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A B S T R A C T   

The sustained increase in air traffic during the last decades represents a challenge to the air traffic management 
system in general. Thus, it is of utmost importance to develop strategies that can safely increase air traffic 
controller’s handling capacity without increasing task related strain. This research proposes and validates a 
predictive model of air traffic controller’s mental workload. Our model is based on COMETA, a model that 
considers the effect of the most relevant air traffic events in the cognitive complexity of the task. In the version of 
COMETA used in this study we include the online effects of the controllers’ actions on the state of the airspace. To 
validate the model, a laboratory experiment was conducted using a simulator to precisely control the task 
workload factors. We used traffic density and airspace complexity as experimental factors because they are the 
most commonly acknowledged sources of mental workload in air traffic control literature. The measured 
dependent variables were selected because they have been found to correlate with mental workload in ATC tasks, 
namely, ISA and NASA indexes, electrodermal activity, heart rate, and different performance measures. The 
results demonstrate that our model can successfully predict air traffic controllers’ mental workload across a wide 
range of task workload conditions. In addition, our results provide a clear portrait of the complex interactions 
between the different sources of task workload and their effects on mental workload. In the conclusion we 
consider the limitations and opportunities for the application of this model to improve policies.   

1. Introduction 

Air traffic controllers (ATCOs) perform a highly demanding task with 
a crucial role on the functioning of the air traffic management -ATM- 
system (Durso and Manning, 2008; Hilburn, 2004; Hopkin, 2017). In 
addition, the sustained increase in air traffic during the last decades 
poses a challenge to the ATM system (ICAO International Civil Aviation 
Organization, 2007; Matsumoto, 2007). Thus, increasing the aircraft 
handling rate has become a strategic milestone for current ATM systems, 
to which the ATCOs workload is the key limiting factor (Djokic et al., 
2010; EUROCONTROL, 2004). There are three fundamental approaches 
to achieve this goal: increase the pool of ATCOs, optimize workload 
distribution among the members of the pool, and increase the capacity 
of each ATCO to handle traffic. 

Increasing ATCOs handling capacity must be performed safely. For 

example, they may use assistive technologies and new ATM systems to 
relief the controller from part of the burden posed by the task. It is also 
possible to increase the ATCO handling capacity by optimizing the 
spatiotemporal workload distribution. These solutions have in common 
that they would benefit from a more precise understanding of mental 
workload in ATCOs (Aricò et al., 2017; Loft et al., 2007; Majumdar et al., 
2004; Metzger and Parasuraman, 2017; Mitchell, 2000; Mohammed and 
El Bekkaye, 2021). 

Thus, the objective of this study is to propose and validate a model of 
mental workload (MWL) that encompasses the most relevant sources of 
task workload (TWL) and the cognitive strategies that the ATCOs can use 
to deal with them. The proposed model considers the real time effects of 
the ATCO decisions on the dynamic evolution of the airspace. Such 
model can be helpful to predict and avoid the most complex situations in 
ATC tasks. To validate the model, we have performed an experimental 
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study using a simulated ATC task that allowed us to precisely manipulate 
the main sources of task workload. We next present an overview of the 
research on MWL in ATC. 

1.1. Workload in ATC 

Workload is a relatively recent concept that was introduced to 
explain the inability of human operators to cope with the requirements 
of a task (Gopher and Braune, 1984). It refers to a complex relational 
process that emerges from the multiscale interactions between a specific 
agent and the task being performed (Cain, 2007; Huey and Wickens, 
1993; Ibáñez-Gijón et al., 2017; Pagnotta et al., 2021). It is often 
considered as the effort that an agent has to exert in order to perform a 
task (Hart, 2006). In the study of physical workload, it is regarded as 
composed of two elements: the stress or TWL and the strain. Stress is 
conceived as the task demands independent of the agent, whereas strain 
is used to denote their impact on the agent. In this framework, MWL 
would refer to strain caused by cognitive tasks. However, applying this 
clear cut distinction is not so simple for tasks that involve more than bare 
physical effort (Wickens, 2008). Task demands cannot be meaningfully 
expressed independently of the specific agent, nor the agent skills can be 
understood as general purpose functions detached from the actual tasks 
in which they are used (Cain, 2007; Ibáñez-Gijón et al., 2017). 

The distinction between task and mental workload is nevertheless 
useful, as demonstrated by its daily use in standardization regulations. 
TWL is comparatively easier to measure because it is determined by the 
objective dimensions of the task. On the other hand, MWL is not a 
measurable quantity because it is the mental effort required to perform a 
certain task. One can only infer MWL by its effects on other processes, by 
asking the agent, or by observing the outcomes of the agent-task inter-
action. In addition, MWL is strongly dependent on previous experiences 
and can be dramatically affected by switches of the strategies used by 
the ATCOs or their situational awareness (Edwards et al., 2017; Endsley, 
1995). Therefore, the scientific study of MWL requires theoretical 
models to estimate MWL from detailed descriptions of TWL and expert 
knowledge of the strategies used to solve the task (Fürstenau and 
Radüntz, 2022; Mitchell, 2000). To accommodate the relational nature 
of workload, such models should attempt to be as specific as possible to 
the concrete agent-task system in interaction that brings about MWL, 
rather than detached universal problem solvers (Bingham, 1988). To 
anticipate, in this research we propose and validate a model of MWL 
based on integration of expert knowledge about ATC TWL and the 
cognitive processes that the ATCOs can use to reduce MWL. 

1.2. COMETA model of ATCO MWL 

COMETA (COgnitive ModEl for aTco workload Assessment) is a 
model developed by CRIDA to predict the ATCO MWL (Frutos et al., 
2019). Its starting point is the relationship between the controller’s 
cognitive system and the to-be-performed ATC tasks. Thus, the notion of 
workload proposed by COMETA goes beyond TWL features such as 
traffic or airspace structure, to include the amount of cognitive effort 
that is required to successfully perform the task on a context dependent 
way. COMETA equations attempt to quantify the impact of different 
events typical of ATC tasks on the complexity of the task. For example, a 
conflict between two aircrafts generates more complexity for smaller 
inter-aircraft distances. The air traffic events that are included in 
COMETA model are typical of enroute sectors (i.e., sectors without 
take-offs or landings): the intersection between standard routes, the 
presence of aircrafts in non-standard routes and aircrafts in evolution, as 
well as the conflicts between pairs of aircrafts. We provide a more 
detailed description of these equations in the Methods section. 

The main objective of MWL models in ATC like COMETA is to predict 
the best Demand and Capacity Balancing, so that they can support ATM 
planning (Frutos et al., 2019). Particularly, among the ATM function-
alities defined in the Pilot Common project adopted by the European 

Commission (Reg. EU 716/2014), COMETA complexity predictions 
based on ATCOs mental workload can allow mitigation strategies to be 
applied at local (ANSPs) and network levels. In general, models for 
Demand and Capacity Balancing optimization avoid online measures of 
the ATCOs interventions. This approach to MWL modelling is denomi-
nated open-loop because it is based on a-priori information about the 
traffic, airspace, and operational factors alone to generate predictions of 
MWL in advance (Loft et al., 2007). 

