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Abstract: Optical chemosensors caused a revolution in the field of sensing due to their high specificity,
sensitivity, and fast detection features. Imidazole derivatives have offered promising features in the
literature as they bear suitable donor/acceptor groups for the selective analytes in the skeleton. In
this work, an isoindole-imidazole containing a Schiff base chemosensor (1-{3-[(2-Diethylamino-
ethylimino)-methyl]-2-hydroxy-5-methyl-phenyl}-2H-imidazo[5,1-a]isoindole-3,5-dione) was de-
signed and synthesized. The complete sensing phenomena have been investigated by means of
UV-Vis, fluorescence, lifetime measurement, FT-IR, NMR and ESI-MS spectroscopic techniques. The
optical properties of the synthesized ligand were investigated in 3:7 HEPES buffer:DMSO medium
and found to be highly selective and sensitive toward Zn2+ ion through a fluorescence turn-on
response with detection limit of 0.073 µm. Furthermore, this response is effective in gel form also.
The competition studies reveal that the response of the probe for Zn2+ ion is unaffected by other
relevant metal ions. The stoichiometric binding study was performed utilizing Job’s method which
indicated a 1:1 sensor–Zn2+ ensemble. Computational calculations were performed to pinpoint the
mechanism of sensing.
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1. Introduction

Metal ions are deeply rooted in both environment and biological systems [1–4]. Al-
though required in many fundamental processes, their quantitative and qualitative analysis
is a critical measure because negative effects are associated if present in excess. In that
framework, optical chemosensors are the easiest way to detect analytes as they open the
door for cost–effective and fast detection methods [5–7]. Among optical chemosensors, flu-
orescent species are widely used for assessing ions due to their selectivity, high sensitivity,
and low detection ability [8–10].

The present contribution brings the focus towards the detection of Zn2+. That ion
is mostly found in biological systems along with other metal ions including Fe3+, Mg2+,
Mn2+ [11,12]. However, Zn2+ specifically participates in a wide range of cellular func-
tions in human body, e.g., cofactor of carbonic anhydrase and zinc-finger proteins (ZNFs),
DNA synthesis, RNA transcription, regulation of metalloenzymes, neurophysiology, and
apoptosis [13–17]. Zn2+ also plays a core role in brain functionality, a region that accu-
mulates the highest concentration (150 mM–300 nM) as part of the synaptic transmission
machinery [18–25]. Other fundamental biological actions of Zn2+ have been detected in
immune system and cell growth, cell division, proper development of neutrophils, and as
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natural killer cells [26–31]. As expected, negative effects appear if Zn2+ is out of the natural
ratio. Low levels of Zn2+ might lead to serious health concerns such us difficulty in wound
healing, alopecia, diarrhea, poor growth, dysfunction of the immune and nervous system
with congenital abnormalities and blood disorders, to cite only a few [32]. On the contrary,
accumulation of Zn2+ in our bodies might cause anemia, epilepsy, and Alzheimer’s dis-
ease [33]. As other ions, Zn2+ also impacts into environment, so that its bioavailability in
soil must be monitored. For instance, it has been shown that an excess in Zn2+ concentration
induces phytotoxic effect that are concomitant with the degradation of crop quality, which
in turn indirectly affects the human life [34–37]. Unfortunately, due to the filled d orbital
of Zn2+, its visual detection is still scarce [38,39]. The available chemosensors for Zn2+ are
limited to naphthalene [40], quinoline [41,42], coumarin [43], rhodamine [44], flavonol [45],
benzothiazole [46], phenanthroline [47], julolidine [48] building blocks. The determination
of Zn2+ remains an essential issue to ensure that its concentration is tuned at the optimal
biological and environmental level.

Up until now, the use of imidazole has been less exploited even if those organic
molecules containing heterocyclic moiety are excellent as both cation and anion sensor
signaling unit [49–51]. The acidic NH proton can interact with anion, whereas the nitrogen
atom present in the ring can bind the cations [52]. The commercial availability of imidazole
derivatives is a plus their use as chemosensors. Indeed, isoindole have been used in the
development of drugs [53–56].

