
Multimedia Tools and Applications
https://doi.org/10.1007/s11042-023-14662-0

On exploring weakly supervised domain adaptation
strategies for semantic segmentation using synthetic
data

Roberto Alcover-Couso1 · Juan C. SanMiguel1 ·Marcos Escudero-Viñolo1 ·
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Abstract
Pixel-wise image segmentation is key for many Computer Vision applications. The train-
ing of deep neural networks for this task has expensive pixel-level annotation requirements,
thus, motivating a growing interest on synthetic data to provide unlimited data and its anno-
tations. In this paper, we focus on the generation and application of synthetic data as repre-
sentative training corpuses for semantic segmentation of urban scenes. First, we propose a
synthetic data generation protocol, which identifies key features affecting performance and
provides datasets with variable complexity. Second, we adapt two popular weakly super-
vised domain adaptation approaches (combined training, fine-tuning) to employ synthetic
and real data. Moreover, we analyze several backbone models, real/synthetic datasets and
their proportions when combined. Third, we propose a new curriculum learning strategy to
employ several synthetic and real datasets. Our major findings suggest the high performance
impact of pace and order of synthetic and real data presentation, achieving state of the art
results for well-known models. The results by training with the proposed dataset outperform
popular alternatives, thus demonstrating the effectiveness of the proposed protocol. Our
code and dataset are available at http://www-vpu.eps.uam.es/publications/WSDA semantic/
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1 Introduction

Semantic segmentation refers to the task of classifying each pixel in a given image to its
semantic category, providing pixel-level masks of images. This task is specially interesting
for urban scenes scenarios, where accurate pixel-wise understanding of the image can help
in many applications, such as autonomous driving and robot vision.

Deep Neural Networks (DNN) have proven their efficacy for segmentation, being the
current state of the art in different tasks, such as semantic segmentation [41], X-ray lung
segmentation [53], Brain MR image segmentation [54] and video object segmentation [72].
However, DNN training depends on extensive amounts of labeled images which are expen-
sive to label. To this end, the usage of synthetic data for training neural networks becomes
an alternative to get large corpuses at a reduced cost. Therefore, many efforts have shifted
the focus onto synthetic data as a plausible solution, [47, 65], using 3D environments with
models of semantic objects to classify, [18, 21, 46]. Although promising, synthetic images
often present different visual appearance than real images: light reflection, color saturation
and shadows make synthetic images distinguishable from the real ones. Specially on urban
scenes, where synthetic images are not able to capture the wide variability of real images
(e.g., light conditions). While many approaches have been proposed to obtain synthetic data,
[6, 7, 20, 25, 50] no methodological generation of synthetic data has been defined for the
specific task of semantic segmentation. Thus, a methodology for obtaining synthetic data at
different complexity levels would be desirable.

Regarding the visual appearance discrepancy between real and synthetic images, Domain
Adaptation (DA) encompasses the class of techniques that extrapolate generalities obtained
from synthetic data to real domain. Two main research lines can be differentiated depending
on whether or not real images ground truth is available during training. Weakly Super-
vised Domain Adaptation focuses on abstracting knowledge from both domains [57, 69,
81], using a combination of extensive amounts of labeled data from synthetic images and
a small amount of labeled real images to refine the segmentation DNN. Differently, Unsu-
pervised Domain Adaptation (UDA), tries to generalize to the real data without reling on
labeled real images by aligning features from both domains [16, 22, 63, 64, 74]. Com-
monly UDAs literature focus on generating domain agnostic features by aligning outputs
from different levels of the model. However, such alignment is defined for specific layers
of the model, hence, impeding the straightforward extrapolation of successful proposals to
different architectures. Furthermore, most works follow a random image presentation dur-
ing training due to the absence of a definition for a sample-based complexity in semantic
segmentation. However, smart image presentation protocols have proven effective in other
fields [2]. Therefore, comparing the existing approaches and defining a curriculum (applica-
ble to semantic segmentation employing different sources of synthetic and real data) would
be beneficial to understand and improve the performance of real data on its own.

