
Universidad Autónoma de Madrid
Escuela Politécnica Superior / Facultad de Ciencias

Departamento de Ingenieŕıa Informática / Departamento de Matemáticas

SVR, General Noise Functions and Deep Learning.
General Noise Deep Models.

PhD’s thesis presented to apply for the
Phd in Informatics and Telecommunications Engineering

By
Jesús Prada Alonso

under the direction of
José R. Dorronsoro Ibero

Madrid, November 11, 2022

Contents

Contents ii

1 Introduction 1
1.1 Goal . 1
1.2 Machine Learning . 2
1.3 Deep Learning . 10
1.4 Big Data . 10
1.5 Deep Learning & Big Data. The Perfect Couple 12
1.6 Outline . 13

2 Theoretical Background 15
2.1 SVM for Classifcation . 15

2.1.1 Linear Separable Case. Hard Margin Classifcation 16
2.1.2 Linear Non-Separable Case. Soft Margin Classifcation 19
2.1.3 Non-Linear Non-Separable Case . 23

2.2 SVM for Regression, SVR . 25
2.2.1 ϵ-SVR . 25
2.2.2 L2-SVR . 30

2.3 General Noise SVR . 32
2.3.1 Primal and Dual Formulations . 32
2.3.2 Optimal Cost Function . 34
2.3.3 Loss Function and Dual Problem for Diferent Noise Distributions . 36

2.3.3.1 Laplace . 36
2.3.3.2 Gaussian . 39
2.3.3.3 SILF . 43

2.4 Constant Width Error Intervals for SVR . 46
2.4.1 Method . 47
2.4.2 Parameters and Error Intervals for Diferent Distributions 48

2.4.2.1 Zero mean Laplace . 48
2.4.2.2 Zero mean Gaussian . 49

2.5 NORMA Optimization . 50
2.6 Deep Learning . 53

2.6.1 DL Special Properties . 54
2.6.2 Backpropagation . 54
2.6.3 Activation Functions . 56
2.6.4 DL Recent Advances . 57

2.6.4.1 Adam Optimization . 58
2.6.4.2 Weight Initialization . 60
2.6.4.3 Rectifed Linear Unit, ReLU 63

iii

iv Contents

2.6.4.4 Computational Power and Data Volume 64
2.7 Clustering . 65

2.7.1 K-means . 66
2.7.2 K-prototypes . 68

3 General Noise Models 71
3.1 General Noise Models Trained Using NORMA 72

3.1.1 The Beta Loss . 72
3.1.2 The Weibull Loss . 73
3.1.3 General Noise Models Formulation 74

3.2 Deep SVR and Deep General Noise Models, D-GNM 77
3.2.1 Deep SVR . 77
3.2.2 Deep General Noise Models, D-GNM 79

3.3 Estimation of Loss Functions Parameters 81
3.3.1 Parameters for the Laplace Distribution 81
3.3.2 Parameters for the Gaussian Distribution 82
3.3.3 Parameters for the Beta Distribution 83
3.3.4 Parameters for the Weibull Distribution 84

3.4 Uncertainty Intervals . 87
3.4.1 Error Intervals for Diferent Distributions 88
3.4.2 Uncertainty Intervals by Clusters . 89

3.5 D-GNM with Uncertainty Intervals . 91

4 Experiments 95
4.1 Implementation Details . 96

4.1.1 Pre-existing Libraries . 96
4.1.2 Developed Libraries and Functions 97

4.2 Hyperparameter Selection . 97
4.2.1 Classical ϵ−SVR . 97
4.2.2 Kernel Gaussian Noise Models, Kernel-GNM 98
4.2.3 Deep ANN . 99
4.2.4 Deep General Noise Models, Deep-GNM 100
4.2.5 Uncertainty Intervals . 101

4.3 Datasets . 102
4.3.1 Artifcial Datasets . 102
4.3.2 Classical Datasets . 103
4.3.3 Solar Dataset . 103
4.3.4 Wind Dataset . 105

4.4 Evaluation Metrics . 106
4.4.1 Prediction Evaluation . 106
4.4.2 Uncertainty Intervals Evaluation . 107

4.5 Experiment I. Kernel-GNM Models . 107
4.5.1 Artifcial Datasets . 109
4.5.2 Classical Datasets . 111
4.5.3 Solar and Wind Contest Datasets . 112

4.6 Experiment II. Deep-GNM Models . 114
4.6.1 Artifcial Datasets . 116
4.6.2 Classical Datasets . 117
4.6.3 Solar and Wind Contest Datasets . 119

4.7 Experiment III. Deep-GNM Models with Uncertainty Intervals 121

v Contents

4.7.1 Artifcial Datasets . 123
4.7.2 Classical Datasets . 124
4.7.3 Solar and Wind Contest Datasets . 125

5 Conclusions and Further Work 129
5.1 Conclusions . 129
5.2 Further Work . 131

Appendices 133

A Appendix: Author’s Publications 135
A.1 Journals . 135
A.2 Conference Papers . 135
A.3 Other Publications with no Connection to Thesis 136

B Appendix: AMS solar contest dataset 137

Abstract

Machine learning, ML, is a branch of artifcial intelligence that allows to build systems
that learn to solve a task automatically from data, in the sense that they do not need to be
explicitly programmed with the rules or method to do it. ML encompasses diferent types
of problems; one of them, regression, involves predicting a numerical output and will be
the focus of this thesis.

Among ML models used for regression, Support Vector Machines, SVM, is one of the
main algorithms of choice and is usually called Support Vector Regression, SVR, when
applied to regression tasks. This type of models usually employs the ϵ-insensitive loss
function, which implies a particular assumption of noise distribution in the data, but gen-
eral noise cost functions have been recently proposed for SVR. These cost functions should
be more efective when applied to regression problems whose underlying noise distribution
follows the one assumed for that particular cost function. However, the use of these general
functions, with the disparity in mathematical properties like diferentiability that it implies,
makes the standard optimization method used in SVR, Sequential minimal optimization
or SMO, no longer a possibility.

Additionally, when working with large sample sizes, a common situation in the big data
era, Deep Learning or DL models are able to extract more complex and meaningful rela-
tionships from the data than other ML families of models, being this one of the fundamental
reasons to explain DL recent popularity.

Finally, although SVR models have been thoroughly studied, construction of error inter-
vals for them seems to have received less attention and remains an unsolved problem. This
is a signifcant handicap, as in many applications that involve solving a regression problem
not only an accurate prediction is useful but also a confdence interval can be extremely
valuable.

Taking all these factors into account, this thesis has four main goals: First, propose a
framework to train General Noise SVR Models using Naive Online R Minimization Algo-
rithm, NORMA, optimization. Second, give a method to build Deep General Noise Models
that combine the highly non-linear feature processing of DL models with the predictive
potential of using general noise loss functions, from which the ϵ-insensitive loss function
used in SVR is just a particular example. Third, describe a direct approach to build error
intervals for SVR or other regression models, based on the assumption of residuals follow-
ing some probability distribution. And fnally, unify the previous three goals in a single
and fnal model framework to train Deep General Noise Models for regression prediction
with confdence or error intervals.

For each one of these goals we will perform experiments, using both artifcial and real
datasets corresponding to the task of wind and solar energy prediction, to test the ef-
fectiveness of our proposals compared to standard SVM and DL models. Furthermore,
in accordance with the principle of reproducible research, we make the implementations
developed and the datasets employed in the experiments publicly and easily available.

Resumen

El aprendizaje automático, ML por sus siglas en inglés, es una rama de la inteligencia ar-
tifcial que permite construir sistemas que aprendan a resolver una tarea automáticamente
a partir de los datos, en el sentido de que no necesitan ser programados expĺıcitamente con
las reglas o el método para hacerlo. ML abarca diferentes tipos de problemas; Uno de ellos,
la regresión, implica predecir un resultado numérico y será el foco de atención de esta tesis.

Entre los modelos ML utilizados para la regresión, las máquinas de vectores soporte o
Support Vector Machines, SVM, son uno de los principales algoritmos de elección, habi-
tualmente llamado Support Vector Regression, SVR, cuando se aplica a tareas de regresión.
Este tipo de modelos generalmente emplea la función de pérdida ϵ−insensitive, lo que im-
plica asumir una distribución concreta en el ruido presente en los datos, pero recientemente
se han propuesto funciones de coste de ruido general para SVR. Estas funciones de coste
debeŕıan ser más efectivas cuando se aplican a problemas de regresión cuya distribución
de ruido subyacente sigue la asumida para esa función de coste particular. Sin embargo, el
uso de estas funciones generales, con la disparidad en las propiedades matemáticas como
la diferenciabilidad que implica, hace que el método de optimización estándar utilizado en
SVR, optimización mı́nima secuencial o SMO, ya no sea una posibilidad.

Además, posiblemente el principal inconveniente de los modelos SVR es que pueden sufrir
problemas de escalabilidad al trabajar con datos de gran tamaño, una situación común en
la era de los grandes datos. Por otro lado, los modelos de Aprendizaje Profundo o Deep
Learning, DL, pueden manejar grandes conjuntos de datos con mayor facilidad, siendo esta
una de las razones fundamentales para explicar su reciente popularidad.

Finalmente, aunque los modelos SVR se han estudiado a fondo, la construcción de inter-
valos de error para ellos parece haber recibido menos atención y sigue siendo un problema
sin resolver. Esta es una desventaja signifcativa, ya que en muchas aplicaciones que im-
plican resolver un problema de regresión no solo es util una predicci´´ on precisa, sino que
también un intervalo de confanza asociado a esta predicción puede ser extremadamente
valioso.

Teniendo en cuenta todos estos factores, esta tesis tiene cuatro objetivos principales:
Primero, proponer un marco para entrenar Modelos SVR de ruido general utilizando como
método de optimización Naive Online R Minimization Algorithm, NORMA. En segundo
lugar, proporcionar un método para construir modelos DL de ruido general que combinen
el procesamiento de caracteŕısticas altamente no lineales de los modelos DL con el potencial
predictivo de usar funciones de pérdida de ruido general, de las cuales la función de pérdida
ϵ−insensitive utilizada en SVR es solo un ejemplo particular. Tercero, describir un enfoque
directo para construir intervalos de error para SVR u otros modelos de regresión, basado
en asumir la hipótesis de que los residuos siguen una función de distribución concreta. Y
fnalmente, unifcar los tres objetivos anteriores en un marco de modelos único que permita
construir modelos profundos de ruido general para la predicción en problemas de regresión
con la posibilidad de obtener intervalos de confanza o intervalos de error asociados.

ii Contents

Para cada uno de estos objetivos realizaremos experimentos utilizando conjuntos de
datos artifciales y reales correspondientes a problemas de predicción de enerǵıa eólica y
solar, para probar la efectividad de nuestras propuestas en comparación con los modelos
estándar SVM y DL. Además, de acuerdo con el principio de investigación reproducible,
las implementaciones desarrolladas y los conjuntos de datos empleados en los experimentos
están pública y fácilmente disponibles.

Acknowledgements

With partial support from Spain’s grants TIN2016-76406-P and S2013/ICE-2845 CASI-
CAM-CM. Work partially supported also by project FACIL-Ayudas Fundación BBVA a
Equipos de Investigación Cient́ıfca 2016, and the UAM-ADIC Chair for Data Science and
Machine Learning. We also gratefully acknowledge the use of the facilities of Centro de
Computación Cient́ıfca (CCC) at UAM.

The research presented here would not have been possible without the support and
guidance of the members of the Machine Learning Group from UAM, with a special mention
to my tutor José, who helped me to fnd my path in the long, complex and often hard, but
extremely rewarding, life of a researcher during these almost 8 years.

I want to also thank my professors and, even more, my colleagues during my time at the
university, the Instituto de Ingenieŕıa del Conocimiento, IIC, and the Machine Learning
Group from UAM, who help to ignite the spark of curiosity and thirst for knowledge in me,
specially in this fascinating world of machine learning and big data. Professor Juan Luis
Vázquez and my colleagues Sara, Lucia and Luis are some of the most important names
here, but surely others have also played his part in what I am today. Special thanks to
David Diaz Vico, with whom I have shared research, papers, sufering, and really interesting
discussions.

Thanks to my family and to my mother in particular for their contribution to what I am
today, good and bad. I have enough self-esteem to congratulate myself for the efort and
skills required to get to this point, but not as much as to not realize that I am also here
because I was fortunate enough to be born in a place and time that made this possible,
and with a family by my side that made sacrifces so I could get to the university in the
frst place. I have promised myself not to forget that.

I must also express my gratitude to Miguel Bravo and Ana Sierra. I have always felt like
a mentor towards you but, at the end of the day, I am sure that I have learnt much more
from you than what I could teach you. Your motivation and desire to learn and improve
have been refreshing, and your curiosity challenging. They say that a good professor is the
one that ends surpassed by their students and, if that is true, I think I did not do it that
badly.

Marta Lopez Cortijo, the dancer girl, my personal psychologist. You have always been
there for me in the lowest moments, ready to cheer me up, make me smile and guide me
with your wise advices. I am not sure if you know how grateful I will always be for that.

Gabriel Maicas, Guevara, you were an inspiration for me during all these years. To know
frst-hand that fnishing the PhD. was possible and seeing that people as valuable as you,
not only in the academic regard but even more important in the personal and social aspect,
were part of that group made me aim to get there one day.

ii Contents

Maŕıa González, Amelie, I do not know if you will get to read this thank-you message
one day, but I felt you deserved it anyway. Perhaps you do not realize it, but you have
been one of the main factors to keep my motivation to fnish this PhD. alive. Your eternal
support, no matter the issue, gave me assurance, and the appreciation and admiration
towards me that I could see in your eyes gave me energy and made feel a better person,
better than what I probably am. I hope I was able to give you at least a tenth of the light
and magic you gave to me. Thanks for everything.

I want to also dedicate some special words to Carolina Espejo, Tequeña. In the past,
when I have discussed with other people my love for the Machine Learning world, often I
have felt that I am a little bit crazy, but your passion and dedication to your work have
made feel not alone regarding this feeling. Besides, and probably more important, your
constant support and trust has given me strength to endurance the difculties of living life
the way I do. Having a partner that shares this non-conformist style of life is priceless.
Please keep being the way you are.

Last but not least, extra special thanks to Yvonne, Pheebs, my closest companion during
all these years. We have lived so many moments together, good and bad, that I just cannot
imagine what my life would have been or would be without you. Nevertheless, of one thing
I am certain, life would have been duller and greyer. I am a completely diferent person
from where this journey began and many people have had an impact on molding what I
am today, but surely you have been the main shaper of my personality, the one from whom
I have learnt more things and the one that made me grow more as a person. Hopefully it
would remain the same in the future. You have made me a better person, and I cannot
think of something more valuable than that.

Chapter 1

Introduction

Begin at the beginning, and go on till
you come to the end: then stop.

Lewis Carroll, Alice in Wonderland

Building computer systems to solve, by themselves or by assisting an expert, human
problems has been a vital task in many studies and applications, both academic and
corporate, for many years.

Initially this type of tasks were tackled by expert systems, computer systems that
emulate the decision-making ability of a human expert [1]. The frst ones appeared in
the 1970s and clearly dominated the feld of artifcial intelligence during the 1980s. In
these systems, the decision-making algorithm is explicitly coded, primarily as a sequence
of if-then rules. The Lisp family of programming languages were very popular to build this
kind of systems.

In contrast to expert systems, Machine Learning, ML [2], techniques try to infer from
the data the best algorithm to model the problem and give a solution to it, whether it is
a division into clusters, a classifcation into previously specifed groups, the prediction of a
real number, or creating an artifcial player for games like chess or Go. In ML the depen-
dence on and need of expert knowledge is lessened, specially when using Deep Learning,
DL, frameworks, although not completely removed. Furthermore, more general and less
ad hoc applications can be built using ML models.

These and others advantages have made Machine Learning a very popular tool nowa-
days and one that has been widely studied and used in a variety of problems in recent
years. Its popularity has been strengthened by the coming of the so-called Big Data era,
as well as by the great increase in computational power and recent research in the Deep
Learning feld.

We will start this chapter with a brief description of the goal of this thesis in Section 1.1.
Then, we will describe the basic concepts of the three technologies mentioned earlier and
used here to achieve this goal: Machine Learning in general in Section 1.2, Deep Learning in
Section 1.3, and Big Data in Section 1.4. Section 1.5 discusses how well Machine Learning,
specially Deep Learning models, combine with Big Data technologies. Finally, Section 1.6
presents the structure for the rest of the thesis.

1.1 Goal

This thesis has fve main goals:

1

2 Chapter 1. Introduction

1. Design a framework to train kernel-based General Noise Models using the Naive
Online R Minimization Algorithm, NORMA, to solve supervised regression problems.

2. Propose a method to build Deep General Noise Models that combine the highly
non-linear feature processing of Deep Learning models with the predictive potential
achieved in the previous step due to the use of general noise loss functions.

3. Design a direct approach to build error intervals for SVR or other regression models,
based on the assumption of the residuals following some probability distribution.
This way, we will be able to not only give a prediction for our supervised regression
problem, but to also provide a confdence interval.

4. Finally, we want to unify the previous three goals in a single and fnal model frame-
work to train Deep General Noise Models for regression prediction with confdence
or error intervals.

5. Furthermore, in accordance with the principle of reproducible research, we want to
make the implementations developed and the datasets employed in the experiments
publicly and easily available.

For each one of these goals we will perform experiments using both artifcial and real
datasets corresponding to the task of wind and solar energy prediction, to test the efec-
tiveness of our proposals compared to standard SVM and DL models. These problems have
been selected from our previous experience on the topic and because they are tasks were
previous research has shown to follow specifc noise distributions. However, we strongly
believe that our proposed framework can adapt to any type of regression problems.

1.2 Machine Learning

Machine learning is a branch of Artifcal Intelligence that aims to build computer systems
that automatically learn from data how to solve a task. From this basic and brief defnition,
it is important to notice two signifcant aspects:

‹ ML is a branch of Artifcial Intelligence. Frequently these two terms are confused
or treated as independent felds. The most accepted defnition is that ML tools are
just a subset of a bigger toolbox called Artifcial Intelligence, which comprises other
felds like expert systems and part of robotics.

‹ ML automatically learns from data. Automatically not in a strict sense, as someone
still has to code an implementation of the ML method to apply in order to train the
model, but in the sense of ML models not needing to be explicitly programmed with
the rules or methods to solve the task at hand. The algorithm used to tackle the
problem will be built automatically from the data used to train the ML model.

In [2], the following formal defnition of learning is given:

Defnition 1. A machine learns with respect to a particular task T, performance metric
P, and type of experience E, if the system reliably improves its performance P at task T,
following experience E.

3 1.2. Machine Learning

For instance, using wind energy prediction as an example, we would have:

‹ T: Wind energy production forecast using weather information.

‹ E: Past data of weather and energy production.

‹ P: A particular metric, such as the mean absolute error, MAE, or the mean squared
error, MSE, defned as

NX1
MAE = |f̂(Xi) − yi| (1.2.1)

N
i=1

N

MSE =
1 X

(f̂(Xi) − yi)2 , (1.2.2)
N

i=1

where {Xi}N = {(xi1, xi2, ..., xid)T }iN
=1, is the weather information used as inputi=1

data, f̂(X) is the forecast outputted by the Machine Learning model given input X,
{yi}N is the real wind energy production or target, N is the number of instances ori=1
samples and d is the number of variables, or dimensions, in the data.

The feld of Machine Learning encompasses a wide variety of problems. Some examples
are:

‹ Forecasting of wind, solar or other type of energy production in diferent geographic
areas learning from past productions and numerical weather predictions.

‹ Use of historical medical records to learn which people could sufer from some par-
ticular disease or which treatments are optimal for a particular patient.

‹ Design of autonomous vehicles that learn to navigate and interact with other vehicles
from their own experience.

‹ Recommender systems to automatically customize marketing actions of a company
to their users’ interests using their information and past interactions.

‹ Prediction of sporting events outcome using past results, statistics and information
from other sources such as social networks like Twitter.

In [3] and [4], ML tasks are divided into three main groups:

1. Supervised Learning: In supervised learning problems, you have available a labeled
training dataset. These labels are the goal, or target, you want your ML model to be
able to predict. Depending on the nature of these labels supervised learning can be
divided, in turn, into two subgroups:

(a) Classifcation: Labels are categorical, representing the belonging of a partic-
ular instance to a specifc class. 0 and 1 are standard labels for a 2-class or
binary classifcation problem, but classifcation over more than 2 classes is also
perfectly doable.

4 Chapter 1. Introduction

(b) Regression: Here the target is a numeric label in the form of a real number
indicating a particular property of each instance, like the price of an item in a
shop.

In both cases, the principles of the Machine Learning cycle are the same, but algo-
rithms, evaluation metrics and objective functions used are diferent for each type
of problem. In supervised learning, the data available is normally split into three
diferent datasets, each one with a specifc purpose:

(a) Train: Dataset used to build, or train, the model. Parameters of the model are
chosed to minimize a particular objective function for this training set.

(b) Validation: Each family of ML models encompasses infnite diferent models
in itself. This is due to the fact that each family of models is linked to a set
of confguration parameters, usually called hyperparameters. The validation set
is used to select the best hyperparameters for the ML model in hand. Hyper-
parameters selected as optimal are the ones that minimize a chosen evaluation
metric over the entire validation data.

(c) Test: The model built from this training and validation process is then used to
predict the class or value of new instances belonging to a labeled test dataset.
Prediction errors resulting from this process, obtained by the same evaluation
metric used in the validation step, are used as a measure of the expected model
accuracy when put into production in real life to give predictions for new unla-
beled data.

There is no golden rule to decide the ratio of data set aside for training, validation
and test purposes, as the optimal value is strongly problem-dependent as it is often
the case in the ML feld. Nevertheless, a standard recommendation to select these
splitting percentages is 70/15/15.

It is important to remark that frequently a fxed validation dataset is not employed
and, instead, a technique called cross-validation, CV, [5] is applied to fnd the
optimal hyperparameters of a ML family of models, following the schema shown in
Figure 1.2.1. When this method is used, the training dataset is divided into k subsets,
then the model is trained using k − 1 of these subsets and the remaining one is used
as validation set. This process is repeated k times until all subsets have performed
the role of validation set. The errors coming out of these k iterations, after applying
the selected evaluation metric, are then averaged and used as validation error. The
hyperparameters chosen are the ones that minimize this validation error, as was the
case when using a fxed validation set.

One of the key factors in supervised learning models is the bias-variance tradeof:

(a) Bias: When a model has high bias it remains mainly unafected by changes in
the input data, leading to what is called underftting. This phenomenon can be
detected when a high training error occurs, as this is pointing to a ML model
that is not adapting or learning from the train dataset.

5 1.2. Machine Learning

Figure 1.2.1: Cross-validation schema.

(b) Variance: High variance leads to a model that adjusts too much to the vari-
ations in the training set and thus is not able to generalize well to new data.
This situation is often called overftting and its existence can be assumed when
the test error is much bigger than the train error and this behavior is not logical
taking into account the nature of both datasets.

To deal with these phenomena, normally a regularization or penalty term is added
to the usual error measure, or loss function, to form the fnal objective function that
will be minimized to build the model. One example is ridge regression [6], a model
that has as objective function

N
1 X

(XT λ
β + β0 − yi)2 + ||β||2 , (1.2.3)iN 2

i=1

where f̂(Xi) = XT β +β0 is the output of the model, β0 is a constant called the inter-i
cept or bias of the model and β = (β1, β2, ..., βd)T are the parameters or coefcients
of the model.

This ridge regression objective function is a combination of two terms:

(a) Loss function: The error measure we want to minimize while training thePN1model. In this case the mean squared prediction error: (XT β + β0 − yi)2
N i=1 i

(b) Regularization term: Controls the bias-variance tradeof and therefore avoids
underftting and overftting phenomena. In this case there is a quadratic penalty

λ over the model parameters: ||β||2
2

2. Unsupervised Learning: In these problems there are no labels and thus the pur-
pose is not to train a model to be able to predict these labels for future examples, as
it was the case in the supervised learning approach. Here the goal is to fnd hidden
structure in this unlabeled data, existing three main types of problems:

6 Chapter 1. Introduction

(a) Clustering: Divide data into diferent groups, with instances in the same
cluster being more similar among themselves than to instances in other clusters.

(b) Recommender Systems: Give content recommendations to users of a partic-
ular application taking into account their past interaction: purchases, reviews,
etc.

(c) Dimensionality Reduction: Reduce the number of variables or columns in
a dataset. This can be done to decrease computational costs, get a new dataset
with more relevant variables, carry on visualizations, etc.

In this type of tasks there is no error metric to evaluate a potential solution. Some-
times, unsupervised learning techniques are employed prior to applying supervised
learning models as an additional data pre-processing step. In this case, goodness of
unsupervised learning methods can be measured by their impact on the accuracy of
the subsequent supervised learning model.

3. Reinforcement Learning: In this type of tasks the concern is the problem of fnd-
ing suitable actions to take in a given situation in order to maximize a reward. Here
the learning model is not given labels of optimal outputs, in contrast to supervised
learning tasks, but must instead discover them using an iterative process of trial and
error. Usually, there is a sequence of states and actions in which the model is inter-
acting with its environment, and frequently the current action not only has an impact
on the immediate reward but also afects the reward at all subsequent time steps.
Only at the end of this process the reward signal, positive or negative, is received.

The exploration-exploitation trade-of between exploration, in which the system
tries out new actions to see how efective they are, and exploitation, in which actions
that are known to yield a high reward are applied, is vital in these learning algorithms.

This thesis focuses its attention on supervised learning problems, although some unsu-
pervised learning techniques like clustering are applied as a preprocessing step. Usually,
the design of a supervised learning system entails an iterative cycle composed of diferent
steps, where several of them are carried out again in each iteration. Figure 1.2.2 summa-
rizes the general workfow in a Machine Learning project. Although diferent divisions of
this process into steps have been described, normally there are four main stages:

1. Data Collection: Consists in gathering the data needed to train, validate and test
the model. It is important to remark that this step should start as soon as possible,
because normally several months of data collection are needed before we can advance
to the next step. Sometimes it is a very costly stage, so a tradeof between the
volume of data collected and the cost of this gathering process must be made. It
is also important to keep in mind the complexity of the problem and of the model
chosen to decide when we have an adequately large amount of data for a particular
problem.

2. Data Preprocessing: This stage involves several steps that allow to transform our
original raw dataset into a fnal dataset with more analytical potential, so our ML
model can extract the maximum information possible from the available data. Even
if not as popular and headline-catching as other stages like modelization itself, this

7 1.2. Machine Learning

Figure 1.2.2: Design cycle for supervised learning systems.

is a critical step and frequently consumes most of the time spent by a team on this
type of projects.

Some examples of pre-processing steps, although there a lot more, are the following
ones:

‹ Feature choice: There are two diferent methods to carry out feature choice.
Feature selection picks a subset of the original features and discards the rest,
while feature extraction generates derived variables from the original ones.
Dimensionality reduction techniques, like Principal Component Analysis or PCA,
where the features extracted are intended to be informative and non redundant,
can be applied to improve the accuracy of the ML model, reducing the risk of
overftting, although for complex models with a regularization term this is not
really necessary and feature choice is done implicitly by the model. In addition,
dimensionality reduction can also provide a signifcant decrease in computa-
tional cost, which is vital to many real-world ML systems, particularly for those
that need to be able to give a real time response such as fraud detection in
banking systems.

‹ Scaling: Most ML models are sensitive to the magnitude of the input variables,
so it is common that variables with bigger values have a stronger impact in the
model learning than other variables. To avoid this problem, some method of
scaling should be applied before passing the data to the model. One standard
choice of scaling method is to scale all input features to 0 mean and standard
deviation equal to 1.

‹ Fill missing values: Although there are some exceptions, like Random Forests
[7], generally ML models do not accept missing values in the input data. In order
to solve this drawback, a method to fll missing values must be chosen. There is a
comprehensive list of methods to perform this task, with bootstaping combined
with Expected Maximization [8] or the use of simpler versions of ML models to
predict the missing data being popular choices.

8 Chapter 1. Introduction

3. Modelization: This stage implies in frst place the selection of a set of families of
ML models and hyperparameters for each of these families. There is a wide variety of
ML models for supervised learning problems, ranging from a simple linear regression
to deep learning techniques.

The optimal model for a particular problem depends on factors as the nature of the
problem and its complexity, the data available and its dimensions and the presence
of noise in the data. These factors must be taken into account when choosing the
model to use and the common mistake of choosing a particular model for some
personal preference and not for being the most suitable for the task at hand should
be avoided when opting for a model to solve a real-world problem.

Once it has been decided which models and confgurations to try, all these combi-
nations must go through the train-validation framework described earlier, to choose
the optimal parameters and hyperparameters, respectively, for each family of models
selected in the previous step.

4. Evaluation: Once training and validation of the models is done, their performance
over the test dataset is evaluated through some particular error measure, obtaining
an expected error. Typical choices for regression problems are MAE (1.2.1) and
MSE (1.2.2), and for binary classifcation problems the following ones are common
measures:

TP + TN
Accuracy = (1.2.4)

TP + FP + TN + FN

TP
P recision = (1.2.5)

TP + FP

TP
Recall = (1.2.6)

TP + FN

FP
FPR = (1.2.7)

FP + TN

2TP
F 1 = , (1.2.8)

2TP + FP + FN

where TP are true positives, i.e. instances classifed as positive by the model that
are in fact positive, FP are false positives, instances classifed as positive that are in
fact negative, TN are true negatives, instances classifed as negative that are in fact
negative, and FN are false negatives, instances classifed as negative that are in fact
positive.

9 1.2. Machine Learning

Figure 1.2.3: Area Under the ROC Curve, AUROC.

Precision vs recall and ROC or FPR vs recall curves are also frequently used as
evaluation measures for two class classifcation problems. In particular, the Area
under the ROC Curve, AUC or AUROC, is often the standard choice for binary
classifcation. The ROC, which stands for Receiver Operating Characteristic, curve is
created by plotting the recall or true positive rate, also known as sensitivity, against
the false positive rate, also known as probability of false alarm and which is the
opposite of specifcity, where sensitivity and specifcity are defned as follows:

TP
Sensitivity = (1.2.9)

TP + FN

TN
Specificity = . (1.2.10)

TN + FP

Each point of the ROC curve corresponds to a particular choice of decision thresh-
old. Predictions greater or equal than the selected threshold will be predicted as
positive class, and the remaining ones as negative class. Therefore, lower values of
the threshold lead to more positive class predictions, or equivalently, a point of the
curve that moves upwards in the y-axis but to the right on the x-axis. Figure 1.2.3
shows two examples of ROC curves compared, where each value for the decision
threshold corresponds to a particular point in each of the two curves.

These binary classifcation measures can be extended to a multiclass framework by means
of averaging their result over pairs of classes. Two main methods can be followed here:

‹ one-vs-all: The selected metric is applied considering as class A one of the existing
classes in the problem to tackle, and class B the union of all the other classes. This
is done for all the classes, i.e. in a way that each existing class performs the role of
class A one time. Results are then averaged to get a multiclass error.

10 Chapter 1. Introduction

‹ one-vs-one: The selected metric is applied considering as class A one of the existing
classes and class B a diferent one of these existing classes. This is done so all possible
combinations of (class A, class B) are used once. Results are then averaged to get a
multiclass error.

1.3 Deep Learning

Although often considered an independent feld, Deep Learning, DL [9], is no less and
no more than just another family of Machine Learning models. However, it is a family of
models with some extremely relevant properties, such as

‹ Predictive Potential: Nowadays larger and larger datasets are becoming available
for their use to train ML models. In order to take as much information and predictive
potential from these big datasets as possible, it is necessary to use complex enough
ML methods, able to extract the most information possible from this data. Support
Vector Machines, SVMs, which we describe in Section 2.1, are one of the most complex
models among all the standard families of ML models, and that is the main reason for
its dominance during a long span of time. However, they present important scalibility
problems when dealing with large volumes of data.

With the rise of Deep Learning frameworks it has been shown that these DL models
are able to achieve an even better performance when trained with datasets that are
sufciently big. This fact is probably the main factor why this family of models is
becoming the preferred choice when solving a high variety of large supervised learning
tasks.

‹ End-to-End learning: In a normal ML project, as described earlier, one of the
stages in the pipeline is data pre-processing, which encompasses several steps includ-
ing what is usually called feature engineering, i.e. creation and selection of variables.
However, due to the specifc nature of Deep Learning frameworks, consisting of sev-
eral layers which carry out intermediate tasks necessary to solve ML problems, these
steps of the pipeline can be no longer needed when applying DL models.

This property is often called End-to-End learning [10] and allows researchers and
data scientists to avoid complex and time-consuming steps that were required previ-
ously and that commonly demanded or were easily and better done with the help of
human experts in the feld corresponding with the task at hand.

1.4 Big Data

The concept of Big Data is a rather new one but has grown in importance very quickly
in recent years in the feld of computer science, swiftly becoming a key concept in many
studies and applications. Despite what its name could suggest, Big Data is not only related
to the volume of raw information, involving other data qualities as well. There are three
main properties that are required to consider a data environment as Big Data, and they
are called the 3Vs of Big Data. These properties, shown in Figure 1.4.1, are the following
ones:

11 1.4. Big Data

Figure 1.4.1: 3Vs of Big Data: Volume, Variety, and Velocity. From [14].

1. Volume: Refers to the volume of data available. It is very important regarding
Machine Learning projects and the name Big Data itself contains a term which is
related to size.

2. Variety: It makes reference to the diversity of the data and variance among the
sources from which this data is gathered. Usually, raw data is unstructured or has
diferent structures depending on its source, so an appropiate pre-processing step is
key.

3. Velocity: The last of the 3 Vs of Big Data refers to the speed of generation of data
and how fast the data must be processed to meet the demands and challenges of a
particular task. This is particularly relevant in problems that require real-time or
pseudo real-time answers [11].

Taking into account these 3Vs, several formal defnitions of Big Data have been proposed
in recent years [12] [13], such as

Defnition 2. Big Data are high volume, high velocity, and/or high variety information
assets that require new forms of processing to enable enhanced decision making, insight
discovery and process optimization.

Defnition 3. Big Data represents the information assets characterized by such a high
Volume, Velocity and Variety to require specifc Technology and Analytical Methods for its
transformation into Value.

Other additional Vs have been proposed recently. An article from 2013 by Mark van
Rijmenam adds four more, reaching a total of 7Vs. Apart from the three mentioned above,
these are:

4. Variability: Refers to data whose meaning is changeable. This is particularly the
case when data collecting relies on natural language processing, NLP. Words do not
have static defnitions, and their meaning can vary wildly depending on context.
Thus, programmes which can process context and decode the precise meaning of
words through it, like recent Deep Learning application do, need to be used and
applied.

12 Chapter 1. Introduction

5. Veracity: Data loses its usefulness if it is not accurate, and in very rare cases data
available is noise free. Hence, it is again vital to apply a good pre-processing pipeline
that takes into account the usually noisy nature of data and produces a sufciently
accurate dataset before proper analysis can start.

6. Visualization: Once it has been processed and analyzed, you need a way of present-
ing the data in a manner that is readable and accessible, and this is what visualization
refers to. Visualizations can contain thousands of samples and variables, and fnding
a way to present this information that makes the fndings clear is one of the challenges
in the Big Data era.

7. Value: The potential value of Big Data is huge. However, the cost generated by
the use of poor data is also really signifcant. In essence, data on its own is virtu-
ally worthless, the value of it lying in rigorous analysis of accurate data, and the
information and insights this provides both in the academic and corporate worlds.

1.5 Deep Learning & Big Data. The Perfect Couple

Machine learning, particularly Deep Learning models, and Big Data are two concepts
that have extremely close ties, both benefting from one another. On the one hand, the
potential of ML models to give accurate outputs is boosted with bigger and more diverse,
i.e. with more Volume and Variety, datasets available to train, validate and test the perfor-
mance of the model predictions. This is of course only true when the data is accurate and
meaningful, i.e. we have Veracity and Value. Of course, to be able to extract information
from these large datasets, complex and scalable ML models are needed, and it is in this
regard where Deep Learning has shown to be most valuable.

On the other hand, Big Data problems have changed the entire way of thinking about
knowledge extraction and interpretation. Traditionally, data science has always been dom-
inated by trial-and-error analysis, an approach that becomes impossible when datasets are
large and heterogeneous as occurs when Big Data comes into play. Ironically, availability
of more data usually leads to fewer options in constructing predictive models, because very
few tools allow for processing large datasets in a reasonable amount of time, scalability
being more important now than ever. In addition, traditional statistical solutions typically
focus on static analytics that are limited to the analysis of samples that are frozen in time,
which often results in surpassed and outdated conclusions. Machine Learning techniques
allow researchers to overcome those problems and to build systems that can provide models
updated after the arrival of new datapoints. ML models can also be used to build real-time
systems, programs that must guarantee response within specifed time constraints, which
is related to the Velocity property.