Herein, we report a fused isoindole imidazole fluorescent Schiff base chemosen-
sor (1-{3-[(2-Diethylamino-ethylimino)-methyl]-2-hydroxy-5-methyl-phenyl}-2H-imidazo
[5,1-a]isoindole-3,5-dione), which is labelled as IIED. Our hypothesis is based on the ex-
ploitation of an imidazole scaffold with Schiff bases, which are widely used in the field
of metal ion detection [57–64]. The performed experimental and theoretical work demon-
strated that IIED can detect Zn2+ with a limit of 0.073 µM. Aiming at maximizing the use
of that new probe, its response in gel form was also assessed.

2. Results
2.1. Synthesis and Characterization

The probe IIED (1-{3-[(2-Diethylamino-ethylimino)-methyl]-2-hydroxy-5-methyl-
phenyl}-2H-imidazo[5,1-a]isoindole-3,5-dione) was synthesized by condensing 3-(3,5-Dioxo-
2,5-dihydro-3H-imidazo[5,1-a]isoindol-1-yl)-2-hydroxy-5-methyl-benzaldehyde (compound 2)
and N,N-Diethylethylenediamine. Compound 1 (1-(2-Hydroxy-5-methyl-phenyl)-2H-imidazo
[5,1-a]isoindole-3,5-dione) was prepared from the standard procedure available elsewhere
(Figure S1) [65]. Compound 2 was prepared by Duff reaction as previously reported by
Chang et al. [66]. In the final step reaction, the Schiff base condensation product IIED was
found in a powdery light orange form with a percentage of yield 57.8% (Scheme 1). The
preparation of compound 1 and compound 2 were monitored by 1H NMR spectroscopic
studies (Figures S1 and S2). The final step compound IIED were characterized by 1H NMR,
13C NMR, FT–IR, ESI–MS spectroscopic study (Figures S3–S6). FT-IR spectrum confirms the
peak at 1642 cm−1 for the generation of imine bond (C=N). The 1H NMR peak at δH 8.53 is
for aldehydic proton signal, δH 7.81–7.31 peaks are for the aromatic protons and and δH 3.6,
2.6, 2.5, 2.2, 0.95. peaks appeared for aliphatic protons. ESI-MS spectrum shows peak at 419.22
amu for [C24H27N4O3]+species. Further synthetic details can be found in Section 3 and in the
Supporting Information.



Molecules 2022, 27, 2859 3 of 15Molecules 2022, 27, x FOR PEER REVIEW 3 of 24 
 

 

 
Scheme 1. Synthetic procedure of IIED. 

2.2. Photophysical Studies of IIED towards Zn2+ 

The entire spectral behaviour was assessed in 3:7 HEPES buffer:DMSO medium (Fig-
ure 1). The UV–Visible spectra of the probe IIED (10–5 M) show peaks at 405 nm and 480 
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Zn2+, Hg2+ ions a new peak at 467 nm had appeared for these three cations (Figure S8). 
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to IIED. 

The UV–Visible titration experiment of IIED was carried out for Zn2+ by the gradual 
addition of Zn2+ up to 2.5 μM. The absorbance peak at 467 nm gradually increased with 
the presence of isosbestic point at 419 nm which indicates that only one equilibrium is 
present between the IIED and IIED in presence of Zn2+ (Figure 2). 

Scheme 1. Synthetic procedure of IIED.

2.2. Photophysical Studies of IIED towards Zn2+

The entire spectral behaviour was assessed in 3:7 HEPES buffer:DMSO medium
(Figure 1). The UV–Visible spectra of the probe IIED (10−5 M) show peaks at 405 nm
and 480 nm. The UV–Visible spectra of the probe in presence of various metal ions (Na+,
K+, Ca2+, Mg2+, Hg2+, Ni2+, Fe3+, Cu2+, Co2+, Cd2+, Zn2+, Mn2+, Pb2+, Al3+, Cr3+) were
recorded. The probe IIED changes its appearance from colorless to very pale yellow in
the presence of Cu2+, Zn2+, Hg2+ ions a new peak at 467 nm had appeared for these three
cations (Figure S8).
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Figure 1. The changes under UV light (above)and day light (below)after addition of various cations
to IIED.

