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Abstract: An intriguing but rare silicon-centered spirocyclic compound, spiro[5.5]octaferrocenylpenta
siloxane (4) featuring silicon fused six-membered ferrocenyl-functionalized siloxane rings, has been
obtained during the thermally induced transformation of triferrocenylsilane Fc3Si–H (1) into tri-
ferrocenylsilanol Fc3Si–OH (2), when N,N-dimethylformamide (DMF) was used as a solvent in the
presence of the metal carbonyl Mo(CO)6. The unexpected formation of the maximally ferrocenyl substi-
tuted silicon centered spirocyclic 4 involves the obtention, and subsequent condensation, of different
ferrocenylsilanol intermediates. Spirocyclic silicate 4 has been characterized using a combination of
MALDI-TOF mass spectrometry, elemental analysis, and single crystal X-ray diffraction analysis.

Keywords: spirocyclic; siloxanes; ferrocene; cyclosiloxanes; inorganic macrocycles; SCXRD

1. Introduction

Organosilicon molecules bearing Si–O–Si siloxane bonds are an important type of
functional compound exhibiting valuable applications in various fields such as catalysis,
materials, energy, and bioscience, due to their high thermal stability and hydrophobicity,
chemical inertness, and unique electronic, optical, and biocompatibility properties [1–4].
Concerning the chemical properties of siloxanes, in the last few years, the field of siloxane
coordination chemistry has significantly advanced and sophisticated methods have been
established to enable the Si–O–Si bond for coordination. Accordingly, experimental features,
as well as comprehensive quantum chemical calculations, have been provided to confirm
siloxane coordination ability [5].

Moreover, cyclic siloxanes, which formally resemble silicon analogs of crown ethers,
have received considerable interest concerning their host–guest chemistry [5–12]. The key
specific characteristics of organosilicon compounds bearing siloxane bonds are: (1) the
bond lengths of Si–O bonds, ranging from 1.63 to 1.67 Å; (2) the Si–O–Si bond angles
between 130 and 150◦, which are considerably larger than the range for the C–O–C angles
in aliphatic ethers (105–115◦) [2–5]; (3) the O–Si–O angles, which vary within a narrower
range, from 110 to 120◦. Due to the large open and variable angle of the Si–O–Si linkage,
siloxane compounds present unusual conformational flexibility. Essentially, the high
flexibility of the siloxane bond is a key feature that is outstandingly useful for assembling
siloxane-containing small molecules into more complex inorganic macromolecules [4,5]. It
is also well known that unexpected, novel silicon- and siloxane-containing compounds,
which in most cases cannot be synthesized by other means, can be obtained by reacting
organosiloxanes with selected organometallic reagents [5–13].

On the other hand, over the past few decades, the design of multiferrocenyl macro-
molecular structures has evolved to be one the most appealing subjects within various areas
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of research, including organometallic and supramolecular chemistries, electrochemistry,
catalysis, biomolecules, sensors, and molecular recognition [14–20].

In this context, from years ago, our research interest concerns the chemistry of silicon-
and siloxane-containing multiferrocenyl molecules [21–25]. As a contribution to this field,
we have reported the synthesis of triferrocenylsilane Fc3Si–H (1) and have shown that
the Si–H bond in this redox-active hydrosilane can be metalated, as it oxidatively adds to
the Co(0) metal center of Co2(CO)8 to give the silyl-Co(I) compound Fc3Si–Co(CO)4 [24].
More recently, our studies have been focused on ferrocene-functionalized silanols, such
as Fc2Si(OH)2 and Fc2(HO)Si−O−Si(OH)Fc2, and we have investigated their ability to
act as new electroactive anion receptors for either acetate or chloride anions [26]. As a
continuation of this research and with the intention to further expand the family of multi-
ferrocenyl siloxane-containing compounds, we now report an evaluation of the reactivity
of triferrocenylsilane Fc3Si–H (1). Specifically, we investigate here the transformation of the
Si–H (hydrosilane) bond of 1 into a Si–OH (silanol) group, using two polar aprotic solvents,
N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), as the oxygen source
and in the presence of different transition metal catalysts (of Pt(0) or Mo(0)) [27–29].