To help researchers to combine the use of ML and Big Data, several software tools have
been developed in recent years. In addition to supercomputers and Remote Procedure
Call, RPC, communication, there has been a recent appearance of open frameworks that
make computations for Big Data ML problems easier, such as Apache Hadoop, Cloudera,

13 1.6. Outline

and Apache Mahout. Particularly relevant here is Apache Spark [15], a framework for
parallelized ML computing that has boosted investigation in this line of research.

1.6 Outline

The rest of this thesis is structured as follows:

‹ In Chapter 2 we present the main theoretical contributions from past research that
have been used as building blocks for this thesis, with special focus on SVM and DL
models. In particular, we describe theoretical details and mathematical formulations
for SVM models, both for classifcation and regression problems, NORMA optimiza-
tion, DL structures, and clustering algorithms like K-means and K-prototypes.

‹ Then we describe our proposed framework in Chapter 3, which has as its main goal
to combine the virtues of both SVMs and DL for regression problems and lessen their
drawbacks, as well as to add confdence intervals to the predictions given. We frst
describe how to build General Noise Models trained using NORMA optimization.
Then, we propose a deep version of SVR models. After this, we propose to plug
general noise cost functions into DL structures, creating our proposed Deep General
Noise Models, D-GNM. Finally, we propose diferent methods to compute uncertainty
intervals for the predictions of any regression model, including a method based on
the use of clustering algorithms, in order to be able to build D-GNM models that are
able to give not only a prediction value, but a corresponding uncertainty interval for
that prediction.

‹ Experiments carried out to test the usefulness of the proposed model over diferent
problems and datasets, including synthetic data, popular datasets, and real-world
problems related to renewable energies, are described in Chapter 4, as well as their
corresponding results. Details about the implementation of the models tested, se-
lection of model hyperparameters, and the datasets employed in the experiments
are described. Then, each of the experiments is described together with the results
obtained. Finally, conclusions drawn from these results are discussed.

‹ Chapter 5 contains the main conclusions one can extract from this thesis. In addition,
potential lines for further work on the research topic are also highlighted.

‹ Finally, appendices regarding author’s publications and an extended table with in-
formation regarding one of the datasets employed in the experiments are included in
Appendix A and Appendix B, respectively.

Chapter 2

Theoretical Background

Learn from yesterday, live for today,
hope for tomorrow. The important
thing is not to stop questioning.

Albert Einstein

In this chapter we present the main theoretical contributions from past research that have
been used as building blocks for this thesis. Although the focus of this thesis is regression
problems, this chapter starts with a thorough explanation of SVMs for classifcation in
Section 2.1. This section continues with a description of their regression counterpart,
SVR in Section 2.2. In addition, a general noise version of the SVM for regression, where a
particular noise distribution for the data is assumed and plugged into the model is described
in Section 2.3. Finally, in Section 2.4 a Bayesian framework, which allows the calculation
of confdence intervals for SVR predictions is detailed.

Next, in Section 2.5 NORMA or Naive Online R Minimization Algorithm, an optimiza-
tion method usually applied to train SVM models in an online manner, is detailed. Deep
Learning models are described in Section 2.6, focusing on the reasons behind the spectac-
ular growth in popularity of this family of ML models in recent years. The technical and
mathematical details of this type of models will also be analyzed in detail. Finally, Section
2.7 describes the standard partition clustering methods K -means and K -prototypes.

2.1 SVM for Classifcation

Support vector machines, SVM, have been widely used in real-world problems such as
fraud detection [16] or cancer prediction [17], and have remained as one of the most used
models in ML around the world. Despite the fact that this work focuses on the use of
SVM models for regression problems, this section follows for clarity a classical approach
to the explanation of this family of ML algorithms, beginning with the description of its
classifcation version, which can be useful to understand the intuition and mechanisms
behind SVM models for regression.

This section focuses on the use of SVM for 2-class or binary classifcation problems. For
tasks with more classes, a 2-class SVM for each pair of classes can be built. If k is the

k(k−1)number of classes, then 2 classifers are constructed and each one trains with data from

15

16 Chapter 2. Theoretical Background

two classes. Then a voting strategy is used, where each binary classifcation is considered
to be a vote. In the end, a point is designated to be in the class with the maximum number
of votes. This is called one-vs-one approach for multiclassifcation and is the one followed
by the most popular SVM implementation, LIBSVM [18].

Our training data consists of pairs (x1, y1), (x2, y2), ..., (xN , yN), with xi ∈ Rd the input
data, d the dimension of our dataset, N the number of examples, and yi ∈ {−1, 1} the
classes or target to predict. Defne a hyperplane, H, by

H = {x : f(x) = x T β + β0 = 0} , (2.1.1)

where β = (β1, β2, ..., βp)T is a unit vector, ||β|| = 1, representing the parameters of the
model, and β0 is the bias of the model. Using this formulation, f(x) induces a classifcation
rule given by

G(x) = sgn(x T β + β0) , (2.1.2)

where sgn is the sign or signum function.

The aim of Support Vector Classifcation is to obtain the best separating hyperplane
possible. This standard formulation of the SVM for classifcation problems can be divided
in three separate cases, from simpler to more complex and general: the linear separable
case, the linear non-separable case, and fnally the non-linear non-separable case, where it
is necessary to deal with the problem of non-linearity and the key concept of kernel trick
is vital.

2.1.1 Linear Separable Case. Hard Margin Classifcation

This is the most basic situation. Although it seldom appears in real-world problems,
its explanation is interesting to introduce the SVM principles and formulations. Since the
classes are separable, we can fnd a function f(x) = xT β + β0 where it is true that

yif(xi) > 0, ∀i. (2.1.3)

Therefore, we may be able to fnd the hyperplane that creates the biggest margin be-
tween the training points from classes 1 and -1. This is computed solving the following
optimization problem

max M
β,β0

T (2.1.4)subject to yi(xi β + β0) ≥ M, i = 1, ...N ,
||β|| = 1 .

As stated in [19] we can get rid of the ||β|| = 1 constraint by replacing the conditions in
(2.1.4) with

1 T yi(xi β + β0) ≥ M, i = 1, ...N , (2.1.5)||β||

17 2.1. SVM for Classifcation

Figure 2.1.1: Support vector classifer for the separable case. The band in the fgure is M
units away from the hyperplane on either side, and hence 2M units wide. M is called the
margin. Image from [5].

which leads to a redifnition of β0. This can be equivalently expressed as

yi(xi
T β + β0) ≥ M ||β||, i = 1, ...N . (2.1.6)

For any β and β0 satisfying these inequalities, any positively scaled multiple fulflls them
1too, so we can arbitrarily set ||β|| = and getM

As we have defned that M = A visualization of this SVM formulation can be found

max M
β,β0

subject to T yi(xi β + β0) ≥ 1, i = 1, ...N .
(2.1.7)

1
||β|| .

in Figure 2.1.1. This problem is equivalent to

1
max
β,β0 ||β|| (2.1.8)

Tsubject to yi(xi β + β0) ≥ 1, i = 1, ...N .

1Maximizing ||β|| is equivalent to minimizing ||β||, so we have

min ||β||
β,β0 (2.1.9)

Tsubject to yi(xi β + β0) ≥ 1, i = 1, ...N .

For convenience to compute derivatives, usually the following equivalent form of (2.1.9),
known as the primal problem, is used

1
min ||β||2
β,β0 2 (2.1.10)

Tsubject to yi(xi β + β0) ≥ 1, i = 1, ...N .

18 Chapter 2. Theoretical Background

In practice, the problem solved is the dual formulation derived using standard La-
grangian techniques [20]. First, in order to solve the constrained optimization problem,
we add to the objective function the Lagrange multipliers as negative terms, one for each
constraint in the primal problem, obtaining the Lagrangian function

NX1 TL = ||β||2 − αi[yi(xi β + β0) − 1] , αi ≥ 0 . (2.1.11)
2

i=1

Now, we want to obtain the dual optimization problem corresponding to maximizing
this Lagrangian function. For this purpose, we frst compute the derivatives in (2.1.11),
obtaining

NX∂L
= − αiyi , (2.1.12)

∂β0 i=1

∂L NX
=

∂β
β − αiyixi . (2.1.13)

i=1

Setting the derivative (2.1.12) to zero we get

NX
αiyi = 0 , (2.1.14)

i=1

and setting (2.1.13) equal to zero we arrive at

NX
β = αiyixi , (2.1.15)

i=1

Plugging (2.1.15) and (2.1.14) into (2.1.11) we fnally obtain the dual problem

N N NX XX1 T max D = αi − αiαj yiyj xi xjαi 2
i=1 i=1 j=1

subject to αi ≥ 0, i = 1, ...N , (2.1.16)
NX
αiyi = 0 ,

i=1

where the following conditions, called Karush-Kuhn-Tucker, KKT, conditions, are
fulflled at the optimal point, which we will represent using the b symbol for its parameters, b bnamely αb, β, and β0:

NXbβ = αbiyixi , (2.1.17)
i=1

19 2.1. SVM for Classifcation

αbi ≥ 0 , (2.1.18)

αbi[yi(x T βb+ βb0) − 1] = 0 . (2.1.19)i

From (2.1.17) we obtain the solution for βb , and from the KKT condition αbi[yi(xT βb+i bβ0) − 1] = 0 we get

Tαbi > 0 ⇒ yi(x βb+ βb0) − 1 = 0 . (2.1.20)i

The observations where it is true that αbi > 0 are called the support vectors and give
name to the model, since the solution for βb in (2.1.17) is only infuenced by these points.
This is why it is said that SVMs are sparse models. Using the right part of (2.1.20) we can bsolve for β0 as

T b1 − yix βb iβ0 = . (2.1.21)
yi

Usually an average of the solutions for each support vector point is used for numerical
stability reasons. Finally, plugging (2.1.15) and (2.1.21) into (2.1.3) we obtain the fnal
solution function, fb(x)

NX
fb(x) = αbiyix T xi + βb0 . (2.1.22)

i=1

2.1.2 Linear Non-Separable Case. Soft Margin Classifcation

In real-world problems, usually fnding a hyperplane which separates perfectly the data
is not possible, which leads to the non-separable case. Furthermore, even if it is possible
to fnd this hyperplane, it might not be desirable because the probability of the model
overftting the data, due to the outliers present in the dataset, is rather high and normally
a decision boundary that ignores some points of the data which do not represent the general
behavior of the problem is preferred. An example of this problem, where a hard margin
hyperplane presents a severe overftting problem due to one outlier point, is shown in
Figure 2.1.2.

To deal with the overlap, the idea is to still maximize the margin, M , but allowing some
points of the dataset to be on the wrong side of the margin. Defning the slack variables
ξ = (ξ1, ξ2, ..., ξN), one natural way to modify the constraint shown in (2.1.4) will be

yi(xi
T β + β0) ≥

1 − ξi, i = 1, ...N , ξi > 0 , (2.1.23)||β||

where the value ξi is the value of the amount by which the point xi is on the wrong side
of its margin, as represented in Figure 2.1.3 .

20 Chapter 2. Theoretical Background

Figure 2.1.2: Hard Margin Classifcation overftting. The hyperplane adapts in excess to
a single outlier red point.

Figure 2.1.3: Linearly Non-Separable case. Hyperplane allows some points of the dataset
to be on the wrong side of the margin. Image from [5].

Although this choice seems very natural, since it measures actual distance from the
1margin M = ||β|| , unfortunately it results in a nonconvex optimization problem, which

leads to uniqueness of the solution not being assured. To defne a convex optimization
problem, where any local minimum of the unconstrained optimization problem is a global
minimum and, hence, the solution is unique, the following modifcation is carried out

1T yi(xi β + β0) ≥ (1 − ξi), i = 1, ...N , (2.1.24)||β||

where now ξi is again the distance by which the point xi is on the wrong side of its margin,
but expressed in relative value with respect to M .

With this formulation of the SVM problem misclassifcations occur when ξi > 1, whereas
other points on the wrong side of the margin but where 0 < ξi < 1 are still predicted by PNthe model as the correct class. Therefore, bounding i=1 ξi at a value λ sets the upper
bound of the total number of training misclassifcations to be λ.

21 2.1. SVM for Classifcation

As we did in the separable case, we can write the equation in the equivalent form

1
min ||β||2
β,β0 2

Tsubject to yi(xi β + β0) ≥ 1 − ξi, i = 1, ...N ,
(2.1.25)ξi ≥ 0, i = 1, ...N ,

NX
ξi ≤ λ .

i=1

As described in [5], computationally it is convenient to re-express (2.1.25) as

NX1
min ||β||2 + C ξi
β,β0 2

i=1 (2.1.26)
Tsubject to yi(xi β + β0) ≥ 1 − ξi, i = 1, ...N ,

ξi ≥ 0, i = 1, ...N ,

where the parameter C, commonly called the cost, replaces the role of λ in (2.1.25).

From (2.1.26), it is straightforward to see that the hard margin case corresponds toPNC = ∞ that leads to ξ = 0, i.e. not a single point can be on the wrong side of thei=1
hyperplane margins.

The primal problem in (2.1.26) is quadratic with a positive semi-defnite matrix and with
linear inequality constraints, hence it is a convex optimization problem. Existence of the
solution is guaranteed by the quadratic nature of the objective function and uniqueness
of the global optima is ensured due to its convex nature. As in the separable case, the
problem solved in practice is the dual formulation derived using Lagrangian techniques.
Once more, frst we get the Lagrangian, that in this case has the form

N N NX X X1 TL = ||β||2 + C ξi − αi[yi(xi β + β0) − (1 − ξi)] − µiξi , αi, µi ≥ 0. (2.1.27)
2

i=1 i=1 i=1

To obtain the formulation for the primal values that minimize this function, we compute
the derivatives in (2.1.27) , obtaining

NX∂L
= − αiyi ,

∂β0 i=1
NX∂L (2.1.28)= β − αiyixi ,

∂β
i=1

∂L
= C − αi − µi, i = 1, ...N ,

∂ξi

and setting the derivatives (2.1.28) to zero we get

22 Chapter 2. Theoretical Background

NX
αiyi = 0 , (2.1.29)

i=1

NX
β = αiyixi , (2.1.30)

i=1

αi = C − µi, i = 1, ...N . (2.1.31)

Plugging these equations into (2.1.26) we fnally obtain the dual problem

N N NX XX1 T max D = αi − αiαj yiyj xi xjαi 2
i=1 i=1 j=1

subject to αi ≥ 0, i = 1, ...N ,
(2.1.32)

αi ≤ C, i = 1, ...N ,
NX
αiyi = 0 ,

i=1

with the following KKT conditions at the optimal point

NXbβ = αbiyixi ,
i=1 (2.1.33)

αbi[yi(x T βb+ βb0) − (1 − ξbi)] = 0 ,i

µbiξbi = 0, i = 1, ...N ⇒ (C − αbi)ξbi = 0 .

Thus, from (2.1.32) we see that, as in the case of the hard margin classifcator in the bprevious section, the solution for β has the form (2.1.17). Using the KKT condition
Tαbi[yi(x βb+ βb0) − (1 − ξbi)] = 0 we geti

Tαbi > 0 ⇒ yi(x βb+ βb0) − (1 − ξbi) = 0 , (2.1.34)i

These points are the support vectors for the non-separable case, and the solution for βb in
(2.1.17) is only infuenced by them. For the support vectors where it holds that 0 < αbi < C, b(2.1.31) gives us that µbi = C − αbi > 0. Plugging this into the KKT condition µbiξi = 0, we
get that ξbi = 0, i.e., these are the points that will lie on the edge of the margin. Taking
into account (2.1.34), for these points the following will hold

T yi(x βb+ βb0) − 1 = 0 . (2.1.35)i

bFrom (2.1.35) we see that the solution for β0 can be obtained using any of these points
lying in the margin and is given again by (2.1.21). The remaining support vectors are
characterized by

ξbi > 0 ⇒ αbi = C , (2.1.36)

due to the KKT condition (C − αbi)ξbi = 0.

23 2.1. SVM for Classifcation

2.1.3 Non-Linear Non-Separable Case

The two previous sections focus on describing how to fnd linear boundaries in the input
feature space. We can enlarge the feature space using basis expansions such as polynomials
or splines, for example. Generally linear boundaries in the enlarged space achieve better
class separation, and translate to nonlinear boundaries in the original feature space.

(x)}M

We use this time as input features {h(xi)}N = {(h1(xi), h2(xi), ..., hM (xi))}Ni=1 instead of
Once the basis functions {hm m=1 are selected, the procedure is the same as before.

i=1
the original {xi}Ni=1, and produce the function

f(x) = < h(x), β > +β0 , (2.1.37)

where this time f(x) is a non-linear function.

Replacing {xi}N for the new input features {h(xi)}N in (2.1.32) we get, instead ofi=1 i=1
the formulation in (2.1.32), the following dual function

XN N NXX1
D = αi − αiαj yiyj < h(xi), h(xj) > . (2.1.38)

2
i=1 i=1 j=1

Doing the same replacement in (2.1.30) we have

NXbβ = αbiyih(xi) . (2.1.39)
i=1

Furthermore, plugging (2.1.39) into (2.1.37) we obtain

NX
fb(x) = αbiyi < h(x), h(xi) > + βb0 . (2.1.40)

i=1

Looking at (2.1.38) and (2.1.40) we can see that h(x) is involved only through inner prod-
ucts, i.e. < h(x), h(xi) >. Thus, we do not need to specify explicitly the transformation
h(x), needing only to know the kernel function that defnes this product

k(x, x ′) = < h(x), h(x ′) > . (2.1.41)

Thus, we can reformulate (2.1.38) and (2.1.40) as

XN N NXX1
D = αi − αiαj yiyj k(xi, xj) , (2.1.42)

2
i=1 i=1 j=1

NX
fb(x) = αbiyik(x, xi) + βb0 , (2.1.43)

i=1

24 Chapter 2. Theoretical Background

Figure 2.1.4: Example of non-linear SVM. Kernel trick makes the two classes separable.
Image from [21].

Figure 2.1.5: Low C values, on the left, tend to underftting. High C values, on the right,
tend to overftting.

where the basis functions do not appear explicitly, but only through their inner products
defned by the kernel k. An example of the efect of applying these kernel functions can be
seen in Figure 2.1.4. This important property of support vector machines is often called
the kernel trick as is one of the reasons of the usefulness and popularity of SVM models
during all these years.

This kernel trick allows us to make the dimension of the enlarged space very large,
infnite in some cases, only defning a suitable kernel function which satisfes some particular
properties that we will defne later. It might seem that, since perfect separation is often
achievable in these enlarged spaces, overftting would occur. Here is when the role of the
cost parameter C becomes clearer. A large value of C will discourage any positive ξi, and
lead to high variance and an overft wiggly boundary in the original feature space, while a
value of C too small will encourage a small value of ||β||2 , which in turn causes f(x) and
hence the hyperplane to have high bias and low variance, tending to underft the model.
Therefore, the bias-variance tradeof mentioned in Section 1.2 is controlled through this
cost parameter. Figure 2.1.5 shows this phenomenon.

One of the most popular functions used as kernel for SVM models is the Radial Basis or
Gaussian Kernel:

−γ||x−x ′ ||2
k(x, x ′) = e . (2.1.44)

25 2.2. SVM for Regression, SVR

The Gaussian kernel has been shown in the past to be the best choice for SVM models for
several tasks [22]. However, there are other possibilities to be used as kernel functions. In
fact, a function needs only to verify Mercer’s condition, i.e., to be positive semi-defnite,
to be a valid kernel function. The condition stated in Mercer’s theorem is the following:

Theorem 1. Mercer’s Theorem. If a scalar function k(xi, xj) is positive semi-defnite,i.e. Z
k(xi, xj)g(xi)g(xj)dxidxj ≥ 0 ∀ g ∈ L2 ,

then there is a mapping function ϕ : Rd → F , with F a Hilbert space, such that k can be
decomposed as an inner product

k(xi, xj) =< ϕ(xi), ϕ(xj) > .

2.2 SVM for Regression, SVR

The support vector method can also be applied to regression. When SVM models are
applied to regression problems, they are usually called Support Vector Regression, SVR.
We present here the ϵ-SVR formulation as well as the quadratic L2-SVR one. Although
the frst one is usually the standard choice, L2-SVR, where outliers are greatly penalized,
is also commonly used and thus we describe both versions in detail here.

2.2.1 ϵ-SVR

As the case with its classifcation counterpart, we can divide the standard SVR formu-
lation into two diferent cases, the linear one and the non-linear case. In SVR, the linear
regression model is considered to be

f(x) = x T β + β0 . (2.2.1)

To obtain the optimal f(x), an objective function analogous to the one described in
(1.2.3) is minimized, but this time with other loss function diferent to the hinge error.
The loss function used for standard ϵ-SVR is called the ϵ–insensitive loss function, or
ϵ–ILF, and is defned as

(
−δ − ϵ, δ < −ϵ ,

lϵ(δ) = 0, δ ∈ [−ϵ, ϵ] , . (2.2.2)
δ − ϵ, δ > ϵ .

A visualization of the ϵ-ILF function can be seen in Figure 2.2.1. This loss function, as
is the case in the linear MAE error, provides robustness against outliers. However, it is
not only a robust cost function because of its linear behavior outside the interval [−ϵ, ϵ],
but it is also sparse in the sense that it ignores the errors within a certain margin, ϵ, to
the target value, yi, assigning zero cost to errors smaller than ϵ.

The quadratic loss function, generally used in regression, is well justifed under the
assumption of Gaussian additive noise in the data. However, the noise model underlying
the choice of the ϵ-ILF is not so clear. In [23], the use of the ϵ-ILF is partially justifed
under the assumption that the noise is additive and Gaussian, where the variance and
mean of the Gaussian are random variables.

26 Chapter 2. Theoretical Background

Figure 2.2.1: The ϵ–insensitive loss function. Image from [5].

This lϵ loss fuction is employed in combination with the ridge regression regularization
to get the objective function and the optimization problem fnally used in standard SVR,
which is the following one

NX λ
min H(β, β0) = lϵ(yi − f(x)) + ||β||2 . (2.2.3)
β,β0 2

i=1

As shown in [5] and [19] this formulation is equivalent to the following problem

NX1
min ||β||2 + C (ξi + ξi ∗)

β,β0,ξi,ξ∗ 2i i=1
(2.2.4)subject to ξi, ξ ∗ ≥ 0, i = 1, ...N ,i

f(xi) − yi ≤ ϵ + ξi, i = 1, ...N ,
yi − f(xi) ≤ ϵ + ξi ∗ , i = 1, ...N .

where the ξi values quantify the errors above the ϵ-band, and ξ∗ the ones below the ϵ-band,i
as can be seen in Figure 2.2.2.

The Lagrange function corresponding to 2.2.4 is

N NX X1 TL = ||β||2 + C (ξi + ξi ∗) − αi(yi − xi β + β0 + ϵ + ξi)−
2

i=1 i=1
N N NX X X (2.2.5)
α ∗ T ∗
i (xi β + β0 − yi + ϵ + ξi ∗) − µiξi − µi ξ ∗

i
i=1 i=1 i=1

∗ with αi, α ∗
i , µi, µ ≥ 0 .i

27 2.2. SVM for Regression, SVR

Figure 2.2.2: Linear SVR. Errors inside the ϵ-band are not penalized. Image from [19].

Computing the derivatives in (2.2.5) with respect to the primal variables we obtain

NX∂L
= (αi − αi ∗) ,

∂β0 i=1
N N NX X X∂L

= β + αixi − α ∗
i xi = β + (αi − α ∗

i)xi ,∂β (2.2.6)i=1 i=1 i=1
∂L

= C − αi − µi, i = 1, ...N ,
∂ξi

∗∂L
= C − αi ∗ − µi , i = 1, ...N ,

∂ξi
∗

and setting all these derivatives to zero we get

NX
(αi − αi ∗) = 0 , (2.2.7)

i=1

NX
β = (α ∗

i − αi)xi , (2.2.8)
i=1

αi = C − µi, i = 1, ...N , (2.2.9)

∗ α ∗
i = C − µi , i = 1, ...N . (2.2.10)

Plugging (2.2.8), (2.2.7), (2.2.9) and (2.2.10) into (2.2.5) we get the dual problem for
the standard SVR formulation

28

i

Chapter 2. Theoretical Background

N N N NX XX X1 T max D = yi(α ∗
i − αi) − (αi

∗ − αi)(αj ∗ − αj)xi xj − ϵ (α ∗
i + αi)

αi,α∗ 2
i=1 i=1 j=1 i=1

subject to αi, α ∗ ≥ 0, i = 1, ...N ,i (2.2.11)
αi, α ∗ ≤ C, i = 1, ...N ,i
NX

(α ∗
i − αi) = 0 .

i=1

The KKT conditions at the optimal point are now

NX
βb= (αbi ∗ − αbi)xi ,

i=1

αbi(yi − fb(xi) + ϵ + ξi) = 0 , (2.2.12)
αbi ∗ (fb(xi) − yi + ϵ + ξi ∗) = 0 ,
(C − αbi)ξi = 0 ,
(C − αb∗

i)ξ ∗ = 0 .i

The solution for βb is given by (2.2.8). In this case we have that support vectors are the
points where (αb∗

i −αbi) ̸= 0, as these are the ones afecting the value of βb . This is equivalent
to stating that the support vector points are the ones where either αb∗ > 0 or αbi > 0, asi
both values cannot be diferent from zero for the same point. In order to prove that the
latter statement is true, let us imagine a point where αbi, αb∗ > 0. In this situation and duei
to conditions αbi(yi − fb(xi) + ϵ + ξbi) = 0 and αb∗(fb(xi) − yi + ϵ + ξb∗) = 0 in (2.2.11) we geti i
that

yi − fb(xi) + ϵ + ξbi = 0 ⇒ ξbi = fb(xi) − yi − ϵ , (2.2.13)

fb(xi) − yi + ϵ + ξb∗ = 0 ⇒ ξb∗ = yi − fb(xi) − ϵ . (2.2.14)
i i

Now, as per defnition ξbi and ξb i ∗ cannot be greater than 0 for the same point, three cases
are possible:

b b1. ξi = 0: Due to (2.2.13) we have that ϵ = f(xi) − yi. If we plug this into (2.2.14) we
get ξb∗ = 2(yi −fb(xi)) which is incompatible with the defnition of ξb i ∗ as the prediction i
errors below the ϵ-band.

2. ξb i ∗ = 0: Due to (2.2.14) we have that ϵ = yi − fb(xi). If we plug this into (2.2.13) we
get ξbi = 2(fb(xi) − yi) which is incompatible with the defnition of ξbi as the prediction
errors above the ϵ-band.

3. ξbi = ξb∗ = 0: Due to (2.2.13) and (2.2.14) we have that ϵ = fb(xi) − yi = yi − fb(xi).i
This can only be true if fb(xi) = yi and ϵ = 0, the latter expression being incompatible
with the use of the ϵ-ILF cost function with ϵ > 0.

29 2.2. SVM for Regression, SVR

On the other hand, the solution for βb0 can be obtained using any of the support vector b ξb∗points in the ϵ−border, i.e, those where ξi = 0 and = 0, and the KKT conditionsi
αbi(yi − fb(xi) + ϵ + ξbi) = 0 and αb∗(fb(xi) − yi + ϵ + ξb∗) = 0, respectively, and has the formi i �

T byi + ϵ − x β , 0 < αbi < C ,b iβ0 = . (2.2.15)
T b α∗ yi − ϵ − x β , 0 < b < C .i i

Normally an average of the values obtained in (2.2.15) for all these support vector points
in the ϵ−border is used. Therefore, the fnal expression of βb0 is " #X X1 1 1b T b T b= (yi + ϵ − x β) + (yi − ϵ − x β) , (2.2.16)β0 i i2 |S| |S∗|

i∈S i∈S∗

where S is the set of all the support vector points in the ϵ−border where αbi ∈ (0, C) and
S∗ the ones where αb∗ ∈ (0, C).i

Therefore, the fnal solution function can be shown to have the form

NX
Tfb(x) = (αc∗

i − αbi)xi x + βb0 . (2.2.17)
i=1

As occurred in the classifcation case, we can enlarge the feature space to large di-
mensions, even infnite, through basis expansions. Replacing the original input features,
{xi}Ni=1, with their corresponding features in the enlarged space, {h(xi)}Ni=1, in (2.2.11) we
get the corresponding dual function for the SVR formulation

N N NX XX1
D = yi(αi

∗ − αi) − (αi
∗ − αi)(α ∗

j − αj) < h(xi), h(xj) >−
2

i=1 i=1 j=1
(2.2.18)

NX
ϵ (αi

∗ + αi) .
i=1

Moreover, applying the same replacement approach leading to (2.2.17) we obtain

NX
fb(x) = (αc∗

i − αbi) < h(xi), h(x) > + βb0 . (2.2.19)
i=1

Once again, the values h(x) only appear through their inner products, so using a kernel
function k(xi, xj) = < h(xi), h(xj) > satisfying the Mercer’s condition defned previously
in Theorem 1, we can get the following equations equivalent to (2.2.18) and (2.2.19)

N N NX XX1
D = yi(αi

∗ − αi) − (α ∗
i − αi)(αj ∗ − αj)k(xi, xj)−

2
i=1 i=1 j=1

(2.2.20)
NX

ϵ (αi
∗ + αi) ,

i=1

30 Chapter 2. Theoretical Background

Figure 2.2.3: Non-linear SVR. In this case, the SVR estimator follows a non-linear shape
due to the application of the kernel trick. Image from [19].

Figure 2.2.4: Quadratic ϵ-insensitive loss function with ϵ = 0.25.

NX
fb(x) = (αc∗

i − αbi)k(x, xi) + βb0 . (2.2.21)
i=1

Proceeding like this there is no need of an explicit defnition of the basis functions
{hm(x)}M Figure 2.2.3 shows an example of a one dimensional non-linear SVR function m=1.
with an ϵ-insensitive band.

2.2.2 L2-SVR

Although the ϵ-ILF cost function defned in (2.2.2) is clearly the standard choice when
building SVR models, sometimes a quadratic ϵ-insensitive loss function, or L2-ϵ-ILF, is
preferred. This L2-ϵ-ILF is defned as follows

(
(−δ − ϵ)2 , δ < −ϵ ,

l2ϵ(δ) = 0, δ ∈ [−ϵ, ϵ] , (2.2.22)
(δ − ϵ)2 , δ > ϵ .

Figure 2.2.4 shows how this loss function looks. It has the same sparseness property as
the standard ϵ-ILF, or L1-ILF, since values in the interval [−ϵ, ϵ] all are given zero value.

31 2.2. SVM for Regression, SVR

Nevertheless, in contrast to the L1-ILF, this loss function is not robust to outliers, since
a quadratic penalty is given to errors with absolute value greater than ϵ, as would be the
case when using a MSE penalty instead of MAE. This lack of robustness may suppose an
important drawback for some problems, so appropriateness of the election of L2-SVR must
be carefully considered. The choice, again, is problem-dependent. Therefore, both versions
can be useful depending on the problem at hand, and thus are discussed here.

Using this L2-ϵ-ILF instead of the L1-ϵ-ILF, and working directly with the basis expan-
sions {h(xi)}Ni=1, we get the following Lagrange function

N NX X1 2L = ||β||2 + C (ξ2 + ξ ∗) − αi(yi − f(h(xi)) + ϵ + ξi)−i i2
i=1 i=1

N N N (2.2.23)X X X
∗ α ∗

i (f(h(xi)) − yi + ϵ + ξi ∗) − µiξi − µi ξ ∗
i

i=1 i=1 i=1
∗ with αi, αi ∗ , µi, µ ≥ 0 .i

Computing the derivatives in (2.2.23) with respect to the primal variables we obtain

N
∂L

=
X

(αi − α ∗
i) ,∂β0 i=1

N N NX X X∂L
= β + αih(xi) − αi

∗ h(xi) = β + (αi − αi ∗)h(xi) ,
∂β (2.2.24)i=1 i=1 i=1
∂L

= 2Cξi − αi − µi, i = 1, ...N ,
∂ξi

∗∂L
= 2Cξ ∗ − αi ∗ − µi , i = 1, ...N ,

∂ξ∗ i
i

and setting the derivatives (2.2.24) to zero we get:

NX
(αi − α ∗

i) = 0 ,
i=1

NX (2.2.25)β = (αi
∗ − αi)h(xi) ,

i=1
αi = 2Cξi − µi, i = 1, ...N ,

∗ α ∗ = 2Cξ ∗ − µ i = 1, ...N .i i i ,

Finally, plugging (2.2.25) into (2.2.23) we get the dual problem

32

i

Chapter 2. Theoretical Background

N N NX XX1 1
max D = yi(α ∗

i − αi) − (αi
∗ − αi)(αj ∗ − αj)(k(xi, xj) + δij)−

αi,α∗ 2 C
i=1 i=1 j=1

NX
ϵ (αi

∗ + αi) (2.2.26)
i=1

subject to αi, αi
∗ ≥ 0, i = 1, ...N ,

NX
(αi

∗ − αi) = 0 ,
i=1

with the following KKT conditions as constraints at the optimal point

αbi = 2Cξbi, i = 1, ...N ,
αbi ∗ = 2Cξb i ∗ , i = 1, ...N ,

NX
βb= (αbi ∗ − αbi)h(xi) ,

i=1 (2.2.27)
αbi(yi − fb(h(xi)) + ϵ + ξbi) = 0 ,
αbi ∗ (fb(h(xi)) − yi + ϵ + ξb∗) = 0 ,i

(2Cξbi − αbi)ξbi = 0 ,
(2Cξb i ∗ − αb∗

i)ξ
b∗ = 0 .i

The support vectors are again the points with (αb∗ − αbi) ̸= 0, or equivalently the onesi
where αbi ∗ > 0 or αbi > 0. The solutions for βb , βb0 and fb(x) have the same form described
for SVR using the standard ϵ-ILF in (2.2.8), (2.2.16) and (2.2.21), respectively.

2.3 General Noise SVR

As explained before, the use of the ϵ–insensitive loss function in the standard SVR
implies the assumption of a particular error distribution in the data [23]. However, it
has been observed that the noise in some real-world applications, such as wind or solar
power forecasting, satisfes other distributions, including the Beta distribution [24], [25],
the Weibull distribution [26] or the Laplacian distribution [27], to name a few. Therefore,
it could be interesting to use SVR formulations using loss functions other than the ϵ–ILF
where the assumption of the error distribution resembles the one in the data corresponding
to the task at hand.

2.3.1 Primal and Dual Formulations

In 2002, a general noise version of SVR was proposed in [28]. This variation of SVR
can be used with any particular loss function c(yi, f(xi)). For instance, if Gaussian noise
is assumed to be present in the data, a particular loss function will be inserted, which
will be diferent to the one used if Laplace is assumed to be the underlying distribution.
Following a similar approach to the one already described in Section 2.2.1 for classical SVR
models, let’s defne c(ξi) = c(yi, f(xi)) when ξi = [f(xi) − yi]+, and c(ξi ∗) = c(yi, f(xi))
when ξi ∗ = [yi − f(xi)]+.