The UV–Visible titration experiment of IIED was carried out for Zn2+ by the gradual
addition of Zn2+ up to 2.5 µM. The absorbance peak at 467 nm gradually increased with the
presence of isosbestic point at 419 nm which indicates that only one equilibrium is present
between the IIED and IIED in presence of Zn2+ (Figure 2).
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Figure 2. Absorbance titration spectra of IIED (10−5 M) in the presence of various concentrations
of Zn2+ (up to 2.5 equiv.). Upward arrow indicates gradual increase of absorption at 467 nm with
increasing concentration of Zn2+. [Inset: Absorbance of IIED vs. [Zn2+] plot at 467 nm].

Benesi–Hildebrand (B–H) relation has been subsequently combined with the absorp-
tion titration spectral outputs according to Equation (1) [67]:

1
(A−A0)

=
1

{K(Amax −A0)[C]} +
1

(Amax −A0)
(1)

where, A0 is the absorbance of ligand IIED only, A is the observed absorbance at that
distinct wavelength in the presence of a particular concentration of the metal ion [C], Amax
is the maximum absorbance value of the complex formed. K is the association constant
(M−1) which was calculated from the slope of the linear plot and [C] is the concentration
of the Zn2+ ion added during titration studies. The linear fit of the B–H plot of 1/(A −
A0) vs. 1/[Zn2+] indicates 1:1 complex formation (Figure S12) between IIED and Zn2+ and
association constant was found to be 1.2× 104 M−1 for absorbance. The stoichiometric ratio
using absorbance value was further confirmed by Job’s plot analyses. The molar fraction
of the ligand was shown the highest value 0.51, which also indicates 1:1 stoichiometry
between Zn2+ and IIED (Figure S17). All these accumulated measures back up that the
novel probe accommodates one Zn2+ ion only, an experimental finding that guide our
molecular models.

A larger dissimilarity is observed for the fluorescence regime. We first confirmed that
the emission spectra of the probe IIED (10−6 M) show no peak intensity (non–fluorescent)
upon excitation at 480 nm. The emission spectra of the probe was subsequently measured in
presence of all selected metal ions (Na+, K+, Ca2+, Mg2+, Hg2+, Ni2+, Fe3+, Cu2+, Co2+, Cd2+,
Zn2+, Mn2+, Pb2+, Al3+, Cr3+). Emission signatures were recorded in 3:7 HEPES buffer
solution:DMSO. Under UV light the probe shows dark to green emission upon addition of
Zn2+. This optical response can be recognized by naked eye, a result that was not observed
with any other ion. Such qualitative conclusion was confirmed by a quantitative analysis
of the emission signatures. The probe IIED turns on fluorescence intensity at 558 nm
(λex = 480 nm) in the presence of Zn2+ ion only, among other cations mentioned above. It
should be underlined that a complete competitive study in emission had been performed
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with IIED (Figures S9 and S10). The use of our probe with other metal ions demonstrated
the selective output for Zn2+.

The fluorescence titration of IIED in presence of an increasing concentration of Zn2+

had been performed by the gradual addition of Zn2+ up to 25 µM in 3:7 HEPES buffer
solution:DMSO. As illustrated in Figure 3, the 558 nm characteristic peak of the probe with
Zn2+ directly correlates with Zn2+ concentration.

Molecules 2022, 27, x FOR PEER REVIEW 7 of 24 
 

 

in presence of all selected metal ions (Na+, K+, Ca2+, Mg2+, Hg2+, Ni2+, Fe3+, Cu2+, Co2+, Cd2+, 
Zn2+, Mn2+, Pb2+, Al3+, Cr3+). Emission signatures were recorded in 3:7 HEPES buffer solu-
tion:DMSO. Under UV light the probe shows dark to green emission upon addition of 
Zn2+. This optical response can be recognized by naked eye, a result that was not observed 
with any other ion. Such qualitative conclusion was confirmed by a quantitative analysis 
of the emission signatures. The probe IIED turns on fluorescence intensity at 558 nm (λex 
= 480 nm) in the presence of Zn2+ ion only, among other cations mentioned above. It should 
be underlined that a complete competitive study in emission had been performed with 
IIED (Figures S9 and S10). The use of our probe with other metal ions demonstrated the 
selective output for Zn2+. 