In all cases, the desired triferrocenylsilanol Fc3Si–OH (2) was formed as the major
product. Nevertheless, these reactions have also given rise to secondary chemical processes
originating from the great affinity of the Si–OH group to undergo intermolecular condensa-
tion reactions. Particularly, using Mo(CO)6 as catalyst and DMF as the oxygen source, at
elevated temperatures, some intermediate species are assumed to be formed, such as difer-
rocenylsilanediol Fc2Si(OH)2 and tetraferrocenyldisiloxanediol Fc2(OH)Si–O–Si(OH)Fc2,
which in turn would condense in order to form the cyclic compound hexaferrocenylcy-
clotrisiloxane (3). Remarkably, as a result of such condensation reactions, a new and
unexpected octaferrocenyl-siloxane-based compound 4 has also been isolated; 4 is a molec-
ular spirocyclic silicate that contains two cyclosiloxane rings, connected by one silicon atom.
This molecule is the first example reported to date of a spirocyclic silicate with electroactive
ferrocenyl units.

2. Materials and Methods

Synthesis. All reactions and compound manipulations were performed in an oxygen-
and moisture-free Ar atmosphere using standard Schlenk techniques. The functionalized
precursor Fc3Si–H (1) was synthesized from monolithioferrocene (generated in situ from
the reaction between ferrocene and t-BuLi, at low temperature) according to the procedure
already described [24]. Platinum-divinyltetramethyldisiloxane complex in xylene (3–3.5%
Pt concentration) (Karstedt′s catalyst, available from Merck-Sigma-Aldrich, Europe) was
used as received. Mo(CO)6 (available from Merck-Sigma-Aldrich) was sublimated before
use. Silica gel (70–230 mesh) (Merck-Sigma-Aldrich) was used for column chromatography
purifications. Elemental analyses were performed in a LECO CHNS-932 elemental analyzer
equipped with an MX5 Mettler Toledo microbalance. All NMR spectra were recorded
on Bruker Avance III-Hd Nanobay 300 MHz and Bruker Avance 300 MHz spectrometers.
Chemical shifts were reported in parts per million (δ) with reference to CDCl3 residual
solvent resonances for 1H (δ 7.26 ppm) and 13C (δ 77.2 ppm). MALDI-TOF mass spectra
were recorded using a Bruker-Ultraflex III TOF/TOF mass spectrometer equipped with
a nitrogen laser emitting at 337 nm. Dichloromethane solutions of the matrix (trans-2-
[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malonitrile (DCTB), 10 mg/mL) and
dichloromethane solutions of the corresponding compound (1 mg/mL) were mixed in the
ratio 20:5. Then, 0.5–1 µL of the mixture was deposited on the target plate using the dried
droplet method.

Method 1: using Karstedt’s catalyst: a suspension of triferrocenylsilane 1 (300 mg,
0.51 mmol) in 6 mL of DMSO or DMF and in the presence of 30 µL of Karstedt’s catalyst,
was heated to 100 ◦C. A darkening in the color of the reaction mixtures was observed with
time. After 48 h for the reaction in DMSO, and 7 days for the reaction in DMF, solvent
removal afforded dark brown oils that were purified by column chromatography on silica
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gel (2 cm × 15 cm). Using a mixture of hexane/CH2Cl2 (10:3) as the eluent, a first band
containing unreacted 1 was obtained, and subsequently, a second major orange band was
eluted with CH2Cl2. Solvent removal afforded the desired tetrametallic silanol 2 as an
air-stable, orange, crystalline solid. Yield: 0.20 g (65% for the reaction in DMSO) and 0.14 g
(46% for the reaction in DMF). 2: Anal. Calc. for C30H28OSiFe3 (%): C, 60.04; H, 4.70. Found
(%): C, 60.23; H, 4.68. 1H NMR (CDCl3, 300 MHz, ppm): δ 2.17 (s, 1H, OH), 4.14 (s, 15H,
C5H5), 4.37, 4.43 (m, 12H, C5H4). 13C{1H} NMR (CDCl3, 75 MHz, ppm): δ 68.6 (C5H5), 69.3
(ipso-Fc), 71.0, 73.9 (C5H4). 29Si{1H} NMR (CDCl3, 59 MHz, ppm): δ −2.7 (Si–OH). MS
(MALDI-TOF): m/z 600.1 [M+].

