
Received May 9, 2019, accepted June 4, 2019, date of publication June 17, 2019, date of current version June 28, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2923294

Congestion Control for Cloud Gaming Over UDP
Based on Round-Trip Video Latency
ALBERTO ALÓS 1, FRANCISCO MORÁN 1, PABLO CARBALLEIRA 2,
DANIEL BERJÓN 1, AND NARCISO GARCÍA 1
1Information Processing and Telecommunications Center, Grupo de Tratamiento de Imágenes (GTI), ETSI Telecomunicación, Universidad Politécnica
de Madrid, 28040 Madrid, Spain
2Video Processing and Understanding Lab, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Corresponding author: Alberto Alós (aas@gti.ssr.upm.es)

This work was supported in part by the Ministerio de Ciencia, Innovación y Universidades (AEI/FEDER) of the Spanish Government
through the Project ‘‘Open Graphics Gaming Cloud’’ under Grant RTC-2016-5676-7 and the Project ‘‘Immersive Visual Media
Environments’’ under Grant TEC2016-75981.

ABSTRACT We describe a network congestion control mechanism for cloud gaming (CG) platforms based
on the user datagram protocol (UDP). To minimize the contribution of the downstream transmission delay
to the total end-to-end latency in the interaction–perception loop, we first define the round-trip video latency
(RTVL) and develop a congestion model. Based on them, we design and implement an adaptation strategy
that detects the early stages of congestion to prevent high values of RTVL and network bufferbloat, thus
avoiding packet losses. Using data measured from the network, our strategy modifies the target output bitrate
of the video encoder to throttle down or upto the data flow sent by the server to the client. In the presence
of sudden downstream channel capacity drops of over 40%, our algorithm reactively manages to satisfy
the key CG requirements for interactive games by entirely avoiding the packet losses and keeping the RTVL
below 100 ms. In reasonably stable network conditions, our algorithm proactively keeps exploring for higher
bitrates and building a ‘‘network state dictionary,’’ due to which it achieves an effective downstream channel
capacity use of ∼95%.

INDEX TERMS Cloud gaming, congestion control, adaptive video coding, QoS, BBR.

I. INTRODUCTION
The improvement of network infrastructures in recent years,
mainly due to the proliferation of FTTX (Fiber To The X)
deployments which provide high-speed and symmetric band-
width connections, has gone hand in hand with the growth
of cloud services. Among the variety of services flowing
through Internet, some of them are more demanding than
others in terms of the QoS (Quality of Service) parameters
that can be measured in the network. Even more important
than the objective QoS is the QoE (Quality of Experience)
perceived by the user, especially for interactive audio-visual
services, whose QoE is very dependent on the total latency,
and on the quality of the video displayed to the user.

CG (Cloud Gaming), a.k.a. GaaS (Games as a Service),
is one of such services, which has been possible since pow-
erful GPUs (Graphics Processing Units) and FTTX enabled
the (almost) real-time execution of the ‘‘game play and ren-

The associate editor coordinating the review of this manuscript and
approving it for publication was Nizar Zorba.

dering, plus video coding, transmission, decoding and dis-
play’’ chain. But it is among the interactive services with
the strictest requirements on transmission delays and packet
losses. Jarschel et al. [1], [2] carried out a study of the factors
that degrade the QoE for CG, which sets some boundaries
in objective terms of QoS, based on subjective tests. They
concluded that downstream packet loss is the most impor-
tant parameter, followed by downstream delay and jitter.
This makes it very challenging to design a user-friendly
CG platform.

Indeed, guaranteeing no losses and a low latency
throughout a game session is not always possible: there are
relatively static limitations, such as the network technolo-
gies/capabilities by region [3], but also intrinsically dynamic
ones, such as network congestion. Some Internet services
are delivered to the client over managed network infrastruc-
tures, but CG must be understood as an OTT (Over-The-Top)
service competing with other OTT services over unman-
aged networks. In the OTT framework, there exist some
solutions called ‘‘DiffServ vs. InServ’’ (Differentiated vs.

78882 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-4298-0644
https://orcid.org/0000-0003-3837-692X
https://orcid.org/0000-0002-7199-698X
https://orcid.org/0000-0003-0584-7166
https://orcid.org/0000-0002-0397-894X


A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

Integrated Services), but their deployment depends on the
underlying architecture of the Internet service provider,
so they are not a short-term solution for us.

Our research has focused on designing an algorithm for
C3G (Congestion Control for Cloud Gaming) to meet the
strict CG requirements of having minimal losses and keeping
latency within playability limits. To do so, we first worked
on understanding the network congestion process to find in
latency good predictors of network ‘‘bufferbloat’’ [4] (which
ultimately leads to losses), and this prompted us to analyze
the measure of both losses and latency.

Video packet losses yield different decoding errors depend-
ing on the type of packets which are lost, e.g., the video
compression picture type (I, P or B) they belong to. In a non-
interactive video streaming scenario, these different errors
have a varying impact on the perceived quality of the decoded
video, but in a CG scenario they may also disturb in com-
pletely different ways the user interaction, i.e., the game play
itself. However, defining and measuring losses is trivial.

On the other hand, defining interactive latency is more
complex, because many delays contribute to it, so several
studies related to our work have started from different defini-
tions of the end-to-end delay. We highlight Wen and Hsiao’s
RTRD (Round-Trip Reaction Delay) [5], which includes all
delays in the interaction-perception loop. Other researchers
related (parts of) RTRD to playability [6]–[10] and concluded
that latency thresholds depend on the game type, but one
can generally assume that keeping the RTRD below 100 ms
guarantees a good playability, because it does even for the
‘‘fastest’’ games, such as racing ones or first person shooters.

In the general context of video streaming, and regarding
packet loss reduction, a long-term buffer could be included
at the client side to allow for more retransmissions, and thus
ensure the arrival of complete frames before they must be
decoded. But the price is adding an arbitrary delay at the
decoder, thus increasing latency. Several widely used video
streaming techniques help reduce latency and mitigate the
image quality degradation due to packet losses. For instance,
in scenarios like ours where low latency is critical, it is good
encoding practice to avoid using B frames altogether, or set
the VBV (Video Buffering Verifier) size to the target frame
size. These common techniques to reduce latency logically
increase the downstream bitrate, or limit the adaptation capa-
bility of the platform to the channel capacity.

As for the more specific context of CG [11], congestion
control is still a relatively unexplored field. In Section II,
we summarize our findings on channel-adaptive algorithms
developed to meet the strict QoS requirements mentioned
above, both in terms of latency and losses, and at the same
time try and maximize the effective use of the downstream
channel capacity.

Our contributions start by modeling the behavior of the
network at different stages of the congestion process. As we
explain in Section III, we immediately found it essential
to determine the contribution of the downstream delay to
the RTRD. We therefore defined the RTVL (Round-Trip

Video Latency) before designing our congestion model,
which is based on that of BBR (Bottleneck Bandwidth and
Round-trip propagation time) [12], a congestion control algo-
rithm recently developed by Google. Our model allows us to
establish a relationship between themaximum channel capac-
ity and the buffer size of the potential network bottlenecks,
the amount of data sent to the network (by setting a video
encoder target bitrate), and of course the RTVL itself.

As a result of our congestion model, we also designed
a generic adaptation strategy explained in Section IV, and
implemented an algorithm for C3G based on UDP at the
application layer. This implementation was adapted accord-
ing to the limitations of the commercial CG platform we used
for testing, as described in Section V.
Section VI reports on the tests we carried out with our algo-

rithm, in particular to compare it with BBR. The experimental
results show how our algorithm reacts quickly to channel
capacity drops by reducing the target video encoding bitrate,
and manages to completely avoid losses for sudden drops of
up to ∼42%. The results show as well that our algorithm
keeps the RTVL below 100 ms for steady bandwidth limita-
tions, while continuously exploring for higher target bitrates.
This proactive exploration strategy results in an effective use
of 93–96% of the available channel capacity.

II. STATE OF THE ART
In this Section, we review existing congestion control
algorithms designed to work at either the transport or the
application layer, and based on TCP (Transmission Control
Protocol), UDP (User Datagram Protocol), or none of them.

A. TRANSPORT LAYER POTENTIAL SOLUTIONS
Theoretically, flow and congestion control is a service
that belongs in the transport layer; indeed, the ubiquitous
TCP provides applications with transparent flow control and
ordered reliable delivery, and has been a cornerstone of the
Internet over the past few decades because it excels at deliv-
ering non-latency-sensitive loads (up to now the bulk of the
Internet traffic).

On the other side of the spectrum, UDP is the triv-
ial transport protocol, which provides no service beyond
multiplexing, thereby leaving all flow control, error check-
ing, and message ordering to the applications themselves.
In between these two extremes, there are other protocols
that provide subsets of the functionality provided by TCP,
such as SCTP (Stream Control Transmission Protocol) [13]
and DCCP (Datagram Congestion Control Protocol) [14].
However, they see very little use because most commercial
routers or firewalls do not support them, leaving application
developers with TCP and UDP as the only practical choices.