The fluorescence titration of IIED in presence of an increasing concentration of Zn2+ 
had been performed by the gradual addition of Zn2+ up to 25 μM in 3:7 HEPES buffer 
solution:DMSO. As illustrated in Figure 3, the 558 nm characteristic peak of the probe with 
Zn2+ directly correlates with Zn2+ concentration. 

 
Figure 3. Emission titration spectra of IIED (10–6 M) in presence of various concentrations of Zn2+ 
(up to 25 equiv.). Upward arrow indicates gradual increase of emission at 558 nm with increasing 
concentration of Zn2+ ion (λex = 480 nm). [Inset: Emission of IIED vs. [Zn2+] plot at 558 nm]. 

The emission spectral response towards IIED in presence of various counter anions 
as salts of Zn2+ (Zn(ClO4)2, ZnCl2, ZnBr2, Zn (NO3)2 and Zn(OAc)2) shows peaks at 558 nm, 
but the intensity varies slightly indicating negligible counter anion effect (Figure S11). 
This is a remarkable finding: IIED is proved to be versatile enough to reveal the presence 
of Zn2+ with no restriction on the parent-salt pair. 

Consistently with absorption titration, emission titration spectral output was com-
bined with a Benesi–Hildebrand (B–H) equation to find out the association constant (K) 
upon the complexation of IIED with Zn2+ ion according to Equation (2): 

 <!-- MathType@Translator@5@5@MathML2 (no 
namespace).tdl@MathML 2.0 (no namespace)@ --> 

<math> 

 <semantics> 

(2)

Figure 3. Emission titration spectra of IIED (10−6 M) in presence of various concentrations of Zn2+

(up to 25 equiv.). Upward arrow indicates gradual increase of emission at 558 nm with increasing
concentration of Zn2+ ion (λex = 480 nm). [Inset: Emission of IIED vs. [Zn2+] plot at 558 nm].

The emission spectral response towards IIED in presence of various counter anions
as salts of Zn2+ (Zn(ClO4)2, ZnCl2, ZnBr2, Zn (NO3)2 and Zn(OAc)2) shows peaks at 558
nm, but the intensity varies slightly indicating negligible counter anion effect (Figure S11).
This is a remarkable finding: IIED is proved to be versatile enough to reveal the presence
of Zn2+ with no restriction on the parent-salt pair.

Consistently with absorption titration, emission titration spectral output was combined
with a Benesi–Hildebrand (B–H) equation to find out the association constant (K) upon the
complexation of IIED with Zn2+ ion according to Equation (2):

1
FX − F0

=
1

Fmax − F0
+

1
K[C]

(
1

Fmax − F0

)
(2)

where F0 is the emission of ligand IIED only, Fx is the emission of ligand at an intermediate
Zn2+ concentration, and Fmax is the maximum emission value of the complex formed.
K is the binding constant and [C] is the concentration of Zn2+ ions. According to B–H
expression, the measured emission [(Fmax – F0)/(Fx – F0)] at 558 nm varied as a function of
1/[Zn2+] in a linear relationship, also indicated the formation of 1:1 stoichiometry between
Zn2+and probe IIED. The association constant is found to be 3 × 104 M−1 for emission
(Figure S13), a results that is consistent with the predicted value by using absorbance, e.g.,
1.2 × 104 M−1 (see above).
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The fluorescence quantum yield (Φ) was determined using quinine sulphate in 0.05 M
H2SO4 as reference using the following Equation (3) [68]:

φs = φR
As

AR
× AbsR

AbsS
×

η2
S

η2
R

(3)

where A indicates the integrated area under the fluorescence curve, Abs stand for ab-
sorbance, η is the refractive index of the medium and Φ is the fluorescence quantum yield.
Subscripts S and R stand for the respective specification for the studied sample and ref-
erence, respectively. The probe exhibits low fluorescence emission peak at 558 nm with
quantum yield Φ = 0.036 upon excitation at 480 nm but in Zn2+ environment the quantum
yield rises to Φ = 0.69.