Method 2: using Mo(CO)6 as catalyst: a solution of triferrocenylsilane 1 (200 mg,
0.34 mmol) in 4 mL of DMF was added to a solution of Mo(CO)6 (4.49 mg, 0.017 mmol)
in 2 mL of DMF. After 72 h at 90 ◦C the dark brown oily product was purified by column
chromatography on silica gel. Using hexane as the eluent, a first band containing ferrocene
was collected. Subsequently, with a mixture of hexane/CH2Cl2 (10:5) two new fractions
were eluted; the first one afforded cyclosiloxane 3 (yield: 39 mg, 28%) and the second one
corresponded to a mixture of compound 3 and spirosilicate 4. Orange needlelike crystals of
4 were isolated and analyzed by SCXRD. Finally, on eluting with CH2Cl2, triferrocenylsi-
lanol 2 was obtained (yield: 0.11 g, 52%). 3: Anal. Calc. for C60H54O3Si3Fe6 (%): C, 58.00;
H, 4.38. Found (%): C, 57.82; H, 4.41. 1H NMR (CDCl3, 300 MHz, ppm): δ 4.10 (s, 30H,
C5H5), 4.47, 4.57 (m, 24H, C5H4). 13C{1H} NMR (CDCl3, 75 MHz, ppm): δ 66.8 (ipso-Fc),
68.9 (C5H5), 71.2, 73.8 (C5H4). 29Si{1H} NMR (CDCl3, 59 MHz, ppm): δ −26.8 (Fc−Si). MS
(MALDI-TOF): m/z 1241.9 [M+]. 4: Anal. Calc. for C60H54O3Si3Fe6 (%): C, 55.97; H, 4.23.
Found (%): C, 56.12; H, 3.98. MS (MALDI-TOF): m/z 1716.9 [M+].

X-ray crystal structure determination. Suitable orange crystals of 4 were isolated and
coated with mineral oil, and mounted on Mitegen MicroMounts. Diffraction data were
collected in a Bruker D8 KAPPA series II diffractometer equipped with graphite monochro-
mated Mo Kα radiation (λ = 0.71073 Å). Full details of the data collection and refinement
can be found in the supplementary material (see Section 2). The redundancy in data allows
empirical absorption corrections (SADABS) [30] to be applied using multiple measurements
of symmetry-equivalent reflections. Raw intensity data frames were integrated with the
SAINT program [31], which also applied corrections for Lorentz and polarization effects.
SHELXTL was used for space group determination, structure solution, and refinement [32].
The space group determination was based on a check of the Laue symmetry and systematic
absences were confirmed using the structure solution. The structures were solved by
direct methods (SHELXS-97), completed with different Fourier syntheses, and refined with
full-matrix least-squares using S minimizing ω(Fo

2 − Fc
2)2 [33,34]. Weighted R factors

(Rw) and all goodness of fit S are based on F2; conventional R factors (R) are based on
F. All non-hydrogen atoms were refined with anisotropic displacement parameters. All
scattering factors and anomalous dispersion factors are contained in the SHELXTL 6.10
program library. The crystal structure of compound 4 has been deposited at the Cambridge
Crystallographic Data Centre with deposit number CCDC 2182627.

3. Results and Discussion
3.1. Transformation of Triferrocenylsilane 1 into Triferrocenylsilanol 2

With the dual purpose of investigating the reactivity of triferrocenylsilane 1, previously
synthesized by our group [24] and obtaining the triferrocenylsilanol 2, we tried the Si–H to
Si–OH transformation.