It is worth mentioning that the design of TCP is generic
enough to enable interoperation between implementations
using different congestion algorithms, but no matter the
specific algorithm the latency is potentially unbounded on
account of TCP’s reliable nature; therefore, TCP is generally
not appropriate for real-time, low-latency traffic. Still, some

VOLUME 7, 2019 78883



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

of the congestion control algorithms that have been proposed
for TCP provided us with a good starting point. Most of them
use packet losses as congestion signal (Tahoe, [New] Reno,
[CU]BIC, etc.) and are therefore not acceptable for CG; some
others, such as FAST TCP [15] and the already mentioned,
more recent BBR [12], [16], use delay measurements to
detect congestion before it actually happens. We will cover in
more depth different aspects of the latter, which is the most
similar algorithm to ours, in Subsections III-A and IV-B.

B. APPLICATION LAYER POTENTIAL SOLUTIONS
Given the problems described above to implement real-time
streaming at the transport layer, multiple application-layer
solutions have been designed.

VoD (Video-on-Demand) is a service superficially similar
to CG in the sense that it needs to react to network conditions
in real time, and adapt the video quality accordingly. Popular
techniques like ABR (Adaptive BitRate) [17] consist in that
the (typically HTTP-based) server offers the same content
in a variety of coding presets that the client autonomously
switches between, depending on the evolution of its own
reception buffer. However, these techniques are only possible
because the content is not user-dependent and users can easily
tolerate delays in the order of seconds, allowing time for the
server to pre-generate all preset qualities.

Video conference, on the other hand, is a service much
closer to CG: its content is session-specific and produced in
real time, and it has stricter delay requirements [18]. Still,
video conference can tolerate significantly higher delays than
CG, and also drastic video bitrate reductions because the
essential source of information is (low-bandwidth) audio,
while the video information is essential to CG. Hence,
most proposals in the literature relevant to CG have been
purpose-designed.

Jarvinen et al. [19] used TCP’s RTT jitter to detect net-
work congestion, and then decide upon the triggering of the
bitrate adaptation. In their solution, a video adaptation mod-
ule constantly monitors the network status, and dynamically
adjusts the encoder target bitrate using an AIMD (Additive-
Increase/Multiplicative-Decrease) scheme, just like TCP.
They consider RTT jitter to be a binary congestion signal,
which causes too much oscillation in the target bitrate when
there is a persistent bandwidth limitation. Furthermore, their
proposal is TCP-based and does not offer a mechanism to
cope with losses and subsequent retransmissions.

Wang and Dey [20] proposed a procedure that requests
one of several preset- and game-specific bitrates depending
on downlink delay thresholding, as well as a method, based
on the same metric, for reducing the play-out buffer delay.
Another proposal of theirs [21], also based on delay thresh-
olding, dynamically modifies game rendering parameters to
modulate video complexity. Both proposals use a previous
network probing mechanism [22] to measure delays and
losses, and share the same shortcomings: they require a deep
analysis of the characteristics of each game, and their use of

discrete bitrate presets does not provide sufficient adaptation
granularity.

More recently, Hong et al. [23] proposed a MOS (Mean
Opinion Score) based model for dynamic frame rate
and bitrate adaptation on the open-source CG platform
GamingAnywhere [24]. The model implicitly considers
the available bandwidth, which estimation is inspired in
WBest [25]; it keeps track of the dispersion time of the video
packets but does not consider a threshold over the latency.

Finally, other proposals for CG [24] simply leverage
RT[C]P (Real-time Transport [Control] Protocol) over UDP,
a protocol designed for audio and video streaming that
provides QoS feedback, temporal reconstruction and loss
detection. However, they do not implement bandwidth man-
agement, guarantee a given QoS, or provide any means to
address congestion control.

III. CONGESTION MODEL
From the different approaches reviewed in Section II,
we based our work on BBR, whose network congestion
model and adaptation strategy are explained in more detail in
Subsection III-A. Subsection III-B introduces the congestion
model of our C3G algorithm. Before explaining in Section IV
our control strategy to adapt the server output bitrate to a
varying channel capacity, we describe our C3G discrete-time
congestion detection algorithm in Subsection III-C.

A. BBR’s CONGESTION MODEL AND ADAPTATION
STRATEGY
BBR’s network congestion model is based on the one defined
by Kleinrock [26], which considers that an arbitrary complex
path formed by many links behaves as a single one, whose
bandwidth is the minimum of those of all individual links.
Kleinrock defined the OOP (Optimal Operating Point) of
a global path or individual link as the transmission bitrate
allowing to use that path/link at its maximum channel capac-
ity while keeping aminimum transmission delay. If the sender
transmits a bitrate lower than OOP, the channel is underused;
but if it tries to transmit a higher one, the delay increases while
the effective delivered bitrate does not.

All these bitrates, delays, and therefore OOPs may of
course vary along time in a real network, and BBR relies on
TCP to define and estimate two time-dependent variables:
BtlBW , the bottleneck bandwidth, and RTprop, the round-
trip propagation time. The latter is the minimum of all RTT s
reported by TCP over some time window (typically tens
of seconds to minutes), and the former is the maximum of the
delivery rates (ratios of delivered data to elapsed time) cal-
culated over some other time window (typically 6-10 RTT ).
Based on these two variables, BBR defines as well
the BDP (Bandwidth Delay Product), which is simply
BDP = BtlBW · RTprop.

The key premise of BBR’s congestion model is that the
OOP is found when BDP = inflight , a native TCP parameter
representing the number of unacknowledged sent packets.

78884 VOLUME 7, 2019



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

FIGURE 1. We measure RTVL(t) at the server, for each video frame, as the
time elapsed since the raw frame output by the game engine was sent to
the video encoder (S0) until its decoding ACK is received from the
client (SACK).

If inflight > BDP, a packet queue starts to grow at some
bottleneck link, and RTT increases linearly with inflight .

BBR’s adaptation strategy consists in continuously esti-
mating BtlBW and RTprop, hence BDP, and pacing the
packet transmission to have inflight match or remain just
below BDP. It also aims higher periodically by tentatively
increasing the transmission bitrate, and then immediately
decreasing it, according to what is known as a MIMD (Mul-
tiplicative Increase / Multiplicative Decrease) scheme based
on a cycle of fixed gains: see Subsection IV-B.

B. C3G’s CONGESTION MODEL
BBR’s congestion model cannot be implemented over UDP
since it requires the native TCP parameters mentioned in the
previous Subsection. Besides, in our application layer context
of video transmission and CG in particular, it makes more
sense to have the client send ACKs per video frame, instead
of per UDP packet (which anyway would completely defeat
the purpose of using UDP vs. TCP).

This led us to define the RTVL (Round-Trip Video
Latency) illustrated by Figure 1. C3G’s congestion model
assumes that the client sends an explicit ACK after having
received all the UDP packets of a video frame and decoded it.
Upon reception of that ACK at instant SACK, the server com-
putes RTVL(t) for that particular frame as the time elapsed
since its raw version output by the game engine was sent to
the video encoder at instant S0.
Our application-oriented, per-frame RTVL(t) is meant to

be analogous to BBR’s (in fact, TCP’s) RTT . To continue
with this analogy, and be able to seek an OOP defined sim-
ilarly to BBR’s, we need a way to estimate an equivalent
to TCP’s inflight , which is inherently impossible in UDP.

FIGURE 2. Bottleneck of maximum capacity cbtl(t) and buffer size
btlBuffer . Soon after λ(t) > cbtl(t), qdData(t) > 0.

FIGURE 3. Three phases in our congestion model: 1) no congestion and
minimal RTVL, but channel underused; 2) congestion beyond OOP (t0),
but reaction still possible until buffer saturation (t1); 3) bufferbloat, to be
avoided.

This is why we measure the server-sent and client-received
bitrates, λ(t) and µ(t), which are the accumulated sizes of the
sent and received UDP packets during a certain time window.
Note that RTVL(t) includes, as explicitly shown in Figure 1,
the video frame encoding and decoding delays, which we will
assume constant for the moment, although they do depend
(weakly) on λ(t) and µ(t).
C3G’s ideal congestion model also assumes that the time

windows of both server and client are properly aligned,
so when there is no congestion µ(t) = λ(t). However,
as shown in Figure 2, a link in the network may turn into
a bottleneck if its maximum capacity cbtl(t), which is equiv-
alent to BBR’s BtlBW , is lower than λ(t): in such a case, its
buffer of size btlBuffer will start holding an amount of queued
data qdData(t) > 0 waiting to be delivered, and µ(t) < λ(t).
Figure 3 illustrates how C3G’s congestion model works by

showing howµ(t), qdData(t),RTVL(t), and packet losses l(t)
would evolve over time in a rather academic example scenario
where λ(t) would increase linearly with time, while cbtl(t)
would remain constant. Three phases can be identified:

1. t < t0: λ(t) < cbtl(t) ⇒ µ(t) = λ(t), so there is no
congestion. Besides, RTVL(t) = RTVLmin, so the latency
is minimal, but this phase is nevertheless sub-optimal
because the channel is underused.