33 2.3. General Noise SVR

The primal optimization problem corresponding to this general noise SVR is then de-
scribed as

NX1
min ||β||2 + C (c(ξi) + c(ξi ∗))

β,β0,ξi,ξ∗
i 2

i=1
(2.3.1)subject to ξi, ξ ∗ ≥ 0, i = 1, ...N ,i

f(xi) − yi ≤ ϵ + ξi, i = 1, ...N ,
yi − f(xi) ≤ ϵ ∗ + ξi ∗ , i = 1, ...N ,

where ϵ and ϵ∗ are chosen such that

c(ξ) = 0 , ∀ ξ ∈ [−ϵ ∗ , ϵ] . (2.3.2)

Notice that the formulation allows for the use of diferent values for ϵ and ϵ∗ , i.e., dif-
ferent widths for the band above and below the prediction, respectively, although in the
formulation of the classical SVR ϵ = ϵ∗ . Let us defne now

∂c ∂c
T (ξi) = c(ξi) − ξi (ξi) , T ∗ (ξi

∗) = c(ξi ∗) − ξ ∗ (ξi
∗) . (2.3.3)

∂ξ i ∂ξ∗

Using (2.3.3) and denoting again with k the kernel function selected, the following dual
formulation derived from (2.3.1) can be found in [29]

N N NX XX1
max D = yi(αi

∗ − αi) − (αi
∗ − αi)(αj ∗ − αj)K(xi, xj)−

αi,α∗ 2i i=1 i=1 j=1
N N NX X X
ϵiαi − ϵ ∗

i αi
∗ + C (T (ξi) + T ∗ (ξi

∗))
i=1 i=1 i=1

(2.3.4)
subject to αi, α ∗ ≥ 0, i = 1, ...N ,i

NX
(α ∗

i − αi) = 0 ,
i=1

αi, αi
∗ ≤ C

∂ξ
∂c

∗ (ξ
∗), i = 1, ...N ,

with the KKT conditions at the optimal point being

αbi(yi − fb(xi) + ϵi + ξi) = 0 ,
αb∗
i (f
b(xi) − yi + ϵ ∗

i + ξi ∗) = 0 ,

(2.3.5)(C
∂c

(ξi) − αbi)ξi = 0 ,
∂ξ

(C
∂c

(ξi
∗) − αb∗

i)ξ ∗ = 0 ,
∂ξ∗ i

The formulation in (2.3.4) allows us to build a general noise SVR model based on any
particular choice of cost function. The process encompasses the following steps:

34 Chapter 2. Theoretical Background

1. Determine the cost function, c(ξ), to be used. Next section describes how to obtain
the optimal cost function for a particular error distribution assumption.

2. Plug c(ξ) into the dual formulation in (2.3.4).

3. Solve for (2.3.4).

However, plugging general cost functions into the general dual formulation problem de-
fned in (2.3.4) often leads to Sequential Minimal Optimization [30], SMO, the algorithm
usually employed to solve the quadratic programming problem that arises during the train-
ing of support vector machines, both for classifcation and regression problems, no longer
being a feasible choice as optimization method. Therefore, other optimization methods
should be used to avoid this problem. This topic is discussed in more detail in later
sections.

Furthermore, the concept of support vectors may not longer be present when using
generic cost functions. Therefore, these models are referred as general noise kernel-based
models from now on throughout this work.

2.3.2 Optimal Cost Function

The next step will be to obtain the optimal cost function in a maximum likelihood sense
for a particular choice of error distribution in the data. We assume the noise in the data
is additive and

f(xi) = yi + ξi, i = 1, ...N , (2.3.6)

where ξi are independent and identically distributed, i.i.d., random variables. Following
[25], the general approach to obtain the optimal cost function is to minimize

NX
H[f] = c(ξi) + λΦ[f] , (2.3.7)

i=1

where λ is a positive number and Φ[f] is a smoothness functional that acts as a regularizer.

A probabilistic approach is now taken, and the function f is regarded as the realization
of a random feld with a known prior probability distribution, denoted P [f]. The goal is
to maximize the posterior probability of f given the data D, i.e., P [f |D]. Using the Bayes
Theorem one can get to the following formulation for this probability

P [D|f]P [f]
P [f |D] = ∝ P [D|f]P [f] , (2.3.8)

P [D]

P [D|f] in (2.3.8) represents the conditional probability of the data D given the function
f . Therefore, P [D|f] is essentially a model of the noise, and if this noise is assumed to
be additive, as in (2.3.6), and i.i.d. with probability distribution p(ξi), this conditional
probability can be written as

NY
P [D|f] = p(ξi) . (2.3.9)

i=1

35 2.3. General Noise SVR

As explained in [25] the prior is often written as

−λΦ[f]P [f] ∝ e . (2.3.10)

Now, replacing (2.3.10) and (2.3.9) into equation (2.3.8) we have

NY
−λΦ[f]P [f |D] ∝ e p(ξi) . (2.3.11)

i=1

We want to maximize P [f |D] or, equivalently, to minimize − log (P [f |D]), for which we
have that

!
NY

−λΦ[f]− log (P [f |D]) ∝ − log e p(ξi)
i=1 !

NY
= − log (e −λΦ[f]) − log p(ξi) (2.3.12)

i=1
NX

= λΦ[f] − log p(ξi) .
i=1

Combining equations (2.3.7) and (2.3.12) we can write the following

N NX X
H[f] = c(ξi) + λΦ[f] = − log p(ξi) + λΦ[f] , (2.3.13)

i=1 i=1

which leads to the conclusion that the optimal loss function in a maximum likelihood sense
for a given error distribution, p(ξi), is

c(ξi) = − log p(ξi) = − log p(f(xi) − yi) . (2.3.14)

Using (2.3.14) we can obtain now the optimal loss function for a given choice of noise
distributions. However, the cost function resulting from this reasoning might be nonconvex.
In this case, one may have to fnd a convex proxy in order to deal with the optimization
problem or use a non-convex optimization method, such as the one proposed in [31] for
SVMs.

Due to this and other reasons, related to the loss of some mathematical properties that
existed when using the ϵ-ILF function, plugging general cost functions into the general dual
formulation problem defned in (2.3.4) often leads to SMO no longer being a feasible choice
as optimization method, as we mentioned before. Therefore, choosing a new optimization
algorithm to solve general noise SVR formulations avoiding this problem will be one of the
steps we aim to solve in our proposed approach.

36 Chapter 2. Theoretical Background

2.3.3 Loss Function and Dual Problem for Diferent Noise Distributions

In order to get the formulation of a general noise SVR for a particular choice of noise
distribution it is necessary to follow these steps:

‹ Decide the noise distribution to be used.

‹ Compute the corresponding optimal loss function for that noise distribution.

‹ Insert that loss function into the general noise SVR formulation shown in (2.3.1).

‹ Get the Lagrange formulation corresponding to the result of the previous step.

‹ Compute derivatives to obtain the dual problem.

We will show in this section these steps for the Laplace and Gaussian distributions,
both for the zero and non-zero mean cases. We will also describe these steps for the Soft
Insensitive Loss Function, SILF, an alternative loss function to the standard ϵ-ILF [32].
Although we will not be making use of this loss function for the proposed methods or
experiments described in this work, we considered that it was interesting to include it in
this section for the sake of completeness.

2.3.3.1 Laplace

Let us start with the simpler zero-mean case. The error distribution is then assumed to
be

1 |ξi|− p(ξi) = e σ , (2.3.15)
2σ

where σ > 0 is a parameter to be estimated and in Section 2.4.2.1 we will describe how to
obtain the optimal estimate for it. Replacing (2.3.15) into (2.3.14) we obtain

� � � � � �
1 |ξi| 1 � |ξi|

� 1 |ξi|
c(ξi) = − log e −

σ = − log − log e −
σ = − log + . (2.3.16)

2σ 2σ 2σ σ

The term − log (1) is independent of ξi and therefore a constant for any error value, so2σ
it is valid to ignore it from now on and work with the following expression instead

|ξi| |f(xi) − yi|
c(ξi) = = . (2.3.17)

σ σ

As described in Section 2.3.1, in particular equation (2.3.2), for the general noise SVR
formulation given in [28] we have that

c(ξ) = 0 , ∀ ξ ∈ [−ϵ ∗ , ϵ] . (2.3.18)

Taking into the account the defnion of c(ξ) in (2.3.17), this implies necessarily that
ϵ∗ = = 0. This is an important property, as it means that in this SVR formulation we i ϵi
will not have a hyperparameter ϵ.

37 2.3. General Noise SVR

Now, inserting (2.3.17) into (2.3.1) we arrive to the following general formulation of the
primal problem for Laplace noise

NX1 C
min ||β||2 + (ξi + ξi ∗)

β,β0,ξi,ξ∗ 2 σi i=1
(2.3.19)subject to ξi, ξ ∗ ≥ 0, i = 1, ...N ,i

f(xi) − yi ≤ ξi, i = 1, ...N ,
yi − f(xi) ≤ ξi ∗ , i = 1, ...N .

where f(xi) =< h(xi), β > +β0 and h the corresponding basis expansions.

The Lagrange formulation corresponding to (2.3.19) is

N NX X1 C
L = ||β||2 + (ξi + ξi ∗) − αi(yi − f(xi) + ξi)−

2 σ
i=1 i=1

N N N (2.3.20)X X X
∗ α ∗

i (f(xi) − yi + ξi ∗) − µiξi − µi ξ ∗ ,i
i=1 i=1 i=1

∗ with αi, α ∗
i , µi, µ ≥ 0 .i

Computing the derivatives in (2.3.20) after replacing f(xi) by < h(xi), β > +β0 we
obtain

N
∂L

=
X

(αi − α ∗
i) ,∂β0 i=1

N N NX X X∂L
= β + αih(xi) − α ∗

i h(xi) = β + (αi − α ∗
i)h(xi) ,∂β (2.3.21)i=1 i=1 i=1

∂L C
= − αi − µi, i = 1, ...N ,

∂ξi σ
∗∂L

=
C − αi ∗ − µi , i = 1, ...N ,

∂ξi
∗ σ

and setting the derivatives (2.3.21) to zero we get

NX
(αi − αi ∗) = 0 ,

i=1
NX

β = (αi
∗ − αi)h(xi) , (2.3.22)

i=1
C

αi = − µi, i = 1, ...N ,
σ

∗ α ∗ =
C − µi , i = 1, ...N .i σ

38 Chapter 2. Theoretical Background

Plugging (2.3.22) into (2.3.20) and denoting by k the kernel function we get the dual
problem for Laplace noise

N N NX XX1
max D = yi(αi

∗ − αi) − (αi
∗ − αi)(α ∗

j − αj)k(xi, xj)
αi,α∗ 2i i=1 i=1 j=1

subject to αi, α ∗ ≥ 0, i = 1, ...N ,i
C (2.3.23)

αi, α ∗ ≤ , i = 1, ...N ,i σ
NX

(α ∗
i − αi) = 0 ,

i=1

with the following KKT conditions as constraints at the optimal point αbi, αb∗
i

NXb α ∗ β = (bi − αbi)h(xi) ,
i=1

αbi(yi − fb(xi) + ξbi) = 0 ,
αb�i ∗ (fb(xi) −�yi + ξb i ∗) = 0 , (2.3.24) bC − αbi ξi = 0 ,
σ� �
C − αbi ∗ ξb i ∗ = 0 .
σ

It can be seen that (2.3.23) is very similar to the classical SVR formulation given in
(2.2.11) setting ϵ = 0 and adding the presence of the parameter σ

Following an analogous procedure, we can get the dual problem formulation for the non-
zero-mean Laplace loss function choice. The only diference in that case is that the error
distribution is assumed to be

1 |ξi−m|−P (ξi) = e σ , (2.3.25)
2σ

where σ > 0 and m ∈ (−∞, ∞) are parameters to be optimized and we will give their
optimal values in Section 3.3.1. Replacing (2.3.25) into (2.3.14) we get

� � � �
1 |ξi−m| 1 |ξi − m|

c(ξi) = − log e −
σ = − log + . (2.3.26)

2σ 2σ σ

The term − log (1) is again independent of ξi so can be ignored to work with the2σ
following expression

|ξi − m|
c(ξi) = . (2.3.27)

σ

39

i

2.3. General Noise SVR

Replacing (2.3.17) for (2.3.27) in our previous steps, the dual problem for non-zero
Laplace noise can be obtained. First, we have that

c(ξ) = 0 , ∀ ξ ∈ [−ϵ ∗ , ϵ] . (2.3.28)

Taking into account the defnion of c(ξ) in (2.3.27), this implies necessarily that ϵ∗ =
ϵi = m. Now, inserting (2.3.27) into (2.3.1) we arrive to the following general formulation
of the primal problem for Laplace noise

NX1 C
min ||β||2 + (|ξi − m| + |ξ ∗ − m|)

β,β0,ξi,ξ∗ 2 σ i
i i=1

(2.3.29)subject to ξi, ξ ∗ ≥ 0, i = 1, ...N ,i
f(xi) − yi ≤ m + ξi, i = 1, ...N ,
yi − f(xi) ≤ m + ξi ∗ , i = 1, ...N .

where again f(xi) =< h(xi), β > +β0 and h represents the corresponding basis expansions.
The Lagrange formulation corresponding to (2.3.29) is

N NX X1 C
L = ||β||2 + (|ξi − m| + |ξ ∗ − m|) − αi(yi − f(xi) + m + ξi)−i2 σ

i=1 i=1
N N N (2.3.30)X X X

∗ αi
∗ (f(xi) − yi + m + ξi ∗) − µiξi − µi ξ ∗ ,i

i=1 i=1 i=1
∗ with αi, αi ∗ , µi, µ ≥ 0 .i

However, when computing the derivatives in (2.3.30) problems arise due to the absolute
Cvalues in the term
PN (|ξi − m| + |ξ∗ − m|) which is involved in the derivatives forσ i=1 i

ξi and ξi ∗ . Therefore, the use of SMO over the dual problem for this distribution, and
others where analogous problems exist, is not feasible. This is one of the main reasons that
justify our proposed approaches, by means of NORMA optimization or Deep Learning
frameworks, to build general noise models, which will be described in Chapter 3.

2.3.3.2 Gaussian

Let us start again with the simpler zero-mean case. The error distribution is assumed
to be

p(ξi) = √ 1
e −

2
ξ

σ
i
2

2 , (2.3.31)
2πσ

where σ2 > 0. Replacing (2.3.31) into (2.3.14) we obtain

� �
ξ21 i− c(ξi) = − log √ e 2σ2

2πσ� � � �
ξ21 i− = − log √ − log e 2σ2 (2.3.32)

2πσ� �
1 ξi

2
= − log √ + .

2σ22πσ

40 Chapter 2. Theoretical Background

� �
√ 1As in the Laplace case, − log is again independent of ξi so it can be ignored to
2πσ

work with the following simpler expression

ξ2 (f(xi) − yi)2
i c(ξi) = = . (2.3.33)

2σ2 2σ2

Following the approach proposed in [33] for the Gaussian distribution assumption case,
we use a slightly diferent formulation of (2.3.1), changing the slack variables, ξi, ξ∗ toi

ξi = yi − f(xi) . (2.3.34)

This formulation allows for negative slack values, so it is not necessary to add a second
set of variables ξi ∗ , in contrast to previous SVR formulations given. Thus, the problem in
(2.3.1) is reformulated as

N
1 imin ||β||2 + C

X ξ2

β,β0,ξi 2 2σ2 (2.3.35)
i=1

subject to yi − f(xi) = ξi, i = 1, ...N .

We have that c(ξ) = 0 ⇒ ξ = 0. Using this result and the conditions detailed in Section
2.3.1, in particular equation (2.3.2), we get

c(ξ) = 0 , ∀ ξ ∈ [−ϵ ∗ , ϵ] ⇒ ϵ ∗ = ϵ = 0 , (2.3.36)

Now, inserting (2.3.36) into (2.3.35) we arrive to the following formulation of the primal
problem for Gaussian noise

NX1 C
ξ2min ||β||2 + i

β,β0,ξi 2 2σ2 (2.3.37)
i=1

subject to yi − f(xi) = ξi, i = 1, ...N .

It can be seen that this formulation is analogous to the proposed Least Squares SVR,
LS-SVR, by Suykens [34], which is equivalent to kernel ridge regression.

Using now f(xi) =< h(xi), β > +β0, the Lagrangian for the primal problem correspond-
ing to (2.3.37) is

N NX X1 C
ξ2L = ||β||2 + − αi(< h(xi), β > +β0 − yi + ξi) . (2.3.38)

2 2σ2 i
i=1 i=1

41 2.3. General Noise SVR

Computing the derivatives in (2.3.38) we obtain

NX∂L
= − αi ,

∂β0 i=1
NX∂L (2.3.39)= β − αih(xi) ,

∂β
i=1

∂L C
= ξi − αi, i = 1, ...N ,

∂ξi σ2

and setting the derivatives (2.3.39) to zero we get

NX
αi = 0 ,

i=1
NX (2.3.40)

β = αih(xi) ,
i=1
C

αi = ξi, i = 1, ...N .
σ2

Plugging (2.3.40) into (2.3.38) we get the dual problem for the Gaussian case, which as
can be seen is analogous to the one used in kernel ridge regression [35] and has the following
formulation

N N N � �X XX1 δij σ
2

max D = yiαi − αiαj k(xi, xj) +
αi 2 C

i=1 i=1 j=1

subject to αi ≥ 0, i = 1, ...N (2.3.41)
NX
αi = 0 ,

i=1

with the KKT conditions at the optimal point

NXbβ = αbih(xi) ,
i=1

(2.3.42)bαbi =
C
ξi, i = 1, ...N ,

σ2

αbi(fb(xi) − yi + ξbi) = 0 .

Following an analogous procedure, we can get the dual problem formulation for the non-
zero-mean Gaussian loss function choice. The only thing left in order to do this is to
get the optimal loss function for that case. The error distribution now is

(ξi−m)21 − p(ξi) = √ e 2σ2 , (2.3.43)
2πσ

42 Chapter 2. Theoretical Background

where σ2 > 0 and m ∈ (−∞, ∞). Replacing (2.3.43) into (2.3.14) we obtain

� �
(ξi−m)21 − c(ξi) = − log √ e 2σ2 =

2πσ� � � �
(ξi−m)21 − = − log √ − log e 2σ2 = (2.3.44)

2πσ� �
1 (ξi − m)2

= − log √ + .
2σ22πσ

√ 1The term − log () is independent of ξi and thus can be ignored to work with the
2πσ

following expression

(ξi − m)2
c(ξi) = . (2.3.45)

2σ2

Replacing (2.3.33) for (2.3.45) in our previous steps, the dual problem for non-zero mean
Gaussian noise can be obtained. First, we have that c(ξ) = 0 , ∀ ξ ∈ [−ϵ∗, ϵ] ⇒ ϵ∗ = ϵ = m.
Now, inserting this result into (2.3.1) and reformulating as previously did for the zero-
mean case, we arrive to the following formulation of the primal problem for non-zero mean
Gaussian noise

NX1 C
min ||β||2 + (ξi − m)2
β,β0,ξi 2 2σ2 (2.3.46)

i=1

subject to yi − f(xi) = ξi, i = 1, ...N .

Using now f(xi) =< h(xi), β > +β0, the Lagrangian for the primal problem correspond-
ing to (2.3.46) is

N NX X1 C
L = ||β||2 + (ξi − m)2 − αi(< h(xi), β > +β0 − yi + ξi) . (2.3.47)

2 2σ2
i=1 i=1

Next, computing the derivatives in (2.3.47) we get the same results as in (2.3.39), except
for the term corresponding to ∂L , which is now ∂ξi

∂L C
= (ξi − m) − αi, i = 1, ...N . (2.3.48)

∂ξi σ2

Setting the derivatives to zero and plugging them into (2.3.47) we get the dual problem
for the non-zero mean Gaussian case. It can be seen that this dual problem has the same
formulation as the zero-mean case shown in (2.3.41) but replacing the KKT condition
αbi = C ξbi for αbi =

σ
C
2 (ξbi − m).

σ2




43 2.3. General Noise SVR

Figure 2.3.1: SILF vs ϵ-ILF. SILF presents a smoother shape.

2.3.3.3 SILF

As stated before, a loss function called SILF has been proposed as an alternative to the
standard ϵ-ILF [32]. We will not be making use of this loss function for the purpose of this
work, but for the sake of completeness we include here the correspoding general noise SVR
formulation adapted to this loss function. The formulation of SILF is the following one

 −(f(xi) − yi) − ϵ, (f(xi) − yi) ∈ ∆C∗

((f(xi)−yi)+(1−ρ)ϵ)2 , (f(xi) − yi) ∈ ∆M ∗
4ρϵ

c(xi, yi, f(xi)) = 0, (f(xi) − yi) ∈ ∆0 (2.3.49)
((f(xi)−yi)−(1−ρ)ϵ)2

, (f(xi) − yi) ∈ ∆M 4ρϵ
(f(xi) − yi) − ϵ, (f(xi) − yi) ∈ ∆C ,

where

0 < ρ ≤ 1 ,
ϵ > 0 ,
∆C∗ = (−∞, −(1 + ρ)ϵ) ,

(2.3.50)
∆M∗ = [−(1 + ρ)ϵ, −(1 − ρ)ϵ] , ∆0 = (−(1 − ρ)ϵ, (1 − ρ)ϵ) ,
∆M = [(1 − ρ)ϵ, (1 + ρ)ϵ] ,
∆C = ((1 + ρ)ϵ, +∞) .

Figure imsvmsilf shows a visual comparison of SILF and ϵ-insensitive loss functions. The
purpose of using SILF as loss function in SVR models is to combine in a single loss function
two properties:

‹ The sparseness of the ϵ-insensitive loss function, which means that training samples
with small noise that fall in the fat zero region are not involved in the representation
of regression functions and therefore the computational cost is reduced.

44 Chapter 2. Theoretical Background

‹ The smoothness similar to that of the quadratic and Huber’s loss functions, that
can grant favorable mathematical properties.

Using the conditions detailed in Section 2.3.1 we get

c(ξ) = 0 , ∀ ξ ∈ [−ϵ ∗ , ϵ] ⇒ ϵ ∗ = ϵ = (1 − ρ)ϵ , (2.3.51)

and by (2.3.51) and the conditions in Section 2.3.1 we get

�
ξ2
i , ξi ∈ [0, 2ρϵ) ,c(ξi) = 4ρϵ (2.3.52)

ξi − ρϵ , ξi ∈ [2ρϵ, ∞) ,

(
ξ∗2

, ξ∗ ∈ [0, 2ρϵ) ,c(ξi
∗) = 4

i
ρϵ i (2.3.53)

ξ∗ − ρϵ , ξ∗ ∈ [2ρϵ, ∞) .i i

Thus, inserting (2.3.51), (2.3.52), and (2.3.53) into (2.3.1) we arrive to the following
formulation of the general SILF SVR problem

NX1
min ||β||2 + C (c(ξi) + c(ξi ∗))

β,β0,ξi,ξ∗ 2i i=1
(2.3.54)subject to ξi, ξ ∗ ≥ 0, i = 1, ...N i

f(xi) − yi ≤ (1 − ρ)ϵ + ξi, i = 1, ...N
yi − f(xi) ≤ (1 − ρ)ϵ + ξi ∗ , i = 1, ...N .

The Lagrange function corresponding to the previous primal problem (2.3.54) is

N NX X1
L = ||β||2 + C (c(ξi) + c(ξi ∗)) − αi(yi − f(xi) + (1 − ρ)ϵ + ξi)−

2
i=1 i=1

(2.3.55)
N N NX X X

∗ − α ∗
i (f(xi) − yi + (1 − ρ)ϵ + ξi ∗) − µiξi − µi ξ ∗ .i

i=1 i=1 i=1

Writting f(x) in the form of basis expansions, i.e., f(xi) =< h(xi), β > +β0 and com-
puting the derivatives in (2.3.55) we obtain

NX∂L
= (αi − αi ∗) ,

∂β0 i=1
N N NX X X∂L

= β + αih(xi) − αi
∗ h(xi) = β + (αi − αi ∗)h(xi) ,

∂β (2.3.56)i=1 i=1 i=1
∂L ∂c

= C (ξ) − αi − µi, i = 1, ...N ,
∂ξi ∂ξ
∂L ∂c ∗ = C (ξ ∗) − αi ∗ − µi , i = 1, ...N ,
∂ξi

∗ ∂ξ∗

45 2.3. General Noise SVR

and setting all these derivatives to zero we get

NX
(αi − αi ∗) = 0 , (2.3.57)

i=1

NX
β = (αi

∗ − αi)h(xi) , (2.3.58)
i=1

∂c
αi = C (ξ) − µi, i = 1, ...N , (2.3.59)

∂ξ

∗ α ∗ = C
∂c

(ξ ∗) − µi , i = 1, ...N . (2.3.60)i ∂ξ∗

Plugging (2.3.57), (2.3.58), (2.3.59) and (2.3.60) into (2.3.55) we get the dual problem
for the SILF

N N NX XX1
max D = yi(αi

∗ − αi) − (αi
∗ − αi)(α ∗

j − αj)k(xi, xj)−
αi,α∗ 2i i=1 i=1 j=1

N NX X ∂c ∂c
(1 − ρ)ϵ (αi + αi ∗) + C [c(ξi) + c(ξi ∗) − ξi (ξ) − ξ ∗ (ξ ∗)]

∂ξ i ∂ξ∗
i=1 i=1

subject to ξi, ξ ∗ ≥ 0 ,i
αi, α ∗

i ≥ 0, i = 1, ...N , (2.3.61)
∂c(ξ)

α≤C (ξ), i = 1, ...N ,
∂ξ

αi
∗ ≤ C

∂c
(ξ ∗), i = 1, ...N ,

∂ξ∗

NX
(αi

∗ − αi) = 0 ,
i=1

with the following KKT conditions at the optimal solution

NX
β = (αi

∗ − αi)h(xi) ,
i=1

αi(yi− < h(xi), β > +β0 + (1 − ρ)ϵ + ξi) = 0 ,
α ∗
i (< h(xi), β > +β0 − yi + (1 − ρ)ϵ + ξi ∗) = 0 , (2.3.62)
∂c

(C (ξ) − αi)ξi = 0 ,
∂ξ

(C
∂c

(ξ ∗) − α ∗
i)ξ ∗ = 0 .

∂ξ∗ i

46 Chapter 2. Theoretical Background

As shown in [32], terms involving ξi and ξ∗ can be simplifed through easy steps to arrive i
at the following expression

N N NX XX1
max D = yi(αi

∗ − αi) − (αi
∗ − αi)(αj ∗ − αj)K(xi, xj)

αi,α∗ 2i i=1 i=1 j=1

NX
− (1 − ρ)ϵ (αi + α ∗

i) (2.3.63)
i=1

NX
2−

ρϵ
(α2

i + α ∗) ,iC
i=1

where the constraints are the same as in (2.3.61) with the exception of the Lagrangian
coefcients αi and α∗ now being upper bounded by the hyperparameter C, i.e.,i

αi, α ∗ ≤ C i = 1, ...N . (2.3.64)i

Although formulations for the SILF loss function have been described here, this cost
function will not be used in the experiments carried out as part of this thesis, due to the
extra hyperparameter ρ implying difculties for the implementation of this cost function
in our proposed framework, which is described in Section 3.

Table 2.3.1 shows a summary of all the loss functions we have discussed up to this point.
Mathematical computations required to obtain all these formulations can be found in the
previous sections of this work. Parameter m for the non-zero mean Laplace and Gaussian
distributions will be denoted µ from now on, as there is no risk of confusion with the
Lagrange parameter µi in the following chapters.

2.4 Constant Width Error Intervals for SVR

SVR models have been widely used in a variety of regression problems with excellent
results, being considered one of the state-of-the-art choices in diferent areas. However, the
previously described classical ϵ-SVR only gives a prediction, with no possibility of obtaining
probability intervals to address the uncertainty in these predictions. It is important to
notice that, for these type of models, approaches such as the well known ones for linear
regression under Gaussian models are not feasible. First, because the familiar analytic
estimates of the linear coefcients are impossible in SVR due to its formulation, and less so
any asymptotic analysis. Besides, it should also be worth noting the difculty of ensuring
the assumption of normal random variables in most scenarios.

To deal with these issues, C.J. Lin proposed a direct approach to build error intervals
for SVR [18] [27]. This method assumes prediction errors to follow a specifc probability
distribution and uses this density function hypothesis to defne probability intervals for
the model errors. The main idea behind this proposed method is that if the distribution
assumption is true and hence the underlying noise distribution is accurately estimated,
the resulting computed error intervals will adapt well to the real prediction errors of the
regression model. We proceed in the next section with the technical defnition of this
method.







47 2.4. Constant Width Error Intervals for SVR

Table 2.3.1: Loss functions corresponding to several error distributions.

Error Distribution Loss Function
ϵ-ILF

−ξi − ϵ, ξi < −ϵ
c(ξi) = 0, ξi ∈ [−ϵ, ϵ]  ξi − ϵ, ξi > ϵ .

SILF

−ξi − ϵ, ξi ∈ ∆C∗

(ξi+(1−β)ϵ)2
, ξi ∈ ∆M∗ 4βϵ

c(ξi) = 0, ξi ∈ ∆0

(ξi−(1−β)ϵ)2
, ξi ∈ ∆M4βϵ 

ξi − ϵ, ξi ∈ ∆C ,

Zero-mean Laplace |ξi|c(ξi) = σ

Laplace |ξi−µ|c(ξi) = σ

Zero-mean Gaussian ξ2
ic(ξi) =

2σ2

Gaussian (ξi−µ)2
c(ξi) =

2σ2

2.4.1 Method

In the method proposed in [27] zero mean Gaussian and Laplace families are considered.
The idea is to model the distribution of errors, Ψ, assuming one of these distribution, based
on a set of out-of-sample residuals {ψi}N The error distribution assumed is ftted byi=1.
maximum likelihood estimation, MLE, [36] using the previously computed out-of-sample
residuals of an SVR model used to predict a regression target.

The residuals are the result of conducting a k -fold cross-validation over the training data
to get the estimated functions fbj , j = 1, ..., k, and then setting

jψ ≡ fbj (xi) − yi , (2.4.1)
i

for (xi, yi) in fold j of the training data. Although this cross-validation scheme is proposed
in [27], the same idea could be applied but using a fxed validation set to obtain the
residuals.

Assuming that the ψi are independent, we can estimate the distributions parameters θ
by maximizing the likelihood L. If ψi are independent we have

NY
L(θ; ψ1, ..., ψn) = p(ψi|θ) , (2.4.2)

i=1

48 Chapter 2. Theoretical Background

where p represents the density function of the distribution of ψi.

Now, denoting l the logarithm of the likelihood we get

nX
l(θ; ψ1, ..., ψn) = log p(ψi|θ) . (2.4.3)

i=1

Maximizing l is equivalent to maximize L so both formulations can be applied, although
using l leads to a simpler problem.

A difculty with the method proposed in [27] is that it assumes the residual distribution
to be independent of x and, therefore, probability intervals have exactly the same width
for all input instances. In theory, the density distribution may depend on the input x, and
therefore the length of the predictive interval with a pre-specifed coverage probability may
vary from one example to another, refecting the fact that the prediction variances vary
with diferent input values. In fact, it is easy to think of real-world problems where this
behaviour has a strong impact.

Nevertheless, the authors who proposed this method claim that despite the fact that
their error interval is not infuenced by x, and hence it does not refect this property, it
can be justifed if we consider the probability to be taken over all possible input values. In
[27] it is proposed to model ψi by zero-mean Gaussian and Laplace distributions because
residuals of data studied in previous work seem to be symmetric about zero and both
Gaussian and Laplace captured their shape reasonably well. We describe how to model ψi
using these distributions following the method proposed in [27].

2.4.2 Parameters and Error Intervals for Diferent Distributions

2.4.2.1 Zero mean Laplace

Assuming a zero mean Laplace distribution we get the following equation for l

n n nX 1 |ψi| X 1 X |ψi|
l(θ; ψ1, ..., ψn) = log e −

σ = log − =
2σ 2σ σ

i=1 i=1 i=1
(2.4.4)nX1

= −n log 2 − n log σ − |ψi| .
σ
i=1

We can compute now the corresponding derivative
nX∂l 1 1

= −n + |ψi| . (2.4.5)
∂σ σ σ2

i=1

In the maximum point, where we denote by σb the corresponding density parameter value,
the frst derivative must be equal to zero, so

nX1 1 −n + |ψi| = 0 . (2.4.6)
σb σb2

i=1

Solving (2.4.6) we obtain

49 2.4. Constant Width Error Intervals for SVR

P n |ψi|i=1σb = , (2.4.7)
n

The equation in (2.4.7) is just the mean absolute error, MAE.

Finally, we need to compute the upper sth percentile, ps, of the corresponding probability bdistribution of ψ = f(x) − y. For a zero-mean symmetric variable with density p(z), we
can obtain ps just by solving

Z ps

1 − s = p(z)dz . (2.4.8)
−∞

The prediction error interval is then (−ps, ps). For the zero mean Laplace distribution, we
can replace p(z) in 2.4.8 for

1 |z|
p(z) = e −

σ
2σ

and we get

Z ps

1 − s = p(z)dz = Z−∞
ps 1 |z|− e σ dz =

2σ−∞" |z| #ps
z(1 − e−

σ)
= (2.4.9)

2|z|
−∞

− ps
1 − e σ 1

+ =
2 2
− ps
σe

1 − ⇒ ps = −σ log 2s .
2

Therefore, as described in [27], the error interval for the case of the zero mean Laplace
distribution is

(σ log 2s, −σ log 2s) . (2.4.10)

2.4.2.2 Zero mean Gaussian

Assuming a zero mean Gaussian distribution we get the following equation for l

n n nX ψ2 X X ψ21 i 1
l(θ; ψ1...ψn) = log √ e −

2σ2 = log √ −
2σ
i
22πσ 2πσ

i=1 i=1 i=1
(2.4.11)n√ 1 X

= −n log 2π − n log σ − ψ2 .
2σ2 i

i=1

In the maximum point, where we denote σb the corresponding density parameter value, the
frst derivative must be equal to zero, so

50 Chapter 2. Theoretical Background

nX∂l 1 1
= −n +

σ3 ψi
2 = 0 . (2.4.12)

∂σb σb b
i=1

Solving (2.4.12) we obtain

P n ψ2
i=1 iσb2 = . (2.4.13)
n

The equation in (2.4.13) is just the mean squared error, MSE.

The formulation for the prediction error interval for the zero mean Gaussian distribution
assumption is again the same as its previously defned Laplace counterpart, i.e. (−ps, ps),
with ps as defned in (2.4.8). For the zero mean Gaussian distribution, we can replace p(z)
in 2.4.8 for

1 z 2
− p(z) = √ e 2σ2

2πσ

and it can be seen [27] that this leads to

2
ps = , (2.4.14)

σ[erf(1√−s) + 1]
2

where erf is the Gauss error function defned as

Z z2 −t2
erf(z) = e dt . (2.4.15)

π 0

Therefore, the error interval for the case of the zero mean Gaussian distribution is

!
2 2 − , . (2.4.16)

σ[erf(1√−s) + 1] σ[erf(1√−s) + 1]
2 2

2.5 NORMA Optimization

Support Vector Machines are a type of ML models belonging to what is usually called
kernel-based algorithms. This type of methods has achieved considerable success in various
problems when working in a batch setting, i.e. where all of the training data is available
in advance and you train your model in a single step in which you provide all available
data as input to your model, even if it is split into train/validation/test subsets. However,
there has been little use of this family of methods in an online setting, in which you train
your model in a multistep process where at each iteration you provide one sample, or a
subset of samples, as input to your model, which automatically is updated correspondingly.
Besides, the cost order of the algorithm usually employed in batch training of SVM models,
SMO, does not go below quadratic, which does not mix well with the large volumes of data
available in the big data era.

51 2.5. NORMA Optimization

Optimization methods suitable to be used to train SVM models in an online setting have
been proposed, like Pegasos [37] or Naive Online Reg Minimization Algorithm, NORMA
[38]. We will focus here in the latter. This optimization algorithm is developed by con-
sidering classical stochastic gradient descent within a feature space and the use of some
straightforward tricks, and it is shown to be a computationally efcient algorithm for a
wide range of problems such as classifcation, regression, and novelty detection.

The goal of this method is, given a particular supervised learning problem to solve, to
obtain an optimal predictive function, f , following an online setting. In particular, this
method employs an iterative process, where at the end of a particular iteration t + 1, we
will obtain an approximation ft+1, dependant on the previous iteration result ft, to the
optimal predictive function. NORMA uses as update rule the following one

ft+1 = ft − ηt∂ft Rinst,λ[ft, xt, yt] , (2.5.1)

where ηt > 0 is the learning rate, which usually is chosen to be constant, i.e., ηt = η, and
∂ft Rinst,λ[ft, xt, yt] is the gradient of

λ
Rinst,λ[ft, xt, yt] := l(ft(xt), yt) + ||ft||2 , (2.5.2)

2
with respect to the predictive function f , where λ ≥ 0 is the regularization parameter and
l is a given loss function. In particular, l(ft(xt), yt) is the loss the learning algorithm makes
when it tries to predict the target yt based on the features xt and the current estimate ft
based on the previous samples {xi, yi}t−1

i=1.

Therefore, NORMA performs gradient descent with respect to what the authors called
the instantaneous regularized risk, Rinst,λ. Due to the defnition in (2.5.2), the derivative
∂ft Rinst,λ[ft, xt, yt] can be divided into two factors:

∂ft l(ft(xt), yt) , (2.5.3) � �
λ

∂ft ||ft||2 . (2.5.4)
2

Regarding (2.5.3), as stated in [38], when working in a reproducing kernel Hilbert space,
H, [28] and due to the reproducing property, it is satisfed that

< f, k(x, ·) >H = f(x), ∀x ∈ R , (2.5.5)

where k is a particular kernel function k : R × R → R, the following equality holds

∂ft l(ft(xt), yt) = l ′ (ft(xt), yt)k(xt, ·) . (2.5.6)

As for (2.5.4), it holds that

� �
∂ft

λ ||ft||2
2

=
λ
2ft = λft .

