (these gains are usually termed the 

“Flynn Effect”; Flynn, 1984; Nisbett et al., 2012; Trahan et al., 2014). A comprehensive 

meta-analysis reported a mean estimated gain of 2.31 IQ points per decade (Trahan et 

al., 2014). Using as a reference the standard deviation of any given cohort (15 IQ 

points), such an increase would imply a standardized difference of d = 2.31/15 = 0.15 

per decade (d = .015 per year). 

 

Latent change score models for developmental research 

An increasingly large number of developmental studies, especially in the area of 

cognitive development have applied Latent Change Score models (LCS, also called 

latent difference score models, Ferrer & McArdle, 2003, 2010; McArdle, 2001, 2009; 

McArdle & Hamagami, 2001). LCS models represent the process of interest as a 

dynamical system in which the changes, instead of the levels, are the focus and are 

modeled as latent variables. A path diagram of a univariate LCS is depicted in the top 

left panel of Figure 3. LCS models allow examining lead-lag sequences between the 

different elements of a multivariate system, and capturing dynamical auto-regressive 

features that cannot be detected by means of other longitudinal models such as 

multilevel linear models. 
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At each repeated occasion t, a latent variable representing changes (Δyt) in a 

latent process (yt) is specified. Thus, at each occasion, the latent process is a function of 

the initial unobserved level, yl0, plus the accumulation of changes up to that occasion. 

One general specification to capture such changes is the so-called dual LCS model, in 

which changes are a function of: (a) an additive linear effect captured by the latent 

variable ya, and (b) a proportional effect from the latent level of the process at the 

previous occasion—captured by the self-feedback parameter β. The means of the latent 

initial level and slope (µ0 and µa) capture, respectively, the mean level in the process at 

the first occasion, and the average additive component at every repeated occasion. The 

variances of these latent variables (σ2
0 and σ2

a) denote individual differences in such 

initial level and additive change. These two components are typically allowed to be 

correlated (σ0,a expressed as a covariance, or ρl0,a as a correlation). The variance of the 

measurement error, or observed variability not due to the process, is captured by the 

parameter σ2
e. 

When modeling data on cognitive development or achievement from childhood 

to early adulthood, an overall positive trend—that is, growth— is typically found in the 

scores over time. In turn, the proportional effect β is negative, representing a damping 

effect—that is, the process tends to an equilibrium point or asymptote. The combined 

effect of the linear and proportional components of change leads to a nonlinear 

exponential trajectory with less overall gains over time. For more information on LCS 

models and their application to developmental change, see McArdle (2001), McArdle & 

Hamagami (2001), Ferrer & McArdle (2004, 2010), Ferrer et al. (2007), and Kievit et 

al. (2018). 

Because the equation capturing the development is defined for the latent changes 

(Δy), instead of the levels (y), multivariate LCS models specify first-order ordinary 
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difference equation systems in discrete time that allow capturing developmental 

trajectories with various functional shapes. Another interesting feature is the fact that 

they include a measurement structure that allows: a) partitioning the observed variance 

of each construct into measurement error variance and latent relevant variance, and b) 

specifying common latent constructs measured by multiple observed indicators 

(Widaman et al., 2010, see an LCS example in Estrada et al., 2019). 

However, using LCS models for data obtained in an ALD entail one important 

problem: the standard LCS model is specified in discrete time (LCS-DT), and assumes 

that: a) all the intervals are constant between time points and participants (i.e, the 

interval between t and t-1 is always the same); and b) every measurement is taken at the 

exact same time for every participant. These conditions are almost never met in ALDs. 

Consider again the NIH MRI study of normal brain development as an illustrative 

example: even if this study was carefully planned and the time lags were very similar 

for most participants, the specific interval between any two given measurements varied 

widely across cases and measures, ranging from 314 to 1588 days. Furthermore, in any 

ALD, the exact time at which each individual is measured will always vary between 

individuals, even if they are in the same cohort. For example, if the relevant time metric 

is biological age, two participants from the same cohort, assessed in the same day, were 

likely born in different days, so the actual ages can be, say, 8.15 and 8.65 years, 

respectively. 

In sum, the fact that the standard LCS model is defined in discrete time requires 

the researcher to assume constant time points and time lags, an assumption difficult to 

hold in empirical work. Previous research has shown that such an assumption leads to 

nontrivial overestimation of the measurement error variance in LCS-DT models applied 

to data from ALDs with nonconstant time lags (Estrada & Ferrer, 2019). This finding is 
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consistent with previous studies on the effects of sampling-time variation on parameter 

estimation in latent growth curves (Miller & Ferrer, 2017). In the next section, we 

introduce continuous-time dynamic models as a solution to this problem. 

 

Modeling latent change in continuous time: State-space models 

In recent years, various authors have proposed the use of continuous time (CT) 

dynamic models for characterizing psychological processes that evolve over time 

(Boker, 2001; Boker et al., 2004; de Haan-Rietdijk et al., 2017; Deboeck & Preacher, 

2016; Ji & Chow, 2019; Oravecz et al., 2009, 2011; Oud & Jansen, 2000; van Montfort 

et al., in press; Voelkle et al., 2012; Voelkle & Oud, 2012, 2015). These models 

typically use differential equations to describe the longitudinal trajectory of the variable 

of interest, which is assumed to unfold continuously. Every time-specific measure is 

considered a discrete realization of that continuous process. Such observed measures are 

typically linked to the latent continuous trajectory (and measurement error is partitioned 

out) by means of a measurement structure, similarly to confirmatory factor analysis. 

Continuous-time models offer a number of important advantages, particularly in 

the context of ALDs. First, in ALDs, each individual provides only a few observations 

at discrete time points, and these time points differ across individuals. Because of this 

feature, CT models appear to be an optimal analytical choice for describing such 

trajectories. Second, CT models make it is easier to compare parameters that were 

estimated based on different time intervals. Indeed, CT models yield estimates that are 

independent of the time lag and can be transformed to any specific time interval 

(Voelkle et al., 2012; Voelkle & Oud, 2015). Third, most psychological processes are 

assumed to unfold in continuous time. Therefore, a CT model is proposed as a more 

theoretically accurate representation of those processes, as it explicitly captures this 
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feature (Oud & Delsing, 2010). Fourth, the LCS-DT model described in the previous 

section is a specific case of an underlying CT model (Estrada & Ferrer, 2019). Such CT 

model contains the same information as the DT model and more. The former accounts 

for the order of measurement occasions, but also for the time interval between them. 

Therefore, in many scenarios, including the case of the LCS model discussed here, the 

parameters from the CT model usually contain all the necessary information to 

reconstruct the DT parameters for any specific time length, whereas the opposite is not 

true (Voelkle et al., 2012; Voelkle & Oud, 2015). Note, however, that not all DT models 

are the discretization of a CT model (Hamerle et al., 1991; He & Wang, 1989). 

