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Abstract 

Machine learning, ML, is a branch of artifcial intelligence that allows to build systems 
that learn to solve a task automatically from data, in the sense that they do not need to be 
explicitly programmed with the rules or method to do it. ML encompasses diferent types 
of problems; one of them, regression, involves predicting a numerical output and will be 
the focus of this thesis. 

Among ML models used for regression, Support Vector Machines, SVM, is one of the 
main algorithms of choice and is usually called Support Vector Regression, SVR, when 
applied to regression tasks. This type of models usually employs the ϵ-insensitive loss 
function, which implies a particular assumption of noise distribution in the data, but gen-
eral noise cost functions have been recently proposed for SVR. These cost functions should 
be more efective when applied to regression problems whose underlying noise distribution 
follows the one assumed for that particular cost function. However, the use of these general 
functions, with the disparity in mathematical properties like diferentiability that it implies, 
makes the standard optimization method used in SVR, Sequential minimal optimization 
or SMO, no longer a possibility. 

Additionally, when working with large sample sizes, a common situation in the big data 
era, Deep Learning or DL models are able to extract more complex and meaningful rela-
tionships from the data than other ML families of models, being this one of the fundamental 
reasons to explain DL recent popularity. 

Finally, although SVR models have been thoroughly studied, construction of error inter-
vals for them seems to have received less attention and remains an unsolved problem. This 
is a signifcant handicap, as in many applications that involve solving a regression problem 
not only an accurate prediction is useful but also a confdence interval can be extremely 
valuable. 

Taking all these factors into account, this thesis has four main goals: First, propose a 
framework to train General Noise SVR Models using Naive Online R Minimization Algo-
rithm, NORMA, optimization. Second, give a method to build Deep General Noise Models 
that combine the highly non-linear feature processing of DL models with the predictive 
potential of using general noise loss functions, from which the ϵ-insensitive loss function 
used in SVR is just a particular example. Third, describe a direct approach to build error 
intervals for SVR or other regression models, based on the assumption of residuals follow-
ing some probability distribution. And fnally, unify the previous three goals in a single 
and fnal model framework to train Deep General Noise Models for regression prediction 
with confdence or error intervals. 

For each one of these goals we will perform experiments, using both artifcial and real 
datasets corresponding to the task of wind and solar energy prediction, to test the ef-
fectiveness of our proposals compared to standard SVM and DL models. Furthermore, 
in accordance with the principle of reproducible research, we make the implementations 
developed and the datasets employed in the experiments publicly and easily available. 



Resumen 

El aprendizaje automático, ML por sus siglas en inglés, es una rama de la inteligencia ar-
tifcial que permite construir sistemas que aprendan a resolver una tarea automáticamente 
a partir de los datos, en el sentido de que no necesitan ser programados expĺıcitamente con 
las reglas o el método para hacerlo. ML abarca diferentes tipos de problemas; Uno de ellos, 
la regresión, implica predecir un resultado numérico y será el foco de atención de esta tesis. 

Entre los modelos ML utilizados para la regresión, las máquinas de vectores soporte o 
Support Vector Machines, SVM, son uno de los principales algoritmos de elección, habi-
tualmente llamado Support Vector Regression, SVR, cuando se aplica a tareas de regresión. 
Este tipo de modelos generalmente emplea la función de pérdida ϵ−insensitive, lo que im-
plica asumir una distribución concreta en el ruido presente en los datos, pero recientemente 
se han propuesto funciones de coste de ruido general para SVR. Estas funciones de coste 
debeŕıan ser más efectivas cuando se aplican a problemas de regresión cuya distribución 
de ruido subyacente sigue la asumida para esa función de coste particular. Sin embargo, el 
uso de estas funciones generales, con la disparidad en las propiedades matemáticas como 
la diferenciabilidad que implica, hace que el método de optimización estándar utilizado en 
SVR, optimización mı́nima secuencial o SMO, ya no sea una posibilidad. 

Además, posiblemente el principal inconveniente de los modelos SVR es que pueden sufrir 
problemas de escalabilidad al trabajar con datos de gran tamaño, una situación común en 
la era de los grandes datos. Por otro lado, los modelos de Aprendizaje Profundo o Deep 
Learning, DL, pueden manejar grandes conjuntos de datos con mayor facilidad, siendo esta 
una de las razones fundamentales para explicar su reciente popularidad. 

Finalmente, aunque los modelos SVR se han estudiado a fondo, la construcción de inter-
valos de error para ellos parece haber recibido menos atención y sigue siendo un problema 
sin resolver. Esta es una desventaja signifcativa, ya que en muchas aplicaciones que im-
plican resolver un problema de regresión no solo es util una predicci´´ on precisa, sino que 
también un intervalo de confanza asociado a esta predicción puede ser extremadamente 
valioso. 

Teniendo en cuenta todos estos factores, esta tesis tiene cuatro objetivos principales: 
Primero, proponer un marco para entrenar Modelos SVR de ruido general utilizando como 
método de optimización Naive Online R Minimization Algorithm, NORMA. En segundo 
lugar, proporcionar un método para construir modelos DL de ruido general que combinen 
el procesamiento de caracteŕısticas altamente no lineales de los modelos DL con el potencial 
predictivo de usar funciones de pérdida de ruido general, de las cuales la función de pérdida 
ϵ−insensitive utilizada en SVR es solo un ejemplo particular. Tercero, describir un enfoque 
directo para construir intervalos de error para SVR u otros modelos de regresión, basado 
en asumir la hipótesis de que los residuos siguen una función de distribución concreta. Y 
fnalmente, unifcar los tres objetivos anteriores en un marco de modelos único que permita 
construir modelos profundos de ruido general para la predicción en problemas de regresión 
con la posibilidad de obtener intervalos de confanza o intervalos de error asociados. 



ii Contents 

Para cada uno de estos objetivos realizaremos experimentos utilizando conjuntos de 
datos artifciales y reales correspondientes a problemas de predicción de enerǵıa eólica y 
solar, para probar la efectividad de nuestras propuestas en comparación con los modelos 
estándar SVM y DL. Además, de acuerdo con el principio de investigación reproducible, 
las implementaciones desarrolladas y los conjuntos de datos empleados en los experimentos 
están pública y fácilmente disponibles. 
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Chapter 1 

Introduction 

Begin at the beginning, and go on till 
you come to the end: then stop. 

Lewis Carroll, Alice in Wonderland 

Building computer systems to solve, by themselves or by assisting an expert, human 
problems has been a vital task in many studies and applications, both academic and 
corporate, for many years. 

Initially this type of tasks were tackled by expert systems, computer systems that 
emulate the decision-making ability of a human expert [1]. The frst ones appeared in 
the 1970s and clearly dominated the feld of artifcial intelligence during the 1980s. In 
these systems, the decision-making algorithm is explicitly coded, primarily as a sequence 
of if-then rules. The Lisp family of programming languages were very popular to build this 
kind of systems. 

In contrast to expert systems, Machine Learning, ML [2], techniques try to infer from 
the data the best algorithm to model the problem and give a solution to it, whether it is 
a division into clusters, a classifcation into previously specifed groups, the prediction of a 
real number, or creating an artifcial player for games like chess or Go. In ML the depen-
dence on and need of expert knowledge is lessened, specially when using Deep Learning, 
DL, frameworks, although not completely removed. Furthermore, more general and less 
ad hoc applications can be built using ML models. 

These and others advantages have made Machine Learning a very popular tool nowa-
days and one that has been widely studied and used in a variety of problems in recent 
years. Its popularity has been strengthened by the coming of the so-called Big Data era, 
as well as by the great increase in computational power and recent research in the Deep 
Learning feld. 

We will start this chapter with a brief description of the goal of this thesis in Section 1.1. 
Then, we will describe the basic concepts of the three technologies mentioned earlier and 
used here to achieve this goal: Machine Learning in general in Section 1.2, Deep Learning in 
Section 1.3, and Big Data in Section 1.4. Section 1.5 discusses how well Machine Learning, 
specially Deep Learning models, combine with Big Data technologies. Finally, Section 1.6 
presents the structure for the rest of the thesis. 

1.1 Goal 

This thesis has fve main goals: 

1 



2 Chapter 1. Introduction 

1. Design a framework to train kernel-based General Noise Models using the Naive 
Online R Minimization Algorithm, NORMA, to solve supervised regression problems. 

2. Propose a method to build Deep General Noise Models that combine the highly 
non-linear feature processing of Deep Learning models with the predictive potential 
achieved in the previous step due to the use of general noise loss functions. 

3. Design a direct approach to build error intervals for SVR or other regression models, 
based on the assumption of the residuals following some probability distribution. 
This way, we will be able to not only give a prediction for our supervised regression 
problem, but to also provide a confdence interval. 

4. Finally, we want to unify the previous three goals in a single and fnal model frame-
work to train Deep General Noise Models for regression prediction with confdence 
or error intervals. 

5. Furthermore, in accordance with the principle of reproducible research, we want to 
make the implementations developed and the datasets employed in the experiments 
publicly and easily available. 

For each one of these goals we will perform experiments using both artifcial and real 
datasets corresponding to the task of wind and solar energy prediction, to test the efec-
tiveness of our proposals compared to standard SVM and DL models. These problems have 
been selected from our previous experience on the topic and because they are tasks were 
previous research has shown to follow specifc noise distributions. However, we strongly 
believe that our proposed framework can adapt to any type of regression problems. 

1.2 Machine Learning 

Machine learning is a branch of Artifcal Intelligence that aims to build computer systems 
that automatically learn from data how to solve a task. From this basic and brief defnition, 
it is important to notice two signifcant aspects: 

‹ ML is a branch of Artifcial Intelligence. Frequently these two terms are confused 
or treated as independent felds. The most accepted defnition is that ML tools are 
just a subset of a bigger toolbox called Artifcial Intelligence, which comprises other 
felds like expert systems and part of robotics. 

‹ ML automatically learns from data. Automatically not in a strict sense, as someone 
still has to code an implementation of the ML method to apply in order to train the 
model, but in the sense of ML models not needing to be explicitly programmed with 
the rules or methods to solve the task at hand. The algorithm used to tackle the 
problem will be built automatically from the data used to train the ML model. 

In [2], the following formal defnition of learning is given: 

Defnition 1. A machine learns with respect to a particular task T, performance metric 
P, and type of experience E, if the system reliably improves its performance P at task T, 
following experience E. 



3 1.2. Machine Learning 

For instance, using wind energy prediction as an example, we would have: 

‹ T: Wind energy production forecast using weather information. 

‹ E: Past data of weather and energy production. 

‹ P: A particular metric, such as the mean absolute error, MAE, or the mean squared 
error, MSE, defned as 

NX1 
MAE = |f̂(Xi) − yi| (1.2.1)

N 
i=1 

N 

MSE =
1 X 

(f̂(Xi) − yi)2 , (1.2.2)
N 

i=1 

where {Xi}N = {(xi1, xi2, ..., xid)T }iN 
=1, is the weather information used as inputi=1 

data, f̂(X) is the forecast outputted by the Machine Learning model given input X, 
{yi}N is the real wind energy production or target, N is the number of instances ori=1 
samples and d is the number of variables, or dimensions, in the data. 

The feld of Machine Learning encompasses a wide variety of problems. Some examples 
are: 

‹ Forecasting of wind, solar or other type of energy production in diferent geographic 
areas learning from past productions and numerical weather predictions. 

‹ Use of historical medical records to learn which people could sufer from some par-
ticular disease or which treatments are optimal for a particular patient. 

‹ Design of autonomous vehicles that learn to navigate and interact with other vehicles 
from their own experience. 

‹ Recommender systems to automatically customize marketing actions of a company 
to their users’ interests using their information and past interactions. 

‹ Prediction of sporting events outcome using past results, statistics and information 
from other sources such as social networks like Twitter. 

In [3] and [4], ML tasks are divided into three main groups: 

1. Supervised Learning: In supervised learning problems, you have available a labeled 
training dataset. These labels are the goal, or target, you want your ML model to be 
able to predict. Depending on the nature of these labels supervised learning can be 
divided, in turn, into two subgroups: 

(a) Classifcation: Labels are categorical, representing the belonging of a partic-
ular instance to a specifc class. 0 and 1 are standard labels for a 2-class or 
binary classifcation problem, but classifcation over more than 2 classes is also 
perfectly doable. 
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(b) Regression: Here the target is a numeric label in the form of a real number 
indicating a particular property of each instance, like the price of an item in a 
shop. 

In both cases, the principles of the Machine Learning cycle are the same, but algo-
rithms, evaluation metrics and objective functions used are diferent for each type 
of problem. In supervised learning, the data available is normally split into three 
diferent datasets, each one with a specifc purpose: 

(a) Train: Dataset used to build, or train, the model. Parameters of the model are 
chosed to minimize a particular objective function for this training set. 

(b) Validation: Each family of ML models encompasses infnite diferent models 
in itself. This is due to the fact that each family of models is linked to a set 
of confguration parameters, usually called hyperparameters. The validation set 
is used to select the best hyperparameters for the ML model in hand. Hyper-
parameters selected as optimal are the ones that minimize a chosen evaluation 
metric over the entire validation data. 

(c) Test: The model built from this training and validation process is then used to 
predict the class or value of new instances belonging to a labeled test dataset. 
Prediction errors resulting from this process, obtained by the same evaluation 
metric used in the validation step, are used as a measure of the expected model 
accuracy when put into production in real life to give predictions for new unla-
beled data. 

There is no golden rule to decide the ratio of data set aside for training, validation 
and test purposes, as the optimal value is strongly problem-dependent as it is often 
the case in the ML feld. Nevertheless, a standard recommendation to select these 
splitting percentages is 70/15/15. 

It is important to remark that frequently a fxed validation dataset is not employed 
and, instead, a technique called cross-validation, CV, [5] is applied to fnd the 
optimal hyperparameters of a ML family of models, following the schema shown in 
Figure 1.2.1. When this method is used, the training dataset is divided into k subsets, 
then the model is trained using k − 1 of these subsets and the remaining one is used 
as validation set. This process is repeated k times until all subsets have performed 
the role of validation set. The errors coming out of these k iterations, after applying 
the selected evaluation metric, are then averaged and used as validation error. The 
hyperparameters chosen are the ones that minimize this validation error, as was the 
case when using a fxed validation set. 

One of the key factors in supervised learning models is the bias-variance tradeof: 

(a) Bias: When a model has high bias it remains mainly unafected by changes in 
the input data, leading to what is called underftting. This phenomenon can be 
detected when a high training error occurs, as this is pointing to a ML model 
that is not adapting or learning from the train dataset. 
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Figure 1.2.1: Cross-validation schema. 

(b) Variance: High variance leads to a model that adjusts too much to the vari-
ations in the training set and thus is not able to generalize well to new data. 
This situation is often called overftting and its existence can be assumed when 
the test error is much bigger than the train error and this behavior is not logical 
taking into account the nature of both datasets. 

To deal with these phenomena, normally a regularization or penalty term is added 
to the usual error measure, or loss function, to form the fnal objective function that 
will be minimized to build the model. One example is ridge regression [6], a model 
that has as objective function 

N
1 X 

(XT λ 
β + β0 − yi)2 + ||β||2 , (1.2.3)iN 2 

i=1 

where f̂(Xi) = XT β +β0 is the output of the model, β0 is a constant called the inter-i 
cept or bias of the model and β = (β1, β2, ..., βd)T are the parameters or coefcients 
of the model. 

This ridge regression objective function is a combination of two terms: 

(a) Loss function: The error measure we want to minimize while training thePN1model. In this case the mean squared prediction error: (XT β + β0 − yi)2 
N i=1 i 

(b) Regularization term: Controls the bias-variance tradeof and therefore avoids 
underftting and overftting phenomena. In this case there is a quadratic penalty 

λ over the model parameters: ||β||2 
2 

2. Unsupervised Learning: In these problems there are no labels and thus the pur-
pose is not to train a model to be able to predict these labels for future examples, as 
it was the case in the supervised learning approach. Here the goal is to fnd hidden 
structure in this unlabeled data, existing three main types of problems: 



6 Chapter 1. Introduction 

(a) Clustering: Divide data into diferent groups, with instances in the same 
cluster being more similar among themselves than to instances in other clusters. 

(b) Recommender Systems: Give content recommendations to users of a partic-
ular application taking into account their past interaction: purchases, reviews, 
etc. 

(c) Dimensionality Reduction: Reduce the number of variables or columns in 
a dataset. This can be done to decrease computational costs, get a new dataset 
with more relevant variables, carry on visualizations, etc. 

In this type of tasks there is no error metric to evaluate a potential solution. Some-
times, unsupervised learning techniques are employed prior to applying supervised 
learning models as an additional data pre-processing step. In this case, goodness of 
unsupervised learning methods can be measured by their impact on the accuracy of 
the subsequent supervised learning model. 

3. Reinforcement Learning: In this type of tasks the concern is the problem of fnd-
ing suitable actions to take in a given situation in order to maximize a reward. Here 
the learning model is not given labels of optimal outputs, in contrast to supervised 
learning tasks, but must instead discover them using an iterative process of trial and 
error. Usually, there is a sequence of states and actions in which the model is inter-
acting with its environment, and frequently the current action not only has an impact 
on the immediate reward but also afects the reward at all subsequent time steps. 
Only at the end of this process the reward signal, positive or negative, is received. 

The exploration-exploitation trade-of between exploration, in which the system 
tries out new actions to see how efective they are, and exploitation, in which actions 
that are known to yield a high reward are applied, is vital in these learning algorithms. 

This thesis focuses its attention on supervised learning problems, although some unsu-
pervised learning techniques like clustering are applied as a preprocessing step. Usually, 
the design of a supervised learning system entails an iterative cycle composed of diferent 
steps, where several of them are carried out again in each iteration. Figure 1.2.2 summa-
rizes the general workfow in a Machine Learning project. Although diferent divisions of 
this process into steps have been described, normally there are four main stages: 

1. Data Collection: Consists in gathering the data needed to train, validate and test 
the model. It is important to remark that this step should start as soon as possible, 
because normally several months of data collection are needed before we can advance 
to the next step. Sometimes it is a very costly stage, so a tradeof between the 
volume of data collected and the cost of this gathering process must be made. It 
is also important to keep in mind the complexity of the problem and of the model 
chosen to decide when we have an adequately large amount of data for a particular 
problem. 

2. Data Preprocessing: This stage involves several steps that allow to transform our 
original raw dataset into a fnal dataset with more analytical potential, so our ML 
model can extract the maximum information possible from the available data. Even 
if not as popular and headline-catching as other stages like modelization itself, this 
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Figure 1.2.2: Design cycle for supervised learning systems. 

is a critical step and frequently consumes most of the time spent by a team on this 
type of projects. 

Some examples of pre-processing steps, although there a lot more, are the following 
ones: 

‹ Feature choice: There are two diferent methods to carry out feature choice. 
Feature selection picks a subset of the original features and discards the rest, 
while feature extraction generates derived variables from the original ones. 
Dimensionality reduction techniques, like Principal Component Analysis or PCA, 
where the features extracted are intended to be informative and non redundant, 
can be applied to improve the accuracy of the ML model, reducing the risk of 
overftting, although for complex models with a regularization term this is not 
really necessary and feature choice is done implicitly by the model. In addition, 
dimensionality reduction can also provide a signifcant decrease in computa-
tional cost, which is vital to many real-world ML systems, particularly for those 
that need to be able to give a real time response such as fraud detection in 
banking systems. 

‹ Scaling: Most ML models are sensitive to the magnitude of the input variables, 
so it is common that variables with bigger values have a stronger impact in the 
model learning than other variables. To avoid this problem, some method of 
scaling should be applied before passing the data to the model. One standard 
choice of scaling method is to scale all input features to 0 mean and standard 
deviation equal to 1. 

‹ Fill missing values: Although there are some exceptions, like Random Forests 
[7], generally ML models do not accept missing values in the input data. In order 
to solve this drawback, a method to fll missing values must be chosen. There is a 
comprehensive list of methods to perform this task, with bootstaping combined 
with Expected Maximization [8] or the use of simpler versions of ML models to 
predict the missing data being popular choices. 
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3. Modelization: This stage implies in frst place the selection of a set of families of 
ML models and hyperparameters for each of these families. There is a wide variety of 
ML models for supervised learning problems, ranging from a simple linear regression 
to deep learning techniques. 

The optimal model for a particular problem depends on factors as the nature of the 
problem and its complexity, the data available and its dimensions and the presence 
of noise in the data. These factors must be taken into account when choosing the 
model to use and the common mistake of choosing a particular model for some 
personal preference and not for being the most suitable for the task at hand should 
be avoided when opting for a model to solve a real-world problem. 

Once it has been decided which models and confgurations to try, all these combi-
nations must go through the train-validation framework described earlier, to choose 
the optimal parameters and hyperparameters, respectively, for each family of models 
selected in the previous step. 

4. Evaluation: Once training and validation of the models is done, their performance 
over the test dataset is evaluated through some particular error measure, obtaining 
an expected error. Typical choices for regression problems are MAE (1.2.1) and 
MSE (1.2.2), and for binary classifcation problems the following ones are common 
measures: 

TP + TN 
Accuracy = (1.2.4)

TP + FP + TN + FN 

TP 
P recision = (1.2.5)

TP + FP 

TP 
Recall = (1.2.6)

TP + FN 

FP 
FPR = (1.2.7)

FP + TN 

2TP 
F 1 = , (1.2.8)

2TP + FP + FN 

where TP are true positives, i.e. instances classifed as positive by the model that 
are in fact positive, FP are false positives, instances classifed as positive that are in 
fact negative, TN are true negatives, instances classifed as negative that are in fact 
negative, and FN are false negatives, instances classifed as negative that are in fact 
positive. 
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Figure 1.2.3: Area Under the ROC Curve, AUROC. 

Precision vs recall and ROC or FPR vs recall curves are also frequently used as 
evaluation measures for two class classifcation problems. In particular, the Area 
under the ROC Curve, AUC or AUROC, is often the standard choice for binary 
classifcation. The ROC, which stands for Receiver Operating Characteristic, curve is 
created by plotting the recall or true positive rate, also known as sensitivity, against 
the false positive rate, also known as probability of false alarm and which is the 
opposite of specifcity, where sensitivity and specifcity are defned as follows: 

TP 
Sensitivity = (1.2.9)

TP + FN 

TN 
Specificity = . (1.2.10)

TN + FP 

Each point of the ROC curve corresponds to a particular choice of decision thresh-
old. Predictions greater or equal than the selected threshold will be predicted as 
positive class, and the remaining ones as negative class. Therefore, lower values of 
the threshold lead to more positive class predictions, or equivalently, a point of the 
curve that moves upwards in the y-axis but to the right on the x-axis. Figure 1.2.3 
shows two examples of ROC curves compared, where each value for the decision 
threshold corresponds to a particular point in each of the two curves. 

These binary classifcation measures can be extended to a multiclass framework by means 
of averaging their result over pairs of classes. Two main methods can be followed here: 

‹ one-vs-all: The selected metric is applied considering as class A one of the existing 
classes in the problem to tackle, and class B the union of all the other classes. This 
is done for all the classes, i.e. in a way that each existing class performs the role of 
class A one time. Results are then averaged to get a multiclass error. 
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‹ one-vs-one: The selected metric is applied considering as class A one of the existing 
classes and class B a diferent one of these existing classes. This is done so all possible 
combinations of (class A, class B) are used once. Results are then averaged to get a 
multiclass error. 

1.3 Deep Learning 

Although often considered an independent feld, Deep Learning, DL [9], is no less and 
no more than just another family of Machine Learning models. However, it is a family of 
models with some extremely relevant properties, such as 

‹ Predictive Potential: Nowadays larger and larger datasets are becoming available 
for their use to train ML models. In order to take as much information and predictive 
potential from these big datasets as possible, it is necessary to use complex enough 
ML methods, able to extract the most information possible from this data. Support 
Vector Machines, SVMs, which we describe in Section 2.1, are one of the most complex 
models among all the standard families of ML models, and that is the main reason for 
its dominance during a long span of time. However, they present important scalibility 
problems when dealing with large volumes of data. 

With the rise of Deep Learning frameworks it has been shown that these DL models 
are able to achieve an even better performance when trained with datasets that are 
sufciently big. This fact is probably the main factor why this family of models is 
becoming the preferred choice when solving a high variety of large supervised learning 
tasks. 

‹ End-to-End learning: In a normal ML project, as described earlier, one of the 
stages in the pipeline is data pre-processing, which encompasses several steps includ-
ing what is usually called feature engineering, i.e. creation and selection of variables. 
However, due to the specifc nature of Deep Learning frameworks, consisting of sev-
eral layers which carry out intermediate tasks necessary to solve ML problems, these 
steps of the pipeline can be no longer needed when applying DL models. 

This property is often called End-to-End learning [10] and allows researchers and 
data scientists to avoid complex and time-consuming steps that were required previ-
ously and that commonly demanded or were easily and better done with the help of 
human experts in the feld corresponding with the task at hand. 

1.4 Big Data 

The concept of Big Data is a rather new one but has grown in importance very quickly 
in recent years in the feld of computer science, swiftly becoming a key concept in many 
studies and applications. Despite what its name could suggest, Big Data is not only related 
to the volume of raw information, involving other data qualities as well. There are three 
main properties that are required to consider a data environment as Big Data, and they 
are called the 3Vs of Big Data. These properties, shown in Figure 1.4.1, are the following 
ones: 
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Figure 1.4.1: 3Vs of Big Data: Volume, Variety, and Velocity. From [14]. 

1. Volume: Refers to the volume of data available. It is very important regarding 
Machine Learning projects and the name Big Data itself contains a term which is 
related to size. 

2. Variety: It makes reference to the diversity of the data and variance among the 
sources from which this data is gathered. Usually, raw data is unstructured or has 
diferent structures depending on its source, so an appropiate pre-processing step is 
key. 

3. Velocity: The last of the 3 Vs of Big Data refers to the speed of generation of data 
and how fast the data must be processed to meet the demands and challenges of a 
particular task. This is particularly relevant in problems that require real-time or 
pseudo real-time answers [11]. 

Taking into account these 3Vs, several formal defnitions of Big Data have been proposed 
in recent years [12] [13], such as 

Defnition 2. Big Data are high volume, high velocity, and/or high variety information 
assets that require new forms of processing to enable enhanced decision making, insight 
discovery and process optimization. 

Defnition 3. Big Data represents the information assets characterized by such a high 
Volume, Velocity and Variety to require specifc Technology and Analytical Methods for its 
transformation into Value. 

Other additional Vs have been proposed recently. An article from 2013 by Mark van 
Rijmenam adds four more, reaching a total of 7Vs. Apart from the three mentioned above, 
these are: 

4. Variability: Refers to data whose meaning is changeable. This is particularly the 
case when data collecting relies on natural language processing, NLP. Words do not 
have static defnitions, and their meaning can vary wildly depending on context. 
Thus, programmes which can process context and decode the precise meaning of 
words through it, like recent Deep Learning application do, need to be used and 
applied. 
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5. Veracity: Data loses its usefulness if it is not accurate, and in very rare cases data 
available is noise free. Hence, it is again vital to apply a good pre-processing pipeline 
that takes into account the usually noisy nature of data and produces a sufciently 
accurate dataset before proper analysis can start. 

6. Visualization: Once it has been processed and analyzed, you need a way of present-
ing the data in a manner that is readable and accessible, and this is what visualization 
refers to. Visualizations can contain thousands of samples and variables, and fnding 
a way to present this information that makes the fndings clear is one of the challenges 
in the Big Data era. 

7. Value: The potential value of Big Data is huge. However, the cost generated by 
the use of poor data is also really signifcant. In essence, data on its own is virtu-
ally worthless, the value of it lying in rigorous analysis of accurate data, and the 
information and insights this provides both in the academic and corporate worlds. 

1.5 Deep Learning & Big Data. The Perfect Couple 

Machine learning, particularly Deep Learning models, and Big Data are two concepts 
that have extremely close ties, both benefting from one another. On the one hand, the 
potential of ML models to give accurate outputs is boosted with bigger and more diverse, 
i.e. with more Volume and Variety, datasets available to train, validate and test the perfor-
mance of the model predictions. This is of course only true when the data is accurate and 
meaningful, i.e. we have Veracity and Value. Of course, to be able to extract information 
from these large datasets, complex and scalable ML models are needed, and it is in this 
regard where Deep Learning has shown to be most valuable. 

On the other hand, Big Data problems have changed the entire way of thinking about 
knowledge extraction and interpretation. Traditionally, data science has always been dom-
inated by trial-and-error analysis, an approach that becomes impossible when datasets are 
large and heterogeneous as occurs when Big Data comes into play. Ironically, availability 
of more data usually leads to fewer options in constructing predictive models, because very 
few tools allow for processing large datasets in a reasonable amount of time, scalability 
being more important now than ever. In addition, traditional statistical solutions typically 
focus on static analytics that are limited to the analysis of samples that are frozen in time, 
which often results in surpassed and outdated conclusions. Machine Learning techniques 
allow researchers to overcome those problems and to build systems that can provide models 
updated after the arrival of new datapoints. ML models can also be used to build real-time 
systems, programs that must guarantee response within specifed time constraints, which 
is related to the Velocity property. 

To help researchers to combine the use of ML and Big Data, several software tools have 
been developed in recent years. In addition to supercomputers and Remote Procedure 
Call, RPC, communication, there has been a recent appearance of open frameworks that 
make computations for Big Data ML problems easier, such as Apache Hadoop, Cloudera, 
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and Apache Mahout. Particularly relevant here is Apache Spark [15], a framework for 
parallelized ML computing that has boosted investigation in this line of research. 

1.6 Outline 

The rest of this thesis is structured as follows: 

‹ In Chapter 2 we present the main theoretical contributions from past research that 
have been used as building blocks for this thesis, with special focus on SVM and DL 
models. In particular, we describe theoretical details and mathematical formulations 
for SVM models, both for classifcation and regression problems, NORMA optimiza-
tion, DL structures, and clustering algorithms like K-means and K-prototypes. 

‹ Then we describe our proposed framework in Chapter 3, which has as its main goal 
to combine the virtues of both SVMs and DL for regression problems and lessen their 
drawbacks, as well as to add confdence intervals to the predictions given. We frst 
describe how to build General Noise Models trained using NORMA optimization. 
Then, we propose a deep version of SVR models. After this, we propose to plug 
general noise cost functions into DL structures, creating our proposed Deep General 
Noise Models, D-GNM. Finally, we propose diferent methods to compute uncertainty 
intervals for the predictions of any regression model, including a method based on 
the use of clustering algorithms, in order to be able to build D-GNM models that are 
able to give not only a prediction value, but a corresponding uncertainty interval for 
that prediction. 

‹ Experiments carried out to test the usefulness of the proposed model over diferent 
problems and datasets, including synthetic data, popular datasets, and real-world 
problems related to renewable energies, are described in Chapter 4, as well as their 
corresponding results. Details about the implementation of the models tested, se-
lection of model hyperparameters, and the datasets employed in the experiments 
are described. Then, each of the experiments is described together with the results 
obtained. Finally, conclusions drawn from these results are discussed. 

‹ Chapter 5 contains the main conclusions one can extract from this thesis. In addition, 
potential lines for further work on the research topic are also highlighted. 

‹ Finally, appendices regarding author’s publications and an extended table with in-
formation regarding one of the datasets employed in the experiments are included in 
Appendix A and Appendix B, respectively. 



Chapter 2 

Theoretical Background 

Learn from yesterday, live for today, 
hope for tomorrow. The important 
thing is not to stop questioning. 

Albert Einstein 

In this chapter we present the main theoretical contributions from past research that have 
been used as building blocks for this thesis. Although the focus of this thesis is regression 
problems, this chapter starts with a thorough explanation of SVMs for classifcation in 
Section 2.1. This section continues with a description of their regression counterpart, 
SVR in Section 2.2. In addition, a general noise version of the SVM for regression, where a 
particular noise distribution for the data is assumed and plugged into the model is described 
in Section 2.3. Finally, in Section 2.4 a Bayesian framework, which allows the calculation 
of confdence intervals for SVR predictions is detailed. 

Next, in Section 2.5 NORMA or Naive Online R Minimization Algorithm, an optimiza-
tion method usually applied to train SVM models in an online manner, is detailed. Deep 
Learning models are described in Section 2.6, focusing on the reasons behind the spectac-
ular growth in popularity of this family of ML models in recent years. The technical and 
mathematical details of this type of models will also be analyzed in detail. Finally, Section 
2.7 describes the standard partition clustering methods K -means and K -prototypes. 

2.1 SVM for Classifcation 

Support vector machines, SVM, have been widely used in real-world problems such as 
fraud detection [16] or cancer prediction [17], and have remained as one of the most used 
models in ML around the world. Despite the fact that this work focuses on the use of 
SVM models for regression problems, this section follows for clarity a classical approach 
to the explanation of this family of ML algorithms, beginning with the description of its 
classifcation version, which can be useful to understand the intuition and mechanisms 
behind SVM models for regression. 

This section focuses on the use of SVM for 2-class or binary classifcation problems. For 
tasks with more classes, a 2-class SVM for each pair of classes can be built. If k is the 

k(k−1)number of classes, then 2 classifers are constructed and each one trains with data from 

15 
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two classes. Then a voting strategy is used, where each binary classifcation is considered 
to be a vote. In the end, a point is designated to be in the class with the maximum number 
of votes. This is called one-vs-one approach for multiclassifcation and is the one followed 
by the most popular SVM implementation, LIBSVM [18]. 

Our training data consists of pairs (x1, y1), (x2, y2), ..., (xN , yN ), with xi ∈ Rd the input 
data, d the dimension of our dataset, N the number of examples, and yi ∈ {−1, 1} the 
classes or target to predict. Defne a hyperplane, H, by 

H = {x : f(x) = x T β + β0 = 0} , (2.1.1) 

where β = (β1, β2, ..., βp)T is a unit vector, ||β|| = 1, representing the parameters of the 
model, and β0 is the bias of the model. Using this formulation, f(x) induces a classifcation 
rule given by 

G(x) = sgn(x T β + β0) , (2.1.2) 

where sgn is the sign or signum function. 

The aim of Support Vector Classifcation is to obtain the best separating hyperplane 
possible. This standard formulation of the SVM for classifcation problems can be divided 
in three separate cases, from simpler to more complex and general: the linear separable 
case, the linear non-separable case, and fnally the non-linear non-separable case, where it 
is necessary to deal with the problem of non-linearity and the key concept of kernel trick 
is vital. 