2
(2.5.7)

Therefore, combining (2.5.6) and (2.5.7) we get

∂ft Rinst,λ[ft, xt, yt] = l ′ (ft(xt), yt)k(xt, ·) + λft . (2.5.8)

52 Chapter 2. Theoretical Background

Now, plugging (2.5.8) into (2.5.1) we obtain

ft+1(x) = ft(x) − ηt(l ′ (ft(xt), yt)k(xt, x) + λft(x))
(2.5.9)

= (1 − ηtλ)ft(x) − ηtl ′ (ft(xt), yt)k(xt, x) ,

where the condition ηt < 1 must hold for the algorithm to work properly. λ

Writing ft in (2.5.9) in the form of kernel expansions, as proposed in [39], we have

tX
ft+1(x) = αt

i
+1k(xi, x) . (2.5.10)

i=1

where the coefcients αi are updated at iteration t + 1 based on the values αi in thet+1 t
previous iteration via

αi = (1 − ηtλ)αi for i < t , (2.5.11)t+1 t

and a new coefcient αtt+1 is added, with the following value

αt = −ηtl ′ (ft(xt), yt) . (2.5.12)t+1

Plugging (2.5.11) and (2.5.12) into (2.5.10) we obtain the following equivalent formula-
tion for the updating step in (2.5.9)

t−1X
fb t+1(x) = (1 − ηtλ) αbitk(xi, x) − ηtl ′ (f̂

t(xt), yt)k(xt, x) , (2.5.13)
i=1

The combination of (2.5.10), (2.5.11), and (2.5.12) constitute the update rules for the
NORMA optimization at iteration t + 1 used in practice. f0 is called the initial hypothesis
and commonly takes the value f0 = 0. As shown in [38] an extra update rule to include the
possibility of the existence of an ofset b term for the function f , i.e. f b(xt) = ft(xt) + bt,t
can be added.

There are several ways of speeding up the algorithm implementation. For instance, as
proposed in [38], instead of updating all old coefcients αi for i < t for each iteration, one
may simply choose ηt to be constant, i.e ηt = η, and cache the power series

α1 = (1 − ηλ)α1
2 1

α1
3 = (1 − ηλ)α2

1 = (1 − ηλ)2α1
1

(2.5.14)
...
α1 = (1 − ηλ)n−1α1
t 1

and then pick the suitable terms as needed. Stopping criteria for these updating iterative
process are given in Section 3.1.3.

53 2.6. Deep Learning

Figure 2.6.1: Artifcial Neural Network following a Fully Connected schema, where each
neuron from one layer is connected to all neurons in the following layer. Taken from [41].

2.6 Deep Learning

The concept of Deep Learning, DL, has had diferent interpretations in recent years.
Often, DL is employed simply to refer to a specifc subset of Artifcial Neural Networks
or ANNs [40], another family of Machine Learning models that can be used both for
classifcation and regression. In particular, it is used to name ANNs with a large number of
what are called hidden layers. An ANN model is made up of a collection of connected units
called neurons, where the output of each neuron is computed by some non-linear function,
called activation function, of the weighted sum of its inputs. Neuron connections have
weights, so activations of diferent neurons can have bigger impact than others. Neurons
of one layer can connect to neurons of the preceding and following layers. The layer that
receives external data is the input layer and the last layer, the one that produces the
ultimate result, is the output layer. In between them are zero or more hidden layers.
When the number of these hidden layers is large, we talk about Deep Artifcal Neural
Networks, often referred simply as DL models.One example of this type of models is shown
in Figure 2.6.1.

However, the DL denomination has also been used to refer to any type of Machine Learn-
ing model framework which consists of a training schema containing several optimization
layers, each one afecting the result of the preceding and following layers. An example
of this are Deep Belief Networks or DBNs [42], a type of ML models used for unsuper-
vised learning and based on multiple layers, but with signifcant diferences to the standard
schema of an ANN.

Nevertheless, it is true that clearly the link between DL and Deep ANNs is strong
and almost ever-present nowadays. Several factors have probably had an impact on this,
including the fact that the ANNs schema adapts almost perfectly to the concept of DL
framework and that some of the frst groundbreaking advances in DL correspond to deep
ANNs.

We will focus here on the fully connected version of Deep ANNs as we consider it adapts
better to our purposes than other frameworks like Convolutional Neural Networks, popu-

54 Chapter 2. Theoretical Background

lar in image recognition problems, or Recurrent Neural Networks, often used in Natural
Language Processing tasks.

2.6.1 DL Special Properties

One of the deciding factors for the recent prevalence of DL in the Machine Learning world
is that this family of models present some extremely relevant properties. We will focus
here on two of them: Complexity and End-to-End learning.

Complexity: When trained with large enough datasets, DL models commonly achieve
better results than other families of ML models. The reason for this behaviour is the
special nature of DL frameworks, consisting of several layers, where usually at each level the
complexity of relationships and patterns detected by the network increases. This behaviour
has been specially studied for image recognition tasks, where it can be shown that the frst
layers learn to recognize basic patterns, such as lines, squares, etc., while deeper layers get
trained to fnd much more complex relationships, for instance, the presence of a person or a
specifc animal in the picture. This property of DL frameworks allows for the construction
of models with bigger complexity potential than their classic ML counterparts, and thus
to a higher predictive potential.

End-to-End Learning: One of the most exciting recent developments in DL has been
the rise of end-to-end learning. Traditionally, there existed Machine Learning systems that
required multiple stages of pre-processing and model training. What end-to-end DL allows
is to take all those multiple stages, remove the pre-processing stage and replace this schema
with just a single step, the training and computation of the DL models.

One illustrative example can be found in speech recognition, where your goal is to take
an input such an audio clip, and map it to an output which is a transcript of the audio clip.
Traditionally, speech recognition required more than one stage of processing. First, you had
to extract some features of the audio using pre-processing methods like the mel-frequency
cepstral coefcients or MFCC [43]. Then, having extracted some low level features, one
could apply a machine learning algorithm to fnd, for instance, the phonemes, the basic
units of sound, in the audio clip.

When using DL frameworks, this pipeline with multiple stages can be replaced by the
training of a deep neural network, allowing to just input the audio clip and obtain directly
the transcript as an output. However, it is important to remark that one of the challenges
of end-to-end DL is that usually large volumes of data are needed before it works in
a comparable way to classical multistep ML frameworks, and even larger to be able to
surpass the performance of its counterparts.

2.6.2 Backpropagation

Given a training sample and a target to predict, an ANN will compute all the activation
functions, described more in detail later in the section, from the input layer to the output
layer, obtaining a fnal prediction as a result. We call this a forward pass.

Once this forward pass has been performed, we can calculate an error between its output
and the real target using the selected error function. Using gradient descent theory [44]
over this error, it could be possible to obtain new weight values for the output layer units to

55 2.6. Deep Learning

Figure 2.6.2: Backpropagation schema. The goal is to extend gradient descent to all the
layers in the network after the forward pass. Taken from [41].

try to improve its output. Nevertheless, this would only modify the weights of the output
layer and not of all the preceding layers, which also have an impact on the resulting output,
and thus will have a far from optimal efect.

Therefore, we need an algorithm to propagate backwards the error from the units in the
output layer to the units in the preceding layers. This algorithm is called backpropagation
and is used to optimize ANNs. The backpropagation schema is illustrated in Figure 2.6.2.

The goal of backpropagation is to be able to extend gradient descent to all the layers in
the network. Backpropagation defnes the generalized error associated to a hidden unit as
a weighted average of the errors of the units in the adjacent layer. The gradient value for
a unit j in layer J , will have the following formulation

∂E ∂E ∂sj ∂sj
= = δj , (2.6.1)

∂wji ∂sj ∂wji ∂wji

where E represents the error function, wji is the weight of the connection from unit i toP
unit j, sj = i wjizi the sum of the weighted inputs of unit j in layer J , zi the output of

∂E unit i in layer J − 1, and δj = the generalized error at unit j.∂sj

It holds that

∂sj
= zi , (2.6.2)

∂wji

and expanding the term δj we get

56 Chapter 2. Theoretical Background

!X X X∂E ∂sk ∂E ∂sk ∂zj ∂E ′ δj = = = wkj Fj (sj) =
∂sk ∂sj ∂sk ∂zj ∂sj ∂sk

k k k! (2.6.3)X
′ = δkwkj Fj (sj) ,

k

where Fj is the activation function used in unit j. Finally, plugging (2.6.2) and (2.6.3) into
(2.6.1) we get the fnal expression

!X∂E ′ = δkwkj Fj (sj)zi . (2.6.4)
∂wji

k

Therefore, using backpropagation we can compute the error of the output units, then
the generalized error of the units of the last hidden layer and successively all the previous
hidden layers, and fnally the gradient with respect to the weights. This is called the
backward pass and allow the possibility of ANNs optimization.

2.6.3 Activation Functions

For a given neuron in layer J of a Deep ANN, the inputs are multiplied by the weights P
and summed together, i.e., sj = i wjizi, where zi is the output of unit i in layer J − 1.
This value is referred to as the activation of the neuron. This summed activation is then
transformed via an activation function which defnes the specifc output of that neuron.
The simplest activation function is referred to as the linear activation.

F (x) = x . (2.6.5)

A network comprised of only linear activation functions is very easy to train, but cannot
learn complex mapping functions. Linear activation functions are still used in the output
layer for networks that predict a quantity, as is the case in regression problems.

Nonlinear activation functions are preferred as they allow the nodes to learn more com-
plex structures in the data. Traditionally, two were the most widely used nonlinear acti-
vation functions in ANNs or Deep ANNs:

1. Sigmoid function: The sigmoid activation function, also called the logistic function,
is traditionally a very popular activation function for neural networks. It has the
following formulation

1
F (x) = −x . (2.6.6)

1 + e

The input to the function is transformed into a value between 0 and 1. Inputs that
are much larger than 1 are transformed to essentially the value 1; similarly, negative
values far below 0 are snapped to 0. The shape of the function for all possible inputs
is an S-shape from zero up to 1, having value 0.5 at x = 0, which is the middle point
of the S-shape. For a long time, through the early 1990s, it was the default activation
used on neural networks.

57 2.6. Deep Learning

Figure 2.6.3: Sigmoid and hyperbolic tangent functions.

2. Hyperbolic tangent function: The hyperbolic tangent function, or tanh for short,
is a similar shaped nonlinear activation function that outputs values between -1 and
1. It is represented by this formulation

−xex − e
F (x) = . (2.6.7)

−xex + e

In the late 1990s and through the 2000s, the tanh function was preferred over the
sigmoid activation function as models that used it were easier to train and often had
better predictive performance. A visual comparison between these two activation
functions can be seen in Figure 2.6.3.

2.6.4 DL Recent Advances

The basic theory corresponding to the multi layer perceptron or MLP [45], was already
well established in the 80s, as well as the backpropagation algorithm for gradient computa-
tion during ANN training described in the previous section. In fact, they can be considered
as the frst example of modern machine learning algorithms that could be used in both
regression and classifcation problems with minimal conceptual variations. However, some
technical problems, essentially due to knowledge gaps about the training of these models
plus the lack of computing power and large volumes of data at the time, led to their rel-
ative decline in the late 90s and the rise of alternative methods, particularly SVMs, for
classifcation and regression.

Nevertheless, in recent years the popularity of DL models has increased in a spectacular
manner, due to the wide availability of powerful computing facilities, advances on the the-
oretical underpinnings of MLPs, several improvements on their training procedures and a
better understanding of the difculties related to many layered architectures. To all these
factors we can add the appearance of multiple development frameworks such as TensorFlow
[46] and Keras [47], that have allowed the practitioners to experiment with diferent archi-
tectures, non-diferentiable activations and, even, non-diferentiable loss functions. Besides,
training of these models has been shown to be linear time computations, i.e., O(n), and

58 Chapter 2. Theoretical Background

calculation of predictions is O(1). Last, but not least, DL models have been shown to be
able to extract more predictive power when trained with sufciently large datasets than
other ML frameworks.

In the following sections we describe some of the most important of these theoretical
and technological advances that have contributed to dissipate problems related to DL
frameworks and allowed their recent popularity. First, we will describe Adam Optimization
in Section 2.6.4.1, a quite recent optimization method frequently used in DL models. Next,
we discuss new methods to initialize the layer weights in Section 2.6.4.2, with special focus
on Xavier initialization. In Section 2.6.4.3 we defne the Rectifed Linear Unit activation
function, and describe some of the properties that make it specially suitable for DL schemas.
Finally, the exponential increase in computational and memory resources available to train
ML models is discussed in Section 2.6.4.4.

2.6.4.1 Adam Optimization

In [48] a novel optimization method, called Adaptive Moment Estimation or Adam, was
proposed. Its goal was to combine the advantages of two other extensions of stochastic
gradient descent, Adagrad [49] and RMSprop [50]. Adam is an adaptive learning rate
method, which means it computes individual learning rates for diferent weights, using for
that purpose estimations of frst and second moments of the gradient to adapt the learning
rate for each weight of the neural network. The n − th moment, mn , of a random variable,
X, is defned as the expected value of that variable to the power of n, i.e.

n m = E[Xn] . (2.6.8)

Adam uses the frst and second moments, i.e m1 and m2 . In order to estimate their
values, Adam utilizes exponential moving averages, computed on the gradient evaluated
on a current mini-batch in the following way

1 1
−1 + (1 − β1)gtmb (2.6.9)β1m= ,t t

2 2 2
−1 + (1 − β2)gmb . (2.6.10)β2m= t t t

where gt is the gradient on current mini-batch, and β1, β2 are new introduced hyperpa-
rameters of the algorithm used to control Adam optimization.

The vectors of moving averages are initialized as

1 2 mb = 0 mb = 0 (2.6.11)0 0

Since mb is an estimate of the momentums, m, for the gradient g, we would like the following
equations to hold

1 2 2E[mb t] ≈ E[gt] E[mb t] ≈ E[gt] (2.6.12)

59 2.6. Deep Learning

1To check if these properties are true let us expand the values of mb using (2.6.9) t

1 mb 0 = 0
1 1 mb = β1mb 0 + (1 − β1)g1 = (1 − β1)g11
1 1 mb = β1mb 1 + (1 − β1)g2 = β1(1 − β1)g1 + (1 − β1)g22
1 1 (2.6.13)mb = β1mb 2 + (1 − β1)g3 = β12(1 − β1)g1 + β1(1 − β1)g2 + (1 − β1)g33 ...

tX
1 βt−i mb = (1 − β1) git 1

i=0

Next, we evaluate the expected value of m using (2.6.13)

tX
1 βt−iE[mb t] = E[(1 − β1) 1 gi] . (2.6.14)

i=0

Now, let us approximate gi by gt, assuming an approximation error ψ

tX
1 βt−iE[mb] = E[gt](1 − β1) + ψ . (2.6.15)t 1

i=0

Equation (2.6.15) is equivalent to

1E[mb] = E[gt](1 − β1
t) + ψ . (2.6.16)t

1As stated in (2.6.12) we want E[mb] to be as close as possible to E[gt]. Therefore, assuming t
error ψ as unavoidable when E[gt] is not stationary, we can still correct the bias term (1−β1

t)
replacing equation (2.6.9) by the following expression

1
t−1 + (1 − β1)gt1 β1m

mb = . (2.6.17)t (1 − βt)1

Applying the same logic for the second moment estimate in (2.6.10) we get

2 2β2mt−1 + (1 − β2)g2 t mb = . (2.6.18)t (1 − βt)2

1 2Finally, once we have our moment estimators, mb and mb t , the only thing left to do is tot
use those moving averages to scale the learning rate individually for each parameter. The
way it is done in Adam is the following one

mb 1
t wt = wt−1 − ηt p , (2.6.19)

mb 2 + ϵt

where wt are the model weights at iteration t, ηt is a hyperparameter called step size or
learning rate which can be constant, i.e ηt = η, and ϵ is a dummy constant, usually a very
small value, used to prevent any division by zero.

60 Chapter 2. Theoretical Background

Figure 2.6.4: % of ML papers using diferent optimization methods. Adam is the most
popular option among the standard optimization techniques for DL structures, and this
diference is clearer in recent years. Taken from [48].

Figure 2.6.5: Performance of diferent optimization methods while training a multilayer
perceptron for MNIST dataset. The computational performance of Adam is better than
the standard optimization alternatives. Taken from [48].

Figure 2.6.4 shows that Adam has been the most selected optimization algorithm in
DL research. Moreover, Adam optimization has been proved to be more efective in some
classical problems, as can be seen in Figure 2.6.5.

2.6.4.2 Weight Initialization

When working with Deep ANNs, initializing the network with the right weights can be
the diference between the network converging in a reasonable amount of time and the
network loss function not going anywhere even after millions of iterations. This is usually
due to a phenomenon called vanishing gradient. When using activation functions like
the ones described in Section 2.6.3, which squash a large input space into a small output
space, a large change in the input of the activation function will cause a small change in
the output. In other words, the derivative becomes small. Figure 2.6.6 illustrates this
behaviour for the sigmoid activation case. For shallow networks with only a few layers

61 2.6. Deep Learning

Figure 2.6.6: Vanishing derivative for the sigmoid function. The derivative takes small
values which, after being multiplied with other small derivatives among diferent layers,
tends to zero and leads to the vanishing gradient problem.

that use these activations, this is not a signifcant problem. However, when more layers
are used, it can cause the gradient to be too small for the training of DL models to work
efectively.

As described in Section 2.6.2 gradients of neural networks are found using backpropa-
gation. By the chain rule, the derivatives of each layer are multiplied down the network
from the fnal layer to the initial one to compute the partial derivatives of all the layers in
the network. However, when L hidden layers use an activation like the sigmoid function, L
small derivatives are multiplied together. Thus, the gradient may decrease exponentially
as we propagate down to the initial layers. A small gradient means that the weights and
biases of the initial layers will not be updated efectively with each training iteration. Since
these initial layers are often crucial to recognize the core elements of the input data, this
can lead to overall inaccuracy of the whole network. As we said, this is called the vanishing
gradient problem.

Therefore, initializing the network with the right weights is very important in order
to avoid this vanishing efect and allow a Deep Neural Network to function properly. It
is necessary to that the weights are in a reasonable range before training of the network
starts. This is where Xavier initialization [51], one of the main advances that relaunched
DL frameworks, comes into the picture. Xavier initialization method initializes the weights
from a Uniform or Gaussian distribution with zero mean and some fnite variance. In order
to fnd which value to assign to this variance, let us consider a linear neuron like this

s = w1z1 + w2z2 + ... + wNin + b , (2.6.20)zNin

where s is the activation of the neuron, Nin the number of neurons in the previous layer,
zi the outputs of neurons from that previous layer, and w their corresponding weights.
Without loss of generality, we will assume that the data is centered on the mean and the
bias term b is therefore set to zero.

62 Chapter 2. Theoretical Background

With each passing layer, the idea is that the variance remains the same. This helps
keeping the signal from exploding to a high value or vanishing to zero. In other words, it
is necessary to initialise the weights in such a way that the variance remains the same for
z and s. The variance of s can be formulated as

Var(s) = Var(w1z1 + w2z2 + ... + wNin) . (2.6.21)zNin

Assuming that the terms in the right side of the equation are independent, the following
equivalence holds

Var(s) = Var(w1z1) + Var(w2z2) + ... + Var(wNin) . (2.6.22)zNin

It is also true that

Var(wixi) = E[zi]
2Var(wi) + E[wi]

2Var(zi) + Var(wi)Var(zi) . (2.6.23)

where E[] stands for expectation of a given variable. As the assumption was that the inputs
and weights are coming from independent distributions of zero mean, the E[] terms vanish
and we get

Var(wizi) = Var(wi)Var(zi) . (2.6.24)

Plugging (2.6.24) into (2.6.22) we get

Var(s) = Var(w1)Var(z1) + ... + Var(wNin)Var(zNin) . (2.6.25)

Assuming that the terms in the right side of the equation are not only independent but
also identically distributed, we can write

Var(s) = NinVar(w)Var(z) . (2.6.26)

Therefore, if we want the variance of s to be the same as that of z, i.e., Var(s) = Var(z),
then it is necessary that NinVar(w) = 1 or equivalently

1
Var(w) = . (2.6.27)

Nin

A similar analysis over the backward pass [51], leads us to the following analogous formula

1
Var(w) = , (2.6.28)

Nout

where Nout is the number of neurons in the next layer. Taking this into account, in
the original paper the authors take the average of the number of input neurons, N , and
the number of output neurons, Nout, in order to fnd a compromise between these two
constraints. Therefore, the fnal proposed formula becomes

2
Var(w) = . (2.6.29)

Nin + Nout

63 2.6. Deep Learning

Figure 2.6.7: Rectifed Linear Unit, ReLU.

2.6.4.3 Rectifed Linear Unit, ReLU

Apart from using an appropiate weight initialization such as the Xavier initialization,
another method to avoid the vanishing gradient efect is to employ an activation function
other than the classical sigmoid and hyperbolic tangent functions. To achieve this goal,
the Rectifed Linear Unit, ReLU, was proposed [52].

The idea here is to fnd an activation function that looks and acts like a linear function,
but is, in fact, a nonlinear function allowing complex relationships in the data to be learned.
The function must also provide more sensitivity to the activation sum input and avoid easy
saturation. The rectifed linear activation function is a simple piecewise linear function that
returns the value provided as input directly if this input is positive, or the value 0 if the
input is 0 or less, i.e

�
x, x > 0 ,f(x) = (2.6.30)
0, x ≤ 0 .

A visualization of the ReLU activation function can be seen in Figure 2.6.7. The function
is linear for values greater than zero, meaning it has a lot of the desirable properties of a
linear activation function when training a neural network using backpropagation. It also
preserves many of the properties that make linear models generalize well. In particular, this
linearity makes this activation function resistant to saturation, as positive values are not
compressed into a narrow range of values, as was the case for the sigmoid or tanh functions,
but over the entire range of possible positive values. However, it is still a nonlinear function
as negative values lead always to a zero output, allowing the model to learn more complex
relationships taking advantage of the power of using a DL framework with several hidden
layers.

Looking at (2.6.30) it can be seen that ReLU is a non-diferentiable function at x = 0.
However, it is important to notice that having exactly x = 0 during ReLU computations
is very rare, and hence this is not a signifcant issue. Subgradients can be used in the
backpropagation algorithm, which in this case are 1 on the right side of x = 0 and 0 on
the left side.

The mathematical calculations described in Section 2.6.4.2 do not ft the case of an
activation function like ReLU, which is a non-diferentiable function at x = 0. A similar

64 Chapter 2. Theoretical Background

method, called He initialization, is proposed in [53] to initialize the Rectifed Linear Unit
function, which gives as fnal result

2
Var(w) = , (2.6.31)

Nin

for the forward pass, i.e, twice the variance value obtained employing Xavier initialization.
This would transform into Var(w) = 4/(Nin + Nout) if we try to again fnd a compromise
between forward and backward passes, although the authors of the paper do not propose
this in [53], stating instead that it is sufcient to use (2.6.31) because if the initialization
properly scales the forward signal, then this is also the case for the backward signal; and
vice versa.

2.6.4.4 Computational Power and Data Volume

When asked to estimate the growth of computer technology, Gordon Moore stated the
following, in a claim which would later become known as Moore’s Law :

“The number of transistors on an afordable CPU would double every two
years”

This has been commonly, and mistakenly, rephrased as “the processing power of comput-
ers will double every two years”. Although this is not a technically correct interpretation,
it is true that Moore’s law is directly related to the increase of computational power. The
processing power of a computer processor, or CPU, can be measured in Floating Opera-
tions Per Second, FLOPS. Recent research [54] has drawn comparisons between the most
powerful computer processors from 1956 to 2015. Over that time period, the authors claim
that there has been a one-trillion-fold increase in FLOPS of computer processing power.

On the other hand, a graphics processing unit, GPU, is very efcient, clearly more than
a CPU, in matrix multiplication and convolution, two types of computations extremely
relevant and frequent in DL training. The use of GPUs for scientifc computing started
some time back in 2001 with implementations of matrix multiplication. One of the frst
common algorithms to be implemented on GPU in a faster manner was LU factorization
in 2005. But, at this time researchers had to code every algorithm on a GPU and had
to understand low level graphic processing. In 2006, Nvidia came out with a high level
language, CUDA [55], which helps you write programs for graphic processors. This was
probably one of the most signifcant changes in they way researchers interacted with GPUs.
All these advances in computational power have allowed researchers to train and validate
more complex and varied DL frameworks, a task that can be computationally expensive.

Apart from the rise in computational power, it is also important to bear in mind the
increase in the data available to train the models. DL models are more strongly infuenced
by the volume of data available than other families of ML models. This property has
two sides. On the one hand, usually DL frameworks can only outperform other Machine
Learning methods when the data available is sufciently large. If this is not the case,
standard algorithms can be a better option either for better performance of for lower
computational costs. On the other hand, when signifcantly large datasets are available,
DL models, due to their special complexity and its feature learning prowess, are able to
extract more relevant information for the task at hand, often leading to clearly better

65 2.7. Clustering

Figure 2.6.8: DL vs standard ML depending on data volume. DL outperforms classical
ML when the data available is large enough. Taken from [56].

results. Figure 2.6.8 illustrates how this behaviour is present in the performance of DL
models. As stated in Section 1, datasets available are becoming exponentially bigger in
the big data era, being this fact an important factor in the recent grow in popularity of
DL frameworks.

2.7 Clustering

Clustering methods are unsupervised Machine Learning techniques in which we do not
have a target and in which we want to group the data to fnd patterns. The idea is to
automatically fnd groupings or clusters of elements according to a measure of similarity
between them. The fundamental objective of clustering techniques is to identify groups or
clusters of elements such that the following properties are achieved:

‹ High intra-cluster similarity: The average similarity between elements of the same
cluster is high.

‹ Low inter-cluster similarity: The average similarity between elements of diferent
clusters is low.

There are several classes of clustering according to the technique used to separate the
groups. The two main groups of clustering methods are hierarchical clustering and partition
clustering. We will focus here on partition clustering. The partition clustering technique
distributes the elements among a predetermined number of clusters or groups. We defne
the centroid of a cluster si, which we will denote Ci, as the point y that minimizes the sum
of the similarities to the rest of the elements of the cluster, where similarity is measured
by a particular choice of distance metric d.

X
Ci =arg min d(x, y) .

y (2.7.1)
x∈si

66 Chapter 2. Theoretical Background

Algorithm 1: K -means algorithm.
1 Initialization of centroids.
2 t = 0.
3 do
4 t = t + 1

t5 Assignment step: Each point is assigned to the cluster si with the closest
centroid Ct−1 .i

6 Update step: Centroids Ct of new clusters St are computed.
Ct−1while Ct ! = ;
t t t7 return St = {s1, s2, ..., s }K

This technique receives as input the number of clusters to be formed in addition to
the elements to be classifed and the matrix of similarities. The most popular partition
clustering technique is K -means.

2.7.1 K-means

In [57] and [58], the K -means algorithm is proposed. Its aim is to divide N points in
d dimensions into K clusters so that the within-cluster sum of squares is minimized. In
other words, its objective is to fnd

K XX
min ||x − Ci||2 , (2.7.2)
S

i=1 x∈si

where S = {s1, s2, ..., sK } are the diferent clusters created and Ci is the centroid of si.

The K -means algorithm can be summarized as Algorithm 1. To solve this problem it is
required as input a matrix of N points in d dimensions and a matrix of K initial cluster
centroids in d dimensions, C0 = {C1, C2, ..., CK }. The solution found by K -means depends
on the choice of C0 , i.e., this is not a problem with a unique solution.

There are several initialization methods to choose C0 . We propose here to employ the
Forgy method because according to [59], for the standard K -means algorithms, which is
the one we use in this thesis, the Forgy method of initialization is preferable. The Forgy
method is an initialization algorithm that randomly chooses K observations from the data
set and uses them as the initial cluster centroids C0 . An example of this initialization
method can be seen in Figure 2.7.1.

As there is not an unique solution and the K -means algorithm can get stuck at a bad
local minimum, it is recommendable to run the algorithm for diferent initial centroid
values and choose the solution that gives a smaller within-cluster sum of squares among
all executions.

Once we have an initial set of cluster centroids C0 , the K -means algorithm proceeds by
iterating two steps:

67 2.7. Clustering

(a) Initial data. (b) Initialization step.

Figure 2.7.1: Initialization of centroids using Forgy method. For each cluster, an observa-
tion is selected randomly as its centroid.

(a) Assignment step of iteration 1. (b) Update step of iteration 1.

(a) Assignment step of iteration 2. (b) Update step of iteration 2.

Figure 2.7.3: K -means iterating steps. Assignment and update steps are repeated in each
iteration of the algorithm, until the stopping criteria is fulflled.

j
‹ Assignment step: Assign each observation, x , to the cluster si with the minimum
euclidean distance between its centroid, Ci, and the observation, i.e. xj is assigned
to cluster si where

i =arg min ||xj − Ck|| . (2.7.3)
k

68 Chapter 2. Theoretical Background

‹ Update step: Compute the mean of all points in each cluster obtained in the
previous step and set it to be the new cluster centroid, i.e., we have

X1
Ci = x , i = 1, ...K , (2.7.4)|si| x∈si

where |si| is the total number of points in cluster si.

A visualization of the frst two iterations of these steps is shown in Figure 2.7.3. As
a result of the previous loop, the centroids may change their position in a step by step
manner. These two steps are iterated until a situation is reached where none of the centroids
changes anymore, i.e. Ct = Ct−1 . This indicates the convergence criterion for clustering
and hence at this point the iterations stop and the resulting clusters are the fnal solution
given by the K -means algorithm. Thus, at least one iteration of the algorithm is needed
to reach convergence, as it is necessary to observe no change in the centroids between the
beginning of an iteration and its end for the convergence criterion to be reached. In this
case, convergence is reached after the frst two iterations shown in Figure 2.7.3, so the
algorithm will stop there and retrieve the clusters at that iteration, S2 , as the fnal output.

Finally, the only thing left to do will be to select the value of K, i.e. how many clusters we
want to create. In our particular case, the K -means algorithm is employed as a previous
step to a posterior application of other algorithm or model, which in this thesis is our
proposed approach to build prediction error intervals, aiming to improve their accuracy.
In these cases, it seems preferable to select the value of K according to its positive or
negative impact in this posterior goal. Therefore, in our experiments K is chosen as the
value that produces the greatest improvement in the error intervals accuracy. In other
words, we consider K as an extra hyperparameter to optimize in our model framework.

2.7.2 K-prototypes

K -means can only be applied to numerical values. In [60] an algorithm called K -
prototypes which extends the K -means method to datasets with mixed numeric and cat-
egorical values is presented. In this method, the metric used to measure the dissimilarity
between two mixed-type objects, xa and xb , is not the squared Euclidean distance used in
K -means but the following one

p mX X
a a b a bdP (x , x b) = (xj − xj)2 + γ δ(xj , xj) , i = 1, ...K , (2.7.5)

j=1 j=p+1

where {x1, ..., xp} are numerical variables, {xp+1, ..., xm} are categorical variables, γ is a
weight factor to balance the relevance of each type of attribute, and δ is the simple matching
similarity measure, whose formulation is the following

(
0, xa = xb a b j jδ(xj , xj) = . (2.7.6)
1, xaj ≠ xbj

69 2.7. Clustering

It is easy to see that the frst term is the squared Euclidean distance measure on the
numeric attributes and the second term is the simple matching dissimilarity measure on
the categorical attributes. The infuence of the balancing parameter γ in the clustering
process is discussed in [61].

The rest of the logic behind the K -prototypes method, namely inicialization of centroids,
assignment and update steps, is analogous to the one described in Algorithm 1 for K -means,
but replacing the sum of squares metric in (2.7.2) and (2.7.3) by (2.7.5). Therefore, in the
update step of K -prototypes xj is assigned to cluster si where

i =arg min dP (x
j , Ck) . (2.7.7)

k

In the experiments carried out during this work we have not made use of K-prototypes
because our datasets contained only numerical variables, as is explained in Chapter 4.
Nevertheless, if we, for instance, had decided to include temporal information like the
month or week corresponding to each observation, which should be treated as categorical
variables, as input variables in the solar or wind datasets we employed to test our models,
the use of K-protoypes will allow to consider these additional predictor variables in a
straightforward manner.

Chapter 3

General Noise Models

Research is creating new knowledge.

Neil Armstrong

As stated earlier, general noise versions of SVR models should be more efective than
standard versions like ϵ−SVR when applied to regression problems whose underlying noise
distribution follows the one assumed for that particular cost function. However, the use
of these general loss functions implies that SMO [30] is no longer a suitable optimization
method to solve the corresponding formulations of the problem.

In addition, when working with sufciently large sample sizes, Deep Learning, DL, frame-
works are able to extract more complex and meaningful relationships from the data than
other ML families of models. Therefore, it is to be expected that a DL version of general
noise models could also show more predictive prowess than their standard counterparts.

Finally, construction of error intervals for SVR models has not received too much at-
tention in the academic world and remains mainly an unsolved problem. Being able to
compute this type of uncertainty intervals would mean a signifcant advance, as in many
applications that involve solving a regression problem, not only an accurate prediction is
useful but also an error interval can be extremely valuable.

For these reasons, and using all the theoretical building blocks described in Chapter 2,
the goal here is to propose a novel framework to build General Noise Models, deep and
kernel-based, for regression, with the possibility of also having uncertainty intervals for
their predictions. In order to do this we follow the next steps:

‹ First, Section 3.1 proposes a framework to train General Noise SVR Models using
Naive Online R Minimization Algorithm, NORMA, detailed in Section 2.5.

‹ Next, Section 3.2 gives a method to build Deep General Noise Models that combine
the highly non-linear feature processing of DL models with the predictive potential
of using general noise loss functions, among which the ϵ-insensitive loss function used
in SVR is just a particular example.

‹ Formulations to obtain estimations of the parameters for all the probability distri-
butions considered in this work are given in Section 3.3.

71

72 Chapter 3. General Noise Models

‹ Section 3.4 describes a direct approach to build error intervals for SVR or other
type of regression models. An enhanced version of the previous uncertainty intervals,
where clustering techniques are used to create diferent intervals for each cluster and
thus improve their performance, is also explained in this section.

‹ Finally, Section 3.5 unifes the previous sections in a single and fnal model frame-
work to train Deep General Noise Models for regression prediction with uncertainty
intervals.

In this chapter we cover the theoretical aspects of all these proposed steps. Experiments
and results for the proposed frameworks are included in Chapter 4.

3.1 General Noise Models Trained Using NORMA

The use of the ϵ-insensitive loss function in the classical SVR formulation described in
(2.2.2) implies the assumption of a particular error distribution, related to the Gaussian
family, in the data [23]. However, it has been observed that the noise in some real-world
applications may satisfy other distributions [62] [63].

In Section 2.3 we detailed how a general noise version of SV R was proposed in [28],
allowing to formulate a version of this model adapted to be used with any particular
loss function l(y, f(x)). The problem with this proposal was that for several reasons,
related mainly to the loss of some mathematical properties that existed when using the
ILF function, plugging general cost functions into the general dual formulation problem
defned in (2.3.4) often leads to SMO no longer being a feasible choice as the optimization
method [28]. Therefore, we propose here to use NORMA optimization [38] to avoid solving
the dual formulation and tackle instead the corresponding primal optimization problem in
an online setting. We will call these models General Noise Models.

Additionally, in Section 2.3 we also detailed the specifc formulation of the optimal loss
function for Laplace and Gaussian distributions, as proposed in [27]. We add here to these
formulations the ones corresponding to the Beta and Weibull ones. These two distributions
were selected while doing this thesis because they have been shown to be relevant in wind
and solar energy forecasting [64] [65], which are the felds to which the real datasets used
in our experiments belong.

3.1.1 The Beta Loss

When assuming that Beta is the underlying distribution for the error, the error density
formula is assumed to be [66]:

Γ(α + β)
ξα−1P (ξi) = (1 − ξi)β−1 , (3.1.1)

Γ(α)Γ(β) i

where α, β > 0 and Γ(z) is the gamma function defned by

Z ∞
z−1Γ(z) = x e −xdx . (3.1.2)

0

73 3.1. General Noise Models Trained Using NORMA

Taking the negative log of (3.1.1) as in equation (2.3.14) and denoting it by l we get

l(ξi) = − log Γ(α + β) + log Γ(α)Γ(β) − log ξα−1 − log (1 − ξi)β−1
i

= log Γ(α) + log Γ(β) − log Γ(α + β) − (α − 1) log ξi − (β − 1) log (1 − ξi) (3.1.3)
= K + (1 − α) log ξi + (1 − β) log (1 − ξi) ,

where K = log Γ(α) + log Γ(β) − log Γ(α + β). K is independent of ξi, so we ignore it and
work with the following expression

l(ξi) = (1 − α) log ξi + (1 − β) log (1 − ξi) , (3.1.4)

where, due to the defnition of the Beta distribution, 0 < ξi < 1.