On the other hand, closed loop models analyze MWL as a dynamic 
interplay between the current TWL state and the actions of the ATCO 
when dealing with the scenario (Sperandio, 1971; Wee et al., 2018). An 
example of such models is the one developed by Loft and collaborators 
(2008). In this model, the ATCO is an adaptive element in the task dy-
namics, so that MWL is not only a function of the task demands, but it is 
modulated in feedback loops through the ATCO actions. Research on 
situational awareness can also be included among these closed loop 
models (Edwards et al., 2017; Endsley, 1995; Endsley and Smolensky, 
1998; Falkland and Wiggins, 2019). 

Closed loop models are not currently used to assist Demand and 
Capacity Balancing prediction because they tend to excessively 
complicate the process. However, closed loop models can provide more 
precise and realistic estimations of MWL that could enhance the pre-
dictive value of Demand and Capacity Balancing models and potentially 
improve ATM planning (Kostenko et al., 2016). In this sense, several 
authors highlighted the need for MWL models in ATC that consider the 
strategies and action of the ATCOs (Loft et al., 2007). 

The original version of COMETA (Frutos et al., 2019) is an open loop 
model because it does not explicitly include the effects of the actions of 
the ATCO. In this research, we propose an extension of COMETA model 
that can account for closed loop situations, and it is more adapted to 
predict the outcomes of the actual unfolding of ATC tasks. This is ach-
ieved by including a dynamic source of MWL generated by the conflicts 
between aircrafts. The evolution of this conflicts-related MWL is affected 
by the ATCOs intervention in the aircraft trajectories (note that all the 
other elements included in COMETA can be obtained a priori from the 
airspace planning). In addition, this study is the first to externally vali-
date the predictive power of COMETA models using the approach that 
we explain in the next sections. 

1.3. MWL model validation 

The validation of a MWL model requires as a starting point the 
rigorous and systematic definition and manipulation of TWL to anchor 
the predicted variations of MWL produced by the model on a solid 
ground (Chatterji and Sridhar, 2001; Mitchell, 2000; Reid, 1997; Suárez 
et al., 2022). Once such relationship has been stablished, we can 
externally validate a MWL model. As explained above, direct measure-
ment of MWL is not possible. Thus, to validate a model of MWL we 
require the use of different correlates of workload. Using a diversity of 
correlates is preferred to enhance the overall quality of the validation 
process (Young et al., 2015). In this study to validate our model we used 
the main empirical correlates of MWL identified in the ATC literature 
that could be measured unobstrusively. These correlates include sub-
jective, performance, and physiological measures, as detailed below. 

Subjective questionnaires in the form of rating scales have been 
widely used because they are easy to fill and they provide direct access 
to the perceived MWL. In fact, these questionnaires showed a strong 
relation with TWL and performance (Djokic et al., 2010), and they allow 
both instantaneous and after-task assessment. As Pagnotta et al. (2021) 
showed, the most used questionnaires in the field of ATC are the 
Instantaneous Self-Assessment technique (ISA, Jordan and Brennen, 
1992; Tattersall and Foord, 1996), which allows an at-the-moment 
assessment through a Likert scale, and the NASA-TLX (Hart, 2006; 
Hart and Staveland, 1988), which assesses the perceived workload 
through six subscales that are filled after finishing the task. It is 
important to mention that in the field of ATC, the NASA-TLX is often 

J. Ibáñez-Gijón et al.                                                                                                                                                                                                                           



Journal of Air Transport Management 108 (2023) 102378

3

used without the subscales weighting procedure, using only the raw 
evaluation of the six subscales, a procedure denominated NASA-TLX raw 
(Hart, 2006). 

Correlates of MWL based on performance or behavioral measures 
range from the number of clicks, as an index of the amount of interaction 
of the ATCO with the system (Shou and Ding, 2013), the number of 
interventions as changes in direction, speed, or altitude of the aircrafts 
(Metzger and Parasuraman, 2001), to success indexes like acceptance 
reaction time or clearances (Tobaruela et al., 2014). However, several 
studies showed that performance measures are not a direct index of 
MWL, as ATCOs can have a high level of MWL without an effect on their 
performance (Sperandio, 1971). The last behavioral measure used to 
predict MWL is eye-movements (Di Stasi et al., 2010; Marchitto et al., 
2016), although this technique was not used in this experiment. The 
specific set of behavioral and performance measures used in this 
experiment are described in the Methods section. 

The main physiological correlates of MWL are blood pressure, heart 
rate, breath rate, blink rate, pupil size, and electroencephalograms, as 
reviewed by Charles and Nixon (2019; see also Pagnotta et al., 2021). 
The technological evolution of electronic devices has led to wearable 
sensors that are non-intrusive even with regard to ATC tasks (Nixon and 
Charles, 2017). In this study we used a waistband to register heart rate 
(Socha et al., 2020) and electrodermal activity (EDA, Brookings et al., 
1996) as most accessible and promising candidate correlates of MWL. 

EDA signals are produced by the activity of sweat glands in response 
to the activation induced by the sympathetic nervous system. This signal 
can be decomposed in tonic and phasic components that have different 
time scales and are produced by different processes (Boucsein et al., 
2012). The tonic component of EDA signals are slow drifts in the base-
line skin conductance of diverse origin, whereas the phasic component is 
produced by the short time-scale response to external stimuli. In general, 
the time course of phasic responses involves a rapid rise in skin 
conductance after the stimulation, followed by an asymptotic relaxation. 

Heart rate variability (HRV) is a natural physiological phenomenon 
by which the time interval between heartbeats varies continuously. A 
certain level of variability in heart rate is necessary for a healthy cardiac 
physiology, and reduced levels of HRV has been found to correlate with 
higher risk of cardiac pathologies (Abildstrom et al., 2003). HRV is 
measured by the variation in the inter-beat interval (IBI). Using IBI as 
raw measure, a variety of methods is available to compute different 
features of HRV (Hughes et al., 2019; Vollmer, 2015). In the context of 
ATC tasks, research points to a reduction of HRV as a consequence of 
increased levels of MWL (Aricò et al., 2017; Pagnotta et al., 2021; 
Radüntz et al., 2021; Socha et al., 2020). 

Despite the aforementioned literature, examples are scarce that try to 
validate predictive models of MWL through a comprehensive assessment 
of MWL including subjective, performance, and psychophysiological 
measures. Outstanding exception are Kopardekar and Magyarits (2003), 
who contrasted several models of dynamic density against the subjective 
ratings of ATCOs and obtained a R2 of 0.40. In the case of the COMETA 
model, no external validation has been performed, but ISA estimates 
have been used to optimize parameters in the model (Frutos et al., 
2019). Results showed that such ISA-optimized COMETA model could 
provide accurate predictions of subjective estimations of MWL (Root 
Mean Standard Error [RMSE] >0.70, average Spearman correlation: 
0.85). 