2.1.1 Linear Separable Case. Hard Margin Classifcation 

This is the most basic situation. Although it seldom appears in real-world problems, 
its explanation is interesting to introduce the SVM principles and formulations. Since the 
classes are separable, we can fnd a function f(x) = xT β + β0 where it is true that 

yif(xi) > 0, ∀i. (2.1.3) 

Therefore, we may be able to fnd the hyperplane that creates the biggest margin be-
tween the training points from classes 1 and -1. This is computed solving the following 
optimization problem 

max M 
β,β0 

T (2.1.4)subject to yi(xi β + β0) ≥ M, i = 1, ...N , 
||β|| = 1 . 

As stated in [19] we can get rid of the ||β|| = 1 constraint by replacing the conditions in 
(2.1.4) with 

1 T yi(xi β + β0) ≥ M, i = 1, ...N , (2.1.5)||β|| 
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Figure 2.1.1: Support vector classifer for the separable case. The band in the fgure is M 
units away from the hyperplane on either side, and hence 2M units wide. M is called the 
margin. Image from [5]. 

which leads to a redifnition of β0. This can be equivalently expressed as 

yi(xi
T β + β0) ≥ M ||β||, i = 1, ...N . (2.1.6) 

For any β and β0 satisfying these inequalities, any positively scaled multiple fulflls them 
1too, so we can arbitrarily set ||β|| = and getM 

As we have defned that M = A visualization of this SVM formulation can be found 

max M 
β,β0 

subject to T yi(xi β + β0) ≥ 1, i = 1, ...N . 
(2.1.7) 

1 
||β|| . 

in Figure 2.1.1. This problem is equivalent to 

1 
max 
β,β0 ||β|| (2.1.8) 

Tsubject to yi(xi β + β0) ≥ 1, i = 1, ...N . 

1Maximizing ||β|| is equivalent to minimizing ||β||, so we have 

min ||β||
β,β0 (2.1.9) 

Tsubject to yi(xi β + β0) ≥ 1, i = 1, ...N . 

For convenience to compute derivatives, usually the following equivalent form of (2.1.9), 
known as the primal problem, is used 

1 
min ||β||2 
β,β0 2 (2.1.10) 

Tsubject to yi(xi β + β0) ≥ 1, i = 1, ...N . 
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In practice, the problem solved is the dual formulation derived using standard La-
grangian techniques [20]. First, in order to solve the constrained optimization problem, 
we add to the objective function the Lagrange multipliers as negative terms, one for each 
constraint in the primal problem, obtaining the Lagrangian function 

NX1 TL = ||β||2 − αi[yi(xi β + β0) − 1] , αi ≥ 0 . (2.1.11)
2 

i=1 

Now, we want to obtain the dual optimization problem corresponding to maximizing 
this Lagrangian function. For this purpose, we frst compute the derivatives in (2.1.11), 
obtaining 

NX∂L 
= − αiyi , (2.1.12)

∂β0 i=1 

∂L NX 
= 

∂β 
β − αiyixi . (2.1.13) 

i=1 

Setting the derivative (2.1.12) to zero we get 

NX 
αiyi = 0 , (2.1.14) 

i=1 

and setting (2.1.13) equal to zero we arrive at 

NX 
β = αiyixi , (2.1.15) 

i=1 

Plugging (2.1.15) and (2.1.14) into (2.1.11) we fnally obtain the dual problem 

N N NX XX1 T max D = αi − αiαj yiyj xi xjαi 2 
i=1 i=1 j=1 

subject to αi ≥ 0, i = 1, ...N , (2.1.16) 
NX 
αiyi = 0 , 

i=1 

where the following conditions, called Karush-Kuhn-Tucker, KKT, conditions, are 
fulflled at the optimal point, which we will represent using the b symbol for its parameters, b bnamely αb, β, and β0: 

NXbβ = αbiyixi , (2.1.17) 
i=1 
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αbi ≥ 0 , (2.1.18) 

αbi[yi(x T βb+ βb0) − 1] = 0 . (2.1.19)i 

From (2.1.17) we obtain the solution for βb , and from the KKT condition αbi[yi(xT βb+i bβ0) − 1] = 0 we get 

Tαbi > 0 ⇒ yi(x βb+ βb0) − 1 = 0 . (2.1.20)i 

The observations where it is true that αbi > 0 are called the support vectors and give 
name to the model, since the solution for βb in (2.1.17) is only infuenced by these points. 
This is why it is said that SVMs are sparse models. Using the right part of (2.1.20) we can bsolve for β0 as 

T b1 − yix βb iβ0 = . (2.1.21) 
yi 

Usually an average of the solutions for each support vector point is used for numerical 
stability reasons. Finally, plugging (2.1.15) and (2.1.21) into (2.1.3) we obtain the fnal 
solution function, fb(x) 

NX 
fb(x) = αbiyix T xi + βb0 . (2.1.22) 

i=1 

2.1.2 Linear Non-Separable Case. Soft Margin Classifcation 

In real-world problems, usually fnding a hyperplane which separates perfectly the data 
is not possible, which leads to the non-separable case. Furthermore, even if it is possible 
to fnd this hyperplane, it might not be desirable because the probability of the model 
overftting the data, due to the outliers present in the dataset, is rather high and normally 
a decision boundary that ignores some points of the data which do not represent the general 
behavior of the problem is preferred. An example of this problem, where a hard margin 
hyperplane presents a severe overftting problem due to one outlier point, is shown in 
Figure 2.1.2. 

To deal with the overlap, the idea is to still maximize the margin, M , but allowing some 
points of the dataset to be on the wrong side of the margin. Defning the slack variables 
ξ = (ξ1, ξ2, ..., ξN ), one natural way to modify the constraint shown in (2.1.4) will be 

yi(xi
T β + β0) ≥ 

1 − ξi, i = 1, ...N , ξi > 0 , (2.1.23)||β|| 

where the value ξi is the value of the amount by which the point xi is on the wrong side 
of its margin, as represented in Figure 2.1.3 . 
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Figure 2.1.2: Hard Margin Classifcation overftting. The hyperplane adapts in excess to 
a single outlier red point. 

Figure 2.1.3: Linearly Non-Separable case. Hyperplane allows some points of the dataset 
to be on the wrong side of the margin. Image from [5]. 

Although this choice seems very natural, since it measures actual distance from the 
1margin M = ||β|| , unfortunately it results in a nonconvex optimization problem, which 

leads to uniqueness of the solution not being assured. To defne a convex optimization 
problem, where any local minimum of the unconstrained optimization problem is a global 
minimum and, hence, the solution is unique, the following modifcation is carried out 

1T yi(xi β + β0) ≥ (1 − ξi), i = 1, ...N , (2.1.24)||β|| 

where now ξi is again the distance by which the point xi is on the wrong side of its margin, 
but expressed in relative value with respect to M . 

With this formulation of the SVM problem misclassifcations occur when ξi > 1, whereas 
other points on the wrong side of the margin but where 0 < ξi < 1 are still predicted by PNthe model as the correct class. Therefore, bounding i=1 ξi at a value λ sets the upper 
bound of the total number of training misclassifcations to be λ. 
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As we did in the separable case, we can write the equation in the equivalent form 

1 
min ||β||2 
β,β0 2 

Tsubject to yi(xi β + β0) ≥ 1 − ξi, i = 1, ...N , 
(2.1.25)ξi ≥ 0, i = 1, ...N , 

NX 
ξi ≤ λ . 

i=1 

As described in [5], computationally it is convenient to re-express (2.1.25) as 

NX1 
min ||β||2 + C ξi 
β,β0 2 

i=1 (2.1.26) 
Tsubject to yi(xi β + β0) ≥ 1 − ξi, i = 1, ...N , 

ξi ≥ 0, i = 1, ...N , 

where the parameter C, commonly called the cost, replaces the role of λ in (2.1.25). 

From (2.1.26), it is straightforward to see that the hard margin case corresponds toPNC = ∞ that leads to ξ = 0, i.e. not a single point can be on the wrong side of thei=1 
hyperplane margins. 

The primal problem in (2.1.26) is quadratic with a positive semi-defnite matrix and with 
linear inequality constraints, hence it is a convex optimization problem. Existence of the 
solution is guaranteed by the quadratic nature of the objective function and uniqueness 
of the global optima is ensured due to its convex nature. As in the separable case, the 
problem solved in practice is the dual formulation derived using Lagrangian techniques. 
Once more, frst we get the Lagrangian, that in this case has the form 

N N NX X X1 TL = ||β||2 + C ξi − αi[yi(xi β + β0) − (1 − ξi)] − µiξi , αi, µi ≥ 0. (2.1.27)
2 

i=1 i=1 i=1 

To obtain the formulation for the primal values that minimize this function, we compute 
the derivatives in (2.1.27) , obtaining 

NX∂L 
= − αiyi ,

∂β0 i=1 
NX∂L (2.1.28)= β − αiyixi ,

∂β 
i=1 

∂L 
= C − αi − µi, i = 1, ...N ,

∂ξi 

and setting the derivatives (2.1.28) to zero we get 
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NX 
αiyi = 0 , (2.1.29) 

i=1 

NX 
β = αiyixi , (2.1.30) 

i=1 

αi = C − µi, i = 1, ...N . (2.1.31) 

Plugging these equations into (2.1.26) we fnally obtain the dual problem 

N N NX XX1 T max D = αi − αiαj yiyj xi xjαi 2 
i=1 i=1 j=1 

subject to αi ≥ 0, i = 1, ...N , 
(2.1.32)

αi ≤ C, i = 1, ...N , 
NX 
αiyi = 0 , 

i=1 

with the following KKT conditions at the optimal point 

NXbβ = αbiyixi , 
i=1 (2.1.33) 

αbi[yi(x T βb+ βb0) − (1 − ξbi)] = 0 ,i 

µbiξbi = 0, i = 1, ...N ⇒ (C − αbi)ξbi = 0 . 

Thus, from (2.1.32) we see that, as in the case of the hard margin classifcator in the bprevious section, the solution for β has the form (2.1.17). Using the KKT condition 
Tαbi[yi(x βb+ βb0) − (1 − ξbi)] = 0 we geti 

Tαbi > 0 ⇒ yi(x βb+ βb0) − (1 − ξbi) = 0 , (2.1.34)i 

These points are the support vectors for the non-separable case, and the solution for βb in 
(2.1.17) is only infuenced by them. For the support vectors where it holds that 0 < αbi < C, b(2.1.31) gives us that µbi = C − αbi > 0. Plugging this into the KKT condition µbiξi = 0, we 
get that ξbi = 0, i.e., these are the points that will lie on the edge of the margin. Taking 
into account (2.1.34), for these points the following will hold 

T yi(x βb+ βb0) − 1 = 0 . (2.1.35)i 

bFrom (2.1.35) we see that the solution for β0 can be obtained using any of these points 
lying in the margin and is given again by (2.1.21). The remaining support vectors are 
characterized by 

ξbi > 0 ⇒ αbi = C , (2.1.36) 

due to the KKT condition (C − αbi)ξbi = 0. 
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2.1.3 Non-Linear Non-Separable Case 

The two previous sections focus on describing how to fnd linear boundaries in the input 
feature space. We can enlarge the feature space using basis expansions such as polynomials 
or splines, for example. Generally linear boundaries in the enlarged space achieve better 
class separation, and translate to nonlinear boundaries in the original feature space. 

(x)}M 

We use this time as input features {h(xi)}N = {(h1(xi), h2(xi), ..., hM (xi))}Ni=1 instead of 
Once the basis functions {hm m=1 are selected, the procedure is the same as before. 

i=1 
the original {xi}Ni=1, and produce the function 

f(x) = < h(x), β > +β0 , (2.1.37) 

where this time f(x) is a non-linear function. 

Replacing {xi}N for the new input features {h(xi)}N in (2.1.32) we get, instead ofi=1 i=1 
the formulation in (2.1.32), the following dual function 

XN N NXX1 
D = αi − αiαj yiyj < h(xi), h(xj ) > . (2.1.38)

2 
i=1 i=1 j=1 

Doing the same replacement in (2.1.30) we have 

NXbβ = αbiyih(xi) . (2.1.39) 
i=1 

Furthermore, plugging (2.1.39) into (2.1.37) we obtain 

NX 
fb(x) = αbiyi < h(x), h(xi) > + βb0 . (2.1.40) 

i=1 

Looking at (2.1.38) and (2.1.40) we can see that h(x) is involved only through inner prod-
ucts, i.e. < h(x), h(xi) >. Thus, we do not need to specify explicitly the transformation 
h(x), needing only to know the kernel function that defnes this product 

k(x, x ′ ) = < h(x), h(x ′ ) > . (2.1.41) 

Thus, we can reformulate (2.1.38) and (2.1.40) as 

XN N NXX1 
D = αi − αiαj yiyj k(xi, xj ) , (2.1.42)

2 
i=1 i=1 j=1 

NX 
fb(x) = αbiyik(x, xi) + βb0 , (2.1.43) 

i=1 
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Figure 2.1.4: Example of non-linear SVM. Kernel trick makes the two classes separable. 
Image from [21]. 

Figure 2.1.5: Low C values, on the left, tend to underftting. High C values, on the right, 
tend to overftting. 

where the basis functions do not appear explicitly, but only through their inner products 
defned by the kernel k. An example of the efect of applying these kernel functions can be 
seen in Figure 2.1.4. This important property of support vector machines is often called 
the kernel trick as is one of the reasons of the usefulness and popularity of SVM models 
during all these years. 

This kernel trick allows us to make the dimension of the enlarged space very large, 
infnite in some cases, only defning a suitable kernel function which satisfes some particular 
properties that we will defne later. It might seem that, since perfect separation is often 
achievable in these enlarged spaces, overftting would occur. Here is when the role of the 
cost parameter C becomes clearer. A large value of C will discourage any positive ξi, and 
lead to high variance and an overft wiggly boundary in the original feature space, while a 
value of C too small will encourage a small value of ||β||2 , which in turn causes f(x) and 
hence the hyperplane to have high bias and low variance, tending to underft the model. 
Therefore, the bias-variance tradeof mentioned in Section 1.2 is controlled through this 
cost parameter. Figure 2.1.5 shows this phenomenon. 

One of the most popular functions used as kernel for SVM models is the Radial Basis or 
Gaussian Kernel: 

−γ||x−x ′ ||2 
k(x, x ′ ) = e . (2.1.44) 
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The Gaussian kernel has been shown in the past to be the best choice for SVM models for 
several tasks [22]. However, there are other possibilities to be used as kernel functions. In 
fact, a function needs only to verify Mercer’s condition, i.e., to be positive semi-defnite, 
to be a valid kernel function. The condition stated in Mercer’s theorem is the following: 

Theorem 1. Mercer’s Theorem. If a scalar function k(xi, xj ) is positive semi-defnite,i.e. Z 
k(xi, xj )g(xi)g(xj )dxidxj ≥ 0 ∀ g ∈ L2 , 

then there is a mapping function ϕ : Rd → F , with F a Hilbert space, such that k can be 
decomposed as an inner product 

k(xi, xj ) =< ϕ(xi), ϕ(xj ) > . 

2.2 SVM for Regression, SVR 

The support vector method can also be applied to regression. When SVM models are 
applied to regression problems, they are usually called Support Vector Regression, SVR. 
We present here the ϵ-SVR formulation as well as the quadratic L2-SVR one. Although 
the frst one is usually the standard choice, L2-SVR, where outliers are greatly penalized, 
is also commonly used and thus we describe both versions in detail here. 

2.2.1 ϵ-SVR 

As the case with its classifcation counterpart, we can divide the standard SVR formu-
lation into two diferent cases, the linear one and the non-linear case. In SVR, the linear 
regression model is considered to be 

f(x) = x T β + β0 . (2.2.1) 

To obtain the optimal f(x), an objective function analogous to the one described in 
(1.2.3) is minimized, but this time with other loss function diferent to the hinge error. 
The loss function used for standard ϵ-SVR is called the ϵ–insensitive loss function, or 
ϵ–ILF, and is defned as 

( 
−δ − ϵ, δ < −ϵ , 

lϵ(δ) = 0, δ ∈ [−ϵ, ϵ] , . (2.2.2) 
δ − ϵ, δ > ϵ . 

A visualization of the ϵ-ILF function can be seen in Figure 2.2.1. This loss function, as 
is the case in the linear MAE error, provides robustness against outliers. However, it is 
not only a robust cost function because of its linear behavior outside the interval [−ϵ, ϵ], 
but it is also sparse in the sense that it ignores the errors within a certain margin, ϵ, to 
the target value, yi, assigning zero cost to errors smaller than ϵ. 

The quadratic loss function, generally used in regression, is well justifed under the 
assumption of Gaussian additive noise in the data. However, the noise model underlying 
the choice of the ϵ-ILF is not so clear. In [23], the use of the ϵ-ILF is partially justifed 
under the assumption that the noise is additive and Gaussian, where the variance and 
mean of the Gaussian are random variables. 
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Figure 2.2.1: The ϵ–insensitive loss function. Image from [5]. 

This lϵ loss fuction is employed in combination with the ridge regression regularization 
to get the objective function and the optimization problem fnally used in standard SVR, 
which is the following one 

NX λ 
min H(β, β0) = lϵ(yi − f(x)) + ||β||2 . (2.2.3) 
β,β0 2 

i=1 

As shown in [5] and [19] this formulation is equivalent to the following problem 

NX1 
min ||β||2 + C (ξi + ξi ∗ ) 

β,β0,ξi,ξ∗ 2i i=1 
(2.2.4)subject to ξi, ξ ∗ ≥ 0, i = 1, ...N ,i 

f(xi) − yi ≤ ϵ + ξi, i = 1, ...N , 
yi − f(xi) ≤ ϵ + ξi ∗ , i = 1, ...N . 

where the ξi values quantify the errors above the ϵ-band, and ξ∗ the ones below the ϵ-band,i 
as can be seen in Figure 2.2.2. 

The Lagrange function corresponding to 2.2.4 is 

N NX X1 TL = ||β||2 + C (ξi + ξi ∗ ) − αi(yi − xi β + β0 + ϵ + ξi)− 
2 

i=1 i=1 
N N NX X X (2.2.5) 
α ∗ T ∗ 
i (xi β + β0 − yi + ϵ + ξi ∗ ) − µiξi − µi ξ ∗ 

i 
i=1 i=1 i=1 

∗ with αi, α ∗ 
i , µi, µ ≥ 0 .i 
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Figure 2.2.2: Linear SVR. Errors inside the ϵ-band are not penalized. Image from [19]. 

Computing the derivatives in (2.2.5) with respect to the primal variables we obtain 

NX∂L 
= (αi − αi ∗ ) ,

∂β0 i=1 
N N NX X X∂L 

= β + αixi − α ∗ 
i xi = β + (αi − α ∗ 

i )xi ,∂β (2.2.6)i=1 i=1 i=1 
∂L 

= C − αi − µi, i = 1, ...N ,
∂ξi 

∗∂L 
= C − αi ∗ − µi , i = 1, ...N ,

∂ξi 
∗ 

and setting all these derivatives to zero we get 

NX 
(αi − αi ∗ ) = 0 , (2.2.7) 

i=1 

NX 
β = (α ∗ 

i − αi)xi , (2.2.8) 
i=1 

αi = C − µi, i = 1, ...N , (2.2.9) 

∗ α ∗ 
i = C − µi , i = 1, ...N . (2.2.10) 

Plugging (2.2.8), (2.2.7), (2.2.9) and (2.2.10) into (2.2.5) we get the dual problem for 
the standard SVR formulation 
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N N N NX XX X1 T max D = yi(α ∗ 
i − αi) − (αi 

∗ − αi)(αj ∗ − αj )xi xj − ϵ (α ∗ 
i + αi) 

αi,α∗ 2 
i=1 i=1 j=1 i=1 

subject to αi, α ∗ ≥ 0, i = 1, ...N ,i (2.2.11)
αi, α ∗ ≤ C, i = 1, ...N ,i 
NX 

(α ∗ 
i − αi) = 0 . 

i=1 

The KKT conditions at the optimal point are now 

NX 
βb= (αbi ∗ − αbi)xi , 

i=1 

αbi(yi − fb(xi) + ϵ + ξi) = 0 , (2.2.12) 
αbi ∗ (fb(xi) − yi + ϵ + ξi ∗ ) = 0 , 
(C − αbi)ξi = 0 , 
(C − αb∗ 

i )ξ ∗ = 0 .i 

The solution for βb is given by (2.2.8). In this case we have that support vectors are the 
points where (αb∗ 

i −αbi) ̸= 0, as these are the ones afecting the value of βb . This is equivalent 
to stating that the support vector points are the ones where either αb∗ > 0 or αbi > 0, asi 
both values cannot be diferent from zero for the same point. In order to prove that the 
latter statement is true, let us imagine a point where αbi, αb∗ > 0. In this situation and duei 
to conditions αbi(yi − fb(xi) + ϵ + ξbi) = 0 and αb∗(fb(xi) − yi + ϵ + ξb∗) = 0 in (2.2.11) we geti i 
that 

yi − fb(xi) + ϵ + ξbi = 0 ⇒ ξbi = fb(xi) − yi − ϵ , (2.2.13) 

fb(xi) − yi + ϵ + ξb∗ = 0 ⇒ ξb∗ = yi − fb(xi) − ϵ . (2.2.14)
i i 

Now, as per defnition ξbi and ξb i ∗ cannot be greater than 0 for the same point, three cases 
are possible: 

b b1. ξi = 0: Due to (2.2.13) we have that ϵ = f(xi) − yi. If we plug this into (2.2.14) we 
get ξb∗ = 2(yi −fb(xi)) which is incompatible with the defnition of ξb i ∗ as the prediction i 
errors below the ϵ-band. 

2. ξb i ∗ = 0: Due to (2.2.14) we have that ϵ = yi − fb(xi). If we plug this into (2.2.13) we 
get ξbi = 2(fb(xi) − yi) which is incompatible with the defnition of ξbi as the prediction 
errors above the ϵ-band. 

3. ξbi = ξb∗ = 0: Due to (2.2.13) and (2.2.14) we have that ϵ = fb(xi) − yi = yi − fb(xi).i 
This can only be true if fb(xi) = yi and ϵ = 0, the latter expression being incompatible 
with the use of the ϵ-ILF cost function with ϵ > 0. 
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On the other hand, the solution for βb0 can be obtained using any of the support vector b ξb∗points in the ϵ−border, i.e, those where ξi = 0 and = 0, and the KKT conditionsi 
αbi(yi − fb(xi) + ϵ + ξbi) = 0 and αb∗(fb(xi) − yi + ϵ + ξb∗) = 0, respectively, and has the formi i � 

T byi + ϵ − x β , 0 < αbi < C ,b iβ0 = . (2.2.15)
T b α∗ yi − ϵ − x β , 0 < b < C .i i 

Normally an average of the values obtained in (2.2.15) for all these support vector points 
in the ϵ−border is used. Therefore, the fnal expression of βb0 is " #X X1 1 1b T b T b= (yi + ϵ − x β) + (yi − ϵ − x β) , (2.2.16)β0 i i2 |S| |S∗|

i∈S i∈S∗ 

where S is the set of all the support vector points in the ϵ−border where αbi ∈ (0, C) and 
S∗ the ones where αb∗ ∈ (0, C).i 

Therefore, the fnal solution function can be shown to have the form 

NX 
Tfb(x) = (αc∗ 

i − αbi)xi x + βb0 . (2.2.17) 
i=1 

As occurred in the classifcation case, we can enlarge the feature space to large di-
mensions, even infnite, through basis expansions. Replacing the original input features, 
{xi}Ni=1, with their corresponding features in the enlarged space, {h(xi)}Ni=1, in (2.2.11) we 
get the corresponding dual function for the SVR formulation 

N N NX XX1 
D = yi(αi 

∗ − αi) − (αi 
∗ − αi)(α ∗ 

j − αj ) < h(xi), h(xj ) >− 
2 

i=1 i=1 j=1 
(2.2.18)

NX 
ϵ (αi 

∗ + αi) . 
i=1 

Moreover, applying the same replacement approach leading to (2.2.17) we obtain 

NX 
fb(x) = (αc∗ 

i − αbi) < h(xi), h(x) > + βb0 . (2.2.19) 
i=1 

Once again, the values h(x) only appear through their inner products, so using a kernel 
function k(xi, xj ) = < h(xi), h(xj ) > satisfying the Mercer’s condition defned previously 
in Theorem 1, we can get the following equations equivalent to (2.2.18) and (2.2.19) 

N N NX XX1 
D = yi(αi 

∗ − αi) − (α ∗ 
i − αi)(αj ∗ − αj )k(xi, xj )− 

2 
i=1 i=1 j=1 

(2.2.20)
NX 

ϵ (αi 
∗ + αi) , 

i=1 



30 Chapter 2. Theoretical Background 

Figure 2.2.3: Non-linear SVR. In this case, the SVR estimator follows a non-linear shape 
due to the application of the kernel trick. Image from [19]. 

Figure 2.2.4: Quadratic ϵ-insensitive loss function with ϵ = 0.25. 

NX 
fb(x) = (αc∗ 

i − αbi)k(x, xi) + βb0 . (2.2.21) 
i=1 

Proceeding like this there is no need of an explicit defnition of the basis functions 
{hm(x)}M Figure 2.2.3 shows an example of a one dimensional non-linear SVR function m=1. 
with an ϵ-insensitive band. 

2.2.2 L2-SVR 

Although the ϵ-ILF cost function defned in (2.2.2) is clearly the standard choice when 
building SVR models, sometimes a quadratic ϵ-insensitive loss function, or L2-ϵ-ILF, is 
preferred. This L2-ϵ-ILF is defned as follows 

( 
(−δ − ϵ)2 , δ < −ϵ , 

l2ϵ(δ) = 0, δ ∈ [−ϵ, ϵ] , (2.2.22) 
(δ − ϵ)2 , δ > ϵ . 

Figure 2.2.4 shows how this loss function looks. It has the same sparseness property as 
the standard ϵ-ILF, or L1-ILF, since values in the interval [−ϵ, ϵ] all are given zero value. 
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Nevertheless, in contrast to the L1-ILF, this loss function is not robust to outliers, since 
a quadratic penalty is given to errors with absolute value greater than ϵ, as would be the 
case when using a MSE penalty instead of MAE. This lack of robustness may suppose an 
important drawback for some problems, so appropriateness of the election of L2-SVR must 
be carefully considered. The choice, again, is problem-dependent. Therefore, both versions 
can be useful depending on the problem at hand, and thus are discussed here. 

Using this L2-ϵ-ILF instead of the L1-ϵ-ILF, and working directly with the basis expan-
sions {h(xi)}Ni=1, we get the following Lagrange function 

N NX X1 2L = ||β||2 + C (ξ2 + ξ ∗ ) − αi(yi − f(h(xi)) + ϵ + ξi)−i i2 
i=1 i=1 

N N N (2.2.23)X X X 
∗ α ∗ 

i (f(h(xi)) − yi + ϵ + ξi ∗ ) − µiξi − µi ξ ∗ 
i 

i=1 i=1 i=1 
∗ with αi, αi ∗ , µi, µ ≥ 0 .i 

Computing the derivatives in (2.2.23) with respect to the primal variables we obtain 

N
∂L 

= 
X 

(αi − α ∗ 
i ) ,∂β0 i=1 

N N NX X X∂L 
= β + αih(xi) − αi 

∗ h(xi) = β + (αi − αi ∗ )h(xi) ,
∂β (2.2.24)i=1 i=1 i=1 
∂L 

= 2Cξi − αi − µi, i = 1, ...N ,
∂ξi 

∗∂L 
= 2Cξ ∗ − αi ∗ − µi , i = 1, ...N ,

∂ξ∗ i 
i 

and setting the derivatives (2.2.24) to zero we get: 

NX 
(αi − α ∗ 

i ) = 0 , 
i=1 

NX (2.2.25)β = (αi 
∗ − αi)h(xi) , 

i=1 
αi = 2Cξi − µi, i = 1, ...N , 

∗ α ∗ = 2Cξ ∗ − µ i = 1, ...N .i i i , 

Finally, plugging (2.2.25) into (2.2.23) we get the dual problem 
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N N NX XX1 1 
max D = yi(α ∗ 

i − αi) − (αi 
∗ − αi)(αj ∗ − αj )(k(xi, xj) + δij )− 

αi,α∗ 2 C 
i=1 i=1 j=1 

NX 
ϵ (αi 

∗ + αi) (2.2.26)
i=1 

subject to αi, αi 
∗ ≥ 0, i = 1, ...N , 

NX 
(αi 

∗ − αi) = 0 , 
i=1 

with the following KKT conditions as constraints at the optimal point 

αbi = 2Cξbi, i = 1, ...N , 
αbi ∗ = 2Cξb i ∗ , i = 1, ...N , 

NX 
βb= (αbi ∗ − αbi)h(xi) , 

i=1 (2.2.27) 
αbi(yi − fb(h(xi)) + ϵ + ξbi) = 0 , 
αbi ∗ (fb(h(xi)) − yi + ϵ + ξb∗) = 0 ,i 

(2Cξbi − αbi)ξbi = 0 , 
(2Cξb i ∗ − αb∗ 

i )ξ
b∗ = 0 .i 

The support vectors are again the points with (αb∗ − αbi) ̸= 0, or equivalently the onesi 
where αbi ∗ > 0 or αbi > 0. The solutions for βb , βb0 and fb(x) have the same form described 
for SVR using the standard ϵ-ILF in (2.2.8), (2.2.16) and (2.2.21), respectively. 

2.3 General Noise SVR 

As explained before, the use of the ϵ–insensitive loss function in the standard SVR 
implies the assumption of a particular error distribution in the data [23]. However, it 
has been observed that the noise in some real-world applications, such as wind or solar 
power forecasting, satisfes other distributions, including the Beta distribution [24], [25], 
the Weibull distribution [26] or the Laplacian distribution [27], to name a few. Therefore, 
it could be interesting to use SVR formulations using loss functions other than the ϵ–ILF 
where the assumption of the error distribution resembles the one in the data corresponding 
to the task at hand. 

2.3.1 Primal and Dual Formulations 

In 2002, a general noise version of SVR was proposed in [28]. This variation of SVR 
can be used with any particular loss function c(yi, f(xi)). For instance, if Gaussian noise 
is assumed to be present in the data, a particular loss function will be inserted, which 
will be diferent to the one used if Laplace is assumed to be the underlying distribution. 
Following a similar approach to the one already described in Section 2.2.1 for classical SVR 
models, let’s defne c(ξi) = c(yi, f(xi)) when ξi = [f(xi) − yi]+, and c(ξi ∗) = c(yi, f(xi)) 
when ξi ∗ = [yi − f(xi)]+. 
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The primal optimization problem corresponding to this general noise SVR is then de-
scribed as 

NX1 
min ||β||2 + C (c(ξi) + c(ξi ∗ )) 

β,β0,ξi,ξ∗ 
i 2 

i=1 
(2.3.1)subject to ξi, ξ ∗ ≥ 0, i = 1, ...N ,i 

f(xi) − yi ≤ ϵ + ξi, i = 1, ...N , 
yi − f(xi) ≤ ϵ ∗ + ξi ∗ , i = 1, ...N , 

where ϵ and ϵ∗ are chosen such that 

c(ξ) = 0 , ∀ ξ ∈ [−ϵ ∗ , ϵ] . (2.3.2) 

Notice that the formulation allows for the use of diferent values for ϵ and ϵ∗ , i.e., dif-
ferent widths for the band above and below the prediction, respectively, although in the 
formulation of the classical SVR ϵ = ϵ∗ . Let us defne now 

∂c ∂c 
T (ξi) = c(ξi) − ξi (ξi) , T ∗ (ξi 

∗ ) = c(ξi ∗ ) − ξ ∗ (ξi 
∗ ) . (2.3.3)

∂ξ i ∂ξ∗ 

Using (2.3.3) and denoting again with k the kernel function selected, the following dual 
formulation derived from (2.3.1) can be found in [29] 

N N NX XX1 
max D = yi(αi 

∗ − αi) − (αi 
∗ − αi)(αj ∗ − αj )K(xi, xj )− 

αi,α∗ 2i i=1 i=1 j=1 
N N NX X X 
ϵiαi − ϵ ∗ 

i αi 
∗ + C (T (ξi) + T ∗ (ξi 

∗ )) 
i=1 i=1 i=1 

(2.3.4)
subject to αi, α ∗ ≥ 0, i = 1, ...N ,i 

NX 
(α ∗ 

i − αi) = 0 , 
i=1 

αi, αi 
∗ ≤ C 

∂ξ 
∂c 

∗ (ξ 
∗ ), i = 1, ...N , 

with the KKT conditions at the optimal point being 

αbi(yi − fb(xi) + ϵi + ξi) = 0 , 
αb∗ 
i (f
b(xi) − yi + ϵ ∗ 

i + ξi ∗ ) = 0 , 

(2.3.5)(C 
∂c 

(ξi) − αbi)ξi = 0 ,
∂ξ 

(C 
∂c 

(ξi 
∗ ) − αb∗ 

i )ξ ∗ = 0 ,
∂ξ∗ i 

The formulation in (2.3.4) allows us to build a general noise SVR model based on any 
particular choice of cost function. The process encompasses the following steps: 
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1. Determine the cost function, c(ξ), to be used. Next section describes how to obtain 
the optimal cost function for a particular error distribution assumption. 

2. Plug c(ξ) into the dual formulation in (2.3.4). 

3. Solve for (2.3.4). 

However, plugging general cost functions into the general dual formulation problem de-
fned in (2.3.4) often leads to Sequential Minimal Optimization [30], SMO, the algorithm 
usually employed to solve the quadratic programming problem that arises during the train-
ing of support vector machines, both for classifcation and regression problems, no longer 
being a feasible choice as optimization method. Therefore, other optimization methods 
should be used to avoid this problem. This topic is discussed in more detail in later 
sections. 

Furthermore, the concept of support vectors may not longer be present when using 
generic cost functions. Therefore, these models are referred as general noise kernel-based 
models from now on throughout this work. 