2. t0 ≤ t ≤ t1: The OOP is reached at t0, when and
because λ(t0) = cbtl(t), but then, as λ(t) keeps growing,
UDP packets start to accumulate in the buffer because
µ(t) remains equal to cbtl(t). Both qdData(t) and RTVL(t)

VOLUME 7, 2019 78885



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

increase:

qdData(t) =
∫ t

t0
[λ(t)− µ(t)] dt,

RTVL(t) = RTVLmin +
qdData(t)
cbtl(t)

.

During this congestion phase, it is still possible to react
before incurring losses, because the buffer is not full until
t = t1, when RTVL reaches its maximum value RTVLmax,
which is imposed by the buffer size.

3. t > t1: Once the buffer is full, if λ(t) keeps increas-
ing RTVL(t) remains equal to RTVLmax but packets are
dropped and l(t) > 0. This phase must be avoided.

C. C3G’s DISCRETE-TIME CONGESTION DETECTION
ALGORITHM
Figure 3 is obviously an over-simplified version of what can
be observed and done in a real system. Real congestion detec-
tion and control algorithms, like ours, operate in discrete time
and typically in an iterative way, because they are invoked
periodically. In such real systems, it might be hard to align the
server and client time windows used to measure λ(t) andµ(t),
hence to accurately estimate qdData(t). Besides, these time
windows, even if properly aligned, might be of a different
size from the one used to measure RTVL(t) at the server.
This is why our C3G algorithm, indeed invoked with

period 1t , works with average rates between two successive
executions at instants tprev and tnow = tprev + 1t: λ̄(tnow),
µ̄(tnow) and RTVL(tnow) are the respective averages of all
λ(t), µ(t) and RTVL(t) samples recorded for t ∈ [tprev, tnow].
As for qdData(tnow), it is calculated by adding all differences
λ(t)−µ(t) since the execution instant tcong at which conges-
tion was detected for the first time.

We will elaborate on tcong in Subsection IV-A, and in
Section V on other implementation details such as the mis-
alignment of the λ(t) andµ(t) timewindows, but we precisely
state already here how our C3G algorithm should ideally
calculate its Boolean variable congestion(tnow), to be able to
better explain its adaptation strategy:

congestion(tnow) = qdData(tnow) > 0

&RTVL(tnow) > RTVL(tprev). (1)

Note that both conditions must be met for congestion(tnow)
to become true: the mere fact that qdData(tnow) > 0 is not too
worrying in itself, because btlBuffer might suffice to mitigate
the variations of λ(t) and cbtl(t) — this is precisely why the
buffer is there! In fact, when we detect that qdData(tnow) > 0,
we take advantage of it to estimate cbtl(tnow) = µ̄(tnow). But
if we see that, on top of having queued data, RTVL(t) has
increased, then we do declare congestion(tnow) true.

IV. ADAPTATION STRATEGY
As hinted above, our C3G algorithm estimates the channel
capacity and tries to reach the OOP by adapting λ(t) accord-
ingly. Slivar et al. [27] carried out tests to derive video encod-
ing adaptation strategies for CG, and concluded that the game

FIGURE 4. Reactive adaptation sequence for λ(t).

type must be taken into account when evaluating QoE, but
for both games analyzed in their paper, fluidity (framerate)
had a more significant impact on the QoE than video quality
(bitrate). The framerate being a very sensitive parameter,
we decided not to act on it to modify λ(t), but only on the
target bitrate for the video encoder, v(t). In Subsection V-C
we elaborate on the difficulties involved in commanding λ(t)
through v(t) but, for the purposes of this Section, we will
assume that our control algorithm is indeed able to set λ(t)
directly.

There are two distinct situations for λ(t) adaptation, respec-
tively analyzed in the two Subsections below:

A. When our algorithm detects a channel capacity drop,
it reactively decreases the target λ(t), which is challeng-
ing: if it is too low, qdData(t) = 0 will indeed be reached
soon, thus exiting the congestion phase 2 of Figure 3, but
video quality, hence QoE, will be poor while the buffer
is drained; on the other hand, if λ(t) is set too high,
i.e., too close to its pre-congestion value, video quality
might remain acceptable, but at the risk of reaching the
bufferbloat phase 3.

B. At all times during a period of apparently stable chan-
nel capacity, our algorithm proactively explores higher
acceptable values of λ(t) to escape the sub-OOP phase 1.
Again, this must be done carefully to avoid stepping too
deep into the congestion phase 2 and increasing too much
the latency or, even worse, ending up in the bufferbloat
phase 3.

A. REACTIVE BITRATE DECREASE
Once we detect congestion (see Equation 1), we know we
might have to launch a λ(t) adaptation sequence like the one
shown in Figure 4, which starts by lowering it to λdrain to drain
the buffer and reach qdData(t) = 0 again as soon as possible.
However, to avoid over-reacting, we do not necessarily

lower λ(t) whenever we detect congestion(tnow). Instead,
we tentatively set tcong = tnow (to mark the starting point
for the qdData(t) sum, as explained in Subsection III-C),
and then try and predict in two ways whether RTVL(t)
will exceed the maximum acceptable threshold RTVLth
(e.g., 100ms) during the next control loop cycle, i.e., for some
t ∈ [tnow, tnext = tnow+1t]. We calculate the following two
predicted values:

78886 VOLUME 7, 2019



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

1. R̃TVL1(tnext) is linearly extrapolated from all RTVL(t)
samples recorded during the last control cycle, [tprev, tnow];

2. R̃TVL2(tnext) assumes that qdData(tnow) is still far below
btlBuffer (i.e., that tnow is still close to t0 in Figure 3), and
that it will increase the last known value RTVL(tlast) at a
rate given by µ̄(tnow), which we found to be a reasonable
estimate of the bottleneck capacity cbtl(tnow), as explained
at the very end of Subsection III-C:

R̃TVL2(tnext) = RTVL(tlast)+
qdData(tnow)
µ̄(tnow)

.

If any of these two predicted values is larger than RTVLth,
we declare drainNeeded(tnow) true, set tdrain = tnow, and
trigger the adaptation sequence, as explained below.

But if none is, we keep calm and carry on. . .Thismeans that
congestion(t) might be true at several successive runs of the
C3G algorithm, and then turn false without drainNeeded(t)
ever becoming true. Another couple of good things that might
happen ‘‘naturally’’, after one or more successive runs in
which congestion(t) is still true, is that λ̄(tnow) < µ̄(tnow)
(qdData(tnow) is still positive, which is the first condition for
congestion(tnow) to be true, but smaller than qdData(tprev),
so the buffer is draining) and that the RTVL(t) samples
recorded during the last control cycle show a decreasing
tendency (although RTVL(tnow) > RTVL(tprev), which is
the second condition for congestion(tnow) to be true). If those
two things do happen, we reset tcong = tnow, again tentatively.
Once drainNeeded(tnow) is true, so a server-sent rate adap-

tation sequence like the one of Figure 4 must be launched,
we start by calculating λdrain to set it as the new target
for λ(t). This value must of course be lower than the esti-
mated bottleneck capacity to help drain the buffer and reach
qdData(t) = 0 again as soon as possible. In principle, it could
be desirable to completely drain the buffer in a single control
loop cycle, which would be achieved with:

λdrain = µ̄(tdrain)−
qdData(tdrain)

1t
. (2)

But this could imply setting v(t) below the minimum
acceptable target video encoding bitrate, vmin. This is why
we impose a drain period Tdrain, possibly much larger
than1t , during which the target server-sent rate is kept equal
to λdrain. We calculate it as follows:

Tdrain =
qdData(tdrain)
µ̄(tdrain)− vmin

.

Finally, as suggested as well by Figure 4, once Tdrain is over
and the buffer is completely empty again, our C3G algorithm
increases the target server-sent rate to achieve the OOP, and
sets it to λOOP = µ̄(tdrain), which is the channel capacity
estimated just before entering the drain period.

B. PROACTIVE BITRATE INCREASE (EXPLORATION)
In times of apparently stable channel capacity, any
OOP-seeking λ(t) adaptation algorithm must explore higher
acceptable rates, but must try to be very cautious in doing

FIGURE 5. Behavior of BBR vs. C3G during their typical target server-sent
bitrate exploration sequences. (a) BBR. (b) C3G.

so, to avoid exceeding cbtl(t) so much that RTVL(t) >

RTVLth, or that l(t) > 0 due to bufferbloat. This is especially
true in the CG context, where a radical increase of λ(t),
when it is already close to cbtl(t), may cause a fast and vast
data accumulation in the bottleneck buffer, hence any of the
two undesired consequences above, which lead both to an
unacceptable QoE.

As summarized in Subsection III-A, in terms of explo-
ration, BBR uses a MIMD scheme based in a periodic cycle
of gains applied to the server-sent rate to try and reach the
OOP (BDP = inflight) of a channel of potentially increasing
capacity. Figure 5a shows (from left to right) how:

1. The first two attempts to apply 1.25 factors (i.e., 25%
gains) to the server-sent rate are not successful, because
cbtl(t) is exceeded (which is detected because inflight >
BDP), so the target rate remains the same for the following
cycles.