In this study, we apply a state-space model in continuous time (SSM-CT) to 

detect and control for cohort effects in ALDs. State-space models have been used in 

econometrics, engineering and psychology to describe dynamics in time series (Chow et 

al., 2010). They are composed of two main parts: the state and output equations. In this 

study, we use a specification including seven parameters, mathematically equivalent to 

the parameters in an LCS-DT model. The state (or transition) equation is a first-order 

ordinary differential equation describing change in a vector of latent variables for an 

infinitesimally short time interval (dt). Such a change is a function of the state of the 

latent vector at time t (i.e., the equation describes a continuous-time dynamic system), 

, ,

, ,

β 1
( )

0 0

l i l i

a i a i

y yd
t

y ydt

    
=    
    

 [1] 

where the yl is a latent variable representing the level of each individual i at time t, and 

ya is latent variable adding a constant magnitude to yl. The parameters in the drift matrix 

(first matrix in the right-hand side of Equation 1) imply that yl changes as a function of 

itself (self-feedback β), and ya (with a loading of 1). In contrast, ya neither changes nor 

receives any influence from yl, and thus is time-invariant. The role of ya is to allow 
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changes in the mean trajectory of yl over time. Both latent variables allow between-

individual variability (i.e., random effects), which are specified for t = 0 as 

2

0 0 0 0,

2

0,

μ σ σ
,

μ σ σ

l a

a a a a

y
N

y

     
= =            

μ Σ . [2] 

In a univariate system, the mean trajectory tends to an asymptote with value (µa / 

- β). Such asymptote is reached at t = ∞ with negative values of β, or t = -∞ with 

positive values of β. Therefore, the parameter σ2
a can be interpreted as capturing 

individual differences in the asymptote (i.e., if σ2
a = 0, all trajectories tend to the same 

asymptotic level). 

The time-specific observations (Yt) are linked to the latent level yt through the 

output equation, which is equivalent to a measurement model in dynamic or 

confirmatory factor analysis. In our case: Yit = yl,it + ei, where the variable e represents a 

measurement error, with mean 0 and time-invariant variance σ2
e (note that the latent 

variable ya is not linked to any observation). A diagram for this SSM-CT model is 

depicted in the bottom left panel of Figure 3. 

This SSM-CT is an alternative parameterization to the standard LCS-DT 

described above and includes the same number of parameters. However, the 

interpretation of some of these parameters is different between the two models because 

of their different time metrics. In an LCS-DT, the parameters β, µa, σ2
a, and σl,a are 

scaled for Δt = 1, whereas in an SSM-CT they are scaled for an infinitesimally short 

time interval (dt). Similarly, in an LCS-DT, the parameters µ0 and σ2
0 refer to the first 

measurement occasion, whereas in an SSM-CT they refer to t = 0, which is an arbitrary 

time point, and does not necessarily correspond to the first observed occasion. For 

further details on their mathematical relation, see Estrada & Ferrer (2019), Hunter 

(2018), Ji & Chow (2019), Voelkle and Oud (2015), or Voelkle et al. (2012). 
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Purpose of the study 

To the best of our knowledge, no previous study has systematically examined 

the ability of dynamic models to identify and control for cohort differences in an ALD. 

This is critical, because the key assumption in ALDs is the absence of such cohort 

differences. If cohort effects exist, the trajectories of each cohort are not equivalent (i.e., 

in the original denomination by Bell, 1953, they do not “converge” into the same 

population trajectory). 

Our goal is to propose an approach to detect and control for cohort differences in 

ALDs by means of LCS in discrete- and continuous-time. Specifically, we seek to 

examine: a) under which conditions of cohort effects is the equivalence assumption 

tenable and under which is not, and b) the performance of a methodological extension 

designed to detect cohort effects influencing two key model parameters: the initial level 

and asymptote. 

 

Methods 

Simulation procedure 

We generated repeated measures for a latent process y which unfolds in 

continuous time. The process is defined by the SSM-CT model described previously. 

The parameters of this model were chosen to represent the longitudinal development of 

a cognitive ability (i.e., reading ability) from childhood to early adulthood. These 

parameters are reported in Table 1, and were based on previous empirical studies (Ferrer 

et al., 2007, 2010; Shaywitz et al., 1990). 

INSERT TABLE 1 HERE 
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The parameters in Table 1 were used for generating the data in all the simulation 

conditions. For each condition, different cohorts provided data for different parts of the 

trajectory. The generating parameters were constant across cohorts, except for the 

specific parameters described below. We manipulated three simulation factors: a) type 

and size of cohort effect, b) sampling schedule, and c) sample size. 

a) Type and size of cohort effect. In the present study we examined cohort 

effects in favor of the younger cohort equivalent to those documented in the literature 

(i.e., at least the size of the Flynn effect). We included also larger effects to evaluate 

how extremely adverse conditions affect the recovery of the population trajectories. We 

generated nine different conditions. These are summarized in Table 2. The baseline 

condition implied equal parameters for all the cohorts in the study (i.e., no cohort 

effects). Four conditions generated cohort differences in the mean initial point (denoted 

by d0), and four conditions in the mean asymptotic level (dAs). All the effect sizes were 

computed for a 13-year difference, the largest difference in our sampling schedules (see 

the following section). 

In the presence of cohort effects on the initial level, the youngest cohort always 

had the same mean initial level (µ0 = 10), while the rest of cohorts had lower values 

(i.e., younger individuals entered the study with a higher average level). The effect size 

d0 captures the mean initial difference between the oldest and youngest cohort, 

computed in the metric of the standard deviation in the initial point (σ0 = 5, which was 

constant across cohorts). For example, an effect of d0 = 1 implied that the t = 0 mean for 

the oldest cohort was 5 points below that of the youngest cohort (d0 = [(10 – 5) / 5] = 1). 

In the remaining intermediate cohorts, the value of µ0 was proportionally scaled. 

Therefore, with d0=1 and 11 cohorts, the µ0 values from the youngest to the oldest 

cohorts were {10, 9.5, 9, 8.5, 8, 7.5, 7, 6.5, 6, 5.5, 5}.  
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In the presence of cohort effects on the asymptotic level, the youngest cohort had 

a mean asymptotic level of µAs = µa / -β = 6 / -(-.2) = 30. The rest of cohorts had lower 

asymptotic levels. The cohort effect dAs captured the mean difference between the oldest 

and youngest cohort, computed in the metric of the standard deviation in the asymptotic 

level (σAs = σa / -β = 1 / -(-.2) = 5). For example, an effect of dAs = 1 implied that the 

asymptotic mean for the oldest cohort was 5 points below that of the youngest cohort 

(dAs = [(30 – 25) / 5] = 1). In the remaining intermediate cohorts, the value of µAs was 

proportionally scaled. Therefore, with dAs =1 and eleven cohorts, the µAs values from the 

youngest to the oldest cohorts were {30, 29.5, 29, 28.5, 28, 27.5, 27, 26.5, 26, 25.5, 25}, 

and the µa values for each cohort were {6, 5.9, 5.8, 5.7, 5.6, 5.5, 5.4, 5.3, 5.2, 5.1, 5}. 

INSERT TABLE 2 HERE 

b) Sampling schedule. Although many sampling schedules are possible within 

the ALD framework, we restricted our selection to ALDs that are feasible in a study 

spanning a maximum period of 5 years. Among them, we selected three schedules 

(designs D1, D2, and D3) shown to have the best cost-effective performance in previous 

studies (Estrada & Ferrer, 2019). These designs are summarized in Table 3. 