2.3.2 Optimal Cost Function 

The next step will be to obtain the optimal cost function in a maximum likelihood sense 
for a particular choice of error distribution in the data. We assume the noise in the data 
is additive and 

f(xi) = yi + ξi, i = 1, ...N , (2.3.6) 

where ξi are independent and identically distributed, i.i.d., random variables. Following 
[25], the general approach to obtain the optimal cost function is to minimize 

NX 
H[f ] = c(ξi) + λΦ[f ] , (2.3.7) 

i=1 

where λ is a positive number and Φ[f ] is a smoothness functional that acts as a regularizer. 

A probabilistic approach is now taken, and the function f is regarded as the realization 
of a random feld with a known prior probability distribution, denoted P [f ]. The goal is 
to maximize the posterior probability of f given the data D, i.e., P [f |D]. Using the Bayes 
Theorem one can get to the following formulation for this probability 

P [D|f ]P [f ]
P [f |D] = ∝ P [D|f ]P [f ] , (2.3.8)

P [D] 

P [D|f ] in (2.3.8) represents the conditional probability of the data D given the function 
f . Therefore, P [D|f ] is essentially a model of the noise, and if this noise is assumed to 
be additive, as in (2.3.6), and i.i.d. with probability distribution p(ξi), this conditional 
probability can be written as 

NY 
P [D|f ] = p(ξi) . (2.3.9) 

i=1 
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As explained in [25] the prior is often written as 

−λΦ[f ]P [f ] ∝ e . (2.3.10) 

Now, replacing (2.3.10) and (2.3.9) into equation (2.3.8) we have 

NY 
−λΦ[f ]P [f |D] ∝ e p(ξi) . (2.3.11) 

i=1 

We want to maximize P [f |D] or, equivalently, to minimize − log (P [f |D]), for which we 
have that 

! 
NY 

−λΦ[f ]− log (P [f |D]) ∝ − log e p(ξi) 
i=1 ! 

NY 
= − log (e −λΦ[f ]) − log p(ξi) (2.3.12) 

i=1 
NX 

= λΦ[f ] − log p(ξi) . 
i=1 

Combining equations (2.3.7) and (2.3.12) we can write the following 

N NX X 
H[f ] = c(ξi) + λΦ[f ] = − log p(ξi) + λΦ[f ] , (2.3.13) 

i=1 i=1 

which leads to the conclusion that the optimal loss function in a maximum likelihood sense 
for a given error distribution, p(ξi), is 

c(ξi) = − log p(ξi) = − log p(f(xi) − yi) . (2.3.14) 

Using (2.3.14) we can obtain now the optimal loss function for a given choice of noise 
distributions. However, the cost function resulting from this reasoning might be nonconvex. 
In this case, one may have to fnd a convex proxy in order to deal with the optimization 
problem or use a non-convex optimization method, such as the one proposed in [31] for 
SVMs. 

Due to this and other reasons, related to the loss of some mathematical properties that 
existed when using the ϵ-ILF function, plugging general cost functions into the general dual 
formulation problem defned in (2.3.4) often leads to SMO no longer being a feasible choice 
as optimization method, as we mentioned before. Therefore, choosing a new optimization 
algorithm to solve general noise SVR formulations avoiding this problem will be one of the 
steps we aim to solve in our proposed approach. 
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2.3.3 Loss Function and Dual Problem for Diferent Noise Distributions 

In order to get the formulation of a general noise SVR for a particular choice of noise 
distribution it is necessary to follow these steps: 

‹ Decide the noise distribution to be used. 

‹ Compute the corresponding optimal loss function for that noise distribution. 

‹ Insert that loss function into the general noise SVR formulation shown in (2.3.1). 

‹ Get the Lagrange formulation corresponding to the result of the previous step. 

‹ Compute derivatives to obtain the dual problem. 

We will show in this section these steps for the Laplace and Gaussian distributions, 
both for the zero and non-zero mean cases. We will also describe these steps for the Soft 
Insensitive Loss Function, SILF, an alternative loss function to the standard ϵ-ILF [32]. 
Although we will not be making use of this loss function for the proposed methods or 
experiments described in this work, we considered that it was interesting to include it in 
this section for the sake of completeness. 

2.3.3.1 Laplace 

Let us start with the simpler zero-mean case. The error distribution is then assumed to 
be 

1 |ξi|− p(ξi) = e σ , (2.3.15)
2σ 

where σ > 0 is a parameter to be estimated and in Section 2.4.2.1 we will describe how to 
obtain the optimal estimate for it. Replacing (2.3.15) into (2.3.14) we obtain 

� � � � � � 
1 |ξi| 1 � |ξi| 

� 1 |ξi|
c(ξi) = − log e − 

σ = − log − log e − 
σ = − log + . (2.3.16)

2σ 2σ 2σ σ 

The term − log ( 1 ) is independent of ξi and therefore a constant for any error value, so2σ 
it is valid to ignore it from now on and work with the following expression instead 

|ξi| |f(xi) − yi|
c(ξi) = = . (2.3.17)

σ σ 

As described in Section 2.3.1, in particular equation (2.3.2), for the general noise SVR 
formulation given in [28] we have that 

c(ξ) = 0 , ∀ ξ ∈ [−ϵ ∗ , ϵ] . (2.3.18) 

Taking into the account the defnion of c(ξ) in (2.3.17), this implies necessarily that 
ϵ∗ = = 0. This is an important property, as it means that in this SVR formulation we i ϵi 
will not have a hyperparameter ϵ. 
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Now, inserting (2.3.17) into (2.3.1) we arrive to the following general formulation of the 
primal problem for Laplace noise 

NX1 C 
min ||β||2 + (ξi + ξi ∗ ) 

β,β0,ξi,ξ∗ 2 σi i=1 
(2.3.19)subject to ξi, ξ ∗ ≥ 0, i = 1, ...N ,i 

f(xi) − yi ≤ ξi, i = 1, ...N , 
yi − f(xi) ≤ ξi ∗ , i = 1, ...N . 

where f(xi) =< h(xi), β > +β0 and h the corresponding basis expansions. 

The Lagrange formulation corresponding to (2.3.19) is 

N NX X1 C 
L = ||β||2 + (ξi + ξi ∗ ) − αi(yi − f(xi) + ξi)− 

2 σ 
i=1 i=1 

N N N (2.3.20)X X X 
∗ α ∗ 

i (f(xi) − yi + ξi ∗ ) − µiξi − µi ξ ∗ ,i 
i=1 i=1 i=1 

∗ with αi, α ∗ 
i , µi, µ ≥ 0 .i 

Computing the derivatives in (2.3.20) after replacing f(xi) by < h(xi), β > +β0 we 
obtain 

N
∂L 

= 
X 

(αi − α ∗ 
i ) ,∂β0 i=1 

N N NX X X∂L 
= β + αih(xi) − α ∗ 

i h(xi) = β + (αi − α ∗ 
i )h(xi) ,∂β (2.3.21)i=1 i=1 i=1 

∂L C 
= − αi − µi, i = 1, ...N ,

∂ξi σ 
∗∂L 

= 
C − αi ∗ − µi , i = 1, ...N ,

∂ξi 
∗ σ 

and setting the derivatives (2.3.21) to zero we get 

NX 
(αi − αi ∗ ) = 0 , 

i=1 
NX 

β = (αi 
∗ − αi)h(xi) , (2.3.22)

i=1 
C 

αi = − µi, i = 1, ...N ,
σ 

∗ α ∗ = 
C − µi , i = 1, ...N .i σ 
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Plugging (2.3.22) into (2.3.20) and denoting by k the kernel function we get the dual 
problem for Laplace noise 

N N NX XX1 
max D = yi(αi 

∗ − αi) − (αi 
∗ − αi)(α ∗ 

j − αj )k(xi, xj ) 
αi,α∗ 2i i=1 i=1 j=1 

subject to αi, α ∗ ≥ 0, i = 1, ...N ,i 
C (2.3.23) 

αi, α ∗ ≤ , i = 1, ...N ,i σ 
NX 

(α ∗ 
i − αi) = 0 , 

i=1 

with the following KKT conditions as constraints at the optimal point αbi, αb∗ 
i 

NXb α ∗ β = (bi − αbi)h(xi) , 
i=1 

αbi(yi − fb(xi) + ξbi) = 0 , 
αb�i ∗ (fb(xi) −�yi + ξb i ∗ ) = 0 , (2.3.24) bC − αbi ξi = 0 ,
σ� � 
C − αbi ∗ ξb i ∗ = 0 . 
σ 

It can be seen that (2.3.23) is very similar to the classical SVR formulation given in 
(2.2.11) setting ϵ = 0 and adding the presence of the parameter σ 

Following an analogous procedure, we can get the dual problem formulation for the non-
zero-mean Laplace loss function choice. The only diference in that case is that the error 
distribution is assumed to be 

1 |ξi−m|−P (ξi) = e σ , (2.3.25)
2σ 

where σ > 0 and m ∈ (−∞, ∞) are parameters to be optimized and we will give their 
optimal values in Section 3.3.1. Replacing (2.3.25) into (2.3.14) we get 

� � � � 
1 |ξi−m| 1 |ξi − m|

c(ξi) = − log e − 
σ = − log + . (2.3.26)

2σ 2σ σ 

The term − log ( 1 ) is again independent of ξi so can be ignored to work with the2σ 
following expression 

|ξi − m|
c(ξi) = . (2.3.27)

σ 
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Replacing (2.3.17) for (2.3.27) in our previous steps, the dual problem for non-zero 
Laplace noise can be obtained. First, we have that 

c(ξ) = 0 , ∀ ξ ∈ [−ϵ ∗ , ϵ] . (2.3.28) 

Taking into account the defnion of c(ξ) in (2.3.27), this implies necessarily that ϵ∗ = 
ϵi = m. Now, inserting (2.3.27) into (2.3.1) we arrive to the following general formulation 
of the primal problem for Laplace noise 

NX1 C 
min ||β||2 + (|ξi − m| + |ξ ∗ − m|) 

β,β0,ξi,ξ∗ 2 σ i 
i i=1 

(2.3.29)subject to ξi, ξ ∗ ≥ 0, i = 1, ...N ,i 
f(xi) − yi ≤ m + ξi, i = 1, ...N , 
yi − f(xi) ≤ m + ξi ∗ , i = 1, ...N . 

where again f(xi) =< h(xi), β > +β0 and h represents the corresponding basis expansions. 
The Lagrange formulation corresponding to (2.3.29) is 

N NX X1 C 
L = ||β||2 + (|ξi − m| + |ξ ∗ − m|) − αi(yi − f(xi) + m + ξi)−i2 σ 

i=1 i=1 
N N N (2.3.30)X X X 

∗ αi 
∗ (f(xi) − yi + m + ξi ∗ ) − µiξi − µi ξ ∗ ,i 

i=1 i=1 i=1 
∗ with αi, αi ∗ , µi, µ ≥ 0 .i 

However, when computing the derivatives in (2.3.30) problems arise due to the absolute 
Cvalues in the term 
PN (|ξi − m| + |ξ∗ − m|) which is involved in the derivatives forσ i=1 i 

ξi and ξi ∗ . Therefore, the use of SMO over the dual problem for this distribution, and 
others where analogous problems exist, is not feasible. This is one of the main reasons that 
justify our proposed approaches, by means of NORMA optimization or Deep Learning 
frameworks, to build general noise models, which will be described in Chapter 3. 

2.3.3.2 Gaussian 

Let us start again with the simpler zero-mean case. The error distribution is assumed 
to be 

p(ξi) = √ 1 
e − 

2 
ξ

σ
i 
2

2 , (2.3.31) 
2πσ 

where σ2 > 0. Replacing (2.3.31) into (2.3.14) we obtain 

� � 
ξ21 i− c(ξi) = − log √ e 2σ2 

2πσ� � � � 
ξ21 i− = − log √ − log e 2σ2 (2.3.32) 

2πσ� � 
1 ξi 

2 
= − log √ + . 

2σ22πσ 
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� � 
√ 1As in the Laplace case, − log is again independent of ξi so it can be ignored to 
2πσ 

work with the following simpler expression 

ξ2 (f(xi) − yi)2 
i c(ξi) = = . (2.3.33) 

2σ2 2σ2 

Following the approach proposed in [33] for the Gaussian distribution assumption case, 
we use a slightly diferent formulation of (2.3.1), changing the slack variables, ξi, ξ∗ toi 

ξi = yi − f(xi) . (2.3.34) 

This formulation allows for negative slack values, so it is not necessary to add a second 
set of variables ξi ∗ , in contrast to previous SVR formulations given. Thus, the problem in 
(2.3.1) is reformulated as 

N
1 imin ||β||2 + C 

X ξ2 

β,β0,ξi 2 2σ2 (2.3.35)
i=1 

subject to yi − f(xi) = ξi, i = 1, ...N . 

We have that c(ξ) = 0 ⇒ ξ = 0. Using this result and the conditions detailed in Section 
2.3.1, in particular equation (2.3.2), we get 

c(ξ) = 0 , ∀ ξ ∈ [−ϵ ∗ , ϵ] ⇒ ϵ ∗ = ϵ = 0 , (2.3.36) 

Now, inserting (2.3.36) into (2.3.35) we arrive to the following formulation of the primal 
problem for Gaussian noise 

NX1 C 
ξ2min ||β||2 + i 

β,β0,ξi 2 2σ2 (2.3.37)
i=1 

subject to yi − f(xi) = ξi, i = 1, ...N . 

It can be seen that this formulation is analogous to the proposed Least Squares SVR, 
LS-SVR, by Suykens [34], which is equivalent to kernel ridge regression. 

Using now f(xi) =< h(xi), β > +β0, the Lagrangian for the primal problem correspond-
ing to (2.3.37) is 

N NX X1 C 
ξ2L = ||β||2 + − αi(< h(xi), β > +β0 − yi + ξi) . (2.3.38)

2 2σ2 i 
i=1 i=1 
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Computing the derivatives in (2.3.38) we obtain 

NX∂L 
= − αi ,

∂β0 i=1 
NX∂L (2.3.39)= β − αih(xi) ,

∂β 
i=1 

∂L C 
= ξi − αi, i = 1, ...N ,

∂ξi σ2 

and setting the derivatives (2.3.39) to zero we get 

NX 
αi = 0 , 

i=1 
NX (2.3.40)

β = αih(xi) , 
i=1 
C 

αi = ξi, i = 1, ...N . 
σ2 

Plugging (2.3.40) into (2.3.38) we get the dual problem for the Gaussian case, which as 
can be seen is analogous to the one used in kernel ridge regression [35] and has the following 
formulation 

N N N � �X XX1 δij σ
2 

max D = yiαi − αiαj k(xi, xj ) + 
αi 2 C 

i=1 i=1 j=1 

subject to αi ≥ 0, i = 1, ...N (2.3.41) 
NX 
αi = 0 , 

i=1 

with the KKT conditions at the optimal point 

NXbβ = αbih(xi) , 
i=1 

(2.3.42)bαbi = 
C
ξi, i = 1, ...N ,

σ2 

αbi(fb(xi) − yi + ξbi) = 0 . 

Following an analogous procedure, we can get the dual problem formulation for the non-
zero-mean Gaussian loss function choice. The only thing left in order to do this is to 
get the optimal loss function for that case. The error distribution now is 

(ξi−m)21 − p(ξi) = √ e 2σ2 , (2.3.43)
2πσ 
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where σ2 > 0 and m ∈ (−∞, ∞). Replacing (2.3.43) into (2.3.14) we obtain 

� � 
(ξi−m)21 − c(ξi) = − log √ e 2σ2 = 

2πσ� � � � 
(ξi−m)21 − = − log √ − log e 2σ2 = (2.3.44)

2πσ� � 
1 (ξi − m)2 

= − log √ + . 
2σ22πσ 

√ 1The term − log ( ) is independent of ξi and thus can be ignored to work with the 
2πσ 

following expression 

(ξi − m)2 
c(ξi) = . (2.3.45) 

2σ2 

Replacing (2.3.33) for (2.3.45) in our previous steps, the dual problem for non-zero mean 
Gaussian noise can be obtained. First, we have that c(ξ) = 0 , ∀ ξ ∈ [−ϵ∗, ϵ] ⇒ ϵ∗ = ϵ = m. 
Now, inserting this result into (2.3.1) and reformulating as previously did for the zero-
mean case, we arrive to the following formulation of the primal problem for non-zero mean 
Gaussian noise 

NX1 C 
min ||β||2 + (ξi − m)2 
β,β0,ξi 2 2σ2 (2.3.46)

i=1 

subject to yi − f(xi) = ξi, i = 1, ...N . 

Using now f(xi) =< h(xi), β > +β0, the Lagrangian for the primal problem correspond-
ing to (2.3.46) is 

N NX X1 C 
L = ||β||2 + (ξi − m)2 − αi(< h(xi), β > +β0 − yi + ξi) . (2.3.47)

2 2σ2 
i=1 i=1 

Next, computing the derivatives in (2.3.47) we get the same results as in (2.3.39), except 
for the term corresponding to ∂L , which is now ∂ξi 

∂L C 
= (ξi − m) − αi, i = 1, ...N . (2.3.48)

∂ξi σ2 

Setting the derivatives to zero and plugging them into (2.3.47) we get the dual problem 
for the non-zero mean Gaussian case. It can be seen that this dual problem has the same 
formulation as the zero-mean case shown in (2.3.41) but replacing the KKT condition 
αbi = C ξbi for αbi = 

σ
C 
2 (ξbi − m).

σ2 
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Figure 2.3.1: SILF vs ϵ-ILF. SILF presents a smoother shape. 

2.3.3.3 SILF 

As stated before, a loss function called SILF has been proposed as an alternative to the 
standard ϵ-ILF [32]. We will not be making use of this loss function for the purpose of this 
work, but for the sake of completeness we include here the correspoding general noise SVR 
formulation adapted to this loss function. The formulation of SILF is the following one 

 −(f(xi) − yi) − ϵ, (f(xi) − yi) ∈ ∆C∗ 

((f(xi)−yi)+(1−ρ)ϵ)2 , (f(xi) − yi) ∈ ∆M ∗ 
4ρϵ 

c(xi, yi, f(xi)) = 0, (f(xi) − yi) ∈ ∆0 (2.3.49) 
((f(xi)−yi)−(1−ρ)ϵ)2 

, (f(xi) − yi) ∈ ∆M 4ρϵ 
(f(xi) − yi) − ϵ, (f(xi) − yi) ∈ ∆C , 

where 

0 < ρ ≤ 1 , 
ϵ > 0 , 
∆C∗ = (−∞, −(1 + ρ)ϵ) , 

(2.3.50)
∆M∗ = [−(1 + ρ)ϵ, −(1 − ρ)ϵ] , ∆0 = (−(1 − ρ)ϵ, (1 − ρ)ϵ) , 
∆M = [(1 − ρ)ϵ, (1 + ρ)ϵ] , 
∆C = ((1 + ρ)ϵ, +∞) . 

Figure imsvmsilf shows a visual comparison of SILF and ϵ-insensitive loss functions. The 
purpose of using SILF as loss function in SVR models is to combine in a single loss function 
two properties: 

‹ The sparseness of the ϵ-insensitive loss function, which means that training samples 
with small noise that fall in the fat zero region are not involved in the representation 
of regression functions and therefore the computational cost is reduced. 



44 Chapter 2. Theoretical Background 

‹ The smoothness similar to that of the quadratic and Huber’s loss functions, that 
can grant favorable mathematical properties. 

Using the conditions detailed in Section 2.3.1 we get 

c(ξ) = 0 , ∀ ξ ∈ [−ϵ ∗ , ϵ] ⇒ ϵ ∗ = ϵ = (1 − ρ)ϵ , (2.3.51) 

and by (2.3.51) and the conditions in Section 2.3.1 we get 

� 
ξ2 
i , ξi ∈ [0, 2ρϵ) ,c(ξi) = 4ρϵ (2.3.52) 

ξi − ρϵ , ξi ∈ [2ρϵ, ∞) , 

( 
ξ∗2 

, ξ∗ ∈ [0, 2ρϵ) ,c(ξi 
∗ ) = 4 

i 
ρϵ i (2.3.53) 

ξ∗ − ρϵ , ξ∗ ∈ [2ρϵ, ∞) .i i 

Thus, inserting (2.3.51), (2.3.52), and (2.3.53) into (2.3.1) we arrive to the following 
formulation of the general SILF SVR problem 

NX1 
min ||β||2 + C (c(ξi) + c(ξi ∗ )) 

β,β0,ξi,ξ∗ 2i i=1 
(2.3.54)subject to ξi, ξ ∗ ≥ 0, i = 1, ...N i 

f(xi) − yi ≤ (1 − ρ)ϵ + ξi, i = 1, ...N 
yi − f(xi) ≤ (1 − ρ)ϵ + ξi ∗ , i = 1, ...N . 

The Lagrange function corresponding to the previous primal problem (2.3.54) is 

N NX X1 
L = ||β||2 + C (c(ξi) + c(ξi ∗ )) − αi(yi − f(xi) + (1 − ρ)ϵ + ξi)− 

2 
i=1 i=1 

(2.3.55)
N N NX X X 

∗ − α ∗ 
i (f(xi) − yi + (1 − ρ)ϵ + ξi ∗ ) − µiξi − µi ξ ∗ .i 

i=1 i=1 i=1 

Writting f(x) in the form of basis expansions, i.e., f(xi) =< h(xi), β > +β0 and com-
puting the derivatives in (2.3.55) we obtain 

NX∂L 
= (αi − αi ∗ ) ,

∂β0 i=1 
N N NX X X∂L 

= β + αih(xi) − αi 
∗ h(xi) = β + (αi − αi ∗ )h(xi) ,

∂β (2.3.56)i=1 i=1 i=1 
∂L ∂c 

= C (ξ) − αi − µi, i = 1, ...N ,
∂ξi ∂ξ 
∂L ∂c ∗ = C (ξ ∗ ) − αi ∗ − µi , i = 1, ...N ,
∂ξi 

∗ ∂ξ∗ 
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and setting all these derivatives to zero we get 

NX 
(αi − αi ∗ ) = 0 , (2.3.57) 

i=1 

NX 
β = (αi 

∗ − αi)h(xi) , (2.3.58) 
i=1 

∂c 
αi = C (ξ) − µi, i = 1, ...N , (2.3.59)

∂ξ 

∗ α ∗ = C 
∂c 

(ξ ∗ ) − µi , i = 1, ...N . (2.3.60)i ∂ξ∗ 

Plugging (2.3.57), (2.3.58), (2.3.59) and (2.3.60) into (2.3.55) we get the dual problem 
for the SILF 

N N NX XX1 
max D = yi(αi 

∗ − αi) − (αi 
∗ − αi)(α ∗ 

j − αj )k(xi, xj )− 
αi,α∗ 2i i=1 i=1 j=1 

N NX X ∂c ∂c 
(1 − ρ)ϵ (αi + αi ∗ ) + C [c(ξi) + c(ξi ∗ ) − ξi (ξ) − ξ ∗ (ξ ∗ )]

∂ξ i ∂ξ∗ 
i=1 i=1 

subject to ξi, ξ ∗ ≥ 0 ,i 
αi, α ∗ 

i ≥ 0, i = 1, ...N , (2.3.61) 
∂c(ξ)

α≤C (ξ), i = 1, ...N ,
∂ξ 

αi 
∗ ≤ C 

∂c 
(ξ ∗ ), i = 1, ...N ,

∂ξ∗ 

NX 
(αi 

∗ − αi) = 0 , 
i=1 

with the following KKT conditions at the optimal solution 

NX 
β = (αi 

∗ − αi)h(xi) , 
i=1 

αi(yi− < h(xi), β > +β0 + (1 − ρ)ϵ + ξi) = 0 , 
α ∗ 
i (< h(xi), β > +β0 − yi + (1 − ρ)ϵ + ξi ∗ ) = 0 , (2.3.62) 
∂c 

(C (ξ) − αi)ξi = 0 ,
∂ξ 

(C 
∂c 

(ξ ∗ ) − α ∗ 
i )ξ ∗ = 0 . 

∂ξ∗ i 
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As shown in [32], terms involving ξi and ξ∗ can be simplifed through easy steps to arrive i 
at the following expression 

N N NX XX1 
max D = yi(αi 

∗ − αi) − (αi 
∗ − αi)(αj ∗ − αj )K(xi, xj ) 

αi,α∗ 2i i=1 i=1 j=1 

NX 
− (1 − ρ)ϵ (αi + α ∗ 

i ) (2.3.63) 
i=1 

NX 
2− 

ρϵ 
(α2 

i + α ∗ ) ,iC 
i=1 

where the constraints are the same as in (2.3.61) with the exception of the Lagrangian 
coefcients αi and α∗ now being upper bounded by the hyperparameter C, i.e.,i 

αi, α ∗ ≤ C i = 1, ...N . (2.3.64)i 

Although formulations for the SILF loss function have been described here, this cost 
function will not be used in the experiments carried out as part of this thesis, due to the 
extra hyperparameter ρ implying difculties for the implementation of this cost function 
in our proposed framework, which is described in Section 3. 

Table 2.3.1 shows a summary of all the loss functions we have discussed up to this point. 
Mathematical computations required to obtain all these formulations can be found in the 
previous sections of this work. Parameter m for the non-zero mean Laplace and Gaussian 
distributions will be denoted µ from now on, as there is no risk of confusion with the 
Lagrange parameter µi in the following chapters. 

2.4 Constant Width Error Intervals for SVR 

SVR models have been widely used in a variety of regression problems with excellent 
results, being considered one of the state-of-the-art choices in diferent areas. However, the 
previously described classical ϵ-SVR only gives a prediction, with no possibility of obtaining 
probability intervals to address the uncertainty in these predictions. It is important to 
notice that, for these type of models, approaches such as the well known ones for linear 
regression under Gaussian models are not feasible. First, because the familiar analytic 
estimates of the linear coefcients are impossible in SVR due to its formulation, and less so 
any asymptotic analysis. Besides, it should also be worth noting the difculty of ensuring 
the assumption of normal random variables in most scenarios. 

To deal with these issues, C.J. Lin proposed a direct approach to build error intervals 
for SVR [18] [27]. This method assumes prediction errors to follow a specifc probability 
distribution and uses this density function hypothesis to defne probability intervals for 
the model errors. The main idea behind this proposed method is that if the distribution 
assumption is true and hence the underlying noise distribution is accurately estimated, 
the resulting computed error intervals will adapt well to the real prediction errors of the 
regression model. We proceed in the next section with the technical defnition of this 
method. 
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Table 2.3.1: Loss functions corresponding to several error distributions. 

Error Distribution Loss Function 
ϵ-ILF 

−ξi − ϵ, ξi < −ϵ 
c(ξi) = 0, ξi ∈ [−ϵ, ϵ]  ξi − ϵ, ξi > ϵ . 

SILF 

−ξi − ϵ, ξi ∈ ∆C∗ 

(ξi+(1−β)ϵ)2 
, ξi ∈ ∆M∗ 4βϵ 

c(ξi) = 0, ξi ∈ ∆0 

(ξi−(1−β)ϵ)2 
, ξi ∈ ∆M4βϵ  

ξi − ϵ, ξi ∈ ∆C , 

Zero-mean Laplace |ξi|c(ξi) = σ 

Laplace |ξi−µ|c(ξi) = σ 

Zero-mean Gaussian ξ2 
ic(ξi) = 

2σ2 

Gaussian (ξi−µ)2 
c(ξi) = 

2σ2 

2.4.1 Method 

In the method proposed in [27] zero mean Gaussian and Laplace families are considered. 
The idea is to model the distribution of errors, Ψ, assuming one of these distribution, based 
on a set of out-of-sample residuals {ψi}N The error distribution assumed is ftted byi=1. 
maximum likelihood estimation, MLE, [36] using the previously computed out-of-sample 
residuals of an SVR model used to predict a regression target. 

The residuals are the result of conducting a k -fold cross-validation over the training data 
to get the estimated functions fbj , j = 1, ..., k, and then setting 

jψ ≡ fbj (xi) − yi , (2.4.1)
i 

for (xi, yi) in fold j of the training data. Although this cross-validation scheme is proposed 
in [27], the same idea could be applied but using a fxed validation set to obtain the 
residuals. 

Assuming that the ψi are independent, we can estimate the distributions parameters θ 
by maximizing the likelihood L. If ψi are independent we have 

NY 
L(θ; ψ1, ..., ψn) = p(ψi|θ) , (2.4.2) 

i=1 
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where p represents the density function of the distribution of ψi. 

Now, denoting l the logarithm of the likelihood we get 

nX 
l(θ; ψ1, ..., ψn) = log p(ψi|θ) . (2.4.3) 

i=1 

Maximizing l is equivalent to maximize L so both formulations can be applied, although 
using l leads to a simpler problem. 

A difculty with the method proposed in [27] is that it assumes the residual distribution 
to be independent of x and, therefore, probability intervals have exactly the same width 
for all input instances. In theory, the density distribution may depend on the input x, and 
therefore the length of the predictive interval with a pre-specifed coverage probability may 
vary from one example to another, refecting the fact that the prediction variances vary 
with diferent input values. In fact, it is easy to think of real-world problems where this 
behaviour has a strong impact. 

Nevertheless, the authors who proposed this method claim that despite the fact that 
their error interval is not infuenced by x, and hence it does not refect this property, it 
can be justifed if we consider the probability to be taken over all possible input values. In 
[27] it is proposed to model ψi by zero-mean Gaussian and Laplace distributions because 
residuals of data studied in previous work seem to be symmetric about zero and both 
Gaussian and Laplace captured their shape reasonably well. We describe how to model ψi 
using these distributions following the method proposed in [27]. 

2.4.2 Parameters and Error Intervals for Diferent Distributions 

2.4.2.1 Zero mean Laplace 

Assuming a zero mean Laplace distribution we get the following equation for l 

n n nX 1 |ψi| X 1 X |ψi|
l(θ; ψ1, ..., ψn) = log e − 

σ = log − = 
2σ 2σ σ 

i=1 i=1 i=1 
(2.4.4)nX1 

= −n log 2 − n log σ − |ψi| . 
σ 
i=1 

We can compute now the corresponding derivative 
nX∂l 1 1 

= −n + |ψi| . (2.4.5)
∂σ σ σ2 

i=1 

In the maximum point, where we denote by σb the corresponding density parameter value, 
the frst derivative must be equal to zero, so 

nX1 1 −n + |ψi| = 0 . (2.4.6)
σb σb2 

i=1 

Solving (2.4.6) we obtain 
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P n |ψi|i=1σb = , (2.4.7) 
n 

The equation in (2.4.7) is just the mean absolute error, MAE. 

Finally, we need to compute the upper sth percentile, ps, of the corresponding probability bdistribution of ψ = f(x) − y. For a zero-mean symmetric variable with density p(z), we 
can obtain ps just by solving 

Z ps 

1 − s = p(z)dz . (2.4.8) 
−∞ 

The prediction error interval is then (−ps, ps). For the zero mean Laplace distribution, we 
can replace p(z) in 2.4.8 for 

1 |z|
p(z) = e − 

σ 
2σ 

and we get 

Z ps 

1 − s = p(z)dz = Z−∞ 
ps 1 |z|− e σ dz = 

2σ−∞" |z| #ps 
z(1 − e− 

σ ) 
= (2.4.9)

2|z| 
−∞ 

− ps 
1 − e σ 1 

+ = 
2 2 
− ps 
σe 

1 − ⇒ ps = −σ log 2s . 
2 

Therefore, as described in [27], the error interval for the case of the zero mean Laplace 
distribution is 

(σ log 2s, −σ log 2s) . (2.4.10) 

2.4.2.2 Zero mean Gaussian 

Assuming a zero mean Gaussian distribution we get the following equation for l 

n n nX ψ2 X X ψ21 i 1 
l(θ; ψ1...ψn) = log √ e − 

2σ2 = log √ − 
2σ 
i 
22πσ 2πσ

i=1 i=1 i=1 
(2.4.11)n√ 1 X 

= −n log 2π − n log σ − ψ2 . 
2σ2 i 

i=1 

In the maximum point, where we denote σb the corresponding density parameter value, the 
frst derivative must be equal to zero, so 
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nX∂l 1 1 
= −n + 

σ3 ψi 
2 = 0 . (2.4.12)

∂σb σb b 
i=1 

Solving (2.4.12) we obtain 

P n ψ2 
i=1 iσb2 = . (2.4.13) 
n 

The equation in (2.4.13) is just the mean squared error, MSE. 

The formulation for the prediction error interval for the zero mean Gaussian distribution 
assumption is again the same as its previously defned Laplace counterpart, i.e. (−ps, ps), 
with ps as defned in (2.4.8). For the zero mean Gaussian distribution, we can replace p(z) 
in 2.4.8 for 

1 z 2 
− p(z) = √ e 2σ2 

2πσ 

and it can be seen [27] that this leads to 

2 
ps = , (2.4.14)

σ[erf(1√−s ) + 1] 
2 

where erf is the Gauss error function defned as 

Z z2 −t2 
erf(z) = e dt . (2.4.15)

π 0 

Therefore, the error interval for the case of the zero mean Gaussian distribution is 

! 
2 2 − , . (2.4.16)

σ[erf(1√−s ) + 1] σ[erf(1√−s ) + 1] 
2 2 

2.5 NORMA Optimization 

Support Vector Machines are a type of ML models belonging to what is usually called 
kernel-based algorithms. This type of methods has achieved considerable success in various 
problems when working in a batch setting, i.e. where all of the training data is available 
in advance and you train your model in a single step in which you provide all available 
data as input to your model, even if it is split into train/validation/test subsets. However, 
there has been little use of this family of methods in an online setting, in which you train 
your model in a multistep process where at each iteration you provide one sample, or a 
subset of samples, as input to your model, which automatically is updated correspondingly. 
Besides, the cost order of the algorithm usually employed in batch training of SVM models, 
SMO, does not go below quadratic, which does not mix well with the large volumes of data 
available in the big data era. 
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Optimization methods suitable to be used to train SVM models in an online setting have 
been proposed, like Pegasos [37] or Naive Online Reg Minimization Algorithm, NORMA 
[38]. We will focus here in the latter. This optimization algorithm is developed by con-
sidering classical stochastic gradient descent within a feature space and the use of some 
straightforward tricks, and it is shown to be a computationally efcient algorithm for a 
wide range of problems such as classifcation, regression, and novelty detection. 