2. On the contrary, the third and fourth attempts are suc-
cessful, because the channel capacity cbtl(t) has indeed
increased, and the corresponding 1.25 factors for the target
rate are both consolidated.

3. The last two attempts to increase the target rate are unsuc-
cessful, like the first two.

BBR’s exploration strategy is inadequate for our CG over
UDP context for two main reasons, the most obvious being
that the x1.25 (i.e., +25%) gain is too greedy, which often
impacts badly the QoE. The straightforward solution to this
problem would be lowering the gain factor (to, say, x1.2
or x1.15). However, this would not only cause a delay in
reaching the new (higher) channel capacity, but also an unde-
sirable oscillation in λ(t). Indeed, the second reason why
BBR’s exploration strategy is unsuitable in our context is

VOLUME 7, 2019 78887



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

that its fixed pattern of gains ignores the history of the
already explored target rates, along with the QoS parameters
(BDP and inflight). Unlike BBR’s, our strategy does take
exploration history into account to dynamically modify its
gain factor and, by doing so, yields: i) a smoother λ(t),
thus avoiding too many oscillations in the video encoding
bitrate, and ultimately in the QoE; and ii) a more efficient
channel use. We manage to be conservative when a recent
tentative increase of λ(t) over the last known cbtl(t) has caused
drainNeeded(t), but more aggressive if this has not happened
so recently, which usually means that cbtl(t), hence λOOP,
have themselves increased.

Like BBR’s, our exploration strategy is based on
cycles, or exploration periods, Texp(t), but their duration is not
fixed. Our steps for λ(t), called λexp(t), are not fixed either,
and do not depend exclusively on λ(t). In fact, our exploration
period and step depend on our exploration gain g(t), which is
an integer between 1 and gmax:

Texp(t) = (gmax − g(t)+ 1) 1t, λexp(t) = g(t) λexp,min.

[NB: in our tests, we set gmax = 50 and λexp,min = 10 kb/s.]
At the end of each exploration period, we increase, main-

tain or decrease g(t), and then set Texp(t) and λexp(t) for the
new period. Before explaining our criteria for this decision,
we want to stress that, as shown in Figure 5b, our steps
of variable width and height allow us to be cautious in the
vicinity of a constant channel capacity, whatever the cur-
rent target rate. On the other hand, when there is indeed a
newer, higher channel capacity to be discovered andmatched,
the simultaneous decrease of Texp(t) and increase of λexp(t),
both due to an increase of g(t), yield an ‘‘exponentialish’’
increase of λ(t), which matches quickly the new cbtl(t).
We decide to increase, maintain or decrease g(t) by com-

paring the network QoS behavior during the just-finished
period with its previous, saved/logged behaviors since con-
gestion was last detected (and g(t) was initialized to gmin).
We define ‘‘network QoS behavior’’ by means of a chan-
nel rating function R(λ̄) which combines four QoS param-
eters measured or estimated during an exploration period,
namely the average, standard deviation, and maximum value
of RTVL(t), and the amount of qdData(t):

R(λ̄) = [a RTVL(t)+ b σ (RTVL(t))

+ c max(RTVL(t))+ d qdData(t)] / λ̄. (3)

The four coefficients a, b, c and d are meant to balance
the contribution of these different QoS parameters of the
rating function, i.e., to give more relative importance to any
of them. In any case, they must all be positive since large R(λ̄)
values represent undesirable tendencies, because all its four
QoS parameters do: large or highly variable/unpredictable
latency, or a lot of undelivered data. [NB: in our tests, we used
(a, b, c, d) = (1, 10, 1, 2).]

Based on our channel rating function, what we save/log is
what we call ‘‘states’’, defined as couples s(λ̄) = (λ̄,R(λ̄)),
where λ̄ is the average value of λ(t) during a just-finished

exploration period. As time goes by, our C3G algorithm
gradually builds a ‘‘network state dictionary’’, S = {s(λ̄)},
by storing each new couple s(λ̄) if λ̄ had not been explored
yet, or by possibly updating its R(λ̄) if it had, as explained
below. Note that the discretization effected by λexp,min helps
accelerate searches in this state dictionary, which are neces-
sary to choose between the following three candidates for the
new target λ(t):

λ+ = λ̄+ λexp(t), λ= = λ̄, λ− = λ̄− λexp(t).

After calculating these three candidates, our algorithm tra-
verses the following decision tree, whichwe designed to favor
increases in λ(t): note that the second sub-case of B.b.2 is
the only situation where λ− is chosen, and bear in mind that
R(λ1) < R(λ2) means that the network behaves better for λ1
than for λ2.

A. If λ= is not found in S:
a. If λ+ is not found in S: λ+ is chosen because the main

mission of our exploration strategy is precisely to aim
higher.

b. If λ+ is found in S: if R(λ+) > R(λ̄), λ+ is chosen
because it seems that the network behaves better now
for the just-explored rate than in the past for a higher
one; otherwise, λ= is chosen, hoping that things will
improve during the next exploration period.

B. If λ= is found in S:
a. If λ+ is not found in S: if R(λ=) > R(λ̄), λ+ is chosen

because it seems that the network behaves better now
for the just-explored rate than in the past; otherwise,
λ= is chosen, hoping as in case A.b that. . .

b. If λ+ is found in S:
1. If R(λ+) > R(λ̄), λ+ is chosen because it seems

that the network behaves better now for the just-
explored rate than in the past for a higher one (see
case A.b).

2. If R(λ+) < R(λ̄): if R(λ=) > R(λ̄), λ= is chosen
because it seems that the network behaves better
now for the just-explored rate than in the past, but
not as much better as in case B.a; otherwise, λ− is
chosen because it is the only sensible option.

Once λ+, λ= or λ− is chosen, R(λ̄) is updated if needed.

V. IMPLEMENTATION DETAILS
In this Section we address the implementation of our
C3G algorithm explained in the previous two Sections, and
howwe had to tailor it to PlayGiga’s CG platform [28]. In par-
ticular, we give some details on how we monitor the network
parameters, deal with packet losses and retransmissions, and
set λ(t) through v(t), to achieve effective congestion control
in a real environment.

But before doing so, we want to highlight the importance
of running at the server (vs. at the client) our C3G algorithm to
detect congestion and adapt λ(t). We believe this has at least
the following three advantages:

78888 VOLUME 7, 2019



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

FIGURE 6. Misalignment of the time windows used to measure λ(t) at the
server and µ(t) at the client.

1. it implies less action-reaction time, since the decisions are
taken where the video encoder operates, thus saving the
transmission time needed to report any decision from the
client to the server;

2. from the deployment viewpoint, it is easier to update one
server than multiple (types of) clients;

3. a centralized algorithm helps manage multi-player ser-
vices which can share the same streaming channels.

A. MISALIGNMENT OF THE SERVER AND CLIENT TIME
WINDOWS
Our C3G algorithm takes its decisions based on µ(t), which
must be periodically measured by the client and reported
to the server. It is therefore the server’s responsibility to
calculate λ(t) for the same time window used by the client
for µ(t), as we assumed in Subsections III-B and III-C.

In PlayGiga’s CG platform, the client does measure µ(t)
and send it to the server aboard TCP KA (KeepAlive) packets
at regular time intervals. [NB: TCP’s KA packets are typically
meant to carry no meaningful data, and just used by one peer
to check as needed that the other peer and the link between the
two are still ‘‘alive’’, which is confirmed (or not) by the recep-
tion (id.) of replies to the KA probes.] Although this is not
required by our C3G algorithm, the period used at the client
for these KA reports is the same1t used at the server for the
congestion control loops: see Subection III-C. This is shown
by the right side of Figure 6: when KA packet #2 is due,
1t after #1, the client adds the amount of data carried by all
UDP packets received during thatµ(t) time window (from #1
of video frame A until #1 of video frame F), divides it
by 1t , and reports the resulting µ(t) via KA packet #2.

The main goal of Figure 6, however, is to illustrate the
misalignment of the µ(t) time window described above with
the corresponding λ(t) window on the left, which is not
only shifted ‘‘down’’ in time, but also of a different size,
due to both the uplink and downlink propagation delays: the
first affects the KA packets, which leads to the time span
difference ±δt; more importantly, the downlink delay of the
UDP packets, and their potential losses, affect the number
of them taking part in the computation of µ(t). Both delays
yield a noisy function of λ(t)−µ(t) differences, thus a noisy
estimation of qdData(t) for our congestion detection and
adaptation strategy.

To filter this noisy function, we consider only its positive
values above a certain threshold ε, which is periodically
updated to hold the maximum value of λ(t) − µ(t) reported
without signs of an increasing RTVL. In our implementation,
the first condition of Equation 1, qdData(tnow) > 0, was
replaced with λ̄(tnow)− µ̄(tnow) > ε.