The emission intensity of probe IIED in presence of Zn2+ was assessed at several pH
values in the range of 4–10. In acidic region (pH < 6.0) there is no fluorescence enhancement
in presence of Zn2+. On the contrary, in basic region (pH > 9.0) emission intensity gradually
deceases. The effectivity of Zn2+ was observed in the range pH 7–8 and highest in pH 8.
These findings suggest that the complexation phenomenon is optimal (i.e., the most stable)
at the physiological pH region (Figure S14).

The limit of detection has been evaluated from the titration experiments for both
absorption and emission study, using the Equation (4):

DL = K× σ

S
(4)

where a threshold of K = 3 is imposed to ensure an acceptable signal-to-noise rate, and σ is
the standard deviation of the blank solution and S is the slope of the calibration curve [69].
The calculated limit of detection for emission study of IIED with Zn2+ was 0.073 µM while
for the absorption regime was 0.29 µm (Figures S15 and S16).

The fluorescence study is eventually completed by recording lifetime for IIED parent
probe and its IIED + Zn2+ counterpart. For the records, these measure have been carried
out in 3:7 HEPES buffer solution:DMSO at 480 nm, 298 K. Average fluorescence lifetimes
(τavg) were calculated from the decay times and pre–exponential factors using the following
Equation (5):

τavg =
∑αiτ

2
i

∑αiτi
(5)

where αi is the pre–exponential factor corresponding to the ith decay time constant, τi.
The radiative decay rate constant kr and the total nonradiative decay rate constant

knr of IIED and IIED + Zn2+ complex was calculated according to the equations τ−1 = kr
+ knr and kr = Φf/τ. The fluorescence decay curves for IIED and its Zn2+ complex were
fitted by three exponential functions. From the decay curve and fitting data, the average
fluorescence lifetime (τ) of IIED and IIED + Zn2+ were estimated 2.74 ns and 3.65 ns. The
values of all the fitting data were shown in Figure 4 and Table S1. The values of radiative
and nonradiative decay rate constants for IIED indicating the nonradiative decay is the
predominant process in the excited states which goes indeed reverse in the presence of Zn2+

where radiative decay is the predominant one, resulting in a strong fluorescence response.



Molecules 2022, 27, 2859 7 of 15Molecules 2022, 27, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 4. Time-resolved fluorescence decay of IIED in the absence and presence of Zn2+ in 3:7 HEPES 
buffer:DMSO solvent at 480 nm. 

2.3. Theoretical Calculations 
As illustrated in Figure 5, two alternative structures become possible upon the Zn2+ 

coordination to IIED, labeled as L(N) and L(NH) according to their protonation state. De-
spite all accumulated experimental evidence, the participation of -NH proton in the bind-
ing of Zn2+ is not confirmed by the experimental optical signatures. 

 
Figure 5. Left panel: parent IIED probe. Right panel: Complexes with Zn2+ as L(N) and L(NH) forms, 
displayed on the top and bottom, respectively. 

Density functional theory (DFT) and time dependent-DFT (TD-DFT) calculations 
were performed to determine the main form responsible of the measured photophysical 
activity. All structures were first fully optimized without imposing any symmetry re-
striction. We considered both the neutral (LN-) and the N-deprotonated (LNH) species 
for the free ligand. The computed pKa was in the range of 7.2–7.4. Such a value is signifi-
cantly below the expected range for lactams (pKa = 11–18), which can be explained by the 
stabilization of the N- site by a hydrogen bond with the phenol group. This hypothesis 
was confirmed by analyzing a conformer where the hydrogen bond formation was im-
possible, leading to a pKa of ~15. We further checked that the O-deprotonated compound 
was less stable in DMSO solution than the N-deprotonated one. The spectra of both the 
neutral and deprotonated ligands were computed using the optimized structures in the 
gas phase (Figure 6). A phenomenological broadening of 0.25 eV was applied to the 30 
computed transitions. 