The goal of this method is, given a particular supervised learning problem to solve, to 
obtain an optimal predictive function, f , following an online setting. In particular, this 
method employs an iterative process, where at the end of a particular iteration t + 1, we 
will obtain an approximation ft+1, dependant on the previous iteration result ft, to the 
optimal predictive function. NORMA uses as update rule the following one 

ft+1 = ft − ηt∂ft Rinst,λ[ft, xt, yt] , (2.5.1) 

where ηt > 0 is the learning rate, which usually is chosen to be constant, i.e., ηt = η, and 
∂ft Rinst,λ[ft, xt, yt] is the gradient of 

λ 
Rinst,λ[ft, xt, yt] := l(ft(xt), yt) + ||ft||2 , (2.5.2)

2 
with respect to the predictive function f , where λ ≥ 0 is the regularization parameter and 
l is a given loss function. In particular, l(ft(xt), yt) is the loss the learning algorithm makes 
when it tries to predict the target yt based on the features xt and the current estimate ft 
based on the previous samples {xi, yi}t−1 

i=1. 

Therefore, NORMA performs gradient descent with respect to what the authors called 
the instantaneous regularized risk, Rinst,λ. Due to the defnition in (2.5.2), the derivative 
∂ft Rinst,λ[ft, xt, yt] can be divided into two factors: 

∂ft l(ft(xt), yt) , (2.5.3) � � 
λ 

∂ft ||ft||2 . (2.5.4)
2 

Regarding (2.5.3), as stated in [38], when working in a reproducing kernel Hilbert space, 
H, [28] and due to the reproducing property, it is satisfed that 

< f, k(x, · ) >H = f(x), ∀x ∈ R , (2.5.5) 

where k is a particular kernel function k : R × R → R, the following equality holds 

∂ft l(ft(xt), yt) = l ′ (ft(xt), yt)k(xt, · ) . (2.5.6) 

As for (2.5.4), it holds that 

� � 
∂ft 

λ ||ft||2 
2 

= 
λ 
2ft = λft . 

2 
(2.5.7) 

Therefore, combining (2.5.6) and (2.5.7) we get 

∂ft Rinst,λ[ft, xt, yt] = l ′ (ft(xt), yt)k(xt, · ) + λft . (2.5.8) 
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Now, plugging (2.5.8) into (2.5.1) we obtain 

ft+1(x) = ft(x) − ηt(l ′ (ft(xt), yt)k(xt, x) + λft(x)) 
(2.5.9) 

= (1 − ηtλ)ft(x) − ηtl ′ (ft(xt), yt)k(xt, x) , 

where the condition ηt < 1 must hold for the algorithm to work properly. λ 

Writing ft in (2.5.9) in the form of kernel expansions, as proposed in [39], we have 

tX 
ft+1(x) = αt

i 
+1k(xi, x) . (2.5.10) 

i=1 

where the coefcients αi are updated at iteration t + 1 based on the values αi in thet+1 t 
previous iteration via 

αi = (1 − ηtλ)αi for i < t , (2.5.11)t+1 t 

and a new coefcient αtt+1 is added, with the following value 

αt = −ηtl ′ (ft(xt), yt) . (2.5.12)t+1 

Plugging (2.5.11) and (2.5.12) into (2.5.10) we obtain the following equivalent formula-
tion for the updating step in (2.5.9) 

t−1X 
fb t+1(x) = (1 − ηtλ) αbitk(xi, x) − ηtl ′ (f̂  

t(xt), yt)k(xt, x) , (2.5.13) 
i=1 

The combination of (2.5.10), (2.5.11), and (2.5.12) constitute the update rules for the 
NORMA optimization at iteration t + 1 used in practice. f0 is called the initial hypothesis 
and commonly takes the value f0 = 0. As shown in [38] an extra update rule to include the 
possibility of the existence of an ofset b term for the function f , i.e. f b(xt) = ft(xt) + bt,t 
can be added. 

There are several ways of speeding up the algorithm implementation. For instance, as 
proposed in [38], instead of updating all old coefcients αi for i < t for each iteration, one 
may simply choose ηt to be constant, i.e ηt = η, and cache the power series 

α1 = (1 − ηλ)α1 
2 1 

α1
3 = (1 − ηλ)α2

1 = (1 − ηλ)2α1
1 

(2.5.14) 
... 
α1 = (1 − ηλ)n−1α1 
t 1 

and then pick the suitable terms as needed. Stopping criteria for these updating iterative 
process are given in Section 3.1.3. 



53 2.6. Deep Learning 

Figure 2.6.1: Artifcial Neural Network following a Fully Connected schema, where each 
neuron from one layer is connected to all neurons in the following layer. Taken from [41]. 

2.6 Deep Learning 

The concept of Deep Learning, DL, has had diferent interpretations in recent years. 
Often, DL is employed simply to refer to a specifc subset of Artifcial Neural Networks 
or ANNs [40], another family of Machine Learning models that can be used both for 
classifcation and regression. In particular, it is used to name ANNs with a large number of 
what are called hidden layers. An ANN model is made up of a collection of connected units 
called neurons, where the output of each neuron is computed by some non-linear function, 
called activation function, of the weighted sum of its inputs. Neuron connections have 
weights, so activations of diferent neurons can have bigger impact than others. Neurons 
of one layer can connect to neurons of the preceding and following layers. The layer that 
receives external data is the input layer and the last layer, the one that produces the 
ultimate result, is the output layer. In between them are zero or more hidden layers. 
When the number of these hidden layers is large, we talk about Deep Artifcal Neural 
Networks, often referred simply as DL models.One example of this type of models is shown 
in Figure 2.6.1. 

However, the DL denomination has also been used to refer to any type of Machine Learn-
ing model framework which consists of a training schema containing several optimization 
layers, each one afecting the result of the preceding and following layers. An example 
of this are Deep Belief Networks or DBNs [42], a type of ML models used for unsuper-
vised learning and based on multiple layers, but with signifcant diferences to the standard 
schema of an ANN. 

Nevertheless, it is true that clearly the link between DL and Deep ANNs is strong 
and almost ever-present nowadays. Several factors have probably had an impact on this, 
including the fact that the ANNs schema adapts almost perfectly to the concept of DL 
framework and that some of the frst groundbreaking advances in DL correspond to deep 
ANNs. 

We will focus here on the fully connected version of Deep ANNs as we consider it adapts 
better to our purposes than other frameworks like Convolutional Neural Networks, popu-
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lar in image recognition problems, or Recurrent Neural Networks, often used in Natural 
Language Processing tasks. 

2.6.1 DL Special Properties 

One of the deciding factors for the recent prevalence of DL in the Machine Learning world 
is that this family of models present some extremely relevant properties. We will focus 
here on two of them: Complexity and End-to-End learning. 

Complexity: When trained with large enough datasets, DL models commonly achieve 
better results than other families of ML models. The reason for this behaviour is the 
special nature of DL frameworks, consisting of several layers, where usually at each level the 
complexity of relationships and patterns detected by the network increases. This behaviour 
has been specially studied for image recognition tasks, where it can be shown that the frst 
layers learn to recognize basic patterns, such as lines, squares, etc., while deeper layers get 
trained to fnd much more complex relationships, for instance, the presence of a person or a 
specifc animal in the picture. This property of DL frameworks allows for the construction 
of models with bigger complexity potential than their classic ML counterparts, and thus 
to a higher predictive potential. 

End-to-End Learning: One of the most exciting recent developments in DL has been 
the rise of end-to-end learning. Traditionally, there existed Machine Learning systems that 
required multiple stages of pre-processing and model training. What end-to-end DL allows 
is to take all those multiple stages, remove the pre-processing stage and replace this schema 
with just a single step, the training and computation of the DL models. 

One illustrative example can be found in speech recognition, where your goal is to take 
an input such an audio clip, and map it to an output which is a transcript of the audio clip. 
Traditionally, speech recognition required more than one stage of processing. First, you had 
to extract some features of the audio using pre-processing methods like the mel-frequency 
cepstral coefcients or MFCC [43]. Then, having extracted some low level features, one 
could apply a machine learning algorithm to fnd, for instance, the phonemes, the basic 
units of sound, in the audio clip. 

When using DL frameworks, this pipeline with multiple stages can be replaced by the 
training of a deep neural network, allowing to just input the audio clip and obtain directly 
the transcript as an output. However, it is important to remark that one of the challenges 
of end-to-end DL is that usually large volumes of data are needed before it works in 
a comparable way to classical multistep ML frameworks, and even larger to be able to 
surpass the performance of its counterparts. 

2.6.2 Backpropagation 

Given a training sample and a target to predict, an ANN will compute all the activation 
functions, described more in detail later in the section, from the input layer to the output 
layer, obtaining a fnal prediction as a result. We call this a forward pass. 

Once this forward pass has been performed, we can calculate an error between its output 
and the real target using the selected error function. Using gradient descent theory [44] 
over this error, it could be possible to obtain new weight values for the output layer units to 
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Figure 2.6.2: Backpropagation schema. The goal is to extend gradient descent to all the 
layers in the network after the forward pass. Taken from [41]. 

try to improve its output. Nevertheless, this would only modify the weights of the output 
layer and not of all the preceding layers, which also have an impact on the resulting output, 
and thus will have a far from optimal efect. 

Therefore, we need an algorithm to propagate backwards the error from the units in the 
output layer to the units in the preceding layers. This algorithm is called backpropagation 
and is used to optimize ANNs. The backpropagation schema is illustrated in Figure 2.6.2. 

The goal of backpropagation is to be able to extend gradient descent to all the layers in 
the network. Backpropagation defnes the generalized error associated to a hidden unit as 
a weighted average of the errors of the units in the adjacent layer. The gradient value for 
a unit j in layer J , will have the following formulation 

∂E ∂E ∂sj ∂sj
= = δj , (2.6.1)

∂wji ∂sj ∂wji ∂wji 

where E represents the error function, wji is the weight of the connection from unit i toP 
unit j, sj = i wjizi the sum of the weighted inputs of unit j in layer J , zi the output of 

∂E unit i in layer J − 1, and δj = the generalized error at unit j.∂sj 

It holds that 

∂sj 
= zi , (2.6.2)

∂wji 

and expanding the term δj we get 
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!X X X∂E ∂sk ∂E ∂sk ∂zj ∂E ′ δj = = = wkj Fj (sj ) = 
∂sk ∂sj ∂sk ∂zj ∂sj ∂sk

k k k! (2.6.3)X 
′ = δkwkj Fj (sj ) , 

k 

where Fj is the activation function used in unit j. Finally, plugging (2.6.2) and (2.6.3) into 
(2.6.1) we get the fnal expression 

!X∂E ′ = δkwkj Fj (sj )zi . (2.6.4)
∂wji 

k 

Therefore, using backpropagation we can compute the error of the output units, then 
the generalized error of the units of the last hidden layer and successively all the previous 
hidden layers, and fnally the gradient with respect to the weights. This is called the 
backward pass and allow the possibility of ANNs optimization. 

2.6.3 Activation Functions 

For a given neuron in layer J of a Deep ANN, the inputs are multiplied by the weights P 
and summed together, i.e., sj = i wjizi, where zi is the output of unit i in layer J − 1. 
This value is referred to as the activation of the neuron. This summed activation is then 
transformed via an activation function which defnes the specifc output of that neuron. 
The simplest activation function is referred to as the linear activation. 

F (x) = x . (2.6.5) 

A network comprised of only linear activation functions is very easy to train, but cannot 
learn complex mapping functions. Linear activation functions are still used in the output 
layer for networks that predict a quantity, as is the case in regression problems. 

Nonlinear activation functions are preferred as they allow the nodes to learn more com-
plex structures in the data. Traditionally, two were the most widely used nonlinear acti-
vation functions in ANNs or Deep ANNs: 

1. Sigmoid function: The sigmoid activation function, also called the logistic function, 
is traditionally a very popular activation function for neural networks. It has the 
following formulation 

1 
F (x) = −x . (2.6.6)

1 + e 

The input to the function is transformed into a value between 0 and 1. Inputs that 
are much larger than 1 are transformed to essentially the value 1; similarly, negative 
values far below 0 are snapped to 0. The shape of the function for all possible inputs 
is an S-shape from zero up to 1, having value 0.5 at x = 0, which is the middle point 
of the S-shape. For a long time, through the early 1990s, it was the default activation 
used on neural networks. 
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Figure 2.6.3: Sigmoid and hyperbolic tangent functions. 

2. Hyperbolic tangent function: The hyperbolic tangent function, or tanh for short, 
is a similar shaped nonlinear activation function that outputs values between -1 and 
1. It is represented by this formulation 

−xex − e 
F (x) = . (2.6.7)

−xex + e 

In the late 1990s and through the 2000s, the tanh function was preferred over the 
sigmoid activation function as models that used it were easier to train and often had 
better predictive performance. A visual comparison between these two activation 
functions can be seen in Figure 2.6.3. 

2.6.4 DL Recent Advances 

The basic theory corresponding to the multi layer perceptron or MLP [45], was already 
well established in the 80s, as well as the backpropagation algorithm for gradient computa-
tion during ANN training described in the previous section. In fact, they can be considered 
as the frst example of modern machine learning algorithms that could be used in both 
regression and classifcation problems with minimal conceptual variations. However, some 
technical problems, essentially due to knowledge gaps about the training of these models 
plus the lack of computing power and large volumes of data at the time, led to their rel-
ative decline in the late 90s and the rise of alternative methods, particularly SVMs, for 
classifcation and regression. 

Nevertheless, in recent years the popularity of DL models has increased in a spectacular 
manner, due to the wide availability of powerful computing facilities, advances on the the-
oretical underpinnings of MLPs, several improvements on their training procedures and a 
better understanding of the difculties related to many layered architectures. To all these 
factors we can add the appearance of multiple development frameworks such as TensorFlow 
[46] and Keras [47], that have allowed the practitioners to experiment with diferent archi-
tectures, non-diferentiable activations and, even, non-diferentiable loss functions. Besides, 
training of these models has been shown to be linear time computations, i.e., O(n), and 
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calculation of predictions is O(1). Last, but not least, DL models have been shown to be 
able to extract more predictive power when trained with sufciently large datasets than 
other ML frameworks. 

In the following sections we describe some of the most important of these theoretical 
and technological advances that have contributed to dissipate problems related to DL 
frameworks and allowed their recent popularity. First, we will describe Adam Optimization 
in Section 2.6.4.1, a quite recent optimization method frequently used in DL models. Next, 
we discuss new methods to initialize the layer weights in Section 2.6.4.2, with special focus 
on Xavier initialization. In Section 2.6.4.3 we defne the Rectifed Linear Unit activation 
function, and describe some of the properties that make it specially suitable for DL schemas. 
Finally, the exponential increase in computational and memory resources available to train 
ML models is discussed in Section 2.6.4.4. 

2.6.4.1 Adam Optimization 

In [48] a novel optimization method, called Adaptive Moment Estimation or Adam, was 
proposed. Its goal was to combine the advantages of two other extensions of stochastic 
gradient descent, Adagrad [49] and RMSprop [50]. Adam is an adaptive learning rate 
method, which means it computes individual learning rates for diferent weights, using for 
that purpose estimations of frst and second moments of the gradient to adapt the learning 
rate for each weight of the neural network. The n − th moment, mn , of a random variable, 
X, is defned as the expected value of that variable to the power of n, i.e. 

n m = E[Xn] . (2.6.8) 

Adam uses the frst and second moments, i.e m1 and m2 . In order to estimate their 
values, Adam utilizes exponential moving averages, computed on the gradient evaluated 
on a current mini-batch in the following way 

1 1 
−1 + (1 − β1)gtmb (2.6.9)β1m= ,t t 

2 2 2 
−1 + (1 − β2)gmb . (2.6.10)β2m= t t t 

where gt is the gradient on current mini-batch, and β1, β2 are new introduced hyperpa-
rameters of the algorithm used to control Adam optimization. 

The vectors of moving averages are initialized as 

1 2 mb = 0 mb = 0 (2.6.11)0 0 

Since mb is an estimate of the momentums, m, for the gradient g, we would like the following 
equations to hold 

1 2 2E[mb t ] ≈ E[gt] E[mb t ] ≈ E[gt ] (2.6.12) 
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1To check if these properties are true let us expand the values of mb using (2.6.9) t 

1 mb 0 = 0 
1 1 mb = β1mb 0 + (1 − β1)g1 = (1 − β1)g11 
1 1 mb = β1mb 1 + (1 − β1)g2 = β1(1 − β1)g1 + (1 − β1)g22 
1 1 (2.6.13)mb = β1mb 2 + (1 − β1)g3 = β12(1 − β1)g1 + β1(1 − β1)g2 + (1 − β1)g33 ... 

tX 
1 βt−i mb = (1 − β1) git 1 

i=0 

Next, we evaluate the expected value of m using (2.6.13) 

tX 
1 βt−iE[mb t ] = E[(1 − β1) 1 gi] . (2.6.14) 

i=0 

Now, let us approximate gi by gt, assuming an approximation error ψ 

tX 
1 βt−iE[mb ] = E[gt](1 − β1) + ψ . (2.6.15)t 1 

i=0 

Equation (2.6.15) is equivalent to 

1E[mb ] = E[gt](1 − β1 
t ) + ψ . (2.6.16)t 

1As stated in (2.6.12) we want E[mb ] to be as close as possible to E[gt]. Therefore, assuming t 
error ψ as unavoidable when E[gt] is not stationary, we can still correct the bias term (1−β1 

t ) 
replacing equation (2.6.9) by the following expression 

1 
t−1 + (1 − β1)gt1 β1m 

mb = . (2.6.17)t (1 − βt )1 

Applying the same logic for the second moment estimate in (2.6.10) we get 

2 2β2mt−1 + (1 − β2)g2 t mb = . (2.6.18)t (1 − βt )2 

1 2Finally, once we have our moment estimators, mb and mb t , the only thing left to do is tot 
use those moving averages to scale the learning rate individually for each parameter. The 
way it is done in Adam is the following one 

mb 1 
t wt = wt−1 − ηt p , (2.6.19) 

mb 2 + ϵt 

where wt are the model weights at iteration t, ηt is a hyperparameter called step size or 
learning rate which can be constant, i.e ηt = η, and ϵ is a dummy constant, usually a very 
small value, used to prevent any division by zero. 
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Figure 2.6.4: % of ML papers using diferent optimization methods. Adam is the most 
popular option among the standard optimization techniques for DL structures, and this 
diference is clearer in recent years. Taken from [48]. 

Figure 2.6.5: Performance of diferent optimization methods while training a multilayer 
perceptron for MNIST dataset. The computational performance of Adam is better than 
the standard optimization alternatives. Taken from [48]. 

Figure 2.6.4 shows that Adam has been the most selected optimization algorithm in 
DL research. Moreover, Adam optimization has been proved to be more efective in some 
classical problems, as can be seen in Figure 2.6.5. 

2.6.4.2 Weight Initialization 

When working with Deep ANNs, initializing the network with the right weights can be 
the diference between the network converging in a reasonable amount of time and the 
network loss function not going anywhere even after millions of iterations. This is usually 
due to a phenomenon called vanishing gradient. When using activation functions like 
the ones described in Section 2.6.3, which squash a large input space into a small output 
space, a large change in the input of the activation function will cause a small change in 
the output. In other words, the derivative becomes small. Figure 2.6.6 illustrates this 
behaviour for the sigmoid activation case. For shallow networks with only a few layers 
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Figure 2.6.6: Vanishing derivative for the sigmoid function. The derivative takes small 
values which, after being multiplied with other small derivatives among diferent layers, 
tends to zero and leads to the vanishing gradient problem. 

that use these activations, this is not a signifcant problem. However, when more layers 
are used, it can cause the gradient to be too small for the training of DL models to work 
efectively. 

As described in Section 2.6.2 gradients of neural networks are found using backpropa-
gation. By the chain rule, the derivatives of each layer are multiplied down the network 
from the fnal layer to the initial one to compute the partial derivatives of all the layers in 
the network. However, when L hidden layers use an activation like the sigmoid function, L 
small derivatives are multiplied together. Thus, the gradient may decrease exponentially 
as we propagate down to the initial layers. A small gradient means that the weights and 
biases of the initial layers will not be updated efectively with each training iteration. Since 
these initial layers are often crucial to recognize the core elements of the input data, this 
can lead to overall inaccuracy of the whole network. As we said, this is called the vanishing 
gradient problem. 

Therefore, initializing the network with the right weights is very important in order 
to avoid this vanishing efect and allow a Deep Neural Network to function properly. It 
is necessary to that the weights are in a reasonable range before training of the network 
starts. This is where Xavier initialization [51], one of the main advances that relaunched 
DL frameworks, comes into the picture. Xavier initialization method initializes the weights 
from a Uniform or Gaussian distribution with zero mean and some fnite variance. In order 
to fnd which value to assign to this variance, let us consider a linear neuron like this 

s = w1z1 + w2z2 + ... + wNin + b , (2.6.20)zNin 

where s is the activation of the neuron, Nin the number of neurons in the previous layer, 
zi the outputs of neurons from that previous layer, and w their corresponding weights. 
Without loss of generality, we will assume that the data is centered on the mean and the 
bias term b is therefore set to zero. 
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With each passing layer, the idea is that the variance remains the same. This helps 
keeping the signal from exploding to a high value or vanishing to zero. In other words, it 
is necessary to initialise the weights in such a way that the variance remains the same for 
z and s. The variance of s can be formulated as 

Var(s) = Var(w1z1 + w2z2 + ... + wNin ) . (2.6.21)zNin 

Assuming that the terms in the right side of the equation are independent, the following 
equivalence holds 

Var(s) = Var(w1z1) + Var(w2z2) + ... + Var(wNin ) . (2.6.22)zNin 

It is also true that 

Var(wixi) = E[zi]
2Var(wi) + E[wi]

2Var(zi) + Var(wi)Var(zi) . (2.6.23) 

where E[] stands for expectation of a given variable. As the assumption was that the inputs 
and weights are coming from independent distributions of zero mean, the E[] terms vanish 
and we get 

Var(wizi) = Var(wi)Var(zi) . (2.6.24) 

Plugging (2.6.24) into (2.6.22) we get 

Var(s) = Var(w1)Var(z1) + ... + Var(wNin )Var(zNin ) . (2.6.25) 

Assuming that the terms in the right side of the equation are not only independent but 
also identically distributed, we can write 

Var(s) = NinVar(w)Var(z) . (2.6.26) 

Therefore, if we want the variance of s to be the same as that of z, i.e., Var(s) = Var(z), 
then it is necessary that NinVar(w) = 1 or equivalently 

1 
Var(w) = . (2.6.27)

Nin 

A similar analysis over the backward pass [51], leads us to the following analogous formula 

1 
Var(w) = , (2.6.28)

Nout 

where Nout is the number of neurons in the next layer. Taking this into account, in 
the original paper the authors take the average of the number of input neurons, N , and 
the number of output neurons, Nout, in order to fnd a compromise between these two 
constraints. Therefore, the fnal proposed formula becomes 

2 
Var(w) = . (2.6.29)

Nin + Nout 
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Figure 2.6.7: Rectifed Linear Unit, ReLU. 

2.6.4.3 Rectifed Linear Unit, ReLU 

Apart from using an appropiate weight initialization such as the Xavier initialization, 
another method to avoid the vanishing gradient efect is to employ an activation function 
other than the classical sigmoid and hyperbolic tangent functions. To achieve this goal, 
the Rectifed Linear Unit, ReLU, was proposed [52]. 

The idea here is to fnd an activation function that looks and acts like a linear function, 
but is, in fact, a nonlinear function allowing complex relationships in the data to be learned. 
The function must also provide more sensitivity to the activation sum input and avoid easy 
saturation. The rectifed linear activation function is a simple piecewise linear function that 
returns the value provided as input directly if this input is positive, or the value 0 if the 
input is 0 or less, i.e 

� 
x, x > 0 ,f(x) = (2.6.30)
0, x ≤ 0 . 

A visualization of the ReLU activation function can be seen in Figure 2.6.7. The function 
is linear for values greater than zero, meaning it has a lot of the desirable properties of a 
linear activation function when training a neural network using backpropagation. It also 
preserves many of the properties that make linear models generalize well. In particular, this 
linearity makes this activation function resistant to saturation, as positive values are not 
compressed into a narrow range of values, as was the case for the sigmoid or tanh functions, 
but over the entire range of possible positive values. However, it is still a nonlinear function 
as negative values lead always to a zero output, allowing the model to learn more complex 
relationships taking advantage of the power of using a DL framework with several hidden 
layers. 

Looking at (2.6.30) it can be seen that ReLU is a non-diferentiable function at x = 0. 
However, it is important to notice that having exactly x = 0 during ReLU computations 
is very rare, and hence this is not a signifcant issue. Subgradients can be used in the 
backpropagation algorithm, which in this case are 1 on the right side of x = 0 and 0 on 
the left side. 

The mathematical calculations described in Section 2.6.4.2 do not ft the case of an 
activation function like ReLU, which is a non-diferentiable function at x = 0. A similar 
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method, called He initialization, is proposed in [53] to initialize the Rectifed Linear Unit 
function, which gives as fnal result 

2 
Var(w) = , (2.6.31)

Nin 

for the forward pass, i.e, twice the variance value obtained employing Xavier initialization. 
This would transform into Var(w) = 4/(Nin + Nout) if we try to again fnd a compromise 
between forward and backward passes, although the authors of the paper do not propose 
this in [53], stating instead that it is sufcient to use (2.6.31) because if the initialization 
properly scales the forward signal, then this is also the case for the backward signal; and 
vice versa. 

2.6.4.4 Computational Power and Data Volume 

When asked to estimate the growth of computer technology, Gordon Moore stated the 
following, in a claim which would later become known as Moore’s Law : 

“The number of transistors on an afordable CPU would double every two 
years” 

This has been commonly, and mistakenly, rephrased as “the processing power of comput-
ers will double every two years”. Although this is not a technically correct interpretation, 
it is true that Moore’s law is directly related to the increase of computational power. The 
processing power of a computer processor, or CPU, can be measured in Floating Opera-
tions Per Second, FLOPS. Recent research [54] has drawn comparisons between the most 
powerful computer processors from 1956 to 2015. Over that time period, the authors claim 
that there has been a one-trillion-fold increase in FLOPS of computer processing power. 

On the other hand, a graphics processing unit, GPU, is very efcient, clearly more than 
a CPU, in matrix multiplication and convolution, two types of computations extremely 
relevant and frequent in DL training. The use of GPUs for scientifc computing started 
some time back in 2001 with implementations of matrix multiplication. One of the frst 
common algorithms to be implemented on GPU in a faster manner was LU factorization 
in 2005. But, at this time researchers had to code every algorithm on a GPU and had 
to understand low level graphic processing. In 2006, Nvidia came out with a high level 
language, CUDA [55], which helps you write programs for graphic processors. This was 
probably one of the most signifcant changes in they way researchers interacted with GPUs. 
All these advances in computational power have allowed researchers to train and validate 
more complex and varied DL frameworks, a task that can be computationally expensive. 

Apart from the rise in computational power, it is also important to bear in mind the 
increase in the data available to train the models. DL models are more strongly infuenced 
by the volume of data available than other families of ML models. This property has 
two sides. On the one hand, usually DL frameworks can only outperform other Machine 
Learning methods when the data available is sufciently large. If this is not the case, 
standard algorithms can be a better option either for better performance of for lower 
computational costs. On the other hand, when signifcantly large datasets are available, 
DL models, due to their special complexity and its feature learning prowess, are able to 
extract more relevant information for the task at hand, often leading to clearly better 
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Figure 2.6.8: DL vs standard ML depending on data volume. DL outperforms classical 
ML when the data available is large enough. Taken from [56]. 

results. Figure 2.6.8 illustrates how this behaviour is present in the performance of DL 
models. As stated in Section 1, datasets available are becoming exponentially bigger in 
the big data era, being this fact an important factor in the recent grow in popularity of 
DL frameworks. 

2.7 Clustering 

Clustering methods are unsupervised Machine Learning techniques in which we do not 
have a target and in which we want to group the data to fnd patterns. The idea is to 
automatically fnd groupings or clusters of elements according to a measure of similarity 
between them. The fundamental objective of clustering techniques is to identify groups or 
clusters of elements such that the following properties are achieved: 

‹ High intra-cluster similarity: The average similarity between elements of the same 
cluster is high. 

‹ Low inter-cluster similarity: The average similarity between elements of diferent 
clusters is low. 

There are several classes of clustering according to the technique used to separate the 
groups. The two main groups of clustering methods are hierarchical clustering and partition 
clustering. We will focus here on partition clustering. The partition clustering technique 
distributes the elements among a predetermined number of clusters or groups. We defne 
the centroid of a cluster si, which we will denote Ci, as the point y that minimizes the sum 
of the similarities to the rest of the elements of the cluster, where similarity is measured 
by a particular choice of distance metric d. 

X 
Ci =arg min d(x, y) . 

y (2.7.1) 
x∈si 
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Algorithm 1: K -means algorithm. 
1 Initialization of centroids. 
2 t = 0. 
3 do 
4 t = t + 1 

t5 Assignment step: Each point is assigned to the cluster si with the closest 
centroid Ct−1 .i 

6 Update step: Centroids Ct of new clusters St are computed. 
Ct−1while Ct ! = ; 
t t t7 return St = {s1, s2, ..., s }K 

This technique receives as input the number of clusters to be formed in addition to 
the elements to be classifed and the matrix of similarities. The most popular partition 
clustering technique is K -means. 

2.7.1 K-means 

In [57] and [58], the K -means algorithm is proposed. Its aim is to divide N points in 
d dimensions into K clusters so that the within-cluster sum of squares is minimized. In 
other words, its objective is to fnd 

K XX 
min ||x − Ci||2 , (2.7.2)
S 

i=1 x∈si 

where S = {s1, s2, ..., sK } are the diferent clusters created and Ci is the centroid of si. 

The K -means algorithm can be summarized as Algorithm 1. To solve this problem it is 
required as input a matrix of N points in d dimensions and a matrix of K initial cluster 
centroids in d dimensions, C0 = {C1, C2, ..., CK }. The solution found by K -means depends 
on the choice of C0 , i.e., this is not a problem with a unique solution. 

There are several initialization methods to choose C0 . We propose here to employ the 
Forgy method because according to [59], for the standard K -means algorithms, which is 
the one we use in this thesis, the Forgy method of initialization is preferable. The Forgy 
method is an initialization algorithm that randomly chooses K observations from the data 
set and uses them as the initial cluster centroids C0 . An example of this initialization 
method can be seen in Figure 2.7.1. 

As there is not an unique solution and the K -means algorithm can get stuck at a bad 
local minimum, it is recommendable to run the algorithm for diferent initial centroid 
values and choose the solution that gives a smaller within-cluster sum of squares among 
all executions. 

Once we have an initial set of cluster centroids C0 , the K -means algorithm proceeds by 
iterating two steps: 
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(a) Initial data. (b) Initialization step. 

Figure 2.7.1: Initialization of centroids using Forgy method. For each cluster, an observa-
tion is selected randomly as its centroid. 

(a) Assignment step of iteration 1. (b) Update step of iteration 1. 

(a) Assignment step of iteration 2. (b) Update step of iteration 2. 

Figure 2.7.3: K -means iterating steps. Assignment and update steps are repeated in each 
iteration of the algorithm, until the stopping criteria is fulflled. 

j
‹ Assignment step: Assign each observation, x , to the cluster si with the minimum 
euclidean distance between its centroid, Ci, and the observation, i.e. xj is assigned 
to cluster si where 

i =arg min ||xj − Ck|| . (2.7.3)
k 
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‹ Update step: Compute the mean of all points in each cluster obtained in the 
previous step and set it to be the new cluster centroid, i.e., we have 

X1 
Ci = x , i = 1, ...K , (2.7.4)|si| x∈si 

where |si| is the total number of points in cluster si. 

A visualization of the frst two iterations of these steps is shown in Figure 2.7.3. As 
a result of the previous loop, the centroids may change their position in a step by step 
manner. These two steps are iterated until a situation is reached where none of the centroids 
changes anymore, i.e. Ct = Ct−1 . This indicates the convergence criterion for clustering 
and hence at this point the iterations stop and the resulting clusters are the fnal solution 
given by the K -means algorithm. Thus, at least one iteration of the algorithm is needed 
to reach convergence, as it is necessary to observe no change in the centroids between the 
beginning of an iteration and its end for the convergence criterion to be reached. In this 
case, convergence is reached after the frst two iterations shown in Figure 2.7.3, so the 
algorithm will stop there and retrieve the clusters at that iteration, S2 , as the fnal output. 

Finally, the only thing left to do will be to select the value of K, i.e. how many clusters we 
want to create. In our particular case, the K -means algorithm is employed as a previous 
step to a posterior application of other algorithm or model, which in this thesis is our 
proposed approach to build prediction error intervals, aiming to improve their accuracy. 
In these cases, it seems preferable to select the value of K according to its positive or 
negative impact in this posterior goal. Therefore, in our experiments K is chosen as the 
value that produces the greatest improvement in the error intervals accuracy. In other 
words, we consider K as an extra hyperparameter to optimize in our model framework. 

2.7.2 K-prototypes 

K -means can only be applied to numerical values. In [60] an algorithm called K -
prototypes which extends the K -means method to datasets with mixed numeric and cat-
egorical values is presented. In this method, the metric used to measure the dissimilarity 
between two mixed-type objects, xa and xb , is not the squared Euclidean distance used in 
K -means but the following one 

p mX X 
a a b a bdP (x , x b) = (xj − xj )2 + γ δ(xj , xj ) , i = 1, ...K , (2.7.5) 

j=1 j=p+1 

where {x1, ..., xp} are numerical variables, {xp+1, ..., xm} are categorical variables, γ is a 
weight factor to balance the relevance of each type of attribute, and δ is the simple matching 
similarity measure, whose formulation is the following 

( 
0, xa = xb a b j jδ(xj , xj ) = . (2.7.6)
1, xaj ≠ xbj 
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It is easy to see that the frst term is the squared Euclidean distance measure on the 
numeric attributes and the second term is the simple matching dissimilarity measure on 
the categorical attributes. The infuence of the balancing parameter γ in the clustering 
process is discussed in [61]. 

The rest of the logic behind the K -prototypes method, namely inicialization of centroids, 
assignment and update steps, is analogous to the one described in Algorithm 1 for K -means, 
but replacing the sum of squares metric in (2.7.2) and (2.7.3) by (2.7.5). Therefore, in the 
update step of K -prototypes xj is assigned to cluster si where 

i =arg min dP (x
j , Ck) . (2.7.7)

k 

In the experiments carried out during this work we have not made use of K-prototypes 
because our datasets contained only numerical variables, as is explained in Chapter 4. 
Nevertheless, if we, for instance, had decided to include temporal information like the 
month or week corresponding to each observation, which should be treated as categorical 
variables, as input variables in the solar or wind datasets we employed to test our models, 
the use of K-protoypes will allow to consider these additional predictor variables in a 
straightforward manner. 



