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The Low-Scale Seesaw Solution to theMW and (g − 2)𝛍
Anomalies

Arturo de Giorgi,* Luca Merlo, and Stefan Pokorski

The recent CDF-II measurement of theW-boson mass shows a strong tension
with the corresponding Standard Model prediction. Once active neutrino
masses are explained in the context of the Low-Scale Seesaw mechanisms,
this tension can be resolved. We investigate the possibility of explaining the
longstanding muon anomalous magnetic moment anomaly within the same
frameworks. We present a simplified extension of the Standard Model,
accounting only for the second lepton generation, that describes a massive
active neutrino and provides a combined solution to these anomalies. The
model is renormalisable and introduces in the spectrum, beyond the sterile
species of the Low-Scale Seesaw mechanism, only one pair of exotic
vector-like leptons, doublets under the electroweak symmetry. We moreover
discuss the extension of this model to the realistic three-family case.

1. Introduction

Among the scientific achievements in particle physics of the last
century, the formulation of the StandardModel (SM) is one of the
most relevant results. Its success culminated with the discovery
of the Higgs boson in 2012 at the Large Hadron Collider[1,2] and
there has not been evidence of the existence of any other new
particle till nowadays.
On the other hand, the SM cannot be considered the ultimate

theory of Nature. It is lacking amechanism for the neutrinomass
generation, does not explain the baryon asymmetry of the Uni-
verse and the existence of Dark Matter, and leaves aside the grav-
itational interactions. Moreover, several tensions are present be-
tween the SM predictions and the corresponding experimental
determinations. One of the latest anomalies is associated with
the mass of the W gauge boson, MW , that has been recently
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measured by the CDF II collaboration[3]

with the best-achieved sensitivity,

MW = 80.4335 ± 0.0094 GeV , (1.1)

showing a 7𝜎 discrepancy relative to the
SM prediction.1

Among the numerous proposals to
explain such a tension, the class of
the so-called Low-Scale Seesaw (SS)
mechanisms[4,5] represents a very appeal-
ing possibility,[6,7] as it also provides a de-
scription for massive neutrinos. In the
generic model of this type, two kinds
of exotic neutral leptons, NR and SR in
the following, with opposite lepton num-
bers, are added to the SM spectrum. The

number of the exotic neutral leptons of each type depends on the
specific realisation: for example, in Ref. [7], threeNR and three SR
have been considered in the exotic spectrum. In general, for an
arbitrary number ofNR and of SR, it is convenient to adopt a com-
pact notation for all the neutral leptons, SM and exotic, defining
a multidimensional vector in the flavour space1

𝜒 ≡ (𝜈L, N
c
R, S

c
R)

T , (1.2)

where 𝜈L stands for the neutral component of the EW lepton dou-
blet 𝓁L. The characteristic mass term for the Low-Scale SS setup
reads

−ℒY ⊃
1
2
𝜒𝜒𝜒

c + h.c. , (1.3)

with

𝜒 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 v√
2
YN 𝜖

v√
2
YS

v√
2
YT
N μ′ Λ

𝜖
v√
2
YT
S ΛT μ

⎞⎟⎟⎟⎟⎟⎟⎠
, (1.4)

where v = 246 GeV is the Higgs doublet H vacuum expectation
value (VEV),YN andYS are theDirac Yukawamatrices that couple

1 The CDF II measurement is by far the most precise one over the nine
different determinations. As reported in Ref. [3], neglecting the possi-
ble correlations, one could estimate the average among them obtaining
MW = 80.4242 ± 0.0087GeV, that is only 1𝜎 far from theCDF II result,
as expected. For this reason, we will perform our analysis considering
the value in Equation (1.1), understanding that the conclusions would
remain invariant using instead the average quantity.
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𝓁L toNR and SR respectively, whileΛ, μ and μ′ are matrices in the
flavour space of NR and SR, and finally 𝜖 is a real parameter.
If lepton number conservation is taken as an exact symmetry,

then the terms corresponding to μ, μ′ and 𝜖 are forbidden in the
Lagrangian and then the neutrinos would remain massless. Al-
lowing, however, for an explicit soft violation of the lepton num-
ber conservation, that is for non-zero values of the parameters
μ, μ′ and 𝜖 (or some of them) and with Λ dominating the other
entries, the light neutrino mass matrix at tree-level reads

m𝜈 ≃
v2

2

[(
YN

1
ΛT

μ 1
Λ
YT
N

)
− 𝜖

(
YS

1
Λ
YT
N + YN

1
ΛT

YT
S

)]
. (1.5)

Notice that μ′ does not contribute to the neutrino masses at this
expansion order. Depending on which contribution dominates, a
different name is used in the literature to refer to the specific
SS mechanism: “Inverse (ISS)”[8–10] if the first term in Equa-
tion (1.5) is mainly responsible for the neutrino masses; “Linear
(LSS)”[11] otherwise.
In order to reproduce the atmospheric mass splitting|Δm2

atm| ∼ 2.5 × 10−3 eV2,[12] assuming Λ ∼ (TeV) and the
Yukawa matrices with entries of (1), we can estimate the values
for μ and 𝜖: μ ∼ KeV in the ISS and 𝜖 ∼ 10−10 in the LSS. This
is the first interesting feature of these Low-Scale mechanisms:
the masses of the light neutrinos are explained through a soft
breaking of the lepton number conservation, with small values
of the parameters 𝜖 and/or μ(′), instead of a breaking by the large
masses for the sterile species, such as in the traditional Type-I
SS mechanism.[13–16] Indeed, the heavy neutral leptons can have
masses at the TeV scale, whichmakes them possibly detectable at
colliders. A second relevant aspect is that the Yukawa couplings
are sizable and so are the mixings between the sterile species
and the active neutrinos. This is particularly interesting due to
the significant induced deviation from the unitarity of the PMNS
matrix,[17–20] which translates into a tree-level contribution toMW
and allows to solve the CDF II anomaly, as discussed in Refs. [6,
7]. Indeed, any modification of the leptonic charged current im-
plies an additional contribution to the muon 𝛽 decay, from which
the value of the Fermi ConstantGF (defined as the parameter that
enters the Fermi Lagrangian) is computed: labelling with Gμ the
parameter extracted from the muon lifetime,

GF = Gμ(1 + ΔG), (1.6)

where ΔG represents the generic deviation. Its effect appears in
the prediction ofMW as

MW = MZ

√√√√√1
2
+

√√√√1
4
−

𝜋 𝛼 (1 − ΔG)√
2Gμ M

2
Z(1 − Δr)

, (1.7)

where 𝛼 is the fine-structure constant, MZ is the mass of the Z
gauge boson and Δr accounts for loop corrections. A value of
ΔG ∼ 5 × 10−3 would solve the tension inMW .
Other observables are affected by the deviations in the leptonic

charged current, such as the invisible Z decay, various meson de-
cays used to extract the values of the CKM matrix elements, and
several decay width ratios that test the lepton flavour universality
of the SM. As concluded in Ref. [6], the explanation of the CDF II
anomaly is consistent with all these observables, but at the price

of worsening the so-called Cabibbo Anomaly: the extracted value
of the CKM entry Vud after the inclusion of the non-unitarity ef-
fects turns out to be larger than its actual value. We will ignore in
this paper the Cabibbo anomaly, assuming that a different new
physics may be responsible for its explanation.2

The main goal of this paper is to propose a possible modifica-
tion of the Low-Scale SS models in order to solve the longstand-
ing anomaly associated with the muon anomalous magnetic mo-
ment, (g − 2)μ. It has been measured by the Muon g − 2 collabo-
ration at the Brookhaven National Laboratories[22] and more re-
cently at Fermilab,[23] showing a combined 4.2𝜎 tension with the
SM result,[24]

𝛿aμ ≡
(g − 2)expμ − (g − 2)SMμ

2
= (2.51 ± 0.59) × 10−9 . (1.8)

It has to be mentioned that the BMW lattice collaboration[25] has
recently presented a lattice result for the SM contributions to the
hadronic vacuum polarization that would soften this tension. Af-
ter that, other groups[26,27] seem to alignwith that result. Onemay
then wonder if QCD effects not only explain the (g − 2)μ anomaly
but also the one associated to the MW determination. However,
as discussed in Ref. [28], this is not the case as new physics is
necessary to explain both of them simultaneously. Moreover, the
lattice results are in tension with the e+e− → hadrons data,[29–32]

so the global situation associated to the (g − 2)μ remains unclear.
While waiting for further calculations to establish a clear picture,
we will adopt the result in Equation (1.8) for the rest of the paper.
It is well known that no solution to the (g − 2)μ anomaly can

be obtained with only sterile leptons. In several Refs. [33–37],
a broad analysis has been performed investigating which exotic
fields beyond the SM (BSM) spectrum may play an interesting
role in this respect. An approach that received attention in the
last two years[38–40] consists of the introduction of vector-like lep-
tons transforming as a doublet of the electroweak (EW) symme-
try. Its attractiveness resides in the absence of contributions to the
(g − 2)μ suppressed by only two powers of the mass of the exotic
states. The first relevant chirally enhanced term is suppressed by
the fourth power of the mass. This represents a scenario where
light new physics may be responsible for the (g − 2)μ anomaly.
Notice that this framework requires, beyond the exotic EW dou-
blets, the presence of also leptonic sterile species in order to ex-
plain this anomaly.
The question we want to answer in this paper is whether the

introduction of additional vector-like lepton EW doublets, dis-
cussed in Refs. [33–37], in the Low-Scale SS setups may consis-
tently explain the light active neutrinomasses, the CDF II tension
in MW , and the (g − 2)μ anomaly. This construction would then
represent a minimal setup where all the additional fields with re-
spect to the SM spectrum are strictly necessary. With respect to
the past literature, we revisit the analysis of the (g − 2)μ, point-
ing out any difference in signs and factors and investigating new
part of the parameter space, while explaining for the first time
in this context the lightness of the active neutrinos and the MW
CDF II measurement.