In this paper, we address the above-mentioned limitations for semantic segmentation (1)
by proposing a protocol for synthetic data generation; (2) by analyzing popular strategies
for training and transfer learning using real and synthetic data; (3) and also by defining
a curriculum-based strategy to effectively combine multiple sources of synthetic data. We
employ the simulation tool Multi-camera System Simulator (MSS) [24] to generate synthetic
sets with several configuration options (e.g., number of classes, viewpoints). The synthetic
data generated by our protocol is compared against widely used datasets [46, 47] for dif-
ferent training strategies such as combined training [43], and fine-tuning [57]; and also for
different proportions of real and synthetic data. Moreover, we proposed a curriculum-based
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learning strategy relying on the hypothesis that an increasing-complexity data feeding strat-
egy would generalize better to the target real data than a standard-paced (i.e. random)
strategy using the same data. We take advantage of our protocol to generate datasets with
increasing complexity (defined as the number of instances in the dataset) and use these
datasets for curriculum learning. The experimental results show how not only the proposed
generation protocol outperforms existing synthetic datasets, but how the combination of dif-
ferent sources and structuring of the training process in an incremental complexity manner
can improve state of the art performance. It is noteworthy to highlight that the proposed data
generation protocol and training strategies can be applied to any architecture for aligning
different synthetic domains to real data, without relying on specific alignment terms.

The contributions of the proposed approach are:

• A new design protocol for synthetic data generation based on virtual scenario simula-
tors.

• Identifying and comparing training strategies for weakly supervised domain adapta-
tion in semantic segmentation, measuring the impact of different synthetic sources and
different proportions of real data.

• Proposing a new strategy based on curriculum learning for employing different sources
of data, applicable to DNN-based approaches for semantic segmentation.

The paper is organized as follows. Section 2 reviews the state-of-the-art on domain adap-
tation and synthetic data usage for semantic segmentation. Section 3 introduces the criteria
and design protocol for synthetic data generation. Section 4 describes the selected strate-
gies for weakly supervised domain adaptation. Section 5 presents the experimental results,
including a comparison with the state-of-the-art. Finally, conclusion remarks are described
in Section 6.

2 Related work

2.1 Domain adaptation

A basic assumption in machine learning is having the training and test data sampled inde-
pendently from an identical distribution. In the context of domain adaptation this assumption
is not fulfilled [28], having two domains with clear visual discrepancies: the source data,
used for training, and target data, used for fine grained training and testing. Therefore, direct
training on the source data leads to a significant performance drop on the target test set. This
hindrance is commonly known as domain shift.

Single-source domain adaptation Alternatively to alleviate the domain shift one may
extrapolate knowledge from synthetic to real images in the training process of the model.
Depending on whether the ground truth of real images is available during training, this
can be further classified into Unsupervised Domain Adaptation (UDA), if not labeled real
images are available during training, and Weakly-Supervised Domain Adaptation (WSDA),
if a small set of labeled real images are available during training. UDA frameworks employ
target RGB images during training to align features from both domains [36, 63, 64, 74,
83]. However, some other works show that effective extrapolation to the real domain can be
obtained even without including any real image during training by increasing gradually the
complexity of the sample images in a curriculum manner [17, 27, 37]. Following this idea,
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we propose a synthetic dataset generation protocol to aid the straight-forward implementa-
tion of an easy-to-hard image presentation for semantic segmentation. WSDA approaches
[9, 57, 69, 81] deploy high performance models for real data adapting from abundant labeled
synthetic images but scarce and insufficient labeled real data. Other approaches follow some
sort of adversarial learning strategy, [25, 62], which characterizes for the inclusion of an
additional, —usually small—, discriminator network which tries to discriminate from the
segmentation maps if the input RGB image is real or synthetic. However, adversarial train-
ing is generally known as a difficult task due to its instability [63], hence, we do not consider
these approaches for this work and will only used for comparative purposes.

In different computer vision fields such as object localization, some works obtain state of
the art performance by defining an easy to hard presentation commonly known as curricu-
lum learning [2]. Nowruzi. E. et al. [43] studied the impact of the real data size in weakly
supervised object localization. Similarly, Zheng. Q. et al. [57] studied the impact of differ-
ent pacing strategies when using different ratios of real images. Following this line of work,
our proposal aims at further structuring the pacing showcase of different sources of data
when compared to the typical finetuning strategy and combined training. To the best of our
knowledge, there is no other similar study for semantic segmentation.