Chapter 3 

General Noise Models 

Research is creating new knowledge. 

Neil Armstrong 

As stated earlier, general noise versions of SVR models should be more efective than 
standard versions like ϵ−SVR when applied to regression problems whose underlying noise 
distribution follows the one assumed for that particular cost function. However, the use 
of these general loss functions implies that SMO [30] is no longer a suitable optimization 
method to solve the corresponding formulations of the problem. 

In addition, when working with sufciently large sample sizes, Deep Learning, DL, frame-
works are able to extract more complex and meaningful relationships from the data than 
other ML families of models. Therefore, it is to be expected that a DL version of general 
noise models could also show more predictive prowess than their standard counterparts. 

Finally, construction of error intervals for SVR models has not received too much at-
tention in the academic world and remains mainly an unsolved problem. Being able to 
compute this type of uncertainty intervals would mean a signifcant advance, as in many 
applications that involve solving a regression problem, not only an accurate prediction is 
useful but also an error interval can be extremely valuable. 

For these reasons, and using all the theoretical building blocks described in Chapter 2, 
the goal here is to propose a novel framework to build General Noise Models, deep and 
kernel-based, for regression, with the possibility of also having uncertainty intervals for 
their predictions. In order to do this we follow the next steps: 

‹ First, Section 3.1 proposes a framework to train General Noise SVR Models using 
Naive Online R Minimization Algorithm, NORMA, detailed in Section 2.5. 

‹ Next, Section 3.2 gives a method to build Deep General Noise Models that combine 
the highly non-linear feature processing of DL models with the predictive potential 
of using general noise loss functions, among which the ϵ-insensitive loss function used 
in SVR is just a particular example. 

‹ Formulations to obtain estimations of the parameters for all the probability distri-
butions considered in this work are given in Section 3.3. 
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‹ Section 3.4 describes a direct approach to build error intervals for SVR or other 
type of regression models. An enhanced version of the previous uncertainty intervals, 
where clustering techniques are used to create diferent intervals for each cluster and 
thus improve their performance, is also explained in this section. 

‹ Finally, Section 3.5 unifes the previous sections in a single and fnal model frame-
work to train Deep General Noise Models for regression prediction with uncertainty 
intervals. 

In this chapter we cover the theoretical aspects of all these proposed steps. Experiments 
and results for the proposed frameworks are included in Chapter 4. 

3.1 General Noise Models Trained Using NORMA 

The use of the ϵ-insensitive loss function in the classical SVR formulation described in 
(2.2.2) implies the assumption of a particular error distribution, related to the Gaussian 
family, in the data [23]. However, it has been observed that the noise in some real-world 
applications may satisfy other distributions [62] [63]. 

In Section 2.3 we detailed how a general noise version of SV R was proposed in [28], 
allowing to formulate a version of this model adapted to be used with any particular 
loss function l(y, f(x)). The problem with this proposal was that for several reasons, 
related mainly to the loss of some mathematical properties that existed when using the 
ILF function, plugging general cost functions into the general dual formulation problem 
defned in (2.3.4) often leads to SMO no longer being a feasible choice as the optimization 
method [28]. Therefore, we propose here to use NORMA optimization [38] to avoid solving 
the dual formulation and tackle instead the corresponding primal optimization problem in 
an online setting. We will call these models General Noise Models. 

Additionally, in Section 2.3 we also detailed the specifc formulation of the optimal loss 
function for Laplace and Gaussian distributions, as proposed in [27]. We add here to these 
formulations the ones corresponding to the Beta and Weibull ones. These two distributions 
were selected while doing this thesis because they have been shown to be relevant in wind 
and solar energy forecasting [64] [65], which are the felds to which the real datasets used 
in our experiments belong. 

3.1.1 The Beta Loss 

When assuming that Beta is the underlying distribution for the error, the error density 
formula is assumed to be [66]: 

Γ(α + β) 
ξα−1P (ξi) = (1 − ξi)β−1 , (3.1.1)

Γ(α)Γ(β) i 

where α, β > 0 and Γ(z) is the gamma function defned by 

Z ∞ 
z−1Γ(z) = x e −xdx . (3.1.2) 

0 



73 3.1. General Noise Models Trained Using NORMA 

Taking the negative log of (3.1.1) as in equation (2.3.14) and denoting it by l we get 

l(ξi) = − log Γ(α + β) + log Γ(α)Γ(β) − log ξα−1 − log (1 − ξi)β−1 
i 

= log Γ(α) + log Γ(β) − log Γ(α + β) − (α − 1) log ξi − (β − 1) log (1 − ξi) (3.1.3) 
= K + (1 − α) log ξi + (1 − β) log (1 − ξi) , 

where K = log Γ(α) + log Γ(β) − log Γ(α + β). K is independent of ξi, so we ignore it and 
work with the following expression 

l(ξi) = (1 − α) log ξi + (1 − β) log (1 − ξi) , (3.1.4) 

where, due to the defnition of the Beta distribution, 0 < ξi < 1. 

3.1.2 The Weibull Loss 

The error distribution is assumed now to be [67] 

( � �κ−1 
� 
ξi 
�κ 

κ ξi λ
− 
e , ξi > 0P (ξi) = λ λ , (3.1.5) 

0 , ξi ≤ 0 

where λ, κ > 0. We will focus here in the case where ξi > 0, which can be achieved simply 
by computing the absolute error. Taking the negative log of the equation for ξi > 0 in 
(3.1.5) as in equation (2.3.14) we get 

� �κ−1κ ξi −( ξi )κ 
l(ξi) = − log − log − log e λ 

λ λ � �κξi 
= − log κ + log λ − (κ − 1) log ξi + (κ − 1) log λ + (3.1.6) � �κ 

λ 
ξi 

= K + (1 − κ) log ξi + ,
λ 

where K = − log κ + log λ + (κ − 1) log λ. K is again independent of ξi so we ignore it and 
work with the following expression 

� �κξi
l(ξi) = (1 − κ) log ξi + . (3.1.7)

λ 

Merging the loss functions described in Table 2.3.1 with the formulations for Beta and 
Weibull just obtained, we get Table 3.1.1, which contains all the loss functions we will 
consider for our general noise models. 






74 Chapter 3. General Noise Models 

Table 3.1.1: Loss functions corresponding to several error distributions. 

Error Distribution Loss Function 
ILF 

−ξi − ϵ, ξi < −ϵ 
l(ξi) = 0, ξi ∈ [−ϵ, ϵ]  ξi − ϵ, ξi > ϵ . 

Laplace |ξi−µ|l(ξi) = σ 

Gaussian (ξi−µ)2 
l(ξi) = 

2σ2 

Beta l(ξi) = (1 − α) log ξi + (1 − β) log (1 − ξi) 

Weibull 
� �κ
ξil(ξi) = (1 − κ) log ξi + λ 

3.1.3 General Noise Models Formulation 

As described in Section 2.3.1, a general noise formulation for SVR has been proposed 
in [28], providing us with an expression of the dual problem that allows to insert diferent 
loss functions into it. As previously discussed, the difculty with this formulation is that 
it aims to solve the dual problem, which for some choices of noise distributions results in 
a very complex optimization problem, one that is not possible to tackle using standard 
optimization techniques such as SMO [30], or cannot even be obtained due to the impossi-
bility of computing derivatives over the Lagrangian. Therefore, we need to fnd a diferent 
optimization method for our proposed model, and we will follow the approach we frst 
presented in [68] to tackle this issue. 

We recall that NORMA optimization [38] can be used in a straightforward manner, both 
for classifcation and regression problems. Furthermore, its extension from linear models to 
non-linear ones is also largely direct via the use of the kernel trick. Finally, its formulation 
and implementation is fairly simple and its generalization to any loss function does not 
suppose great difculties and is perfectly suited to avoid the extra complexity derived of 
inserting general noise functions into the dual problem. For all these reasons, NORMA 
is the optimization method we use to implement the proposed general noise kernel-based 
models, which we will call Kernel-GNM. 

We study now the optimization problem resulting of using NORMA with the distri-
butions considered for this work. These distributions have been chosen for either being 
standard alternatives, as Laplace and Gaussian distributions [18] [27], or being related to 
radiation or wind forecasting, as is the case for the Beta and Weibull distributions [64]. 
First, we needed to compute their associated loss functions, and we did it in Sections 2.3.3, 
3.1.1, and 3.1.2, with the formulations for these loss functions available in Table 3.1.1. 

Now, we want to insert these loss functions into the update rules in (2.5.11) and (2.5.10). 
However, the loss function l only appears in these expressions through its derivative, so this 
must be frst computed. In Table 3.1.2 we show the derivatives for all the loss functions 
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Table 3.1.2: Derivatives of the loss functions corresponding to the considered distributions. 

Distribution Loss Function Derivative 
ILF 

−1, ξi < −ϵ 
l ′ (ξi) = 0, ξi ∈ [−ϵ, ϵ]  1, ξi > ϵ . 

Laplace 

1 , ξi − µ > 0 σ 
l ′ (ξi) = 0 , ξi − µ = 0  − 1 , ξi − µ < 0σ 

Gaussian ξi−µl ′ (ξi) = 
σ2 

Beta 1−α − 1−βl ′ (ξi) = ξi 1−ξi 

Weibull 1−κ κ ( ξi )(κ−1)l ′ (ξi) = +ξi λ λ 

we will consider in the experiments of this thesis. Following the same approach as in the 
case of the ReLU activation function, for the Laplace distribution when the values of l are 
0 we set the derivative to 0, which would correspond to one of the subderivatives of l at 
that point. 

As explained in Section 2.5, the solution function formulation when using NORMA 
optimization can be expressed at the step t as 

t−1Xb αbtft(x) = ik(xi, x) , (3.1.8) 
i=1 

where αbi are the NORMA coefcients and k a particular kernel function. An ofset term 
could be added to this formula, but we will not consider it here for the sake of simplicity. 
Our goal now is to obtain explicit formulations for αb for each one of the noise distributions 
considered, which will yield an adjusted NORMA formulation. 

We can now plug the derivatives in Table 3.1.2 into the update rules for NORMA de-
scribed in Section 2.5. In particular, we will use the following equation 

αbt = −ηtl ′ (ft(xt), yt) . (3.1.9)t 

Inserting the l ′ formulation corresponding to our choice of noise distribution we can get 
this αbt formulation adapted to this particular distribution. We describe here the explicit 
formulations for all the distributions considered in the experiments except for the ILF, 
where the SVR model will be computed using the standard dual formulation solved by 
SMO. 
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Let’s denote by ψt the prediction error, ψt = For the Laplace and Gaussian f(xt) − yt. 
distributions we will use in their formulations ξt = ψt. For the Beta distribution, it is 

|ψt|required that 0 < ξt < 1 so we will be using as error ξt = min( , 1), where ψl are the 
max(ψl) 

errors obtained by a basic model like linear regression. Finally, for the Weibull distribution 
it is enough that ξt > 0, so we will use ξt = |ψt|. Using this notation, we end up with the 
following formulations. 

b 

1. Laplace:   −
ηt , ξt − µ > 0 ,σ 

0 , ξt − µ = 0 , (3.1.10)αt t 
b = 

ηt , ξt − µ < 0 .σ 

2. Gaussian: 

3. Beta: 

= −ηt 
ξt − µ 
σ2 .αt t 

b 
�� 

1 − α 1 − β 
= −ηt − . btαt 

= −ηt + 

ξt 1 − ξt 

4. Weibull: " #� �(κ−1)1 − κ κ ξtb 
tα
t . 

ξt λ λ 

Regarding the stopping criteria for these updating iterative process we use two rules. 
First, we defne a maximum number of NORMA update iterations. Second, we defne a bαt t obtained in two minimum tolerance threshold, so if the relative diference between the 
consecutive iterations is lower than this threshold, we stop the iterative process and return 
the last bαt t computed. 

As stated before, NORMA is based on stochastic gradient descent. Asymptotic con-
vergence to a stationary point for these optimization methods is proved in [44] in the 
non-convex case, but this point is not guaranteed to be a global minima as opposed to the 
convex situation. To avoid possible issues related to this, we opt to constrain the parame-
ters of the chosen distribution to be outside the set of parameters which cause the function 
to be non-convex. This means that in the Beta distribution for instance we need to use 
the constraints α > 1, β > 1. Regarding the Weibull distribution, convexity depends on 
the value κ. When this parameter, usually called shape, is greater or equal than 1, the 
distribution curve is convex over the entire range. 

We consider it is important to point out that the extension of the approach presented 
here to other choices of distribution assumption outside the ones considered here, like 
the Poisson distribution, is also possible, with only simple computations of Maximum 
Likelihood Estimation to get the optimal loss functions and the required calculation of the 
derivatives of these functions. This will be one of the lines for further work we will discuss 
in Section 5.1 
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3.2 Deep SVR and Deep General Noise Models, D-GNM 

Deep Learning, DL, frameworks have been shown to achieve better performance than 
the more classical Machine Learning families of models when trained with datasets that are 
sufciently large. Besides, SVM models are not computationally feasible in most setups 
when dealing with large datasets of hundreds of thousands or millions of samples and 
hundreds or thousands of variables. These factors have been analyzed and explained in 
more detail in some of our previous research papers [69] [70]. This fact is probably one 
of the main factors why DL models are becoming the preferred choice over SVMs when 
solving a high variety of supervised learning tasks regarding large tabular data. For this 
reason, in this thesis we propose to plug our General Noise Models, GNM, into a DL 
framework, adding to the potential of adapting to any noise distribution inherent of GNM 
the predictive potential that DL models have when trained with large datasets. 

Although recently the concept of DL has been used almost interchangeably with Deep 
Neural Networks, we could consider as DL any Machine Learning structure that uses several 
layers, adding complexity with each one. In particular, the use of the common structure 
in a fully connected DL model, i.e., several layers of neurons or units, combined with 
applying a loss function diferent to the ones normally considered for ANNs would also be 
a DL appoach. This is the methodology we propose here to integrate our GNM models 
into a DL structure. 

First, we will describe in Section 3.2.1 how to build a Deep version of the ϵ−SVR model, 
where the ILF loss function replaces the classical loss function used in DL applied to 
regression, which is the squared error. Next, we will follow the same approach to insert 
any given loss function l into the DL framework to obtain Deep General Noise Models 
adapted to a particular choice of noise distribution in the data. 

3.2.1 Deep SVR 

Our goal now is to build a Deep version of an SVR, in the sense that we want to combine 
a DL structure with the use of the ϵ−insensitive loss function. Let us consider a standard 
Deep ANN architecture where an input layer is followed by a number of hidden layers 
and, fnally, one or several linear output activations leading to our fnal prediction. The 
transformation of such a network can be written as 

f(x, w, b, Wh) = w · F (x, Wh) + b , (3.2.1) 

where w and b denote the linear weights and bias acting on the last hidden layer, re-
spectively, Wh denotes the weights and biases up to the last hidden layer, and F (x, Wh) 
represents the last hidden layer outputs. 

The optimal weights of such a model are to be obtained minimizing a regularized cost 
or objective function, which applies weight decay as an additional penalty term to the 
selected loss function [70]. This objective function has the following formulation 

NX1 
c(w, b, Wh) = l(yi, w · F (xi,Wh) + b) + λ1||w||2 + λ2||Wh 

∗ ||2 , (3.2.2)
N 

i=1 

where l is the given choice of loss function selected for the task at hand, yi the targets to 
predict, W ∗ the weights Wh except from the bias, and λ1, λ2 regularization parameters. h 
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Notice that in (3.2.1) we keep the option of using diferent weight penalties λ1 and λ2 
for the linear output weights and for the hidden layer ones, respectively, although this 
is optional and one could simply choose λ1 = λ2 = λ, which leads us to the following 
simplifed formulation 

N 

min J(w, b, Wh) = 
w,b,Wh N 

i=1 

X1 
l(yi, w · F (xi,Wh) + b) + λ(||w||2 + ||Wh 

∗ ||2) . (3.2.3) 

In any case, these regularization hyperparameters, as is common in ML models, are to be 
selected by some form of search over cross validation or a fxed validation set, as explained 
in detail in Section 1.2. 

Is is important to remark here that there exists another popular regulatization technique 
in DL structures, which is called dropout. When dropout is applied, during the training 
of the DL model, some number of layer outputs are randomly ignored. This has the efect 
of making the layer look like it has a diferent number of nodes and connectivity. In 
efect, each update to a layer during training is performed with a diferent view of the 
confgured layer. Dropout can be used together with or instead of weight decay, the latter 
being the option we selected in the experiments described in Chapter 4. Nevertheless, we 
have decided to include weight decay in this section to present the most generic possible 
formulations of the problem. 

We focus here in the case of DL for regression, as it is the branch of problems we aim to 
solve with our proposed models. In regression, probably the most standard choice for the 
loss function in DL structures is the Mean Squared Error, MSE, defned by the following 
loss function 

l(yi, w · F (xi,Wh) + b) = (w · F (xi,Wh) + b − yi)2 . (3.2.4) 

Inserting (3.2.4) into the formulation of J expressed in (3.2.1) we get 

XN 

J(w, b, Wh) = 
N 

i=1 

1 
(w · F (xi,Wh) + b − yi)2 + λ(||w||2 + ||Wh 

∗ ||2) . (3.2.5) 

If we want to transform this classical DL framework into what we called a Deep SVR, 
it is enough to replace l in (3.2.4) for the formulation of the ILF function, i.e. 

lϵ(yi, w · F (xi,Wh) + b) = 

  yi − w · F (xi,Wh) − b − ϵ, if w · F (xi,Wh) + b − yi < −ϵ , 
0, if w · F (xi,Wh) + b − yi ∈ [−ϵ, ϵ] , (3.2.6) 
w · F (xi,Wh) + b − yi − ϵ, if w · F (xi,Wh) + b − yi > ϵ , 

which will give us the following formulation of the problem 

1 XN 

min J(w, b, Wh, ϵ) = 
w,b,Wh N 

i=1 
[|w · F (xi,Wh) + b − yi| − ϵ]+ + λ(||w||2 + ||Wh 

∗ ||2) , (3.2.7) 

where we recall that [z]+ = max(0, z). 
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The minimization of (3.2.1) can be achieved by standard ANN solvers such as the com-
bination of backpropagation and gradient descent described in Section 2.6.2. However, in 
real implementations of Deep ANN solvers, newer and more efcient optimization methods, 
such as stochastic gradient descent [71], Adagrad [49], RMSProp [50] or Adam [48], are 
preferred. We choose here to use Adam because of its advantage in non-convex optimiza-
tion, which can arise in a DL framework when working with general noise loss functions, 
and because it has been clearly the most popular choice as optimization algorithm for Deep 
ANN during these last years, as shown in Section 2.6.4.1. 

3.2.2 Deep General Noise Models, D-GNM 

Now we propose to combine the use of general noise loss functions, described in Section 
3.1, with the DL version of SVR, described in Section 3.2.1, into a single framework. 
The idea is to replace the loss function l defned in (3.2.2), not necessarily by the ILF 
loss function, lϵ, defned in (3.2.6), but by any choice of loss function corresponding to a 
relevant distribution assumed to be present in the data noise. In our experiments we will 
focus again on the same distributions described in Table 3.1.1. The Deep SVR defned 
before will be a special case of these proposed D-GNM models where the loss function used 
is the ILF. 

We will call the models resulting of this combination Deep General Noise Models, or 
D-GNMs. The main purpose of these D-GNM models is to bring together the predictive 
potential of DL frameworks when applied to large volumes of data with the fexibility of 
General Noise SVR models. 

Plugging the loss functions considered in Table 3.1.1 into (3.2.2), apart from ILF whose 
formulation has already been described in (3.2.7), we will get several problem formulations 
for our proposed D-GNMs, one for each distribution assumed to be present in the data. 
Notice here that, although ideally it would be logical to expect that the prediction error, 
ψi = w ·F (xi,Wh)+b−yi , has mean zero and thus we are working with an unbiased predic-
tive model, this is often not the case when applying ML in real-world problems. Therefore, 
we allow the use of non-zero mean versions of Laplace and Gaussian distributions. 

Recall here that 0 < ξi < 1 for the Beta distribution, and ξi > 0 for the Weibull one, so 
|ψi|we will actually be using again ξi = min( , 1), where ψl are the errors obtained by a 

max(ψl) 
basic model like linear regression as prediction errors for the Beta distribution, and ξi = |ψi|
for the Weibull distribution. Below are the resulting loss and cost functions for each of the 
distributions considered, using a common regularization parameter λ = λ1 = λ2. 

1. Laplace: 

|ξi − µ|
l(ξi) = , (3.2.8)

σ 

N
1 X |ξi − µ|

J(w, b, Wh) = + λ(||w||2 + ||Wh 
∗ ||2) . (3.2.9)

N σ 
i=1 
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2. Gaussian: 

(ξi − µ)2 
l(ξi) = , (3.2.10) 

2σ2 

NX (ξi − µ)21 
J(w, b, Wh) = + λ(||w||2 + ||Wh 

∗ ||2). (3.2.11)
N 2σ2 

i=1 

3. Beta: 

l(ξi) =(1 − α) log (ξi)+ 
(3.2.12)

(1 − β) log (1 − ξi) , 

NX1 
J(w, b, Wh) = [(1 − α) log (ξi) + (1 − β) log (1 − ξi)]+

N (3.2.13)
i=1 

λ(||w||2 + ||Wh 
∗ ||2) . 

4. Weibull: 

� �κξi
l(ξi) = (1 − κ) log (ξi) + , (3.2.14)

λ 

N � � �κ�X1 ξi
J(w, b, Wh) = (1 − κ) log (ξi) + + λ(||w||2 + ||Wh 

∗ ||2) . (3.2.15)
N λ 

i=1 

In Table 3.2.1 we give a summary of all the D-GNM formulations described here. It 
is important to recall that in our experiments we have decided to employ dropout for 
regularization purposes as a replacement for weight decay. 

From Table 3.2.1 one can notice that some of the expressions for J are quite complex, 
which could lead to issues when carrying out the optimization problem corresponding to 
these DL models, as it was the case for SMO in the non-deep versions of GNM models we 
described in Section 3.1. However, new DL programming frameworks, like Tensorfow or 
Keras, ease this process, applying automatic diferentiation to the cost functions chosen 
and using it in the corresponding backpropagation steps. Furthermore, Tensorfow also 
allows for the use of loss functions that are non-diferentiable at individual isolated points, 
which would be a problem in GNM even when using NORMA and not SMO as optimization 
method. 
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Table 3.2.1: D-GNM formulations corresponding to several error distributions. 

Error Distribution D-GNM Formulation 

ILF 
PN1 [|ξi| − ϵ]+ + λ(||w||2 + ||W ∗||2)N i=1 h 

Laplace 
PN1 |ξi−µ| + λ(||w||2 + ||W ∗||2)N i=1 σ h 

Gaussian 
PN1 (ξi−µ)2 

+ λ(||w||2 + ||W ∗||2)N i=1 2σ2 h 

Beta 
PN1 [(1 − α) log ξi + (1 − β) log (1 − ξi)] + λ(||w||2 + ||W ∗||2)N i=1 h 

Weibull 
PN1 [(1 − κ) log ξi + ( ξi )κ] + λ(||w||2 + ||W ∗||2)N i=1 λ h 

3.3 Estimation of Loss Functions Parameters 

We have described in this Chapter how to build general noise models, both employing 
kernel-based, GNM, as describen in Section 3.1 or DL frameworks, D-GNM, explained in 
Section 3.2. Both these models require to estimate some distribution parameters to be 
used in the corresponding loss functions. For instance, if we assume a Beta distribution as 
underlying noise of model errors, it is needed to estimate the α and β parameters of the 
distribution. 

We propose here to follow a similar approach to the one described in [27] and discussed 
in Section 2.4, where the error distribution assumed is ftted by maximum likelihood es-
timation, MLE, using the previously computed out-of-sample residuals, ξi, of a classical 
ϵ-SVR model used to predict a regression target. In [27] zero mean Gaussian and Laplace 
families are considered as possible error distribution assumptions. We will extend here 
this approach to all the distributions considered in this work, which include non-zero mean 
Laplace and Gaussian distributions, as well as the Beta and Weibull ones. In any case, we 
are aware that other methods to select these distribution parameters could be considered 
and we have identifed the study of other alternative approaches as a possible line of further 
work. 

3.3.1 Parameters for the Laplace Distribution 

MLE parameters for the zero mean Laplace distribution are discussed in Section 2.4.2.1. 
Following the same steps here for the non-zero mean case we get 
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n n nX 1 |ξi−µ| X 1 X |ξi − µ|
l(θ; ψ1, ..., ψn) = log e − 

σ = log − 
2σ 2σ σ 

i=1 i=1 i=1 
(3.3.1)nX1 

= −n log 2 − n log σ − |ξi − µ| . 
σ 
i=1 

We can compute now the corresponding derivative 
nX∂l 1 1 

= −n + |ξi − µ| . (3.3.2)
∂σ σ σ2 

i=1 

In the maximum point, where we denote σb the corresponding density parameter value, the 
frst derivative must be equal to zero, so 

nX1 1 −n + |ξi − µ| = 0 . (3.3.3)
σb σb2 

i=1 

Solving (3.3.3) we obtain 

P n |ξi − µ|i=1σb = . (3.3.4) 
n 

and we set µ̂ to be the median of the ξi residuals. 

3.3.2 Parameters for the Gaussian Distribution 

MLE parameters for the zero mean Gaussian distribution are discussed in Section 2.4.2.2. 
Following the same steps here for the non-zero mean Gaussian we get 

n n nX (ξi−µ)
2 X X1 1 (ξi − µ)2 

−l(θ; ψ1...ψn) = log √ e 2σ2 = log √ − 
2σ22πσ 2πσ

i=1 i=1 i=1 
(3.3.5)n√ 

= −n log 2π − n log σ − 
1 X 

(ξi − µ)2 . 
2σ2 

i=1 

Setting the frst derivative to zero to fnd the maximum point we obtain 

nX∂l 1 1 
= −n + (ξi − µ)2 = 0 . (3.3.6)

∂σ σ σ3 
i=1 

Solving (3.3.6) we obtain 

P n (ξi − µ)2 
i=1σb = , (3.3.7) 

n 
and we set µ̂ to be 

nX ξi 
µ̂ = . (3.3.8) 

n 
i=1 
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3.3.3 Parameters for the Beta Distribution 

The density of the Beta distribution is defned in (3.1.1). The likelihood function of a 
distribution, assuming i.i.d., is defned as 

nY 
L(θ; ξ1, ..., ξn) = P (θ; ξ1, ..., ξn) , (3.3.9) 

i=1 

where θ are the parameters that defne the distribution and we should recall that, in order 
to avoid possible issues due to the use of non-convex loss functions, we opt in this work to 
constrain the parameters of the Beta distribution to α > 1, β > 1. Denoting l = log(L) 
the log-likelihood of the distribution, we get 

n � �X Γ(α + β) 
ξα−1l(α, β; ξ1, ..., ξn) = log (1 − ξi)β−1 . (3.3.10)

Γ(α)Γ(β) i 
i=1 

If we expand the equation (3.3.10), we obtain 

n n nX X XΓ(α + β)
l(θ; ξ1, ..., ξn) = log + log ξi

α−1 + log (1 − ξi)β−1 
Γ(α)Γ(β)

i=1 i=1 i=1 
nX 

= n(log Γ(α + β) − log Γ(α) − log Γ(β)) + (α − 1) log ξi+ (3.3.11) 
i=1 

nX 
(β − 1) log (1 − ξi) . 

i=1 

Computing and setting the derivatives of l to zero we obtain 

� � nX∂l Γ ′ (α + β) Γ ′ (α) 
= n − + log ξi = 0 ,

∂α Γ(α + β) Γ(α) 
i=1� � n (3.3.12) 

∂l Γ ′ (α + β) Γ ′ (β) X 
= n − + log (1 − ξi) = 0 . 

∂β Γ(α + β) Γ(β) 
i=1 

where with Γ(x) defned as in (3.1.2), we have that Γ ′ (x) is 

Z ∞ 
tx−1Γ ′ (x) = e −t log t dt , (3.3.13) 

0 

Γ ′ (x)and is the digamma function, which we will denote ϕ(x) from now on. Plugging this Γ(x) 
equation into (3.3.12) we end with the following system of two equations 

nX 
F1(α,b b α + b α) + log ξi = 0 ,β, ξi) = ϕ(b β) − ϕ(b 1 

n 
i=1 

(3.3.14)n 

F2(α,b b α + βb) − ϕ(βb) + 0 .β, ξi) = ϕ(b 1 X 
log (1 − ξi) = 

n 
i=1 
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Iterative methods may be employed for the numerical solution of the equations in 
(3.3.14). For instance, the Newton-Raphson’s method proposes as iterative update the 
following equation 

Xn+1 = Xn − λ[Jf (Xn)]
−1f(Xn) , (3.3.15) 

where λ will be a learning rate that, for simplifcity’s sake, we will set to 1, and Jf (X) is 
∂fi(X)the Jacobian matrix of f(X), defned by [Jf (X)]ij = , which in our case is
∂xj ! 

∂F1 ∂F1 
∂α ∂β Jf (α, β) = . (3.3.16)∂F2 ∂F2 
∂α ∂β 

For a single variable function, i.e. X = x, this formulation is reduced to the following well 
known expression 

f(xn) 
xn+1 = xn − . (3.3.17)

f ′ (xn) 
It can be shown [72] that under sufcient assumptions and a sufciently accurate initial 
guess x0, the updated value xn+1 is a better approximation of the root than xn. 

Applying Newton-Raphson’s method to (3.3.14) leads to the following iterative scheme 

� � � � � � 
αn+1 αn F1(αn, βn, ξi)= − [Jf (αn, βn)]

−1 (3.3.18)
βn+1 βn F2(αn, βn, ξi) 

The initial values (α0, β0) are pivotal for a good convergence of Newton-Raphson’s 
method. We propose here to use the following initial estimations obtained using the method 
of moments [73] 

m1(m1 − m2)
α0 = , (3.3.19) 

m2 − (m1)2 

α0(1 − m1)
β0 = , (3.3.20) 

m1 

where the n − th moment, mn, of a random variable, X, is defned as the expected value 
of that variable to the power of n, i.e. 

mn = E[Xn] . (3.3.21) 

3.3.4 Parameters for the Weibull Distribution 

The density function of the Weibull distribution is defned in (3.1.5). We will consider 
here ξi = |ψi|, where again ψi = fb(xi) − yi. Taking this into account, the log-likelihood, l, 
corresponding to a Weibull distribution is the following 

" # 
n � �κ−1 � �κX ξiκ ξi − 

λl(θ; ξ1, ..., ξn) = log e , (3.3.22)
λ λ 

i=1 

where we should recall that, in order to avoid possible issues due to the use of non-convex 
loss functions, we opt in this work to use the constrain κ > 1. 
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If we expand the equation (3.3.22) we obtain 

n n � �κ−1 n � �κX X Xκ ξi ξi
l(θ; ξ1, ..., ξn) = log + log − 

λ λ λ 
i=1 i=1 i=1 

n nX X1 
= n log κ − n log λ + (κ − 1) log ξi − (κ − 1)n log λ − 

λκ ξi
κ (3.3.23) 

i=1 i=1 
n nX X1 

= n log κ − κn log λ + (κ − 1) log ξi − 
λκ ξi

κ . 
i=1 i=1 

Computing the partial derivatives of l in (3.3.23) and setting them to zero we get 

nX∂l κn κ 
= − + ξκ = 0 , (3.3.24)

λκ+1 i∂λ λ 
i=1 

n n � �κX X∂l n ξi ξi 
= − n log λ + log ξi − log = 0 . (3.3.25)

∂κ κ λ λ 
i=1 i=1 

Solving frst (3.3.24) we obtain 

" # 
nXκb 1 κ−n + ξb = 0 . (3.3.26)b bκ i 

λ λb 
i=1 P1 n κSince κ/b λb cannot ever be zero as κ, λ > 0, so we have that −n + 

λbκb i=1 ξi 
b = 0. Therefore 

it holds that 

P 
κn ξb 

i=1 i n = , (3.3.27) 
λbκb 

and fnally 

! 
nX 1 

κb1bλ = κξb 
i (3.3.28). 

n 
i=1 

Now, plugging (3.3.28) into (3.3.25) we get 

 ! !1 1 
nX n n n nκb X X X X1 κb1n n  κ 

iξ
b κ 

iξ
b κ 

iξ
b κ 

iξ
bP− n log log ξi − log ξi − log+ = 

ξbκ 
i

κb nn n
i=1i=1 i=1 i=1 i=1 i=1 

n n n X P 
ξbκ log ξii=1 i+ log ξi − n P = 0 ,n κκb ξb 
i=1 ii=1 

(3.3.29) 

which leads us to the following equation 
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n n κ
P 

log ξi 
P 

ξb log ξi 1i=1 i=1 i = P − . (3.3.30)n ξκbn κb
i=1 i 

Denoting the expression on the right-hand side of (3.3.30) as G(bκ), the equation can be 
rewritten as 

P n 
i=1 log ξi 

= G(κb) . (3.3.31) 
n 

A simple proof of the existence and uniqueness of the solution of (3.3.31) is the following 
one. Let us denote P n 

i=1 log ξi
H(κ) = G(κb) − ; 

n 
we want to prove the existence and uniqueness of the root of H(κb) = 0. For κb > 0 and any 
ξi ∈ R+ , we have that 

nX 
lim G(κb) = log ξi −∞ = −∞ ⇒ H(κb) < 0 , 
κb→0 

i=1 (3.3.32) 
lim G(κb) = log max(ξi) ⇒ H(κb) > 0 , 
κb→∞ 

and, therefore, the image of H(κb) contains both positive and negative values. Besides, 
the function is continuous, so combining these two factors the existence of a root can be 
assured. 