Figure 4. Time-resolved fluorescence decay of IIED in the absence and presence of Zn2+ in 3:7 HEPES
buffer:DMSO solvent at 480 nm.

2.3. Theoretical Calculations

As illustrated in Figure 5, two alternative structures become possible upon the Zn2+

coordination to IIED, labeled as L(N) and L(NH) according to their protonation state.
Despite all accumulated experimental evidence, the participation of -NH proton in the
binding of Zn2+ is not confirmed by the experimental optical signatures.
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Figure 5. Left panel: parent IIED probe. Right panel: Complexes with Zn2+ as L(N) and L(NH)
forms, displayed on the top and bottom, respectively.

Density functional theory (DFT) and time dependent-DFT (TD-DFT) calculations were
performed to determine the main form responsible of the measured photophysical activity.
All structures were first fully optimized without imposing any symmetry restriction. We
considered both the neutral (LN-) and the N-deprotonated (LNH) species for the free ligand.
The computed pKa was in the range of 7.2–7.4. Such a value is significantly below the
expected range for lactams (pKa = 11–18), which can be explained by the stabilization of
the N- site by a hydrogen bond with the phenol group. This hypothesis was confirmed
by analyzing a conformer where the hydrogen bond formation was impossible, leading
to a pKa of ~15. We further checked that the O-deprotonated compound was less stable
in DMSO solution than the N-deprotonated one. The spectra of both the neutral and
deprotonated ligands were computed using the optimized structures in the gas phase
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(Figure 6). A phenomenological broadening of 0.25 eV was applied to the 30 computed
transitions.
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Our simulations indicate that both the neutral and deprotonated forms give rise to
the experimental spectrum. Concretely, the deprotonated form leads to a low energy band,
~0.4 eV (~70 nm) below the neutral form, and it is consistent with the shoulder observed
in the experimental spectrum around 500 nm. Indeed, a semi-quantitative agreement is
achieved by combining both spectra with the deprotonated form scaled by 0.5. This scaling
corresponds to a dissociation fraction of 0.333. Considering that the pH is buffered at 7.4,
such a ratio would correspond to a pKa = 7.7, which agrees very well with our theoretical
estimation.

We next turned to the complexes, considering in all cases that Zn binds to the phenol
oxygen, replacing the hydrogen. In contrast, the amide site is considered both protonated
(LNH) and deprotonated (LN-). The latter lead to a tetradentate chelate, while LNH binds
Zn cation by three sites, as shown in Figure 7.
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The spectra for the free and complex compounds with N-protonated sites is shown
in Figure 8. The complex shows a large pKa (>15), typical for lactams; the contribution
of the N-deprotonated complex is consequently not expected. Although the predicted
shift is smaller than the observed signatures, which is the consequence of introducing the
metal Zn into the model system, our simulations correctly mimic a red-shift of the complex
compared to the free ligand, agreeing with the experimental observation.
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Figure 8. Experimental and computed absorption spectra of the two possible compounds upon Zn2+

complexation, e.g., L(N) and L (NH), displayed with blue and red lines, respectively.

2.4. Sensing Mechanism

The absorption profile of Compound 1 was originally characterized by Ray et al.,
which exhibits two absorption peaks at 320 nm and 395 nm [70]. IIED is a modified version
of Compound 1 where we introduced an imine (-C=N) moiety and also increasing the
conjugation. As a consequence, these absorption peaks are red shifted at 405 nm and 480 nm
in the novel IIED probe. That trend is correctly reproduced by our TD-DFT calculations. As
discussed above, the IIED showed no emission band in 3:7 HEPES buffer:DMSO solution
upon excitation at 480 nm while fluorescence is switched on after Zn2+ coordination. That
dissimilarity in the emission arises from a ESIPT (Excited State Intramolecular Proton
Transfer) process. Indeed, earlier works demonstrated that probes with hydroxy-imine
moieties are associated to lower fluorescence because of ESIPT equilibria [71]. Such scenario
is correctly reproduced by our computational approach, which shows that the spectroscopic
transition is characterized by a partial transfer of electron density from the phenolic oxygen
to the imine nitrogen, as concluded from the inspection of the molecular orbitals involved
(Figure S19). That electronic rearrangement activates the ESIPT and consequently reduces
fluorescence. The substitution of the proton by the metal in the IIED + Zn2+ complex
cancels the ESIPT and results in the chelation enhanced fluorescence (CHEF) phenomena
at 558 nm.