Thus, the objective of this work is to perform a comprehensive lab-
oratory study of ATC tasks to externally validate the COMETA model as a 
predictor of MWL. To that end, we developed a set of ATC scenarios with 
systematic variations in TWL that constituted the experimental factors of 
our design: traffic density and airspace complexity. These scenarios 
simulated enroute ATC situations with varying levels of traffic and 
airspace complexity. Our hypothesis is that these variations of TWL will 
induce proportional levels of task difficulty and will produce simulta-
neous measurable effects on COMETA predictions of MWL and the MWL 
correlates. Considering the intertwined relationship between traffic 

density and airspace complexity, we also expect a significant interaction 
in the MWL in response to their combined effects (the scenarios are 
described in the Methods section). To assess the representativeness of 
COMETA as a predictor of MWL, we next perform a multiple correlation 
analysis between all the dependent variables with significant effects of 
TWL factors. Finally, we carry out a Principal Component Analysis 
(PCA) to better comprehend the actual effects of the TWL manipulations 
used in the experiment. 

2. Methods 

2.1. Ethics statement 

The local ethics committee approved the experimental protocol 
(UAM-CEI-110-2163). Participants signed informed consent forms 
before participating in the experiment. 

2.2. Participants 

A total of 24 university students participated in the study. Their 
mean age was 20 years (SD: 2.1). All of them had normal, or corrected to 
normal, vision. They had no previous experience with ATC simulation 
tasks. They were trained to use the ATC simulator during the study, as 
explained below in the procedure. 

3. Materials 

We used the ATC-Lab advanced simulator (Fothergill et al., 2009). 
This simulator reproduces a similar interaction to that of real opera-
tional environments to the extent that the main forms of interactions and 
the aircraft performance mimic real ATC environments. The main 
strength of this simulator is that it allows experimental control to 
standardize the scenarios and provides timed information of the actions 
of the participants and the state of the airspace. It includes the radar 
image of the airspace and allows the main interventions through 
data-com using keyboard and mouse (see Fig. 1). 

The actions allowed in the tested scenarios were aircrafts acceptance, 
changes in speed and height, and the use of helper information mech-
anisms such as a ruler and aircraft information labels. The scenarios 
simulated enroute operations without any operational disturbance in the 
airspace. The sector was a rectangle of 400 × 250 nmi (nautical miles). 
The altitude of the aircraft in the sector ranged between 24,000 and 
27,000 ft, although there were no limitations for altitude changes other 
than the ones imposed by the physics of the aircrafts. The aircraft fea-
tures were simplified by including only A320 models to facilitate the 
task because the participants were complete novices in ATC, and, 
therefore, naïve on the aircrafts features. Aircrafts speed was set at an 
average of 400 nmi per hour. 

Subjective estimations of MWL were measured through two ques-
tionnaires. ISA scales (from 1 to 7) were filled every 2 min during the 
task indicating the number verbally. Raw Nasa-TLX was filled with pen 
and paper after finishing each scenario. Participants worn an EMPATICA 
4E wristband (Empatica Inc., Italy) on the left wrist during the experi-
mental session, providing continuous measures of Blood Volume Pres-
sure (BVP, at 32 Hz sampling rate) and EDA (at 4 Hz sampling rate). 
EMPATICA software provided estimations of heart rate (at 1 Hz) and IBI 
using BVP signal. 

3.1. Design 

We implemented a factorial design with two independent factors: 
airspace and traffic TWL. The traffic TWL factor was the number of 
aircrafts under control, with two levels: 6 and 12 aircrafts. Across each 
level, scenarios were designed to maintain the same number of simul-
taneous aircrafts within the sector. The airspace TWL factor was the 
structural complexity of the airspace. It was defined on the basis of 
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features of the task contemplated by COMETA equations, in particular, 
the number of standard routes and crossing points, and the number of 
non-standard routes (to induce more workload, aircrafts in non-standard 
routes were always in evolution). Airspace TWL had three levels: low, 
medium, and high. 

The differential features of the scenarios are summarized in Tables 1 
and 2. The total occupations for all routes presented in Table 2 may be 
higher in a condition than the total traffic because some routes share 
segments. In addition, total traffic reflects the number of aircrafts that 
traverse the sector simultaneously, but the total number of aircrafts in a 
trial may be higher. A schematic representation of the scenarios is 
illustrated in Fig. 2. It is important to note that higher levels of airspace 
TWL imply more routes in which aircrafts are distributed and, thus, a 
reduced number of interactions between aircrafts for a fixed traffic 
density. As a consequence, we may expect a reduced or null increase in 
MWL between medium and high airspace TWL due to the compensatory 
effect of the increased overall distance between aircrafts, in particular 
for dense traffic. 

We introduced an additional factor in the experimental design to 
control for the effects of the spatial layout of the airspace. Each scenario 
was presented in 1 of 4 orientations with rotations of 0◦, 90◦, 180◦, and 

270◦. As a result, each participant performed the six scenarios produced 
by the 3 × 2 factorial design in one of the four orientations. The ori-
entations were semi-randomly assigned. Preliminary tests showed that 
the spatial rotation of the airspace had no effect on the dependent var-
iables. As consequence, to simplify the presentation of the results we 
have omitted this factor. 

3.2. Procedure 

The experiment started with a training session that lasted approxi-
mately 1 h, in which participants were trained in the use of the simu-
lator. First, they worn the wristband in their left wrist to warm it up, and 
proceed to read a 10 pages for-the-purpose manual on the functioning of 
the simulator. Afterwards, they were confronted with six short scenarios 
in which we tested the correct use of the information and the ATC ac-
tions. These included accepting aircrafts in the sector, checking aircrafts, 
securing separation standards (1000 ft vertical and 5 nmi horizontal), 
set actions/instructions when needed, and finally hand off the aircrafts 
to the next sector. 

After the training, participants performed six scenarios in a random 
order. Each scenario took 16 min to complete. Before each scenario, a 
60 s baseline measurement with the wristband was performed. Despite 
the lack of aircraft pilots in ATCLab Advanced simulator (the ATCO can 
set the instruction directly through data.com), we required participants 
to verbalize the instructions including the call signs and specific 

Fig. 1. Sample radar image from ATC Lab Advanced. 
Note. This image illustrates the first seconds of the scenario with high airspace and traffic TWL (see design section for details). 

Table 1 
Airspace TWL features of the scenarios.  

Feature Low Medium High 

Standard routes (#) 3 4 6 
Crossing points (#) 1 2 3 
Non-standard routes (#) 0 1 2 
Total route intersections (#) 1 4 9 

Note. This table summarizes the distribution among the different levels of 
complexity of task features that contribute more strongly to determine the dif-
ficulty of the task. Standard routes indicate routes that are commonly used by 
aircrafts in a region of the airspace, and are denoted by solid lines in ATClab 
simulator. Crossing points refer to points of the airspace in which two standard 
routes cross or merge. Non-standard routes indicate uncommon routes scarcely 
used and, contrary to standard routes, they are not depicted in ATClab simulator. 
Total route intersections indicate the total number of intersections between all 
the routes that cross the sector. 

Table 2 
Occupations of standard route segments in each scenario (aircrafts per simula-
tion time).  

Traffic TWL Airspace TWL 

Low Medium High 

6 8, 7, 5 4, 3, 2, 3 2, 2, 1, 1, 4, 1 
12 9, 8, 10 7, 10, 4, 5 3, 2, 2, 4, 4, 2 

Note. This table summarizes the number of aircrafts that travel through each of 
the standard routes defined for each of the three levels of airspace complexity in 
low and high traffic conditions. 
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intervention. The researcher, acting as a virtual pilot, responded those 
verbal instructions with a single word: “received”. The whole experi-
mental session lasted for 3 h approximately. 