INSERT TABLE 3 HERE 

As a reference, we applied a “benchmark design” (D0), which included full 

trajectories for every individual of every cohort, measured once per year. This design 

includes 13 cohorts in which all participants are measured from ages 5 to 19. In other 

words, this is an “expanded”, rather than accelerated, longitudinal study ranging for a 

total of 28 years. Such design is unfeasible in real scenarios, but we included it here as a 

benchmark to examine the extent to which the cohort effects can be recovered when the 

full trajectories are available. 
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In all the designs, each participant was measured once during the corresponding 

year. The exact week of the year was chosen at random with equal probability for each 

of the 52 weeks in the year. This sampling procedure created random lags between and 

within individuals, to reproduce the varying time lags observed in empirical ALDs 

(Estrada & Ferrer, 2019). 

c) Sample size. We generated samples of size 125, 250, and 500. 

The combination of cohort effects, sampling schedules, and sample sizes led to 9 

× 4 × 3 = 108 simulation conditions. For each of these conditions, we generated 100 

replications. 

 

Data analysis: Extension of LCS-DT and SSM-CT models to account for cohort 

differences 

For each sample in each condition, we estimated two versions of the two 

statistical models described in our introduction (four models in total). Diagrams for 

these models are depicted in Figure 3. 

INSERT FIGURE 3 HERE 

a) Latent Change Score model in discrete time (LCS-DT). We implemented this 

model in SEM using OpenMx in R (RAM parameterization estimated with Full 

Information Maximum Likelihood; cf., Ghisletta & McArdle, 2012; Neale et al., 2016). 

This specification includes seven parameters and requires a discrete measurement 

occasion, and not actual age, as the underlying time metric. Because the exact time lag 

between measurements was different between and within cases, age bins were created in 

the center of each year –i.e., at ages 5.5, 6.5, 7.5, etc. In consequence, the variability in 

time lags between occasions is not specifically accounted for in the model, as it is the 

case in studies using empirical data. Using discrete measurement occasions entails 
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creating very sparse data sets and very low coverage –or even zero– for some of the 

elements in the covariance matrix. A path diagram for this model is depicted in the top 

left panel of Figure 3. 

b) Latent Change Score model in discrete time with cohort effects (LCS-DTc). 

We extended the standard LCS model described previously by introducing the cohort 

(i.e., year of birth) as an exogenous observed variable. The following additional 

equations were added to the model: 

y0 = τ0 + γ0 × cohort [3] 

ya = τa + γa × cohort. 

The youngest cohort, entering the study at age 5, was assigned a value of 0, the 

next cohort, entering the study at age 6, was assigned a value of 1, and so on. The latent 

initial level (y0) and additive component (ya) were regressed on this covariate2 through 

the coefficients γ0 and γa. These two additional parameters were intended to capture the 

corresponding linear cohort effects. Consequently, the parameters µ0 and µa are 

replaced by intercepts τ0 and τa, and the variances σ2
0 and σ2

a become residual variances 

after the cohort effect has been accounted for. A path diagram for this model is depicted 

in the top right panel of Figure 3. 

c) State Space Model in continuous time (SSM-CT). This model is 

mathematically related to the standard LCS-DT and also includes seven parameters (see 

Table 1). It is composed of two equations3: 

dyt / dt = Ayt + But + qt [4] 

Yt = Cyt + Dut + rt [5] 

 
2 In our OpenMx specification, the covariates are included as definition variables. 
3 We adapt here the notation in Hunter (2018), also used in OpenMx. To highlight the similarities with the 

common LCS-DT specification, we changed the notation of the latent states (y) and observed variables 

(Y). 
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Equation 4 is a more compact expression of the state equation described 

previously as Equation 14. It describes how the latent states change over time with a 

first-order linear differential equation: yt is an l × 1 vector of latent states, t is time. The 

derivative of yt with respect to t is dyt / dt. ut is an m × 1 vector of covariates or 

exogenous variables, and qt is an l × 1 vector of dynamic noise with mean zero and 

covariance Q. A is an l × l matrix of autoregressive dynamics –i.e., drift matrix–, and B 

is an l × m matrix of covariate effects on the latent states. Equation 5 is the output 

equation. It is identical to the measurement model in the SEM framework (Chow et al., 

2010; Hunter, 2018) and describes how the latent states relate to the observed variables 

at a single point in time: Yt is a n × 1 vector of observed variables or outputs at time t, rt 

is an n × 1 vector of observation noise (or measurement error) with mean zero and 

covariance R. C is an n × l matrix of factor loadings, and D is an n × m matrix of 

covariate effects on the observed variables. In this framework, the latent initial mean 

vector included in Equation 2 is noted as x0, and the latent initial covariance matrix is 

noted as P0 (Hunter, 2018). A path diagram for this model is depicted in the bottom left 

panel of Figure 3. 

Estimation of the SSM-CT model is carried out through a set of recursive 

algorithms called hybrid Kalman Filter (Boker et al., 2018; Chow et al., 2010; Hunter, 

2018). This procedure iterates in cycles of one prediction step (using a Kalman-Bucy 

filter) and one correction step (using a Kalman filter). For a given time t, the prediction 

step makes a forecast for (the factor scores in) the state vector yt and the state 

covariance matrix, based on the initial state of the system at t0, the time interval between 

t and t0, and the dynamics of the system (A, B, Q and ut). The update –or correction– 

step uses the observed data and the measurement model to correct the forecast from the 

 
4 This re-expression is possible because our model does not include time-varying covariates or dynamic 

noise. 
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previous step. The algorithm is designed to iteratively reduce the prediction error by 

adjusting the parameter estimates through Maximum Likelihood prediction error 

decomposition (for further details, see Boker et al., 2018; Chow et al., 2010; Hunter, 

2018; Kalman, 1960; Kalman & Bucy, 1961). 

We estimated this model using the functions 

mxExpectationStateSpaceContinuousTime and mxFitFunctionML in OpenMx (Boker et 

al., 2018; Hunter, 2018; Neale et al., 2016). In this implementation, a multiple group 

model is estimated in which each person is a group with a time series of observations, 

and all free parameters are constrained to be equal across “groups”. This specification 

uses only the available data points and the exact time –i.e., age– at which they were 

measured. 

d) State Space Model in continuous time with cohort effects (SSM-CTc). The 

standard SSM-CT described in the previous section was expanded by introducing the 

cohort (i.e., year of birth) as an exogenous observed variable. This covariate was scaled 

as explained for the LCS-DTc model, with a similar rationale. Two additional 

regression parameters γ0 and γa were specified to capture linear cohort effects on the 

initial and asymptotic latent levels, with the latter expressed in the latent additive 

component. This resulted in a model with nine parameters. In the OpenMx SSM 

specification, the x0 vector is defined to include the covariate in Equation 3 (R code for 

the models in this paper can be found in 

https://github.com/EduardoEstradaRs/PsychMeths2021-Cohort-effects-ALD-CT-DT). 

A path diagram for this model is depicted in the bottom right panel of Figure 3. 