Note that all this does not affect the computation of
RTVL(t) at the server, for which we used exactly the proce-
dure illustrated by Figure 1:

0. the server takes a timestamp S0 before sending each
raw frame output by its game engine to its video
encoder, and, once it is encoded and fragmented in n
UDP packets,

1. . . the server sends these UDP packets to the client, which
might not receive some of them;

n. when all n UDP packets have been received, or after the
presentation timeout described below, the client sends
the re-assembled frame to its video decoder, and, just
before displaying it, sends a frame ACK to the server;

A. upon reception of that ACK, the server takes a second
timestamp SACK and computes RTVL(t) for that
frame.

B. PRESENTATION AND RETRANSMISSION TIMEOUTS
Contrary to what Figure 1 implies, a real CG client must
consider UDP packet losses and might therefore have to stop
waiting to receive all packets of a video frame before decod-
ing and displaying it. A ‘‘presentation timeout’’ is typically
imposed on the difference Cn−C1, and if it is reached before
all packets of a video frame have been received, the frame is
nevertheless decoded and displayed, obviously with decoding
errors. In PlayGiga’s CG client, the presentation timeout was
set to 100 ms.

Note that, regardless of the value chosen for the maximum
acceptable latency, RTVLth (see Subsection IV-A), its actual
saturation value, RTVLmax (see Figure 3), should be equal,
in the general case of a frame with packet losses, to the
transmission delay of its first packet plus its presentation
timeout. But in the particular case of a completely lost frame
for which no UDP packet is ever received, RTVLmax would
be unbounded. PlayGiga’s CG client handles this particular
case by sending to the server an ACK for the completely lost
frame after a later frame has been received, and with a low

VOLUME 7, 2019 78889



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

priority (i.e., at the end of the control algorithm execution),
so RTVLmax may in fact reach values as high as 350 ms.
Besides the presentation timeout, real CG clients also

have a ‘‘retransmission timeout’’ associated to an application
buffer which allows for requesting retransmissions of not-
yet-received (and thus potentially lost) UDP packets to the
server. In PlayGiga’s CG client, the retransmission timeout
was set to 30 ms.

Dealing with packet losses and retransmissions requires
two modifications in our adaptation strategy:
1. In the event of network congestion, the client requests the

retransmission of UDP packets which are lost or delayed
for too long, so the server-sent rate does not only depend
on the video encoding parameters, but also on the retrans-
mission percentage. To allow for the bottleneck buffer
to drain, this must be taken into account when comput-
ing λdrain: r(t) being the fraction of retransmissions with
respect to λ(t) for the considered analysis time window,
Equation 2 becomes

λdrain = (1− r(t)) µ̄(tdrain)−
qdData(tdrain)

1t
.

2. Since retransmissions and losses also have an impact on
the network QoS, the rating function of Equation 3 must
also be modified to include them:

R(λ̄) = [a RTVL(t)+ . . .+ d qdData(t)

+ e r(t)+ f l̄(t)] / λ̄.

[NB: packet losses l(t) are calculated by the client, for
each frame, as the fraction of its non-received UDP pack-
ets at the time it is sent to the decoder.]

C. SERVER-SENT VS. VIDEO ENCODER BITRATES
Setting a new target server-sent bitrate, λ(t), by setting a
new target video encoder bitrate, v(t), is not straightforward,
since different factors are involved, such as the CG platform
used (there are several proprietary solutions, notably from
NVIDIA, Intel and AMD), the video encoder provided by
it and its API, and the nature and complexity of the video
sequences to be encoded, i.e., the output of the game engine.

Besides, specifying a particular v(t) value does not neces-
sarily mean that the real output bitrate of the video encoder
will match it exactly and even less instantly, so our C3G
algorithm always modifies v(t) by taking into account the
λ(t)/v(t) ratio of previous iterations.

VI. EXPERIMENTAL RESULTS
In the experimental tests we carried out to compare C3G’s
performance with BBR’s in a real-world CG platform,
we focused in particular on its capabilities to: i) rapidly
adapt to network congestion while minimizing its negative
effects on the user’s QoE; and ii) use the maximum channel
capacity in stable channel conditions. We tested both algo-
rithms using PlayGiga’s CG platform [28], which provides
realistic conditions in an end-to-end system, including trans-
mission over a real WAN (Wide Area Network) with realistic

QoS degradation, e.g., propagation delay, spurious losses,
jitter, etc. Additionally, we implemented limitations on the
channel capacity in the client side to test the response of both
BBR and C3G under different bandwidth conditions.
Subsection VI-B describes the design of our test bench-

mark, and Subsections VI-C and VI-D report and discuss on
the results obtained by C3G vs. BBR in the two scenarios
described in Section IV. But first, Subsection VI-A explains
how we had to adapt BBR, originally designed to operate
at the transport layer, and using TCP. Since recent works
have used it at the application layer [29] in the Gaming Any-
where [24] CG platform, by following the same approach,
we could compare both methods in a common UDP-based
CG platform.

A. BBR’s ADAPTATION TO PLAYGIGA’s CG PLATFORM
Given that video transmission is based on UDP in Play-
Giga’s CG platform, we had to adapt BBR to operate in
the absence of TCP parameters. Therefore, we had to derive
BBR’s parameters RTprop, BtlBW and inflight , described in
Subsection III-A, from C3G’s QoS parameters RTVL(t), µ(t)
and λ(t), described in Subsection III-B.

This called for changes in the implementation of BBR’s
rate control strategies, which were aimed at keeping intact its
two cornerstones: i) a gain-based adaptation scheme to react
to channel capacity drops; and ii) a probe cycle algorithm
to explore higher channel bandwidth limits. We based our
re-implementation of BBR on its implementations at the
transport layer for ns-3 [16], [30], and on its adaptations for
the application layer [29].

1) DERIVATION OF BBR’s PARAMETERS FROM C3G’s
1. We replaced TCP’s RTT by RTVL(t), which is meant to be

analogous to RTT , only ‘‘frame-wise’’ (i.e., at the appli-
cation level), instead of ‘‘packet-wise’’. We thus defined
BBR’s RTprop as the minimum value of all RTVL(t)
samples in a time window w (we used w = 2 1t).

2. We obtained BBR’s BtlBW from µ(t), which represents
a valid estimation of cbtl(t) in the case of congestion,
as explained at the very end of Subsection III-C.

3. We estimated the amount of unacknowledged sent bits as
inflight = (λ(t)− µ(t)) w′ (we used w′ = 1 s).

2) IMPLEMENTATION OF BBR NETWORK ADAPTATION
STRATEGY
BBR follows a gain-based strategy for rate control with two
phases, Startup and ProbeBW, which apply different strate-
gies to derive increasing/decreasing data rate gains. Figure 7
shows the scheme of these two phases as implemented in
our test platform, following the guidelines of [29]. In BBR’s
original implementation, these gains modify the channel
bandwidth estimation BtlBw, which ultimately modifies the
transmission rate. With the same spirit, in our implementa-
tion, these gains are applied directly to the target encoding
bitrate λ(t).

78890 VOLUME 7, 2019



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

FIGURE 7. Scheme of the BBR algorithm for the adaptation to the
network channel capacity implemented in PlayGiga’s CG platform.
[NB: i represents an iteration of the algorithm.]

1. Startup: In this initial phase, the bitrate is iteratively
doubled (x2 gain). In each iteration, congestion is
checked and, if detected, the bitrate is halved (x0.5) to
allow the bottleneck queue to drain. After bitrate reduc-
tion, or when the bitrate reaches a predefined upper limit
called ‘‘plateau’’, BBR moves to the ProbeBW phase.

2. ProbeBW: In this phase, BBR uses an approach called
‘‘gain cycling’’ to reach a higher throughput: the bitrate is
moderately (x1.25) and, whenever congestion is detected,
reduced (x0.75) and then stabilized (x1) for six iterations.

Note that BBR also includes an additional phase,
the ProbeRTT cycle, which is invoked if RTprop has not
decreased in the last ten seconds. In that phase, BBR reduces
CWND to a minimum value (four packets) to estimate
RTprop. This strategy is not valid in a CG application,
since reducing the bitrate to a minimum necessarily results
in either a degradation of video quality or an increase of
RTVL beyond acceptable QoE limits. Therefore, in our BBR
re-implementation we omitted the ProbeRTT phase.

B. DESCRIPTION OF THE TEST BENCHMARK
PlayGiga’s end-to-end CG platform, that we used for our
experimental tests, is depicted in Figure 8 and described
below.

1. Server: its video encoder ran on an AMD RadeonTM RX
480 GPU and generated a 720p@30fps video bitstream
compressed according to the AVC/H.264 standard. In all
tests, we used a peak-constrained bitrate control, with a
moderate range of QP (Quantization Parameter) values,
namely [22, 40], to generate a stable bitrate output λ(t) by
acting on v(t), as described in Subsection V-C.

2. Network: the client was nine WAN hops (and ∼30 km)
away from the server. In its local network, a separate
PC implemented the TBF (Token Bucket Filter) within
the traffic control queueing disciplines [31], acting as a
limiter for the channel capacity. The TBF simulated a
configurable bandwidth limitation cbtl(t) and the typical
queuing delay of 100 ms [12], [29]. [NB: this implies that
packets with a delay over 100 ms are discarded.] To avoid
interference from other connections in the results, only
the incoming traffic from the game server was shaped by
the TBF.