Multiple-source domain adaptation In practice, the source labeled data may come from
different domains, such as different simulators for synthetic data or day and night images for
real domains, this motivates the research of Multiple Source Domain Adaptation (MSDA)
techniques. However, multiple source combined training usually leads to worst performance
models than employing one single source for training [19, 77]. In order to overcome this
limitation, many authors focus on aligning features from all source domains with target
domain features [3, 11, 17, 28, 37, 50, 51, 62, 63, 66, 74, 81]. Three common methods for
aligning features in single and multiple source domain adaptation are:

• Discrepancy based: These alignment frameworks focus on minimizing an explicit dis-
tance measure between features obtained in the target and source domains [60]. Various
distribution discrepancy metrics have been introduced, including Maximal Mean Dis-
crepancy (MMD) [26], Correlation Alignment [56] and Wasserstein distance [1]. MMD
is currently the most widely used metric to measure the distance between two feature
distributions [35].

• Adversarial based: These proposals rely on the inclusion of a discriminator model
which measures how domain-discriminative the features generated by the segmentator
are. Following the typical adversarial scheme of GANs [25, 62], this training paradigm
becomes a min-max game, where the segmentator model aims at fooling the discrimi-
nator. In essence, by minimizing the performance of the discriminator the segmentator
is minimizing the gap between domains in the feature space [3, 28, 50, 62–64, 74].

Recently, this idea has been made more explicit by adversarial methods defining
strategies to translate image appearance from one domain to another. These propos-
als tend to combine adversarial training with an additional term of consistency. This
consistency term measures the discrepancy between the output produced from the orig-
inal image and the translated image [76]. Intuitively, these proposals minimize the
domain shift by aligning features across real and synthetic domain, while maximizing
the performance in a mutual domain.

• Entropy based: These works minimize the entropy on the target domain. As the labels
of the target images are not available during training, minimizing the entropy is in a way
a self supervision mechanism. Being C as the number of classes, H and W the height
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and width of the input image, Yt the one-hot encoded C-vector label and the predic-
tion entropy, E, E = ∑

C

∑
H,W P (Xt )log(P (Xt )) and the classical cross-entropy loss

[11, 63]:
Lseg =

∑

C

∑

H,W

Yt log(P (Xt )) (1)

Summary of domain adaptation proposals Table 1 summarizes the explored proposals
dealing with Domain Adaptation in computer vision. All the proposals for semantic seg-
mentation [3, 11, 28, 37, 50, 51, 62, 63, 66, 74, 81] tasks employ deeplab and/or FCN as the
segmentator of choice. Hence, for a fair comparison, we employ both architectures in our
experiments.

In particular, we propose to define a protocol to sequentially include different source
domains to generalize in a more stable and reliable manner than adversarial and entropy
based frameworks [63, 64, 74]. Furthermore, when comparing our protocol to discrepancy
based frameworks [35, 60] we do not impose normality nor homogeneity, hence, providing
a more relaxed framework extrapolable to any MSDA problem. Alignment free adaptation
has proven useful in other computer vision fields such as Object detection. Hintertoisser.
D. et al. [27], show that effective extrapolation to the real domain can be obtained with-
out employing any alignment metric to the real images. Specifically, domain adaptation
is obtained by generating increasingly complex synthetic images, modifying the scale and
point of view of a 3D model of the target object over random backgrounds, thereby, general-
izing to the real domain only by structuring the training. In this work, we propose a similar
protocol for urban scenes segmentation. We argue that by generating increasingly complex

Table 1 Summary of state of art domain adaptation proposals

Method Multi-Source Source Target Task Alignment Supervision

Zheng et al [81] × Synthetic Real S A Unsupervised

Zhang et al [76] × Synthetic Real S C Unsupervised

Zhang et al [74] × Synthetic Real S D Unsupervised

Toldo et al [60] × Synthetic Real S D & E Unsupervised

Russo et al [48] � Synthetic Real S A Unsupervised

Zhao et al [78] � Synthetic Real S A Unsupervised

Hinterstoisser et al [27] � Synthetic Real L − Unsupervised

Gong et al [23] � Real Real Clas − Weakly

Saito et al [49] × Real Real Clas A & E Weakly

Doersch et al [17] × Synthetic Real L − Weakly

Zheng et al [81] × Synthetic Real S A Weakly

Wang et al [67] × Synthetic Real S A Weakly

Wen et al [69] × Synthetic Real S C Weakly

Kumar et al [33] � Real Real S − Weakly

Sun et al [57] � Synthetic Real S A Weakly

Ours � Synthetic Real S − Weakly

(KEY. A: Adversarial, C: Consistency, D: Discrepancy, E: Entropy, -: No alignment, S: Image Segmentation,
L: Object detection, Clas: Image Classification).
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images by modifying factors such as the foreground and background scale, the capture point
of view and the number of types of objects, we can define an effective curriculum that
generalizes better to the real domain.