The time metric was the same for all DT and CT models: a one-point increase 

represented one year. After fitting all models to all samples, we obtained the parameter 

estimates and their standard errors. In any empirical situation, and especially when 

https://github.com/EduardoEstradaRs/PsychMeths2021-Cohort-effects-ALD-CT-DT
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alternative statistical models are being compared, it is highly recommended to compute 

various fit indices for the models and assess the extent to which the data are adequately 

represented by each of them. In our study, however, the fit indices most suitable for 

comparing our models – -2LogL, AIC and BIC – are completely dependent on the 

number of data points available in the dataset. Consequently, the CT and DT versions of 

each model are expected to achieve the exact same fit (as, in fact, they did). The 

variability –i.e., standard deviation– in model fit was also fairly similar between CT and 

DT versions of each model. Thus, these fit results are not reported. The standard error 

for the relative biases is available from the authors upon request. The R code for 

estimating the four models is available at: 

https://github.com/EduardoEstradaRs/PsychMeths2021-Cohort-effects-ALD-CT-DT  

 

Results 

The models converged for all samples and conditions. Based on the estimates 

and standard errors, we evaluated accuracy by computing the relative bias and 95% 

confidence interval (CI) coverage of the parameters. We evaluated estimation efficiency 

through the empirical standard deviation of the estimates. In addition, we also computed 

the relative bias of the standard errors. Due to the space restrictions, here we include 

only the results regarding relative bias, coverage, and estimation variability. Other 

relevant information can be found in the Supplementary Materials. 

 

General estimation accuracy: Overview of Relative Bias and 95% CI coverage 

For each parameter in every condition, we examined estimation accuracy by 

computing the parameter’s Relative Bias as RB = ( est  - θ) / θ, where θ is the true 

parameter value and est  is the average estimated value of the parameter across all 

https://github.com/EduardoEstradaRs/PsychMeths2021-Cohort-effects-ALD-CT-DT
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replications in a given condition.5 Values of RB closer to zero imply unbiased estimates, 

positive values imply overestimation, and negative values imply underestimation. 

Previous literature has considered estimates to be substantially biased when |RB|>.10 

(Flora & Curran, 2004; Rhemtulla et al., 2012). Coverage was computed as the 

proportion of 95% confidence intervals around the estimated parameter value that 

include the true parameter value6. As such, 95% is the optimal value of coverage, 

whereas coverage below 90% is considered inadequate (Collins et al., 2001; Enders & 

Peugh, 2004).  

First, we provide a general overview of the models’ performance by reporting 

the Root Mean Square Relative Bias as RMSRB = 
2

1

K

kk
RB K

= , where K is the 

number of parameters in the model (either 7 for LCS-DT and SSM-CT, or 9 for LCS-

DTc and SSM-CTc). These results are reported in the top section of Figure 4. The 

bottom section of Figure 4 depicts the mean coverage for each model, computed as 

mean(coverage) = 
1

K

kk
coverage K

= . A table with the numerical results is included in 

the Supplementary materials. 

INSERT FIGURE 4 HERE 

The first finding worth noting in Figure 4 is that the models including cohort 

effects (SSM-CTc and LCS-DTc) showed good performance in all the conditions. In 

contrast, the models without parameters accounting for cohort effects (SSM-CT and 

 
5 Due to the age binning and random time lags, when the LCS-DT models were applied, the first 

measurement occasion was at 5.5 years. Thus, the parameters related to the latent initial level were 

compared with the expected values for that age. They are reported in Table 1. 

For γ0 and γa, θ equals zero in the conditions where the corresponding cohort effects are null. In such 

conditions, computing RB would imply dividing by zero. Therefore, RB was computed in those conditions 

by dividing the absolute bias by the maximum value for θ in our study: the population value for γ0 and γa 

in the conditions d0 = 2.0 and dAs = 2.0, respectively. 

6 Created using standard error estimates. These are Wald-type confidence intervals based on asymptotic 

normal theory, not profile likelihood confidence intervals. 
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LCS-DT) showed both substantive bias and poor coverage rates in conditions where 

such cohort effects were large. In particular, results were inadequate for these two 

models (either because RMSRB was above 0.1 or because the mean coverage was below 

90%) in the conditions with d0 ≥ 1 and dAs ≥ .5. Cohort effects on the asymptotic level 

caused substantially larger misspecifications than on the initial level. Continuous time 

models showed better performance than DT models. Indeed, SSM-CT achieved 

excellent performance in all conditions, except for a slightly high RMSRB in some 

conditions within design 1 (i.e., the ALD with lower data density). Sample size was not 

a relevant factor; samples of 125 cases led to similar results than n=250 and n=500. 

The results in Figure 4 provide a general overview of the estimation accuracy 

under every condition. However, caution is warranted when interpreting these results 

because they hide relevant biases in some parameters. In the next section, we report the 

accuracy results for each parameter and focus on the comparison between the different 

sampling schedules. 

 

Accuracy of Parameters across designs  

Design 0 includes yearly measures for each individual in every cohort across 15 

years. This sampling schedule is impractical in applied settings, but it was included as a 

“benchmark” condition, so we could inspect the models’ performance under optimal 

data density. The most important finding regarding D0 is that the generating parameters 

can, in principle, be adequately recovered under optimal sampling conditions: The 

models including cohort effects showed minimal RB and excellent coverage for all 

parameters in all conditions. The only exception was a marked overestimation of the 

measurement error variance for LCS-DTc, leading to poor coverage rates. This 

overestimation was found also for LCS-DT, and is expected when a DT model is 
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applied to a design with non-constant time lags (for details, see Estrada & Ferrer, 2019). 

The models not including cohort effects led to overestimation of σ2
0 and σ2

a, and 

simultaneous underestimation of µ0 and µa, when the corresponding cohort effect was 

present. This is expected: when the between-cohort variability was not accounted for by 

the model, this effect was absorbed by the variance of the latent component affected by 

each type of cohort effect. Consistently, the mean differences between cohorts 

introduced a negative bias in the corresponding latent mean. Due to space restrictions, 

here we include figures for the three designs that are feasible in applied settings (D1, 

D2, and D3). All numerical results, and a figure for D0, are available in the 

Supplementary materials.  

Design 1 includes two measurement occasions per individual, separated two 

years apart. This is the design with the lowest data density. The results regarding RB 

and coverage for this design are depicted in Figure 5. The first notable finding here is a 

marked overestimation of the cohort effect on the initial level γ0 and the variance of the 

latent component σ2
a in the models including cohort effects. For γ0, overestimation may 

happen because the model has information about the initial level for only the youngest 

cohort. These biases decreased with larger sample size, especially for SSM-CTc. 

Models that do not include cohort effects were especially affected by the effect on the 

asymptotic level. In all the conditions, the coverage rates were excellent for the models 

that included cohort effects (probably due to large standard errors). In contrast, coverage 

rates were poor for the models not including cohort effects, particularly with d0 = 2 and 

dAs ≥ .5. As expected, larger cohort effects led to larger bias in SSM-CT and LCS-DT. 

INSERT FIGURE 5 HERE (D1) 

Design 2 implies three measurement occasions per individual, separated two 

years apart each, thus spanning five years. The results regarding RB and coverage for 
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D2 are depicted in Figure 6. This design led to better results than D1, particularly for 

the models that include cohort effects. Importantly, the biases for γ0 and σ2
a found in D1 

were present in D2: σ2
a was accurately estimated, and overestimation of γ0 was found 

only for LCS-DTc with n=125, but not for SSM-CTc. Coverage rates were excellent for 

SSM-CTc and LCS-DTc in all conditions. In contrast, the models not including cohort 

effects led to marked bias with d0 = 2 and dAs ≥ .5. 