3.1.2 The Weibull Loss

The error distribution is assumed now to be [67]

(� �κ−1
�
ξi
�κ

κ ξi λ
−
e , ξi > 0P (ξi) = λ λ , (3.1.5)

0 , ξi ≤ 0

where λ, κ > 0. We will focus here in the case where ξi > 0, which can be achieved simply
by computing the absolute error. Taking the negative log of the equation for ξi > 0 in
(3.1.5) as in equation (2.3.14) we get

� �κ−1κ ξi −(ξi)κ
l(ξi) = − log − log − log e λ

λ λ � �κξi
= − log κ + log λ − (κ − 1) log ξi + (κ − 1) log λ + (3.1.6) � �κ

λ
ξi

= K + (1 − κ) log ξi + ,
λ

where K = − log κ + log λ + (κ − 1) log λ. K is again independent of ξi so we ignore it and
work with the following expression

� �κξi
l(ξi) = (1 − κ) log ξi + . (3.1.7)

λ

Merging the loss functions described in Table 2.3.1 with the formulations for Beta and
Weibull just obtained, we get Table 3.1.1, which contains all the loss functions we will
consider for our general noise models.




74 Chapter 3. General Noise Models

Table 3.1.1: Loss functions corresponding to several error distributions.

Error Distribution Loss Function
ILF

−ξi − ϵ, ξi < −ϵ
l(ξi) = 0, ξi ∈ [−ϵ, ϵ]  ξi − ϵ, ξi > ϵ .

Laplace |ξi−µ|l(ξi) = σ

Gaussian (ξi−µ)2
l(ξi) =

2σ2

Beta l(ξi) = (1 − α) log ξi + (1 − β) log (1 − ξi)

Weibull
� �κ
ξil(ξi) = (1 − κ) log ξi + λ

3.1.3 General Noise Models Formulation

As described in Section 2.3.1, a general noise formulation for SVR has been proposed
in [28], providing us with an expression of the dual problem that allows to insert diferent
loss functions into it. As previously discussed, the difculty with this formulation is that
it aims to solve the dual problem, which for some choices of noise distributions results in
a very complex optimization problem, one that is not possible to tackle using standard
optimization techniques such as SMO [30], or cannot even be obtained due to the impossi-
bility of computing derivatives over the Lagrangian. Therefore, we need to fnd a diferent
optimization method for our proposed model, and we will follow the approach we frst
presented in [68] to tackle this issue.

We recall that NORMA optimization [38] can be used in a straightforward manner, both
for classifcation and regression problems. Furthermore, its extension from linear models to
non-linear ones is also largely direct via the use of the kernel trick. Finally, its formulation
and implementation is fairly simple and its generalization to any loss function does not
suppose great difculties and is perfectly suited to avoid the extra complexity derived of
inserting general noise functions into the dual problem. For all these reasons, NORMA
is the optimization method we use to implement the proposed general noise kernel-based
models, which we will call Kernel-GNM.

We study now the optimization problem resulting of using NORMA with the distri-
butions considered for this work. These distributions have been chosen for either being
standard alternatives, as Laplace and Gaussian distributions [18] [27], or being related to
radiation or wind forecasting, as is the case for the Beta and Weibull distributions [64].
First, we needed to compute their associated loss functions, and we did it in Sections 2.3.3,
3.1.1, and 3.1.2, with the formulations for these loss functions available in Table 3.1.1.

Now, we want to insert these loss functions into the update rules in (2.5.11) and (2.5.10).
However, the loss function l only appears in these expressions through its derivative, so this
must be frst computed. In Table 3.1.2 we show the derivatives for all the loss functions






75 3.1. General Noise Models Trained Using NORMA

Table 3.1.2: Derivatives of the loss functions corresponding to the considered distributions.

Distribution Loss Function Derivative
ILF

−1, ξi < −ϵ
l ′ (ξi) = 0, ξi ∈ [−ϵ, ϵ]  1, ξi > ϵ .

Laplace

1 , ξi − µ > 0 σ
l ′ (ξi) = 0 , ξi − µ = 0  − 1 , ξi − µ < 0σ

Gaussian ξi−µl ′ (ξi) =
σ2

Beta 1−α − 1−βl ′ (ξi) = ξi 1−ξi

Weibull 1−κ κ (ξi)(κ−1)l ′ (ξi) = +ξi λ λ

we will consider in the experiments of this thesis. Following the same approach as in the
case of the ReLU activation function, for the Laplace distribution when the values of l are
0 we set the derivative to 0, which would correspond to one of the subderivatives of l at
that point.

As explained in Section 2.5, the solution function formulation when using NORMA
optimization can be expressed at the step t as

t−1Xb αbtft(x) = ik(xi, x) , (3.1.8)
i=1

where αbi are the NORMA coefcients and k a particular kernel function. An ofset term
could be added to this formula, but we will not consider it here for the sake of simplicity.
Our goal now is to obtain explicit formulations for αb for each one of the noise distributions
considered, which will yield an adjusted NORMA formulation.

We can now plug the derivatives in Table 3.1.2 into the update rules for NORMA de-
scribed in Section 2.5. In particular, we will use the following equation

αbt = −ηtl ′ (ft(xt), yt) . (3.1.9)t

Inserting the l ′ formulation corresponding to our choice of noise distribution we can get
this αbt formulation adapted to this particular distribution. We describe here the explicit
formulations for all the distributions considered in the experiments except for the ILF,
where the SVR model will be computed using the standard dual formulation solved by
SMO.

76 Chapter 3. General Noise Models

Let’s denote by ψt the prediction error, ψt = For the Laplace and Gaussian f(xt) − yt.
distributions we will use in their formulations ξt = ψt. For the Beta distribution, it is

|ψt|required that 0 < ξt < 1 so we will be using as error ξt = min(, 1), where ψl are the
max(ψl)

errors obtained by a basic model like linear regression. Finally, for the Weibull distribution
it is enough that ξt > 0, so we will use ξt = |ψt|. Using this notation, we end up with the
following formulations.

b

1. Laplace:   −
ηt , ξt − µ > 0 ,σ

0 , ξt − µ = 0 , (3.1.10)αt t
b =

ηt , ξt − µ < 0 .σ

2. Gaussian:

3. Beta:

= −ηt
ξt − µ
σ2 .αt t

b
��

1 − α 1 − β
= −ηt − . btαt

= −ηt +

ξt 1 − ξt

4. Weibull: " #� �(κ−1)1 − κ κ ξtb
tα
t .

ξt λ λ

Regarding the stopping criteria for these updating iterative process we use two rules.
First, we defne a maximum number of NORMA update iterations. Second, we defne a bαt t obtained in two minimum tolerance threshold, so if the relative diference between the
consecutive iterations is lower than this threshold, we stop the iterative process and return
the last bαt t computed.

As stated before, NORMA is based on stochastic gradient descent. Asymptotic con-
vergence to a stationary point for these optimization methods is proved in [44] in the
non-convex case, but this point is not guaranteed to be a global minima as opposed to the
convex situation. To avoid possible issues related to this, we opt to constrain the parame-
ters of the chosen distribution to be outside the set of parameters which cause the function
to be non-convex. This means that in the Beta distribution for instance we need to use
the constraints α > 1, β > 1. Regarding the Weibull distribution, convexity depends on
the value κ. When this parameter, usually called shape, is greater or equal than 1, the
distribution curve is convex over the entire range.

We consider it is important to point out that the extension of the approach presented
here to other choices of distribution assumption outside the ones considered here, like
the Poisson distribution, is also possible, with only simple computations of Maximum
Likelihood Estimation to get the optimal loss functions and the required calculation of the
derivatives of these functions. This will be one of the lines for further work we will discuss
in Section 5.1

77 3.2. Deep SVR and Deep General Noise Models, D-GNM

3.2 Deep SVR and Deep General Noise Models, D-GNM

Deep Learning, DL, frameworks have been shown to achieve better performance than
the more classical Machine Learning families of models when trained with datasets that are
sufciently large. Besides, SVM models are not computationally feasible in most setups
when dealing with large datasets of hundreds of thousands or millions of samples and
hundreds or thousands of variables. These factors have been analyzed and explained in
more detail in some of our previous research papers [69] [70]. This fact is probably one
of the main factors why DL models are becoming the preferred choice over SVMs when
solving a high variety of supervised learning tasks regarding large tabular data. For this
reason, in this thesis we propose to plug our General Noise Models, GNM, into a DL
framework, adding to the potential of adapting to any noise distribution inherent of GNM
the predictive potential that DL models have when trained with large datasets.

Although recently the concept of DL has been used almost interchangeably with Deep
Neural Networks, we could consider as DL any Machine Learning structure that uses several
layers, adding complexity with each one. In particular, the use of the common structure
in a fully connected DL model, i.e., several layers of neurons or units, combined with
applying a loss function diferent to the ones normally considered for ANNs would also be
a DL appoach. This is the methodology we propose here to integrate our GNM models
into a DL structure.

First, we will describe in Section 3.2.1 how to build a Deep version of the ϵ−SVR model,
where the ILF loss function replaces the classical loss function used in DL applied to
regression, which is the squared error. Next, we will follow the same approach to insert
any given loss function l into the DL framework to obtain Deep General Noise Models
adapted to a particular choice of noise distribution in the data.

3.2.1 Deep SVR

Our goal now is to build a Deep version of an SVR, in the sense that we want to combine
a DL structure with the use of the ϵ−insensitive loss function. Let us consider a standard
Deep ANN architecture where an input layer is followed by a number of hidden layers
and, fnally, one or several linear output activations leading to our fnal prediction. The
transformation of such a network can be written as

f(x, w, b, Wh) = w · F (x, Wh) + b , (3.2.1)

where w and b denote the linear weights and bias acting on the last hidden layer, re-
spectively, Wh denotes the weights and biases up to the last hidden layer, and F (x, Wh)
represents the last hidden layer outputs.

The optimal weights of such a model are to be obtained minimizing a regularized cost
or objective function, which applies weight decay as an additional penalty term to the
selected loss function [70]. This objective function has the following formulation

NX1
c(w, b, Wh) = l(yi, w · F (xi,Wh) + b) + λ1||w||2 + λ2||Wh

∗ ||2 , (3.2.2)
N

i=1

where l is the given choice of loss function selected for the task at hand, yi the targets to
predict, W ∗ the weights Wh except from the bias, and λ1, λ2 regularization parameters. h

78 Chapter 3. General Noise Models

Notice that in (3.2.1) we keep the option of using diferent weight penalties λ1 and λ2
for the linear output weights and for the hidden layer ones, respectively, although this
is optional and one could simply choose λ1 = λ2 = λ, which leads us to the following
simplifed formulation

N

min J(w, b, Wh) =
w,b,Wh N

i=1

X1
l(yi, w · F (xi,Wh) + b) + λ(||w||2 + ||Wh

∗ ||2) . (3.2.3)

In any case, these regularization hyperparameters, as is common in ML models, are to be
selected by some form of search over cross validation or a fxed validation set, as explained
in detail in Section 1.2.

Is is important to remark here that there exists another popular regulatization technique
in DL structures, which is called dropout. When dropout is applied, during the training
of the DL model, some number of layer outputs are randomly ignored. This has the efect
of making the layer look like it has a diferent number of nodes and connectivity. In
efect, each update to a layer during training is performed with a diferent view of the
confgured layer. Dropout can be used together with or instead of weight decay, the latter
being the option we selected in the experiments described in Chapter 4. Nevertheless, we
have decided to include weight decay in this section to present the most generic possible
formulations of the problem.

We focus here in the case of DL for regression, as it is the branch of problems we aim to
solve with our proposed models. In regression, probably the most standard choice for the
loss function in DL structures is the Mean Squared Error, MSE, defned by the following
loss function

l(yi, w · F (xi,Wh) + b) = (w · F (xi,Wh) + b − yi)2 . (3.2.4)

Inserting (3.2.4) into the formulation of J expressed in (3.2.1) we get

XN

J(w, b, Wh) =
N

i=1

1
(w · F (xi,Wh) + b − yi)2 + λ(||w||2 + ||Wh

∗ ||2) . (3.2.5)

If we want to transform this classical DL framework into what we called a Deep SVR,
it is enough to replace l in (3.2.4) for the formulation of the ILF function, i.e.

lϵ(yi, w · F (xi,Wh) + b) =

  yi − w · F (xi,Wh) − b − ϵ, if w · F (xi,Wh) + b − yi < −ϵ ,
0, if w · F (xi,Wh) + b − yi ∈ [−ϵ, ϵ] , (3.2.6)
w · F (xi,Wh) + b − yi − ϵ, if w · F (xi,Wh) + b − yi > ϵ ,

which will give us the following formulation of the problem

1 XN

min J(w, b, Wh, ϵ) =
w,b,Wh N

i=1
[|w · F (xi,Wh) + b − yi| − ϵ]+ + λ(||w||2 + ||Wh

∗ ||2) , (3.2.7)

where we recall that [z]+ = max(0, z).

79 3.2. Deep SVR and Deep General Noise Models, D-GNM

The minimization of (3.2.1) can be achieved by standard ANN solvers such as the com-
bination of backpropagation and gradient descent described in Section 2.6.2. However, in
real implementations of Deep ANN solvers, newer and more efcient optimization methods,
such as stochastic gradient descent [71], Adagrad [49], RMSProp [50] or Adam [48], are
preferred. We choose here to use Adam because of its advantage in non-convex optimiza-
tion, which can arise in a DL framework when working with general noise loss functions,
and because it has been clearly the most popular choice as optimization algorithm for Deep
ANN during these last years, as shown in Section 2.6.4.1.

3.2.2 Deep General Noise Models, D-GNM

Now we propose to combine the use of general noise loss functions, described in Section
3.1, with the DL version of SVR, described in Section 3.2.1, into a single framework.
The idea is to replace the loss function l defned in (3.2.2), not necessarily by the ILF
loss function, lϵ, defned in (3.2.6), but by any choice of loss function corresponding to a
relevant distribution assumed to be present in the data noise. In our experiments we will
focus again on the same distributions described in Table 3.1.1. The Deep SVR defned
before will be a special case of these proposed D-GNM models where the loss function used
is the ILF.

We will call the models resulting of this combination Deep General Noise Models, or
D-GNMs. The main purpose of these D-GNM models is to bring together the predictive
potential of DL frameworks when applied to large volumes of data with the fexibility of
General Noise SVR models.

Plugging the loss functions considered in Table 3.1.1 into (3.2.2), apart from ILF whose
formulation has already been described in (3.2.7), we will get several problem formulations
for our proposed D-GNMs, one for each distribution assumed to be present in the data.
Notice here that, although ideally it would be logical to expect that the prediction error,
ψi = w ·F (xi,Wh)+b−yi , has mean zero and thus we are working with an unbiased predic-
tive model, this is often not the case when applying ML in real-world problems. Therefore,
we allow the use of non-zero mean versions of Laplace and Gaussian distributions.

Recall here that 0 < ξi < 1 for the Beta distribution, and ξi > 0 for the Weibull one, so
|ψi|we will actually be using again ξi = min(, 1), where ψl are the errors obtained by a

max(ψl)
basic model like linear regression as prediction errors for the Beta distribution, and ξi = |ψi|
for the Weibull distribution. Below are the resulting loss and cost functions for each of the
distributions considered, using a common regularization parameter λ = λ1 = λ2.

1. Laplace:

|ξi − µ|
l(ξi) = , (3.2.8)

σ

N
1 X |ξi − µ|

J(w, b, Wh) = + λ(||w||2 + ||Wh
∗ ||2) . (3.2.9)

N σ
i=1

80 Chapter 3. General Noise Models

2. Gaussian:

(ξi − µ)2
l(ξi) = , (3.2.10)

2σ2

NX (ξi − µ)21
J(w, b, Wh) = + λ(||w||2 + ||Wh

∗ ||2). (3.2.11)
N 2σ2

i=1

3. Beta:

l(ξi) =(1 − α) log (ξi)+
(3.2.12)

(1 − β) log (1 − ξi) ,

NX1
J(w, b, Wh) = [(1 − α) log (ξi) + (1 − β) log (1 − ξi)]+

N (3.2.13)
i=1

λ(||w||2 + ||Wh
∗ ||2) .

4. Weibull:

� �κξi
l(ξi) = (1 − κ) log (ξi) + , (3.2.14)

λ

N � � �κ�X1 ξi
J(w, b, Wh) = (1 − κ) log (ξi) + + λ(||w||2 + ||Wh

∗ ||2) . (3.2.15)
N λ

i=1

In Table 3.2.1 we give a summary of all the D-GNM formulations described here. It
is important to recall that in our experiments we have decided to employ dropout for
regularization purposes as a replacement for weight decay.

From Table 3.2.1 one can notice that some of the expressions for J are quite complex,
which could lead to issues when carrying out the optimization problem corresponding to
these DL models, as it was the case for SMO in the non-deep versions of GNM models we
described in Section 3.1. However, new DL programming frameworks, like Tensorfow or
Keras, ease this process, applying automatic diferentiation to the cost functions chosen
and using it in the corresponding backpropagation steps. Furthermore, Tensorfow also
allows for the use of loss functions that are non-diferentiable at individual isolated points,
which would be a problem in GNM even when using NORMA and not SMO as optimization
method.

81 3.3. Estimation of Loss Functions Parameters

Table 3.2.1: D-GNM formulations corresponding to several error distributions.

Error Distribution D-GNM Formulation

ILF
PN1 [|ξi| − ϵ]+ + λ(||w||2 + ||W ∗||2)N i=1 h

Laplace
PN1 |ξi−µ| + λ(||w||2 + ||W ∗||2)N i=1 σ h

Gaussian
PN1 (ξi−µ)2

+ λ(||w||2 + ||W ∗||2)N i=1 2σ2 h

Beta
PN1 [(1 − α) log ξi + (1 − β) log (1 − ξi)] + λ(||w||2 + ||W ∗||2)N i=1 h

Weibull
PN1 [(1 − κ) log ξi + (ξi)κ] + λ(||w||2 + ||W ∗||2)N i=1 λ h

3.3 Estimation of Loss Functions Parameters

We have described in this Chapter how to build general noise models, both employing
kernel-based, GNM, as describen in Section 3.1 or DL frameworks, D-GNM, explained in
Section 3.2. Both these models require to estimate some distribution parameters to be
used in the corresponding loss functions. For instance, if we assume a Beta distribution as
underlying noise of model errors, it is needed to estimate the α and β parameters of the
distribution.

We propose here to follow a similar approach to the one described in [27] and discussed
in Section 2.4, where the error distribution assumed is ftted by maximum likelihood es-
timation, MLE, using the previously computed out-of-sample residuals, ξi, of a classical
ϵ-SVR model used to predict a regression target. In [27] zero mean Gaussian and Laplace
families are considered as possible error distribution assumptions. We will extend here
this approach to all the distributions considered in this work, which include non-zero mean
Laplace and Gaussian distributions, as well as the Beta and Weibull ones. In any case, we
are aware that other methods to select these distribution parameters could be considered
and we have identifed the study of other alternative approaches as a possible line of further
work.

3.3.1 Parameters for the Laplace Distribution

MLE parameters for the zero mean Laplace distribution are discussed in Section 2.4.2.1.
Following the same steps here for the non-zero mean case we get

82 Chapter 3. General Noise Models

n n nX 1 |ξi−µ| X 1 X |ξi − µ|
l(θ; ψ1, ..., ψn) = log e −

σ = log −
2σ 2σ σ

i=1 i=1 i=1
(3.3.1)nX1

= −n log 2 − n log σ − |ξi − µ| .
σ
i=1

We can compute now the corresponding derivative
nX∂l 1 1

= −n + |ξi − µ| . (3.3.2)
∂σ σ σ2

i=1

In the maximum point, where we denote σb the corresponding density parameter value, the
frst derivative must be equal to zero, so

nX1 1 −n + |ξi − µ| = 0 . (3.3.3)
σb σb2

i=1

Solving (3.3.3) we obtain

P n |ξi − µ|i=1σb = . (3.3.4)
n

and we set µ̂ to be the median of the ξi residuals.

3.3.2 Parameters for the Gaussian Distribution

MLE parameters for the zero mean Gaussian distribution are discussed in Section 2.4.2.2.
Following the same steps here for the non-zero mean Gaussian we get

n n nX (ξi−µ)
2 X X1 1 (ξi − µ)2

−l(θ; ψ1...ψn) = log √ e 2σ2 = log √ −
2σ22πσ 2πσ

i=1 i=1 i=1
(3.3.5)n√

= −n log 2π − n log σ −
1 X

(ξi − µ)2 .
2σ2

i=1

Setting the frst derivative to zero to fnd the maximum point we obtain

nX∂l 1 1
= −n + (ξi − µ)2 = 0 . (3.3.6)

∂σ σ σ3
i=1

Solving (3.3.6) we obtain

P n (ξi − µ)2
i=1σb = , (3.3.7)

n
and we set µ̂ to be

nX ξi
µ̂ = . (3.3.8)

n
i=1

83 3.3. Estimation of Loss Functions Parameters

3.3.3 Parameters for the Beta Distribution

The density of the Beta distribution is defned in (3.1.1). The likelihood function of a
distribution, assuming i.i.d., is defned as

nY
L(θ; ξ1, ..., ξn) = P (θ; ξ1, ..., ξn) , (3.3.9)

i=1

where θ are the parameters that defne the distribution and we should recall that, in order
to avoid possible issues due to the use of non-convex loss functions, we opt in this work to
constrain the parameters of the Beta distribution to α > 1, β > 1. Denoting l = log(L)
the log-likelihood of the distribution, we get

n � �X Γ(α + β)
ξα−1l(α, β; ξ1, ..., ξn) = log (1 − ξi)β−1 . (3.3.10)

Γ(α)Γ(β) i
i=1

If we expand the equation (3.3.10), we obtain

n n nX X XΓ(α + β)
l(θ; ξ1, ..., ξn) = log + log ξi

α−1 + log (1 − ξi)β−1
Γ(α)Γ(β)

i=1 i=1 i=1
nX

= n(log Γ(α + β) − log Γ(α) − log Γ(β)) + (α − 1) log ξi+ (3.3.11)
i=1

nX
(β − 1) log (1 − ξi) .

i=1

Computing and setting the derivatives of l to zero we obtain

� � nX∂l Γ ′ (α + β) Γ ′ (α)
= n − + log ξi = 0 ,

∂α Γ(α + β) Γ(α)
i=1� � n (3.3.12)

∂l Γ ′ (α + β) Γ ′ (β) X
= n − + log (1 − ξi) = 0 .

∂β Γ(α + β) Γ(β)
i=1

where with Γ(x) defned as in (3.1.2), we have that Γ ′ (x) is

Z ∞
tx−1Γ ′ (x) = e −t log t dt , (3.3.13)

0

Γ ′ (x)and is the digamma function, which we will denote ϕ(x) from now on. Plugging this Γ(x)
equation into (3.3.12) we end with the following system of two equations

nX
F1(α,b b α + b α) + log ξi = 0 ,β, ξi) = ϕ(b β) − ϕ(b 1

n
i=1

(3.3.14)n

F2(α,b b α + βb) − ϕ(βb) + 0 .β, ξi) = ϕ(b 1 X
log (1 − ξi) =

n
i=1

84 Chapter 3. General Noise Models

Iterative methods may be employed for the numerical solution of the equations in
(3.3.14). For instance, the Newton-Raphson’s method proposes as iterative update the
following equation

Xn+1 = Xn − λ[Jf (Xn)]
−1f(Xn) , (3.3.15)

where λ will be a learning rate that, for simplifcity’s sake, we will set to 1, and Jf (X) is
∂fi(X)the Jacobian matrix of f(X), defned by [Jf (X)]ij = , which in our case is
∂xj !

∂F1 ∂F1
∂α ∂β Jf (α, β) = . (3.3.16)∂F2 ∂F2
∂α ∂β

For a single variable function, i.e. X = x, this formulation is reduced to the following well
known expression

f(xn)
xn+1 = xn − . (3.3.17)

f ′ (xn)
It can be shown [72] that under sufcient assumptions and a sufciently accurate initial
guess x0, the updated value xn+1 is a better approximation of the root than xn.

Applying Newton-Raphson’s method to (3.3.14) leads to the following iterative scheme

� � � � � �
αn+1 αn F1(αn, βn, ξi)= − [Jf (αn, βn)]

−1 (3.3.18)
βn+1 βn F2(αn, βn, ξi)

The initial values (α0, β0) are pivotal for a good convergence of Newton-Raphson’s
method. We propose here to use the following initial estimations obtained using the method
of moments [73]

m1(m1 − m2)
α0 = , (3.3.19)

m2 − (m1)2

α0(1 − m1)
β0 = , (3.3.20)

m1

where the n − th moment, mn, of a random variable, X, is defned as the expected value
of that variable to the power of n, i.e.

mn = E[Xn] . (3.3.21)

3.3.4 Parameters for the Weibull Distribution

The density function of the Weibull distribution is defned in (3.1.5). We will consider
here ξi = |ψi|, where again ψi = fb(xi) − yi. Taking this into account, the log-likelihood, l,
corresponding to a Weibull distribution is the following

" #
n � �κ−1 � �κX ξiκ ξi −

λl(θ; ξ1, ..., ξn) = log e , (3.3.22)
λ λ

i=1

where we should recall that, in order to avoid possible issues due to the use of non-convex
loss functions, we opt in this work to use the constrain κ > 1.

85 3.3. Estimation of Loss Functions Parameters

If we expand the equation (3.3.22) we obtain

n n � �κ−1 n � �κX X Xκ ξi ξi
l(θ; ξ1, ..., ξn) = log + log −

λ λ λ
i=1 i=1 i=1

n nX X1
= n log κ − n log λ + (κ − 1) log ξi − (κ − 1)n log λ −

λκ ξi
κ (3.3.23)

i=1 i=1
n nX X1

= n log κ − κn log λ + (κ − 1) log ξi −
λκ ξi

κ .
i=1 i=1

Computing the partial derivatives of l in (3.3.23) and setting them to zero we get

nX∂l κn κ
= − + ξκ = 0 , (3.3.24)

λκ+1 i∂λ λ
i=1

n n � �κX X∂l n ξi ξi
= − n log λ + log ξi − log = 0 . (3.3.25)

∂κ κ λ λ
i=1 i=1

Solving frst (3.3.24) we obtain

" #
nXκb 1 κ−n + ξb = 0 . (3.3.26)b bκ i

λ λb
i=1 P1 n κSince κ/b λb cannot ever be zero as κ, λ > 0, so we have that −n +

λbκb i=1 ξi
b = 0. Therefore

it holds that

P
κn ξb

i=1 i n = , (3.3.27)
λbκb

and fnally

!
nX 1

κb1bλ = κξb
i (3.3.28).

n
i=1

Now, plugging (3.3.28) into (3.3.25) we get

 ! !1 1
nX n n n nκb X X X X1 κb1n n  κ

iξ
b κ

iξ
b κ

iξ
b κ

iξ
bP− n log log ξi − log ξi − log+ =

ξbκ
i

κb nn n
i=1i=1 i=1 i=1 i=1 i=1

n n n X P
ξbκ log ξii=1 i+ log ξi − n P = 0 ,n κκb ξb
i=1 ii=1

(3.3.29)

which leads us to the following equation

86 Chapter 3. General Noise Models

n n κ
P

log ξi
P

ξb log ξi 1i=1 i=1 i = P − . (3.3.30)n ξκbn κb
i=1 i

Denoting the expression on the right-hand side of (3.3.30) as G(bκ), the equation can be
rewritten as

P n
i=1 log ξi

= G(κb) . (3.3.31)
n

A simple proof of the existence and uniqueness of the solution of (3.3.31) is the following
one. Let us denote P n

i=1 log ξi
H(κ) = G(κb) − ;

n
we want to prove the existence and uniqueness of the root of H(κb) = 0. For κb > 0 and any
ξi ∈ R+ , we have that

nX
lim G(κb) = log ξi −∞ = −∞ ⇒ H(κb) < 0 ,
κb→0

i=1 (3.3.32)
lim G(κb) = log max(ξi) ⇒ H(κb) > 0 ,
κb→∞

and, therefore, the image of H(κb) contains both positive and negative values. Besides,
the function is continuous, so combining these two factors the existence of a root can be
assured.

Now, to prove the uniqueness of this root we only need to show the global monotonicity
of H(κb) and this is equivalent to demonstrate H ′ (κb) > 0. The derivative takes the form:

 !2 ! ! !2n n n nX X X X
H ′ (κb) =

1
+

1  ξb log2 ξi ξk − ξb log ξi  . κ κ (3.3.33)i i iκκb2 ξb
ii=1 i=1 i=1 i=1 �P �2

1 n 1In equation (3.3.33), and will always take positive values, so we focus on
κb2 i=1 ξκb

i

! ! !2n n nX X X
κ κ κI(κ, n, ξb i) = ξb log2 ξi ξb − ξb log ξi . (3.3.34)i i i

i=1 i=1 i=1

If n = 1 we have

κ κ κI(κ,b 1, ξi) = ξ1
bξ1

b log2 ξ1 − ξ2b log2 ξ1 = 0 . (3.3.35)1

If n = 2 we have

κ κI(κ,b 2, ξi) = ξ1
bξ2

b (log ξ2 − log ξ1)2 ≥ 0 . (3.3.36)

87 3.4. Uncertainty Intervals

For n ≥ 3, as shown in [74], if we suppose I(bκ, n − 1, ξi) ≥ 0, then

n−1X
κ κI(b = κ, n − 1, ξi) + ξb ξb − log ξi)2 (3.3.37)κ, n, ξi) I(b (log ξn ≥ 0 .n i
i=1

This proves the global monotonicity of H(κb) and consequently the uniqueness of the root
of H(κb) = 0.

As in the Beta case, we use Newton-Raphson’s method, defned in (3.3.15), to solve
(3.3.31), obtaining the following iterative scheme

H(κb)
κbn+1 = κbn − . (3.3.38)

H ′ (κb)
This time the initial value κb0 is chosen empirically through experimentation. In our

case κb0 = 1 seemed to ensure a fast convergence for the datasets used in the experiments.
Finally, once a fnal estimation of κb is obtained the only thing left to do is to plug this
value into equation (3.3.28) to solve for λb .
3.4 Uncertainty Intervals

In Section 2.4 we described a direct approach to build error intervals for SVR that was
originally proposed in [27]. This method assumes prediction errors to follow a specifc
probability distribution that is used to defne probability intervals for them. If the as-
sumption is true and the underlying noise distribution in the data is accurately estimated,
one should expect an increase in the accuracy of the uncertainty intervals.

Here we make a proposal based in the previous method with two enhancements:

1. We adapt the method and formulations proposed in [27], which covered the zero-
mean Laplace and Gaussian cases, to the non-zero mean Laplace and Gaussian, as
well as to the Beta and Weibull distributions, specially interesting for the problem
of wind and solar energy prediction. These new formulations are detailed in Section
3.4.1.

2. A drawback when applying this method is that it assumes the residual distribution
to be independent of x and, therefore, probability intervals have exactly the same
width for all input samples. However, it is easy to see that in several problems the
distribution of the prediction errors may depend on the input x, and therefore the
length of the predictive interval with a pre-specifed coverage probability may vary
from one example to another, refecting the fact that the prediction variances vary
with diferent input values.

To lessen the impact of this drawback, in Section 3.4.2 we propose to use clustering
methods to split the data into several groups and build diferent intervals for each
one of them.

88 Chapter 3. General Noise Models

3.4.1 Error Intervals for Diferent Distributions

We present now the formulations for the error intervals corresponding to each of the
distributions considered in this work, namely Laplace, Gaussian, Beta, and Weibull.

Laplace

In Section 2.4.2.1 we described the formulations of parameters and error intervals for the
zero-mean Laplace distribution. Now, if we assume a non zero-mean Laplace distribution,
and denote ψi = f̂(xi) − yi, the formulation for l changes into

nX |ψi−µ|1
l(θ; ψ1, ..., ψn) = log e −

σ .
2σ

i=1

For a non-zero mean Laplace distribution the percentile ps is determined as in the zero
mean case by

Z ps

1 − s = p(z)dz . (3.4.1)
−∞

However, as in this case the distribution is centered at µ and not at zero, the prediction
error interval is (µ − ps, µ + ps).

During the experiments carried out as part of this work, error intervals formulas for
Laplace and the other distributions considered have been solved by means of numerical
integration.

Gaussian

We described the formulations of parameters and error intervals for the zero-mean Gaus-
sian distribution in Section 2.4.2.2. Now, if we assume a non zero-mean Gaussian
distribution the formulation for l changes into

nX (ψi−µ)
21 −l(θ; ψ1, ..., ψn) = log √ e 2σ2 .

2πσ
i=1

The formulation for the prediction error interval for the Gaussian distribution assump-
tion is again the same as the previously defned Laplace counterpart, i.e. (µ − ps, µ + ps),
with ps as defned in (3.4.1).

Beta

We need to compute the upper sth percentile, ps as described in 2.4.8. The only diference
is that, by defnition of the Beta distribution, z ≥ 0, so in this case we obtain ps by solving

ps ps
Z

Γ(αb + βb) Z b
1 − s = p(z)dz = z αb−1(1 − z)β−1dz . (3.4.2)

0 Γ(αb)Γ(βb) 0

89 3.4. Uncertainty Intervals

The prediction error interval is then (0, ps).

Weibull

As stated before, for the Weibull distribution we only consider the case z ≥ 0, so we
determine the prediction error interval the same way as for the Beta distribution

Z Z � �κ−1 � �κps ps ψiκ ψi −
1 − s = p(z)dz = e λ dz . (3.4.3)

λ λ0 0

The prediction error interval is then (0, ps).

3.4.2 Uncertainty Intervals by Clusters

As explained before, the proposed approach to build uncertainty intervals takes the
assumption that the prediction error interval is not directly infuenced by the input values,
xi, so the calculated interval is constant for all instances in the dataset. To try to limit the
loss of accuracy that this problematic assumption can cause, we propose in this thesis to
cluster available data into diferent groups and apply the proposed technique on each group.
This way, diferent uncertainty intervals will be obtained for each cluster of instances.

We consider that this addition, that we frst proposed in [75], is a highly relevant one,
as intervals with the same width for each test instance could suppose a critical drawback
for data whose distribution strongly depends on variables and entails a strong limitation
to the application of these methods to general regression tasks. Figure 3.4.1 and Figure
3.4.2 depict real uncertainty intervals computed for the problem of wind energy produc-
tion forecasting, showing how this interval computation after clustering will work and the
advantages it presents. In particular, it can be observed how the constant uncertainty
intervals, presented in Figure 3.4.1, fail to capture the real behaviour of wind energy pro-
duction in a real-world problen, specially for high production values. In contrast, intervals
after clustering, shown in Figure 3.4.2, adapt much better, creating intervals with bigger
width for higher energy production values which result in better accuracy.

In particular, two diferent clustering approaches will be tested in our experiments:

1. The use of standard clustering techniques, like K-means or K-prototypes, described
in Section 2.7, to group data points based on the input variables.

2. The use of clusters based on the magnitude or scale of the values to predict, i.e. the
target. We will call this clustering method, explained later in this section, magnitude
clustering.

Regarding standard clustering, as mentioned before, we propose to use the popular
K-means and its counterpart for datasets mixing numerical and categorical variables, K-
prototypes, although we will only made use of the former in our experiments as the datasets
employed do not contain categorical variables. Details of these models have already been
described in-depth in Section 2.7 as part of the chapter about theoretical background so
they will not be discussed here to avoid redundancy.

90 Chapter 3. General Noise Models

Figure 3.4.1: Constant uncertainty intervals. Figure shows real production, prod, pre-
diction given by the model, pred, lower bound of prediction interval, pred-a, and upper
bound, pred+b, where (a,b) is the corresponding uncertainy interval.

With respect to magnitude clustering, we propose a signifcantly diferent method to
divide our data into groups or clusters. The idea is that the error obtained in a particular
instance or observation is often correlated with the magnitude of the target. If this corre-
lation would always be positive and constant, it would be enough to use a scaled version
of our target and then apply a constant interval to it to solve this problem. However, this
is often not the case.