Now, to prove the uniqueness of this root we only need to show the global monotonicity 
of H(κb) and this is equivalent to demonstrate H ′ (κb) > 0. The derivative takes the form: 

 !2 ! ! !2n n n nX X X X 
H ′ (κb) =

1
+ 

1  ξb log2 ξi ξk − ξb log ξi  . κ κ (3.3.33)i i iκκb2 ξb 
ii=1 i=1 i=1 i=1 �P �2 

1 n 1In equation (3.3.33), and will always take positive values, so we focus on
κb2 i=1 ξκb 

i 

! ! !2n n nX X X 
κ κ κI(κ, n, ξb i) = ξb log2 ξi ξb − ξb log ξi . (3.3.34)i i i 

i=1 i=1 i=1 

If n = 1 we have 

κ κ κI(κ,b 1, ξi) = ξ1 
bξ1 

b log2 ξ1 − ξ2b log2 ξ1 = 0 . (3.3.35)1 

If n = 2 we have 

κ κI(κ,b 2, ξi) = ξ1 
bξ2 

b (log ξ2 − log ξ1)2 ≥ 0 . (3.3.36) 
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For n ≥ 3, as shown in [74], if we suppose I(bκ, n − 1, ξi) ≥ 0, then 

n−1X 
κ κI(b = κ, n − 1, ξi) + ξb ξb − log ξi)2 (3.3.37)κ, n, ξi) I(b (log ξn ≥ 0 .n i 
i=1 

This proves the global monotonicity of H(κb) and consequently the uniqueness of the root 
of H(κb) = 0. 

As in the Beta case, we use Newton-Raphson’s method, defned in (3.3.15), to solve 
(3.3.31), obtaining the following iterative scheme 

H(κb)
κbn+1 = κbn − . (3.3.38)

H ′ (κb) 
This time the initial value κb0 is chosen empirically through experimentation. In our 

case κb0 = 1 seemed to ensure a fast convergence for the datasets used in the experiments. 
Finally, once a fnal estimation of κb is obtained the only thing left to do is to plug this 
value into equation (3.3.28) to solve for λb . 
3.4 Uncertainty Intervals 

In Section 2.4 we described a direct approach to build error intervals for SVR that was 
originally proposed in [27]. This method assumes prediction errors to follow a specifc 
probability distribution that is used to defne probability intervals for them. If the as-
sumption is true and the underlying noise distribution in the data is accurately estimated, 
one should expect an increase in the accuracy of the uncertainty intervals. 

Here we make a proposal based in the previous method with two enhancements: 

1. We adapt the method and formulations proposed in [27], which covered the zero-
mean Laplace and Gaussian cases, to the non-zero mean Laplace and Gaussian, as 
well as to the Beta and Weibull distributions, specially interesting for the problem 
of wind and solar energy prediction. These new formulations are detailed in Section 
3.4.1. 

2. A drawback when applying this method is that it assumes the residual distribution 
to be independent of x and, therefore, probability intervals have exactly the same 
width for all input samples. However, it is easy to see that in several problems the 
distribution of the prediction errors may depend on the input x, and therefore the 
length of the predictive interval with a pre-specifed coverage probability may vary 
from one example to another, refecting the fact that the prediction variances vary 
with diferent input values. 

To lessen the impact of this drawback, in Section 3.4.2 we propose to use clustering 
methods to split the data into several groups and build diferent intervals for each 
one of them. 
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3.4.1 Error Intervals for Diferent Distributions 

We present now the formulations for the error intervals corresponding to each of the 
distributions considered in this work, namely Laplace, Gaussian, Beta, and Weibull. 

Laplace 

In Section 2.4.2.1 we described the formulations of parameters and error intervals for the 
zero-mean Laplace distribution. Now, if we assume a non zero-mean Laplace distribution, 
and denote ψi = f̂(xi) − yi, the formulation for l changes into 

nX |ψi−µ|1 
l(θ; ψ1, ..., ψn) = log e − 

σ . 
2σ 

i=1 

For a non-zero mean Laplace distribution the percentile ps is determined as in the zero 
mean case by 

Z ps 

1 − s = p(z)dz . (3.4.1) 
−∞ 

However, as in this case the distribution is centered at µ and not at zero, the prediction 
error interval is (µ − ps, µ + ps). 

During the experiments carried out as part of this work, error intervals formulas for 
Laplace and the other distributions considered have been solved by means of numerical 
integration. 

Gaussian 

We described the formulations of parameters and error intervals for the zero-mean Gaus-
sian distribution in Section 2.4.2.2. Now, if we assume a non zero-mean Gaussian 
distribution the formulation for l changes into 

nX (ψi−µ)
21 −l(θ; ψ1, ..., ψn) = log √ e 2σ2 . 

2πσ
i=1 

The formulation for the prediction error interval for the Gaussian distribution assump-
tion is again the same as the previously defned Laplace counterpart, i.e. (µ − ps, µ + ps), 
with ps as defned in (3.4.1). 

Beta 

We need to compute the upper sth percentile, ps as described in 2.4.8. The only diference 
is that, by defnition of the Beta distribution, z ≥ 0, so in this case we obtain ps by solving 

ps ps 
Z 

Γ(αb + βb) Z b 
1 − s = p(z)dz = z αb−1(1 − z)β−1dz . (3.4.2) 

0 Γ(αb)Γ(βb) 0 
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The prediction error interval is then (0, ps). 

Weibull 

As stated before, for the Weibull distribution we only consider the case z ≥ 0, so we 
determine the prediction error interval the same way as for the Beta distribution 

Z Z � �κ−1 � �κps ps ψiκ ψi − 
1 − s = p(z)dz = e λ dz . (3.4.3)

λ λ0 0 

The prediction error interval is then (0, ps). 

3.4.2 Uncertainty Intervals by Clusters 

As explained before, the proposed approach to build uncertainty intervals takes the 
assumption that the prediction error interval is not directly infuenced by the input values, 
xi, so the calculated interval is constant for all instances in the dataset. To try to limit the 
loss of accuracy that this problematic assumption can cause, we propose in this thesis to 
cluster available data into diferent groups and apply the proposed technique on each group. 
This way, diferent uncertainty intervals will be obtained for each cluster of instances. 

We consider that this addition, that we frst proposed in [75], is a highly relevant one, 
as intervals with the same width for each test instance could suppose a critical drawback 
for data whose distribution strongly depends on variables and entails a strong limitation 
to the application of these methods to general regression tasks. Figure 3.4.1 and Figure 
3.4.2 depict real uncertainty intervals computed for the problem of wind energy produc-
tion forecasting, showing how this interval computation after clustering will work and the 
advantages it presents. In particular, it can be observed how the constant uncertainty 
intervals, presented in Figure 3.4.1, fail to capture the real behaviour of wind energy pro-
duction in a real-world problen, specially for high production values. In contrast, intervals 
after clustering, shown in Figure 3.4.2, adapt much better, creating intervals with bigger 
width for higher energy production values which result in better accuracy. 

In particular, two diferent clustering approaches will be tested in our experiments: 

1. The use of standard clustering techniques, like K-means or K-prototypes, described 
in Section 2.7, to group data points based on the input variables. 

2. The use of clusters based on the magnitude or scale of the values to predict, i.e. the 
target. We will call this clustering method, explained later in this section, magnitude 
clustering. 

Regarding standard clustering, as mentioned before, we propose to use the popular 
K-means and its counterpart for datasets mixing numerical and categorical variables, K-
prototypes, although we will only made use of the former in our experiments as the datasets 
employed do not contain categorical variables. Details of these models have already been 
described in-depth in Section 2.7 as part of the chapter about theoretical background so 
they will not be discussed here to avoid redundancy. 
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Figure 3.4.1: Constant uncertainty intervals. Figure shows real production, prod, pre-
diction given by the model, pred, lower bound of prediction interval, pred-a, and upper 
bound, pred+b, where (a,b) is the corresponding uncertainy interval. 

With respect to magnitude clustering, we propose a signifcantly diferent method to 
divide our data into groups or clusters. The idea is that the error obtained in a particular 
instance or observation is often correlated with the magnitude of the target. If this corre-
lation would always be positive and constant, it would be enough to use a scaled version 
of our target and then apply a constant interval to it to solve this problem. However, this 
is often not the case. 

Solar energy is a good example of this behaviour. When trying to predict solar energy 
production, in most cases smaller errors are found in the summer days where the target 
presents its largest values. This is due to the fact that in these summer days the weather 
behaviour regarding solar radiation is much more stable, and thus more predictable, than 
in more volatile seasons like autumn. By means of illustration of this phenomenon, Figure 
3.4.3 shows the average solar radiation by month for the city of London from 2009 to 2019, 
where clearly months from May to August have the highest and also most stable irradiation 
levels. 

Furthermore, in the case of solar energy prediction there is also a clear daily pattern 
depending on the hour, with usually more energy production on noon hours, which could 
also be taken into account using these uncertainty intervals over clusters built based on 
magnitude clustering. 

Taking this into account, in the case of solar energy production forecast it seems logical 
to cluster our data based on this magnitude before applying diferent uncertainty intervals 
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Figure 3.4.2: Error intervals after clustering. Figure shows real production, prod, pre-
diction given by the model, pred, lower bound of prediction interval, pred-a, and upper 
bound, pred+b, where (a,b) is the corresponding uncertainy interval. 

to each scale group. Using this approach and considering by means of illustration the case 
where the number of clusters, K, is set to 2, one cluster will be built containing the training 
observations where the target to predict has the lowest values, and the other one including 
the instances with the highest target values. This way, we could create an interval band for 
summer days and another one for the rest of the year, being the latter probably wider and 
hence taking into account the higher probability of bigger solar energy prediction errors 
on these days. More generally, training observations are sorted based on their target value 
and then K equal-sized groups of observations are created taking into account this order, 
so lowest target values are in cluster 1 and highest target values are assigned to cluster K. 
Then, validation and test observations will be assigned to the cluster, and corresponding 
error interval, with the closest centroid based on the squared Euclidean distance. 

Again, as was the case when using standard clustering, k will be treated as a hyperpa-
rameter and its optimal value will be chosen by validation as the value that leads to the 
computation of the most accurate error intervals. Details of how the train, validation, and 
test sets are selected are given in Section 4. 

3.5 D-GNM with Uncertainty Intervals 

In this section we combine all of our previous proposals into one single fnal framework 
to compute D-GNM models with uncertainty intervals. The method to compute uncer-
tainty intervals described in [27], which we use as building block for our proposed method 
in Section 3.4, was originally suggested for the purpose of computing error intervals for 
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Figure 3.4.3: Seasonal Variation in Solar Energy, London, 2009-2019. From May to August 
solar radiation levels are higher and more stable. Source: World Irradiation Database. 

SVR prediction. However, its nature and mathematical formulations do not hinder the 
possibility of using it for other regression models. In particular, it seems clear that it fts 
well with our proposed D-GNMs, as both are based on making assumptions regarding the 
distribution present in the data noise, and the errors of both uncertainty intervals and D-
GNM predictions rely on the correctness of this assumption. For this reason, we propose 
to combine both methods. These uncertainty intervals could also be combined with our 
Kernel-GNM models, but we will focus here in their use over D-GNM estimators as they 
show greatest predictive prowess, as will be seen in Section 4. 

In more detail, the goal of this proposed combination is to create a single framework 
that gathers all the advantages of its individual components, namely: 

‹ The adaptative potential and fexibility of using general cost functions assuming a 
particular noise distribution in the data. This allows to build ML models with lower 
prediction errors when the error distribution hypothesis is accurate enough. 

‹ The prediction prowess of DL frameworks, that enable to train regression models 
whose accuracy has been shown to often be signifcantly higher than for other ML 
models when large volumes of data are available for training. 

‹ The advantage of being able to give not only predictions for each instance, but also 
an associated uncertainty interval for that prediction, which is extremely valuable in 
several regression applications. 

Putting all these pieces together we aim to build ML models for regression able to give 
more precise predictions and add to this the possibility of also computing accurate error 
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intervals for each one of these predictions. A good performance of these proposed models 
would only be possible, of course, when the noise distribution assumed to be present in the 
data correctly resembles the true underlying noise distribution in the data at hand. 

The workfow of the proposed framework to build D-GNM models with uncertainty in-
tervals encompasses the following steps: 

Model framework defnition 

‹ Step 1: Select a Deep Neural Network schema. As in this thesis we focus on 
standard regression tasks, we will choose to use fully connected versions of Deep 
ANNs. However, extension of D-GNM to other DL structures like Convolutional 
Neural Networks is straightforward, as only the loss function applied needs to be 
modifed. 

‹ Step 2: Select a noise distribution hypothesis. This step is critical as it will impact 
in a strong way the accuracy of both predictions and uncertainty intervals of our 
models. In some cases, this decision could be made based on expert knowledge on 
the topic or investigation on past research, as is the case for the solar [64] and wind 
[24] energy problems. In case there is no prior knowledge about which could be a 
correct noise distribution assumption, this choice could be made defning the noise 
distribution to be used as an additional hyperparameter to select by grid search over 
validation. 

In our experiments we will test several distributions. First, the standard ILF cost 
function used in classical SVR models. Second, the popular and widely applied 
Laplace and Gaussian distributions, with or without zero mean. And fnally, Beta 
and Weibull distributions, which have been shown [24] [26] to be particularly relevant 
for our real-world problems at hand, wind energy and solar radiation prediction. 

Compute and plug in the optimal cost function 

‹ Step 3: Compute the parameters of the optimal cost function corresponding to the 
distribution selected in Step 2. Details of these formulations are presented in Section 
2.3.3 for standard distributions, and in Section 3.1.1 we added to these ones the 
corresponding formulations for the Beta and Weibull distributions. 

‹ Step 4: Plug this cost function into the Deep ANN schema as the loss function, l, 
in (3.2.1). 

Hyperparameter optimization and model training 

‹ Step 5: Train the regression model resulting of Step 4, after performing a grid search 
to obtain optimal hyperparameters 1 . This will give a ML model able to make pre-
dictions for a given task that is adapted to a particular choice of noise distribution 
assumption. 

Clustering and uncertainty intervals computation 
1 Details of how the train, validation, and test sets are selected are given in Section 4 as part of the 

experiments description. 
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‹ Step 6: Divide the data into clusters following the approaches described in Section 
2.7 and 3.4.2, namely standard techniques like K-means and K-prototypes on one 
hand, and magnitude clustering on the other. Several values for K, the number of 
clusters, will be used and the corresponding divisions into clusters stored. 

‹ Step 7: Compute uncertainty intervals, one for each cluster created in Step 6. This 
step allows for the computations of error intervals corresponding to the predictions 
obtained in Step 5. The selection of clusters with the lowest average uncertainy 
interval error over a validation set 2 will be chosen as the fnal cluster division. 
These uncertainty intervals will, as the prediction of the model, be ftted to a specifc 
noise distribution hypothesis. Furthermore, they will have non-constant width, due 
to the previous clustering of the data proposed in this thesis which allows the intervals 
to adapt to the specifc nature of diferent inputs. 

The main contributions of this thesis regarding D-GNM involve the four steps corre-
sponding to the areas of Compute and plug in the optimal cost function and Clustering 
and uncertainty intervals computation. In particular, and concerning the previous steps: 

‹ Step 3: We have carried out computations in order to give explicit formulations 
for the optimal loss functions corresponding to the Beta and Weibull distributions. 

‹ Step 4: We propose to replace the loss function l used in classical formulations 
of Deep Neural Network models, usually the MSE for regression, for any choice of 
general noise loss function to adapt our model to the noise distribution assumed to 
be present on the problem at hand. 

‹ Step 6: We combine clustering methods, both standard ones and others based on 
target scale, with the method proposed in [27] to compute uncertainty intervals. This 
allows to solve the problem of some mathematical assumptions leading to constant 
error intervals not dependant on the input value. 

‹ Step 7: We apply the computation of these uncertainty intervals not only to SVR 
models but also to our proposed D-GNM models. The combination of both methods 
is feasible in a straightforward manner. 

Notice that here we describe the main novelties regarding the fnal proposed model, D-
GNM with uncertainty intervals, due to its special complexity. Nevertheless, intermediate 
steps and other proposed models like the creation of Kernel-GNMs using NORMA have 
their own developments that should also be considered as part of this thesis’s contributions. 
A full summary of all these contributions can be found on Section 5.1. 

2Details of how the train, validation, and test sets are selected are given in Section 4. 



Chapter 4 

Experiments 

An experiment is a question which 
science poses to Nature, and a 
measurement is the recording of 
Nature’s answer. 

Max Planck 

Several experiments have been carried out during the development of this thesis to test 
the hypotheses formulated and the suitability of the proposed models. We describe in this 
Chapter all the information necessary to understand these experiments and analyze their 
results. Furthermore, and in accordance with the principle of reproducible research, we 
make public all the details regarding the implementation of our proposed models and the 
datasets that we used to perform our experiments. In particular, we point to several R 
and Python libraries we created to implement our frameworks and that are accessible from 
public repositories. Datasets employed have also been made publicly available. Links and 
references are given in Section 4.1. 

The rest of this Chapter is structured as follows: Section 4.1 describes how we imple-
mented the proposed models in this thesis to be able to test them in our experiments. Next, 
details of how hyperparameter selection was carried out for each type of ML models are 
presented in Section 4.2. Section 4.3 gives an in-depth description of all the datasets used in 
the experiments, which comprehend artifcial, classical, and real-world datasets, the latter 
corresponding to solar and wind energy contests. Evaluation metrics used for measurement 
of the goodness of the proposed methods are explained in Section 4.4. Finally, each one 
of the fnal four Sections corresponds to the description of one of the experiments carried 
out during this thesis, as well as the analysis of the pertinent results. Each experiment 
tests the usefulness of one of the proposals described in Chapter 3 over all the datasets 
considered in this work. The summary of these experiments is the following: 

1. Experiment I: Compare the performance in terms of predictive performance of 
the proposed Kernel-based General Noise Models, i.e., Kernel-GNM, trained using 
NORMA with respect to the standard ϵ−SVR model. 

2. Experiment II: Test the prediction error of the proposed Deep General Noise Mod-
els, i.e., Deep-GNM, versus the non-deep Kernel-GNM models, and also against 
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classical ϵ−SVR model, both deep and kernel versions. 

3. Experiment III: This last experiment tests the performance of our fnal proposed 
framework, Deep-GNM models with uncertainty intervals, in terms of accuracy of 
error intervals, as experiment II already measures this in terms of prediction error. 

4.1 Implementation Details 

Several Machine Learning families of models and methods are tested during our experi-
ments. All these methods have been implemented and tested using the two most popular 
programming languages with regards to Machine Learning or Data Science tasks: R and 
Python. 

Regarding the methods corresponding to Chapter 2, already existing libraries have been 
selected and applied. As for the proposed methods suggested in Chapter 3, new libraries 
have been developed in order to be able to test these models in our experiments. 

4.1.1 Pre-existing Libraries 

The following list comprehends all the already existing libraries used during our experi-
ments: 

‹ LIBSVM: Used to train and apply classical ϵ−SVR. Details of this library are de-
scribed in [18] and its content is publicly available through ofcial repositories for 
several programming languages. 

For R you can access LIBSVM through the library e1071 available on the Compre-
hensive R Archive Network, CRAN 1 , and for Python it is integrated in the popular 
scikit-learn 2 library used for Machine Learning. 

‹ stats: K−means algorithm is implemented in widely used libraries both for R and 
Python. We decided to use the R version for this thesis, implemented in the stats 
library through the kmeans function. This library, pre-included in the basic packages 
for R, also contains other functions for statistical calculations and random number 
generation. 

‹ ncdf4: Provides a high-level R interface to fles written using Unidata’s network 
common data form version 4, netCDF4, as is the case for one of the datasets used in 
our experiments. Again, publicly available through CRAN. 

‹ Tensorfow: Is a free and open-source software library for datafow and diferentiable 
programming across a range of tasks. In this thesis we use its Python version 3 for 
Deep Neural Networks implementation. In particular we used Tensorfow 1 in our 
implementation. 

1https://cran.r-project.org/web/packages/available_packages_by_name.html 
2https://scikit-learn.org/stable/index.html 
3https://www.tensorflow.org/install 

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://scikit-learn.org/stable/index.html
https://www.tensorflow.org/install
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‹ Keras: is an open-source neural-network library written in Python. The Keras 
library 4 works as a high-level API of TensorFlow, providing developers with a more 
user-friendly layer for the Tensorfow functionality. 

4.1.2 Developed Libraries and Functions 

Apart from the pre-existing libraries listed in the previous section, we also developed 
our own R libraries and Python functions and variable classes in order to implement all 
the methods proposed in Chapter 3. In particular, the following two R libraries and one 
Python code repository were developed: 

‹ errint: Employed to compute and analyze error intervals for a particular model pre-
dictions assuming diferent distributions for noise in the data. It is the corresponding 
implementation for the uncertainty interval computation method described in Sec-
tion 3.4. Available on CRAN 5 . 

‹ NORMA: Used to build general noise kernel-based SVR models by applying 
NORMA optimization and for the implementation of the Kernel-GNM models de-
tailed in Section 3.1. Also available on the ofcial repository CRAN 6 . 

‹ Deep-GNM: We created a freely accesible GitHub repository 7 with all the Python 
code needed to implement our Deep General Noise Models. It uses Tensorfow, Keras, 
and scikit-learn as base libraries. 

4.2 Hyperparameter Selection 

All the tested methods have their own set of hyperparameters to be selected. We describe 
here the algorithms used to perform this hyperparameter optimization for each family of 
models. 

4.2.1 Classical ϵ−SVR 

As described in Section 2.1, the standard formulation for kernel-based ϵ− SVR encom-
passes three hyperparameters: 

1. Cost, C: Controls the magnitude of the regularization term or, in other words, the 
bias-variance tradeof. 

2. epsilon, ϵ: Selects the range of the insensitive band for the ILF cost functions. Er-
rors with absolute magnitude below this ϵ value will not be penalized. 

3. gamma, γ: Hyperparameter used to compute the Gaussian kernel defned by equa-
tion (2.1.44), which is the kernel used in our experiments, both for classical and 
general noise versions of kernel SVR formulations. 

4https://keras.io/ 
5https://cran.rstudio.com/web/packages/errint/index.html 
6https://cran.r-project.org/web/packages/NORMA/index.html 
7https://github.com/jesuspradaalonso/phd 

https://keras.io/
https://cran.rstudio.com/web/packages/errint/index.html
https://cran.r-project.org/web/packages/NORMA/index.html
https://github.com/jesuspradaalonso/phd
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Algorithm 2: Zoom in Exhaustive Grid Search. 
1 Set P0 = (C0, ϵ0, γ0) as the parameters obtained after using the Cherkassky’s 

approach [77]. 
2 Defne maximum number of zooms, nzooms. 
3 for i = 1 to nzooms do 
4 Set number of points as N = 2(i − 1) + 3. 

10nzooms+110i 
5 Select as grid range [P0 ].

10nzooms+1 , P0 10i 

6 Select N equidistant points from the previous grid range. 
7 Train model with each one of these points and apply models over validation. 
8 Update P0 to be the grid point with the lowest validation error. 
end 

9 Set optimal hyperparameters as P0 

In our experiments these three hyperparameters are optimized by a zoom in version of 
the exhaustive grid search over a fxed validation set, as defned in Algorithm 2, where we 
decided to select as number of zooms nzooms = 3. We decided to use a fxed validation 
set, instead of a cross-validation setting, because it had yielded better results in some of 
our previous experiments regarding wind and solar energy [76] [68], probably because it is 
most suited when working with datasets with strong seasonality and temporal structure. 
Although we could have employed cross-validation for artifcial and classical datasets, we 
decided to unify the framework and apply a fxed validation set for all experiments. Train, 
validation, and test splits are defned for each dataset in Section 4.3. 

In [77], Cherkassky recommends to use a set of equations to compute the optimal values 
for these three SVR hyperparameters. From our experience, this should be considered only 
a recommendation and applying a grid is strongly advisable. Therefore, we have opted to 
use these recommended Cherkassky’s values as the initial center of our grid for the frst 
iteration in Algorithm 2. The formulations suggested by Cherkassky are the following ones 

C = max (|ȳ  − 3σy|, |ȳ + 3σy|) , r 
log n 

ϵ = 3σ , (4.2.1) 
n 

γd ∈ (0.2, 0.5) , 

where d is the number of variables in the dataset, also referred to as its dimensionality. 
The Cherkassky’s proposal for γ is subject to data being scaled to [0,1]. 

4.2.2 Kernel Gaussian Noise Models, Kernel-GNM 

As stated in Section 3.3, for general noise models using loss functions other than ILF, the 
density parameters are computed applying the Maximum Likelihood Estimation, MLE, for-
mulas shown in Table 4.2.1, which in some cases involve solving numerically the equations 
over a set of residuals. 

The residuals employed for the calculation of these MLE formulas, e.g. α and β esti-
mations for the Beta distribution, are the corresponding prediction errors obtained over 
cross-validation by a previously computed ϵ−insensitive SVR model, which is optimized 
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Table 4.2.1: Estimated parameters via MLE corresponding to several distributions. 

Distribution MLE parameters 

Zero-mean Laplace 
P n 

i=1 |ψi|σ̂ = 
n 

Laplace 
P n 

i=1 |ψi−µ|σ̂ = , µ = mψi . is the median of {ψi}n 
n mψi i=1 

Zero-mean Gaussian 
P n ψ2 

i=1 iσ̂ = 
n 

Gaussian  
P n 

i=1 (ψi−µ)2 
n ψiσ̂ = ,µ = 

n i=1 n 
P  

Beta 
 

b
b

 
αn+1 αn F1(bαn, βn, ξi)

= − [Jf (bαn, )]−1bβn
βn+1 βn F2(bαn, βn, ξi) 

b
b

 
b

b
 

Weibull 
P�

1 � 1 
n κλ = ψκ ,

n i=1 i 

b H(bκ)κn+1 = bκn − 
H ′ (bκ) 

using 5-fold cross-validation following the hyperparameter selection process described in 
Section 4.2.1. Although theoretically it could be argued that it would be more correct to 
apply this methodology employing a nonparametric method that does not make asump-
tions regarding noise distribution on the data, like Random Forest, we opted here to use 
the most generic or neutral of the models we consider in our analysis, which is the classical 
ϵ−insensitive SVR model. 

Regarding Kernel-GNMs, as in the case of the classical ϵ−SVR model, we select the 
Gaussian kernel as the one to employ and we estimate its optimal γ value using the same 
approach as in Algorithm 2 over a fxed validation set. 

As for the stopping criteria parameters, we select 1000 as the maximum number of 
NORMA update iterations and 10−3 as the minimum tolerance threshold, i.e., the mini-bmum relative diference between the αtt obtained in two consecutive iterations required to 
continue with the NORMA iterative updates. 

4.2.3 Deep ANN 

Deep Neural Networks are Machine Learning models with quite a long list of possible 
hyperparameters to optimize. From all the parameters we decided to optimize the ones 
that seemed more important judging by the literature and our previous experiments. In 
particular, these are the hyperparameters we selected: 

1. Number of hidden layers: This hyperparameter selects the number of hidden 
layers, i.e., the ones between the input and output layer, that the Deep ANN setting 
will have. 

2. Number of neurons per layer: We set the number of neurons or units to be 
constant among all hidden layers for computational reasons, but the specifc value 
set for this hyperparameter is optimized in our grid search. 
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Algorithm 3: Zoom in Random Grid Search. 
1 For each hyperparameter h to optimize in the grid search, set the initial minimum 

value, minh, and the initial maximum value, maxh, according to Table 4.2.2. 
2 for i = 1 to nzooms do 
3 Set number of points as N = 2i . 
4 For each hyperparameter h, select randomly N valid points in the interval 

[minh, maxh]. 
5 Train model with each one of these points and apply models over validation. 
6 Select P as the grid point with the lowest validation error. 
7 For each hyperparameter, update minimum and maximum values as 

= P − maxh−minh maxh−minhminh 2i+1 and maxh = P + 
2i+1 , respectively. 

end 
8 Set optimal hyperparameters as P . 

3. Dropout probability: Dropout refers to ignoring neurons chosen at random dur-
ing the training phase of our model, i.e., these units are not considered during a 
particular forward pass. Individual nodes are either dropped out of the net with 
probability 1 − p or kept with probability p. This p value is the one we optimize in 
our grid search. This dropout mechanism allows us to do regularization of our Deep 
ANN models. Although dropout and weight decay are regularization techniques that 
are not mutually exclusive, we have decided to not apply weight decay in this work 
and carry out regularization by means of dropout, in order to reduce computational 
complexity of the hyperparameter tuning of these models. 

4. Batch size: This one is a hyperparameter of Adam optimization that controls the 
number of training samples to work through before the model’s weights are updated. 

5. Learning Rate: This is the ηt value appearing in equation 2.6.19. It controls the 
step size of each updating in the Adam optimization. For computation reasons, we 
decide again to make this hyperparameter constant, i.e ηt = η. 

Due to the computational expense of training an exhaustive grid search of Deep ANN 
models with combinations of all these hyperparameters, we opted here to apply a zoom-in 
random grid search [78] over a fxed validation set, as we did in [79] with good results, 
instead of the zoom in exhaustive version shown in Algorithm 2. A visual comparison 
between these two grid search methods can be seen in Figure 4.2.1. The initial random 
grid search space for each hyperparameter is specifed in Table 4.2.2 and the zoom-in 
random grid search algorithm is described in Algorithm 3. In our experiments we used 

= 6.nzooms 

4.2.4 Deep General Noise Models, Deep-GNM 

The proposed Deep General Noise Models are a combination of a Deep ANN with the 
use of a general cost function. Therefore, it has two diferent set of hyperparameters to 
optimize: 
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Figure 4.2.1: Exhaustive Grid Search vs Random Grid Search. Exhaustive method explic-
itly defnes the values to test for a particular hyperparameter, while Random Grid Search 
test a set of N points randomly selected among a specifed range. Image from [80]. 

1. Deep ANN hyperparameters: Optimized using the zoom-in random grid search 
shown in Algorithm 3 over the hyperparameters described in Section 4.2.3. 

2. General cost function density parameters: For Deep-GNM models using loss 
functions other than ILF, the density parameters are computed applying the MLE 
formulas shown in Table 4.2.1, as described in Section 4.2.2 for Kernel-GNM models. 
When using ILF, hyperparameter ϵ is optimized by a zoom in version of the exhaustive 
grid search, as defned in Algorithm 2. 

4.2.5 Uncertainty Intervals 

To compute error intervals following the method proposed in Section 3.4, it is necessary 
to obtain the density parameters corresponding to the noise distribution assumed to be 
present in the data. 

In order to get these density parameters, we apply the MLE formulas shown in Table 4.2.1 
in the same vein we do to compute the proposed Kernel-GNM models. However, instead of 
using the residuals obtained in the hyperparameter grid search of classical ϵ−SVR described 
in Algorithm 2, as we proposed for Kernel-GNM models, in this case the validation errors of 
the corresponding optimum general noise model calculated previously, i.e., the one yielding 
the best results, are used as residuals for MLE computation. 

Finally, when clustering is carried out prior to computation of the uncertainty intervals, 
the K value is selected by means of an exhaustive grid search, where values between 2 and 
10 are evaluated. The K value that results in the error intervals with better performance 
in terms of pererr over 5-fold cross-validation is selected as optimal value. 
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Table 4.2.2: Initial random grid search space for Deep ANN models. 

Hyperparameter Min Max 

Number of hidden layers 1 10 

Number of neurons per layer 10 100 

Dropout probability 0 0.5 

Batch size 8 512 

Learning Rate 10−5 10−1 

4.3 Datasets 

4.3.1 Artifcial Datasets 

We created several artifcial datasets consisting of 500, 000 instances following this ex-
pression 

a yi = x · b + δi, i = 1, 2, . . . , 500, 000 , (4.3.1)i 

with xi, a and b 1024-dimensional vectors where each element is randomly chosen from 
the uniform distributions over the intervals [0.1, 2], [1, 5], and [1, 10] respectively, and δi 
random noise following diferent distributions; 70% of each dataset is used for training, 
15% for validation, and 15% for testing. 

We consider here fve diferent types of datasets, each one with a diferent noise distribu-
tion. Distribution parameters such as σ in the Laplace noise are randomly computed in the 
selected interval only once for each dataset, i.e., they remain constant for all δi extractions 
of a particular dataset and hence the noise for each instance of the dataset follows exactly 
the same distribution, although the specifc noise value will difer between instances. Fol-
lowing a similar approach to the one we used in [76], the concrete distributions applied to 
each dataset are the following: 

1. Zero-noise: δi = 0. This is a dataset without noise following a specifc distribution, 
so we may expect that no clear winner between the proposed Laplace, Gaussian, 
Beta, and Weibull noise models is found. 

2. Laplace: δi extracted from a Laplace with |µ| ∈ [y, max(y)], σ ∈ [std(y), max(y)]. 

3. Gauss: δi extracted from a Gaussian with |µ| ∈ [y, max(y)], σ2 ∈ [std(y)2 , max(y)2]. 

4. Beta: δi extracted from a Beta distribution with α, β ∈ [2, 10] 8 . 

5. Weibull: δi extracted from a Weibull distribution with κ, λ ∈ [1, 10]9 . 
8Notice here that Beta loss function is convex when α, β > 1 
9Notice here that Weibull loss function is convex when κ > 1 
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(a) Test errors for data without noise. (b) Test errors for data with Laplace noise. 

Figure 4.3.1: Histograms of test errors for data without noise vs. test errors for data 
corrupted with Laplace noise. 

Three datasets are built for each of these types using the same distribution parameters 
for yi in (4.3.1) but diferent distribution parameters for the noise δi inserted, and the 
mean of the experiment results over them is computed to contemplate possible deviations 
on results obtained. 

As an example, histograms of errors for a random forest model [7] ftted to the zero-
noise artifcial test set and the one corrupted with Laplace noise are shown in Figure 4.3.1. 
Random forest models are used here due to the fact that it is a nonparametric method 
that does not make asumptions regarding noise distribution on the data. It is clear that a 
Laplace distribution fts better the latter histogram and, therefore, it is to be expected that 
the intervals corresponding to this distribution are the ones that achieve greatest accuracy, 
and probably a Kernel-GNM or Deep-GNM using this distribution hypothesis would also 
yield better predictions. 

4.3.2 Classical Datasets 

We also use in our experiments a set of widely used regression datasets belonging to the 
LIBSVM repository. In particular, the list of datasets evaluated is the following: abalone, 
bodyfat, cpusmall, housing, mg, mpg, pyrim, and space ga. All these datasets are publicly 
accesible through the LIBSVM repository 10 . Their sample sizes and number of features 
are given in Table 4.3.1. 