4. Theory/calculation 

We collected three types of information during a trial: the logs of 
ATCLab simulator, the subjective estimations of MWL (NASA-TLX and 
ISA, manually registered in a table), and the physiological correlates of 
MWL (using EMPATICA wristband). With the information contained in 
the logs of ATCLab we derived the MWL predictions of COMETA model 
and the performance variables. We next describe all the dependent 
variables considered in this experiment and how they were computed. 

4.1. COMETA model of MWL 

COMETA identifies four types of events that can increase the 
complexity of an enroute sector. The first one is the intersection between 
two routes. The second event is the existence of aircrafts that travel 
outside standard routes. The third event is the existence of aircrafts in 
evolution (i.e., that change their altitude), because the controllers have 
to use a 2D display to deal with a 3D task. The fourth type of events are 
the conflicts between aircrafts as an additional source of complexity (i.e. 
maintain safe distances between aircrafts). These categories were ob-
tained under the guidance of expert ATCOs and their parametrization in 
the model were optimized in internal tests performed by CRIDA. 

COMETA equations attempt to quantify the complexity produced by 
these multiple events. COMETA considers that these sources contribute 
additively to the overall complexity faced by the ATCO. Thus, the overall 
complexity of an airspace situation is simply the summation of all the 
independent sources of task complexity for all N aircrafts in a sector: 

COMETA=
∑N

i=1
1 + wfl • Ci

fl + wcf • Ci
cf + wev • Ci

ev + wns • Ci
ns − Ci

rd,

where wfl = 1, wcf = 4, wev = 2, wns = 2, are the relative weights of the 
four sources of complexity considered by COMETA: standard flow in-
teractions (Cfl), aircraft conflicts (Ccf), aircrafts in evolution (Cev), and 
aircrafts in non-standard routes (Cns). The values of these weights were 
selected to equalize the scale of the four factors, without performing an a 
priori optimization. The last factor (Crd) is a reduction of the minimal 
complexity of 0.5 applied to aircrafts in which all the other factors are 
zero. 

These components of complexity are first computed for each of the N 
aircrafts in the scenario and then added together. We can also compute 
the overall complexity of each source independently. COMETA and its 
components were computed every second (the update rate set on 
ATCLab), although for the statistical analyses we used the average of 
these time series. We next describe the computation of the components 
of COMETA. For each of the sources of complexity, the model first de-
fines an intermediate variable called severity, from which the final value 

of task complexity is computed applying different thresholds on the 
severities, as indicated for each source below. 

Standard Flow interaction-related complexity (Cfl): the severity asso-
ciated to the interaction between two standard flows is:  

Sfl = T • O1 • O2                                                                                  

where T is an interaction complexity factor and O1 and O2 are the 
respective occupations of the interacting routes. The severity of a flow 
interaction is proportional to the number of aircrafts that travel through 
this route per unit of time. In addition, the factor T represents the in-
crease in severity due to the respective altitude changes of the two 
interacting routes. Thus, T = 1 if none of the routes in interaction is 
evolving; T = 2 if only one route is evolving; T = 3 if both routes are 
evolving in the same sense; and T = 4 if the two routes are evolving in 
opposite senses. The complexity results from applying the thresholds i1 
= 32 and i2 = 25 to the severity obtained for each flow interaction: if Sfl 
> i1 then Cfl = 0.2; if Sfl < i1 and Sfl > i2 then Cfl = 0.1; and if Sfl < i2, Cfl =

0.05. 
Conflicts-related complexity (Ccf): A conflict is defined as a potential 

crossing between the trajectories of two aircrafts. A conflict is consid-
ered active when it occurs within the following spatiotemporal bound-
aries: the intersection between the trajectories has to occur in less than 
10 min in the future and inside the sector, the vertical distance between 
the trajectories in the intersection must be lower than 800 ft, and both 
aircrafts have to be within 10 nmi of the intersection. COMETA model 
considers four factors that contribute to conflict severity:  

- A1 is the horizontal separation in meters between the aircrafts 
involved in the conflict at the time of calculation.  

- A2 is the proximity of the crossing point to the frontier of the sector: 
if distance <10 nmi, then A2 = 1.02, else A2 = 0.90.  

- A3 is the angle of convergence between the trajectories in the conflict 
point: if angle <90◦, then A3 = 1.10, else A3 = 0.80. 

- A4 is the proximity of the conflict to sector’s critical points. If dis-
tance <1500 m, then A4 = 0.90, else A4 = 1.05. 

We obtain the overall severity of a conflict as the product of all four 
factors:  

Scf = A1 • A2 • A3 • A4                                                                        

Note that conflict severity is inversely defined, that is, higher values 
of severity indicate less complexity. Ccf is then computed using the 
thresholds c1 = 9260 and c2 = 4630. If Scf > c1, then Ccf = 0.1; if Scf < c1 
and Scf > c2, then Ccf = 0.2; if Scf < c2, then Ccf = 0.3. 

Aircrafts in evolution-related complexity (Cev): When an aircraft is 
changing the altitude, Cev = 0.10. 

Non-standard-related complexity (Cns): In aircrafts that traverse a non- 
standard route, Cns = 0.15. 

These complexity variables are computed every second for every 
aircraft in the sector. The overall measures of complexity are obtained 
by adding the individual values. In the results sections we consider the 

Fig. 2. Schematic representation of the airspace TWL levels of the scenarios. 
Note. Filled lines represent the standard routes whereas dotted lines represent non-standard routes with aircrafts in evolution. 
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overall COMETA index as well as each of its five components. 

4.2. Subjective variables 

ISA and raw NASA-TLX subjective estimations were registered as 
explained in the procedure. An averaged ISA value was computed for 
each trial, and the overall NASA index was computed as the sum of all its 
components. 

4.3. Physiological variables 

An EMPATICA wristband was used to measure heart rate and EDA. 
The physiological time series provided by these devices had too much 
lost data due to long periods in which the signals had artifacts. We detail 
below the specific processes used to improve the physiological signals, 
as well as the dependent variables included in the analysis. 

We used the cvxEDA model to separate both components from our 
signals (Greco et al., 2015). Before submitting each time series to the 
cvxEDA model, we first smoothed the signal using a 4th-order low pass 
Butterworth filter with a cutoff frequency of 0.9 Hz (Subramanian et al., 
2019). After separating tonic and phasic components using cvxEDA 
function, we normalized them dividing by the average value of the 
respective component, obtained during the 60 s baseline measurement 
before each trial. The dependent variables submitted to factorial anal-
ysis were the normalized per-trial averages of EDAphasic and EDAtonic. 