2 Recently, an updated study by the UTfit collaboration has been
published.[21] The results seem to slightly reduce the significance of
the Cabibbo anomaly.
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Table 1. Transformation properties of the SM leptons 𝓁L and μR, the Higgs
doublet H, the sterile neutrinos NR and SR, and of the leptonic vector-like
EW doublet 𝜓 under the gauge EW symmetry and their lepton charges.

SU(2)L U(1)Y U(1)L

𝓁L 2 −1∕2 1

μR 1 1 1

H 2 +1∕2 0

NR 1 1 1

SR 1 1 -1

𝜓L 2 −1∕2 1

𝜓R 2 −1∕2 1

We will first proceed in Section 2 with the formulation of a
minimal and simplified one-generation scenario that describes
only the muon and the muonic neutrino. This will be realised
by introducing only one NR, one SR and one pair of vector-like
EW doublets of exotic leptons. The model is a renormalisable ex-
tension of the Standard Model with all the terms allowed by the
Standard Model symmetries present in the Lagrangian. In Sec-
tion 3, we present the relevant phenomenology, distinguishing
between observables that receive contributions at tree-level from
those that do at loop-level. These two sections provide a proof
of concept of the existence of a framework with massive neutri-
nos, where the CDF IIMW tension and the (g − 2)μ anomaly can
be simultaneously solved. In Section 4, we comment on possible
generalisations to account for the three generations of fermions,
discussing the advantages and the disadvantages of each of them.
Finally, we will conclude in Section 5.

2. Formulation of the One-Generation Model

This section is devoted to the description and discussion of the
simplified model that only treats the second lepton generation.
The lepton and scalar sector of the framework is defined in Ta-
ble 1 together with its transformation properties under the gauge
EW symmetry and its lepton charges.
The notation refers to the second lepton generation and there-

fore 𝓁L stands for the leptonic EW doublet containing the left-
handed (LH) muon and muonic neutrino, while μR is the right-
handed (RH) muon. NR and SR are two fermionic EW singlets
with opposite lepton charges, while 𝜓L and 𝜓R constitute a lep-
tonic vector-like EW doublet. Finally,H is the Higgs EW doublet.
The corresponding mass Lagrangian can be written as

−ℒY = 𝓁LHYμμR + 𝓁LH̃YNNR + 𝜖𝓁LH̃YSSR

+ 1
2
μ′Nc

RNR +
1
2
μScRSR + ΛNc

RSR

+ YR𝜓LHμR + YVS
c
RH̃

†𝜓R + Y ′
V𝜓LH̃NR

+M𝜓𝜓L𝜓R +ML𝓁L𝜓R + h.c. ,

(2.1)

where H̃ ≡ i𝜎2H
∗, with 𝜎2 the second Pauli matrix, and all the

terms respect the lepton number conservation, except for those
proportional toYS, μ and μ′ which ensure the Low-Scale SSmech-
anism discussed in the Introduction. Without loss of generality

and in order to keep the construction as minimal as possible, we
will neglect the μ′ term in what follows. It does not intervene in
the determination of the neutrinomasses at the order considered
and, secondly, it is expected to be as small as μ and therefore neg-
ligible for the (g − 2)μ contributions, which is the main topic we
want to address.3

Once the EW symmetry is spontaneously broken by the Higgs
VEV, the mass terms can be compactly rewritten as

−ℒY ⊃
1
2
𝜒𝜒𝜒

c + 𝜁L𝜁 𝜁R + h.c. , (2.2)

where the neutral lepton multiplet 𝜒 and the charged one 𝜁 are
defined as

𝜒 ≡ (𝜈L, N
c
R, S

c
R, 𝜓

0
L , 𝜓

0c
R )

T , 𝜁 ≡ (μ, 𝜓−)T , (2.3)

generalising the definition of 𝜒 in Equation (1.2) to include the
neutral components of 𝜓 . The mass matrices 𝜒 and 𝜁 are
then written as

𝜒 =

⎛⎜⎜⎜⎜⎜⎝

0 mN 𝜖mS 0 ML
mN 0 Λ mV ′ 0
𝜖mS Λ μ 0 mV
0 mV ′ 0 0 M𝜓

ML 0 mV M𝜓 0

⎞⎟⎟⎟⎟⎟⎠
, 𝜁 =

(
mμ ML

mR M𝜓

)
, (2.4)

where we use a shortcut notation for the product of the EW VEV
and a Yukawa coupling, such that mi ≡ vYi∕

√
2.

Before entering into the details of the (block) diagonalisation
of these mass matrices, a few comments are in order. If the
only non-vanishing entries would be those with Λ andM𝜓 , then
(NR, SR), (𝜓

0
L , 𝜓

0
R) and (𝜓−

L , 𝜓
−
R ) would be three massive Dirac

pairs, while the neutrino and the muon would remain massless.
The introduction ofML does not change this feature: the determi-
nant of the two mass matrices would still be zero and therefore
the lightest neutral and charged states would still be massless.
However, the presence of ML induces a redefinition of the mass
for the Dirac pairs (𝜓0

L , 𝜓
0
R) and (𝜓

−
L , 𝜓

−
R ), and more importantly

leads to amixing between the components of the LHfields 𝓁L and
𝜓L. As we will see later, this results in the muon and the neutrino
being composite states, whose level of compositeness depends on
the hierarchy betweenM𝜓 andML. Once the terms proportional
to the EW VEV and μ are considered, the muon and the neu-
trino acquire masses. With respect to the traditional Low-Scale
SS mechanisms, the introduction of the EW doublet 𝜓 , besides
making the neutrino composite, does not modify either the ex-
pression for the neutrinomass or that for themixing between the
light active neutrino and the heavy species. We thus expect that
the neutrino phenomenology for this model will remain essen-
tially unmodified with respect to the one of the traditional Low-
Scale SS mechanisms.

3 Our model is a renormalisable construction with a Lagrangian that in-
cludes all the terms invariant under the SM gauge symmetry. This
differs from the setup considered in Ref. [38], where the tree-level
muon Yukawa term has been neglected: as a consequence, that frame-
work is not renormalisable and a physical cut-off at about 105 GeV has
been considered.
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Given the interesting physical impact of the presence of ML,
it is illustrative to discuss an intermediate step in the mass ma-
trix diagonalisation, that we will refer to with a tilde in the dif-
ferent quantities. This will be very useful for discussing the phe-
nomenology of themodel as the different observables can bewrit-
ten in a compact form in terms of the tilde parameters.
The mass ML may be large and therefore the diagonalisation

procedure would require a large rotation. The fields in the tilde
basis, whereML does not appear in the off-diagonal entries of the
mass matrices, read: for the charged leptons

μ̃L ≡ cos 𝜃 μL − sin 𝜃 𝜓−
L μ̃R ≡ μR

�̃�−
L ≡ sin 𝜃 μL + cos 𝜃 𝜓−

L �̃�−
R ≡ 𝜓−

R

(2.5)

and for the neutral leptons

𝜈L ≡ cos 𝜃 𝜈L − sin 𝜃 𝜓0
L

ÑR ≡ NR S̃R ≡ SR

�̃�0
L ≡ sin 𝜃 𝜈L + cos 𝜃 𝜓0

L �̃�0
R ≡ 𝜓0

R .

(2.6)

As we can see, only the LH components of the two EW doublets
are affected by this redefinition while the other fields remain the
same. In these expressions, 𝜃 is a mixing angle defined as

cos 𝜃 ≡ M𝜓

M̃𝜓

, sin 𝜃 ≡ ML

M̃𝜓

, with M̃𝜓 ≡
√
M2

𝜓
+M2

L .

(2.7)

In the case in which ML and M𝜓 are taken of the same order
of magnitude then the angle is close to 45◦, while once ML is
negligible (dominant) with respect toM𝜓 then sin 𝜃 ≈ 0 (cos 𝜃 ≈
0). We will further discuss these three cases later in this section.
Finalising the diagonalisation, all the fields are redefined and

the light active neutrino gets mass. Denoting by a “hat” the quan-
tities in the mass basis, the charged lepton masses are given by

m̂μ = m̃μ

⎡⎢⎢⎣1 − 1
2

(
m̃R

M̃𝜓

)2⎤⎥⎥⎦ , m̂𝜓− = M̃𝜓

⎡⎢⎢⎣1 + 1
2

(
m̃R

M̃𝜓

)2⎤⎥⎥⎦ ,
(2.8)

where we used as definitions

m̃μ = mμ cos 𝜃 −mR sin 𝜃 , m̃R = mR cos 𝜃 +mμ sin 𝜃 ,

(2.9)

and we neglected terms that have a relative suppression at least
equal to (v∕M̃𝜓 )

2 with respect to the expressions of the masses.
The corresponding mass eigenstates are defined by

𝜁 :