Solar energy is a good example of this behaviour. When trying to predict solar energy
production, in most cases smaller errors are found in the summer days where the target
presents its largest values. This is due to the fact that in these summer days the weather
behaviour regarding solar radiation is much more stable, and thus more predictable, than
in more volatile seasons like autumn. By means of illustration of this phenomenon, Figure
3.4.3 shows the average solar radiation by month for the city of London from 2009 to 2019,
where clearly months from May to August have the highest and also most stable irradiation
levels.

Furthermore, in the case of solar energy prediction there is also a clear daily pattern
depending on the hour, with usually more energy production on noon hours, which could
also be taken into account using these uncertainty intervals over clusters built based on
magnitude clustering.

Taking this into account, in the case of solar energy production forecast it seems logical
to cluster our data based on this magnitude before applying diferent uncertainty intervals

91 3.5. D-GNM with Uncertainty Intervals

Figure 3.4.2: Error intervals after clustering. Figure shows real production, prod, pre-
diction given by the model, pred, lower bound of prediction interval, pred-a, and upper
bound, pred+b, where (a,b) is the corresponding uncertainy interval.

to each scale group. Using this approach and considering by means of illustration the case
where the number of clusters, K, is set to 2, one cluster will be built containing the training
observations where the target to predict has the lowest values, and the other one including
the instances with the highest target values. This way, we could create an interval band for
summer days and another one for the rest of the year, being the latter probably wider and
hence taking into account the higher probability of bigger solar energy prediction errors
on these days. More generally, training observations are sorted based on their target value
and then K equal-sized groups of observations are created taking into account this order,
so lowest target values are in cluster 1 and highest target values are assigned to cluster K.
Then, validation and test observations will be assigned to the cluster, and corresponding
error interval, with the closest centroid based on the squared Euclidean distance.

Again, as was the case when using standard clustering, k will be treated as a hyperpa-
rameter and its optimal value will be chosen by validation as the value that leads to the
computation of the most accurate error intervals. Details of how the train, validation, and
test sets are selected are given in Section 4.

3.5 D-GNM with Uncertainty Intervals

In this section we combine all of our previous proposals into one single fnal framework
to compute D-GNM models with uncertainty intervals. The method to compute uncer-
tainty intervals described in [27], which we use as building block for our proposed method
in Section 3.4, was originally suggested for the purpose of computing error intervals for

92 Chapter 3. General Noise Models

Figure 3.4.3: Seasonal Variation in Solar Energy, London, 2009-2019. From May to August
solar radiation levels are higher and more stable. Source: World Irradiation Database.

SVR prediction. However, its nature and mathematical formulations do not hinder the
possibility of using it for other regression models. In particular, it seems clear that it fts
well with our proposed D-GNMs, as both are based on making assumptions regarding the
distribution present in the data noise, and the errors of both uncertainty intervals and D-
GNM predictions rely on the correctness of this assumption. For this reason, we propose
to combine both methods. These uncertainty intervals could also be combined with our
Kernel-GNM models, but we will focus here in their use over D-GNM estimators as they
show greatest predictive prowess, as will be seen in Section 4.

In more detail, the goal of this proposed combination is to create a single framework
that gathers all the advantages of its individual components, namely:

‹ The adaptative potential and fexibility of using general cost functions assuming a
particular noise distribution in the data. This allows to build ML models with lower
prediction errors when the error distribution hypothesis is accurate enough.

‹ The prediction prowess of DL frameworks, that enable to train regression models
whose accuracy has been shown to often be signifcantly higher than for other ML
models when large volumes of data are available for training.

‹ The advantage of being able to give not only predictions for each instance, but also
an associated uncertainty interval for that prediction, which is extremely valuable in
several regression applications.

Putting all these pieces together we aim to build ML models for regression able to give
more precise predictions and add to this the possibility of also computing accurate error

93 3.5. D-GNM with Uncertainty Intervals

intervals for each one of these predictions. A good performance of these proposed models
would only be possible, of course, when the noise distribution assumed to be present in the
data correctly resembles the true underlying noise distribution in the data at hand.

The workfow of the proposed framework to build D-GNM models with uncertainty in-
tervals encompasses the following steps:

Model framework defnition

‹ Step 1: Select a Deep Neural Network schema. As in this thesis we focus on
standard regression tasks, we will choose to use fully connected versions of Deep
ANNs. However, extension of D-GNM to other DL structures like Convolutional
Neural Networks is straightforward, as only the loss function applied needs to be
modifed.

‹ Step 2: Select a noise distribution hypothesis. This step is critical as it will impact
in a strong way the accuracy of both predictions and uncertainty intervals of our
models. In some cases, this decision could be made based on expert knowledge on
the topic or investigation on past research, as is the case for the solar [64] and wind
[24] energy problems. In case there is no prior knowledge about which could be a
correct noise distribution assumption, this choice could be made defning the noise
distribution to be used as an additional hyperparameter to select by grid search over
validation.

In our experiments we will test several distributions. First, the standard ILF cost
function used in classical SVR models. Second, the popular and widely applied
Laplace and Gaussian distributions, with or without zero mean. And fnally, Beta
and Weibull distributions, which have been shown [24] [26] to be particularly relevant
for our real-world problems at hand, wind energy and solar radiation prediction.

Compute and plug in the optimal cost function

‹ Step 3: Compute the parameters of the optimal cost function corresponding to the
distribution selected in Step 2. Details of these formulations are presented in Section
2.3.3 for standard distributions, and in Section 3.1.1 we added to these ones the
corresponding formulations for the Beta and Weibull distributions.

‹ Step 4: Plug this cost function into the Deep ANN schema as the loss function, l,
in (3.2.1).

Hyperparameter optimization and model training

‹ Step 5: Train the regression model resulting of Step 4, after performing a grid search
to obtain optimal hyperparameters 1 . This will give a ML model able to make pre-
dictions for a given task that is adapted to a particular choice of noise distribution
assumption.

Clustering and uncertainty intervals computation
1 Details of how the train, validation, and test sets are selected are given in Section 4 as part of the

experiments description.

94 Chapter 3. General Noise Models

‹ Step 6: Divide the data into clusters following the approaches described in Section
2.7 and 3.4.2, namely standard techniques like K-means and K-prototypes on one
hand, and magnitude clustering on the other. Several values for K, the number of
clusters, will be used and the corresponding divisions into clusters stored.

‹ Step 7: Compute uncertainty intervals, one for each cluster created in Step 6. This
step allows for the computations of error intervals corresponding to the predictions
obtained in Step 5. The selection of clusters with the lowest average uncertainy
interval error over a validation set 2 will be chosen as the fnal cluster division.
These uncertainty intervals will, as the prediction of the model, be ftted to a specifc
noise distribution hypothesis. Furthermore, they will have non-constant width, due
to the previous clustering of the data proposed in this thesis which allows the intervals
to adapt to the specifc nature of diferent inputs.

The main contributions of this thesis regarding D-GNM involve the four steps corre-
sponding to the areas of Compute and plug in the optimal cost function and Clustering
and uncertainty intervals computation. In particular, and concerning the previous steps:

‹ Step 3: We have carried out computations in order to give explicit formulations
for the optimal loss functions corresponding to the Beta and Weibull distributions.

‹ Step 4: We propose to replace the loss function l used in classical formulations
of Deep Neural Network models, usually the MSE for regression, for any choice of
general noise loss function to adapt our model to the noise distribution assumed to
be present on the problem at hand.

‹ Step 6: We combine clustering methods, both standard ones and others based on
target scale, with the method proposed in [27] to compute uncertainty intervals. This
allows to solve the problem of some mathematical assumptions leading to constant
error intervals not dependant on the input value.

‹ Step 7: We apply the computation of these uncertainty intervals not only to SVR
models but also to our proposed D-GNM models. The combination of both methods
is feasible in a straightforward manner.

Notice that here we describe the main novelties regarding the fnal proposed model, D-
GNM with uncertainty intervals, due to its special complexity. Nevertheless, intermediate
steps and other proposed models like the creation of Kernel-GNMs using NORMA have
their own developments that should also be considered as part of this thesis’s contributions.
A full summary of all these contributions can be found on Section 5.1.

2Details of how the train, validation, and test sets are selected are given in Section 4.

Chapter 4

Experiments

An experiment is a question which
science poses to Nature, and a
measurement is the recording of
Nature’s answer.

Max Planck

Several experiments have been carried out during the development of this thesis to test
the hypotheses formulated and the suitability of the proposed models. We describe in this
Chapter all the information necessary to understand these experiments and analyze their
results. Furthermore, and in accordance with the principle of reproducible research, we
make public all the details regarding the implementation of our proposed models and the
datasets that we used to perform our experiments. In particular, we point to several R
and Python libraries we created to implement our frameworks and that are accessible from
public repositories. Datasets employed have also been made publicly available. Links and
references are given in Section 4.1.

The rest of this Chapter is structured as follows: Section 4.1 describes how we imple-
mented the proposed models in this thesis to be able to test them in our experiments. Next,
details of how hyperparameter selection was carried out for each type of ML models are
presented in Section 4.2. Section 4.3 gives an in-depth description of all the datasets used in
the experiments, which comprehend artifcial, classical, and real-world datasets, the latter
corresponding to solar and wind energy contests. Evaluation metrics used for measurement
of the goodness of the proposed methods are explained in Section 4.4. Finally, each one
of the fnal four Sections corresponds to the description of one of the experiments carried
out during this thesis, as well as the analysis of the pertinent results. Each experiment
tests the usefulness of one of the proposals described in Chapter 3 over all the datasets
considered in this work. The summary of these experiments is the following:

1. Experiment I: Compare the performance in terms of predictive performance of
the proposed Kernel-based General Noise Models, i.e., Kernel-GNM, trained using
NORMA with respect to the standard ϵ−SVR model.

2. Experiment II: Test the prediction error of the proposed Deep General Noise Mod-
els, i.e., Deep-GNM, versus the non-deep Kernel-GNM models, and also against

95

96 Chapter 4. Experiments

classical ϵ−SVR model, both deep and kernel versions.

3. Experiment III: This last experiment tests the performance of our fnal proposed
framework, Deep-GNM models with uncertainty intervals, in terms of accuracy of
error intervals, as experiment II already measures this in terms of prediction error.

4.1 Implementation Details

Several Machine Learning families of models and methods are tested during our experi-
ments. All these methods have been implemented and tested using the two most popular
programming languages with regards to Machine Learning or Data Science tasks: R and
Python.

Regarding the methods corresponding to Chapter 2, already existing libraries have been
selected and applied. As for the proposed methods suggested in Chapter 3, new libraries
have been developed in order to be able to test these models in our experiments.

4.1.1 Pre-existing Libraries

The following list comprehends all the already existing libraries used during our experi-
ments:

‹ LIBSVM: Used to train and apply classical ϵ−SVR. Details of this library are de-
scribed in [18] and its content is publicly available through ofcial repositories for
several programming languages.

For R you can access LIBSVM through the library e1071 available on the Compre-
hensive R Archive Network, CRAN 1 , and for Python it is integrated in the popular
scikit-learn 2 library used for Machine Learning.

‹ stats: K−means algorithm is implemented in widely used libraries both for R and
Python. We decided to use the R version for this thesis, implemented in the stats
library through the kmeans function. This library, pre-included in the basic packages
for R, also contains other functions for statistical calculations and random number
generation.

‹ ncdf4: Provides a high-level R interface to fles written using Unidata’s network
common data form version 4, netCDF4, as is the case for one of the datasets used in
our experiments. Again, publicly available through CRAN.

‹ Tensorfow: Is a free and open-source software library for datafow and diferentiable
programming across a range of tasks. In this thesis we use its Python version 3 for
Deep Neural Networks implementation. In particular we used Tensorfow 1 in our
implementation.

1https://cran.r-project.org/web/packages/available_packages_by_name.html
2https://scikit-learn.org/stable/index.html
3https://www.tensorflow.org/install

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://scikit-learn.org/stable/index.html
https://www.tensorflow.org/install

97 4.2. Hyperparameter Selection

‹ Keras: is an open-source neural-network library written in Python. The Keras
library 4 works as a high-level API of TensorFlow, providing developers with a more
user-friendly layer for the Tensorfow functionality.

4.1.2 Developed Libraries and Functions

Apart from the pre-existing libraries listed in the previous section, we also developed
our own R libraries and Python functions and variable classes in order to implement all
the methods proposed in Chapter 3. In particular, the following two R libraries and one
Python code repository were developed:

‹ errint: Employed to compute and analyze error intervals for a particular model pre-
dictions assuming diferent distributions for noise in the data. It is the corresponding
implementation for the uncertainty interval computation method described in Sec-
tion 3.4. Available on CRAN 5 .

‹ NORMA: Used to build general noise kernel-based SVR models by applying
NORMA optimization and for the implementation of the Kernel-GNM models de-
tailed in Section 3.1. Also available on the ofcial repository CRAN 6 .

‹ Deep-GNM: We created a freely accesible GitHub repository 7 with all the Python
code needed to implement our Deep General Noise Models. It uses Tensorfow, Keras,
and scikit-learn as base libraries.

4.2 Hyperparameter Selection

All the tested methods have their own set of hyperparameters to be selected. We describe
here the algorithms used to perform this hyperparameter optimization for each family of
models.

4.2.1 Classical ϵ−SVR

As described in Section 2.1, the standard formulation for kernel-based ϵ− SVR encom-
passes three hyperparameters:

1. Cost, C: Controls the magnitude of the regularization term or, in other words, the
bias-variance tradeof.

2. epsilon, ϵ: Selects the range of the insensitive band for the ILF cost functions. Er-
rors with absolute magnitude below this ϵ value will not be penalized.

3. gamma, γ: Hyperparameter used to compute the Gaussian kernel defned by equa-
tion (2.1.44), which is the kernel used in our experiments, both for classical and
general noise versions of kernel SVR formulations.

4https://keras.io/
5https://cran.rstudio.com/web/packages/errint/index.html
6https://cran.r-project.org/web/packages/NORMA/index.html
7https://github.com/jesuspradaalonso/phd

https://keras.io/
https://cran.rstudio.com/web/packages/errint/index.html
https://cran.r-project.org/web/packages/NORMA/index.html
https://github.com/jesuspradaalonso/phd

98 Chapter 4. Experiments

Algorithm 2: Zoom in Exhaustive Grid Search.
1 Set P0 = (C0, ϵ0, γ0) as the parameters obtained after using the Cherkassky’s

approach [77].
2 Defne maximum number of zooms, nzooms.
3 for i = 1 to nzooms do
4 Set number of points as N = 2(i − 1) + 3.

10nzooms+110i
5 Select as grid range [P0].

10nzooms+1 , P0 10i

6 Select N equidistant points from the previous grid range.
7 Train model with each one of these points and apply models over validation.
8 Update P0 to be the grid point with the lowest validation error.
end

9 Set optimal hyperparameters as P0

In our experiments these three hyperparameters are optimized by a zoom in version of
the exhaustive grid search over a fxed validation set, as defned in Algorithm 2, where we
decided to select as number of zooms nzooms = 3. We decided to use a fxed validation
set, instead of a cross-validation setting, because it had yielded better results in some of
our previous experiments regarding wind and solar energy [76] [68], probably because it is
most suited when working with datasets with strong seasonality and temporal structure.
Although we could have employed cross-validation for artifcial and classical datasets, we
decided to unify the framework and apply a fxed validation set for all experiments. Train,
validation, and test splits are defned for each dataset in Section 4.3.

In [77], Cherkassky recommends to use a set of equations to compute the optimal values
for these three SVR hyperparameters. From our experience, this should be considered only
a recommendation and applying a grid is strongly advisable. Therefore, we have opted to
use these recommended Cherkassky’s values as the initial center of our grid for the frst
iteration in Algorithm 2. The formulations suggested by Cherkassky are the following ones

C = max (|ȳ − 3σy|, |ȳ + 3σy|) , r
log n

ϵ = 3σ , (4.2.1)
n

γd ∈ (0.2, 0.5) ,

where d is the number of variables in the dataset, also referred to as its dimensionality.
The Cherkassky’s proposal for γ is subject to data being scaled to [0,1].

4.2.2 Kernel Gaussian Noise Models, Kernel-GNM

As stated in Section 3.3, for general noise models using loss functions other than ILF, the
density parameters are computed applying the Maximum Likelihood Estimation, MLE, for-
mulas shown in Table 4.2.1, which in some cases involve solving numerically the equations
over a set of residuals.

The residuals employed for the calculation of these MLE formulas, e.g. α and β esti-
mations for the Beta distribution, are the corresponding prediction errors obtained over
cross-validation by a previously computed ϵ−insensitive SVR model, which is optimized

99 4.2. Hyperparameter Selection

Table 4.2.1: Estimated parameters via MLE corresponding to several distributions.

Distribution MLE parameters

Zero-mean Laplace
P n

i=1 |ψi|σ̂ =
n

Laplace
P n

i=1 |ψi−µ|σ̂ = , µ = mψi . is the median of {ψi}n
n mψi i=1

Zero-mean Gaussian
P n ψ2

i=1 iσ̂ =
n

Gaussian 
P n

i=1 (ψi−µ)2
n ψiσ̂ = ,µ =

n i=1 n
P 

Beta


b
b


αn+1 αn F1(bαn, βn, ξi)

= − [Jf (bαn,)]−1bβn
βn+1 βn F2(bαn, βn, ξi)

b
b


b

b


Weibull
P�

1 � 1
n κλ = ψκ ,

n i=1 i

b H(bκ)κn+1 = bκn −
H ′ (bκ)

using 5-fold cross-validation following the hyperparameter selection process described in
Section 4.2.1. Although theoretically it could be argued that it would be more correct to
apply this methodology employing a nonparametric method that does not make asump-
tions regarding noise distribution on the data, like Random Forest, we opted here to use
the most generic or neutral of the models we consider in our analysis, which is the classical
ϵ−insensitive SVR model.

Regarding Kernel-GNMs, as in the case of the classical ϵ−SVR model, we select the
Gaussian kernel as the one to employ and we estimate its optimal γ value using the same
approach as in Algorithm 2 over a fxed validation set.

As for the stopping criteria parameters, we select 1000 as the maximum number of
NORMA update iterations and 10−3 as the minimum tolerance threshold, i.e., the mini-bmum relative diference between the αtt obtained in two consecutive iterations required to
continue with the NORMA iterative updates.

4.2.3 Deep ANN

Deep Neural Networks are Machine Learning models with quite a long list of possible
hyperparameters to optimize. From all the parameters we decided to optimize the ones
that seemed more important judging by the literature and our previous experiments. In
particular, these are the hyperparameters we selected:

1. Number of hidden layers: This hyperparameter selects the number of hidden
layers, i.e., the ones between the input and output layer, that the Deep ANN setting
will have.

2. Number of neurons per layer: We set the number of neurons or units to be
constant among all hidden layers for computational reasons, but the specifc value
set for this hyperparameter is optimized in our grid search.

100 Chapter 4. Experiments

Algorithm 3: Zoom in Random Grid Search.
1 For each hyperparameter h to optimize in the grid search, set the initial minimum

value, minh, and the initial maximum value, maxh, according to Table 4.2.2.
2 for i = 1 to nzooms do
3 Set number of points as N = 2i .
4 For each hyperparameter h, select randomly N valid points in the interval

[minh, maxh].
5 Train model with each one of these points and apply models over validation.
6 Select P as the grid point with the lowest validation error.
7 For each hyperparameter, update minimum and maximum values as

= P − maxh−minh maxh−minhminh 2i+1 and maxh = P +
2i+1 , respectively.

end
8 Set optimal hyperparameters as P .

3. Dropout probability: Dropout refers to ignoring neurons chosen at random dur-
ing the training phase of our model, i.e., these units are not considered during a
particular forward pass. Individual nodes are either dropped out of the net with
probability 1 − p or kept with probability p. This p value is the one we optimize in
our grid search. This dropout mechanism allows us to do regularization of our Deep
ANN models. Although dropout and weight decay are regularization techniques that
are not mutually exclusive, we have decided to not apply weight decay in this work
and carry out regularization by means of dropout, in order to reduce computational
complexity of the hyperparameter tuning of these models.

4. Batch size: This one is a hyperparameter of Adam optimization that controls the
number of training samples to work through before the model’s weights are updated.

5. Learning Rate: This is the ηt value appearing in equation 2.6.19. It controls the
step size of each updating in the Adam optimization. For computation reasons, we
decide again to make this hyperparameter constant, i.e ηt = η.

Due to the computational expense of training an exhaustive grid search of Deep ANN
models with combinations of all these hyperparameters, we opted here to apply a zoom-in
random grid search [78] over a fxed validation set, as we did in [79] with good results,
instead of the zoom in exhaustive version shown in Algorithm 2. A visual comparison
between these two grid search methods can be seen in Figure 4.2.1. The initial random
grid search space for each hyperparameter is specifed in Table 4.2.2 and the zoom-in
random grid search algorithm is described in Algorithm 3. In our experiments we used

= 6.nzooms

4.2.4 Deep General Noise Models, Deep-GNM

The proposed Deep General Noise Models are a combination of a Deep ANN with the
use of a general cost function. Therefore, it has two diferent set of hyperparameters to
optimize:

101 4.2. Hyperparameter Selection

Figure 4.2.1: Exhaustive Grid Search vs Random Grid Search. Exhaustive method explic-
itly defnes the values to test for a particular hyperparameter, while Random Grid Search
test a set of N points randomly selected among a specifed range. Image from [80].

1. Deep ANN hyperparameters: Optimized using the zoom-in random grid search
shown in Algorithm 3 over the hyperparameters described in Section 4.2.3.

2. General cost function density parameters: For Deep-GNM models using loss
functions other than ILF, the density parameters are computed applying the MLE
formulas shown in Table 4.2.1, as described in Section 4.2.2 for Kernel-GNM models.
When using ILF, hyperparameter ϵ is optimized by a zoom in version of the exhaustive
grid search, as defned in Algorithm 2.

4.2.5 Uncertainty Intervals

To compute error intervals following the method proposed in Section 3.4, it is necessary
to obtain the density parameters corresponding to the noise distribution assumed to be
present in the data.

In order to get these density parameters, we apply the MLE formulas shown in Table 4.2.1
in the same vein we do to compute the proposed Kernel-GNM models. However, instead of
using the residuals obtained in the hyperparameter grid search of classical ϵ−SVR described
in Algorithm 2, as we proposed for Kernel-GNM models, in this case the validation errors of
the corresponding optimum general noise model calculated previously, i.e., the one yielding
the best results, are used as residuals for MLE computation.

Finally, when clustering is carried out prior to computation of the uncertainty intervals,
the K value is selected by means of an exhaustive grid search, where values between 2 and
10 are evaluated. The K value that results in the error intervals with better performance
in terms of pererr over 5-fold cross-validation is selected as optimal value.

102 Chapter 4. Experiments

Table 4.2.2: Initial random grid search space for Deep ANN models.

Hyperparameter Min Max

Number of hidden layers 1 10

Number of neurons per layer 10 100

Dropout probability 0 0.5

Batch size 8 512

Learning Rate 10−5 10−1

4.3 Datasets

4.3.1 Artifcial Datasets

We created several artifcial datasets consisting of 500, 000 instances following this ex-
pression

a yi = x · b + δi, i = 1, 2, . . . , 500, 000 , (4.3.1)i

with xi, a and b 1024-dimensional vectors where each element is randomly chosen from
the uniform distributions over the intervals [0.1, 2], [1, 5], and [1, 10] respectively, and δi
random noise following diferent distributions; 70% of each dataset is used for training,
15% for validation, and 15% for testing.

We consider here fve diferent types of datasets, each one with a diferent noise distribu-
tion. Distribution parameters such as σ in the Laplace noise are randomly computed in the
selected interval only once for each dataset, i.e., they remain constant for all δi extractions
of a particular dataset and hence the noise for each instance of the dataset follows exactly
the same distribution, although the specifc noise value will difer between instances. Fol-
lowing a similar approach to the one we used in [76], the concrete distributions applied to
each dataset are the following:

1. Zero-noise: δi = 0. This is a dataset without noise following a specifc distribution,
so we may expect that no clear winner between the proposed Laplace, Gaussian,
Beta, and Weibull noise models is found.

2. Laplace: δi extracted from a Laplace with |µ| ∈ [y, max(y)], σ ∈ [std(y), max(y)].

3. Gauss: δi extracted from a Gaussian with |µ| ∈ [y, max(y)], σ2 ∈ [std(y)2 , max(y)2].

4. Beta: δi extracted from a Beta distribution with α, β ∈ [2, 10] 8 .

5. Weibull: δi extracted from a Weibull distribution with κ, λ ∈ [1, 10]9 .
8Notice here that Beta loss function is convex when α, β > 1
9Notice here that Weibull loss function is convex when κ > 1

103 4.3. Datasets

(a) Test errors for data without noise. (b) Test errors for data with Laplace noise.

Figure 4.3.1: Histograms of test errors for data without noise vs. test errors for data
corrupted with Laplace noise.

Three datasets are built for each of these types using the same distribution parameters
for yi in (4.3.1) but diferent distribution parameters for the noise δi inserted, and the
mean of the experiment results over them is computed to contemplate possible deviations
on results obtained.

As an example, histograms of errors for a random forest model [7] ftted to the zero-
noise artifcial test set and the one corrupted with Laplace noise are shown in Figure 4.3.1.
Random forest models are used here due to the fact that it is a nonparametric method
that does not make asumptions regarding noise distribution on the data. It is clear that a
Laplace distribution fts better the latter histogram and, therefore, it is to be expected that
the intervals corresponding to this distribution are the ones that achieve greatest accuracy,
and probably a Kernel-GNM or Deep-GNM using this distribution hypothesis would also
yield better predictions.

4.3.2 Classical Datasets

We also use in our experiments a set of widely used regression datasets belonging to the
LIBSVM repository. In particular, the list of datasets evaluated is the following: abalone,
bodyfat, cpusmall, housing, mg, mpg, pyrim, and space ga. All these datasets are publicly
accesible through the LIBSVM repository 10 . Their sample sizes and number of features
are given in Table 4.3.1.

All the classical datasets considered are split into train, validation, and test sets using
50% for train, 15% for validation, and 35% for test. We decided to use a bigger ratio for
the test set than usual, due to the reduced volume of some of the datasets and the need
of further splitting the test set in a second set of train and test divisions in order to build
the clustering methods we employ to compute error intervals in Experiment III, as will be
described in Section 4.7.

4.3.3 Solar Dataset

The dataset analyzed regarding solar tasks corresponds to the Kaggle AMS 2013-2014
solar radiation prediction contest. The goal of this contest is to discover which statisti-
cal and machine learning models provide the best predictions of daily–aggregated solar

10https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

104 Chapter 4. Experiments

Table 4.3.1: Classical datasets dimensions.

Dataset Patterns Features

abalone 4177 8

bodyfat 252 14

cpusmall 8192 12

housing 506 13

mg 1385 6

mpg 392 7

pyrim 74 27

space ga 3107 6

radiation. In particular, models must predict the total daily incoming solar radiation at
98 Oklahoma mesonet sites [81], which will serve as solar farms proxies for the contest.
Mesonet sites are a network of collectively owned and operated automated weather sta-
tions that are installed close enough to each other to observe, measure, and track mesoscale
meteorological phenomena.

Real values of total daily incoming solar radiation in Jm−2 at these 98 points are provided
in the AMS dataset, although we will work with KJm−2 values instead for clarity. Location
coordinates and elevation for each station are also given.

Input numerical weather prediction data for the contest comes from the NOAA/ESRL
Global Ensemble Forecast System [82], GEFS, Reforecast Version 2 11 . The data are in
netCDF4 fles; each one contains the total data for one of the model variables and is stored
in a multidimensional array. The frst dimension is the date of the model run. The second
dimension is the ensemble member which the forecast comes from. The GEFS has 11
ensemble members for which the GFS model is applied with perturbed initial conditions.
We use only ensemble 1 in our experiments for simplicity. The third dimension is the
forecast hour, which runs from 12 noon to 12 midnight UTC in 3 hour increments, so
rows for diferent days will always correspond to the same universal time although local
solar time will vary over each year. The fourth and ffth dimensions are the latitude and
longitude on a uniform spatial grid. The longitudes in the fle are in positive degrees from
the Prime Meridian, so subtracting 360 from them will translate them to a similar range of
values as the ones given for the stations, which are provided in a separate fle together with
their corresponding elevation. The comprehensive list of all variables includen in these fles
is shown in Table B.0.1 in Appendix B. Elevation of each GEFS point is also provided in
an additional fle.

Data of the contest covers the years from 1994 to 2007. For the purpose of our experi-
ments, we split this dataset into train, validation and test as follows:

‹ train: 1994-2005.

https://psl.noaa.gov/forecasts/reforecast2/ 11

https://psl.noaa.gov/forecasts/reforecast2/

105 4.3. Datasets

‹ validation: 2006.

‹ test: 2007.

The complete dataset is freely accesible at https://www.kaggle.com/c/ams-2014-sol
ar-energy-prediction-contest/data

4.3.4 Wind Dataset

The wind energy related dataset employed in the experiments is the one used in the
GEFCom2014 contest [83], where the probabilistic wind power forecasting track aims to
estimate the probabilistic distribution, in quantiles, of wind power generation for 10 wind
farms. The wind farms are all located in Australia, and there could be potential depen-
dencies between the sites, both in space and in time.

The target variable is the power generation, normalized here by the respective nominal
capacities of each wind farm. The predictors included are wind forecasts at two heights, 10
and 100 meters above ground level, obtained from the European Centre for Medium-range
Weather Forecasts, ECMWF 12 . These forecasts were for the zonal and meridional wind
components, denoted U and V respectively. The meteorological convention for winds is that
U component is positive for a west to east fow, i.e., eastward wind, and the V component
is positive for south to north fow, i.e., northward wind. Therefore, the complete list of 4
variables available is the following.

1. VAR 1: 10 metre U wind component in m s−1 .

2. VAR 2: 10 metre V wind component in m s−1 .

3. VAR 3: 100 metre U wind component in m s−1 .

4. VAR 4: 100 metre V wind components in m s−1 .

√
Vector modules for W = (U, V), i.e., U2 + V 2 , both for 10 and 100 metres, were also

computed and added to the input dataset.

Data is provided in comma separated values with each row corresponding to one hour of
a particular day. The dataset includes 15 diferent tracks, but we will focus only in track 15
for the purpose of these experiments. Data available goes from 2012-04-01 to 2014-07-01.
We split the data using the following approach:

‹ train: From 2012-06-01 to 2013-05-31.

‹ validation: From 2013-06-01 to 2014-05-31.

12https://www.ecmwf.int/

https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest/data
https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest/data
https://www.ecmwf.int/

106 Chapter 4. Experiments

‹ test: From 2014-06-01 to 2014-07-01.

The complete dataset is accesible via [83].

4.4 Evaluation Metrics

In order to measure the suitability of the methods proposed in Section 3 during our
experiments, we make use of several evaluation metrics, with diferent intuitions and pur-
poses.

4.4.1 Prediction Evaluation

For purposes of comparing the results obtained with the ones present in previous research
and in the Kaggle Leaderboard, the primary choice of evaluation metric for our experiments
is the Mean Absolute Error, MAE. This is the main metric we will use throughout this
chapter to analyze prediction performance. As we have seen earlier, the MAE is defned as

NX1
MAE = | f̂(xi) − yi | (4.4.1)

N
i=1

However, based on our experience in solar and wind energy tasks we consider that the
Mean Absolute Percentage Error, MAPE, may be a better choice to evaluate performance
of a model in this particular task. For this reason, we will also include in this chapter
results of experiments applying the more demanding MAPE metric, which is defned as
follows

PN |f̂(xi)−yi|
i=1 max(|yi|,|δϵ|) (4.4.2)MAP E = 100 ∗ .

N

where δϵ is set to be equal to the minimum value of |yi| that is not zero over the evaluation
set.

Finally, in the GEFCom2014 competition the goal is to fnd the best quantile predictions
for wind power generation. Therefore, an evaluation metric suited to this purpose must
be used. They opt to use the pinball loss function to evaluate the accuracy of these
probabilistic forecasts. For comparison with the GEFCom leaderboard for this contest,
prediction accuracy using this metric is also included. This specifc metric is defned as
follows.

�
(y − z)τ , y ≥ z ,Lτ (y, z) = (4.4.3)
(z − y)(1 − τ) , y < z ,

where τ is the target quantile, z the predicted quantile value and y the exact numerical
value of wind power. More details regarding the defnition of this metric and why it was
chosen for this contest can be found in [83]. A visualization of the pinball loss function
can be found in Figure 4.4.1, where ξ = y − z.

���� ����

107 4.5. Experiment I. Kernel-GNM Models

Figure 4.4.1: Pinball Loss Function.

4.4.2 Uncertainty Intervals Evaluation

Regarding evaluation of the uncertainty interval accuracy, given a pre-specifed proba-
bility 1 − 2s, where s is the s-th percentile for which we have computed our error intervals,
we compare the percentage of test prediction errors, ψtest , lying inside the corresponding i
uncertainty intervals, [as, bs], with the expected number, (1 − 2s), i.e.,

{# of ψtest ∈ [a, b]}i pererr(s) = − (1 − 2s) . (4.4.4)
N

We choose an absolute error as accuracy measure over one with weights for positive or
negative errors because preference towards a positive or negative error, i.e., which one is
considered less detrimental of the two, is problem-dependent. In some tasks it is preferable
to take a more conservative approach, penalizing more negative errors, but in others a more
risky approach could be a better option, tending to punish positive errors more. Here we
opt to use the most neutral possible choice as our measure.

4.5 Experiment I. Kernel-GNM Models

The purpose of this experiment is to test the performance of classical ϵ-SVR versus
our proposed general noise SVR models, Kernel-GNM. In particular, we build general
models following the approach proposed in Section 3.1 using Laplace, Gaussian, Beta, and
Weibull distributions as noise assumptions. We make this comparison over all the datasets
considered, namely artifcial, classical and the two competition datasets.

Results are presented in Tables 4.5.3, 4.5.5, 4.5.6, 4.5.8, 4.5.9, 4.5.11, using MAE, MAPE,
and Pinball loss as evaluation metrics. For each of these metrics, evaluation scores and
relative rank for each dataset are shown. For MAE and MAPE average metrics and ranks
are also provided, although it is important to note that average MAE over datasets can
be misleading if not analyzed carefully, due to the possibility of signifcant diferences in
target magnitudes among datasets. These tables show the following columns:

1. Dataset: Reference to the dataset to which metric results of that row of the table
corresponds.

108 Chapter 4. Experiments

Table 4.5.1: Structure of matrix residuals employed in Friedman and Wilcoxon tests.

Observation Model 1 Model 2 Model 3 Model 4 Model 5

1 ψ1
1 ψ2

1 ψ3
1 ψ4

1 ψ5
1

2 ψ1
2 ψ2

2 ψ3
2 ψ4

2
5
2ψ

3 ψ1
3 ψ2

3 ψ3
3 ψ4

3
5
3ψ

4 ψ1
4 ψ2

4 ψ3
4

4
4ψ

5
4ψ

5 ψ1
5 ψ2

5 ψ3
5

4
5ψ

5
5ψ

...

N ψ1
N ψ2

N
3
Nψ

4
Nψ

5
Nψ

2. ϵ-ILF: Classical ϵ-SVR model, as described in Section 2.2.1.

3. Lap: Kernel-GNM model proposed in Section 3.1 assuming Laplace distribution
allowing for non-zero mean values.

4. Gau: Kernel-GNM model proposed in Section 3.1 assuming Gaussian distribution
allowing for non-zero mean values.

5. Beta: Kernel-GNM model proposed in Section 3.1 assuming Beta distribution.

6. Weib: Kernel-GNM model proposed in Section 3.1 assuming Weibull distribution.

For each dataset, we compute Kernel-GNM models following each one of the four dis-
tributions considered in this thesis, and show the corresponding results. In a real case
scenario, this process could be considered as an aditional step of the hyperparameter se-
lection, where the particular distribution to be employed as noise distribution hypothesis
could be considered as an additional hyperparameter and selected by grid search over val-
idation. Additionally, for some tasks like the solar and wind datasets, expert knowledge
on the topic or investigation on past research [64] [24] could point us to potential good
choices of noise distribution assumption.

Hyperparameters for ϵ-ILF as well as the distribution parameters for Lap, Gau, Beta,
and Weib are selected following the approaches described in Section 4.2.