In this regard, it must be said that triferrocenylsilanol 2 was first isolated in a moder-
ate yield, 5%, as a secondary product of a Friedel–Crafts reaction between ferrocene and
bis(N,N-dimethylamino)dichlorosilane [35]. In 2000, Ian Manners’s group synthetized it
through hydrolysis of triferrocenylchlorosilane in the presence of triethylamine [36]. In
general, a Si–H bond within an organosilane can be oxidized through a stoichiometric reac-
tion using strong oxidizing agents or through a catalytic oxidation, mainly with transition
metal catalysts, in aqueous media (Scheme 1); however, neither of the two first methods



Crystals 2022, 12, 1122 4 of 10

mentioned in Scheme 1 could be useful in our case, because the three ferrocenyl units could
be oxidized at the same time. A ferrocene (FeII) oxidation to ferricenium (FeIII) would
decrease the solubility of the organometallic species formed, compromising the Si−H to
Si−OH transformation.
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Scheme 1. Synthetic methods to obtain a silanol or siloxane from a silane (Si–H bond).

Through a more in-depth bibliographic search on silanes reactivity, we found that
some transition metal derivatives can act as catalysts for reducing amides with silanes
of the R3Si−H type, being this also an efficient method to prepare disiloxanes, following
reaction 3 in Scheme 1 [27,28,37]. Catalysts involved in these transformations are normally
metallic carbonyls, such as CpFe(CO)2Me [37] or Mo(CO)6 [28], or platinum complexes, for
example, Karstedt’s catalyst [27].

On the other hand, Fc3Si–OH (2) must be very stable against condensation. As a
result of the electronic effect of the three ferrocenyl donor groups, the acidic strength of the
Si-OH group must be necessarily low, above all if it is compared to organosilanols with
electron-withdrawing substituents, which easily tend to condense [38]. Based on these facts,
we decided to investigate the triferrocenylsilane 1 transformation to the triferrocenylsilanol
2 using polar and oxygen-containing solvents (DMF or DMSO) and a metallic catalyst:
Karstedt’s catalyst (Method 1 in Scheme 2) or Mo(CO)6 (Method 2 in Scheme 2).
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Following Method 1, with Karstedt’s catalyst in dimethyl sulfoxide (DMSO), after
heating the reaction of silane 1 at 100 ◦C for 48 h, the yield of isolated silanol 2 was 65%.
The same reaction using N,N-dimethylformamide (DMF) as oxygen-donor solvent was
considerably slower than the reaction in DMSO, and after 7 days, a 46% yield of silanol 2
was obtained.

With the purpose of increasing the yield of the Fc3Si–H (1)→ Fc3Si–OH (2) transfor-
mation, Method 2, involving molybdenum hexacarbonyl as a catalyst and DMF as the
source of oxygen, was also investigated. After heating the reaction at 90 ◦C for 24 h, the 1H
NMR spectrum (Figure 1A) showed that the reaction had progressed to the formation of tri-
ferrocenylsilanol 2, although an important amount of unreacted silane 1 was also detected.
In addition, two new signals in the ferrocenyl region were observed, one at δ 4.16 ppm
(labeled as F) corresponding to unbonded ferrocene and a second one at δ 4.10 ppm (&)
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that did not correspond to either compound 1 or 2. These new and unexpected signals
led us to assume that one of the two triferrocenylsilanes, or the two of them, could be
experiencing interesting chemical transformations. To verify this, the reaction was heated
at 90 ◦C for another 24 h, after the addition of more catalyst. The new 1H NMR spec-
trum (Figure 1B) showed better progress of the reaction, with a higher triferrocenylsilanol
2/triferrocenylsilane 1 ratio, but the Si−H signal was still present. The relative intensities
of the signals at δ 4.16 and 4.10 ppm had also increased. Finally, after 72 h of reaction, the
1H NMR spectrum (Figure 1C) showed: (a) no signal at δ 5.47 ppm for the Si-H group;
(b) the formation of triferrocenylsilanol 2 as the main organometallic product; and (c) a
greater increase in the signals at δ 4.16 (Fc) and 4.10 ppm, at the expense of silanol 2 signals,
therefore the reaction was stopped.
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Figure 1. 1H NMR spectra (CDCl3, 300 MHz) of the reaction between silane 1 and DMF, with
Mo(CO)6 as a catalyst, after 24 (A), 48 (B), and 72 (C) h.