3. Client: it was implemented on a PC equipped with an Intel
Core i7-6500U@2.5-3.1GHz CPU with 16 GB of RAM,
and an integrated Intel HD Graphics 520 GPU.

4. Video content: all tests were performed using the game
‘‘Sonic & All-Starts Racing Transformed’’, and the same
‘‘race’’ and game stage, for the sake of fair comparison.
This game is very demanding for the video encoder given
its high-frequency textures and fast motion (see Figure 9).
The encoder was therefore able to produce a high range of
bitrate values as commanded by C3G.

C. C3G’s REACTIVE PERFORMANCE
We compare the performance of C3G and BBR in the case
of network congestion. The adaptation procedures to con-
gestion of both methods are described in Subsections IV-A
and VI-A. In our tests, the channel suffers a ‘‘step-shaped
bandwidth drop’’ because its capacity is instantly reduced
from an initial value, cbtl,init, to a limited one, cbtl,lim. This
same method has been used in previous works to test the
resilience of channel-adaptive techniques for interactive real-
time applications [32]. To characterize the resilience of C3G
and BBR to such channel capacity drops, we measured three
QoS parameters:

1. AP (Adaptation Period): the lapse of time, after the chan-
nel capacity drop, during which RTVL(t) exceeds the
100 ms playabilty threshold.

2. RTVLpeak: the maximum RTVL(t) value during AP.
3. LAP: the number of frames suffering losses during AP.

In our tests, we used a fixed set of values for cbtl,lim, namely
{5, 7, 9} Mb/s, and an initial capacity cbtl,init proportional to
cbtl,lim: cbtl,init = αc cbtl,lim. To cover a wide enough range
of capacity drops, for each value of cbtl,lim, we tested αc ∈
{1.25, 1.5, 1.75, 2, 2.5}, and tried four times each (cbtl,lim, αc)
combination, for a total of sixty network congestion tests.

Figure 10 shows the results of this test set. All results are
given with respect to the ratio of channel capacity reduction
αc, and for different values of cbtl,lim. [NB: in practice, the ini-
tial channel capacity was defined by an initial target encoder
bitrate vinit = αc cbtl,lim; as the output bitrate λinit does not
exactly match vinit, αc values in Figure 10 slightly deviate
from the set {1.25, 1.5, 1.75, 2, 2.5}, but this does not affect
our conclusions on the results.]

In addition, Figure 11 shows an example of the evolution
in time of the bitrates and QoS parameters for one specific
test case, that illustrates the behavior of each method.

The results for the three QoS parameters in Figure 10 show
that C3G outperforms BBR in terms of resiliency to network
congestion, as we explain in the rest of this Subsection,
by analyzing its three sub-Figures one by one. Note that there
seems to be no dependence on cbtl,lim of either of these three
parameters, for either BBR or C3G.
Figure 10a shows that BBR’s AP values are consistently

higher than C3G’s, for all values of αc and cbtl,lim. C3G’s
APs are between 0.4 and 0.8 seconds, while most of BBR’s
exceed 1 s, even for moderate capacity drops (αc < 2).

VOLUME 7, 2019 78891



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

FIGURE 8. Block scheme of our test CG platform, whose server has a game engine, a video encoder and a rate-control module, and whose
client includes a video decoder and a TBF (Token Bucket Filter) to shape the incoming data rate.

FIGURE 9. Screen captures of the ‘‘Sonic & All-Starts Racing Transformed’’
game that was used for the experimental tests.

This difference in AP lengths is illustrated by the RTVL(t)
graphs in Figures 11b and 11d. Furthermore, BBR’s AP
values are more variable and frequently over 2 s throughout
all the range of tested values for αc. Long APs have a highly
negative impact on the QoE, as they are (by definition) long
periods during which the end-to-end latency exceeds the
playability threshold, and, besides, they increase the proba-
bility of incurring packet losses (see Figure 3).
In particular for C3G, and less so for BBR, there is a

moderate correlation between AP and αc. This stems from
the fact that qdData(t), i.e., the amount of data to be drained,
which is measured instantly after the channel capacity drop,
is proportional to cbtl,init − cbtl,lim, which increases with αc.
C3G achieves lower AP values thanks to its quicker adap-
tation to congestion by means of the draining mechanism
described in Subsection IV-A, which derives λdrain and Tdrain
from an estimate of qdData(t). Instead, BBR’s fixed bitrate

reduction ratios (x0.75 or x0.5) result in longer APs when
there is a lot of queued data, as several iterations are needed.

Figure 10b shows RTVLpeak values for both algorithms,
which are comparable and highly correlated with αc. The lack
of apparent correlation betweenRTVLpeak and cbtl,lim could be
explained by how the congestion control mechanisms react
to a sudden channel capacity drop: RTVLpeak is reached very
shortly after the drop, when the draining procedure has not
yet started; as a consequence, RTVLpeak solely depends on the
channel capacity reduction ratio, and this for both rate control
algorithms. The RTVL(t) graphs in Figures 11b and 11d
(for BBR and C3G respectively) show that RTVLpeak reaches
∼350 ms, which corresponds to the RTVLmax value of the
system, as described in Subsection V-B.

Figure 10c illustrates howC3GoutperformsBBR aswell in
terms of LAP, since the number of lossy frames is consistently
higher for BBR for all values of αc > 1.75 (for lower
channel capacity drops, i.e., below∼42%, there are simply no
losses). C3G manages to keep LAP below ten frames always,
but BBR exceeds this value for moderate αc values, and
reaches LAP > 20 for quite a few experiments. While for
both algorithms LAP increases with αc, this tendency is much
slower for C3G, again due to its faster adaptation to network
congestion (BBR’s longer draining periods are more likely to
cause bufferbloat, and therefore losses): see for example the
RTVL(t) and l(t) graphs in Figures 11b and 11d.

Finally, by considering Figures 10b and 10c together, it can
be seen that losses kick in when RTVL = RTVLmax: see
Subsection III-B. This condition is met for αc > 1.75, but
this is true both algorithms.

What does differentiate C3G from BBR is the draining
strategy, which in our case is adaptive, and based on an
estimate of qdData(t), as already mentioned in the anal-
ysis of AP and LAP. This allows C3G to have shorter
APs and fewer lossy frames, thus limiting much better
than BBR the negative impact of channel capacity drops
on QoE.

D. C3G’s PROACTIVE PERFORMANCE
We designed the next set of tests to analyze the performance
of C3G vs. BBR in re-adapting to the channel capacity cbtl,

78892 VOLUME 7, 2019



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

FIGURE 10. Performance results of BBR vs. C3G in the reactive bitrate
decrease tests, for different αc and cbtl,lim values. (a) AP (Adaptation
Period). (b) RTVLpeak: Maximum RTVL(t) during AP. (c) LAP: Number of
lossy frames during AP.

either after a bitrate decrease due to congestion, or because
cbtl has increased. The adaptation strategies of both methods
are the ones described in Sections IV-B and VI-A.

We carried out two different tests, with the same fifteen
(cbtl,lim, αc) combinations described in the previous Subsec-
tion (cbtl,lim ∈ {5, 7, 9} Mb/s; αc ∈ {1.25, 1.5, 1.75, 2, 2.5}),
in two different channel conditions:

1. Channel capacity stability period: we evaluated BBR and
C3G in terms of effective channel use and QoS metrics
during 60 s at cbtl,lim.

2. Channel capacity increase: we measured the time it took
each algorithm to adapt to the new channel capacity, which
had increased from cbtl,lim to cbtl,init.

Figure 11 shows an example of these tests for both algo-
rithms. Note that the graphs of Figure 11 also include, in their
left-most part, an initial channel capacity drop phase already
analyzed in the previous Subsection.

The effective channel use and QoS results of the stability
test are captured in Table 1, where both algorithms have been
compared in terms of:

1. Effective channel use (%): average and standard deviation
values of λ(t)/cbtl(t).

2. RTVL{avg,peak} (ms): RTVL(t) average and maximum
values.

3. Lrate (fps): number of lossy frames per second.
4. Rrate (kb/s): amount of retransmitted data per second.

These measures have been computed over a time window
which starts at the end of the AP and ends when the channel
capacity stability period does, as shown in Figure 11. Again,
C3G outperforms BBR for all measures.
Regarding effective channel use, C3G’s is 2.7–6.3% higher

than BBR’s, thanks to its smoother bitrate increase strategy.
An example of the evolution of λ(t) for both algorithms
is depicted in Figures 11a and 11c. BBR’s gain cycling
and memoryless bitrate increase strategy produces too much
oscillation in λ(t), which repeatedly exceeds cbtl,lim, which
causes congestion detections (as indicated in the graph),
which in turn calls for new λ(t) decrease and increase
cycles. Instead, C3G keeps a history of states from previously
explored bitrates (see Subsection IV-B), which helps mini-
mize the probability of exceeding cbtl,lim, while still making
an efficient use of the channel capacity. Furthermore, in the
limited cases where λ(t) does exceed cbtl,lim, C3G’s reactive
bitrate decrease strategy (see Subsection IV-A) manages to
drain the congestion without incurring heavy losses.