⎧⎪⎪⎨⎪⎪⎩
μ̂L = μ̃L , �̂�−

L = �̃�−
L ,

μ̂R = μ̃R −

(
m̃R

M̃𝜓

)
�̃�−
R , �̂�−

R = �̃�−
R +

(
m̃R

M̃𝜓

)
μ̃R ,

(2.10)

where now the neglected terms are more suppressed by only a
v∕M̃𝜓 power.
Analogously, for the neutral lepton sector, the final expressions

for the masses are

m̂𝜈 =
μ m̃2

N

Λ2
−
2 𝜖 m̃N mS cos 𝜃

Λ
,

m̂NR
= Λ +

μ
2
+
m̃2

N

2Λ
+ 1
4

[
(mV + m̃V ′ )2

Λ − M̃𝜓

+
(mV − m̃V ′ )2

Λ + M̃𝜓

]
,

m̂SR
= Λ −

μ
2
+
m̃2

N

2Λ
+ 1
4

[
(mV + m̃V ′ )2

Λ − M̃𝜓

+
(mV − m̃V ′ )2

Λ + M̃𝜓

]
,

m̂𝜓0 = M̃𝜓 − 1
4

[
(mV + m̃V ′ )2

Λ − M̃𝜓

−
(mV − m̃V ′ )2

Λ + M̃𝜓

]
,

(2.11)

while those for the mass eigenstates read

𝜒 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜈L = 𝜈L −
m̃N

Λ
S̃cR ,

N̂R =
ÑR + S̃R√

2
+

m̃N√
2Λ

𝜈cL +
1
2

[
mV + m̃V ′

Λ − M̃𝜓

�̃�0c
L + �̃�0

R√
2

−
mV − m̃V ′

Λ + M̃𝜓

�̃�0c
L − �̃�0

R√
2

]
,

ŜR = i

{
−
ÑR − S̃R√

2
+

m̃N√
2Λ

𝜈cL −
1
2

[
mV − m̃V ′

Λ + M̃𝜓

�̃�0c
L + �̃�0

R√
2

−
mV + m̃V ′

Λ − M̃𝜓

�̃�0c
L − �̃�0

R√
2

]}
,

�̂�0
L =

�̃�0
L + �̃�

0c
R√

2
− 1
2

[
mV + m̃V ′

Λ − M̃𝜓

Ñc
R + S̃cR√

2
+
mV − m̃V ′

Λ + M̃𝜓

Ñc
R − S̃cR√

2

]
,

�̂�0
R = i

{
−
�̃�0c
L − �̃�0

R√
2

− 1
2

[
mV − m̃V ′

Λ + M̃𝜓

ÑR + S̃R√
2

+
mV + m̃V ′

Λ − M̃𝜓

ÑR − S̃R√
2

]}
,

(2.12)

Fortschr. Phys. 2023, 2300020 2300020 (4 of 17) © 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

  

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

where we defined

m̃N = mN cos 𝜃 −mV ′ sin 𝜃 , m̃V ′ = mV ′ cos 𝜃 +mN sin 𝜃

(2.13)

and we neglected higher order terms: some of them follow the
same pattern as the charged states, that is (v∕(Λ, M̃𝜓 ))

2 for the
masses and v∕(Λ, M̃𝜓 ) for the eigenstates; while others are pro-
portional to (μ, mS)∕(Λ, M̃𝜓 ). This holds for all the expressions,
except for m̂𝜈 , where the terms with μ and mS are the leading
ones. Requiring that the neglected terms are smaller than the
20% of the shown contributions to the masses translates into a
lower bound for Λ and M̃𝜓 , such that

Λ, M̃𝜓 ≳ 500 GeV . (2.14)

This consistency constraint will be imposed in the following anal-
ysis. Moreover, the “i” in front of the third and fifth lines guaran-
tees that the corresponding expressions for the masses are de-
fined as positive. Special care is required for the active neutrinos:
in case the LSS contribution proportional to 𝜖 dominates, then
the mass would turn negative and then we should redefine 𝜈L in-
troducing the dependence of an “i” factor. Finally, to match with
the literature of the Low-Scale Seesaw, the mixing between ac-
tive neutrinos and the heavy neutral leptons responsible for their
masses, defined as 𝜈L ≃ 𝜈L − Θ S̃cR, is given by

Θ =
m̃N

Λ
(2.15)

and it will be useful for discussing the direct searches of the heavy
states at colliders.
Moreover, it is interesting to consider three different scenarios

depending on the hierarchy betweenML andM𝜓 :

ML ≪ M𝜓 : in this case, sin 𝜃 ∼ 0 and the main contribution to
the muon mass is due to the muon Yukawa term Yμ
and the muon field almost coincides with the ele-
mentary field μ, such as in the SM.

ML ≫ M𝜓 : this is the opposite case with respect the previous
one, where cos 𝜃 ∼ 0 and then themain contribution
to the muon mass is now the YR Yukawa term. Cor-
respondingly, the LH component of the muon field
coincides with the exotic field𝜓−

L , while the RH com-
ponent can be almost identified with the SM μR.

ML ∼ M𝜓 : in this intermediate case, the muon mass receives
sizable contributions from both Yμ and YR Yukawa
terms and the LH component of the muon field is a
composite state of μL and 𝜓−

L .

3. Phenomenology of the One-Generation Model

The presence of the exotic leptons can be tested both with devi-
ations from the SM predictions and with direct searches at col-
liders. The analysis on indirect signals requires the effective La-
grangian describing the SM lepton couplings with the SM gauge

bosons and with one physical Higgs h that reads

ℒSM ⊃ −h
v

[
m̃μ

(
1 − 3

2

m̃2
R

M̃2
𝜓

)
μ̂Lμ̂R

+

(
μ m̃2

N

Λ2
−
2 𝜖 m̃N mS cos 𝜃

Λ

)
𝜈L𝜈

c
L + h.c.

]

+ e μ̂ ∕A μ̂ −
gL√
2

[(
1 −

m̃2
N

2Λ2

)
𝜈L ∕W+ μ̂L + h.c.

]
(3.1)

−

√
g2L + g2Y
2

[(
1 −

m̃2
N

Λ2

)
𝜈L ∕Z 𝜈L − cos 2𝜃W μ̂ ∕Z μ̂

+

(
1 −

m̃2
R

M̃2
𝜓

)
μ̂R ∕Z μ̂R

]
,

where gL(Y) is the SU(2)L(U(Y)) gauge-coupling and we neglected
the Higgs coupling to the active neutrino as it does not lead to
any relevant phenomenology.
It is useful to perform the matching with the phenomenologi-

cal Lagrangian describing the same interactions,

ℒeff.
SM ⊃ − h

v

[
mexp

μ 𝜅μ μ̂ μ̂ + i mexp
μ �̃�μ μ̂ 𝛾5 μ̂

]
−

gL√
2

[
(1 + 𝛿gWμ

L ) 𝜈L ∕W+ μ̂L + h.c.
]

(3.2)

−
√
g2L + g2Y

[∑
f =μ,𝜈

[(
T3
f − s2

𝜃W
Qf

)
+ 𝛿gZfL

]
f̂L ∕Z fL

+
(
s2
𝜃W

+ 𝛿gZμR
)
μ̂R ∕Z μ̂R

]
,

where mexp
μ is the experimental value of the muon mass, T3

𝜈
=

+1∕2 and T3
μ = −1∕2, while 𝛿g are the deviations from the corre-

sponding SM values, and 𝜅μ and �̃�μ represent the deviations from
the SM (real and imaginary) values of the muon Yukawa.
Comparing Equations (3.1) and (3.2), we find the following ex-

pression of the effective quantities in terms of the parameters of
the model:

𝜅μ = 1 − 3
2

m̃2
R

M̃2
𝜓

, �̃�μ = 0 ,

𝛿gWμ
L = 𝛿gZ𝜈L = −

m̃2
N

2Λ2
, 𝛿gZμL = 0 , 𝛿gZμR = −

m̃2
R

2M̃2
𝜓

.

(3.3)

On the other hand, in order to discuss direct searches at colliders,
we need the Lagrangian describing the interactions of the phys-
ical Higgs and the SM gauge bosons with one light lepton and
one heavy:
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ℒh ⊃ − h
v

⎧⎪⎨⎪⎩m̃R

(
1 −

m̃2
R − 2m̃2

μ

2M̃2
𝜓

)
μ̂R�̂�−

L +
m̃μm̃R

M̃𝜓

μ̂L �̂�−
R +

m̃N

2

⎡⎢⎢⎣1 −
m̃2

N

Λ2
+
mVm̃V ′

ΛM̃𝜓

−
mV

Λ

(
mVΛ + m̃V ′M̃𝜓

Λ2 − M̃2
𝜓

)
− 1
2

(
mVΛ + m̃V ′M̃𝜓

Λ2 − M̃2
𝜓

)2⎤⎥⎥⎦
×

(
𝜈cL
N̂c

R − iŜcR√
2

+ 𝜈L
N̂R + iŜR√

2

)
−
m̃N

2

[
mV

Λ
+
mVΛ + m̃V ′M̃𝜓

Λ2 − M̃2
𝜓

](
𝜈cL
�̂�0
L + i�̂�0c

R√
2

+ 𝜈L
�̂�0c
L − i�̂�0

R√
2

)}
+ h.c. (3.4)

ℒZ ⊃ −

√
g2L + g2Y
2

Zμ

⎧⎪⎨⎪⎩
m̃R

M̃𝜓

μ̂R𝛾μ�̂�−
R +

m̃N

Λ
𝜈L𝛾

μ Ŝ
c
R − iN̂c

R√
2

+ 1
2

[
mV + m̃V ′

Λ − M̃𝜓

−
mV − m̃V ′

Λ + M̃𝜓

]
𝜈L𝛾

μ i�̂�
0
L + 𝜓

0c
R√

2

⎫⎪⎬⎪⎭ (3.5)

ℒW ⊃ −
gL√
2
W−

μ

{
m̃N

Λ
μ̂L𝛾μ

N̂c
R + iŜcR√

2
−

m̃R

2M̃𝜓

[
mV + m̃V ′

Λ − M̃𝜓

+
mV − m̃V ′

Λ + M̃𝜓

]
μ̂R𝛾μ

N̂R + iŜR√
2

−

[
m̃μm̃R

M̃2
𝜓

+
m̃N

2M̃𝜓

(
mV + m̃V ′

Λ − M̃𝜓

+
mV − m̃V ′

Λ + M̃𝜓

)]
μ̂L𝛾μ

�̂�0
L − i�̂�0c

R√
2

−
m̃R

M̃𝜓

μ̂R𝛾μ
�̂�0c
L − i�̂�0

R√
2

}
+ h.c. . (3.6)

We can now proceed with the phenomenological analysis, di-
viding the discussion between observables receiving contribu-
tions at tree level and those at 1-loop level.