The registration issues of EMPATICA wristband were particularly 
severe for the heart rate. As a consequence, we used the raw signal 
provided by the device, BVP, to increase the amount of valid data 
collected. The first problem of the BVP signals was that the amplitude of 
the cycles varied heavily during a trial. To solve this issue, we performed 
a dynamic range compression (using MATLAB’s function compressor) to 
homogenize the signal gain for each trial. The second issue of the BVP 
signals was the abundance of high frequency noise, as well as very slow 
oscillations. As we were only concerned with variations in BVP that 
indicated heart beats, we used a 4th-order band pass Butterworth filter 
to remove frequencies below 0.7 Hz and above 2 Hz. The IBIs obtained 
from a peak detection algorithm (function peakdet from MATLAB) 
applied to this smoothed signal were further scrutinized to remove data 
points that were not physiologically plausible. The exclusion criteria for 
the detected beats were: more than 220 beats per minute or less than 20; 
variations of beat time higher than 20% from the previous beat, or 
longer than 300 ms. Finally, we used the interquartile range method to 
exclude outliers (IQR; Vollmer, 2015). From the set of IBI remaining 
after the filtering we computed the average heart rate and the SDNN 
(Standard Deviation of normal to normal R-R intervals; this is the most 
basic measure of HRV, other more complex measures of heart rate 
variability were considered, but we omit them because the results were 
similar to these variables). 

4.4. Performance and behavioral variables 

We measured the following dependent variables to estimate either 
the outcome of the control actions or the control actions themselves. The 
variable Conflicts Reduction represents the reduction in the average 
number of conflicts during a trial with respect to the conflicts that occur 
in a passive simulation of the same scenario (without any intervention 
from the participant). We used the COMETA definition of conflict 
detailed above. Best ATCO performance is assumed to produce a sig-
nificant reduction of the conflicts with respect to not doing anything in 
the passive simulation. The Centroid Distance captures the average 
spatial dispersion of the aircrafts in the sector. It is a complex variable 
affected by TWL factors such as the routes layout, the traffic density, as 
well as by the actions of the controller. To compute it, we first obtained 
the centroid of the positions of the aircrafts at each time step. Then, we 
computed the average distance to this point. In general, for a given 
scenario, performance is better when the distance between aircrafts is 

maximized. The Speed Success and Altitude Success indicate how closely 
the participants followed the flight plan prescribed for each aircraft. 
They are defined as the number of aircrafts that left the sector having the 
speed or altitude prescribed in the flight plan. Finally, we measured four 
variables to estimate how the participants were executing the task. First, 
the Accept Reaction Time indicates the average time required by a 
participant in a trial to accept aircrafts after they announce themselves. 
Longer reaction times tend to indicate a higher workload, although it 
might depend on the ATCO strategies. The Total Clicks variable is a 
measure of the total amount of interactions with the simulator per-
formed by participants during the trial. We assume that higher TWL is 
related with larger amount of mouse clicks, but it may be too sensible to 
the idiosyncrasy of each participant. The variables Altitude Interventions 
and Speed Interventions measure the total amount of altitude and speed 
changes in the aircrafts respectively performed by the participant in a 
trial. These variables are affected by the amount of MWL, but also by the 
strategy used by the participants. The preferred strategy would be one 
that minimizes the number of interventions, although in a simulation 
study with novices it is not uncommon to observe more interactive 
strategies that still manage to keep conflict severity low. 

4.5. Statistical analysis 

All dependent variables were submitted to repeated measures anal-
ysis of variance (ANOVA) using as main factors airspace TWL (low, 
medium, high) and traffic TWL (6, 12). A preliminary ANOVA of the 
sequential ISA measurements of each trial was performed using an 
additional Time factor (with levels 2, 4, 6, 8, 10, 12, 14 and 16). Due to 
the lack of effect of factor Time, we averaged ISA measures for each trial 
and report only the results from this averaged variable. Huynh-Feld 
corrections were used when sphericity assumptions were not met. 
Post-hoc analyses were performed with Tuckey tests. Multiple correla-
tion and principal component analysis were carried out using xcorr and 
pca functions from MATLAB, respectively. 

4.6. Software tools 

All the data processing and modelling were performed using self- 
developed software. We have developed pyatc python package to pro-
cess the output of ATCLab log files and compute COMETA and perfor-
mance variables. The version of pyatc used in this research can be 
obtained in https://github.com/jibannez/JATM_2022_pyatc. The anal-
ysis of the time series was performed with self-developed MATLAB code. 
The statistical analyses were performed with jamovi 2.8 (The jamovi 
project, 2022). 

5. Results 

5.1. ANOVA of COMETA model 

Fig. 3 summarizes the group means and standard errors for the 
overall COMETA index and its five components: COMETA Flow, COM-
ETA Conflict, COMETA Evolution, COMETA Non Standard, and COM-
ETA reduction. ANOVA analysis of COMETA model revealed a strong 
significant interaction between airspace and traffic TWL factors, F(2, 
46) = 52.50, p < .001, η2

p = .695. In general, higher values of both 
airspace and traffic TWL produced higher values of COMETA. Posthoc 
analyses showed that only the comparison between medium and high 
airspace TWL with 12 aircrafts was not significant. All the remaining 
paired comparisons were significant. As already advanced in the 
methods sections, this was expected because high airspace TWL implies 
that more routes are available to host the same number of aircrafts, 
producing a dispersion of traffic that reduces the overall complexity of 
the trial. 

The ANOVA of COMETA Flow indicated a strong significant inter-
action between airspace and traffic TWL, F(2, 46) = 1368, p < .001, η2

p =
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.983. Posthoc analysis revealed that all paired comparisons were 
significantly different with the single exception of low and high airspace 
TWL with low traffic. To understand this effect, we must consider that 
COMETA Flow is computed for all aircrafts that traverse a standard 
route, and that the occupations of the routes have a multiplicative effect 
on the final value of complexity. If we recall the occupation coefficients 
presented in Table 2, the reason for this effect is much clearer. Multi-
plying the occupations of each condition one can observe that the con-
dition with medium airspace TWL and 6 aircrafts has the lowest product. 
A similar mechanism explains the reduction of MWL between scenarios 
with medium and high airspace TWL when the traffic is dense. 

The interaction between airspace and traffic TWL was significant for 
COMETA Conflict, F(1.70, 39.05) = 5.23, p = .013, η2

p = .185. Posthoc 
analysis revealed that all level combinations with low traffic are not 
significantly different. In addition, COMETA Conflict was also not 
significantly different when comparing traffic conditions at low airspace 
TWL. These results indicate that the traffic density on conditions with 
only 6 aircrafts was too low to produce conflicts, regardless of the 
airspace structure. When the traffic density was higher, airspace struc-
ture was again relevant: More complex structures produced higher 
conflict-related MWL. 

COMETA Evolution closely replicated the number of aircrafts in 
evolution present in each condition. Thus, the interaction between 
airspace and traffic TWL was significant, F(2, 46) = 1.86 • 106, p < .001, 
η2

p = 1. All paired comparisons were significant in the post hoc tests, with 
the exception of the two low airspace conditions without aircrafts in 

evolution. A similar relationship can be observed in the results of 
COMETA Non Standard, which closely follows the number of non- 
standard aircrafts present in each condition. Thus, the interaction be-
tween airspace and traffic TWL was again significant, F(1.02, 23.44) =
5.44 • 106, p < .001, η2

p = 1. All paired comparisons in the posthoc 
analysis were significantly different. 

COMETA Reduction is meant to compensate for those aircrafts that 
are present in the sky but have no complexity associated with them from 
the other components. Thus, its value is higher for these conditions with 
less density or with more heterogeneously distributed events. ANOVA 
showed a very strong effect of the interaction between experimental 
factors, F(1.01, 23.31) = 5198, p < .001, η2

p = .996. All paired com-
parisons in the posthoc analysis were significantly different. 