2.2 Curriculum learning

Bengio et al. [2] inspired by schooling principles, proposed to train machine learning algo-
rithms by training with basic (easy) samples sooner and the advanced (hard) samples later.
In order to define which samples should be included first and which should be included in
the training last, Curriculum Learning (CL) needs to define some sort of complexity mea-
sure. This complexity can target different hyper-parameters or inputs of the training process
such as the target task and the performance measure [55]. However, the complexity is typ-
ically measured on a sample-basis, and, as the training continues, the probability to select
hard samples for training is increased. In the context of sample-based complexity, differ-
ent approaches to measure complexity have been proposed, with manual annotation [30,
45] and the performance of a teacher model (e.g., generally a model that has been trained
in a standard fashion and is used to probe the samples complexity) [23] as the most used
strategies.

In the context of domain adaptation, sample-based curriculum learning has been effec-
tively employed in different tasks such as object detection [27], sentiment classification
[80] and image classification [71]. These sample-based curricula can be further classified
into sampling-focused [27] and weighting-focused [71, 80]. Weighting-focused curricula
attempts to weight the importance of each sample in a batch depending on the training stage,
e.g., giving smaller weights to harder samples at its beginning. Luyu et al. [71] and Sicheng
et al. [80] propose to train a Manager function which —given an input batch, outputs a scalar
as a weight for each sample. These frameworks have the drawback of the computational
overhead required for training the Manager. On the other hand, sampling-focused curricula
use predefined sample complexities and attempt to automatically select the optimal set of
samples given the current status of the model, e.g., somehow defining binary weights for
each sample. Hinterstoisser et al. [27] attempt to define a sampling curriculum by generat-
ing increasingly complex synthetic images for object localization. By defining a formulation
for object localization in terms of scale and rotation angle of a 3D model of a target object,
they are capable of generating a sample-based curriculum in which the sample complexity
is quantified by these factors. In a similar manner, we propose to generate a dataset which
is structured in different levels of sample complexity for semantic segmentation to define a
sample-based curriculum for semantic segmentation.

Although employing some sort of curriculum into semantic segmentation has been
already attempted, a sample-based curricula for semantic segmentation is yet unattempted.
Whereas [74, 75] attempt a curriculum for semantic segmentation by degraining the output
of the segmentator from the label distribution to a pixel-wise classification. This curriculum
is defined on a task-level, rather than on a sample-basis. Furthermore, they focus on a single
source unsupervised domain adaptation compared to our multi-source weakly supervised
domain adaptation framework.

2.3 Synthetic data generation for semantic segmentation

Generative-based Some authors propose to enhance synthetic images realism from sim-
ulator to alleviate the domain shift [7, 59, 69]. To this aim, a style transfer architecture is
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trained to generate new images, following a generator-discriminator approach established
by [25]. Although promising, one problem is still unsolved: the generator network can hal-
lucinate new objects [6], which as the ground truth is not modified, will not be present in the
ground truth map. Furthermore, requires additional computational efforts to train the gen-
erator DNN and currently presents a worse performance than training with synthetic data
from simulators [76].

Simulation-based Two different sources of synthetic data are commonly used, the GTAV
[46], the Synthia [47]. Figure 1 includes visual examples of GTAV, Synthia and the proposed
MSS datasets, illustrating distinct light reflection, textures and design for their representa-
tions. GTAV is composed of 25K images from the game Grand Theft Auto V. In contrast
with the other synthetic datasets, GTAV is composed from individual images rather than
video sequences. Synthia is generated with a virtual camera placed on a virtual car driv-
ing through the city with different weather conditions. All synthetic datasets present images
with an appearance aligned to sequences of the Cityscapes dataset. However, GTAV and
Synthia do not provide a predefined structure of complexity, impeding the formalization of a
incrementally easy to hard presentation of images [2, 27]. In this situation, the MSS provides
a functionality to address the above mentioned shortcoming. While the code for annotating
a GTAV like dataset is publicly available, one have to buy the original game in order to be
able to render and annotate images, hence, impeding the universal usage of the engine.