Furthermore, we carried out for each experiment a Friedman test over the residuals,
ψm c= fm(xi) − yi, obtained in the test set by each model m to check for signifcant difer-
ences between the performance obtained between the diferent models analyzed. When a
signifcant p-value was found after applying this test, we also carried out a pairwise com-
parison with Wilcoxon signed-rank test over the residuals ψm to analyze if there existsi
signifcant diferences between the results obtained by each tested model, where p-values
were adjusted by a step-down method using Sidak adjustments [84]. Therefore, we apply
the aforementioned statistical tests over a matrix with the structure shown in Table 4.5.1,
where in this experiment the fve models considered are ϵ-ILF, Lap, Gau, Beta, and Weib.

i

109 4.5. Experiment I. Kernel-GNM Models

4.5.1 Artifcial Datasets

Table 4.5.3 shows the MAE for Kernel-GNM models using diferent noise distribution
assumptions over our artifcial datasets. For all the artifcial datasets used in this ex-
periment, when the target presents noise corresponding to a particular distribution, the
best general noise model is the one that uses the loss function matching the same noise
distribution and, in particular, its results are clearly better than the ones obtained using
the classical ϵ-ILF. These results seem to confrm our initial hypothesis and the usefulness
of the approach proposed in this paper to build general noise models, and supports the
validity of our proposed method to select the density parameters, which is described in
Section 3.3.

It is also interesting to note that for the artifcial dataset with Gaussian noise, the second
best performing one corresponds to the model using ϵ-ILF as loss function, a result that
fts in well with the statement made in [23] that the use of the ϵ-ILF is also justifed under
the assumption that the noise is additive and Gaussian, where the variance and mean of
the Gaussian are random variables.

We carried out a Friedman test over the ψm matrix to analyze if there exists signifcant i
diferences between the residuals obtained by each tested general noise model. The p-value
obtained is 0.20, clearly above the threshold for a signifcance level of 0.05. This is a result
to be expected, as each general noise model is the best solution when the underlying noise
in the dataset corresponds to the distribution assumption employed to build the model,
but no overall best or worst model exist.

Taking this into account, we decided to carry out statistical tests for each artifcial
dataset independently. Thus, for each one of these datasets a diferent Friedman test was
conducted over the matrix of residuals obtained only for that particular artifcial dataset.
When this Friedman test for a particular dataset showed signifcant diferences, a pairwise
Wilcoxon test was also applied to this matrix. This means that a matrix of residuals
following the structure shown in Table 4.5.1 was built using only residuals obtained by
each model for observations in the Zero-noise dataset, i.e., only a subset of rows from
the n observations shown in Table 4.5.1 are selected, and then the statistical tests were
applied over this reduced matrix. Next, a new reduced matrix with the same structure but
containing only residuals for observations in the Laplace dataset, i.e., a diferent subset of
rows from Table 4.5.1, was created and statistical tests carried out. Finally, this process
was repeated in the same manner for all the remaining artifcial datasets.

Following this methodology, the Friedman tests showed a p-value below 0.05 for all
datasets except for the Zero-noise one, where it is to be expected that diferences between
models are not necessarily signifcant. For all the other datasets, we decided to carry out a
pairwise Wilcoxon test comparing the reference model, i.e., the one using as noise assump-
tion the same distribution employed to build the dataset, with all the other models. This
means that from the results obtained from the pairwise Wilcoxon test over, for instance,
the Laplace dataset, we focus only on the p-values obtained for the row corresponding to
the Lap model, as shown in Table 4.5.2.

Results of the Friedman and pairwise Wilcoxon tests described above are shown in Table
4.5.4. It can be observed that there are signifcant diferences between the performance of

110 Chapter 4. Experiments

Table 4.5.2: Pairwise Wilcoxon test results corresponding to the reference model.

ϵ-ILF Lap Gau Beta Weib

ϵ-ILF

Lap 0.03 1.00 0.03 0.00 0.01

Gau

Beta

Weib

Table 4.5.3: MAE obtained in Experiment I for each choice of distribution assumption in
a Kernel-GNM model over artifcial datasets.

Dataset ϵ-ILF Lap Gau Beta Weib

Zero-noise 0.99 (2) 0.98 (1) 0.99 (2) 1.04 (5) 1.02 (4)

Laplace 2.07 (2) 1.86 (1) 2.11 (3) 2.57 (5) 2.34 (4)

Gaussian 1.97 (2) 2.23 (3) 1.91 (1) 2.61 (5) 2.25 (4)

Beta 1.16 (2) 1.23 (4) 1.20 (3) 1.06 (1) 1.27 (5)

Weibull 1.58 (3) 1.66 (4) 1.53 (2) 1.88 (5) 1.40 (1)

mean

mean rank

1.55

2.2

1.59

2.6

1.52

2.2

1.83

4.2

1.66

3.6

the reference model and all the others, with the exception of the Gaussian and standard
ϵ-ILF for the dataset build using Gaussian noise, which is again a conclusion that fts in
well with the statement made in [23]. For the zero-noise dataset, the Friedman test did
not show signifcant diferences between the residuals obtained by each tested general noise
model, as was to be expected.

Results are similar for the MAPE metric, which are presented in Table 4.5.5. The only
signifcant diference is that for MAPE the winner in terms of average error is ϵ-ILF while
for MAE it was the Gaussian loss, with the two of them tied regarding mean rank for
both MAE and MAPE metrics. This is probably due to the efect of having targets with
diferent scales afecting the MAE results. Therefore, it seems logical to conclude that
ϵ-ILF loss is the most robust option when the underlying noise in the data is not known or
cannot be deduced from the data itself, which fts well with the fact that it is the standard
choice when computing a SVR model.

111 4.5. Experiment I. Kernel-GNM Models

Table 4.5.4: Friedman and Wilcoxon tests for Experiment I results over artifcial datasets.

Dataset Friedman p-value Reference ϵ-ILF Lap Gau Beta Weib

Zero-noise 0.37 - - - - - -

Laplace 0.01 Lap 0.03 1.00 0.03 0.00 0.01

Gaussian 0.04 Gau 0.27 0.03 1.00 0.00 0.03

Beta −291.85e Beta 0.02 0.01 0.02 1.00 0.00

Weibull −72.73e Weib 0.03 0.01 0.03 0.00 1.00

Table 4.5.5: MAPE obtained in Experiment I for each choice of distribution assumption
in a Kernel-GNM model over artifcial datasets.

Dataset ϵ-ILF Lap Gau Beta Weib

Zero-noise 7.7 (1) 7.7 (1) 7.8 (3) 8.2 (5) 8.0 (4)

Laplace 16.3 (2) 14.6 (1) 16.6 (3) 20.2 (5) 18.4 (4)

Gaussian 15.1 (2) 17.5 (3) 14.6 (1) 20.5 (5) 17.7 (4)

Beta 8.2 (2) 9.7 (4) 9.4 (3) 7.8 (1) 10.0 (5)

Weibull 12.1 (3) 13.0 (4) 12.0 (2) 14.8 (5) 11.0 (1)

mean

mean rank

11.9

2.0

12.5

2.6

12.1

2.0

14.3

4.2

13.0

3.6

4.5.2 Classical Datasets

In Table 4.5.6 MAE results are shown for each of the LIBSVM datasets evaluated and fve
types of Kernel-GNM models used, namely ϵ-ILF, Laplace, Gaussian, Beta, and Weibull,
where hyperparameters and density parameters are selected as described in Section 4.2.
Several relevant conclusions can be obtained from these results. First, Kernel-GNM models
are competitive with classical SVR in general, and for some datasets even better. Although
standard SVR gets the best average MAE among all the datasets, this cannot be considered
too relevant due to big diferences in target scale among the datasets. As a matter of fact,
although classical ϵ-SVR is the model that achieves the best performance for four out of
eight datasets, Gaussian Kernel-GNM, is the winner in terms of average rank.

Secondly, there is not a Kernel-GNM model that outperforms ϵ–insensitive SVR over all
datasets evaluated, but some of these models are clearly better for problems like cpusmall,
space mpg, and housing, where Lap, Gau, and Weib models appear to be the best option,
respectively. This fact seems to point to a particular distribution of noise for these prob-
lems outside the one corresponding to the ϵ-ILF function. On the other hand, the model
assuming Beta noise obtains the worst overall results and does not manage to be the best
option for any of the classical datasets analyzed in this experiment.

112 Chapter 4. Experiments

Finally, when Kernel-GNM models are the best option, the particular distribution as-
sumption that yields the best performance is not always the same, with Laplace, Gaussian
and Weibull being the best suited option for at least one dataset. This indicates the impor-
tance of being accurate when formulating the hypothesis of the noise distribution assumed
to be present in the data and thus inserted in the formulation of the Kernel-GNM model
to be used for a particular task and, therefore, points out that using ϵ-ILF regardless of
the specifc nature of the task at hand is not always advisable, although it remains to be
a competitive option.

Applying a Friedman test over the residuals obtained for all the datasets following the
structure described in Table 4.5.1 yields a p-value of 0.01, showing signifcant diferences.
Therefore, in this case we did not carry out a separate Friedman and Wilcoxon tests over the
residuals obtained for each dataset, as we did for the artifcial datasets, but only an overall
test taking into account the residuals obtained for observations belonging to all classical
datasets, i.e., we built a single matrix with the structure shown in Table 4.5.1, where the
residuals obtained for bodyfat observations are placed below the residuals corresponding to
abalone observations, and so on and so forth. Then we applied a Friedman test, resulting
in the aforementioned p-value of 0.01, and a pairwise Wilcoxon test over that matrix of
residuals.

Regarding pairwise Wilcoxon tests for residuals obtained over all classical datasets, which
results are shown in Table 4.5.7, signifcant diferences using a signifcance level of 0.05 are
detected for Beta with respect to classical ϵ-ILF and Gaussian models, and also between
Beta and Weibull if a signifcance level of 0.1 is applied. Looking at the results obtained in
Table 4.5.6 this seems reasonable, as here Beta appear to have a worse overall performance
in general, wirh a mean rank of 4.5 out of 5.

Analogous results for the MAPE metric are shown in Table 4.5.8. The main conclus-
sions described before can also be drawn here looking at the MAPE scores, although some
diferences exist when analyzing particular datasets. For instance, Laplace noise distribu-
tion assumption, and not Weibull like in the MAE case, achieves the best performance for
the housing dataset. Taking into account MAPE, Gaussian Kernel-GNM is not only the
winner in terms of average rank, although by a small margin, but also achieves the same
mean score over all datasets than ILF.

4.5.3 Solar and Wind Contest Datasets

The global results for Experiment I over the contest datasets are shown in Table 4.5.9
for AMS and Table 4.5.11 for GEFCOM. We show MAE and MAPE metrics for each
version of Kernel-GNM. Regarding the wind contest, we also compute the results in terms
of the Pinball loss. For both contests, the ranking that these models would have got in the
ofcial leaderboard, based on MAE for AMS and Pinball loss for GEFCOM, is also shown.
Finally, relative rank for each model and metric is described between parentheses. We will
focus here in the results for the MAE metric, as conclusions are similar when analyzing
the other metrics.

First, the choice of noise distribution assumption is highly relevant for model accuracy,
as the worst results are 2.3% and 6.7% higher than the lowest MAE obtained for the AMS
and GEFCom2014 datasets, respectively. For instance, this decline in performance would

113 4.5. Experiment I. Kernel-GNM Models

Table 4.5.6: MAE obtained in Experiment I for each choice of distribution assumption in
a Kernel-GNM model over classical datasets.

Dataset ϵ-ILF Lap Gau Beta Weib

abalone 1.48 (1) 1.58 (3) 1.53 (2) 1.67 (4) 1.58 (3)

bodyfat 0.00 (1) 0.10 (2) 0.10 (2) 0.17 (5) 0.12 (4)

cpusmall 2.13 (3) 2.07 (1) 2.12 (2) 2.21 (5) 2.13 (3)

housing 2.28 (3) 2.39 (5) 2.27 (2) 2.36 (4) 2.24 (1)

mg 0.09 (1) 0.17 (5) 0.13 (2) 0.15 (4) 0.13 (2)

mpg 1.91 (2) 1.95 (3) 1.89 (1) 2.49 (5) 2.03 (4)

pyrim 0.06 (1) 0.10 (3) 0.06 (1) 0.19 (5) 0.10 (3)

space ga 0.14 (2) 0.14 (2) 0.11 (1) 0.16 (4) 0.17 (5)

mean

mean rank

1.01

1.75

1.06

3.00

1.03

1.63

1.18

4.50

1.06

3.13

mean to drop 11 positions in the AMS Kaggle leaderboard. Second, provided that the
distribution assumption is properly chosen, general noise SVR models achieve signifcantly
higher precision than classical ϵ-SVR for both contests.

Regarding results corresponding to the solar competition, the Weibull and especially the
Beta distributions seem to capture better the underlying noise distribution for the task of
solar prediction. Although further testing of our models with diferent datasets would be
needed to confrm these results, they seem to be in line with previous works, such as [64],
[62] or [68], that suggest the Beta distribution as a good choice to model solar irradiation.

As for the signifcance of results obtained for the AMS competition, again we carried
out a Friedman test, this time over the global matrix containing the residuals obtained
for each of the 98 solar stations by each model tested. This means that the rows of this
matrix are the observations for each of the 98 stations concatenated vertically, i.e., one
below the other, and the columns are each of the fve models evaluated in this experiment.
This Friedman test yielded a p-value of 1.85 10−16 . Thus, we proceed to compute pairwise
Wilcoxon tests, whose results are shown in Table 4.5.10. In this case, adjusted p-values
clearly below the 0.05 signifcance threshold are found. In particular, only models ϵ-ILF
and Gau seem to have a similar performance, with signifcant diferences found for all
the other comparisons. This is again reasonable, as ϵ-ILF and Gau obtained the same
position in the leaderboard and similar average metrics. Combining these results with
the previously disccused, it seems logical to conclude that the model using the Beta noise
distribution assumption, the winner in terms of MAE, MAPE and leaderboard position,
achieves a signifcantly better performance for the problem of solar forecasting in the AMS
competition.

114 Chapter 4. Experiments

Table 4.5.7: Wilcoxon test for Experiment I MAE results over classical datasets.

ϵ-ILF Lap Gau Beta Weib

ϵ-ILF 1.00 0.28 0.71 0.04 0.22

Lap 0.28 1.00 0.30 0.28 0.57

Gau 0.71 0.30 1.00 0.04 0.28

Beta 0.04 0.28 0.04 1.00 0.08

Weib 0.22 0.57 0.28 0.08 1.00

Similar conclusions can be extracted when analyzing the GEFCom2014 results, as can
be seen in Table 4.5.11. This time the Weibull and Beta distributions, in this order, seem
to be the best choices for noise assumption, which also seems in line with previous research
such as [65] or [68] where Weibull is pointed to be a good ft for wind behaviour. Results for
Wilcoxon pairwise test over residuals are shown in Table 4.5.12. Signifcant diferences are
found among all models, except for Beta and Weib, which also obtained the same pinball
loss and leaderboard position. Following a similar reasoning to the one we applied for the
AMS contest, we could infer that these two are the overall best solutions for GEFCom2014
problem.

Finally, it is interesting to note the results regarding the ofcial leaderboard. The goal
of this work is not to fnd the best possible model in terms of accuracy, as we follow a
simple and straightforward pipeline to tackle the problem with almost no data processing,
feature engineering or expertise integration, and we also use a relatively small grid for the
hyperparameter search; our aim was instead to compare the perfomance of the diferent
noise distributions among themselves and to compare the proposed models with classical
ϵ−SVR using ϵ-ILF. However, results obtained are quite positive, with the model using
Beta noise assumption getting a score of 2207.12 KJm−2 , good enough for eight place
among all the 160 participants visible on the Kaggle private leaderboard for the AMS
Kaggle contest. As for GEFCom2014, Beta and Weibull models obtain a respectable sixth
position.

4.6 Experiment II. Deep-GNM Models

This experiment is analogous to Experiment I but now the goal is to test the performance
of the proposed Deep-GNM models. Taking this into account, the experiment consists in
comparing for each dataset analyzed the performance of Deep SVM and Deep-GNM models
with the results obtained both by classical ϵ-insensitive SVM and the best Kernel-GNM
model from the previous experiment. To build these deep models we follow the proposed
method described in Section 3.2. We again carry out this experiment using all the datasets
detailed in Section 4.3.

Results are presented in Tables 4.6.1, 4.6.2, 4.6.5, 4.6.6, 4.6.9, and 4.6.11, using MAE,
MAPE, and Pinball loss as evaluation metrics. These tables consist of the following
columns:

115 4.6. Experiment II. Deep-GNM Models

Table 4.5.8: MAPE obtained in Experiment I for each choice of distribution assumption
in a Kernel-GNM model over classical datasets.

Dataset ϵ-ILF Lap Gau Beta Weib

abalone 13.2 (1) 13.6 (3) 13.5 (2) 14.9 (5) 13.3 (2)

bodyfat 0.3 (1) 0.4 (2) 0.3 (1) 0.5 (3) 1.3 (5)

cpusmall 2.5 (1) 2.5 (1) 2.5 (1) 2.6 (2) 2.6 (2)

housing 18.5 (3) 17.5 (1) 18.3 (2) 23.1 (5) 22.3 (4)

mg 9.7 (3) 10.9 (4) 9.1 (2) 13.1 (5) 9.0 (1)

mpg 8.3 (2) 8.1 (1) 8.3 (2) 13.1 (5) 9.1 (4)

pyrim 14.1 (1) 15.0 (4) 14.3 (2) 14.6 (3) 17.4 (5)

space ga 18.3 (4) 18.3 (4) 18.2 (2) 18.2 (2) 17.5 (1)

mean

mean rank

10.6

2.0

10.8

2.5

10.6

1.75

12.5

4.5

11.6

3.1

Table 4.5.9: Metrics obtained in Experiment I for each choice of distribution assumption
in a Kernel-GNM model over the AMS contest dataset.

Metric ϵ-ILF Lap Gau Beta Weib

MAE 2234.40 (3) 2260.86 (5) 2234.63 (4) 2207.12 (1) 2223.72 (2)

MAPE 12.35 (3) 13.38 (5) 12.47 (4) 9.76 (1) 10.81 (2)

leaderboard position 15 (3) 19 (5) 15 (3) 8 (1) 12 (2)

mean rank 3 5 3.67 1 2

1. Dataset: Reference to the dataset to which metric results of that row of the table
corresponds.

2. ϵ-SVR: Classical ϵ-SVR model, as described in Section 2.2.1.

3. Kernel-GNM: Kernel-GNM model proposed in Section 3.1 assuming the noise dis-
tribution that yielded the best results in terms of MAE in Experiment I for the
corresponding dataset. For instance, Beta distribution would be the choice for the
AMS solar dataset, as it was the winner in the previous experiment, as shown in
Table 4.5.9. In case of a tie, we will use MAPE as tiebreaker and, if needed, also the
Pinball loss.

4. Deep SVR: Deep version of the SVR model, as proposed in Section 3.2.1.

5. Deep-GNM: Deep-GNM model proposed in Section 3.2 assuming the noise distri-
bution that yielded the best results in Experiment I for the corresponding dataset,

116 Chapter 4. Experiments

Table 4.5.10: Wilcoxon test for Experiment I results over the AMS contest dataset.

ϵ-ILF Lap Gau Beta Weib

ϵ-ILF 1.00 0.00 0.87 0.00 0.08

Lap 0.00 1.00 0.00 0.00 0.00

Gau 0.87 0.00 1.00 0.00 0.03

Beta 0.00 0.00 0.00 1.00 0.00

Weib 0.08 0.00 0.03 0.00 1.00

Table 4.5.11: Metrics obtained in Experiment I for each choice of distribution assumption
in a Kernel-GNM model over the GEFCOM contest dataset.

Metric ϵ-ILF Lap Gau Beta Weib

MAE 3711 (2) 3821 (5) 3727 (4) 3715 (3) 3581 (1)

MAPE 12.35 (3) 13.38 (5) 12.47 (4) 9.76 (1) 10.81 (2)

pinball loss 0.045 (4) 0.053 (5) 0.044 (3) 0.039 (1) 0.039 (1)

leaderboard position 10 (3) 14 (5) 10 (3) 6 (1) 6 (1)

mean rank 3 5 3.5 1.5 1.25

i.e., the same that was used in column Kernel-GNM.

As in Experiment I, we also carried out a Friedman test using observation residuals
obtained over the test set of all datasets, as shown in Table 4.5.1, to check for signif-
cant diferences between the performance obtained by each model. When a signifcant
p-value was found after applying this test, we also carried out a pairwise comparison with
Wilcoxon signed-rank test, where p-values were adjusted by a step-down method using
Sidak adjustments.

4.6.1 Artifcial Datasets

Table 4.6.1 shows the MAE for each of the fve artifcial datasets and four types of models
used in this experiment. Table 4.6.2 shows analogous results for MAPE. It can be seen that
the proposed Deep-GNM models are consistently the best model for all datasets tested,
and classical ϵ-SVR provides the worst results. Both Kernel-GNM and deep versions of
SVR are able to improve the performance of classical SVR models, but are still below the
performance of Deep-GNM.

Two main conclusions can be drawn from these results. First, the deep versions, both
standard and general noise, improve or at least equal the performance of the non-deep
versions. Second, general noise cost functions give better results than ϵ-ILF when the

117 4.6. Experiment II. Deep-GNM Models

Table 4.5.12: Wilcoxon test for Experiment I results over the GEFCOM contest dataset.

ϵ-ILF Lap Gau Beta Weib

ϵ-ILF 1.00 0.00 0.34 0.00 0.00

Lap 0.00 1.00 0.00 0.00 0.00

Gau 0.34 0.00 1.00 0.00 0.00

Beta 0.00 0.00 0.01 1.00 0.82

Weib 0.00 0.00 0.01 0.82 1.00

Table 4.6.1: MAE obtained in experiment II for each type of model over artifcial datasets.

Dataset ϵ-SVR Kernel-GNM Deep SVR Deep-GNM

Zero-noise 0.99 (4) 0.98 (3) 0.95 (1) 0.95 (1)

Laplace 2.07 (4) 1.86 (2) 1.89 (3) 1.76 (1)

Gaussian 1.97 (3) 1.91 (2) 1.97 (3) 1.83 (1)

Beta 1.16 (4) 1.06 (1) 1.14 (3) 1.06 (1)

Weibull 1.58 (4) 1.40 (2) 1.55 (3) 1.27 (1)

mean

mean rank

1.55

3.8

1.44

2.0

1.5

2.6

1.37

1.0

distribution chosen resembles the underlying noise in the data, which is the case here as
Kernel-GNM and Deep-GNM columns show results of models assuming the noise distribu-
tion that worked best in Experiment I, which for artifcial datasets always corresponded
to the real noise in the data, as could be expected.

Regarding signifcance of results, Friedman test over residuals for all observations gives
a p-value of 0.01. Therefore, in this case we did not carry out independent Friedman and
Wilcoxon tests over the residuals obtained for each artifcial dataset, as we did in Experi-
ment I, but only an overall test taking into account the residuals obtained for observations
belonging to all the datasets. Results from this pairwise Wilcoxon test analysis show that
only ϵ-SVR and Deep SVR models do not present signifcant diferences. Therefore, we
could conclude that ϵ-ILF and Deep-GNM are consistently the worst and best performers,
respectively. The corresponding Wilcoxon adjusted p-values are shown in Table 4.6.3.

4.6.2 Classical Datasets

In Table 4.6.5 MAE results corresponding to each of the LIBSVM classical datasets
evaluated and four types of models used, namely classical ϵ–insensitive SVR, General Noise
Models or Kernel-GNM, Deep SVR and Deep General Noise Models or Deep-GNM. The

118 Chapter 4. Experiments

Table 4.6.2: MAPE obtained in experiment II for each type of model over artifcial datasets.

Dataset ϵ-SVR Kernel-GNM Deep SVR Deep-GNM

Zero-noise 7.7 (3) 7.7 (3) 7.5 (1) 7.5 (1)

Laplace 16.3 (4) 14.6 (2) 14.6 (2) 14.1 (1)

Gaussian 15.1 (4) 14.6 (2) 14.8 (3) 14.3 (1)

Beta 8.2 (4) 7.9 (2) 8.0 (3) 7.8 (1)

Weibull 12.1 (4) 11.0 (2) 11.7 (3) 10.7 (1)

mean

mean rank

11.9

3.8

11.2

2.2

11.3

2.4

10.9

1.0

Table 4.6.3: Wilcoxon test for Experiment II results over artifcial datasets.

ϵ-SVR Kernel-GNM Deep SVR Deep-GNM

ϵ-SVR 1.00 0.02 0.47 0.00

Kernel-GNM 0.02 1.00 0.02 0.04

Deep SVR 0.47 0.02 1.00 0.00

Deep-GNM 0.00 0.04 0.00 1.00

Kernel-GNM and Deep-GNM columns show the results of choosing the distribution among
Laplace, Gaussian, Beta, and Weibull which gave the best results over Experiment I.
In particular, we select ϵ-ILF for abalone, bodyfat, mg, and pyrim, Laplace for cpusmall,
Gaussian for mpg and space ga, and Weibull for housing, as summarized in Table 4.6.4.

Analyzing these results, it can be seen that Deep SVR models are competitive with
classical SVR in general, and for some datasets like cpusmall or space ga even better. As a
matter of fact, standard SVR gets the best average MAE among all the datasets, but this
value can be misleading due to diferent target magnitudes among the evaluated datasets,
while Deep SVR is the winner in terms of the more informative average rank metric.

In addition, as seen in Experiment I, General Noise SVR Models do not outperform
ϵ–insensitive SVR over all datasets evaluated, but are clearly better for some problems like
mpg or cpusmall, where these models appear to be the best option, which seems to point to
a particular distribution of noise for these problems diferent from the one corresponding
to the ϵ-ILF function. Finally, Deep-GNM achieve the best results for mpg and housing,
and consistently give similar if not better results than their kernel-based, i.e., non-deep,
General Noise Model counterparts.

Some of the previous conclusions can also be extracted from Table 4.6.6, which presents
the results in terms of MAPE for this experiment. However, one relevant diference here

119 4.6. Experiment II. Deep-GNM Models

Table 4.6.4: Distribution selected for each classical dataset to build Kernel-GNM and
Deep-GNM models.

abalone bodyfat cpusmall housing mg mpg pyrim space ga

Winner Distribution ϵ-ILF ϵ-ILF Lap Weib ϵ-ILF Gau ϵ-ILF Gau

Table 4.6.5: MAE obtained in experiment II for each type of model over classical datasets.

Dataset ϵ-SVR Kernel-GNM Deep SVR Deep-GNM

abalone 1.48 (1) 1.53 (3) 1.48 (1) 1.53 (3)

bodyfat 0.00 (1) 0.10 (3) 0.00 (1) 0.10 (3)

cpusmall 2.13 (4) 2.07 (1) 2.12 (2) 2.12 (2)

housing 2.28 (3) 2.24 (2) 2.30 (4) 2.19 (1)

mg 0.09 (1) 0.13 (3) 0.09 (1) 0.15 (4)

mpg 1.91 (3) 1.89 (1) 2.28 (4) 1.89 (1)

pyrim 0.06 (1) 0.06 (1) 0.06 (1) 0.09 (4)

space ga 0.14 (4) 0.11 (3) 0.09 (1) 0.10 (2)

mean

mean rank

1.01

2.13

1.02

2.50

1.05

1.88

1.02

2.38

is that now our proposed Deep-GNM models have a better performance than classical ϵ–
insensitive SVR both in terms of mean MAPE value among all the datasets and mean rank.
MAPE results are probably more signifcant here than the ones obtained using MAE, as
scale can greatly afect conclusions using that metric. Deep-GNM is in fact the overall
winner for both measures, MAPE and mean rank MAPE, although Kernel-GNM achieves
very similar performance. This is supported by the results obtained from parwise Wilcoxon
tests over the residuals of each type of models, shown in Table 4.6.7, where Kernel-GNM
and Deep-GNM show signifcant diferences with respect the other models, but not between
themselves, with same behaviour being observed for ϵ-SVR and Deep-SVR. However, it is
important to notice here that Deep-GNM present computational advantages over Kernel-
GNM, as discussed in Section 3, that will make them the preferred choice in the case
of a statitiscally equivalent performance. These Wilcoxon tests were conducted despite
the Friedman test yielding a p-value of 0.27 pointing to not overall signifcant diferences
because we nevertheless considered them worthy of analysis.

4.6.3 Solar and Wind Contest Datasets

Results of experiment II over the AMS solar and GEFCOM wind contest datasets are
shown in Table 4.6.9 and Table 4.6.11. Table 4.6.9 presents MAE and MAPE results
for each type of model for the AMS contest and the ranking that this error would have

120 Chapter 4. Experiments

Table 4.6.6: MAPE obtained in experiment II for each type of model over classical datasets.

Dataset ϵ-SVR Kernel-GNM Deep SVR Deep-GNM

abalone 13.2 (1) 13.3 (3) 13.3 (3) 13.2 (1)

bodyfat 0.3 (2) 0.3 (2) 0.2 (1) 0.3 (2)

cpusmall 2.5 (2) 2.5 (2) 2.8 (3) 2.3 (1)

housing 18.5 (4) 17.5 (2) 17.9 (3) 16.7 (1)

mg 9.7 (3) 9.0 (2) 8.4 (1) 9.9 (4)

mpg 8.3 (3) 8.1 (1) 8.8 (4) 8.1 (1)

pyrim 14.1 (1) 14.3 (3) 14.2 (2) 14.3 (3)

space ga 18.3 (3) 17.5 (1) 18.5 (4) 17.6 (2)

mean

mean rank

10.6

2.4

10.3

2.0

10.5

2.6

10.3

1.9

Table 4.6.7: Wilcoxon test for Experiment II results over classical datasets.

ϵ-SVR Kernel-GNM Deep SVR Deep-GNM

ϵ-SVR 1.00 0.03 0.43 0.01

Kernel-GNM 0.03 1.00 0.04 0.27

Deep SVR 0.43 0.04 1.00 0.04

Deep-GNM 0.01 0.27 0.04 1.00

got in the ofcial leaderboard of the contest. As usual, relative rank is shown between
parentheses and mean rank between the diferent scores is given as overall evaluation metric.
In addition, the pinball loss function is also computed as part of the GEFCOM results
shown in Table 4.6.11, as it was used to compute the leaderboard position in this contest.
The Kernel-GNM and Deep-GNM columns show the results of choosing the distribution
among Laplace, Gaussian, Beta, and Weibull which gave the best results over Experiment
I for these datasets. In particular, we select Beta distribution for the AMS contest and
Weibull for GEFCOM, as summarized in Table 4.6.8.

Results show that Deep-GNM is the winner for all the considered metrics in both con-
tests. Furthermore, classical ϵ-SVR shows the worst performance both for AMS and GEF-
COM datasets. Finally, Kernel-GNM shows better results than Deep-SVR for the AMS
contest, but in GEFCOM both approaches yield similar performance, with no clear winner
and the best model between the two decided by which metric is considered.

121 4.7. Experiment III. Deep-GNM Models with Uncertainty Intervals

Table 4.6.8: Distribution selected for each contest dataset to build Kernel-GNM and Deep-
GNM models.

AMS GEFCOM

Winner Distribution Beta Weib

Table 4.6.9: Metrics obtained in Experiment II for each type of model over the AMS
contest dataset.

Metric ϵ-SVR Kernel-GNM Deep SVR Deep-GNM

MAE 2234.40 (4) 2207.13 (2) 2221.73 (3) 2199.16 (1)

MAPE 12.35 (4) 9.76 (2) 11.73 (3) 9.21 (1)

leaderboard position 15 (4) 8 (1) 10 (3) 8 (1)

mean rank 4 2.67 3 1

A Friedman test over AMS residuals for all observations showed a p-value of 7.26 10−22

and a p-value of 6.63 10−27 over GEFCOM, pointing in both cases to signifcant diferences
on model performance between the diferent types of models analyzed. Pairwise Wilcoxon
test results for AMS and GEFCOM residuals are shown in Table 4.6.10 and Table 4.6.12,
respectively. In both cases signifcant diferences between Deep-GNM and all the other
models are found, which combined to the previously remarked fact that these models give
the best results for all metrics considered, points to the selection of Deep-GNM as best
overall model. Furthermore, signifcant performance diferences between classical ϵ-SVR
and Deep SVR are also found, with better metrics being achieved in the case of Deep SVR
models. Finally, Kernel-GNM show signifcant diferences with respect to both ϵ-SVR and
Deep SVR for the AMS contest, but similar performance with respect to Deep SVR in
GEFCOM.

These results stongly support our hypothesis of the usefulness of applying Deep frame-
works, as they show that combining both standard and general noise models with deep
learning structures signifcantly increases model performances. This is the reason why we
will focus in this type of models in our third and last experiment, described next in Section
4.7.

4.7 Experiment III. Deep-GNM Models with Uncertainty
Intervals

In this experiment we test the error of uncertainty intervals built following the method
proposed in Section 3.5 under diferent assumptions of noise distribution and distinct
choices of clustering methods.

���� ����

122 Chapter 4. Experiments

Table 4.6.10: Wilcoxon test for Experiment II results over the AMS dataset.

ϵ-SVR Kernel-GNM Deep SVR Deep-GNM

ϵ-SVR 1.00 0.00 0.03 0.00

Kernel-GNM 0.00 1.00 0.02 0.04

Deep SVR 0.03 0.02 1.00 0.00

Deep-GNM 0.00 0.04 0.00 1.00

Table 4.6.11: Metrics obtained in Experiment II results over the GEFCOM dataset.

Metric ϵ-SVR Kernel-GNM Deep SVR Deep-GNM

MAE 3711 (4) 3581 (2) 3597 (3) 3523 (1)

MAPE 18.05 (4) 15.83 (2) 17.63 (3) 15.57 (1)

pinball loss 0.045 (4) 0.039 (3) 0.038 (2) 0.037 (1)

leaderboard position 10 (4) 6 (3) 5 (2) 2 (1)

mean rank 4 2.5 2.5 1

We build these error intervals for the best Deep-GNM model for each dataset observed
in Experiment II, and the noise distribution used to compute the intervals is the same
applied to train the corresponding Deep-GNM model. In this experiment we only take
into account prediction residuals over the test datasets employed in Experiment II, where
a new split into train, validation, and test is carried out, using 50% to train and validate
the clustering methods and build the associated error intervals, and 50% to test them.

The experiment is carried out two times, the frst one computing intervals that should
contain 80% of the test predictions, and the second with 90% intervals, i.e., choosing
s = 0.1 and s = 0.05 respectively. Performance is measured using the pererr metric,
defned in Section 4.4.2, as evaluation metric, which basically measures the diference in
absolute value between the percentage of points that should fall in the confdence interval,
0.8 and 0.9 for the frst and the second iterations of the experiment, respectively, and
the ratio of points that is actually captured by the interval. We recall that the formula
corresponding to this metric is the following one

{# of ψtest ∈ [a, b]}i pererr(s) = − (1 − 2s) . (4.7.1)
N

The mean of the results obtained using s = 0.1 and s = 0.05 is then computed to obtain
the fnal error pererr metric shown in out results, in order to get a better overall idea of the
performance obtained and avoid adjusting the conclusions too much to a particular choice
of confdence threshold.

123 4.7. Experiment III. Deep-GNM Models with Uncertainty Intervals

Table 4.6.12: Wilcoxon test for Experiment II MAE results over the GEFCOM dataset.

ϵ-SVR Kernel-GNM Deep SVR Deep-GNM

ϵ-SVR 1.00 0.00 0.00 0.00

Kernel-GNM 0.00 1.00 0.26 0.02

Deep SVR 0.00 0.26 1.00 0.00

Deep-GNM 0.00 0.02 0.00 1.00

Results are presented in tables 4.7.2, 4.7.3, and 4.7.5. These tables have the following
columns:

1. Munique: Method where we build a unique interval for all instances in the test set.

2. Mk: Method where we cluster the data using standard and general methods as
described in Section 2.7. In particular, we use k -means here as all features are
numerical. We try values for k ranging from 2 to 10 and keep the intervals with the
best performance over cross-validation.

3. Mmagnitude: Analogous to Mk but this time we use techiques based on magnitude
scaling to cluster data, as explained in Section 3.4.2. Again, we try between 2 and
10 clusters and select the value that yields the best results after cross-validation.