INSERT FIGURE 6 HERE (D2) 

Design 3 implies four measurement occasions per individual during four 

consecutive years. Relative to D2, each participant in this design provides more data 

points (4 instead of 3), but during a narrower age range (4 years instead of 5). Design 3 

led to results very similar to D2. This implies that the additional measure included in D3 

does not contribute to a substantial improvement in estimation accuracy. In fact, D3 led 

to slightly higher bias for most parameters in all conditions, and worse coverage rates 

for the measurement error variance in the DT models. Results from D3 available in the 

Supplementary Materials. 

Variability of the estimates 

We computed SDRB as SD[(θest – θ)/ θ].7 This index allows expressing the 

estimation inefficiency in the same scale for all parameters, models and designs. This 

index is always positive, and values closer to zero imply less variability of the estimates 

in any given condition –i.e., more efficiency. We provide a general overview of the 

models’ efficiency by reporting the mean SDRB for each model, computed as 

 
7 When comparing different models, studies on incomplete data often use a measure of efficiency based 

on the ratio [variance(estimates from model0) / variance (estimates from model1)], where model0 is the 

baseline model, expected to be more efficient –i.e., achieve lower variance of parameter estimates–, and 

model1 is an alternative model expected to show higher variability –i.e., lower efficiency. Our Design 0 

could be used as the reference condition, but because it had SDRB values below 0.1 in all conditions, 

presenting the values as a quotient would lead to artificially high values for the rest of designs. Therefore, 

we decided to present the raw values for each design and compare the variability with the true parameter 

value, which was invariant across conditions 
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mean(SDRB) = 
1

K

kk
SDRB K

= . These results are reported in Figure 7. Results 

regarding specific parameters are reported in the Supplementary materials. 

INSERT FIGURE 7 HERE 

A surprising finding regarding SDRB is that sample size had little relevance for 

estimation efficiency. Of course, larger sample sizes led to lower SDRB, but the main 

factors affecting SDRB were the specific ALD and model. As expected, D0 was the 

most efficient sampling schedule, with mean values ranging approximately between .1 

(models including cohort effects with n=125) and .025 (models not including cohort 

effects with n=500). Among the other three designs, D1 had a clearly worse 

performance in all conditions. D2 and D3 showed very similar efficiency, with 

marginally better performance of D2 with the models that include cohort effects. The 

models that do not include cohort effects showed better average performance than their 

alternatives. Estimation variability was fairly similar for different types and sizes of 

cohort effect. 

 

An Empirical Example: Development of Abstract Reasoning from Childhood to Early 

Adulthood 

To illustrate the utility of the method proposed, we applied the four statistical 

models discussed previously (i.e., SSM-CT, and SSM-CT with cohort effects, LCS-DT, 

LCS-DT with cohort effects) to a data set from an accelerated longitudinal study. 

Sample and measurement instruments 

For these analyses, we use data from the Neural Development of Reasoning 

Ability (NORA) study (Ferrer et al., 2009; Wendelken et al., 2011) a longitudinal 

research project designed to examine the development of fluid reasoning from 

childhood to adolescence. Data were collected using a cohort sequential design 
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involving three waves of measurement with 201, 122 and 70 participants at the first, 

second and third occasion, respectively. At time 1, the participants ranged in age from 

6.00 to 19.1; at time 2, the age range was 6.46 to 20.5; and at time 3 the age range was 

7.75 to 21.0. Of the 201 participants, 94 (46.8%) were females and 107 (53.2%) were 

males. The interval between assessments ranged between 12 and 24 months. 

As part of a battery of measures, at each occasion, participants completed the 

Matrix Reasoning subtest of the Wechsler Abbreviated Scale of Intelligence (WISC-R; 

Wechsler, 1981). This subtest measures the ability to select the geometric visual 

stimulus that accurately completes a series of stimuli that change along a particular 

dimension. Such change follows one or more abstract rules that the participant must 

infer. We refer to this variable as abstract reasoning. 

Because this study was designed to study developmental changes in reasoning as 

a function of age, we defined cohorts based on biological age. We rescaled the year of 

birth to create a covariate ranging from 0 (younger participants, born later, and entering 

the study at age 6) to 13 (older participants, born earlier, and entering the study at age 

19). Because the DT model requires age bins, we rounded the values to the closest 

integer.  

Results from DT and CT models 

Table 4 reports the parameter estimates from all four models. The fit statistics 

for SSM-CT with cohort effects were: -2LL = 2130.5, AIC = 1398.5; for SSM-CT: -2LL 

= 2143.9, AIC = 1409.9; for LCS-DT with cohort effects: -2LL = 2129.7, AIC = 1401.7; 

and for LCS-DT: -2LL = 2143.5, AIC = 1411.5. The parameter estimates were 

consistent in the DT and CT versions; the parameters not affected by the metrics of time 

had very similar values in the DT and CT versions of the same model. For example, the 

measurement error variance ranged between 8.19 (SSM-CT with cohort effects) and 
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8.60 (LCS-DT). Because of this consistency, we focus here on the CT models for 

interpreting the results. 

The most important finding in Table 4 is a significant effect of the cohort 

covariate on the latent additive component, but not on the latent intercept. This finding 

was replicated in the CT (γ0 = -1.46, p = .078; γa = -.125, p < .001) and DT models (γ0 = 

-1.19, p = .145; γa = -.101, p = .002). The negative effect on the latent intercept implies 

that participants born earlier had higher reasoning ability at age 6. However, this effect 

was not statistically significant and cannot be assumed to exist in the population. 

Considering that the mean of the latent additive component was positive (in SSM-CT 

with cohorts, μa = 8.75), the negative effect on such component implies that, for any 

given time lag, participants born later receive a larger positive constant influence. This 

means that, if we were to follow the youngest cohort, in the long run they would reach 

the higher asymptotic level: μAsymp = μa / (-β); in SSM-CT with cohorts, the youngest 

cohort is predicted to reach a mean level of 8.75 / .240 = 36.45, whereas the oldest 

cohort in the study is predicted to reach [8.75 + 13×(-.125)] / .240 = 29.68.  

Taking as reference the residual variance in the latent additive component, in 

SSM-CT with cohorts σ2
a = .5, the difference between the youngest and oldest cohort 

can be expressed as Cohen’s standardized difference d = (μa,young – μa,old) / σa = (8.75 – 

7.12) / .707 = 2.30. It is also possible to standardize the regression loading to obtain the 

Pearson’s correlation coefficient between cohort and additive component: rcohort,a = γa × 

(sd(cohort) / σa) = -.125 × (3.67 / .707) = -.65. Both estimates imply a very large effect 

size in favor of younger cohorts. Figure 8 depicts mean predicted trajectory by the 

SSM-CT without cohorts, and the cohort-specific means implied by the SSM-CT with 

cohort effects, along with the observed individual data. 
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Comparing the SSM-CT model with and without cohort effects, the inclusion of 

cohort effects on the latent intercept and additive component led to differences in the 

mean and variance of both parameters; μ0, μa, σ2
0, σ2

a. In the model with cohort effects, 

both latent means were higher, as they capture the mean level for the youngest cohort, 

whereas in the model without cohort effects these parameters capture the means for the 

whole sample. Regarding the latent covariances, as expected, both had lower values in 

the model with cohort effects, as they represent residual variances, after considering the 

effect of the cohort. Interestingly, the variance of the additive component was not 

statistically different from zero in the models with cohort effects. In all cases, the latent 

covariance was not significant and lead to correlations very close to zero: no relation 

was found between the initial level and the additive component.  