The brown oil obtained was purified by column chromatography. The first fraction
eluted with hexane corresponded to ferrocene, proving a decomposition process during
the reaction. Triferrocenylsilanol 2 was eluted with CH2Cl2 and isolated as an orange solid
in 52% yield. During the purification process, another two fractions (FA and FB) were
obtained with a 10:5 mixture of hexane: CH2Cl2. The 1H NMR spectrum for the first of
these two fractions (FA) showed a pure compound with signals only in the ferrocenyl
region, while the MALDI-TOF spectrum showed a peak at m/z 1241.9, corresponding to
the cyclotrisiloxane 3. This compound had already been isolated and fully characterized
by Manners group, including its single crystal X-ray structure [39]. They obtained it by
heating siloxanediol B (Scheme 3) in ethanol and in the presence of NaOH. Moreover, we
had already obtained [Fc2SiO]3 (3) as a side product of the reactions we developed for the
synthesis of multiferrocenyl silanols A and B (depicted in Scheme 3) [26].
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On the basis of our previous experience [26], and Manners group reactions [39], it seems
reasonable to assume that, after forcing reaction conditions in the presence of Mo(CO)6 and
heat, the diferrocenylsilanol A was formed, also supporting the ferrocene formation. Then, this
disilanol A would condense to form a stable cyclosiloxane, the hexaferrocenylcyclotrisiloxane
3 (Scheme 3). Alternatively, and/or simultaneously, disilanol A could also condense to form
the tetraferrocenyldisiloxanediol B, which in turn would form cycle 3.

The 1H NMR and MALDI-TOF spectra for the second unexpected fraction obtained
from the column chromatography (FB), showed a mixture of two species. One of them
was easily identified as hexaferrocenylcyclotrisiloxane 3, and the other one had a mass of
m/z 1716.9, consistent with eight ferrocenyl units. After several attempts, suitable crystals
for single crystal X-ray diffraction studies were obtained. This analysis unambiguously
confirmed the structure of the new and unexpected species 4, with a surprising spirocyclic
core (see Scheme 4). The spiro[5.5]octaferrocenylpentasiloxane 4 is indeed a very inter-
esting macromolecule, with two cyclosiloxane rings, bearing ferrocenyl units linked in
pairs to silicon atoms. To the best of our knowledge, species 4 is the first example of a
molecular spirocyclic silicate with electroactive organometallic units. Unfortunately, all
attempts to accurately separate the pure spirocyclic 4 from hexaferrocenylcyclotrisiloxane
3, either by column chromatography or precipitation, have been unsuccessful so far. Only a
reasonable amount of pure 4 was obtained, allowing its characterization by MALDI-TOF
mass spectrometry (Figure S1 in Supplementary Material), elemental analysis, and single
crystal X-ray diffraction (see Section 3.2).

The formation of the spirocyclic silicate 4 is far from being obvious and only becomes
understandable when looking at the reactions explained above for the formation of silox-
ane 3. A tentative path for the formation of such a Si-centered spirocyclic species 4 from
triferrocenylsilanol 2 is outlined in Scheme 4. Most likely, under forced reaction conditions,
in the presence of DMF, Mo(CO)6, and heat, the generated triferrocenylsilanol 2 can de-
compose, losing not only one ferrocene as commented for the formation of 3, but even
up to all three ferrocenyl units, causing the formation of tetrahydroxysilane (orthosilicic
acid) C. This silanol Si(OH)4 is extremely reactive and would be able to condense with
four molecules of A to form 4. A second possible pathway to spirocyclic 4 would involve
the condensation reaction of Si(OH)4 and two molecules of the tetrametallic disiloxane B.
Again, these processes are facilitated by the high tendency of silanol compounds, in this
case, di- and tetra-silanols, to self-condense.

Therefore, we believe that the presence of DMF, as an oxygen-donor solvent; of
Mo(CO)6 as a catalyst; and the high temperatures achieved in the Fc3Si–H (1)→ Fc3Si–OH
(2) transformation attempts were enough to: (1) decompose triferrocenylsilanol 3, via Si-Fc
bond break and formation of pure ferrocene; (2) generate initially unexpected silanols A, B,



Crystals 2022, 12, 1122 7 of 10

and C; (3) favor intermolecular condensations of silanols A–C, less sterically hindered than
silanol 2, to form cyclic 3 and spirocyclic 4 macromolecules.
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A further alternative would be to admit the presence of a small amount of silica (SiO2)
in the reaction flask, which would react with silanols A and/or B, under the reaction
conditions already mentioned, to form spirocyclic 4. A well-known route to organic
spirosilicates implies the reaction of glycol derivatives with SiO2, at very high temperatures
and with or without KOH [40,41]. In some cases, it was observed that triethylenetetramine
(TETA), used as a solvent, acted in turn as an accelerator to dissolve silica [41].