Besides using the channel capacity more efficiently, C3G
provides even more important advantages for the QoE in CG
applications, since it considerably reduces the RTVL{avg,peak}
and {L,R}rate values, and yields zero lossy frames in all tests.
Instead, BBR’s recurrent excess of λ(t) increases the latency,
as well as the retransmission requests and lossy frames.

Table 2 presents the results of the channel capacity increase
test. Both algorithms are compared in terms of the EP (Explo-
ration Period), which is the time used to recover λ(t) =
cbtl,init from λ(t) = cbtl,lim. The results show that C3G’s
EP values are higher than BBR’s, but this is because C3G’s
design prioritizes good performance on key QoS metrics for
CG applications (minimal losses followed by low latency)

VOLUME 7, 2019 78893



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

FIGURE 11. Example of the behavior of BBR vs. C3G in the three test cases. From left to right: Sudden channel capacity drop from
cbtl,init = 14 Mb/s to cbtl,lim = 7 Mb/s, stable period of 60 s, and channel capacity recovery from cbtl,lim to cbtl,init. (a) BBR’s bitrate
metrics: λ(t), µ(t), v (t), congestion(t). (b) BBR’s QoS metrics: RTVL(t), r (t), l (t). (c) C3G’s bitrate metrics: λ(t), µ(t), v (t), congestion(t).
(d) C3G’s QoS metrics: RTVL(t), r (t), l (t).

78894 VOLUME 7, 2019



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

TABLE 1. Effective channel use and QoS results for the channel capacity stability test. The results for each value of cbtl,lim have been averaged over all
tests (different values of αc).

TABLE 2. Average EP by algorithm.

over fast bitrate increase when channel conditions improve.
C3G’s bitrate increase strategy described in Section IV-B
generates a ‘‘cold’’ start that accelerates if no congestion is
detected (see Figure 11c). Instead, BBR’s ‘‘greedy’’ bitrate
increase strategy is faster (see Figure 11a). This is the only
arguable advantage of BBR over C3G, but in a CG application
it hardly compensates for all its flaws discussed above.

VII. CONCLUSIONS
We have presented our C3G algorithm, designed to help a
UDP-based CG platform suffer minimal packet losses and
keep latency within playability limits, even in the presence
of severe downstream channel capacity drops. The strategy
of our algorithm is twofold, since it does not only react when
the channel capacity decreases, but also seeks proactively to
use it as efficiently as possible when it increases.

Our network congestion model is inspired by that of
Google’s BBR, which uses TCP’s RTT parameter to detect
congestion. We propose a novel round-trip latency measure,
RTVL, defined at the application layer and better suited than
RTT, which is defined at the transport layer, to drive rate
control decisions in real-time video streaming applications
such as CG. RTVL proves to be a much better congestion
predictor than losses, which typically occur when it is already
too late to react. When C3G detects congestion, unlike BBR,
it decreases the target bitrate of the video encoder in an
amount and during a drain period that both depend on the
new estimated channel capacity. On the contrary, in rea-
sonably stable network conditions, it proactively explores
for higher acceptable downstream bitrates, and gradually
builds a network state dictionary to characterize the channel
capacity behavior. Both these reactive decreases and proac-
tive increases of the server-sent bitrate may happen within
a given game session, and without breaking the playability
limits.

Indeed, the experimental results show how C3G is clearly
better suited than BBR to the CG context, since it manages

to completely avoid losses for sudden downstream chan-
nel capacity drops of up to ∼42%, and to keep RTVL
below 100 ms, while continuously exploring for higher target
bitrates, thus achieving an effective use of 93–96% of the
available channel capacity.

Nevertheless, we already foresee some desirable improve-
ments to our C3G algorithm. For instance, it would be desir-
able to better align the λ(t) and µ(t) time windows to achieve
a better characterization of the network state. This could
help us take more accurate decisions in the early stages of
the congestion process, and reduce the exploration times,
thus allowing us to be more greedy when increasing the
target bitrate. Another avenue for improvement may be the
use of other encoding parameters along with the final tar-
get video encoding bitrate. This could help C3G produce
smoother target bitrate transitions in its reactive phase, and
have a deeper control over bitrate bursts during its proactive
phase.

ACKNOWLEDGMENT
The authors would like to thank PlayGiga for their sup-
port during the design and development of our C3G algo-
rithm, and for collaborating with us during its tests on
their CG platform [28]. P. Carballeira was with the Grupo
de Tratamiento de Imágenes, Universidad Politécnica de
Madrid, 28040 Madrid, Spain.

REFERENCES
[1] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, ‘‘An evaluation

of QoE in cloud gaming based on subjective tests,’’ in Proc. 5th IEEE
Int. Conf. Innov. Mobile Internet Services Ubiquitous Comput. (IMIS),
Jun./Jul. 2011, pp. 330–335.

[2] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, ‘‘Gaming in the
clouds: QoE and the users’ perspective,’’ Math. Comput. Model., vol. 57,
pp. 2883–2894, Dec. 2013.

[3] State of the Internet Connectivity Reports, Akamai, Cambridge, MA, USA,
2017.

[4] J. Gettys, ‘‘Bufferbloat: Dark buffers in the Internet,’’ ACM Queue-
Virtualization, vol. 9, pp. 40–54, Nov. 2011.

[5] Z.-Y. Wen and H.-F. Hsiao, ‘‘QoE-driven performance analysis of cloud
gaming services,’’ in Proc. 16th IEEE Int. Workshop MultiMedia Signal
Process. (MMSP), Sep. 2014, pp. 22–24.

[6] M. Claypool and K. Claypool, ‘‘Latency can kill: Precision and deadline in
online games,’’ in Proc. 1st Ann. ACM SIGMM Conf. Multimedia Systems
(MMSys), Feb. 2010, pp. 215–222.

[7] K. Raaen, R. Eg, and C. Griwodz, ‘‘Can gamers detect cloud delay?’’
in Proc. 13th Annu. Workshop Netw. Syst. Support Games (NetGames),
Dec. 2014, pp. 1–3.

VOLUME 7, 2019 78895



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

[8] V. Clincy and B. Wilgor, ‘‘Subjective evaluation of latency and packet loss
in a cloud-based game,’’ in Proc. 10th IEEE Int. Conf. Inf. Technol., New
Gener. (ITNG), Apr. 2013, pp. 473–476.

[9] M. Claypool and D. Finkel, ‘‘The effects of latency on player performance
in cloud-based games,’’ in Proc. 13th Annu. Workshop Netw. Syst. Support
Games (NetGames), Dec. 2014, pp. 1–6.

[10] A. Sackl, R. Schatz, T. Hossfeld, F. Metzger, D. Lister, and
R. Irmer, ‘‘QoE management made uneasy: The case of cloud gaming,’’
in Proc. IEEE Int. Conf. Commun. Workshops (ICC), May 2016,
pp. 492–497.

[11] W. Cai, R. Shea, C.-Y. Huang, K.-T. Chen, J. Liu, V. C. Leung, and
C.-H. Hsu, ‘‘A survey on cloud gaming: Future of computer games,’’ IEEE
Access, vol. 4, pp. 7605–7620, Aug. 2016.

[12] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
‘‘BBR: Congestion-based congestion control,’’ Netw. Congestion, vol. 14,
pp. 20–53, Dec. 2016.

[13] R. Stewart andC.Metz, ‘‘SCTP: New transport protocol for TCP/IP,’’ IEEE
Internet Comput., vol. 5, no. 6, pp. 64–69, Nov. 2001.

[14] E. Kohler, M. Handley, and S. Floyd, ‘‘Datagram congestion control pro-
tocol (DCCP),’’ Tech. Rep., 2006.

[15] C. Jin, D. X.Wei, S. H. Low, J. Bunn, H. D. Choe, J. C. Doylle, H. Newman,
S. Ravot, S. Singh, F. Paganini, G. Buhrmaster, L. Cottrell, O. Martin,
and W.-C. Feng, ‘‘FAST TCP: From theory to experiments,’’ IEEE Netw.,
vol. 19, no. 1, pp. 4–11, Jan. 2005.

[16] M. Claypool, J. W. Chung, and F. Li, ‘‘BBR’—An implementa-
tion of bottleneck bandwidth and round-trip time congestion control
for ns-3,’’ in Proc. 10th ACM Workshop ns-3 (WNS3), Jun. 2018,
pp. 1–8.

[17] T. Stockhammer, ‘‘Dynamic adaptive streaming over HTTP–: Standards
and design principles,’’ in Proc. 2nd Ann. ACM Conf. MultiMedia Syst.
(MMSys), Feb. 2011, pp. 133–144.

[18] M. Baldi and Y. Ofek, ‘‘End-to-end delay analysis of videoconferencing
over packet-switched networks,’’ IEEE/ACM Trans. Netw., vol. 8, no. 4,
pp. 479–492, Aug. 2000.

[19] S. Jarvinen, J.-P. Laulajainen, T. Sutinen, and S. Sallinen, ‘‘QoS-aware
real-time video encoding how to improve the user experience of a gaming-
on-demand service,’’ in Proc. 3rd IEEE Consum. Commun. Netw. Conf.
(CCNC), vol. 2, Jun. 2006, pp. 994–997.