Discussion of results from empirical data 

In this empirical example, we illustrated how the proposed methods can be 

applied to a data set from an accelerated longitudinal design. Specifically, we examined 

the development of abstract reasoning as a function of biological age, and examined the 

degree to which 13 different cohorts (age at t1 from 6 to 19 years) were equivalent in 

terms of their developmental trajectories. The most important finding was a significant 

effect of age cohort on the additive component. This effect was negative: participants 

born earlier, and who entered the study at older ages, were expected to reach lower 

asymptotic levels than younger participants. Although we did not examine possible 

reasons for this effect, one potential factor is the result of sampling. That is, younger 

children whose parents are able to bring them to the study, thus completing hours of 

cognitive and brain measurements are more likely to be on a more positive 

developmental trajectory. 
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Note that the development of abstract reasoning can be assumed to have 

exponential shape in the age range considered. However, this functional form is rather 

unreasonable across the whole life span (McArdle et al., 2002). In consequence, 

although the latent additive component is mathematically linked to the trajectory’s 

asymptote, from a substantive standpoint it makes more sense to state that individuals 

born later would reach higher peak levels than their older peers. 

 

General Discussion 

Summary of findings 

In this paper, we examined the ability of LCS models, defined in both 

continuous- and discrete-time, to detect and account for cohort differences in 

accelerated longitudinal designs. We also examined the extent to which cohort 

differences led to bias in the parameter estimates when such differences were not 

controlled for.  

When cohort effects were present in the data and the models included parameters 

accounting for such effects (i.e., models LCS-DTc and SSM-CTc), these were 

adequately estimated in all conditions, particularly those with three or more 

measurements per individual. In other words, the cohort effects on the latent initial level 

and latent asymptotic level (i.e., additive component) were accurately estimated, and so 

were the rest of the parameters. However, when models not including cohort effects 

(i.e., LCS-DT and SSM-CT) were fitted to data from an ALD with cohort differences, 

the results were tenable only when such cohort differences were not large (d0 ≤ 1 and 

dAs ≤ 0.2). In these conditions, most parameters were recovered with acceptable bias. 

With larger cohort effects, however, the estimates from LCS-DT and SSM-CT became 

untenable. Across all conditions, cohort effects on the asymptotic level (dAs) caused 

much larger bias than on the latent initial level (d0). 
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When cohort effects were not present in the data, the models that included 

parameters to account for cohort effects correctly estimated them as null in most 

scenarios. In fact, these models showed better accuracy in almost every condition, 

without a substantial decrease in efficiency, than those models without parameters for 

cohort effects. Based on this finding, it appears reasonable to specify cohort effects in 

LCS models (either in discrete- or continuous-time) when suspecting such effects in 

data from ALDs. If cohort effects are present in the data, they will be correctly 

estimated in the model; if they are absent, they will be identified as such, without any 

bias and with only marginally larger standard errors. 

Regarding the sampling schedule, Design 1 (two measures per participant, 

separated two years apart, spanning 3 years) provided clearly worse results than Designs 

2 (three measures taken in alternate years, spanning 5 years) and Design 3 (four 

measures taken in consecutive years, spanning 4 years). In fact, Design 1 led to a 

marked overestimation of the cohort effect on the latent initial level, and the variance of 

the latent asymptotic level, regardless of the actual magnitude of cohort effects in the 

population, particularly for samples of 125 participants. Designs 2 and 3 led to excellent 

results across all the conditions. Both designs showed very similar performance, but 

Design 2 was slightly better in terms of accuracy and efficiency in most conditions. In 

other words, covering a wider time range with three measures per person is preferable 

over having a fourth measure. Based on these results and the fact that Design 2 requires 

one less measurement per participant, we recommend it over Design 3. Of course, this 

recommendation applies to the conditions simulated in this study, particularly when the 

researcher has reasons to assume that the model specified is correct. 

Another interesting finding is that sample size had very little relevance regarding 

cohort effects, at least in the conditions examined in this study. As expected, the smaller 
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sample size (n = 125) led to less efficient estimation across all conditions. Furthermore, 

parameter biases were reduced with larger samples. However, and importantly, the 

specific research design, the model specified, and the type and size of the cohort effect, 

all had a much larger influence on the quality of the parameter estimates than sample 

size. Based on this, we hold that samples of 125 participants are enough for conducting 

ALDs in the presence of cohort effects, if the correct sampling schedule (e.g., Design 2) 

is applied. 

Theoretical and methodological considerations 

The present work extends previous attempts to control for cohort differences in 

accelerated longitudinal designs (cf., Miyazaki & Raudenbush, 2000). The procedure 

proposed here intends to extend modern dynamic models so that they can account for 

cohort effects. In particular, we proposed an extension of LCS models, both in discrete- 

and continuous-time. This family of models has become a standard tool in 

developmental research due to, among other features, its flexibility to identify lead-lag 

effects between different processes, detect sources of between- and within-individual 

variability, and include a measurement structure linking observed variables to latent 

constructs. 

Equivalence between cohorts is a key aspect in ALDs. These designs are based 

on the assumption that individuals of different ages come from the same population, and 

it is possible to characterize a population trajectory through the aggregation of their 

individual information. However, if individuals born later differ from those born earlier 

(e.g., they enter the study at a higher initial level or they reach higher level when they 

exit), the equivalence assumption does not hold. The present work provides important 

insights into how the model parameters are affected when such an assumption is not 

tenable, and how cohort differences can be controlled for. 
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Cohorts can be defined in different ways depending on the context and research 

question. For example, in some studies there are variables that define cohorts clearly, 

such as school grade, or treatment received, among others. In contrast, the concept of 

cohort may be elusive in an ALD. In this study, we used biological age to define cohorts 

because a) this information is available in most ALDs, an b) age is very often the 

variable of interest on which to map developmental processes. However, our proposed 

approach can be readily applied to any cohort variable measured with an interval scale, 

as long as it is reasonable to apply such scale as the time metric for measuring both the 

age range of interest and the time range of the study. 

Cohort differences have been widely documented in the literature on cognitive 

abilities. One famous example is the so-called Flynn effect. During the twentieth 

century, individuals born later showed systematic increases in cognitive function, 

particularly fluid reasoning (Flynn, 1984, 1987; Gerstorf et al., 2015; Nisbett et al., 

2012; Pietschnig & Voracek, 2015). The smaller cohort effects in our study (d0 and dAs 

= 0.2) were specifically included to reflect empirical estimates of this effect (Trahan et 

al., 2014). Based on our findings (see Figures 4 to 7), we conclude that a) such “small” 

cohort differences are adequately recovered by the models including cohort effects 

(SSM-CTc and LCS-DTc), with a slightly better performance of the continuous-time 

version; b) models not controlling for cohort effects lead to very small biases when 

cohort differences affect the asymptotic level (dAs), and neglectable biases when they 

affect the initial level (d0). 

Across all our simulation conditions, cohort differences in the asymptotic level 

caused a larger misspecification than when differences affected the initial level (in the 

models not controlling for cohort effects). Relatedly, the parameter capturing cohort 

differences in the initial level was harder to estimate in some conditions. Both results 
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are easier to interpret using Figure 2. Because the developmental process simulated here 

has a much faster growth in the early years, even large cohort differences in the initial 

point are compensated early on. Thus, cohort differences in the initial level are harder to 

estimate, but also cause a smaller bias in the parameter estimates. 