5.2. ANOVA of subjective scales 

Group averages and standard errors of subjective measures of MWL 
are illustrated in Fig. 4. ANOVA of ISA scores revealed a significant main 
effect of the dynamic TWL factor, F(1, 23) = 74.50, p < .001, η2

p = .764. 
The main effect of the factor airspace TWL was also significant, F(2, 46) 
= 10.64, p < .001, η2

p = .316. The interaction between the main factors 
was not significant, F(2, 46) = 0.56, p = .570, η2

p = .024. Posthoc analysis 
evidenced that all paired comparisons between low traffic and high 
traffic were significant for the same airspace structure. In addition, the 
comparison between low and high static TWL was also significantly 
different for the same traffic level. In sum, the ISA scores were linearly 

Fig. 3. Means and standard errors of variables from COMETA model as a function of TWL factors. 
Note. All the dependent variables represented are dimensionless indexes described in detail in the Methods section. 
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increasing in response to increases in airspace and traffic TWL 
independently. 

The results from NASA scores were compatible with the above dis-
cussed results from ISA scores, with a significant main effect of the two 
factors. For the airspace TWL, F(1, 23) = 38.90, p < .001, η2

p = .628. For 
the traffic TWL, F(2, 46) = 23.90, p < .001, η2

p = .510. The interaction 
between the two factor was not significant, F(2, 46) = 0.85, p = .430, η2

p 
= .036). Posthoc analysis revealed the same pattern as in ISA scores: the 
perceived MWL was linearly and independently increasing in response 
to increases in airspace and traffic TWL. 

5.3. ANOVA of performance measures 

Group averages and standard errors of performance measures are 
illustrated in Fig. 5. The ANOVA of Conflicts Reduction had a significant 
interaction between airspace and traffic TWL, F(2, 46) = 307, p < .001, 
η2

p = .930. Posthoc analysis evidenced that, with the exception of the 
comparison between the two traffic levels at the simplest airspace 
structure, all the remaining comparisons were significantly different. 
This indicates that for simple airspaces, there was no possible reduction 
in the number of conflicts. For more complex scenarios, the participants 
managed to reduce the number and duration of conflicts. This reduction 
was much more intense for higher traffic densities. 

The ANOVA of Centroid Distance showed a significant interaction 
between airspace and traffic TWL, F(1, 23.05) = 29.20, p < .001, η2

p =

.560. All paired posthoc comparisons were significant. This variable is 
determined by the spatial layout of the airspace and the relative occu-
pation of the different routes. Lower values indicate that the aircrafts are 
spatially more concentrated. This explains why the medium level of 
airspace TWL had the lowest centroid distance, as it has a complex 
airspace structure with a relatively low number of standard flows. 

The ANOVA of Altitude Exit Success evidenced a significant inter-
action between traffic and airspace TWL, F(1.34, 30.89) = 15.90, p <
.001, η2

p = .409. Posthoc analysis revealed that for low and high airspace 
TWL, the differences between traffic conditions were significant. In 
particular, we observed less success ratio for dense traffic in the low 
airspace TWL condition, and the opposite tendency for high airspace 
TWL. In medium airspace TWL the success ratio was similar for the two 
traffic densities. The ANOVA of Speed Exit Success closely replicated the 
results of the variable Altitude Exit Success, with a significant interac-
tion between traffic and airspace TWL, F(2, 46) = 69.38, p < .001, η2

p =

.268. Posthoc analysis again replicated the pattern observed in Altitude 
Exit Success. These results suggest that participants failed to comply 
with the flight plans, and proportionally more intensely for scenarios 
with higher TWL. 

ANOVA of Altitude Interventions showed a significant interaction 
between airspace and traffic TWL, F(2, 46) = 8.44, p < .001, η2

p = .268. 
Posthoc analysis evidenced that significant paired differences were only 
found for conditions with high airspace TWL. Participants used more 

altitude interventions with increasing traffic density and airspace 
complexity. On the contrary, the ANOVA of Speed Interventions could 
not find any significant effects. Fig. 5 clearly ilustrates the mostly flat 
and fluctuating response of this variable with respect to the experi-
mental factors. 

None of the main effects or interaction were significant in the 
ANOVA of Accept Reaction Time. Despite the tendency that can be 
observed in Fig. 5 to have longer reaction times for more dense traffic or 
more complex airspace structures, the large variability in all conditions 
diluted these central tendencies (although the main effect of traffic TWL 
was very close to the critical alpha value). 

The ANOVA of Total Clicks evidenced significant main effects of 
airspace TWL, F(1, 23) = 45.31, p < .001, η2

p = .663. The main effect of 
traffic TWL was also significant, F(2, 46) = 27.73, p < .001, η2

p = .547. 
The interaction was, on the other hand, not significant. Posthoc tests 
evidenced that all paired comparison between traffic conditions with the 
same level of airspace TWL were significantly different. The compari-
sons with the same level of traffic TWL were significantly different be-
tween low airspace TWL and both medium and high levels, but not 
between the two higher levels of airspace TWL. This means that the 
amount of interactions required saturated after the medium airspace 
TWL, and was proportional to the traffic density. 

5.4. ANOVA of psychophysiological measures 

As can be seen in Fig. 6, all pychophysiological measures had a 
similar flat response to the design factors, with fluctuations larger than 
the differences between conditions. The only marginally significant ef-
fect evidenced by ANOVA was the interaction between main factors for 
EDAphasic, F(2, 46) = 2.47, p = .096, η2

p = .097. This result is produced by 
the markedly higher value of phasic activation in the condition with 
middle airspace TWL and high traffic density. This condition was ex-
pected to be the most challenging to perform according to COMETA 
prediction. 

5.5. Correlational analysis 

We performed multiple correlation analysis between the dependent 
variables that had significant effects in the repeated measures ANOVA. 
The results are summarized in Table 3. COMETA index had high cor-
relation with all the variables included in the analysis (with the excep-
tion of COMETA reduction), which indicates that it is a good index of 
MWL. This correlation was particularly strong with COMETA Flow and 
COMETA Non Standard, which indicates that the static properties of the 
airspace in our scenarios were the most relevant to determine COMETA 
index. It is important to note that this is not a general property of 
COMETA, but a contingent feature of the TWL manipulations used in our 
design. 

The correlation of COMETA with the performance variables Conflicts 

Fig. 4. Means and standard errors of subjective estimations of MWL as a function of TWL factors. 
Note. These variables are dimensionless indexes. 
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Fig. 5. Means and standard errors of performance and behavioral correlates of MWL as a function of TWL factors. 
Note. All the dependent variables represented are dimensionless indexes described in detail in the Methods section. 
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Reduction and Centroid Distance was also strong. These two variables 
are measures of the dynamic outcomes of close-loop control, which in-
dicates that adding conflict related complexity to the model successfully 
captures part of these online dynamics. Finally, COMETA had significant 
correlations with the two subjective measures of MWL, ISA and NASA. In 
fact, the correlation with COMETA was the largest for these variables 
with the exception of their mutual correlation. This indicates that the 
estimations of MWL from COMETA were compatible with the subjective 
estimations provided by the participants (despite the above explained 
discrepancy). 