All the classical datasets considered are split into train, validation, and test sets using 
50% for train, 15% for validation, and 35% for test. We decided to use a bigger ratio for 
the test set than usual, due to the reduced volume of some of the datasets and the need 
of further splitting the test set in a second set of train and test divisions in order to build 
the clustering methods we employ to compute error intervals in Experiment III, as will be 
described in Section 4.7. 

4.3.3 Solar Dataset 

The dataset analyzed regarding solar tasks corresponds to the Kaggle AMS 2013-2014 
solar radiation prediction contest. The goal of this contest is to discover which statisti-
cal and machine learning models provide the best predictions of daily–aggregated solar 

10https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ 

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 4.3.1: Classical datasets dimensions. 

Dataset Patterns Features 

abalone 4177 8 

bodyfat 252 14 

cpusmall 8192 12 

housing 506 13 

mg 1385 6 

mpg 392 7 

pyrim 74 27 

space ga 3107 6 

radiation. In particular, models must predict the total daily incoming solar radiation at 
98 Oklahoma mesonet sites [81], which will serve as solar farms proxies for the contest. 
Mesonet sites are a network of collectively owned and operated automated weather sta-
tions that are installed close enough to each other to observe, measure, and track mesoscale 
meteorological phenomena. 

Real values of total daily incoming solar radiation in Jm−2 at these 98 points are provided 
in the AMS dataset, although we will work with KJm−2 values instead for clarity. Location 
coordinates and elevation for each station are also given. 

Input numerical weather prediction data for the contest comes from the NOAA/ESRL 
Global Ensemble Forecast System [82], GEFS, Reforecast Version 2 11 . The data are in 
netCDF4 fles; each one contains the total data for one of the model variables and is stored 
in a multidimensional array. The frst dimension is the date of the model run. The second 
dimension is the ensemble member which the forecast comes from. The GEFS has 11 
ensemble members for which the GFS model is applied with perturbed initial conditions. 
We use only ensemble 1 in our experiments for simplicity. The third dimension is the 
forecast hour, which runs from 12 noon to 12 midnight UTC in 3 hour increments, so 
rows for diferent days will always correspond to the same universal time although local 
solar time will vary over each year. The fourth and ffth dimensions are the latitude and 
longitude on a uniform spatial grid. The longitudes in the fle are in positive degrees from 
the Prime Meridian, so subtracting 360 from them will translate them to a similar range of 
values as the ones given for the stations, which are provided in a separate fle together with 
their corresponding elevation. The comprehensive list of all variables includen in these fles 
is shown in Table B.0.1 in Appendix B. Elevation of each GEFS point is also provided in 
an additional fle. 

Data of the contest covers the years from 1994 to 2007. For the purpose of our experi-
ments, we split this dataset into train, validation and test as follows: 

‹ train: 1994-2005. 

https://psl.noaa.gov/forecasts/reforecast2/ 11

https://psl.noaa.gov/forecasts/reforecast2/
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‹ validation: 2006. 

‹ test: 2007. 

The complete dataset is freely accesible at https://www.kaggle.com/c/ams-2014-sol 
ar-energy-prediction-contest/data 

4.3.4 Wind Dataset 

The wind energy related dataset employed in the experiments is the one used in the 
GEFCom2014 contest [83], where the probabilistic wind power forecasting track aims to 
estimate the probabilistic distribution, in quantiles, of wind power generation for 10 wind 
farms. The wind farms are all located in Australia, and there could be potential depen-
dencies between the sites, both in space and in time. 

The target variable is the power generation, normalized here by the respective nominal 
capacities of each wind farm. The predictors included are wind forecasts at two heights, 10 
and 100 meters above ground level, obtained from the European Centre for Medium-range 
Weather Forecasts, ECMWF 12 . These forecasts were for the zonal and meridional wind 
components, denoted U and V respectively. The meteorological convention for winds is that 
U component is positive for a west to east fow, i.e., eastward wind, and the V component 
is positive for south to north fow, i.e., northward wind. Therefore, the complete list of 4 
variables available is the following. 

1. VAR 1: 10 metre U wind component in m s−1 . 

2. VAR 2: 10 metre V wind component in m s−1 . 

3. VAR 3: 100 metre U wind component in m s−1 . 

4. VAR 4: 100 metre V wind components in m s−1 . 

√ 
Vector modules for W = (U, V ), i.e., U2 + V 2 , both for 10 and 100 metres, were also 

computed and added to the input dataset. 

Data is provided in comma separated values with each row corresponding to one hour of 
a particular day. The dataset includes 15 diferent tracks, but we will focus only in track 15 
for the purpose of these experiments. Data available goes from 2012-04-01 to 2014-07-01. 
We split the data using the following approach: 

‹ train: From 2012-06-01 to 2013-05-31. 

‹ validation: From 2013-06-01 to 2014-05-31. 

12https://www.ecmwf.int/ 

https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest/data
https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest/data
https://www.ecmwf.int/
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‹ test: From 2014-06-01 to 2014-07-01. 

The complete dataset is accesible via [83]. 

4.4 Evaluation Metrics 

In order to measure the suitability of the methods proposed in Section 3 during our 
experiments, we make use of several evaluation metrics, with diferent intuitions and pur-
poses. 

4.4.1 Prediction Evaluation 

For purposes of comparing the results obtained with the ones present in previous research 
and in the Kaggle Leaderboard, the primary choice of evaluation metric for our experiments 
is the Mean Absolute Error, MAE. This is the main metric we will use throughout this 
chapter to analyze prediction performance. As we have seen earlier, the MAE is defned as 

NX1 
MAE = | f̂(xi) − yi | (4.4.1)

N 
i=1 

However, based on our experience in solar and wind energy tasks we consider that the 
Mean Absolute Percentage Error, MAPE, may be a better choice to evaluate performance 
of a model in this particular task. For this reason, we will also include in this chapter 
results of experiments applying the more demanding MAPE metric, which is defned as 
follows 

PN |f̂(xi)−yi|
i=1 max(|yi|,|δϵ|) (4.4.2)MAP E = 100 ∗ . 

N 

where δϵ is set to be equal to the minimum value of |yi| that is not zero over the evaluation 
set. 

Finally, in the GEFCom2014 competition the goal is to fnd the best quantile predictions 
for wind power generation. Therefore, an evaluation metric suited to this purpose must 
be used. They opt to use the pinball loss function to evaluate the accuracy of these 
probabilistic forecasts. For comparison with the GEFCom leaderboard for this contest, 
prediction accuracy using this metric is also included. This specifc metric is defned as 
follows. 

� 
(y − z)τ , y ≥ z ,Lτ (y, z) = (4.4.3)
(z − y)(1 − τ) , y < z , 

where τ is the target quantile, z the predicted quantile value and y the exact numerical 
value of wind power. More details regarding the defnition of this metric and why it was 
chosen for this contest can be found in [83]. A visualization of the pinball loss function 
can be found in Figure 4.4.1, where ξ = y − z. 
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Figure 4.4.1: Pinball Loss Function. 

4.4.2 Uncertainty Intervals Evaluation 

Regarding evaluation of the uncertainty interval accuracy, given a pre-specifed proba-
bility 1 − 2s, where s is the s-th percentile for which we have computed our error intervals, 
we compare the percentage of test prediction errors, ψtest , lying inside the corresponding i 
uncertainty intervals, [as, bs], with the expected number, (1 − 2s), i.e., 

{# of ψtest ∈ [a, b]}i pererr(s) = − (1 − 2s) . (4.4.4)
N 

We choose an absolute error as accuracy measure over one with weights for positive or 
negative errors because preference towards a positive or negative error, i.e., which one is 
considered less detrimental of the two, is problem-dependent. In some tasks it is preferable 
to take a more conservative approach, penalizing more negative errors, but in others a more 
risky approach could be a better option, tending to punish positive errors more. Here we 
opt to use the most neutral possible choice as our measure. 

4.5 Experiment I. Kernel-GNM Models 

The purpose of this experiment is to test the performance of classical ϵ-SVR versus 
our proposed general noise SVR models, Kernel-GNM. In particular, we build general 
models following the approach proposed in Section 3.1 using Laplace, Gaussian, Beta, and 
Weibull distributions as noise assumptions. We make this comparison over all the datasets 
considered, namely artifcial, classical and the two competition datasets. 

Results are presented in Tables 4.5.3, 4.5.5, 4.5.6, 4.5.8, 4.5.9, 4.5.11, using MAE, MAPE, 
and Pinball loss as evaluation metrics. For each of these metrics, evaluation scores and 
relative rank for each dataset are shown. For MAE and MAPE average metrics and ranks 
are also provided, although it is important to note that average MAE over datasets can 
be misleading if not analyzed carefully, due to the possibility of signifcant diferences in 
target magnitudes among datasets. These tables show the following columns: 

1. Dataset: Reference to the dataset to which metric results of that row of the table 
corresponds. 
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Table 4.5.1: Structure of matrix residuals employed in Friedman and Wilcoxon tests. 

Observation Model 1 Model 2 Model 3 Model 4 Model 5 

1 ψ1 
1 ψ2 

1 ψ3 
1 ψ4 

1 ψ5 
1 

2 ψ1 
2 ψ2 

2 ψ3 
2 ψ4 

2
5 
2ψ

3 ψ1 
3 ψ2 

3 ψ3 
3 ψ4 

3
5 
3ψ

4 ψ1 
4 ψ2 

4 ψ3 
4

4 
4ψ

5 
4ψ

5 ψ1 
5 ψ2 

5 ψ3 
5

4 
5ψ

5 
5ψ

... ... ... ... ... ... 

N ψ1 
N ψ2 

N
3 
Nψ

4 
Nψ

5 
Nψ

2. ϵ-ILF: Classical ϵ-SVR model, as described in Section 2.2.1. 

3. Lap: Kernel-GNM model proposed in Section 3.1 assuming Laplace distribution 
allowing for non-zero mean values. 

4. Gau: Kernel-GNM model proposed in Section 3.1 assuming Gaussian distribution 
allowing for non-zero mean values. 

5. Beta: Kernel-GNM model proposed in Section 3.1 assuming Beta distribution. 

6. Weib: Kernel-GNM model proposed in Section 3.1 assuming Weibull distribution. 

For each dataset, we compute Kernel-GNM models following each one of the four dis-
tributions considered in this thesis, and show the corresponding results. In a real case 
scenario, this process could be considered as an aditional step of the hyperparameter se-
lection, where the particular distribution to be employed as noise distribution hypothesis 
could be considered as an additional hyperparameter and selected by grid search over val-
idation. Additionally, for some tasks like the solar and wind datasets, expert knowledge 
on the topic or investigation on past research [64] [24] could point us to potential good 
choices of noise distribution assumption. 

Hyperparameters for ϵ-ILF as well as the distribution parameters for Lap, Gau, Beta, 
and Weib are selected following the approaches described in Section 4.2. 

Furthermore, we carried out for each experiment a Friedman test over the residuals, 
ψm c= fm(xi) − yi, obtained in the test set by each model m to check for signifcant difer-
ences between the performance obtained between the diferent models analyzed. When a 
signifcant p-value was found after applying this test, we also carried out a pairwise com-
parison with Wilcoxon signed-rank test over the residuals ψm to analyze if there existsi 
signifcant diferences between the results obtained by each tested model, where p-values 
were adjusted by a step-down method using Sidak adjustments [84]. Therefore, we apply 
the aforementioned statistical tests over a matrix with the structure shown in Table 4.5.1, 
where in this experiment the fve models considered are ϵ-ILF, Lap, Gau, Beta, and Weib. 

i 
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4.5.1 Artifcial Datasets 

Table 4.5.3 shows the MAE for Kernel-GNM models using diferent noise distribution 
assumptions over our artifcial datasets. For all the artifcial datasets used in this ex-
periment, when the target presents noise corresponding to a particular distribution, the 
best general noise model is the one that uses the loss function matching the same noise 
distribution and, in particular, its results are clearly better than the ones obtained using 
the classical ϵ-ILF. These results seem to confrm our initial hypothesis and the usefulness 
of the approach proposed in this paper to build general noise models, and supports the 
validity of our proposed method to select the density parameters, which is described in 
Section 3.3. 

It is also interesting to note that for the artifcial dataset with Gaussian noise, the second 
best performing one corresponds to the model using ϵ-ILF as loss function, a result that 
fts in well with the statement made in [23] that the use of the ϵ-ILF is also justifed under 
the assumption that the noise is additive and Gaussian, where the variance and mean of 
the Gaussian are random variables. 

We carried out a Friedman test over the ψm matrix to analyze if there exists signifcant i 
diferences between the residuals obtained by each tested general noise model. The p-value 
obtained is 0.20, clearly above the threshold for a signifcance level of 0.05. This is a result 
to be expected, as each general noise model is the best solution when the underlying noise 
in the dataset corresponds to the distribution assumption employed to build the model, 
but no overall best or worst model exist. 

Taking this into account, we decided to carry out statistical tests for each artifcial 
dataset independently. Thus, for each one of these datasets a diferent Friedman test was 
conducted over the matrix of residuals obtained only for that particular artifcial dataset. 
When this Friedman test for a particular dataset showed signifcant diferences, a pairwise 
Wilcoxon test was also applied to this matrix. This means that a matrix of residuals 
following the structure shown in Table 4.5.1 was built using only residuals obtained by 
each model for observations in the Zero-noise dataset, i.e., only a subset of rows from 
the n observations shown in Table 4.5.1 are selected, and then the statistical tests were 
applied over this reduced matrix. Next, a new reduced matrix with the same structure but 
containing only residuals for observations in the Laplace dataset, i.e., a diferent subset of 
rows from Table 4.5.1, was created and statistical tests carried out. Finally, this process 
was repeated in the same manner for all the remaining artifcial datasets. 

Following this methodology, the Friedman tests showed a p-value below 0.05 for all 
datasets except for the Zero-noise one, where it is to be expected that diferences between 
models are not necessarily signifcant. For all the other datasets, we decided to carry out a 
pairwise Wilcoxon test comparing the reference model, i.e., the one using as noise assump-
tion the same distribution employed to build the dataset, with all the other models. This 
means that from the results obtained from the pairwise Wilcoxon test over, for instance, 
the Laplace dataset, we focus only on the p-values obtained for the row corresponding to 
the Lap model, as shown in Table 4.5.2. 

Results of the Friedman and pairwise Wilcoxon tests described above are shown in Table 
4.5.4. It can be observed that there are signifcant diferences between the performance of 
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Table 4.5.2: Pairwise Wilcoxon test results corresponding to the reference model. 

ϵ-ILF Lap Gau Beta Weib 

ϵ-ILF ... ... ... ... ... 

Lap 0.03 1.00 0.03 0.00 0.01 

Gau ... ... ... ... ... 

Beta ... ... ... ... ... 

Weib ... ... ... ... ... 

Table 4.5.3: MAE obtained in Experiment I for each choice of distribution assumption in 
a Kernel-GNM model over artifcial datasets. 

Dataset ϵ-ILF Lap Gau Beta Weib 

Zero-noise 0.99 (2) 0.98 (1) 0.99 (2) 1.04 (5) 1.02 (4) 

Laplace 2.07 (2) 1.86 (1) 2.11 (3) 2.57 (5) 2.34 (4) 

Gaussian 1.97 (2) 2.23 (3) 1.91 (1) 2.61 (5) 2.25 (4) 

Beta 1.16 (2) 1.23 (4) 1.20 (3) 1.06 (1) 1.27 (5) 

Weibull 1.58 (3) 1.66 (4) 1.53 (2) 1.88 (5) 1.40 (1) 

mean 

mean rank 

1.55 

2.2 

1.59 

2.6 

1.52 

2.2 

1.83 

4.2 

1.66 

3.6 

the reference model and all the others, with the exception of the Gaussian and standard 
ϵ-ILF for the dataset build using Gaussian noise, which is again a conclusion that fts in 
well with the statement made in [23]. For the zero-noise dataset, the Friedman test did 
not show signifcant diferences between the residuals obtained by each tested general noise 
model, as was to be expected. 

Results are similar for the MAPE metric, which are presented in Table 4.5.5. The only 
signifcant diference is that for MAPE the winner in terms of average error is ϵ-ILF while 
for MAE it was the Gaussian loss, with the two of them tied regarding mean rank for 
both MAE and MAPE metrics. This is probably due to the efect of having targets with 
diferent scales afecting the MAE results. Therefore, it seems logical to conclude that 
ϵ-ILF loss is the most robust option when the underlying noise in the data is not known or 
cannot be deduced from the data itself, which fts well with the fact that it is the standard 
choice when computing a SVR model. 
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Table 4.5.4: Friedman and Wilcoxon tests for Experiment I results over artifcial datasets. 

Dataset Friedman p-value Reference ϵ-ILF Lap Gau Beta Weib 

Zero-noise 0.37 - - - - - -

Laplace 0.01 Lap 0.03 1.00 0.03 0.00 0.01 

Gaussian 0.04 Gau 0.27 0.03 1.00 0.00 0.03 

Beta −291.85e Beta 0.02 0.01 0.02 1.00 0.00 

Weibull −72.73e Weib 0.03 0.01 0.03 0.00 1.00 

Table 4.5.5: MAPE obtained in Experiment I for each choice of distribution assumption 
in a Kernel-GNM model over artifcial datasets. 

Dataset ϵ-ILF Lap Gau Beta Weib 

Zero-noise 7.7 (1) 7.7 (1) 7.8 (3) 8.2 (5) 8.0 (4) 

Laplace 16.3 (2) 14.6 (1) 16.6 (3) 20.2 (5) 18.4 (4) 

Gaussian 15.1 (2) 17.5 (3) 14.6 (1) 20.5 (5) 17.7 (4) 

Beta 8.2 (2) 9.7 (4) 9.4 (3) 7.8 (1) 10.0 (5) 

Weibull 12.1 (3) 13.0 (4) 12.0 (2) 14.8 (5) 11.0 (1) 

mean 

mean rank 

11.9 

2.0 

12.5 

2.6 

12.1 

2.0 

14.3 

4.2 

13.0 

3.6 

4.5.2 Classical Datasets 

In Table 4.5.6 MAE results are shown for each of the LIBSVM datasets evaluated and fve 
types of Kernel-GNM models used, namely ϵ-ILF, Laplace, Gaussian, Beta, and Weibull, 
where hyperparameters and density parameters are selected as described in Section 4.2. 
Several relevant conclusions can be obtained from these results. First, Kernel-GNM models 
are competitive with classical SVR in general, and for some datasets even better. Although 
standard SVR gets the best average MAE among all the datasets, this cannot be considered 
too relevant due to big diferences in target scale among the datasets. As a matter of fact, 
although classical ϵ-SVR is the model that achieves the best performance for four out of 
eight datasets, Gaussian Kernel-GNM, is the winner in terms of average rank. 

Secondly, there is not a Kernel-GNM model that outperforms ϵ–insensitive SVR over all 
datasets evaluated, but some of these models are clearly better for problems like cpusmall, 
space mpg, and housing, where Lap, Gau, and Weib models appear to be the best option, 
respectively. This fact seems to point to a particular distribution of noise for these prob-
lems outside the one corresponding to the ϵ-ILF function. On the other hand, the model 
assuming Beta noise obtains the worst overall results and does not manage to be the best 
option for any of the classical datasets analyzed in this experiment. 
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Finally, when Kernel-GNM models are the best option, the particular distribution as-
sumption that yields the best performance is not always the same, with Laplace, Gaussian 
and Weibull being the best suited option for at least one dataset. This indicates the impor-
tance of being accurate when formulating the hypothesis of the noise distribution assumed 
to be present in the data and thus inserted in the formulation of the Kernel-GNM model 
to be used for a particular task and, therefore, points out that using ϵ-ILF regardless of 
the specifc nature of the task at hand is not always advisable, although it remains to be 
a competitive option. 

Applying a Friedman test over the residuals obtained for all the datasets following the 
structure described in Table 4.5.1 yields a p-value of 0.01, showing signifcant diferences. 
Therefore, in this case we did not carry out a separate Friedman and Wilcoxon tests over the 
residuals obtained for each dataset, as we did for the artifcial datasets, but only an overall 
test taking into account the residuals obtained for observations belonging to all classical 
datasets, i.e., we built a single matrix with the structure shown in Table 4.5.1, where the 
residuals obtained for bodyfat observations are placed below the residuals corresponding to 
abalone observations, and so on and so forth. Then we applied a Friedman test, resulting 
in the aforementioned p-value of 0.01, and a pairwise Wilcoxon test over that matrix of 
residuals. 

Regarding pairwise Wilcoxon tests for residuals obtained over all classical datasets, which 
results are shown in Table 4.5.7, signifcant diferences using a signifcance level of 0.05 are 
detected for Beta with respect to classical ϵ-ILF and Gaussian models, and also between 
Beta and Weibull if a signifcance level of 0.1 is applied. Looking at the results obtained in 
Table 4.5.6 this seems reasonable, as here Beta appear to have a worse overall performance 
in general, wirh a mean rank of 4.5 out of 5. 

Analogous results for the MAPE metric are shown in Table 4.5.8. The main conclus-
sions described before can also be drawn here looking at the MAPE scores, although some 
diferences exist when analyzing particular datasets. For instance, Laplace noise distribu-
tion assumption, and not Weibull like in the MAE case, achieves the best performance for 
the housing dataset. Taking into account MAPE, Gaussian Kernel-GNM is not only the 
winner in terms of average rank, although by a small margin, but also achieves the same 
mean score over all datasets than ILF. 

4.5.3 Solar and Wind Contest Datasets 

The global results for Experiment I over the contest datasets are shown in Table 4.5.9 
for AMS and Table 4.5.11 for GEFCOM. We show MAE and MAPE metrics for each 
version of Kernel-GNM. Regarding the wind contest, we also compute the results in terms 
of the Pinball loss. For both contests, the ranking that these models would have got in the 
ofcial leaderboard, based on MAE for AMS and Pinball loss for GEFCOM, is also shown. 
Finally, relative rank for each model and metric is described between parentheses. We will 
focus here in the results for the MAE metric, as conclusions are similar when analyzing 
the other metrics. 

First, the choice of noise distribution assumption is highly relevant for model accuracy, 
as the worst results are 2.3% and 6.7% higher than the lowest MAE obtained for the AMS 
and GEFCom2014 datasets, respectively. For instance, this decline in performance would 
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Table 4.5.6: MAE obtained in Experiment I for each choice of distribution assumption in 
a Kernel-GNM model over classical datasets. 

Dataset ϵ-ILF Lap Gau Beta Weib 

abalone 1.48 (1) 1.58 (3) 1.53 (2) 1.67 (4) 1.58 (3) 

bodyfat 0.00 (1) 0.10 (2) 0.10 (2) 0.17 (5) 0.12 (4) 

cpusmall 2.13 (3) 2.07 (1) 2.12 (2) 2.21 (5) 2.13 (3) 

housing 2.28 (3) 2.39 (5) 2.27 (2) 2.36 (4) 2.24 (1) 

mg 0.09 (1) 0.17 (5) 0.13 (2) 0.15 (4) 0.13 (2) 

mpg 1.91 (2) 1.95 (3) 1.89 (1) 2.49 (5) 2.03 (4) 

pyrim 0.06 (1) 0.10 (3) 0.06 (1) 0.19 (5) 0.10 (3) 

space ga 0.14 (2) 0.14 (2) 0.11 (1) 0.16 (4) 0.17 (5) 

mean 

mean rank 

1.01 

1.75 

1.06 

3.00 

1.03 

1.63 

1.18 

4.50 

1.06 

3.13 

mean to drop 11 positions in the AMS Kaggle leaderboard. Second, provided that the 
distribution assumption is properly chosen, general noise SVR models achieve signifcantly 
higher precision than classical ϵ-SVR for both contests. 

Regarding results corresponding to the solar competition, the Weibull and especially the 
Beta distributions seem to capture better the underlying noise distribution for the task of 
solar prediction. Although further testing of our models with diferent datasets would be 
needed to confrm these results, they seem to be in line with previous works, such as [64], 
[62] or [68], that suggest the Beta distribution as a good choice to model solar irradiation. 

As for the signifcance of results obtained for the AMS competition, again we carried 
out a Friedman test, this time over the global matrix containing the residuals obtained 
for each of the 98 solar stations by each model tested. This means that the rows of this 
matrix are the observations for each of the 98 stations concatenated vertically, i.e., one 
below the other, and the columns are each of the fve models evaluated in this experiment. 
This Friedman test yielded a p-value of 1.85 10−16 . Thus, we proceed to compute pairwise 
Wilcoxon tests, whose results are shown in Table 4.5.10. In this case, adjusted p-values 
clearly below the 0.05 signifcance threshold are found. In particular, only models ϵ-ILF 
and Gau seem to have a similar performance, with signifcant diferences found for all 
the other comparisons. This is again reasonable, as ϵ-ILF and Gau obtained the same 
position in the leaderboard and similar average metrics. Combining these results with 
the previously disccused, it seems logical to conclude that the model using the Beta noise 
distribution assumption, the winner in terms of MAE, MAPE and leaderboard position, 
achieves a signifcantly better performance for the problem of solar forecasting in the AMS 
competition. 
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Table 4.5.7: Wilcoxon test for Experiment I MAE results over classical datasets. 

ϵ-ILF Lap Gau Beta Weib 

ϵ-ILF 1.00 0.28 0.71 0.04 0.22 

Lap 0.28 1.00 0.30 0.28 0.57 

Gau 0.71 0.30 1.00 0.04 0.28 

Beta 0.04 0.28 0.04 1.00 0.08 

Weib 0.22 0.57 0.28 0.08 1.00 

Similar conclusions can be extracted when analyzing the GEFCom2014 results, as can 
be seen in Table 4.5.11. This time the Weibull and Beta distributions, in this order, seem 
to be the best choices for noise assumption, which also seems in line with previous research 
such as [65] or [68] where Weibull is pointed to be a good ft for wind behaviour. Results for 
Wilcoxon pairwise test over residuals are shown in Table 4.5.12. Signifcant diferences are 
found among all models, except for Beta and Weib, which also obtained the same pinball 
loss and leaderboard position. Following a similar reasoning to the one we applied for the 
AMS contest, we could infer that these two are the overall best solutions for GEFCom2014 
problem. 

Finally, it is interesting to note the results regarding the ofcial leaderboard. The goal 
of this work is not to fnd the best possible model in terms of accuracy, as we follow a 
simple and straightforward pipeline to tackle the problem with almost no data processing, 
feature engineering or expertise integration, and we also use a relatively small grid for the 
hyperparameter search; our aim was instead to compare the perfomance of the diferent 
noise distributions among themselves and to compare the proposed models with classical 
ϵ−SVR using ϵ-ILF. However, results obtained are quite positive, with the model using 
Beta noise assumption getting a score of 2207.12 KJm−2 , good enough for eight place 
among all the 160 participants visible on the Kaggle private leaderboard for the AMS 
Kaggle contest. As for GEFCom2014, Beta and Weibull models obtain a respectable sixth 
position. 

4.6 Experiment II. Deep-GNM Models 

This experiment is analogous to Experiment I but now the goal is to test the performance 
of the proposed Deep-GNM models. Taking this into account, the experiment consists in 
comparing for each dataset analyzed the performance of Deep SVM and Deep-GNM models 
with the results obtained both by classical ϵ-insensitive SVM and the best Kernel-GNM 
model from the previous experiment. To build these deep models we follow the proposed 
method described in Section 3.2. We again carry out this experiment using all the datasets 
detailed in Section 4.3. 

Results are presented in Tables 4.6.1, 4.6.2, 4.6.5, 4.6.6, 4.6.9, and 4.6.11, using MAE, 
MAPE, and Pinball loss as evaluation metrics. These tables consist of the following 
columns: 
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Table 4.5.8: MAPE obtained in Experiment I for each choice of distribution assumption 
in a Kernel-GNM model over classical datasets. 

Dataset ϵ-ILF Lap Gau Beta Weib 

abalone 13.2 (1) 13.6 (3) 13.5 (2) 14.9 (5) 13.3 (2) 

bodyfat 0.3 (1) 0.4 (2) 0.3 (1) 0.5 (3) 1.3 (5) 

cpusmall 2.5 (1) 2.5 (1) 2.5 (1) 2.6 (2) 2.6 (2) 

housing 18.5 (3) 17.5 (1) 18.3 (2) 23.1 (5) 22.3 (4) 

mg 9.7 (3) 10.9 (4) 9.1 (2) 13.1 (5) 9.0 (1) 

mpg 8.3 (2) 8.1 (1) 8.3 (2) 13.1 (5) 9.1 (4) 

pyrim 14.1 (1) 15.0 (4) 14.3 (2) 14.6 (3) 17.4 (5) 

space ga 18.3 (4) 18.3 (4) 18.2 (2) 18.2 (2) 17.5 (1) 

mean 

mean rank 

10.6 

2.0 

10.8 

2.5 

10.6 

1.75 

12.5 

4.5 

11.6 

3.1 

Table 4.5.9: Metrics obtained in Experiment I for each choice of distribution assumption 
in a Kernel-GNM model over the AMS contest dataset. 

Metric ϵ-ILF Lap Gau Beta Weib 

MAE 2234.40 (3) 2260.86 (5) 2234.63 (4) 2207.12 (1) 2223.72 (2) 

MAPE 12.35 (3) 13.38 (5) 12.47 (4) 9.76 (1) 10.81 (2) 

leaderboard position 15 (3) 19 (5) 15 (3) 8 (1) 12 (2) 

mean rank 3 5 3.67 1 2 

1. Dataset: Reference to the dataset to which metric results of that row of the table 
corresponds. 

2. ϵ-SVR: Classical ϵ-SVR model, as described in Section 2.2.1. 

3. Kernel-GNM: Kernel-GNM model proposed in Section 3.1 assuming the noise dis-
tribution that yielded the best results in terms of MAE in Experiment I for the 
corresponding dataset. For instance, Beta distribution would be the choice for the 
AMS solar dataset, as it was the winner in the previous experiment, as shown in 
Table 4.5.9. In case of a tie, we will use MAPE as tiebreaker and, if needed, also the 
Pinball loss. 

4. Deep SVR: Deep version of the SVR model, as proposed in Section 3.2.1. 

5. Deep-GNM: Deep-GNM model proposed in Section 3.2 assuming the noise distri-
bution that yielded the best results in Experiment I for the corresponding dataset, 
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Table 4.5.10: Wilcoxon test for Experiment I results over the AMS contest dataset. 

ϵ-ILF Lap Gau Beta Weib 

ϵ-ILF 1.00 0.00 0.87 0.00 0.08 

Lap 0.00 1.00 0.00 0.00 0.00 

Gau 0.87 0.00 1.00 0.00 0.03 

Beta 0.00 0.00 0.00 1.00 0.00 

Weib 0.08 0.00 0.03 0.00 1.00 

Table 4.5.11: Metrics obtained in Experiment I for each choice of distribution assumption 
in a Kernel-GNM model over the GEFCOM contest dataset. 

Metric ϵ-ILF Lap Gau Beta Weib 

MAE 3711 (2) 3821 (5) 3727 (4) 3715 (3) 3581 (1) 

MAPE 12.35 (3) 13.38 (5) 12.47 (4) 9.76 (1) 10.81 (2) 

pinball loss 0.045 (4) 0.053 (5) 0.044 (3) 0.039 (1) 0.039 (1) 

leaderboard position 10 (3) 14 (5) 10 (3) 6 (1) 6 (1) 

mean rank 3 5 3.5 1.5 1.25 

i.e., the same that was used in column Kernel-GNM. 

As in Experiment I, we also carried out a Friedman test using observation residuals 
obtained over the test set of all datasets, as shown in Table 4.5.1, to check for signif-
cant diferences between the performance obtained by each model. When a signifcant 
p-value was found after applying this test, we also carried out a pairwise comparison with 
Wilcoxon signed-rank test, where p-values were adjusted by a step-down method using 
Sidak adjustments. 

4.6.1 Artifcial Datasets 

Table 4.6.1 shows the MAE for each of the fve artifcial datasets and four types of models 
used in this experiment. Table 4.6.2 shows analogous results for MAPE. It can be seen that 
the proposed Deep-GNM models are consistently the best model for all datasets tested, 
and classical ϵ-SVR provides the worst results. Both Kernel-GNM and deep versions of 
SVR are able to improve the performance of classical SVR models, but are still below the 
performance of Deep-GNM. 

Two main conclusions can be drawn from these results. First, the deep versions, both 
standard and general noise, improve or at least equal the performance of the non-deep 
versions. Second, general noise cost functions give better results than ϵ-ILF when the 
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Table 4.5.12: Wilcoxon test for Experiment I results over the GEFCOM contest dataset. 

ϵ-ILF Lap Gau Beta Weib 

ϵ-ILF 1.00 0.00 0.34 0.00 0.00 

Lap 0.00 1.00 0.00 0.00 0.00 

Gau 0.34 0.00 1.00 0.00 0.00 

Beta 0.00 0.00 0.01 1.00 0.82 

Weib 0.00 0.00 0.01 0.82 1.00 

Table 4.6.1: MAE obtained in experiment II for each type of model over artifcial datasets. 

Dataset ϵ-SVR Kernel-GNM Deep SVR Deep-GNM 

Zero-noise 0.99 (4) 0.98 (3) 0.95 (1) 0.95 (1) 

Laplace 2.07 (4) 1.86 (2) 1.89 (3) 1.76 (1) 

Gaussian 1.97 (3) 1.91 (2) 1.97 (3) 1.83 (1) 

Beta 1.16 (4) 1.06 (1) 1.14 (3) 1.06 (1) 

Weibull 1.58 (4) 1.40 (2) 1.55 (3) 1.27 (1) 

mean 

mean rank 

1.55 

3.8 

1.44 

2.0 

1.5 

2.6 

1.37 

1.0 

distribution chosen resembles the underlying noise in the data, which is the case here as 
Kernel-GNM and Deep-GNM columns show results of models assuming the noise distribu-
tion that worked best in Experiment I, which for artifcial datasets always corresponded 
to the real noise in the data, as could be expected. 