3.2. Single Crystal X-ray Diffraction

Compound 4 was characterized by single crystal X-ray diffraction, after manually
isolating the orange needle-shaped crystals. It was found to crystallize as a solvate with
a sum formula (C80H72Fe8O6Si5)·2(CH2Cl2) in the tetragonal P42/n space group. The
asymmetric unit contains a quarter of the spiro[5.5]octaferrocenylpentasiloxane and half
of a highly disordered dichloromethane molecule, as both moieties are coincident with
symmetry elements (a fourfold rotoinversion axis, in the case of compound 4, with the
inversion center located at Si1; and a 42 axis intersecting at the carbon atom C21, in the case
of CH2Cl2).

Compound 4 displays an extremely unusual core with two perpendicular flat six-
membered siloxane rings. This disposition had only been reported previously in the
octamethyl spiro-5,5-pentasiloxane published by Roth et al. (CSD code OMSSIO, [42]).
Siloxane core structures with a spiral disposition of two cyclic units can also be found in
the structures with CSD codes MIWKIP [43] and TMPSIX [44], although in those cases the
siloxane rings are not planar.

Regarding the ferrocene moieties, the minimum distance between iron atoms (Fe1-Fe2,
from ferrocenes bonded to the same silicon atom) is 6.066(1) Å, while the largest one is
11.242(2) Å, between Fe1 atoms located in opposite sides of the molecule (namely Fe1-Fe1ii

and Fe1-Fe1iii) as can be seen in Figure 2. Finally, the packing of the molecules of 4 is
achieved by weak C-H···π interactions.
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Figure 2. Molecular plot of the crystal structure of compound 4 with selected atoms labeled (symmetry
operations: (i) −x + 1/2, −y + 1/2, z; (ii) y, −x + 1/2, −z + 3/2; (iii) −y + 1/2, x, −z+3/2). Hydrogen
atoms and the solvent molecule have been omitted for clarity.

4. Conclusions

In summary, the several attempts to transform the silicon hydride functionality within
triferrocenylsilane Fc3Si–H (1) into a silanol Si–OH group, using different metallic catalysts
(with Pt(0) or Mo(0)) and different solvents (DMF or DMSO) as oxygen-donor agents, gave
the triferrocenylsilanol Fc3Si–OH (2) as the major product; however, these reactions were
accompanied by different secondary processes, mainly facilitated by the high tendency
of the silanol group to experiment intermolecular condensation reactions. Intriguingly,
when Mo(CO)6 is used as a catalyst, DMF as the oxygen-donor solvent, and the reaction
is heated at 90 ◦C for 72 h, intermediate species such as Fc2Si(OH)2 (A) and Fc2(OH)Si–O–
Si(OH)Fc2 (B) seem to be formed, which, in turn, would condense to give the cyclic species
hexaferrocenylcyclotrisiloxane 3. Surprisingly, a molecular spirocyclic silicate that contains
two ferrocenyl-functionalized cyclosiloxane rings, connected by one silicon atom was also
obtained, the unexpected spiro[5.5]octaferrocenylpentasiloxane 4. This molecule is the first
example reported so far of a spirocyclic silicate with organometallic electroactive units,
namely eight pendant ferrocenes. It is assumed that 4 is obtained from reactions of silanols
A and B with either Si(OH)4 (C) or SiO2. The crystal structure of 4, solved by single crystal
X-ray diffraction, proves the unusual geometry of this compound.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12081122/s1, Figure S1: MALDI-TOF mass spectrometry of
4; Figure S2: X-ray structure of 4; Table S1: sample and crystal data for 4; Table S2: data collection and
structure refinement for 4; Table S3: Si-O bond distances; Table S4: selected bond angles.
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