3.1. Relevant Phenomenology at Tree-Level

Colliders bounds on Higgs couplings

The precisemeasurement of theHiggs couplings to fermions be-
came a primordial goal after the Higgs discovery and ATLAS and
CMS experiments have reported numerous results. The most
recent combinations of different Higgs signal strengths have
been recently released in Refs. [41] (ATLAS) and [42] CMS, us-
ing data at

√
s = 13 TeV. In addition, both collaborations reported

in Refs. [43] and [44] the observations of Higgs decays into a
pair of opposite-sign muons, in collisions at

√
s = 13 TeV. Using

these collider data, Ref. [45–47] performed a global fit obtaining
a bound on a combination of 𝜅μ and �̃�μ,

0.36 ≲ 𝜅2μ + �̃�
2
μ ≲ 1.85 , (3.7)

that, given thematching in Equation (3.3), translates into a bound
on the ratio m̃2

R∕M̃
2
𝜓
,

0.6 ≲ 𝜅μ ≲ 1.36 ⇐⇒
m̃2

R

M̃2
𝜓

≲ 0.27 . (3.8)

EW global fit bounds on Z couplings

A stronger constraint on this parameter ratio can be extracted
from the bounds on the deviation of the Z − μ coupling from its

SM prediction: the results of the EW global fit performed in Ref.
[48] gives

𝛿gZμL = (0.1 ± 1.2) × 10−3 , 𝛿gZμR = (0.0 ± 1.4) × 10−3 , (3.9)

that translates at the 2𝜎 level to

m̃2
R

M̃2
𝜓

< 5.6 × 10−3 . (3.10)

CDF II MW Tension

The same EW global fit also gives a bound on 𝛿gWμ
L , but the input

data used do not take into consideration the recent CDF II mea-
surement of the W mass and for this reason, we will proceed
with a dedicated discussion in what follows. The modification of
theW coupling has an impact on the computation of the muon
𝛽 decay: assuming that theW coupling with the first generation
leptons is as in the SM, the decay rate of μ → e𝜈𝜈 reads

Γμ ≃
mexp 5

μ G2
F

192𝜋3

(
1 −

m̃2
N

2Λ2

)2

≡ mexp 5
μ G2

μ

192𝜋3
, (3.11)

where we recall that GF is the Fermi constant parameter as de-
fined in the Fermi Lagrangian, Gμ is the corresponding exper-
imental determination extracted from the muon lifetime (after
correcting for O(𝛼EM) radiative effects). The relation between
these two quantities is such that

GF ≃ Gμ

(
1 +

m̃2
N

2Λ2

)
, (3.12)
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and this implies a modification of the relation between the W
boson mass and the experimental determination of Gμ,

MW ≃ MZ

√√√√√√1
2
+

√√√√√1
4
−

𝜋 𝛼em√
2Gμ M

2
Z
(1 − Δr)

(
1 −

m̃2
N

2Λ2

)
,

(3.13)

in the on-shell scheme, where the tree-level formula for the sine
of the Weinberg angle is promoted to the definition of the renor-
malised quantity:

sin 𝜃W ≡ 1 −
M2

W

M2
Z

. (3.14)

Considering the following numerical values of the input
parameters[49]

mexp
μ = 105.6583755(23) MeV

𝛼em = 7.2973525693(11) × 10−3

Gμ = 1.1663787(6) × 10−5 GeV−2

MZ = 91.1876(21) GeV

Δr = 0.03657(21)(7) ,

(3.15)

we can extract the range of values necessary to explain the recent
CDF II measurement in Equation (1.1): at the 2𝜎 level,

m̃2
N

Λ2
∈ [6.6, 11.8] × 10−3 . (3.16)

This bound is consistent with the results shown in Refs. [6, 7].
Additional modifications to theW mass appear at the loop level,
but they are completely negligible in the considered parameter
space and therefore we will neglect them.

Effective N𝜈 and LFU ratios

A second bound on this combination of parameters can be ob-
tained from the modification of the Z-decay into neutrinos. It is
constrained by the experimental determination of the invisible Z
decay rate. The analytic expression for the Z decay rate into neu-
trinos, assuming that only the coupling with the muon neutrino
is modified according to Equation (3.1), while those with the elec-
tron and tau neutrinos remain as in the SM, reads

ΓZ-inv ≃
Gμ M

3
Z

12
√
2𝜋

(
3 −

m̃2
N

2Λ2

)
≡ Gμ M

3
Z N𝜈

12
√
2𝜋

, (3.17)

where N𝜈 is the number of effective active neutrinos. The exper-
imental determination of the latter is Nexp

𝜈 = 2.9963(74)[50] and it
provides the following bound on the combination of parameters
of the model:

m̃2
N

Λ2
< 3.7 × 10−2 , (3.18)

compatible with the range of values in Equation (3.16) required
to explain the newMW measurement.
Further constraints follow frompion, kaon and also tau decays:

the relative branching ratios of the decay of those particles to dif-
ferent lepton flavours are clean observables that test the lepton
flavour universality,

P
μ∕e ≡

Γ
(
P → μ 𝜈μ

)
Γ
(
P → e 𝜈e

) , 𝜏
μ∕e ≡

Γ
(
𝜏 → μ 𝜈μ 𝜈𝜏

)
Γ
(
𝜏 → e 𝜈e 𝜈𝜏

) . (3.19)

In all cases, the deviation due to New Physics (NP) reduces to
the same combination of parameters as only the muon sector is
affected: comparing with the experimental determinations,[51]

1 −
m̃2

N

2Λ2
|||𝜋 = 1.0010(9) , 1 −

m̃2
N

2Λ2
|||K = 0.9978(18) ,

1 −
m̃2

N

2Λ2
|||𝜏 = 1.0018(14) . (3.20)

The strongest bound on the combination of themodel parameter
at the 2𝜎 level is

m̃2
N

Λ2
< 1.6 × 10−3 , (3.21)

slightly in tension with the preferred region to explain the CDF
II anomaly. We expect that this tension can be resolved once ex-
tending this analysis to the three flavour case, as will be discussed
in the next sections.

Direct searches of heavy leptons

The only couplings between heavy and SM fermions which are
not suppressed are the ones involving the Higgs and are propor-
tional to m̃N,R, as can be seen in Equation (3.4). One would there-
fore expect sizeable contributions to off-shell Higgs-mediated
processes. The bounds on such couplings are extremely interest-
ing, but they go beyond the scope of this work and are left for
more detailed and dedicated future analysis.
Concerning the couplings withZ andW gauge bosons, we can

distinguish two main scenarios: i) Λ < M̃𝜓 , such that among the

heavy states, the lightest are N̂R and ŜR (see Equation (2.11)); ii)
Λ > M̃𝜓 and the lightest states are �̂�0,−. In the case i), the di-
rect search strategy falls in the category of the standard Heavy
Neutral Lepton (HNL) scenario (see Ref. [52] for a recent sum-
mary). The present experimental bounds from CMS apply only
for m̂NR,SR

< 1.2 TeV and they apply to m̃2
N∕Λ

2, that is the com-
bination of parameters that control the mixing between the light
and heavy species both in the neutral and in the charged gauge
currents: considering the smallest masses that N̂R and ŜR can
take consistently with Equation (2.14), that is m̂NR,SR

≃ 500 GeV,
the corresponding bound is weaker than the indirect searches
listed above and reads[
m̃N

Λ

]2
≲ 0.1 . (3.22)
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Moving to the case ii), the lightest heavy leptons can be both neg-
atively charged or neutral. The present constraints from collid-
ers, and particularly from the L3 experiment, only put a lower
bound on the masses of the charged particles that is at m̂𝜓− ∼
100 GeV,[49] weaker than the consistency limit in Equation (2.14).
The neutral particles fall in the category discussed above of the
HNL and the same bounds apply also here: for the lightest
masses allowed by the consistency condition, m̂0

𝜓
= 500 GeV, the

corresponding constraints on the couplings of Z and W with a
light lepton and a heavy neutral �̂�0 read

1
4

[
mV + m̃V ′

Λ − M̃𝜓

−
mV − m̃V ′

Λ + M̃𝜓

]2

≲ 0.1 ,

[
m̃μm̃R

M̃2
𝜓

+
m̃N

2M̃𝜓

(
mV + m̃V ′

Λ − M̃𝜓

+
mV − m̃V ′

Λ + M̃𝜓

)]2

≲ 0.1 ,

[
m̃R

M̃𝜓

]2

≲ 0.1 .

(3.23)

The results on the HNL apply under the assumptions of a sin-
gle flavour analysis and of the specific Dirac/Majorana nature of
the considered HNL that could induce a rescaling of the bounds
of 1∕2 or 1∕

√
2 factors. These possible modifications, however,

would not alter the relative relevance of these constraints and
then we will stick to the bounds in Equation (3.23).
In the diagonalisation procedure, we have required Λ ≠ M̃𝜓 .

In App. A we provide the results in the degenerate limit, showing
the consistency of the analysis even in this limit.

Neutrino masses

In this simplified model, only one active neutrino gets mass,
while the other two remain massless. We will then arbitrarily
choose that its mass corresponds to the square root of the atmo-

spheric mass squared difference, m̂𝜈 ∼
√

Δm2
atm.