2.5. Reversibility and Application in Gel Phase

Our main goal is to report a probe with application in real scenarios. A critical
prerequisite for optimizing the use of IEED, which was performed by using sodium salt of
ethylenediaminetetraacetic acid (Na2EDTA) solution in emission spectra. In the presence
of EDTA, the 558 nm peak of the IIED + Zn2+ complex had been quenched and reappear
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upon addition of Zn2+ solution again (Figure S18). The process has been repeated for few
cycles, indicating a reversible coordination between IIED and Zn2+.

Finally, we have also checked the stability of our probe in gel medium. The gel has
been prepared as the method described in literature using Poloxamer 407 [72,73]. In this
gel phase also the probe IIED shows change from dark to green fluorescence under UV
light in presence of Zn2+ and the naked eye output is shown in Figure 9.
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3. Materials and Methods
3.1. Materials and Instruments

Ninhydrin, p–cresol, HMTA (Hexamethylenetetramine), TFA (Trifluoroacetic acid),
N, N-Diethylethylenediamine was purchased from Sigma–Aldrich, Kolkata, India, urea
purchased from Merck, Kolkata, India and all were used as received. The salts of the cations
were also purchased from Sigma Aldrich, Kolkata, India. Solvents for the syntheses were
purchased from commercial sources and used as received. 1H and 13C NMR spectrum
were recorded in DMSO-d6 with TMS as internal standard on a Bruker, AV300 Supercon
Digital NMR system with dual probe. The FT–IR spectra were recorded from KBr pellets
in the range of 400–4000 cm−1 on a Perkin-Elmer Spectrum 100 spectrometer. Elemental
analyses for C, H and N were performed on a Perkin–Elmer 2400 II analysers. The ESI-
MS experiments were performed on Waters Xevo G2-S QTOF mass spectrometer. The
absorption and emission spectral studies were performed on a Hitachi UV–Vis U–3501
spectrophotometer and a Perkin–Elmer LS55 fluorimeter, respectively. Time-resolved
fluorescence lifetime measurement were performed in Horiba Jobin Yvon Fluorocube-01-
NLtime-correlated single photon counting (TCSPC) set up with picosecond delta diode
(DD–375L) operating at λex = 480 nm and a repetition rate of 1 MHz as excitation source.

3.2. Computational Details

Computational methods were implemented to predict the absorption spectra of both
the new IIED probe as well as two the possible complexes after Zn2+ complexation, which
were labelled as L(N) and L(NH) depending on their protonation state. These calculations
were conducted in the framework of the density functional theory (DFT) and the time
dependent (TD-DFT) schemes by using the PCM-PBE0/cc-pVTZ level of theory [74,75].
For the records, the addition of a basis with pseudopotentials was also assessed. The use
of LANL2TZ+ on the Zn2+ center has a minor effect on the structures, e.g., predicts the
same chelation as that not using pseudopotentials. The nature of all located structures was
confirmed as real minima (stable) forms by analyzing the associated vibrational modes.
The absence of imaginary frequencies confirm that all optimized structures are real minima
in the potential energy surface rather than saddle points. Geometries were eventually used
to assess the vertical transition energies used for predicting the absorption spectra of these
species. The pKa values were evaluated at two levels of theory. Our first choice is based on
the protocol described by Rossini et al. [76], computing frequencies at B3LYP/6-31G(d,p)
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and single point energies with PCM at B3LYP/cc-pVQZ [77]. For the free energy of the
proton in gas phase a value of 6.28 kcal/mol was used, while for the solvation free energy
of the proton in DMSO, we adopted the theoretical estimation provided by Rossini et al.,
−266.4 kcal/mol [76]. The empirical pKa prediction module by Schrödinger is also used as
a second theoretical framework [78–80]. These schemes yield to very similar pKa values,
7.2 and 7.4, respectively. All DFT and TD-DFT calculations were performed with Gaussian
16 [81].