When analyzing developmental data (obtained from an ALD or otherwise), a 

researcher can choose among various statistical models. In this study, we focused on 

LCS models for both theoretical and methodological reasons. From a statistical 

standpoint, LCS are well suited for characterizing the developmental trajectories of 

cognitive and other psychological variables, which can be assumed to have exponential 

shape during childhood and adolescence. From a theoretical perspective, the 

determinants of change included in a dual LCS model have a direct interpretation in 

terms of developmental features: the additive component is linked to the peak level and 

the self-feedback parameter indicates the rate of reduction between the initial and peak 

levels. For these reasons, and given our goal was not to compare different models, we 

used LCS models for generating the data and also to recover the information from such 

data. One consequence of this is that the fit indices for the model were uninformative 

because they were entirely dependent on the number of repeated measures in a given 

sampling schedule. However, when the generating process is unknown (as in empirical 

data sets) it is possible to compare different statistical models. In the context of ALD, 

different models could account for cohort effects differently. In such scenarios, fit 

indices are not a mere function of the number of repeated measures and can be used to 

compare among the different models. 

Limitations and future directions 

In this study, we focused on the development of a single construct over time. 

Systems including dynamic interrelations between two or more processes could lead to 
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more complex trajectories in which, for example, there may not be asymptotic levels. 

Future research should investigate the ability of our approach to recover the trajectories 

in such multivariate systems. 

Besides the initial and asymptotic levels, cohort differences could affect also the 

rate of change. Participants from different cohorts could show faster or slower 

maturation of the psychological process under study. In the LCS model, such variability 

would be captured by differences in the self-feedback parameter. However, when 

implementing LCS models in the standard SSM or SEM frameworks, estimating 

random effects in that parameter is not always possible. Future research should examine 

how to model this particular type of cohort effect. 

In our analyses, we examined the recovery of key features of the population 

trajectory, including cohort effects, when such effects were positive: participants born 

later reached higher levels. We were interested in this type of effects because they 

capture relevant empirical phenomena (e.g., Flynn effect). It is unknown whether our 

results can be generalized to scenarios with cohort effects in opposing direction (i.e., 

older cohorts reaching higher levels). 

In line with developmental research using ALDs, we used biological age to 

define cohorts. However, other sources of between-individual variability unaccounted 

for will affect the model estimates. Importantly, other definitions of cohort are also 

possible, including study cohorts (participants who entered the study in a particular 

year), grade cohorts (students in a particular grade), or historical cohorts (participants 

with data in a given year), among others. From a modeling standpoint, it is possible to 

include additional covariates for each of these types of cohorts. However, several of 

them can be severely confounded. Given the particular pattern of data missingness in 

ALDs, the separation of such different cohort effects may prove difficult, or even 
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impossible. Future research should examine the degree to which such a separation is 

possible under different developmental scenarios.  

Similarly, cohorts can be sometimes defined by non-monotonic categorical 

variables, for example, two different groups separated several decades apart, groups 

receiving different interventions, or students from different schools or countries, among 

others. In principle, such qualitatively different cohorts could be modeled using LCS 

models via a multiple-group specification. Another possibility would be to create 

dummy variables for each category, and estimate the regression coefficients for each of 

them. Future research should examine under what conditions these “qualitative” cohort 

effects can be identified and controlled for. One interesting feature of the multiple-

group specification is that, in principle, it would make it possible to characterize cohort 

differences (either qualitative or quantitative) in any of the model parameters. For 

example, it would be possible to estimate a different self-feedback parameter for each 

cohort, and test whether the different parameters can be constrained to have the same 

value across groups. However, this strategy should be applied carefully in the context of 

ALDs. Because the sample is divided into several cohorts, each cohort may include only 

a few participants (e.g., 125 participants divided into 13 cohorts leads to 9-10 

participants per cohort). Therefore, the cohort-specific estimate for a given parameter 

may be inaccurate and the method may not have sufficient power to detect cohort 

differences. Future research should investigate this strategy. 

Other modeling approaches are available for detecting and controlling for cohort 

differences. For example, Driver & Voelkle (2018) developed a Bayesian framework 

for estimating hierarchical continuous-time models. In such a framework, it is possible 

to specify between-individual variability in any of the model parameters. In a similar 

vein, the recently developed Dynamic Structural Equation Modeling (DSEM; 
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Asparouhov et al., 2018; McNeish & Hamaker, 2020) allows random effects in any of 

the model parameters in a discrete-time framework. Both approaches hold great promise 

for detecting the type of cohort effects studied in this paper (i.e., cohort non-equivalence 

in the mean and variance of the latent intercept and additive component). Importantly, 

they may be useful for detecting cohort differences in other parts of the model not 

studied here, such as the rate of change. However, future research should examine the 

possibilities and limitations of applying these methods in the context of ALDs, with its 

unique features such as high percentage of data incompleteness, random time lags 

between observations, or particular shape of the developmental processes, among 

others. 

Conclusion 

We have shown that cohort effects can be adequately recovered in the context of 

ALDs. Using a simple extension of LCS models, such effects can be captured in 

dynamic models including latent variables in both discrete and continuous time. Based 

on our findings, and considering that that they apply to the conditions studied in our 

study, we offer the following recommendations: 

1. Because cohort equivalence is a key assumption in ALDs that is typically 

unknown, researchers should consider the adequacy of including parameters 

for cohort effects in their models. Our findings show that, when cohort 

effects are linearly related to age and affect the initial and asymptotic levels, 

they will be adequately recovered by LCS models in CT and DT. Note, 

however, that other types of cohort effects may exist. 

2. Design 1 (two measurement occasions) should be avoided because it leads to 

biased parameters in most conditions. If, however, this is the only option, 

using a State-Space model in continuous time with parameters for cohort 



  Cohort effects in ALDs with LCS models  -  38 

effects (bottom-right panel in Figure 3) is recommendable. The alternative 

LCS model in discrete time (top-right panel in Figure 3) will likely lead to 

overestimation of some parameters. 

3. Designs 2 and 3 lead to similar results, with a slightly better performance of 

Design 2 in most scenarios. Therefore, if the researcher can assume that the 

generating model is adequately specified, and under the conditions simulated 

here, Design 2 is preferable because it achieves better results with one less 

measure per individual (three instead of four). Consequently, we recommend 

Design 2 as the most efficient sampling schedule.  

4. Consistent with previous findings (Estrada & Ferrer, 2019), investing 

resources in covering a wider age range for each participant is preferable to 

increasing sample size: 125 participants appear to be enough, if the right 

sampling schedule is applied (e.g., Design 2). 

5. Also consistent with previous research, we recommend using LCS in 

continuous-time, based on State-Space modeling, with parameters to account 

for potential cohort effects. Besides the advantages of CT modeling noted 

elsewhere (Oud & Delsing, 2010; Voelkle et al., 2012; Voelkle & Oud, 

2015), particularly in the context of ALDs (Estrada & Ferrer, 2019), this 

model achieved higher accuracy than the discrete-time alternative, with only 

a relatively small decrease in efficiency.  