Given the bounds on m̃N∕Λ discussed above, and in particular,
having identified in Equation (3.16) the range of values to explain
the CDF II measurement of MW , we can now estimate the con-
ditions to obtain the correct value for the active neutrino mass.
We find a well-defined correlation between the two parameters
breaking explicitly the lepton number,

μ − 15 𝜖 Ys v cos 𝜃 ≈ 6 eV , (3.24)

obtained taking the central value for m̃N∕Λ in Equation (3.16)
and the central value for Δm2

atm. It is then possible to extract con-
straints on each single parameter assuming that the other is van-
ishing, that at the 2𝜎 level for m̃N∕Λ and Δm2

atm read

⎧⎪⎨⎪⎩
μ ∈ [4.3, 7.5] eV for 𝜖 = 0

𝜖 Ys ∈ −[1.7, 1.3] × 10−12 for μ = 0 .
(3.25)

Figure 1. Diagrams contributing to the g − 2 of the muon at 1-loop in uni-
tary gauge.

3.2. Relevant Phenomenology at 1-Loop-Level

We can move now to the analysis of the loop-level contribu-
tions, focusing on muon MDM and on the corrections to the
muon mass.

Muon magnetic dipole moment

The leading EW contributions to (g − 2)μ are those associated
with the Feynman diagrams in Figure 1, drawn in the mass basis
and in the unitary gauge.
As the internal fermion lines may be any of the neutral 𝜒 or

charged 𝜁 leptons defined in Equations (2.10) and (2.12), the total
EW contribution then accounts for both the SM EW part 𝛿aSM-EW

μ
and the NP one 𝛿aNPμ ,

𝛿aEWμ ≡ 𝛿aSM-EW
μ + 𝛿aNPμ = 𝛿ahμ + 𝛿a

Z
μ + 𝛿aWμ . (3.26)

Focusing on the NP term, we separately discuss the chirally en-
hanced and the chirally suppressed contributions: in the latter
case, the contribution is suppressed by a muon mass term, be-
sides the one due to the definition of the MDM; in the former,
this additional suppression is not present. Notice that, contrary
to the naive expectation, we cannot identify the chirally sup-
pressed contributions with only those where the chirality flip is
due to the muon Yukawa insertion, as muon mass terms may
arise also in the interaction vertices with a scalar or gauge bo-
son. Thus, wemay have contributions corresponding to diagrams
where the chirality flip occurs due to the heavy mass in the in-
ternal lepton propagator, but suppressed by muon mass terms
in the vertices: we will consider these contributions as chirally
suppressed.
We can qualitatively discuss our expectations, by looking at the

couplings of the Lagrangian in Equations (3.4)-(3.6).
Chirally Enhanced (CE) Contributions: The chirality flip has

to occur on the internal fermion line so that the total contribu-
tion is multiplied by the (heavy) mass of such a fermion. This
can only occur in the diagram with theW exchange. There is no
vertex μ̂L∕Z�̂�−

L and therefore no contribution is expected with a Z-

loop and the Higgs coupling with the charged fermions hμ̂L�̂�−
R

is proportional to m̃μ ≈ m̂μ; therefore this contribution would be
chirally suppressed.
One concludes that there are W-mediated contributions in-

volving N̂R, ŜR, �̂�
0
L and �̂�

0
R exchange, each of them proportional
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to

m̃N
m̃R

M̃𝜓

[
mV + m̃V ′

Λ − M̃𝜓

+
mV − m̃V ′

Λ + M̃𝜓

]

×

⎧⎪⎪⎨⎪⎪⎩

m̂𝜒

Λ
for N̂R and ŜR

m̂𝜒

M̃𝜓

for �̂�0
L,R

(3.27)

As in first approximation m̂N̂R,ŜR
≃ Λ and m̂�̂�0

L,R
≃ M̃𝜓 (see Equa-

tion (2.11)), the very last ratios are equal to 1 and one is tempted
to conclude that the sum of all those contributions would be sup-
pressed by only two powers of the heavy fermion masses. How-
ever, this is not the case, as there is an exact cancellation between
the contributions of N̂R and ŜR and the ones of �̂�0

L and �̂�
0
R. As

this feature recently received special attention in Refs. [38–40],
we further discuss this aspect here below.
The generic amplitude associated to theW-mediated diagram

with an internal neutral lepton 𝜒 with mass m̂𝜒 reads

i𝜒 = −ig2L ∫
d4k
(2𝜋)4

[
u(p + q)𝛾μ

(
c𝜒L PL + c𝜒RPR

) ∕k + m̂𝜒

k2 − m̂2
𝜒
+ i𝜖

×𝛾𝜈
(
c𝜒L PL + c𝜒RPR

)μ𝜈(k, p, q)u(p)
]
, (3.28)

where u(p) (u(p + q)) represents the incoming (outgoing) muon
with four-momentum p (p + q), μ𝜈(k, p, q) encodes the W-
propagators and the SM interaction of the twoWs with the pho-
ton of four-momentum q and PL,R = (1 ∓ 𝛾5)∕2 are the chirality
projectors. Finally, c𝜒L,R

4 are theW-vertices with a muon and the
normalisation of the 𝜒 is chosen so that the weak gauge coupling
gL has been factorised out in front of the integral. The CE part of
the amplitudeCE

𝜒
corresponds to the m̂𝜒 term in the numerator

of the fermion propagator,

iCE
𝜒

= m̂𝜒 c
𝜒

L c
𝜒

R ∫
d4k
(2𝜋)4

u(p + q)𝛾μ
1

k2 − m̂2
𝜒
+ i𝜖

𝛾𝜈μ𝜈(k, p, q)u(p) ,

≡ 2 i m̂𝜒 c
𝜒

L c
𝜒

R u(p + q)𝜒 (p, q) u(p) , (3.29)

where the function 𝜒 (p, q) is defined so that it encodes the in-
tegration over the loop-momentum, the Lorentz structures and
some factors. The leading term in the limit of m̂𝜒 ≫ v reads

𝜒 (p, q) = e
(16𝜋2)v2

(𝛾𝛼 ∕q − q𝛼) 𝜀
𝛼(q) , (3.30)

where 𝜀𝛼(q) is the polarisation vector of the photon.
The relevant aspect here is the absence of m̂𝜒 in the lead-

ing term of the function 𝜒 (p, q), which guarantees the cancel-

4 According to the initial Lagrangian, these couplings are assumed to be
purely real.

lation mentioned above. Indeed, using the expressions for the
couplings c𝜒L,R given by Equation (3.6),

cN̂R
L cN̂R

R = cŜRL cŜRR = −
m̃Nm̃R

4Λ M̃𝜓

[
mV + m̃V ′

Λ − M̃𝜓

+
mV − m̃V ′

Λ + M̃𝜓

]
,

c
�̂�0
L

L c
�̂�0
L

R = c
�̂�0
R

L c
�̂�0
R

R =
m̃Nm̃R

4 M̃2
𝜓

[
mV + m̃V ′

Λ − M̃𝜓

+
mV − m̃V ′

Λ + M̃𝜓

]
,

(3.31)

we find that the total CE contribution to the amplitude reads

iCE =
∑

𝜒=N̂R,ŜR,�̂�
0
L ,�̂�

0
R

iCE
𝜒

= −i
m̃Nm̃R

2M̃𝜓

[
mV + m̃V ′

Λ − M̃𝜓

+
mV − m̃V ′

Λ + M̃𝜓

]
u(p + q) (3.32)

×

[
m̂NR

Λ
 N̂R (p, q) +

m̂SR

Λ
 ŜR (p, q)

−
m̂𝜓0

L

M̃𝜓

 �̂�0
L (p, q) −

m̂𝜓0
R

M̃𝜓

 �̂�0
R (p, q)

]
u(p) .

Once taking the Leading-Order (LO) expression of the neutral
heavy lepton masses as from Equation (2.11),

m̂NR
= m̂SR

≃ Λ , m̂𝜓0
L,R

≃ M̃𝜓 , (3.33)

the terms in the last line of Equation (3.32) sum up to zero and
thus the whole CE amplitude vanishes at LO.
All in all, at 1-loop the CE contribution to 𝛿aNPμ arises only at the

Next-to-Leading-Order (NLO) and it is suppressed by four powers
of the heavy neutral masses:

𝛿aCE-1Lμ =
3mexp

μ

4𝜋2 v2
M2

W

ΛM̃𝜓

m̃Nm̃R

M̃𝜓

(
mV

M̃𝜓

+
m̃V ′

Λ

)
F0

(
Λ2

M2
W

,
M̃2

𝜓

M2
W

)
(3.34)

where the loop function is defined by

F0(x, y) ≡ 3
2
−
x log y − y log x

x − y
, (3.35)
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that is negative for x, y ≫ 1.5 Notice that Equation (3.34) and the
one that will follow are given in terms of the tilde quantities in
order to keep the expressions more compact.
It is worth commenting that, although the CE contribution

from 2-loop diagrams does not present such a cancellation, it
turns out to be smaller than the 20% of 𝛿aCE-1Lμ in the considered
parameter space. The dominant 2-loop CE contribution, 𝛿aCE-2Lμ ,
arises from a diagram similar to the one in the bottom in Figure 1
with the addition of a top-bottom-loop from which the photon is
emitted, see Ref. [38]. A rough estimation reads

𝛿aCE-2Lμ ≈ −
6 y2t m

exp
μ

(16𝜋2)2 v2
m̃Nm̃R

M̃𝜓

ΛM̃𝜓

M̃2
𝜓
− Λ2

(
mV

M̃𝜓

+
m̃V ′

Λ

)
log

M̃2
𝜓

Λ2
,

(3.38)

where yt = 0.81 is the top quark Yukawa computed at the scale
Λ ∼ M̃𝜓 .
It is to be mentioned that our results agree (with the exception

of what is mentioned in footnote ) with those presented in the
past literature[33–37,40] and in particular Refs. [38–40] focussed on
the analysis of the cancellation present in the 1-loop CE contri-
bution.
Chirally Suppressed (CS) Contributions: There are several CS

contributions, besides the purely SM ones.We can identify a con-
tribution from the h-mediated diagram, once combining the two
vertices in the first line of Equation (3.4). Moreover, a similar con-
tribution arises from theW-mediated diagram with the �̂�0