3.3. Synthesis of the Ligand

The IIED synthesized in three simple steps. The 1-(2-Hydroxy-5-methyl-phenyl) -2H-
imidazo[5,1-a]isoindole-3,5-dione (Compound 1) was prepared by the procedure found in
literature [65]. The 3-(3,5-Dioxo-2,5-dihydro-3H-imidazo[5,1-a]isoindol-1-yl)-2-hydroxy-5-
methyl-benzaldehyde (Compound 2) was prepared by Duff reaction mechanism by HMTA
and TFA found in literature [66]. In methanolic solution of Compound 2 (160 mg, 0.5
mmol), N,N-Diethylethylenediamine (72 µL, 0.5 mmol) was added dropwise and the color
changes from yellow to orange. Then the solution was refluxed for 4 hrs and light orange
colored precipitate was filtered through suction filtration and air dried. yield = 57.8% (120
mg, 0.29 mmol). Anal. calc. for C24H26N4O3: C, 68.88; H, 6.26; N, 13.39; Found: C, 68.7; H,
6.24; N, 13.4; 1H NMR (300 MHz, DMSO-d6, 290 K, TMS) δH(ppm): 8.53 (s, 1 H), 7.81−7.59
(m, 2 H), 7.45−7.31 (m, 4 H), 3.6(t, 2 H), 3.51 (s, −NH), 2.6 (t, 2 H), 2.52(q, 4 H), 2.27(s,
3 H), 0.95(m, 6 H); 13C NMR (75 MHz, DMSO–d6) δC: 160.58, 158.79, 156.03, 142.37, 129.38,
128.97, 128.48, 127.47, 126.52, 122.62, 121.67, 120.97, 117.65, 115.63, 113.00, 111.85, 111.82,
49.88, 48.14, 42.66, 26.18, 24.95, 15.58, 7.24; FT–IR (KBr, cm−1):3518, 3237, 2966, 1762, 1682,
1642, 1607, 1441, ESI-MS (m/z), ion Calculated: 418.20 amu; Found: 419.22 amu [IIED +
H+].

3.4. Sample Preparation for Spectroscopic Studies

Spectroscopy graded solvents were used for preparing all the stock and working
solutions. Spectroscopy graded DMSO were used for the stock solution preparation and
mixture of DMSO with HEPES buffer (pH = 7.4, 25 mM) was used in the spectral studies.
The absorption and emission experiments of probe IIED was carried out in HEPES buffer:
DMSO (3:7, v/v) mixture. All experiments were carried out at room temperature of 298 K.
The stock solutions of the cations were prepared by the perchlorate salts. In UV–Visible
and fluorometric experiment, a stock solution of 10−3 (M) and 10−4 (M) IIED was filled
in a quartz optical cell of 1.0 cm optical path length to achieve a final concentration of the
solution of IIED (10−5 (M) and 10−6 (M)) in 2000 µL. After 1 min, each spectral data was
recorded with the addition of cation solution by using micropipette.

4. Conclusions

In this paper, we have designed, and synthesized an isoindole-imidazole skeleton
based chemosensor that is highly selective for Zn2+ in 3:7 HEPES buffer: DMSO medium.
The probe itself shows a weak fluorescence intensity (quantum yield, 0.036), and the ad-
dition of zinc ion enhanced the fluorescence intensity 19-fold (quantum yield, 0.69). The
competitive study confirms high selectivity for Zn2+ against other common cations. The
detection limit for zinc ion was 0.073 µm, which is significantly lower than the WHO guide-
line (76.5 mM). Addition of EDTA to the probe: Zn2+ ensemble quenched the fluorescence,
indicating the reversibility of Zn2+ binding. Zn2+ titrations and Job’s plot analysis indi-
cated the formation of a 1:1 probe: Zn2+ complex with a binding constant of 3 × 104 M−1.
The sensing application has been expanded successfully to gel form also. DFT/TD-DFT
calculations also pointed towards the sensing mechanism along with the probable binding
mode. If low concentrations of Zn2+ are required, our recommendation is to exploit the
emission ability of the IIED probe.
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