In the remaining correlations there are some interesting results that 
clarify aspects of the complex interactions that emerge in the task. For 
example, there is a large correlation between the triplet COMETA Flow, 
COMETA Non Standard, and COMETA Evolution. This is an expected 
effect considering that these three variables are linked by the definition 
of the airspace TWL experimental factor (see Table 2). In addition, the 
variable COMETA Reduction had the strongest correlation with the 
variables COMETA Evolution and COMETA Non Standard, because in 
our scenarios these two variables determine COMETA Reduction: When 
there are non-standard aircrafts (which are always in evolution), 

Fig. 6. Means and standard errors of psychophysiological correlates of MWL as a function of TWL factors. 
Note. We have included results from EDA, HR and HRV variables although none of them had any significant effect. The lack of significant differences is due to the 
much larger variability in each condition than between conditions. We interpret this effect as a measurement issue of the EMPATICA wristbands. 

Table 3 
Correlations for study variables.  

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. COMETA               
2. C. flow .95**              
3. C. conflict .57** .38**             
4. C. evolution .54** .39** .44**            
5. C. non standard .67** .63** .40** .62**           
6. C. reduction .02 .14 − .23 − .67** .59**          
7. Conflict reduction .68** .56** .47** .93** .69** − .55**         
8. Cent distance − .61** − .50** − .34** − .63** − .84** .52** − .63**        
9. Altitude Success .13 .13 .09 − .17 .04 .15 .01 .08       
10. Speed Success .27** .30** .09 − .22* .10 .25* .05 .10 .62**      
11. Altitude interv. .49** .39** .35** .62** .43** − .31** .65** − .47** − .03 − .09     
12. Total Clicks .40** .36** .17* .36** .40** − .16 .36** − .41** − .12 .01 .15    
13. ISA .50** .48** .23* .31** .34** .00 .38** − .36** .11 .12 .41** .03   
14. NASA .46** .40** .31** .37** .31** − .06 .40** − .35** .06 .00 .34** .18* .75**  

Note. Abbreviations used in the table: C. (COMETA), interv. (interventions). *p < .05. **p < .01. 
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COMETA Reduction is always zero. 
Conflict Reduction had strong correlations with all performance 

variables (except Exit Altitude Success, which had low correlations with 
all variables except Exit Altitude Speed), indicating that performance 
can be conceived as a whole in which a participant is either having a 
good overall performance or not. In addition, Conflict Reduction and 
Centroid Distance had strong correlations with COMETA Evolution and 
COMETA Non Standard, indicating that the actions of participants were 
particularly effective for scenarios with non-standard aircrafts. 

5.6. PCA analysis 

As a final step in our analysis, we wanted to highlight to what extend 
the responses of the dependent variables expressed the factorial ma-
nipulations in TWL of our experimental design. Considering that all the 
dependent variables represent different approaches to the measurement 
of MWL, this PCA attemps to validate the manipulations on TWL in the 
scenarios used. To that end we performed a PCA analysis in which the 
variables were the 6 combinations of airspace and traffic TWL experi-
mental levels (A: low-6; B: medium-6; C: high-6; D: low-12; E: medium- 
12; F: high-12), and the cases were the dependent variables of the design 
that had significant effects in the ANOVA (the same subset used in the 
previous section). We averaged the values of each variable over the 24 
participants to obtain a matrix with 6 rows and 14 columns. Scores from 
the non-averaged dataset were similar but are more complex to inter-
pret. Thus, we present the results on the participant-averaged dataset. 
Before submitting the matrix to the PCA, we normalized column-wise, 
substracting the mean and dividing by the standard deviation of each 
column. 

Fig. 7a includes the scores obtained by the six variables in the first 
two principal components that explained 85% of the variance. There we 
can see that the first principal component (the horizontal dimension of 
the plot), which explained 60% of the variance, separated scenarios with 
respect to their traffic density. The only exception was scenario D (12 
aircrafts with low airspace TWL) that had a similar score as scenarios B 
and C. On the other hand, the second principal component (the vertical 
dimension of the plot), which explained 20% of the variane, separated 
the different scenarios according to their structural complexity. In this 
case, the separation correctly organized all the different scenarios, but 
the projections differed between traffic conditions: low density scenarios 
spaned positive and negative values, whereas high traffic scenarios were 
confined to the first quadrant, spanning up to three times less variability 
in this dimension. Taken together, these results suggest that scenario D 
was closer to a low TWL condition, and that the TWL of scenarios E and F 
was too close to be funcionally distinguishable. 

Fig. 7b presents the relative contributions of the dependent variables 
in the determination of the principal components. To provide an 

interpretation of their role we focus on those variables with a weight 
larger than .25 in absolute value. Thus, the first component was domi-
nated by Centroid Distance in the negative side (so larger values of the 
variable produce more negative projections), whereas the positive side 
contained a large number of variables with very similar weights (around 
0.3). This indicates that the variability of the original dataset was 
equally distributed among all these variables. With respect to the second 
principal component, the situacion is much clearer. This component was 
dominated by a pool of closely related variables: Exit Altitude and Speed 
Success, COMETA Evolution, and COMETA Reduction. As already 
explained, these variables were tightly coupled due to the specific design 
of this experiment. In other words, our design of the structural 
complexity of the routes could be sufficiently described by referring only 
to the number of aircrafts in evolution. 

6. Discussion 

The main aim of this study was to propose and validate a model to 
predict ATCO MWL. To that end, we adapted COMETA model (an open 
loop model that only requires data about traffic plans and do not 
consider the actual interactions of the operator), to a closed loop situ-
ation such as an operator performing an ATC task. To validate the model 
we conducted a laboratory experiment with an ATC simulator in which 
we systematically varied features of the scenarios that are known to 
affect TWL. In addition, we measured correlates of MWL to validate the 
predictions of our model. The results demonstrate that our model can 
predict the increase of MWL produced by increases in airspace 
complexity and traffic density, as well as their interactions. This general 
pattern of results is reproduced by the subjective responses and the 
performance and behavioral correlates. Let us explain in more detail the 
results. 

The experimental results demonstrate that COMETA predicts 
changes in MWL generated by changes in traffic and airspace structure. 
COMETA components are also sensitive to TWL manipulations that 
affect the source of MWL represented by each component. COMETA 
predicts higher increments of MWL due to traffic factors than air space 
structure. In fact, traffic load measure in the form of dynamic density 
metrics has been shown to be the main determinant of TWL (Kopardekar 
and Magyarits, 2003), and is a basic tool for controlling the sector load 
in air traffic. This is reasonable to expect because a complex structure 
with low traffic brings about a very simple ATC task. This is imple-
mented in COMETA equations because the traffic density affects all 
sources of MWL. Nevertheless, the COMETA model has been also sen-
sitive to airspace structure factors, bearing out the structural approach 
to cognitive complexity proposed by Histon and Hansman (2008). 