L,R lep-
tons in the loop, considering the vertices in the last two lines of
Equation (3.6). In both of them, the chirality flip occurs due to
a heavy lepton mass in the fermionic propagator, but the muon
mass term is present in the vertex. Additional CS contributions
arise again from theW-mediated diagram, but when the chirality
flip is due to a muon Yukawa coupling in one of the muon exter-
nal legs. This occurs due to the terms present in the first and last
lines of Equation (3.6), when the same vertex appears twice in the
diagram. The complete expression for the 1-loop CS contribution
reads

5 Our result differ from the one in Ref. [38], that reads:

𝛿aCE-1Lμ =
3
√
2mexp

μ

4𝜋2 v2
M2

W

ΛM̃𝜓

m̃Nm̃R

M̃𝜓

(
mV

M̃𝜓

+
m̃V′

Λ

)
F

(
Λ2

M2
W

,
M̃2
𝜓

M2
W

)
,

(3.36)

where the loop function is defined by

F(x, y) ≡ x3y log x

(y − x)(x − 1)3
+

y3x log y

(x − y)(y − 1)3
−
xy(3xy − x − y − 1)

2(x − 1)2(y − 1)2
> 0 .

(3.37)

The
√
2 factor follows from the different definition of the value for

v. More relevant is the loop-function: F0(x, y) coincides with the LO
expansion of the function F(x, y) for x, y ≫ 1, besides the global minus
sign. Our result is consistent with the analysis in Ref. [53].

𝛿aCS-1Lμ =
mexp

μ

16𝜋2 v2

×

[
−
m̂μm̃

2
R

M̃2
𝜓

+
2mexp

μ

3

((
5 + 2 cos 2𝜃W

) m̃2
R

M̃2
𝜓

−
3 m̃2

N

Λ2

)]
,

(3.39)

where we distinguish the two kind of contributions described
above: the one proportional to mexp

μ m̂μ comes from the diagrams
with the chirality flip due to the heavy lepton masses, while the
one with (mexp

μ )2 from those with the chirality flip in the external
muon legs.
If the tree-level contribution to the muon mass is the domi-

nant one, m̂μ ≃ mexp
μ , it is possible to compute an upper bound

for 𝛿aCS-1Lμ . Fixing m̃2
R∕M̃

2
𝜓
to its maximal value allowed by Equa-

tion (3.10) and with m̃2
N∕Λ

2 within the range given in Equa-
tion (3.16) for explaining the CFM II result for MW , we get|𝛿aCS-1Lμ | ≲ 8 × 10−12, that is two orders of magnitudes smaller
than necessary to explain the (g − 2)μ anomaly.
The full NP contribution to the (g − 2)μ is given by the sum of

the different terms obtained in the previous paragraphs:

𝛿aNPμ = 𝛿aCE-1Lμ + 𝛿aCE-2Lμ + 𝛿aCS-1Lμ . (3.40)

Figure 2 shows the dependence of 𝛿aNPμ on the heavy scales as-

suming a simplified parameter space with Λ = M̃𝜓 and m̂μ =
mexp

μ . The plots are for the effective couplings YV and ỸV ′ , defined

as YV =
√
2mV∕v and ỸV ′ =

√
2m̃V ′ ∕v, satisfying YV = ỸV ′ = 0.3

for the plot on the left and 1 for the one on the right. In each plot,
the upper part shows 𝛿aNPμ in red, while the experimental allowed
region is depicted in green (yellow) at 1𝜎 level (2𝜎). In the lower
part, we show the ratio of each component, 𝛿aCE-1Lμ in blue, 𝛿aCE-2Lμ
in cyan and 𝛿aCS-1Lμ in magenta, to the total contribution 𝛿aNPμ as a

function of Λ = M̃𝜓 . The width of the curves corresponds to the
range of values given in Equation (3.16) within which m̃N∕Λ can
vary. Moreover, in the whole parameter space, the condition in
Equation (3.10) for m̃2

R∕M̃
2
𝜓
is saturated together with the require-

ment that |ỸN| =√
2|m̃N|∕v and |ỸR| = √

2|m̃R|∕v are smaller
than 1.
A few conclusions can be made. First of all, we can see that

the CS contribution is always subdominant in the considered pa-
rameter space, as expected by having fixed m̂μ = mexp

μ . The CE
contribution at two loops becomes relevant, although still sub-
dominant, only for large values of the heavy scales. Moreover, we
can identify the ballpark values for YV = ỸV ′ needed to explain
the (g − 2)μ anomaly at the 2𝜎 level: on one hand, YV = ỸV ′ = 1
implies that the heavy masses should be as large as 2 TeV; on the
other hand, smaller values imply lower heavy scales and the re-
quirement thatΛ = M̃𝜓 ≳ 500GeV implies thatYV = ỸV ′ ≳ 0.07.
The parameter space can also be investigated after breaking the

equality between the two heavy scales and/or the relation YV =
ỸV ′ . In Figure 3, we show 𝛿aNPμ as a function of the ratioΛ∕M̃𝜓 . In

the plot on the left, we fix YV = ỸV ′ = 0.3 and we consider three
values for M̃𝜓 that span the same parameter space as the plots
in Figure 2: M̃𝜓 = 500 GeV is shown in blue, M̃𝜓 = 1000 GeV in
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Figure 2. In the upper part of each plot, 𝛿aNPμ (red) is shown as a function of Λ = M̃𝜓 . The experimental values at 1𝜎 (2𝜎) are shown in green (yellow).

In the plots, m̂μ = mexp
μ , while YV = ỸV′ are fixed to 0.3 in the left plot and to 1 in the right one. m̃N∕Λ can vary according to Equation (3.16), while

m̃2
R∕M̃

2
𝜓 is taken at its maximum value according to Equation (3.10), together with the requirement that |ỸN| ≤ 1 and |ỸR| ≤ 1. In the lower part of each

plot, the ratios of the different components 𝛿aCE-1Lμ (blue), 𝛿aCE-2Lμ (cyan) and 𝛿aCS-1Lμ (magenta), to the total contribution 𝛿aNPμ are shown.

Figure 3. 𝛿aNPμ as a function of the ratio Λ∕M̃𝜓 , fixing m̂μ = mexp
μ . On the right, YV = ỸV′ = 0.3, with M̃𝜓 = 500 GeV in blue, M̃𝜓 = 1000 GeV in red,

M̃𝜓 = 2000 GeV in purple. On the left, M̃𝜓 = 1000 GeV, whith YV and ỸV′ fixed to different values: YV = ỸV′ = 1 in purple, YV = ỸV′ = 0.3 in blue, YV = 1

and ỸV′ = 0 in red, and YV = 0 and ỸV′ = 1 in cyan. Within each band, the darkest coloured (intermediate) [lightest] region is for |ỸN| < 1 (1 < |ỸN| < 5)
[|ỸN| > 5]. m̃N∕Λ can vary according to Equation (3.16), while m̃2

R∕M̃
2
𝜓 saturates Equation (3.10). The experimentally allowed values at 1𝜎 (2𝜎) are shown

in green (yellow). The dashed vertical line guides the eye for the ratio equal to 1.

red and M̃𝜓 = 2000 GeV in purple. The condition Λ ≥ 500 GeV
leads to a sharp cut on the left-hand side of the coloured regions;
m̃N∕Λ can vary according to Equation (3.16) and is responsible for
the width of the bands; m̃2

R∕M̃
2
𝜓
saturates Equation (3.10); finally,

while ỸR is always smaller than 1 in the whole parameter space,
the opacity of the colours indicates the value of ỸN , that is dark
(intermediate) [light] for |ỸN| < 1 (1 < |ỸN| < 5) [|ỸN| > 5].
The plot on the right shows complementary information. M̃𝜓

is fixed to the reference value of 1000 GeV and the different
curves show different combinations of YV and ỸV ′ : YV = ỸV ′ = 1

in purple, YV = ỸV ′ = 0.3 in blue, YV = 1 and ỸV ′ = 0 in red and
YV = 0 and ỸV ′ = 1 in cyan. The same conditions on Λ, m̃N∕Λ,
m̃2

R∕M̃
2
𝜓
, and ỸN described for the plot on the left apply also here.

The main message following from the two plots is that the
parameter space is large and there are many different combi-
nations of parameters for which we can solve the muon MDM
anomaly. However, the parameters need to be correlated. This
feature and also the role of the constraints following from the si-
multaneous explanation of the MW anomaly and precision elec-
troweak fits can be better understood by looking at the qualita-
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tive features of the 𝛿aμ contributions. Focussing on the CE ones
that are dominant in the considered parameter space, the depen-
dence on the six parameters (Λ, M̃𝜓 , m̃N , m̃R, mV , m̃V ′ ) is to a
good approximation a dependence on their three combinations.
First of all, for the CE contribution at 1 loop, varying Λ and M̃𝜓

within [500, 2000] GeV, the function F0(x, y) appearing in Equa-
tion (3.34) spans a very narrow range of value, −[1.5, 4]. Taking
F0(x, y) = −2.5 in the whole parameter space, the expression in
Equation (3.34) reads:

𝛿aCE-1Lμ ≃ −
(
2 × 10−3 GeV

)[ m̃N

Λ

][
m̃R

M̃𝜓

]
1

M̃𝜓

(
mV

M̃𝜓

+
m̃V ′

Λ

)
,

(3.41)

where the ratio in the first bracket is constrained by the CDF II
measurement of MW , Equation (3.16), and the ratio in the sec-
ond bracket is bounded by Equation(3.10). It follows that 𝛿aCE-1Lμ

effectively depends on only three parameters, that is M̃𝜓 and
the two ratios mV∕M̃𝜓 and m̃V ′ ∕Λ. We can proceed in a simi-
lar way for the CE contribution at 2 loops and we notice that
varying Λ and M̃𝜓 still within [500, 2000] GeV, the combina-
tionΛ2 log(M̃2

𝜓
∕Λ2)∕(M̃2

𝜓
− Λ2) spans a very small range of values

[0.18, 3]. Fixing it at 1.5, Equation (3.38) reads

𝛿aCE-2Lμ ≈ −
(
4 × 10−10 GeV−1)[ m̃N

Λ

][
m̃R

M̃𝜓

]
M̃𝜓

(
mV

M̃𝜓

+
m̃V ′

Λ

)
.