Regarding signifcance of results, Friedman test over residuals for all observations gives 
a p-value of 0.01. Therefore, in this case we did not carry out independent Friedman and 
Wilcoxon tests over the residuals obtained for each artifcial dataset, as we did in Experi-
ment I, but only an overall test taking into account the residuals obtained for observations 
belonging to all the datasets. Results from this pairwise Wilcoxon test analysis show that 
only ϵ-SVR and Deep SVR models do not present signifcant diferences. Therefore, we 
could conclude that ϵ-ILF and Deep-GNM are consistently the worst and best performers, 
respectively. The corresponding Wilcoxon adjusted p-values are shown in Table 4.6.3. 

4.6.2 Classical Datasets 

In Table 4.6.5 MAE results corresponding to each of the LIBSVM classical datasets 
evaluated and four types of models used, namely classical ϵ–insensitive SVR, General Noise 
Models or Kernel-GNM, Deep SVR and Deep General Noise Models or Deep-GNM. The 
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Table 4.6.2: MAPE obtained in experiment II for each type of model over artifcial datasets. 

Dataset ϵ-SVR Kernel-GNM Deep SVR Deep-GNM 

Zero-noise 7.7 (3) 7.7 (3) 7.5 (1) 7.5 (1) 

Laplace 16.3 (4) 14.6 (2) 14.6 (2) 14.1 (1) 

Gaussian 15.1 (4) 14.6 (2) 14.8 (3) 14.3 (1) 

Beta 8.2 (4) 7.9 (2) 8.0 (3) 7.8 (1) 

Weibull 12.1 (4) 11.0 (2) 11.7 (3) 10.7 (1) 

mean 

mean rank 

11.9 

3.8 

11.2 

2.2 

11.3 

2.4 

10.9 

1.0 

Table 4.6.3: Wilcoxon test for Experiment II results over artifcial datasets. 

ϵ-SVR Kernel-GNM Deep SVR Deep-GNM 

ϵ-SVR 1.00 0.02 0.47 0.00 

Kernel-GNM 0.02 1.00 0.02 0.04 

Deep SVR 0.47 0.02 1.00 0.00 

Deep-GNM 0.00 0.04 0.00 1.00 

Kernel-GNM and Deep-GNM columns show the results of choosing the distribution among 
Laplace, Gaussian, Beta, and Weibull which gave the best results over Experiment I. 
In particular, we select ϵ-ILF for abalone, bodyfat, mg, and pyrim, Laplace for cpusmall, 
Gaussian for mpg and space ga, and Weibull for housing, as summarized in Table 4.6.4. 

Analyzing these results, it can be seen that Deep SVR models are competitive with 
classical SVR in general, and for some datasets like cpusmall or space ga even better. As a 
matter of fact, standard SVR gets the best average MAE among all the datasets, but this 
value can be misleading due to diferent target magnitudes among the evaluated datasets, 
while Deep SVR is the winner in terms of the more informative average rank metric. 

In addition, as seen in Experiment I, General Noise SVR Models do not outperform 
ϵ–insensitive SVR over all datasets evaluated, but are clearly better for some problems like 
mpg or cpusmall, where these models appear to be the best option, which seems to point to 
a particular distribution of noise for these problems diferent from the one corresponding 
to the ϵ-ILF function. Finally, Deep-GNM achieve the best results for mpg and housing, 
and consistently give similar if not better results than their kernel-based, i.e., non-deep, 
General Noise Model counterparts. 

Some of the previous conclusions can also be extracted from Table 4.6.6, which presents 
the results in terms of MAPE for this experiment. However, one relevant diference here 
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Table 4.6.4: Distribution selected for each classical dataset to build Kernel-GNM and 
Deep-GNM models. 

abalone bodyfat cpusmall housing mg mpg pyrim space ga 

Winner Distribution ϵ-ILF ϵ-ILF Lap Weib ϵ-ILF Gau ϵ-ILF Gau 

Table 4.6.5: MAE obtained in experiment II for each type of model over classical datasets. 

Dataset ϵ-SVR Kernel-GNM Deep SVR Deep-GNM 

abalone 1.48 (1) 1.53 (3) 1.48 (1) 1.53 (3) 

bodyfat 0.00 (1) 0.10 (3) 0.00 (1) 0.10 (3) 

cpusmall 2.13 (4) 2.07 (1) 2.12 (2) 2.12 (2) 

housing 2.28 (3) 2.24 (2) 2.30 (4) 2.19 (1) 

mg 0.09 (1) 0.13 (3) 0.09 (1) 0.15 (4) 

mpg 1.91 (3) 1.89 (1) 2.28 (4) 1.89 (1) 

pyrim 0.06 (1) 0.06 (1) 0.06 (1) 0.09 (4) 

space ga 0.14 (4) 0.11 (3) 0.09 (1) 0.10 (2) 

mean 

mean rank 

1.01 

2.13 

1.02 

2.50 

1.05 

1.88 

1.02 

2.38 

is that now our proposed Deep-GNM models have a better performance than classical ϵ– 
insensitive SVR both in terms of mean MAPE value among all the datasets and mean rank. 
MAPE results are probably more signifcant here than the ones obtained using MAE, as 
scale can greatly afect conclusions using that metric. Deep-GNM is in fact the overall 
winner for both measures, MAPE and mean rank MAPE, although Kernel-GNM achieves 
very similar performance. This is supported by the results obtained from parwise Wilcoxon 
tests over the residuals of each type of models, shown in Table 4.6.7, where Kernel-GNM 
and Deep-GNM show signifcant diferences with respect the other models, but not between 
themselves, with same behaviour being observed for ϵ-SVR and Deep-SVR. However, it is 
important to notice here that Deep-GNM present computational advantages over Kernel-
GNM, as discussed in Section 3, that will make them the preferred choice in the case 
of a statitiscally equivalent performance. These Wilcoxon tests were conducted despite 
the Friedman test yielding a p-value of 0.27 pointing to not overall signifcant diferences 
because we nevertheless considered them worthy of analysis. 

4.6.3 Solar and Wind Contest Datasets 

Results of experiment II over the AMS solar and GEFCOM wind contest datasets are 
shown in Table 4.6.9 and Table 4.6.11. Table 4.6.9 presents MAE and MAPE results 
for each type of model for the AMS contest and the ranking that this error would have 
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Table 4.6.6: MAPE obtained in experiment II for each type of model over classical datasets. 

Dataset ϵ-SVR Kernel-GNM Deep SVR Deep-GNM 

abalone 13.2 (1) 13.3 (3) 13.3 (3) 13.2 (1) 

bodyfat 0.3 (2) 0.3 (2) 0.2 (1) 0.3 (2) 

cpusmall 2.5 (2) 2.5 (2) 2.8 (3) 2.3 (1) 

housing 18.5 (4) 17.5 (2) 17.9 (3) 16.7 (1) 

mg 9.7 (3) 9.0 (2) 8.4 (1) 9.9 (4) 

mpg 8.3 (3) 8.1 (1) 8.8 (4) 8.1 (1) 

pyrim 14.1 (1) 14.3 (3) 14.2 (2) 14.3 (3) 

space ga 18.3 (3) 17.5 (1) 18.5 (4) 17.6 (2) 

mean 

mean rank 

10.6 

2.4 

10.3 

2.0 

10.5 

2.6 

10.3 

1.9 

Table 4.6.7: Wilcoxon test for Experiment II results over classical datasets. 

ϵ-SVR Kernel-GNM Deep SVR Deep-GNM 

ϵ-SVR 1.00 0.03 0.43 0.01 

Kernel-GNM 0.03 1.00 0.04 0.27 

Deep SVR 0.43 0.04 1.00 0.04 

Deep-GNM 0.01 0.27 0.04 1.00 

got in the ofcial leaderboard of the contest. As usual, relative rank is shown between 
parentheses and mean rank between the diferent scores is given as overall evaluation metric. 
In addition, the pinball loss function is also computed as part of the GEFCOM results 
shown in Table 4.6.11, as it was used to compute the leaderboard position in this contest. 
The Kernel-GNM and Deep-GNM columns show the results of choosing the distribution 
among Laplace, Gaussian, Beta, and Weibull which gave the best results over Experiment 
I for these datasets. In particular, we select Beta distribution for the AMS contest and 
Weibull for GEFCOM, as summarized in Table 4.6.8. 

Results show that Deep-GNM is the winner for all the considered metrics in both con-
tests. Furthermore, classical ϵ-SVR shows the worst performance both for AMS and GEF-
COM datasets. Finally, Kernel-GNM shows better results than Deep-SVR for the AMS 
contest, but in GEFCOM both approaches yield similar performance, with no clear winner 
and the best model between the two decided by which metric is considered. 
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Table 4.6.8: Distribution selected for each contest dataset to build Kernel-GNM and Deep-
GNM models. 

AMS GEFCOM 

Winner Distribution Beta Weib 

Table 4.6.9: Metrics obtained in Experiment II for each type of model over the AMS 
contest dataset. 

Metric ϵ-SVR Kernel-GNM Deep SVR Deep-GNM 

MAE 2234.40 (4) 2207.13 (2) 2221.73 (3) 2199.16 (1) 

MAPE 12.35 (4) 9.76 (2) 11.73 (3) 9.21 (1) 

leaderboard position 15 (4) 8 (1) 10 (3) 8 (1) 

mean rank 4 2.67 3 1 

A Friedman test over AMS residuals for all observations showed a p-value of 7.26 10−22 

and a p-value of 6.63 10−27 over GEFCOM, pointing in both cases to signifcant diferences 
on model performance between the diferent types of models analyzed. Pairwise Wilcoxon 
test results for AMS and GEFCOM residuals are shown in Table 4.6.10 and Table 4.6.12, 
respectively. In both cases signifcant diferences between Deep-GNM and all the other 
models are found, which combined to the previously remarked fact that these models give 
the best results for all metrics considered, points to the selection of Deep-GNM as best 
overall model. Furthermore, signifcant performance diferences between classical ϵ-SVR 
and Deep SVR are also found, with better metrics being achieved in the case of Deep SVR 
models. Finally, Kernel-GNM show signifcant diferences with respect to both ϵ-SVR and 
Deep SVR for the AMS contest, but similar performance with respect to Deep SVR in 
GEFCOM. 

These results stongly support our hypothesis of the usefulness of applying Deep frame-
works, as they show that combining both standard and general noise models with deep 
learning structures signifcantly increases model performances. This is the reason why we 
will focus in this type of models in our third and last experiment, described next in Section 
4.7. 

4.7 Experiment III. Deep-GNM Models with Uncertainty 
Intervals 

In this experiment we test the error of uncertainty intervals built following the method 
proposed in Section 3.5 under diferent assumptions of noise distribution and distinct 
choices of clustering methods. 
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Table 4.6.10: Wilcoxon test for Experiment II results over the AMS dataset. 

ϵ-SVR Kernel-GNM Deep SVR Deep-GNM 

ϵ-SVR 1.00 0.00 0.03 0.00 

Kernel-GNM 0.00 1.00 0.02 0.04 

Deep SVR 0.03 0.02 1.00 0.00 

Deep-GNM 0.00 0.04 0.00 1.00 

Table 4.6.11: Metrics obtained in Experiment II results over the GEFCOM dataset. 

Metric ϵ-SVR Kernel-GNM Deep SVR Deep-GNM 

MAE 3711 (4) 3581 (2) 3597 (3) 3523 (1) 

MAPE 18.05 (4) 15.83 (2) 17.63 (3) 15.57 (1) 

pinball loss 0.045 (4) 0.039 (3) 0.038 (2) 0.037 (1) 

leaderboard position 10 (4) 6 (3) 5 (2) 2 (1) 

mean rank 4 2.5 2.5 1 

We build these error intervals for the best Deep-GNM model for each dataset observed 
in Experiment II, and the noise distribution used to compute the intervals is the same 
applied to train the corresponding Deep-GNM model. In this experiment we only take 
into account prediction residuals over the test datasets employed in Experiment II, where 
a new split into train, validation, and test is carried out, using 50% to train and validate 
the clustering methods and build the associated error intervals, and 50% to test them. 

The experiment is carried out two times, the frst one computing intervals that should 
contain 80% of the test predictions, and the second with 90% intervals, i.e., choosing 
s = 0.1 and s = 0.05 respectively. Performance is measured using the pererr metric, 
defned in Section 4.4.2, as evaluation metric, which basically measures the diference in 
absolute value between the percentage of points that should fall in the confdence interval, 
0.8 and 0.9 for the frst and the second iterations of the experiment, respectively, and 
the ratio of points that is actually captured by the interval. We recall that the formula 
corresponding to this metric is the following one 

{# of ψtest ∈ [a, b]}i pererr(s) = − (1 − 2s) . (4.7.1)
N 

The mean of the results obtained using s = 0.1 and s = 0.05 is then computed to obtain 
the fnal error pererr metric shown in out results, in order to get a better overall idea of the 
performance obtained and avoid adjusting the conclusions too much to a particular choice 
of confdence threshold. 
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Table 4.6.12: Wilcoxon test for Experiment II MAE results over the GEFCOM dataset. 

ϵ-SVR Kernel-GNM Deep SVR Deep-GNM 

ϵ-SVR 1.00 0.00 0.00 0.00 

Kernel-GNM 0.00 1.00 0.26 0.02 

Deep SVR 0.00 0.26 1.00 0.00 

Deep-GNM 0.00 0.02 0.00 1.00 

Results are presented in tables 4.7.2, 4.7.3, and 4.7.5. These tables have the following 
columns: 

1. Munique: Method where we build a unique interval for all instances in the test set. 

2. Mk: Method where we cluster the data using standard and general methods as 
described in Section 2.7. In particular, we use k -means here as all features are 
numerical. We try values for k ranging from 2 to 10 and keep the intervals with the 
best performance over cross-validation. 

3. Mmagnitude: Analogous to Mk but this time we use techiques based on magnitude 
scaling to cluster data, as explained in Section 3.4.2. Again, we try between 2 and 
10 clusters and select the value that yields the best results after cross-validation. 

Furthermore, we also carried out a Friedman test to check for signifcant diferences 
between the performance obtained by each of these three methods to build intervals. When 
a signifcant p-value was found after applying this test, we also carried out a pairwise 
comparison with Wilcoxon signed-rank test, where p-values were modifed by a step-down 
method using Sidak adjustments. For this experiment we carried out the statistical tests 
over the overall pererr metric for each dataset, or each station in the case of the solar and 
wind contests, as individual residuals for each sample of the test set could not be computed 
for this metric and did not make sense in the case of confdence interval analysis. Therefore, 
in this case we use the matrix structure shown in Table 4.7.1 as analogous of the structure 
described in Table 4.5.1 that was employed in the previous experiments. We are aware that 
the number of rows m of this matrix, 5 for the artifcial datasets, 8 for the classical datasets, 
98 for AMS, and 10 for GEFCOM, could be not enough in order to obtain statistically 
signifcant results in our Friedman and Wilcoxon tests, and that this could be a limitation 
of the conclusions drawn in this experiment. 

4.7.1 Artifcial Datasets 

Table 4.7.2 contains the results obtained in Experiment III for the artifcial datasets. 
Although Mk is the method that achieves slightly lower errors, results show an almost 
equivalent performance for the three types of error interval computations, which is to be 
expected taking into account that the noise inserted in this case is totally independent from 
the input features x, so the hypothesis that leads to the existence of a constant interval 
in the method proposed in [27] is correct here. This is confrmed by the results obtained 
after applying a Friedman test over the pererr matrix shown in Table 4.7.1, a p-value of 



124 Chapter 4. Experiments 

Table 4.7.1: Structure of matrix residuals employed in Friedman and Wilcoxon tests for 
Experiment III. 

Dataset/station Munique Mk Mmagnitude 

Dataset/station 1 Munique pererr 1 
Mkpererr 1 

Mmagnitude pererr 1 

Dataset/station 2 Munique pererr 2 
Mkpererr 2 

Mmagnitude pererr 2 

Dataset/station 3 Munique pererr 3 
Mkpererr 3 

Mmagnitude pererr 3 

Dataset/station 4 Munique pererr 4 
Mkpererr 4 

Mmagnitude pererr 4 

Dataset/station 5 Munique pererr 5 
Mkpererr 5 

Mmagnitude pererr 5 

... ... ... ... 

Dataset/station M Munique pererr m 
Mkpererr m 

Mmagnitude pererr m 

0.44, showing no signifcant diferences are found among the three interval computation 
approaches. 

Nevertheless, Mk is still able to equal or improve the performance obtained by the 
standard Munique constant interval, except for the particular case of the zero-noise dataset. 
This is an interesting result, as it is reasonable to think that Mk is almost never going to 
signifcantly decrease the performance results obtained by Munique. Unless the k value is 
selected in a really wrong manner, which can be avoided doing hyperparameter tuning of k 
as proposed here, in the worst case scenario Mk should provide results similar to Munique. 

It is also interesting to note that the pererr is higher in the zero-noise dataset, i.e., the 
one without noise and that is defned by the following formulation 

a yi = x · b, i = 1, 2, . . . , 500, 000 , (4.7.2)i 

with xi, a and b 1024-dimensional vectors where each element is randomly chosen from the 
uniform distributions over the intervals [0.1, 2], [1, 5], and [1, 10] respectively. The higher 
pererr here is probably due to the fact that for that dataset the errors correspond entirely to 
the model itself and not to the existence of an underlying noise in the data and, therefore, 
these errors probably do not follow a particular distribution and the proposed uncertainty 
intervals are not able to capture them correctly. 

4.7.2 Classical Datasets 

In Table 4.7.3 pererr results over the classical datasets considered in this thesis are shown. 
Is is clear when analyzing the results of this experiment that the drawback of having a 
constant interval for all the samples, Munique, as is the case for the proposed method in [27], 
has a signifcant impact in the interval’s accuracy, an impact that is clearly lessened when 
our proposed clustering methods are applied before the construction of these intervals. 
In particular, it is easy to see how both Mk and Mmagnitude methods for uncertainty 
intervals construction consistently yield better results than the standard Munique, the one 
corresponding to the proposal in [27]. 
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Table 4.7.2: Uncertainty intervals pererr over artifcial datasets. 

Dataset Munique Mk Mmagnitude 

Zero-noise 1.2 (1) 1.4 (3) 1.2 (1) 

Laplace 0.7 (2) 0.6 (1) 0.8 (3) 

Gaussian 0.4 (1) 0.4 (1) 0.6 (3) 

Beta 0.4 (3) 0.2 (1) 0.2 (1) 

Weibull 0.6 (2) 0.2 (1) 0.6 (2) 

mean 

mean rank 

0.7 

1.8 

0.6 

1.4 

0.7 

2.0 

Mmagnitude appears to be the best option for most datasets, although Mk is competitive 
and achieves the best performance for several datasets. Probably which one is the winner 
depends directly on the correlation between the model error and the magnitude of the 
target, which favours the Mmagnitude type of clustering. When there is a strong correlation 
between real target values and residuals, which can arise for instance when high values 
correspond to situations with more uncertainty, a constant error interval is no longer well 
defned and building wider intervals for high target values is recommended. This is precisely 
the output expect when applying Mmagnitude clustering. 

These conclusions are backed up by the output of carrying out a Friedman test, yielding 
a p-value of 0.002 and then a pairwise Wilcoxon test over the pererr matrix presented in 
Table 4.7.1, which is shown in Table 4.7.4. Signifcant diference is found between Munique 
and the two other methods, so we could conclude it yields signifcant worse results overall. 
However, no signifcant diference is found between Mk and Mmagnitude intervals. 

4.7.3 Solar and Wind Contest Datasets 

Table 4.7.5 contains the results obtained in Experiment III for the real-world datsets 
corresponding to the AMS solar and GEFCOM wind energy contests. The negative impact 
of computing error intervals with constant width in method Munique is clear when looking 
at these results, as the best pererr obtained when using this approach is more than twice 
the ones accomplished when applying some sort of clustering techniques, as is the case for 
Mk and Mmagnitude. 

In particular, the error corresponding to the uncertainty intervals is decreased to less 
than half, both for AMS and GEFCOM datasets, when a suitable clustering technique 
is selected, which allows to avoid the drawback of having one unique constant interval. 
Mmagnitude is clearly the winner for the AMS dataset and Mk for the GEFCOM one. 

Regarding the AMS contest, one reason that may explain this is the fact that solar 
prediction errors are strongly related to the hour of the day, which is intrinsically connected 
to the magnitude of the solar radiation, the target in this case, as this normally follows 
a pattern similar to the curve known as clear sky curve, as shown in Figure 4.7.1. This 
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Table 4.7.3: Uncertainty intervals pererr over classical datasets. 

Dataset Munique Mk Mmagnitude 

abalone 1.8 (3) 1.6 (2) 1.2 (1) 

bodyfat 9.1 (3) 4.5 (1) 4.5 (1) 

cpusmall 2.0 (3) 1.4 (1) 1.4 (1) 

housing 3.4 (3) 2.3 (2) 1.1 (1) 

mg 1.2 (3) 0.4 (1) 0.8 (2) 

mpg 2.9 (2) 2.9 (2) 1.5 (1) 

pyrim 15.4 (3) 7.7 (1) 7.7 (1) 

space ga 0.9 (3) 0.4 (1) 0.4 (1) 

mean 

mean rank 

4.6 

2.9 

2.7 

1.4 

2.3 

1.3 

Table 4.7.4: Wilcoxon test for Experiment III errint results over classical datasets. 

Munique Mk Mmagnitude 

Munique 1.00 0.03 0.02 

Mk 0.03 1.00 0.25 

Mmagnitude 0.02 0.25 1.00 

fgure shows the comparison between the clear sky curve expected radiation value at each 
hour for the 13th of June at a location in Medan city of Indonesia vs the actual radiation 
measurements obtained that day in that location. It can be seen that uncertainty in the 
central hours is low and follows diferent patterns than, for instance, the evening or sunset 
hours. 

In the GEFCOM wind contest, the error patterns seem to not be as much correlated 
with a phenomenon like the clear sky curve as in AMS, which may be the reason why a 
more generic clustering method like Mk yields better results. However, Mmagnitude is still 
able to obtain an error of less than 60% the one yielded by the standard Munique constant 
error interval. 

For both contest datasets, a Friedman test over a matrix of pererr values following the 
structure in Table 4.7.1, where each station pererr is presented in a diferent row, shows 
signifcant diferences, with p-values of 7.47 10−43 and 5.85 10−13 , respectively. 
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Figure 4.7.1: Clear Sky Curve. Red line shows the clear sky curve expected radiation 
value and blue points represent the actual radiation measurements. Taken from [85]. 

Table 4.7.5: Uncertainty intervals pererr over AMS and GEFCOM contests datasets. 

Dataset Munique Mk Mmagnitude 

AMS 1.78 0.82 0.60 

GEF 2.72 1.34 1.62 

Table 4.7.6: Wilcoxon test for Experi- Table 4.7.7: Wilcoxon test for Experi-
ment III pererr results over AMS. ment III pererr results over GEFCOM. 

Munique Mk Mmagnitude 

Munique 1.00 0.00 0.00 

Mk 0.00 1.00 0.02 

Mmagnitude 0.00 0.02 1.00 

Munique Mk Mmagnitude 

Munique 1.00 0.00 0.00 

Mk 0.00 1.00 0.01 

Mmagnitude 0.00 0.01 1.00 

Wilcoxon test also shows signifcant results when comparing the performance of the 
three methods. Results for pairwise Wilcoxon tests are shown in Table 4.7.6 and Table 
4.7.7 for AMS solar contest and GEFCOM2014 wind dataset, respectively. In this case, 
the input used in both these statistical tests has been the overall pererr obtained for each 
station applying each one of the interval computation methods analyzed in this work which, 
specially for the GEFCOM contest, could pose a limitation regarding statistical signifcance 
of the conclusions drawn, as we only have available information for 10 stations and this 
means that we are aplying our statistical tests over a matrix of only 10 rows. 

These results seem to confrm our hypothesis regarding the usefulness of applying clus-
tering to build diferent intervals for each group of points, solving or at least lessening the 
negative impact of having error intervals with constant width for all input points. 
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Conclusions and Further Work 

Perhaps one did not want to be loved 
so much as to be understood. 

George Orwell, 1984 

5.1 Conclusions 

The main goals of this thesis were fve: 

1. To propose a framework to train General Noise SVR Models using a suitable opti-
mization method. 

2. To give a method to build Deep General Noise Models that combine the highly non-
linear feature processing of DL models with the predictive potential of using general 
noise loss functions, from which the ϵ-insensitive loss function used in SVR is just a 
particular example. 

3. To describe a direct approach to build error intervals for SVR or other regression 
models, based on the assumption of model residuals following a particular probabil-
ity distribution. 

4. To unify the previous three goals in a single and fnal model framework to train Deep 
General Noise Models for regression with uncertainty intervals associated to each 
prediction. 

5. To follow the principles of reproducible research, with all implementations and datasets 
used being publicly accesible. In particular, the algorithms necessary to apply these 
techniques have been implemented using R and Python as programming languages 
and made publicly available via CRAN or GitHub 1 repositories. Moreover, the 

3 4datasets employed in the experiments are available online 2 or, in the case of 
1 https://github.com/jesuspradaalonso/phd. 
2Classical datasets available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. 
3AMS solar dataset available at https://www.kaggle.com/competitions/ams-2014-solar-energy-p 

rediction-contest/overview/description. 
4GEFCOM wind dataset available at [83]. 
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the artifcial datasets created as part of this thesis, easy to replicate following the 
formulas and code given in this work. 

In order to achieve these goals we have presented the necessary theoretical background 
in Chapter 2, described our proposed methods with all the formulations and implementa-
tion details required in Chapter 3, and conducted experiments in Chapter 4 to test their 
usefulness. 

Regarding the methods proposed in this work, these are the main contributions of this 
thesis: 

‹ The use of NORMA optimization method, to solve the problem of SMO no longer 
being a suitable option, in combination with general noise versions of the SVR for-
mulation, to create Kernel-GNM models. 

‹ Explicit formulations for the optimal loss functions corresponding to the Beta and 
Weibull distributions. In addition, a method is proposed to avoid the problems that 
could arise due to the fact of possible non-convexity in the K-GNM optimization 
problem, consisting on restraining the search of density parameters to the space of 
values, previously computed, that make the formulations convex. 

‹ A proposal to build a deep version of the SVR model. The method is based on 
replacing the loss function used in classical formulations of Deep Neural Network 
models, usually the MSE for regression, for the ILF loss function usually employed in 
classical SVR formulations, this way combining the positive aspects of Deep Learning 
frameworks and the ϵ-ILF. 

‹ Going a step further with respect to the previous point, a proposal to use a chosen 
general noise loss function, with ILF as just a specifc case, in a Deep Fully Connected 
Neural Network to adapt our model to the particularities of the problem at hand. 
We have called these models Deep-GNM. 

‹ Formulations to extend the method suggested in [27] to build uncertainty intervals 
for SVR for the Beta and Weibull distributions, giving all the explicit formulations 
needed. 

‹ The combination of clustering methods, both standard ones and others based on tar-
get scale, with the method proposed in [27] to compute uncertainty intervals. This 
allows to solve the drawback of some mathematical assumptions done in [27] which 
led to constant error intervals, i.e., not dependant on the input value. 

‹ The computation of these uncertainty intervals not only for SVR models but also for 
our proposed K-GNM and D-GNM models. The combination of both intervals and 
general noise models is feasible in a straightforward manner. 
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‹ The formula employed to create artifcial datasets, where noise following diferent dis-
tributions is inserted, and scripts run to build the actual artifcial datasets employed 
in our experiments, which are provided via GitHub 1 . 

‹ The code necessary to compute all the models used in the experiments, which is 
implemented in R libraries created during this research and uploaded to CRAN, or 
by means of Python scripts made available through GitHub repositories. Links to all 
this available code are given in Section 4.1. 

Experiments show the usefulness of the proposed methods. First, our tests show that the 
suggested general noise models can achieve more accurate predictions than classical ϵ-SVR 
models if the noise distribution is properly chosen. In case there is no prior knowledge 
about which could be a correct noise distribution assumption, the particular distribution 
to be employed could be considered as an additional hyperparameter and selected by grid 
search over validation. 

Second, results show that deep versions, of both classical ϵ-SVR and the proposed GNM 
models, clearly outperform their non-deep kernel-based counterparts when the volume of 
the datasets used is large enough, which is the case for the artifcial and contest datasets. 

Furthermore, the noise distributions that seem to capture best the underlying noise 
distribution in the solar task are the Weibull and, even more so, the Beta distributions. 
Regarding the wind energy problem, the Weibull distribution is the one that seems to be 
most suited to the problem. Both results agree with the conclusions drawn from previous 
research regarding the nature of solar radiation and wind behaviour. 

Finally, the proposed clustering methods seem to largely solve the critical drawback of a 
constant width in the uncertainty estimates that could arise in our framework, surely the 
main difculty present in the original formulation of this method proposed in [27] to build 
error intervals. 

5.2 Further Work 

Regarding possible lines of further research, one of them could be to add more distri-
butions to the ones studied in this thesis, such as Logistic or Poisson, and then test the 
performance of our proposed framework for problems where these distributions may be of 
relevance, like healthcare tasks. The Keras library also includes several regression losses 
that could be plugged into our D-GNM models to measure their predictive performance. 

Also, although we have focused during this work on fully connected models as DL frame-
works, it should be possible to extend our proposed model in a relatively straightforward 
manner to other deep structures like Convolutional Neural Networks. It could be inter-
esting to check if conclusions extracted from experiments with this type of DL models are 
analogous to the ones obtained in this research. In particular, this could prove to be spe-
cially relevant for the wind and solar prediction problems, as numerical weather predictions 
are given over a grid of latitude and longitude coordinates and, therefore, there is a spatial 
structure in the information used as input of the models. 
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Another reasonable extension of the research carried out here will be to compare the 
accuracy of the uncertainty intervals built following the approach suggested here versus 
error intervals computed using ensemble weather prediction as the one from the Global 
Ensemble Forecast System [82], which provides 11 separate forecasts, or ensemble mem-
bers, and therefore allows to build 11 diferent predictions and compute error intervals by 
counting how many of these 11 predictions fall within a specifc range, in similar fashion 
to the methodology proposed in [86]. 

Finally, regarding selection of distribution parameters, like κ and λ parameters in the 
Weibull distribution, two alternatives to the approach followed in this work could be tested. 
First, instead of applying Maximum Likelihood Estimation, MLE, using cross-validation 
residuals of the most generic model analyzed in our experiments, which is the classical ϵ-
SVR model, a nonparametric model like Random Forest, which does not make asumptions 
regarding noise distribution on the data, could have been applied and its corresponding 
cross-validation residuals employed in the MLE formulations. A second alternative would 
have been to just consider these parameters as additional hyperparameters and select their 
optimal values by the zoom in grid search algorithms described in Section 4.2. 

We plan to continue our research in the future studying these and other possible lines 
of further research. 
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Appendix A 

Appendix: Author’s Publications 

The research carried out during the elaboration of this thesis has lead to the following 
publications: 

A.1 Journals 

1. Prada, J., & Dorronsoro, J. R. (2018). General noise support vector regression with 
non-constant uncertainty intervals for solar radiation prediction. Journal of Modern 
Power Systems and Clean Energy, 6(2), 268-280. IF: 2,85. Q2 (48/127 in Renewable 
Energy, Sustainability and the Environment). 

2. Dı́az-Vico, D., Prada, J., Omari, A., & Dorronsoro, J. R. (2020). Deep support 
vector neural network, Integrated Computer-Aided Engineering, 27(4): 389-402. IF: 
4,87, Q1 (28/112 in Computer science, interdisciplinary applications). 

A.2 Conference Papers 

1. Dı́az-Vico, D., Prada, J., Omari, A., & Dorronsoro, J. R. (2019, June). Deep Sup-
port Vector Classifcation and Regression. In International Work-Conference on the 
Interplay Between Natural and Artifcial Computation (pp. 33-43). Lecture Notes 
in Computer Science 11487, Springer. Core C. 

2. Prada, J., & Dorronsoro, J. R. (2017, June). General noise SVRs and uncertainty 
intervals. In International Work-Conference on Artifcial Neural Networks (pp. 734-
746). Lecture Notes in Computer Science 10306, Springer. Core B. 

3. Prada, J., & Dorronsoro, J. R. (2015, June). SVRs and uncertainty estimates in wind 
energy prediction. In International Work-Conference on Artifcial Neural Networks 
(pp. 564-577). Lecture Notes in Computer Science 9095S. Springer. Core B. 

4. Torres, A., Prada, J., & Dorronsoro, J. R. (2014). Nowcasting Meteorological Read-
ings for Wind Energy Prediction. Proceedings of the 2014 Conference of the European 
Wind Energy Association, Barcelona March 11-13, 596-605. 
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A.3 Other Publications with no Connection to Thesis 

1. Prada, J., Gala, Y., & Sierra, A. L. (2021). COVID-19 Mortality Risk Prediction 
Using X-Ray Images. International Journal of Interactive Multimedia & Artifcial 
Intelligence, 6(6). IF: 4,94. Q2 (48/145 in Computer Science, Artifcial Intelligence) 

2. Prada, J. (2015, July). Predicting with Twitter. In 2nd European Conference on 
Social Media ECSM (pp. 734-746). ACPI. 
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Appendix: AMS solar contest 
dataset 

Table B.0.1: Kaggle AMS solar contest dataset variables and their corresponding units. 

Variable 

apcp sfc 

dlwrf sfc 

dswrf sfc 

pres msl 

pwat eatm 

spfh 2m 

tcdc eatm 

tcolc eatm 

tmax 2m 

tmin 2m 

tmp 2m 

tmp sfc 

ulwrf sfc 

ulwrf tatm 

uswrf sfc 

Description 

3-Hour accumulated precipitation at the surface 

Downward long-wave radiative fux average at the surface 

Downward short-wave radiative fux average at the surface 

Air pressure at mean sea level fux average at the surface 

Precipitable Water over the entire depth of the atmosphere 

Specifc Humidity at 2 m above ground 

Total cloud cover over the entire depth of the atmosphere 

Total column-integrated condensate over the entire atmos 

Max. Temperature over the past 3 hours at 2 m above the ground 

Min. Temperature over the past 3 hours at 2 m above the ground 

Current temperature at 2 m above the ground 

Temperature of the surface fux average at the surface 

Upward long-wave radiation at the surface 

Upward long-wave radiation at the top of the atmosphere 

Upward short-wave radiation at the surface 

Units 

−2kg m 

−2W m 

−2W m 

Pa 

−2kg m 

kg kg−1 

% 

−2kg m 

K 

K 

K 

K 

−2W m 

−2W m 

−2W m 
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