Furthermore, we also carried out a Friedman test to check for signifcant diferences
between the performance obtained by each of these three methods to build intervals. When
a signifcant p-value was found after applying this test, we also carried out a pairwise
comparison with Wilcoxon signed-rank test, where p-values were modifed by a step-down
method using Sidak adjustments. For this experiment we carried out the statistical tests
over the overall pererr metric for each dataset, or each station in the case of the solar and
wind contests, as individual residuals for each sample of the test set could not be computed
for this metric and did not make sense in the case of confdence interval analysis. Therefore,
in this case we use the matrix structure shown in Table 4.7.1 as analogous of the structure
described in Table 4.5.1 that was employed in the previous experiments. We are aware that
the number of rows m of this matrix, 5 for the artifcial datasets, 8 for the classical datasets,
98 for AMS, and 10 for GEFCOM, could be not enough in order to obtain statistically
signifcant results in our Friedman and Wilcoxon tests, and that this could be a limitation
of the conclusions drawn in this experiment.

4.7.1 Artifcial Datasets

Table 4.7.2 contains the results obtained in Experiment III for the artifcial datasets.
Although Mk is the method that achieves slightly lower errors, results show an almost
equivalent performance for the three types of error interval computations, which is to be
expected taking into account that the noise inserted in this case is totally independent from
the input features x, so the hypothesis that leads to the existence of a constant interval
in the method proposed in [27] is correct here. This is confrmed by the results obtained
after applying a Friedman test over the pererr matrix shown in Table 4.7.1, a p-value of

124 Chapter 4. Experiments

Table 4.7.1: Structure of matrix residuals employed in Friedman and Wilcoxon tests for
Experiment III.

Dataset/station Munique Mk Mmagnitude

Dataset/station 1 Munique pererr 1
Mkpererr 1

Mmagnitude pererr 1

Dataset/station 2 Munique pererr 2
Mkpererr 2

Mmagnitude pererr 2

Dataset/station 3 Munique pererr 3
Mkpererr 3

Mmagnitude pererr 3

Dataset/station 4 Munique pererr 4
Mkpererr 4

Mmagnitude pererr 4

Dataset/station 5 Munique pererr 5
Mkpererr 5

Mmagnitude pererr 5

...

Dataset/station M Munique pererr m
Mkpererr m

Mmagnitude pererr m

0.44, showing no signifcant diferences are found among the three interval computation
approaches.

Nevertheless, Mk is still able to equal or improve the performance obtained by the
standard Munique constant interval, except for the particular case of the zero-noise dataset.
This is an interesting result, as it is reasonable to think that Mk is almost never going to
signifcantly decrease the performance results obtained by Munique. Unless the k value is
selected in a really wrong manner, which can be avoided doing hyperparameter tuning of k
as proposed here, in the worst case scenario Mk should provide results similar to Munique.

It is also interesting to note that the pererr is higher in the zero-noise dataset, i.e., the
one without noise and that is defned by the following formulation

a yi = x · b, i = 1, 2, . . . , 500, 000 , (4.7.2)i

with xi, a and b 1024-dimensional vectors where each element is randomly chosen from the
uniform distributions over the intervals [0.1, 2], [1, 5], and [1, 10] respectively. The higher
pererr here is probably due to the fact that for that dataset the errors correspond entirely to
the model itself and not to the existence of an underlying noise in the data and, therefore,
these errors probably do not follow a particular distribution and the proposed uncertainty
intervals are not able to capture them correctly.

4.7.2 Classical Datasets

In Table 4.7.3 pererr results over the classical datasets considered in this thesis are shown.
Is is clear when analyzing the results of this experiment that the drawback of having a
constant interval for all the samples, Munique, as is the case for the proposed method in [27],
has a signifcant impact in the interval’s accuracy, an impact that is clearly lessened when
our proposed clustering methods are applied before the construction of these intervals.
In particular, it is easy to see how both Mk and Mmagnitude methods for uncertainty
intervals construction consistently yield better results than the standard Munique, the one
corresponding to the proposal in [27].

125 4.7. Experiment III. Deep-GNM Models with Uncertainty Intervals

Table 4.7.2: Uncertainty intervals pererr over artifcial datasets.

Dataset Munique Mk Mmagnitude

Zero-noise 1.2 (1) 1.4 (3) 1.2 (1)

Laplace 0.7 (2) 0.6 (1) 0.8 (3)

Gaussian 0.4 (1) 0.4 (1) 0.6 (3)

Beta 0.4 (3) 0.2 (1) 0.2 (1)

Weibull 0.6 (2) 0.2 (1) 0.6 (2)

mean

mean rank

0.7

1.8

0.6

1.4

0.7

2.0

Mmagnitude appears to be the best option for most datasets, although Mk is competitive
and achieves the best performance for several datasets. Probably which one is the winner
depends directly on the correlation between the model error and the magnitude of the
target, which favours the Mmagnitude type of clustering. When there is a strong correlation
between real target values and residuals, which can arise for instance when high values
correspond to situations with more uncertainty, a constant error interval is no longer well
defned and building wider intervals for high target values is recommended. This is precisely
the output expect when applying Mmagnitude clustering.

These conclusions are backed up by the output of carrying out a Friedman test, yielding
a p-value of 0.002 and then a pairwise Wilcoxon test over the pererr matrix presented in
Table 4.7.1, which is shown in Table 4.7.4. Signifcant diference is found between Munique
and the two other methods, so we could conclude it yields signifcant worse results overall.
However, no signifcant diference is found between Mk and Mmagnitude intervals.

4.7.3 Solar and Wind Contest Datasets

Table 4.7.5 contains the results obtained in Experiment III for the real-world datsets
corresponding to the AMS solar and GEFCOM wind energy contests. The negative impact
of computing error intervals with constant width in method Munique is clear when looking
at these results, as the best pererr obtained when using this approach is more than twice
the ones accomplished when applying some sort of clustering techniques, as is the case for
Mk and Mmagnitude.

In particular, the error corresponding to the uncertainty intervals is decreased to less
than half, both for AMS and GEFCOM datasets, when a suitable clustering technique
is selected, which allows to avoid the drawback of having one unique constant interval.
Mmagnitude is clearly the winner for the AMS dataset and Mk for the GEFCOM one.

Regarding the AMS contest, one reason that may explain this is the fact that solar
prediction errors are strongly related to the hour of the day, which is intrinsically connected
to the magnitude of the solar radiation, the target in this case, as this normally follows
a pattern similar to the curve known as clear sky curve, as shown in Figure 4.7.1. This

126 Chapter 4. Experiments

Table 4.7.3: Uncertainty intervals pererr over classical datasets.

Dataset Munique Mk Mmagnitude

abalone 1.8 (3) 1.6 (2) 1.2 (1)

bodyfat 9.1 (3) 4.5 (1) 4.5 (1)

cpusmall 2.0 (3) 1.4 (1) 1.4 (1)

housing 3.4 (3) 2.3 (2) 1.1 (1)

mg 1.2 (3) 0.4 (1) 0.8 (2)

mpg 2.9 (2) 2.9 (2) 1.5 (1)

pyrim 15.4 (3) 7.7 (1) 7.7 (1)

space ga 0.9 (3) 0.4 (1) 0.4 (1)

mean

mean rank

4.6

2.9

2.7

1.4

2.3

1.3

Table 4.7.4: Wilcoxon test for Experiment III errint results over classical datasets.

Munique Mk Mmagnitude

Munique 1.00 0.03 0.02

Mk 0.03 1.00 0.25

Mmagnitude 0.02 0.25 1.00

fgure shows the comparison between the clear sky curve expected radiation value at each
hour for the 13th of June at a location in Medan city of Indonesia vs the actual radiation
measurements obtained that day in that location. It can be seen that uncertainty in the
central hours is low and follows diferent patterns than, for instance, the evening or sunset
hours.

In the GEFCOM wind contest, the error patterns seem to not be as much correlated
with a phenomenon like the clear sky curve as in AMS, which may be the reason why a
more generic clustering method like Mk yields better results. However, Mmagnitude is still
able to obtain an error of less than 60% the one yielded by the standard Munique constant
error interval.

For both contest datasets, a Friedman test over a matrix of pererr values following the
structure in Table 4.7.1, where each station pererr is presented in a diferent row, shows
signifcant diferences, with p-values of 7.47 10−43 and 5.85 10−13 , respectively.

127 4.7. Experiment III. Deep-GNM Models with Uncertainty Intervals

Figure 4.7.1: Clear Sky Curve. Red line shows the clear sky curve expected radiation
value and blue points represent the actual radiation measurements. Taken from [85].

Table 4.7.5: Uncertainty intervals pererr over AMS and GEFCOM contests datasets.

Dataset Munique Mk Mmagnitude

AMS 1.78 0.82 0.60

GEF 2.72 1.34 1.62

Table 4.7.6: Wilcoxon test for Experi- Table 4.7.7: Wilcoxon test for Experi-
ment III pererr results over AMS. ment III pererr results over GEFCOM.

Munique Mk Mmagnitude

Munique 1.00 0.00 0.00

Mk 0.00 1.00 0.02

Mmagnitude 0.00 0.02 1.00

Munique Mk Mmagnitude

Munique 1.00 0.00 0.00

Mk 0.00 1.00 0.01

Mmagnitude 0.00 0.01 1.00

Wilcoxon test also shows signifcant results when comparing the performance of the
three methods. Results for pairwise Wilcoxon tests are shown in Table 4.7.6 and Table
4.7.7 for AMS solar contest and GEFCOM2014 wind dataset, respectively. In this case,
the input used in both these statistical tests has been the overall pererr obtained for each
station applying each one of the interval computation methods analyzed in this work which,
specially for the GEFCOM contest, could pose a limitation regarding statistical signifcance
of the conclusions drawn, as we only have available information for 10 stations and this
means that we are aplying our statistical tests over a matrix of only 10 rows.

These results seem to confrm our hypothesis regarding the usefulness of applying clus-
tering to build diferent intervals for each group of points, solving or at least lessening the
negative impact of having error intervals with constant width for all input points.

Chapter 5

Conclusions and Further Work

Perhaps one did not want to be loved
so much as to be understood.

George Orwell, 1984

5.1 Conclusions

The main goals of this thesis were fve:

1. To propose a framework to train General Noise SVR Models using a suitable opti-
mization method.

2. To give a method to build Deep General Noise Models that combine the highly non-
linear feature processing of DL models with the predictive potential of using general
noise loss functions, from which the ϵ-insensitive loss function used in SVR is just a
particular example.

3. To describe a direct approach to build error intervals for SVR or other regression
models, based on the assumption of model residuals following a particular probabil-
ity distribution.

4. To unify the previous three goals in a single and fnal model framework to train Deep
General Noise Models for regression with uncertainty intervals associated to each
prediction.

5. To follow the principles of reproducible research, with all implementations and datasets
used being publicly accesible. In particular, the algorithms necessary to apply these
techniques have been implemented using R and Python as programming languages
and made publicly available via CRAN or GitHub 1 repositories. Moreover, the

3 4datasets employed in the experiments are available online 2 or, in the case of
1 https://github.com/jesuspradaalonso/phd.
2Classical datasets available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
3AMS solar dataset available at https://www.kaggle.com/competitions/ams-2014-solar-energy-p

rediction-contest/overview/description.
4GEFCOM wind dataset available at [83].

129

https://github.com/jesuspradaalonso/phd
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.kaggle.com/competitions/ams-2014-solar-energy-prediction-contest/overview/description
https://www.kaggle.com/competitions/ams-2014-solar-energy-prediction-contest/overview/description

130 Chapter 5. Conclusions and Further Work

the artifcial datasets created as part of this thesis, easy to replicate following the
formulas and code given in this work.

In order to achieve these goals we have presented the necessary theoretical background
in Chapter 2, described our proposed methods with all the formulations and implementa-
tion details required in Chapter 3, and conducted experiments in Chapter 4 to test their
usefulness.

Regarding the methods proposed in this work, these are the main contributions of this
thesis:

‹ The use of NORMA optimization method, to solve the problem of SMO no longer
being a suitable option, in combination with general noise versions of the SVR for-
mulation, to create Kernel-GNM models.

‹ Explicit formulations for the optimal loss functions corresponding to the Beta and
Weibull distributions. In addition, a method is proposed to avoid the problems that
could arise due to the fact of possible non-convexity in the K-GNM optimization
problem, consisting on restraining the search of density parameters to the space of
values, previously computed, that make the formulations convex.

‹ A proposal to build a deep version of the SVR model. The method is based on
replacing the loss function used in classical formulations of Deep Neural Network
models, usually the MSE for regression, for the ILF loss function usually employed in
classical SVR formulations, this way combining the positive aspects of Deep Learning
frameworks and the ϵ-ILF.

‹ Going a step further with respect to the previous point, a proposal to use a chosen
general noise loss function, with ILF as just a specifc case, in a Deep Fully Connected
Neural Network to adapt our model to the particularities of the problem at hand.
We have called these models Deep-GNM.

‹ Formulations to extend the method suggested in [27] to build uncertainty intervals
for SVR for the Beta and Weibull distributions, giving all the explicit formulations
needed.

‹ The combination of clustering methods, both standard ones and others based on tar-
get scale, with the method proposed in [27] to compute uncertainty intervals. This
allows to solve the drawback of some mathematical assumptions done in [27] which
led to constant error intervals, i.e., not dependant on the input value.

‹ The computation of these uncertainty intervals not only for SVR models but also for
our proposed K-GNM and D-GNM models. The combination of both intervals and
general noise models is feasible in a straightforward manner.

131 5.2. Further Work

‹ The formula employed to create artifcial datasets, where noise following diferent dis-
tributions is inserted, and scripts run to build the actual artifcial datasets employed
in our experiments, which are provided via GitHub 1 .

‹ The code necessary to compute all the models used in the experiments, which is
implemented in R libraries created during this research and uploaded to CRAN, or
by means of Python scripts made available through GitHub repositories. Links to all
this available code are given in Section 4.1.

Experiments show the usefulness of the proposed methods. First, our tests show that the
suggested general noise models can achieve more accurate predictions than classical ϵ-SVR
models if the noise distribution is properly chosen. In case there is no prior knowledge
about which could be a correct noise distribution assumption, the particular distribution
to be employed could be considered as an additional hyperparameter and selected by grid
search over validation.

Second, results show that deep versions, of both classical ϵ-SVR and the proposed GNM
models, clearly outperform their non-deep kernel-based counterparts when the volume of
the datasets used is large enough, which is the case for the artifcial and contest datasets.

Furthermore, the noise distributions that seem to capture best the underlying noise
distribution in the solar task are the Weibull and, even more so, the Beta distributions.
Regarding the wind energy problem, the Weibull distribution is the one that seems to be
most suited to the problem. Both results agree with the conclusions drawn from previous
research regarding the nature of solar radiation and wind behaviour.

Finally, the proposed clustering methods seem to largely solve the critical drawback of a
constant width in the uncertainty estimates that could arise in our framework, surely the
main difculty present in the original formulation of this method proposed in [27] to build
error intervals.

5.2 Further Work

Regarding possible lines of further research, one of them could be to add more distri-
butions to the ones studied in this thesis, such as Logistic or Poisson, and then test the
performance of our proposed framework for problems where these distributions may be of
relevance, like healthcare tasks. The Keras library also includes several regression losses
that could be plugged into our D-GNM models to measure their predictive performance.

Also, although we have focused during this work on fully connected models as DL frame-
works, it should be possible to extend our proposed model in a relatively straightforward
manner to other deep structures like Convolutional Neural Networks. It could be inter-
esting to check if conclusions extracted from experiments with this type of DL models are
analogous to the ones obtained in this research. In particular, this could prove to be spe-
cially relevant for the wind and solar prediction problems, as numerical weather predictions
are given over a grid of latitude and longitude coordinates and, therefore, there is a spatial
structure in the information used as input of the models.

132 Chapter 5. Conclusions and Further Work

Another reasonable extension of the research carried out here will be to compare the
accuracy of the uncertainty intervals built following the approach suggested here versus
error intervals computed using ensemble weather prediction as the one from the Global
Ensemble Forecast System [82], which provides 11 separate forecasts, or ensemble mem-
bers, and therefore allows to build 11 diferent predictions and compute error intervals by
counting how many of these 11 predictions fall within a specifc range, in similar fashion
to the methodology proposed in [86].

Finally, regarding selection of distribution parameters, like κ and λ parameters in the
Weibull distribution, two alternatives to the approach followed in this work could be tested.
First, instead of applying Maximum Likelihood Estimation, MLE, using cross-validation
residuals of the most generic model analyzed in our experiments, which is the classical ϵ-
SVR model, a nonparametric model like Random Forest, which does not make asumptions
regarding noise distribution on the data, could have been applied and its corresponding
cross-validation residuals employed in the MLE formulations. A second alternative would
have been to just consider these parameters as additional hyperparameters and select their
optimal values by the zoom in grid search algorithms described in Section 4.2.

We plan to continue our research in the future studying these and other possible lines
of further research.

Appendices

133

Appendix A

Appendix: Author’s Publications

The research carried out during the elaboration of this thesis has lead to the following
publications:

A.1 Journals

1. Prada, J., & Dorronsoro, J. R. (2018). General noise support vector regression with
non-constant uncertainty intervals for solar radiation prediction. Journal of Modern
Power Systems and Clean Energy, 6(2), 268-280. IF: 2,85. Q2 (48/127 in Renewable
Energy, Sustainability and the Environment).

2. Dı́az-Vico, D., Prada, J., Omari, A., & Dorronsoro, J. R. (2020). Deep support
vector neural network, Integrated Computer-Aided Engineering, 27(4): 389-402. IF:
4,87, Q1 (28/112 in Computer science, interdisciplinary applications).

A.2 Conference Papers

1. Dı́az-Vico, D., Prada, J., Omari, A., & Dorronsoro, J. R. (2019, June). Deep Sup-
port Vector Classifcation and Regression. In International Work-Conference on the
Interplay Between Natural and Artifcial Computation (pp. 33-43). Lecture Notes
in Computer Science 11487, Springer. Core C.

2. Prada, J., & Dorronsoro, J. R. (2017, June). General noise SVRs and uncertainty
intervals. In International Work-Conference on Artifcial Neural Networks (pp. 734-
746). Lecture Notes in Computer Science 10306, Springer. Core B.

3. Prada, J., & Dorronsoro, J. R. (2015, June). SVRs and uncertainty estimates in wind
energy prediction. In International Work-Conference on Artifcial Neural Networks
(pp. 564-577). Lecture Notes in Computer Science 9095S. Springer. Core B.

4. Torres, A., Prada, J., & Dorronsoro, J. R. (2014). Nowcasting Meteorological Read-
ings for Wind Energy Prediction. Proceedings of the 2014 Conference of the European
Wind Energy Association, Barcelona March 11-13, 596-605.

135

136 Appendix A. Appendix: Author’s Publications

A.3 Other Publications with no Connection to Thesis

1. Prada, J., Gala, Y., & Sierra, A. L. (2021). COVID-19 Mortality Risk Prediction
Using X-Ray Images. International Journal of Interactive Multimedia & Artifcial
Intelligence, 6(6). IF: 4,94. Q2 (48/145 in Computer Science, Artifcial Intelligence)

2. Prada, J. (2015, July). Predicting with Twitter. In 2nd European Conference on
Social Media ECSM (pp. 734-746). ACPI.

Appendix B

Appendix: AMS solar contest
dataset

Table B.0.1: Kaggle AMS solar contest dataset variables and their corresponding units.

Variable

apcp sfc

dlwrf sfc

dswrf sfc

pres msl

pwat eatm

spfh 2m

tcdc eatm

tcolc eatm

tmax 2m

tmin 2m

tmp 2m

tmp sfc

ulwrf sfc

ulwrf tatm

uswrf sfc

Description

3-Hour accumulated precipitation at the surface

Downward long-wave radiative fux average at the surface

Downward short-wave radiative fux average at the surface

Air pressure at mean sea level fux average at the surface

Precipitable Water over the entire depth of the atmosphere

Specifc Humidity at 2 m above ground

Total cloud cover over the entire depth of the atmosphere

Total column-integrated condensate over the entire atmos

Max. Temperature over the past 3 hours at 2 m above the ground

Min. Temperature over the past 3 hours at 2 m above the ground

Current temperature at 2 m above the ground

Temperature of the surface fux average at the surface

Upward long-wave radiation at the surface

Upward long-wave radiation at the top of the atmosphere

Upward short-wave radiation at the surface

Units

−2kg m

−2W m

−2W m

Pa

−2kg m

kg kg−1

%

−2kg m

K

K

K

K

−2W m

−2W m

−2W m

137

Bibliography

[1] P. Jackson and P. Jackson, Introduction to expert systems, vol. 2. Addison-Wesley
Reading, MA, 1990.

[2] T. M. Mitchell, The discipline of machine learning, vol. 9. Carnegie Mellon University,
School of Computer Science, Machine Learning, 2006.

[3] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[4] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classifcation. John Wiley & Sons,
2012.

[5] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, vol. 1.
Springer series in statistics New York, 2001.

[6] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthog-
onal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[7] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[8] J. Honaker, G. King, M. Blackwell, et al., “Amelia ii: A program for missing data,”
Journal of Statistical Software, vol. 45, no. 7, pp. 1–47, 2011.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
p. 436, 2015.

[10] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to end learning for self-driving
cars,” arXiv preprint arXiv:1604.07316, 2016.

[11] C. M. Kirsch, “Principles of real-time programming,” in International Workshop on
Embedded Software, pp. 61–75, Springer, 2002.

[12] M. A. Beyer and D. Laney, “The importance of big data: a defnition,” Stamford, CT:
Gartner, pp. 2014–2018, 2012.

[13] A. De Mauro, M. Greco, and M. Grimaldi, “What is big data? a consensual defnition
and a review of key research topics,” in AIP conference proceedings, vol. 1644, pp. 97–
104, AIP, 2015.

[14] R. Mello, L. R. Leite, and R. A. Martins, “Is big data the next big thing in performance
measurement systems?,” in IIE Annual Conference. Proceedings, p. 1837, Institute of
Industrial and Systems Engineers (IISE), 2014.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
computing with working sets.,” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

139

140 Bibliography

[16] Y. Sahin, S. Bulkan, and E. Duman, “A cost-sensitive decision tree approach for fraud
detection,” Expert Systems with Applications, vol. 40, no. 15, pp. 5916–5923, 2013.

[17] M.-W. Huang, C.-W. Chen, W.-C. Lin, S.-W. Ke, and C.-F. Tsai, “Svm and svm
ensembles in breast cancer prediction,” PloS One, vol. 12, no. 1, p. e0161501, 2017.

[18] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27, 2011.

[19] N. Cristianini, J. Shawe-Taylor, et al., An introduction to support vector machines and
other kernel-based learning methods. Cambridge University Press, 2000.

[20] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.

[21] A. Statnikov, A gentle introduction to support vector machines in biomedicine: Theory
and methods, vol. 1. World Scientifc, 2011.

[22] T. Van Gestel, J. A. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene,
B. De Moor, and J. Vandewalle, “Benchmarking least squares support vector machine
classifers,” Machine Learning, vol. 54, no. 1, pp. 5–32, 2004.

[23] M. Pontil, S. Mukherjee, and F. Girosi, “On the noise model of support vector
machines regression,” in International Conference on Algorithmic Learning Theory,
vol. 1968 of Lecture Notes in Computer Science, pp. 316–324, Springer, 2000.

[24] H. Bludszuweit, J. A. Domı́nguez-Navarro, and A. Llombart, “Statistical analysis of
wind power forecast error,” IEEE Transactions on Power Systems, vol. 23, no. 3,
pp. 983–991, 2008.

[25] Q. Hu, S. Zhang, Z. Xie, J. Mi, and J. Wan, “Noise model based ν-support vector
regression with its application to short-term wind speed forecasting,” Neural Networks,
vol. 57, pp. 1–11, 2014.

[26] A. N. Celik, “A statistical analysis of wind power density based on the weibull and
rayleigh models at the southern region of turkey,” Renewable Energy, vol. 29, no. 4,
pp. 593–604, 2004.

[27] C.-J. Lin, R.-C. Weng, et al., “Simple probabilistic predictions for support vector
regression,” tech. rep., Department of Computer Science, National Taiwan University,
2004.

[28] B. Scholkopf and A. J. Smola, Learning with kernels: support vector machines, regu-
larization, optimization, and beyond. MIT Press, 2001.

[29] A. J. Smola and B. Schölkopf, “On a kernel-based method for pattern recognition,
regression, approximation, and operator inversion,” Algorithmica, vol. 22, no. 1-2,
pp. 211–231, 1998.

[30] J. C. Platt, “Sequential minimal optimization: A fast algorithm for training support
vector machines,” in Advances in Kernel Methods-Support Vector Learning, 1999.

[31] R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Trading convexity for scalability,”
in Proceedings of the 23rd international conference on Machine learning, pp. 201–208,
ACM, 2006.

Bibliography 141

[32] W. Chu, S. S. Keerthi, and C. J. Ong, “Bayesian support vector regression using a
unifed loss function,” IEEE Transactions on Neural Networks, vol. 15, no. 1, pp. 29–
44, 2004.

[33] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifers,”
Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.

[34] J. A. Suykens, J. Vandewalle, and B. De Moor, “Optimal control by least squares
support vector machines,” Neural Networks, vol. 14, no. 1, pp. 23–35, 2001.

[35] K. P. Murphy, Machine learning: a probabilistic perspective. MIT Press, 2012.

[36] R. A. Fisher, “Theory of statistical estimation,” in Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 22, pp. 700–725, Cambridge University Press,
1925.

[37] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal estimated
sub-gradient solver for svm,” Mathematical Programming, vol. 127, no. 1, pp. 3–30,
2011.

[38] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with kernels,” IEEE
Transactions on Signal Processing, vol. 52, no. 8, pp. 2165–2176, 2004.

[39] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,”
in International conference on computational learning theory, pp. 416–426, Springer,
2001.

[40] W. SARLE, “Neural networks and statistical models,” in Proceedings Of The 19th
Annual SAS Users Group International Conference, pp. 1538–1550, SAS Institute,
1994.

[41] M. A. F. Azlah, L. S. Chua, F. R. Rahmad, F. I. Abdullah, and S. R. Wan Alwi,
“Review on techniques for plant leaf classifcation and recognition,” Computers, vol. 8,
no. 4, p. 77, 2019.

[42] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations,” in Proceedings of
the 26th annual international conference on machine learning, pp. 609–616, 2009.

[43] F. Zheng, G. Zhang, and Z. Song, “Comparison of diferent implementations of mfcc,”
Journal of Computer science and Technology, vol. 16, no. 6, pp. 582–589, 2001.

[44] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[45] M. W. Gardner and S. Dorling, “Artifcial neural networks (the multilayer percep-
tron) a review of applications in the atmospheric sciences,” Atmospheric Environment,
vol. 32, no. 14-15, pp. 2627–2636, 1998.

[46] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al., “Tensorfow: A system for large-scale machine learning,”
in 12th Symposium on Operating Systems Design and Implementation, pp. 265–283,
2016.

[47] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.

142 Bibliography

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[49] M. C. Mukkamala and M. Hein, “Variants of rmsprop and adagrad with logarith-
mic regret bounds,” in Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 2545–2553, JMLR. org, 2017.

[50] Y. Bengio, “Rmsprop and equilibrated adaptive learning rates for nonconvex opti-
mization,” corr abs/1502.04390, 2015.

[51] X. Glorot and Y. Bengio, “Understanding the difculty of training deep feedforward
neural networks,” in Proceedings of the Thirteenth International Conference on Arti-
fcial Intelligence and Statistics, vol. 9 of JMLR Proceedings, pp. 249–256, JMLR.org,
2010.

[52] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectifed activations in
convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifers: Surpassing human-
level performance on imagenet classifcation,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, 2015.

[54] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing techniques,”
ACM Computing Surveys (CSUR), vol. 47, no. 4, pp. 1–35, 2015.

[55] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional, 2010.

[56] P. R. Kumar and E. Manash, “Deep learning: A branch of machine learning,” in
Journal of Physics: Conference Series, vol. 1228, p. 012045, IOP Publishing, 2019.

[57] J. A. Hartigan, Clustering Algorithms. Wiley, 1975.

[58] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algorithm,”
Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28, no. 1,
pp. 100–108, 1979.

[59] G. Hamerly and C. Elkan, “Alternatives to the k-means algorithm that fnd better
clusterings,” in Proceedings of the eleventh international conference on Information
and knowledge management, pp. 600–607, ACM, 2002.

[60] Z. Huang, “Extensions to the k-means algorithm for clustering large data sets with
categorical values,” Data Mining and Knowledge Discovery, vol. 2, no. 3, pp. 283–304,
1998.

[61] Z. Huang, “Clustering large data sets with mixed numeric and categorical values,”
in Proceedings of the 1st Pacifc-Asia Conference on Knowledge Discovery and Data
Mining,(PAKDD), pp. 21–34, Citeseer, 1997.

[62] H. Assuncao, J. Escobedo, and A. Oliveira, “Modelling frequency distributions of 5
minute-averaged solar radiation indexes using beta probability functions,” Theoretical
and Applied Climatology, vol. 75, no. 3-4, pp. 213–224, 2003.

[63] J. P. Klein, N. Keiding, and C. Kamby, “Semiparametric Marshall-Olkin models ap-
plied to the occurrence of metastases at multiple sites after breast cancer,” Biometrics,
vol. 45, no. 4, pp. 1073–1086, 1989.

https://JMLR.org

Bibliography 143

[64] F. Y. Ettoumi, A. Mefti, A. Adane, and M. Bouroubi, “Statistical analysis of solar
measurements in algeria using beta distributions,” Renewable Energy, vol. 26, no. 1,
pp. 47–67, 2002.

[65] C. Carrillo, J. Cidrás, E. Dı́az-Dorado, and A. F. Obando-Montaño, “An approach
to determine the Weibull parameters for wind energy analysis: The case of Galicia
(Spain),” Energies, vol. 7, no. 4, pp. 2676–2700, 2014.

[66] A. K. Gupta and S. Nadarajah, Handbook of beta distribution and its applications.
CRC Press, 2004.

[67] H. Rinne, The Weibull distribution: a handbook. CRC Press, 2008.

[68] J. Prada and J. R. Dorronsoro, “General noise support vector regression with non-
constant uncertainty intervals for solar radiation prediction,” Journal of Modern
Power Systems and Clean Energy, vol. 6, no. 2, pp. 268–280, 2018.

[69] D. Dı́az-Vico, J. Prada, A. Omari, and J. R. Dorronsoro, “Deep support vector classi-
fcation and regression,” in International Work-Conference on the Interplay Between
Natural and Artifcial Computation, vol. 11487 of Lecture Notes in Computer Science,
pp. 33–43, Springer, 2019.

[70] D. Diaz-Vico, J. Prada, A. Omari, and J. Dorronsoro, “Deep support vector neural
networks,” Integrated Computer-Aided Engineering, vol. 27, no. 4, pp. 389–402, 2020.

[71] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Pro-
ceedings of COMPSTAT’2010, pp. 177–186, Springer, 2010.

[72] S. Akram and Q. U. Ann, “Newton Raphson method,” International Journal of Sci-
entifc & Engineering Research, vol. 6, no. 7, pp. 1748–1752, 2015.

[73] J. M. Wooldridge, “Applications of generalized method of moments estimation,” Jour-
nal of Economic Perspectives, vol. 15, no. 4, pp. 87–100, 2001.

[74] D. Mao and W. Li, “A bounded derivative method for the maximum likelihood esti-
mation on weibull parameters,” arXiv preprint arXiv:0906.4823, 2009.

[75] J. Prada and J. R. Dorronsoro, “SVRs and uncertainty estimates in wind energy
prediction,” in International Work-Conference on Artifcial Neural Networks, vol. 9095
of Lecture Notes in Computer Science, pp. 564–577, Springer, 2015.

[76] J. Prada and J. R. Dorronsoro, “General noise SVRs and uncertainty intervals,” in
International Work-Conference on Artifcial Neural Networks, vol. 10306 of Lecture
Notes in Computer Science, pp. 734–746, Springer, 2017.

[77] V. Cherkassky and Y. Ma, “Practical selection of svm parameters and noise estimation
for svm regression,” Neural Networks, vol. 17, no. 1, pp. 113–126, 2004.

[78] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” Jour-
nal of Machine Learning Research, vol. 13, no. Feb, pp. 281–305, 2012.

[79] J. Prada, Y. Gala, and A. Sierra, “COVID-19 mortality risk prediction using X-
ray images,” International Journal of Interactive Multimedia & Artifcial Intelligence,
vol. 6, no. 6, pp. 7–14, 2021.

144 Bibliography

[80] K. E. S. Pilario, Y. Cao, and M. Shafee, “A kernel design approach to improve kernel
subspace identifcation,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7,
pp. 6171–6180, 2020.

[81] F. V. Brock, K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L.
Johnson, and M. D. Eilts, “The Oklahoma Mesonet: a technical overview,” Journal
of Atmospheric and Oceanic Technology, vol. 12, no. 1, pp. 5–19, 1995.

[82] X. Zhou, Y. Zhu, D. Hou, Y. Luo, J. Peng, and R. Wobus, “Performance of the
new NCEP Global Ensemble Forecast System in a parallel experiment,” Weather and
Forecasting, vol. 32, no. 5, pp. 1989–2004, 2017.

[83] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J. Hyndman, “Proba-
bilistic energy forecasting: Global energy forecasting competition 2014 and beyond,”
International Journal of forecasting, vol. 32, no. 3, pp. 896–913, 2016.

[84] J. Demšar, “Statistical comparisons of classifers over multiple data sets,” The Journal
of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[85] Y. P. Sibagariang, H. V. Sihombing, E. Y. Setyawan, K. Kishinami, and H. Ambarita,
“The potency of solar energy on medan city of indonesia: Comparison of clear sky,
satellite and feld measurements,” in AIP Conference Proceedings, vol. 2221, p. 070002,
AIP Publishing LLC, 2020.

[86] A. Catalina and J. R. Dorronsoro, “NWP ensembles for wind energy uncertainty
estimates,” in International Workshop on Data Analytics for Renewable Energy In-
tegration, vol. 10691 of Lecture Notes in Computer Science, pp. 121–132, Springer,
2017.

	Contents
	Introduction
	Goal
	Machine Learning
	Deep Learning
	Big Data
	Deep Learning & Big Data. The Perfect Couple
	Outline

	Theoretical Background
	SVM for Classification
	Linear Separable Case. Hard Margin Classification
	Linear Non-Separable Case. Soft Margin Classification
	Non-Linear Non-Separable Case

	SVM for Regression, SVR
	-SVR
	L2-SVR

	General Noise SVR
	Primal and Dual Formulations
	Optimal Cost Function
	Loss Function and Dual Problem for Different Noise Distributions
	Laplace
	Gaussian
	SILF

	Constant Width Error Intervals for SVR
	Method
	Parameters and Error Intervals for Different Distributions
	Zero mean Laplace
	Zero mean Gaussian

	NORMA Optimization
	Deep Learning
	DL Special Properties
	Backpropagation
	Activation Functions
	DL Recent Advances
	Adam Optimization
	Weight Initialization
	Rectified Linear Unit, ReLU
	Computational Power and Data Volume

	Clustering
	K-means
	K-prototypes

	General Noise Models
	General Noise Models Trained Using NORMA
	The Beta Loss
	The Weibull Loss
	General Noise Models Formulation

	Deep SVR and Deep General Noise Models, D-GNM
	Deep SVR
	Deep General Noise Models, D-GNM

	Estimation of Loss Functions Parameters
	Parameters for the Laplace Distribution
	Parameters for the Gaussian Distribution
	Parameters for the Beta Distribution
	Parameters for the Weibull Distribution

	Uncertainty Intervals
	Error Intervals for Different Distributions
	Uncertainty Intervals by Clusters

	D-GNM with Uncertainty Intervals

	Experiments
	Implementation Details
	Pre-existing Libraries
	Developed Libraries and Functions

	Hyperparameter Selection
	Classical -SVR
	Kernel Gaussian Noise Models, Kernel-GNM
	Deep ANN
	Deep General Noise Models, Deep-GNM
	Uncertainty Intervals

	Datasets
	Artificial Datasets
	Classical Datasets
	Solar Dataset
	Wind Dataset

	Evaluation Metrics
	Prediction Evaluation
	Uncertainty Intervals Evaluation

	Experiment I. Kernel-GNM Models
	Artificial Datasets
	Classical Datasets
	Solar and Wind Contest Datasets

	Experiment II. Deep-GNM Models
	Artificial Datasets
	Classical Datasets
	Solar and Wind Contest Datasets

	Experiment III. Deep-GNM Models with Uncertainty Intervals
	Artificial Datasets
	Classical Datasets
	Solar and Wind Contest Datasets

	Conclusions and Further Work
	Conclusions
	Further Work

	Appendices
	Appendix: Author's Publications
	Journals
	Conference Papers
	Other Publications with no Connection to Thesis

	Appendix: AMS solar contest dataset