[20] S. Wang and S. Dey, ‘‘Addressing response time and video quality in
remote server based Internet mobile gaming,’’ in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Apr. 2010, pp. 1–6.

[21] S.Wang and S. Dey, ‘‘Rendering adaptation to address communication and
computation constraints in cloud mobile gaming,’’ in Proc. IEEE Global
Telecommun. Conf. (GLOBECOM), Dec. 2010, pp. 1–6.

[22] S. Wang and S. Dey, ‘‘Modeling and characterizing user experience in
a cloud server based mobile gaming approach,’’ in Proc. IEEE Global
Telecommun. Conf. (GLOBECOM), Nov. 2009, pp. 1–7.

[23] H.-J. Hong, C.-F. Hsu, T.-H. Tsai, C.-Y. Huang, K.-T. Chen, and
C.-H. Hsu, ‘‘Enabling adaptive cloud gaming in an open-source cloud
gaming platform,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 25,
no. 12, pp. 2078–2091, Dec. 2015.

[24] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen, ‘‘GamingAny-
where: An open cloud gaming system,’’ in Proc. 4th ACM Int. Conf.
MultiMedia Syst. (MMSys), Feb./Mar. 2013, pp. 36–47.

[25] M. Li, M. Claypool, and R. Kinicki, ‘‘WBest: A bandwidth estimation tool
for IEEE 802.11 wireless networks,’’ in Proc. IEEE Conf. Local Comput.
Netw. (LCN), Oct. 2008, pp. 374–381.

[26] M. Gerla and L. Kleinrock, ‘‘Flow control: A comparative survey,’’ IEEE
Trans. Commun., vol. 28, no. 4, pp. 553–574, Apr. 1980.

[27] I. Slivar, L. Skorin-Kapov, and M. Suznjevic, ‘‘Cloud gaming QoE models
for deriving video encoding adaptation strategies,’’ in Proc. 7th ACM Int.
Conf. MultiMedia Syst. (MMSys), May 2016, p. 18.

[28] PlayGiga SL. PlayGiga: Next Generation Cloud Gaming. [Online]. Avail-
able: https://www.playgiga.com

[29] L. Wang, M. J. Suarez, and R. A. Domanico, ‘‘Adaptive bitrate streaming
in cloud gaming,’’ B.Sc. thesis, Worcester Polytech. Inst., Worcester, MA,
USA, 2017.

[30] V. Jain, V. Mittal, and M. P. Tahiliani, ‘‘Design and implementation of
TCP BBR in ns-3,’’ in Proc. 10th ACMWorkshop ns-3 (WNS3), Jun. 2018,
pp. 16–22.

[31] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout,
P. Schroeder, J. Spaans, and P. Larroy. (2004). Linux Advanced Routing
& Traffic Control. [Online]. Available: http://lartc.org/

[32] L. De Cicco, S. Mascolo, and V. Palmisano, ‘‘Skype video responsiveness
to bandwidth variations,’’ in Proc. 18th ACM Int. Workshop Network OS
Support Digit. Audio Video (NOSSDAV), May 2008, pp. 81–86.

ALBERTO ALÓS received the Ingeniero de
Telecomunicación degree (five-year engineering
program) from the Universidad de Granada, Spain,
in 2014. He is currently pursuing the Ph.D. degree
with Grupo de Tratamiento de Imágenes (Image
Processing Group), Universidad Politécnica de
Madrid, Spain.

He worked for a few years in telecom compa-
nies. Since 2017, he has been a Researcher with the
Grupo de Tratamiento de Imágenes (Image Pro-

cessing Group), Universidad Politécnica de Madrid. His research interests
include video coding and streaming with adaptive bitrate control.

FRANCISCO MORÁN received the Ingeniero de
Telecomunicación degree (six-year engineering
program) and the Doctor Ingeniero de Telecomu-
nicación (Ph.D.) degree in communications from
the Universidad Politécnica de Madrid (UPM),
Spain, in 1992 and 2001, respectively.

Since 1992, he has been a member of the Grupo
de Tratamiento de Imágenes (Image Processing
Group), UPM. Since 1997, he has been a member
of the Faculty of UPM, where he is currently an

Associate Professor of signal theory and communications. He has been
actively involved in European and Spanish research projects. Since 1996,
he has also participated in the International Standardization Activities of the
Moving Picture Experts Group (MPEG, formally ISO/IEC JTC 1/SC 29/WG
11), where he has been the Head of the Spanish Delegation, since 2006 and
has served as an Editor and a Co-Editor for several standards. His research
interests include modeling and coding of 3D objects and their adaptive
transmission, and rendering for mixed/augmented reality applications.

PABLO CARBALLEIRA received the Ingeniero de
Telecomunicación degree (five-year engineering
program) and the Doctor Ingeniero de Telecomu-
nicación (Ph.D.) degree in communications from
the Universidad Politécnica de Madrid (UPM),
Spain, in 2007 and 2014, respectively.

From 2008 to 2017, he was a member of
the Grupo de Tratamiento de Imágenes (Image
Processing Group), UPM. Since 2017, he has
been an Assistant Professor with the Universidad

Autónoma de Madrid, where he has also been a member of the Video
Processing and Understanding Laboratory. He has been actively involved in
European and Spanish research projects and in the International Standardiza-
tion Activities of Moving Picture Experts Group (MPEG, formally ISO/IEC
JTC 1/SC 29/WG 11) related to free-viewpoint and immersive 3D video.
His research interests include video coding, computer vision, and quality of
experience evaluation for immersive visual media, such as free-navigation
and lightfield video.

78896 VOLUME 7, 2019



A. Alós et al.: Congestion Control for CG Over UDP Based on RTVL

DANIEL BERJÓN received the Ingeniero de
Telecomunicación degree (five-year engineering
program) and the Doctor Ingeniero de Telecomu-
nicación (Ph.D.) degree in communications from
the Universidad Politécnica de Madrid (UPM),
Spain, in 2005 and 2016, respectively.

Since 2008, he has been a member of the Grupo
de Tratamiento de Imágenes (Image Processing
Group), UPM. He has been actively involved
in European and Spanish research projects. His

research interests include image processing, parallel processing, computer
graphics, and real-time systems.

NARCISO GARCÍA received the Ingeniero de
Telecomunicación degree (five-year engineering
program), with the Spanish National Graduation
Award, and the Doctor Ingeniero de Telecomuni-
cación (Ph.D.) degree in communications, with the
Doctoral Graduation Award, from the Universidad
Politécnica de Madrid (UPM), Spain, in 1976 and
1983, respectively.

Since 1977, he has been amember of the Faculty
of the UPM, where he is currently a Professor of

signal theory and communications. He leads the Grupo de Tratamiento de
Imágenes (Image Processing Group), UPM. He has been actively involved
in Spanish and European research projects, also serving as an Evaluator,
a Reviewer, an Auditor, and an Observer of several research and development
programs of the European Union. He was a Co-Writer of the EBU Proposal,
base of the ITU standard for digital transmission of TV at 34–45 Mb/s (ITU-
T J.81). He was an Area Coordinator of the Spanish Evaluation Agency
(ANEP), from 1990 to 1992, and the General Coordinator of the Spanish
Commission for the Evaluation of the Research Activity (CNEAI), from
2011 to 2014. He was the Vice-Rector for International Relations of the
UPM, from 2014 to 2016. His current research interests include digital video
compression, computer vision, and quality of experience.

Dr. García was a recipient of the Junior and Senior Research Awards of
the UPM, in 1987 and 1994, respectively.

VOLUME 7, 2019 78897


	INTRODUCTION
	STATE OF THE ART
	TRANSPORT LAYER POTENTIAL SOLUTIONS
	APPLICATION LAYER POTENTIAL SOLUTIONS

	CONGESTION MODEL
	BBR's CONGESTION MODEL AND ADAPTATION STRATEGY
	C3G's CONGESTION MODEL
	C3G's DISCRETE-TIME CONGESTION DETECTION ALGORITHM

	ADAPTATION STRATEGY
	REACTIVE BITRATE DECREASE
	PROACTIVE BITRATE INCREASE (EXPLORATION)

	IMPLEMENTATION DETAILS
	MISALIGNMENT OF THE SERVER AND CLIENT TIME WINDOWS
	PRESENTATION AND RETRANSMISSION TIMEOUTS
	SERVER-SENT VS. VIDEO ENCODER BITRATES

	EXPERIMENTAL RESULTS
	BBR's ADAPTATION TO PLAYGIGA's CG PLATFORM
	DERIVATION OF BBR's PARAMETERS FROM C3G's
	IMPLEMENTATION OF BBR NETWORK ADAPTATION STRATEGY

	DESCRIPTION OF THE TEST BENCHMARK
	C3G's REACTIVE PERFORMANCE
	C3G's PROACTIVE PERFORMANCE

	CONCLUSIONS
	REFERENCES
	Biographies
	ALBERTO ALÓS
	FRANCISCO MORÁN
	PABLO CARBALLEIRA
	DANIEL BERJÓN
	NARCISO GARCÍA