(3.42)

We can use these simplified expressions to easily estimate that
𝛿aCE-2Lμ is always subdominant with respect to 𝛿aCE-1Lμ in the whole

considered parameter space M̃𝜓 vs. Λ. Moreover, taking m̃2
N∕Λ

2

as in Equation (3.16) and m̃2
R∕M̃

2
𝜓
at its largest value in Equa-

tion (3.10), for fixed values of M̃𝜓 , the region where the experi-
mental measurement for the muonMDM is reproduced reduces
to an anti-diagonal straight strip in the parameter space mV∕M̃𝜓

vs. m̃V ′ ∕Λ. Changing the value of M̃𝜓 simply translates into mov-
ing this strip in the plane, maintaining however the slop. This is
shown in the plot in Figure 4. The two shaded regions represent
different values of M̃𝜓 , that is 500 GeV in blue and 2000 GeV in
purple, such that 𝛿aμ matches the experimental measurement at
1𝜎. The intensity of the colours indicate the value of the Yukawa
coupling YV , which is smaller than 1 for the darkest colour, in the
range [1, 5] for the intermediate colour, and larger than 5 for the
lightest colour: notice that for M̃𝜓 = 500 GeV and 2000 GeV, |ỸN|
is never larger than 5 in the shown parameter space. The width
of the strips corresponds to m̃N∕Λ varying in the range given by
Equation (3.16). Commenting on the signs of m̃N and m̃R, the two
blue and purple strips correspond to the case with opposite de-
fined signs for the two parameters; instead, if the product m̃N m̃R
would be positive, then the two coloured strips would appear in
the bottom-left part of the plane, symmetric with respect to the
origin of the coordinate system.
Notice that, as only an upper bound on m̃R∕M̃𝜓 is provided by

the current data, one may consider smaller values of this ratio.
This would imply wider regions in themV∕M̃𝜓 vs. m̃V ′ ∕Λ param-

Figure 4. The parameter spacemV∕M̃𝜓 vs. m̃V′ ∕Λ which gives 𝛿aμ within
its 1𝜎 error range, for m̃N m̃R < 0. The shaded regions correspond to
M̃𝜓 = 500 GeV in blue and M̃𝜓 = 2000 GeV in purple. The width of the
strips is determined by m̃2

N∕Λ
2 in the range given in Equation (3.16). For

the purple band, the darkest (intermediate) [lightest] coloured region is for|ỸN| < 1 (1 < |ỸN| < 5) [|ỸN| > 5], while for the blue one the dark (light)
coloured region is for |ỸN| < 1 (1 < |ỸN| < 5) and |ỸN| is never larger than
5.

eter space: for fixed values of M̃𝜓 , reducing |m̃R∕M̃𝜓 | translates
into larger values for |YV | and |YV ′ |, that can possibly be restricted
by the perturbativity requirement on these Yukawa couplings.
If in the future, deviations from the SMmodel predictions will

be found such that a lower bound for |m̃R∕M̃𝜓 | can be fixed, then
the correlation between the three (combination of) parameters
entering Figure 4 will be uniquely determined. This is possible
in this model because m̃2

N∕Λ
2 spans a reduced range of values in

order to reproduce the CDF II measurement onMW .

Muon mass

The diagrams in Figure 1, after removing the photon leg, rep-
resent contributions to the muon mass at 1-loop. The absence
of the photon, however, has an important consequence: the can-
cellation present in the CE contribution at 1-loop to 𝛿aNPμ is now
absent. Indeed, the muon mass correction reads exactly as Equa-
tion (3.28), but with the μ𝜈(k, p) function that now encodes only
theW-propagator. The amplitude is divergent and dependent on
the heavy-fermion mass in the loop. Writing the amplitude as in
Equation (3.29), we have to replace the 𝜒 (p, q) function by a new
one 𝜒 (p) that reads

𝜒 (p) = − 1
(16𝜋2)

m̂2
𝜒

v2

[
1 + log

(
μ2Ren
m̂2
𝜒

)]
, (3.43)
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Figure 5. Dependence of 𝛿mμ on Λ (M̃𝜓 ) on the left (right), fixing M̃𝜓 = 500 GeV (Λ = 500 GeV) and the running scale μRen = Λ (μRen = M̃𝜓 ). YV and

ỸV′ have been taken both equal to 0.3. The width of the bands corresponds to m̃
2
N∕Λ

2 within the range in Equation (3.16). m̃2
R∕M̃

2
𝜓 has been fixed to the

largest value in Equation (3.10) and m̃Nm̃R < 0.

valid in the limit of m̂𝜒 ≫ v, where μRen stands for the renormal-

isation scale in theMS scheme. 6

Summing up all the terms as in Equation (3.32), no cancella-
tion, in general, can take place due to the presence of the mass
dependence and the log in the 𝜒 (p) functions. The final result
for the dominant 1-loop contribution at the LO to themuonmass
reads

𝛿mμ = −
m̃N m̃R Λ
8𝜋2 v2

(
mV

M̃𝜓

+
m̃V ′

Λ

)

×

[
1 + 1

M̃2
𝜓
− Λ2

(
M̃2

𝜓
log

μ2Ren
M̃2

𝜓

− Λ2 log
μ2Ren
Λ2

)]
, (3.44)

The left plots in Figure 5 estimates the dependence of
𝛿mμ∕m

exp
μ onΛ having fixed M̃𝜓 = 500GeV and the running scale

such that μRen = Λ. In the right plot, the role of Λ and M̃𝜓 are in-
terchanged. As we can see, for the considered simplified choice
of the parameters, |𝛿mμ| increases and, for M̃𝜓 = 500 GeV, it can
be even larger than the experimental value of the muon mass, at
larger values of the masses of the heavy leptons. Choosing μRen
to coincide with the largest scale among M̃𝜓 and Λ reduces the
impact of the higher loop-level contributions.
Interestingly, in the limit μRen = M̃𝜓 = Λ, the term in the

squared brackets vanishes at leading order: Equation (3.43) triv-
ially shows that the log-dependent term is identically zero as far
as the renormalisation scale coincides with the mass of the ex-
otic fermion; however, even the constant term does not lead to
any contributions at leading order once M̃𝜓 = Λ and the reason
can be understood repeating the analysis done for themuon g − 2
in Equations (3.29)-(3.33), substituting 𝜒 (p, q) with 𝜒 (p). This
can be more explicitly appreciated considering the gauge boson

6 As our model is renormalisable, μRen is the renormalisation scale. On
the contrary, μRen represents the physical cut-off in Ref. [38].

couplings to fermions in the limit M̃𝜓 = Λ, reported in App. A:
at the expansion order considered, the singlet and the doublet
exotic fields couples to the elementary muon fields exactly in the
same way, except for a global sign.
We can simplify the expression in Equation (3.44) in the same

line as we did for the muon MDM: varying Λ and M̃𝜓 within
[500, 2000] GeV and taking the renormalisation scale equal to the
largest among Λ and M̃𝜓 , we get

𝛿mμ ≃ −[0, 0.7] ×
[
m̃N

Λ

][
m̃R

M̃𝜓

]
M̃𝜓

(
mV

M̃𝜓

+
m̃V ′

Λ

)
. (3.45)

Given the similarity of the expressions for the CE contributions
of the 𝛿aμ and 𝛿mμ, it is useful to combine 𝛿mμ and 𝛿a

CE
μ in a

single formula, using the exact expressions in Equations (3.34),
(3.38) and (3.44), we get

𝛿aCE-1Lμ

𝛿mμ
= −

6mexp
μ M2

W

Λ2M̃2
𝜓

F0

(
Λ2

M2
W

,
M̃2

𝜓

M2
W

)

×

[
1 + 1

M̃2
𝜓
− Λ2

(
M̃2

𝜓
log

μ2Ren
M̃2

𝜓

− Λ2 log
μ2Ren
Λ2

)]−1

𝛿aCE-2Lμ

𝛿mμ
=

3 y2t
16𝜋2

mexp
μ

M̃2
𝜓
− Λ2

log
M̃2

𝜓

Λ2

×

[
1 + 1

M̃2
𝜓
− Λ2

(
M̃2

𝜓
log

μ2Ren
M̃2

𝜓

− Λ2 log
μ2Ren
Λ2

)]−1

,

(3.46)

that hold whenever 𝛿mμ ≠ 0. When instead 𝛿mμ vanishes, that is
whenever μRen = M̃𝜓 = Λ, there is no correlation between these
two quantities and 𝛿aμ can fit the corresponding experimental
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Figure 6. 𝛿mμ∕m
exp
μ in the parameter space of M̃𝜓 vs. Λ. The black curves

represent the value of the ratio 𝛿mμ∕m
exp
μ , with the dashed one referring to

the case when it is vanishing. In the whole parameter space, 𝛿aμ coincides
with the corresponding experimental central value. The green region is
when the loop-level contribution to the muon mass is smaller than the
tree-level one by the 30%, while the white one is when it is larger than the
30% but still smaller than the tree-level one. Finally, the red region, instead,
is when the loop-level contribution is larger than the tree-level one. The two
grey regions provide an intuition of when |YV | and |ỸV′ | get larger than 1,
but still smaller than 5.

value although no quantum correction to the muon mass is
present at 1-loop and at LO.
Figure 6 illustrates the parameter space of M̃𝜓 vs. Λ when

𝛿aμ coincides with the corresponding experimental central value,
with the black curves showing the values of the ratio 𝛿mμ∕m

exp
μ .