We hope that the findings reported here, and the recommendations derived from 

them, will inform the design of future studies and facilitate an efficient use of the 

resources available for longitudinal research. 
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Table 1. Baseline generating parameters 

Parameter 
Value in DT 

(Δt=1) 
Value in CT Transformation 

β Self-feedback -.181 -.2 βDT = 
β ·

e 1CT t
−  

μ0 Initial mean 11.795 10.0 * 

μa Additive component mean 5.438 6.0 μa,DT = μa,CT · 

β ·
e 1

β

CT t

CT


−

 

σ2
0 Initial variance 24.766 25.0 * 

σ2
a Additive component 

variance 
.821 1.0 σ2

a,DT = σ2
a,CT · 

2
β ·

e 1

β

CT t

CT

 −
 
 

 

σ0,a Initial-Additive component 

covariance 
3.172 3.5 σ0,a,DT = σ0,a,CT · 

β ·
e 1

β

CT t

CT


−

 

σ2
e Measurement error 

variance 
2.000 2.0  

Implied values    

μAs Asymptotic level mean  30.0 µAs = µa / -β 

σ2
As Asymptotic level variance  25.0 σ2

As = (σa / -β)2 

ρ0,a Initial-Additive component 

correlation 
 .7 ρ0,a = σ0,a / (σ0 · σa) 

 

* In DT, the initial mean and variance refer to the first measurement occasion. In CT, 

they refer to t = 0. 
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Table 2. Cohort effects in the study (in continuous time) 

 

Generating parameters Expected estimates for 

cohort effects in the 

model 

Cohort effect 

µ0 in the 

oldest 

cohort 

µa in the 

oldest 

cohort 

γ0 γa 

baseline 10.0 6.0 .000 .000 

d0 = .2 9.0 6.0 -.083 .000 

d0 = .5 7.5 6.0 -.208 .000 

d0 = 1.0 5.0 6.0 -.417 .000 

d0 = 2.0 0.0 6.0 -.833 .000 

dAs = .2 10.0 5.8 .000 -.017 

dAs = .5 10.0 5.5 .000 -.042 

dAs = 1.0 10.0 5.0 .000 -.083 

dAs = 2.0 10.0 4.0 .000 -.167 

Note: All the d values are computed for a 13-year difference, using the standard deviation of the 

first cohort as the standardizer for the mean difference. 
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Table 3. Sampling scheme for each accelerated longitudinal design. Shaded cells 

represent one measurement occasion for all the cohort members during the 

corresponding year. 

         Age in years 
      

% of 

cases 

entering 

  DESIGN 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
in each 

cohort 

All cases measured 

at all occasions 
D0 13 cohorts 100 / 13 

Two occasions per case D1 13 cohorts                            

                     13.3 
                      13.3 
                      6.7 
                      6.7 
                      6.7 
                      6.7 
                      6.7 
                      6.7 
                      6.7 
                      6.7 
                      6.7 
                      6.7 
                      6.7 

Three occasions per case D2 11 cohorts                            

                      18.8 
                       18.8 
                       9.4 
                       9.4 
                       6.3 
                       6.3 
                       6.3 
                       6.3 
                       6.3 
                       6.3 
                      6.3 

Four occasions per case D3 12 cohorts                            

                       24.5 
                        12.2 
                        8.2 
                        6.1 
                        6.1 
                        6.1 
                        6.1 
                        6.1 
                        6.1 
                        6.1 
                        6.1 
                       6.1 
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Table 4. Parameter estimates from all four models fitted to the NORA data 

SSM-CT - cohort effects             SSM-CT         

Parameter Estimate S.E. 95% CI p   Estimate S.E. 95% CI p 

Cohort → intercept γ0 -1.463 .829 -3.089 .162 .078  -     

Cohort → additive γa -.125 .033 -.189 -.061 <.001  -     

Self-feedback β -.240 .054 -.346 -.133 <.001  -.362 .041 -.442 -.282 <.001 

Mean intercept μ0 11.115 1.465 8.244 13.987 <.001  7.826 1.434 5.016 10.636 <.001 

Mean additive μa 8.747 1.267 6.263 11.230 <.001  10.665 1.029 8.649 12.682 <.001 

Variance intercept σ2
0 69.459 20.162 29.941 108.976 .001  67.084 20.603 26.702 107.466 .001 

Variance additive σ2
a .500 .284 -.056 1.056 .078  1.245 .493 .279 2.212 .012 

Covariance σ0a -.758 2.103 -4.880 3.365 .719  2.926 2.326 -1.633 7.485 .208 

Variance error σ2
e 8.190 1.099 6.037 10.344 <.001   8.495 1.106 6.328 10.662 <.001 

LCS-DT - cohort effects             LCS-DT         

Parameter Estimate S.E. 95% CI p   Estimate S.E. 95% CI p 

Cohort → intercept γ0 -1.188 .814 -2.784 .409 .145  -     

Cohort → additive γa -.101 .033 -.166 -.036 .002  -     

Self-feedback β -.206 .048 -.300 -.113 <.001  -.293 .028 -.348 -.237 <.001 

Mean intercept μ0 11.373 1.428 8.574 14.172 <.001  8.554 1.338 5.931 11.176 <.001 

Mean additive μa 7.467 1.021 5.466 9.467 <.001  8.640 .687 7.293 9.987 <.001 

Variance intercept σ2
0 63.270 18.622 26.770 99.769 .001  59.739 18.575 23.332 96.146 .001 

Variance additive σ2
a .374 .218 -.053 .802 .086  .861 .324 .226 1.496 .008 

Covariance σ0a -.104 2.005 -4.035 3.826 .959  2.646 1.702 -.691 5.982 .120 

Variance error σ2
e 8.390 1.105 6.225 10.556 <.001   8.595 1.091 6.456 10.734 <.001 

 
Note: SSM-CT = State-Space Model in continuous time. LCS-DT = Latent Change Score model 

in discrete time. S.E. = Standard Error. CI = Confidence interval  
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Figure 1. Example of trajectories in an Accelerated Longitudinal Design 

 

Note: The top panels depict the latent (left) and manifest (right) individual trajectories if 

participants were followed during the whole age range. The bottom panels depict the 

information from such trajectories that would be available in an ALD spanning five years. 
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Figure 2. Type of cohort effects in a hypothetical 5-cohort ALD 

 

Note: Each line represents the mean trajectory for a cohort. The black solid line 

represents the youngest cohort in the study. 
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Figure 3. Diagrams of the Discrete. (DT, top) and Continuous-time (CT, bottom) 

models applied 
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Figure 4. Root Mean Square of the Relative Bias (top) and Mean Coverage (bottom) 
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Figure 5. Design 1: Parameters’ Relative Bias (top) and 95% CI Coverage (bottom) for 

the four models in all conditions 
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Figure 6. Design 2: Parameters’ Relative Bias (top) and 95% CI Coverage (bottom) for 

the four models in all conditions 
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Figure 7. Mean SDRB of the four models in all conditions 
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Figure 8. Developmental trajectories of abstract reasoning in an empirical sample 

 

Note: Dots and thin lines represent observed individual data. The thick black line 

represent the mean trajectory implied by the SSM-CT model without cohort effects. The 

thick short lines represent the cohort-specific mean trajectories implied by the SSM-CT 

with cohort effects. 