COMETA predictions of MWL allow us to better understand and 
optimize the experimental manipulations on TWL. Our results indicate 

Fig. 7. Results of the PCA analysis over the TWL factors and dependent variables. 
Note. Panel A shows the scores obtained by the six scenarios in the first two principal components. Panel B shows the weights on the two first components for those 
variables with absolute values weights larger than 0.25. 
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that COMETA successfully predicts that for the scenarios with the 
simplest structure we cannot obtain different TWLs for traffic densities, 
because the task is too easy. In the same vein, COMETA predicts that a 
proliferation of routes increases the airspace TWL, but this increase may 
not have an impact on MWL because it also decreases the number and 
severity of the interactions between standard routes and aircrafts, as 
they spread out in the different routes increasing the centroid distance of 
the scenario. Previous research has shown that minimum separation 
between aircrafts strongly affects performance and perceived 
complexity (Boag et al., 2006). This is evident in the experimental sce-
nario with high traffic and medium airspace TWL, which produced the 
lowest centroid distance and resulted with a MWL prediction close to the 
high-high TWL scenario. 

Subjective estimations of MWL increase linearly with increases of the 
two TWL factors, without interaction between them. Thus, participants’ 
reports did not reflect the interactions predicted by COMETA and 
explained in the previous paragraph. Our hypothesis is that these dis-
crepancies can be explained taking into account performance and 
behavior, as these are the most accessible handles that the participants 
have to produce subjective estimations. However, the subjective reports 
also show the larger differences in MWL produced by traffic compared to 
those produced by airspace structure. 

The general trend of performance and behavioral measures repli-
cates the tendency predicted by COMETA model with a saturation for 
scenarios with medium and high static TWL with dense traffic, as well as 
well the lack of discrimination for too easy tasks. In particular, this is the 
case for Centroid Distance, Exit Speed Success, Exit Altitude Success, 
Total Clicks and Accept RT. However, there are two notable exceptions 
to this trend. Conflicts Reduction and Altitude interventions present a 
very strong effect of the airspace structure, even more intense for sce-
narios with high airspace TWL. This tendency contradicts COMETA 
predictions and parallels the subjective estimations of participants. 

These results indicate that the weight of conflicts on COMETA pre-
dictions for our scenarios is relatively low, which could explain the 
difference between COMETA predictions and subjective judgements if 
participants preferentially use conflict management actions to estimate 
MWL or other context dependent features of the scenarios (Colle and 
Reid, 1998). Note that this effect is not a necessary property of COMETA 
model, but a contingent feature of the set of scenarios used in this 
experiment. 

Correlational analysis of the relationships between the dependent 
variables confirm several of the results obtained in the factorial analysis. 
First, COMETA is the only variable that has high correlation with all the 
other indexes of MWL. This demonstrates that COMETA is a good index 
of the multifactorial nature of MWL in ATC tasks. In particular, COMETA 
has the strongest correlation with subjective estimates, which have been 
shown to be the most faithful access to MWL (Djokic et al., 2010). 
Second, the airspace sources of TWL have the highest correlation with 
COMETA predictions in this experiment. As explained above, this is 
contingent to the set of scenarios used, and could be mitigated if a 
different selection of features is used. Third, the high correlation be-
tween COMETA and performance variables is probably mediated by the 
strong correlation of performance variables with airspace sources of 
TWL. Relatedly, the three components of COMETA that are directly 
related with airspace TWL (Flows, Evolution, and Non Standard) are 
strongly correlated. This is an expected result considering how we 
defined this factor (see Table 2). And finally, we have observed that 
performance and behavioral variables tend to correlate internally, 
which indicates that we can treat performance as a whole: a participant 
is either having good or bad performance, regardless of the dimension 
tested. 

To conclude we performed a PCA to systematize the effects of the 
TWL manipulations used to obtain insights for future developments. 
This analysis has shown that the two TWL factors defined in this 
experiment were strongly coupled, but were still remarkably good to 
represent a range of different air traffic situations that resemble natural 

environments. The first principal component separated low traffic from 
high traffic scenarios (with the exception of D scenario, which was too 
simple). This component was determined by the Centroid Distance on 
one side of the dimension, and by all the remaining variables in the 
design on the other. All variables contributed equally to this component, 
which reflects the global effect that traffic density has on ATC tasks. This 
result is in support to those approaches that rely on density measures as 
an index of complexity (Kopardekar and Magyarits, 2003). The second 
principal component separated and organized the scenarios according to 
their structural complexity. This component was determined by vari-
ables related to the number of aircrafts in evolution, which reflects the 
contingent features of our set of scenarios. 

Finally, the signals from the psychophysiological correlates 
measured were not conclusive. We interpret this general lack of results 
as caused by the convergence of three factors. First, the tasks were not 
particularly stresfull for the participants, with only the most engaged 
ones showing enough sustained concentration to expect an arousal. 
Second, the slow pace of the potential stressors aggravated the lack of 
tension that could be expressed in psychophysiological measures. Third, 
the quality of the measures was too low, probably due to a fundamental 
limitation of the hardware reliability or its sensitivity to variations on 
MWL levels (Mach et al., 2022). 

7. Conclusions 

This study demonstrates that the proposed model can successfully 
predict MWL in a range of environments. There is room for improve-
ments but this model has promising future applications in ATC planning. 
Particularly, COMETA can participate into the Network Collaborative 
Management ATM functionalities defined in the Pilot Common Project 
derived from the SESAR R&I solutions (EU, 2014). Thus, COMETA may 
assist on the design of mitigation strategies to be applied at local 
(ANSPs) and network levels including the ATCOs MWL in complexity 
prediction. 

The introduction of conflict related complexity in COMETA model 
represents a first step in the integration of ATCOs interactions in air 
traffic planning. It still remains a very complex task to perform, but we 
have provided an illustration of the path required. For example, we have 
defined a reference state that consisted in running the ATC task without 
any intervention. This reference state enables us to evaluate perfor-
mance and MWL with respect to the improvement (or worsening) pro-
duced by the ATCOs actions. The integration of close loop models in 
ATM would certainly require the development of sophisticated inter-
active patterns that capture the strategies and mean-field behavior of 
ATCOs. 

There are three main shortcomings in our study. The first one is the 
use of novice participants that were specifically trained for this study, 
and the use of adapted tasks in the ATC simulator. Despite our encour-
aging results, field studies with real tasks and ATCOs are necessary to 
fine-tune the parameters of the model. The second main shortcoming 
has been the poor results from the psychophysiological correlates of 
MWL, as the original plan if the measured signal had been good markers 
of MWL was to first optimize COMETA parameters with them, to later 
perform the external validation with subjective measures. Thus, a future 
development of this research must be to obtain a good physiological 
marker of MWL in ATC tasks. Finally, our model does not consider the 
possibility of changes in the strategy to solve the task nor the reciprocal 
relationship between situational awareness and MWL. These are among 
the most relevant factors to understand ATCO performance in the real 
world, so future developments in MWL modelling must include an ac-
count of them. 

We have provided a systematic method to manipulate TWL inspired 
in the analysis of the task done by COMETA. Although this approach to 
study ATCO performance has been successful to provide an objective 
and measurable anchor to MWL models, TWL has demonstrated to be 
highly complex in itself. Thus, the complexity of TWL should be 
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independently and quantitatively explored as a precondition to better 
models of MWL (EUROCONTROL, 2004; Histon and Hansman, 2008). 

Finally, the pervasive and well known effect of traffic density on all 
aspects of both TWL and MWL (Kopardekar and Magyarits, 2003) poses 
a problem to understand other subtler components of workload. Thus, 
experimental designs should attempt to control for the effect of traffic 
density in order to focus on the isolated effects of other factors. 
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