The plot has been obtained using the complete expressions in
Equations (3.34), (3.38) and (3.44), fixing the renormalisation
scale μRen equal to the largest among Λ and M̃𝜓 . The colours de-
scribe the relationship between the tree-level and the loop-level
contributions to the muon mass: the loop contribution is larger
than the tree-level one in the red area, while it is smaller than the
50% (30%) of the tree-level one in the white (green) one. To draw
these conditions, in each point of the parameter space, the value
of the tree-level contribution is fixed by the requirement that

m̂μ = m(2 TeV)
μ − 𝛿mμ , (3.47)

where m(2 TeV)
μ = 103.62 MeV is the value of the muon mass at

2 TeV, obtained performing the RG running from the MZ scale
up to 2 TeV within the SM (see Ref. [54] for the values at the scale
MZ and for example Ref. [55] for the RG running within the SM).
In grey, we indicate the regions where 1 < |YV | < 5 with ỸV ′ = 0,
or 1 < |ỸV ′ | < 5 with YV = 0.
All in all, in the whole considered parameter space, the cor-

rect value of the muon (g − 2) is achieved without the necessity

of an unnaturally large cancellation between tree- and loop-level
contributions to the muon mass.

4. Discussion on the Three-Generation Extension

This section discusses the main features of considering the three
generations of leptons as in the SM.
A very economical solution in terms of number of both fields

and parameters would still consider the NP part of the spectrum
as in the one-generation model considered in the previous sec-
tions. Not introducing any additional symmetry, the couplings
between exotic and the SM fields are in general promoted to vec-
tors and matrices in the flavour space: in particular, Ye would be
a 3 × 3 matrix, while YN , YS, YR andML would be tridimensional
vectors. The attractive aspect of this setup is the possibility to
correctly describe the pattern of lepton masses and mixings: as
first shown in Ref. [56], with only one NR and one SR, it is pos-
sible to uniquely determine the structure of the Dirac Yukawa
vectors in order to describe the PMNS mixing matrix and a neu-
trino spectrum (with both mass ordering) with the lightest neu-
trino being massless. As now also the electron couplings would
be modified, the LFU ratios, which impose strong bounds in the
one-generation model, would simply lead to the condition that
electron and muon couplings to the W gauge boson should be
very similar to each other. The solution to explain the CDF II
measurement of MW would be in the same ballpark as in the
one-generation model – actually, it would change by a factor 2.
Regarding the computations for the MDMs, no relevant

change is expected, as indeed the cancellation in the CE con-
tribution at LO would still occur and therefore the associated
phenomenology discussed in the one-generation model would
still hold.
The main drawback of this simple and elegant scenario is

the presence of flavour-changing neutral currents. The exotic
fermions would be flavour blind and therefore the same dia-
grams that contribute to the lepton MDM would also contribute
to the radiative lepton decay, with the same dependence on the
parameters – the cancellation occurring in the 1L-CE contribu-
tions would also occur for this flavour changing processes. The
net result is that μ → e𝛾 would completely exclude the parameter
space interesting for the 𝛿aμ solution.
A second possibility is that the NP part of the spectrum is ex-

tended so that there are three replicas of the fields considered in
the one-generation construction. In this scenario the number of
parameters would be largely increased as most of the parameters
appearing in Equation (2.1) would be promoted to be 3 × 3matri-
ces in the flavour space. The expectation is that all the observables
may be fitted but at the price of a very weak predictive power.
The latter possibility is certainly not economical in terms of

number of fields and parameters. A radical improvement in pre-
dictivity can be obtained e.g. by implementing the family lepton
number as a good symmetry of the Lagrangian, broken by theMa-
jorana terms thatmay also be responsible for introducing the lep-
tonmixings. Each exotic generationwould then interact only with
one SM lepton generation and the Lagrangian in Equation (2.1)
would simply be repeated three times. Each sector would have
its own parameters and therefore the possibility of correlations
between observables involving different flavours is strongly un-
likely. The bottom line is that the three sectors could then be
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treated independently. A less radical but very interesting possi-
bility is to extend the horizontal symmetries invoked to explain
the pattern of fermion masses and mixings to the NP part of the
spectrum. Thus, there exist a variety of potential generalisations
to three generations to explore.

5. Concluding Remarks

The new measurement of the W gauge boson mass from the
CDF II collaboration, if confirmed, is still another indication of
physics beyond the Standard Model. It is an intriguing possi-
bility to explain this deviation in frameworks that describe mas-
sive light active neutrinos: this is the case of the Low-Scale See-
saw constructions where the sterile lepton species may live at
the TeV scale and then possibly be produced and detected at
colliders. Even more fascinating would be to explain within the
same framework a long-standing anomaly typically associated
with low-energy physics, that is the tension between the theoret-
ical prediction and the experimental determination of the muon
anomalous magnetic moment. In this paper, we provide a proof
of concept that such a construction can indeed be realised.
We focus on a renormalisable one-generation scenario, ex-

tending the Standard Model spectrum with two additional ster-
ile species and one pair of vector-like lepton SU(2)L-doublets that
interact only with the muon and the muonic neutrino. We have
studied the parameter space of the model pointing out that we
can solve theMW and (g − 2)μ anomalies at the 2𝜎 level together
with reproducing the light active neutrino mass scale, without
any relevant fine-tuning. This is achieved for exotic leptonmasses
in the range [0.5, 2] TeV, smaller than the scale naively expected
in the effective field theory description. This is due to an acci-
dental cancellation occurring between different contributions at
1-loop to the (g − 2)μ. This cancellation has been discussed in
the lepton flavour basis in Refs. [38–40], with the aim of under-
standing if an underlying explanation would be present. We have
analysed it instead in the lepton mass basis and we concluded
that it simply follows from the peculiarity of the couplings of the
muonwith the exotic states – see Equation (3.31): this is the direct
consequence of the chosen spectrum and of the Standard Model
gauge symmetry invariance. With respect to the past literature,
besides the analysis of the (g − 2)μ discussed above, focusing in a
different part of the parameter space, we explain for the first time
in this context the lightness of the active neutrinos and the new
measurement from the CDF II collaboration of theMW mass.
We have also discussed the possible extensions to the three-

generation case. The minimal scenario, without any additional
new fields in the spectrum beyond the ones already considered,
preserves the positive features of the one-generation construction
and avoids the strong bounds from the observed lepton flavour
universality (see the ratios in Equation (3.19)). However, as the ex-
otic fields are flavour-blind, radiative lepton decays rule it out. A
realistic three-generation model requires an extension of the ex-
otic spectrum. An interesting possibility to explore is to impose
a flavour symmetry on the spectrum so that the predictivity of
such models is preserved. The appeal of such frameworks would
also be associated with the future direct searches of new physics
at colliders, where the exotic leptons may be produced and de-
tected, confirming or ruling them out.

Appendix A: Degenerate Heavy Fermions

In the limit Λ ≈ M̃𝜓 the heavy fermions are almost degenerate.
In such case, many of the couplings presented in the main dis-
cussion seem to suffer from a divergence of the type (Λ − M̃𝜓 )

−1.
Such divergence is an artifact and the corresponding case must
be treated separately to cure it. In such section, we show how
the interaction Lagrangian of Equations (3.4), (3.5), and (3.6)
looks like in such limit. Such results must be used whenever
v∕|Λ − M̃𝜓 | ≳ 1.
As this assumption has consequences only on the neutral sec-

tor, we will focus on it. The masses are now given by

m̂𝜈 =
μ m̃2

N

Λ2
−
2 𝜖 m̃N mS cos 𝜃

Λ
,

m̂NR
= Λ +

mV + m̃V ′

2
,

m̂SR
= Λ −

mV + m̃V ′

2
,

m̂𝜓0
L
= Λ −

mV + m̃V ′

2
,

m̂𝜓0
R
= Λ +

mV + m̃V ′

2
,

(A.1)

where we have shown the leading and next-to-leading order for
each mass. As can be seen, the splitting between the masses in-
creases and now depends on mV and m̃V ′ .
Again, as this phenomenology arises only in the neutral sector,

we will omit interactions among two charged fields. The mixing
degenerate Lagrangian then reads

ℒdeg
h ⊃ − h

v

{
−
m̃N

2
𝜈L
N̂R + iŜR − �̂�0c

L − i�̂�0
R

2
+ h.c.

}
, (A.2)

ℒdeg
Z ⊃ −

√
g2L + g2Y
2

Zμ

⎧⎪⎨⎪⎩−
m̃N

Λ
𝜈L𝛾

μ N̂
c
R + iŜcR − �̂�

0
L − i𝜓0c

R

2
+ h.c.

⎫⎪⎬⎪⎭,
(A.3)

ℒdeg
W ⊃ −

gL√
2
W−

μ

{
−
m̃N

Λ
μL𝛾μ

N̂c
R + iŜcR − �̂�

0
L − i�̂�0c

R

2
(A.4)

+
m̃R

Λ
μ̂R𝛾μ

N̂R − iŜR + �̂�0c
L − i�̂�0

R

2

}
,

where we have written only the leading-order terms for each cou-
pling.
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