2.4 Real datasets for semantic segmentation

In semantic segmentation, three real datasets are usually selected as target domain: Kitti
[21], Cityscapes [14] and Mapilliary [42], Fig. 2 includes visual examples for real datasets
(Kitti, Cityscapes and Mapilliary). In spite of depicting all urban scenarios, these datasets
present inherent visual discrepancies attributed to the different geographic location of each
dataset, the car models, the street disposition, the traffic lights and the buildings architecture.
Furthermore, each dataset follows distinct design criteria: Kitty provides a smaller dataset
with frames captured from the top of a car unlike with other datasets which were filmed
with a camera inside of a car. Kitty visually differs not only because of camera position, but
due to the lighting conditions, where burnt patches can be found on some of the instances
due to a bigger exposure of the camera and drastic light changes from turns of the car facing

Fig. 1 Images of GTAV, Synthia and MSS datasets with different capture point of views and spatial
distributions
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Fig. 2 Images of Kitti, Cityscapes and Mapilliary datasets with different capture point of views and spatial
distributions

the sun light directly. Cityscapes was generated by filming with a camera inside of a Mer-
cedes while driving through different German cities. This design implicitly brings unique
biases, such as having the Mercedes Logo and the front of the car always at the bottom of
the picture. In addition, due to the camera position, little to no sky is present in the frames,
in contrast with the other real datasets. Mapilliary on the other hand was generated by film-
ing with different points of view. Most of the sequences were filmed inside a car looking
straight through the windshield, however different capturing angles were used, in contrast
with Cityscapes, in which the position and angle is consistent through the dataset. In addi-
tion, some sequences are filmed from a pedestrian, motorcycle and a touristic bus point of
view. Almost 90% of the Mapilliary dataset was filmed from road/sidewalk views in urban
areas, the remaining ones are from highways, rural areas and off-road. When comparing real
datasets further discrepancies can be found such as: Cityscapes presenting fewer poles when
compared to Mapilliary. This is due to the Cityscapes presenting cities where the wiring is
located underground, unlike Mapilliary which is obtained from cities where the city wiring
tends to be supported by utility poles Due to the small size of Kitty, 500 images, typically
it is only used for testing in the literature. In this work we follow this pattern by only using
this dataset to assert some hypothesis and not for training.

Figure 3 illustrates how state of art datasets lack a predefined structure of complexity
for semantic segmentation, as all datasets are captured using similar points of views with
similar objects scales and scene distribution.

Fig. 3 Samples of GT labels of existing popular semantic segmentation datasets for urban scenes: Cityscapes,
Mapilliary, GTAV, Synthia. Top row presents synthetic images, bottom row presents real images
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3 Synthetic dataset based on theMSS simulator

As previously mentioned, current real and synthetic datasets lack a procedure for a gen-
eration of images of increasing complexity. Here, we discuss about the criteria for such
generation and the obtained synthetic dataset.

3.1 Design criteria

Before creating the dataset, we need to understand how the point of view of the camera may
impact the extrapolation to the real domain, which may help to define a design criteria for
the MSS dataset. The MSS simulator offers a high degree of freedom for camera placement
by allowing wearable cameras on moving objects such as helicopters, cars or pedestrians,
and also fixed cameras on specific points in the virtual city. We focus on aligning the point
of view to the ones to the target (real) datasets, so synthetic sequences may look similar to
the real ones. Table 2 includes the results of an early experiment for training a Deeplab V3
architecture [12] with a dataset composed of one synthetic sequence and a small subset of
real images. This experiment allows understanding which capturing point of view has less
domain gap as compared to the real domain. As seen in Table 2, we find that fixed cameras
and wearable cameras from cars egocentric point of view provided greater improvements
than other alternatives. Meanwhile, wearable cameras from pedestrian, helicopter and bus
point of view provide points of views which are not present in the target sets. Therefore,
training with these sequences yields a worse performance on the target validation set.

By further analysis of the impact of wearable cameras and fixed cameras, see Fig. 4, we
find that wearable cameras provide more diversity due to the changing background. How-
ever, there is scarcity of some urban elements that are generally less common than straight
road sections in the cities, such as turns, roundabouts and intersections. This scarcity turned
into models with poor results on unseen spatial allocations, such as intersections where the
sidewalk is divided by a road lane without continuation. On the other hand, placing fixed
cameras on less common spatial allocations, leads to a better representation of them, how-
ever it results into models less accurate on common scenarios as compared to the one trained
with car wearable camera sequences.

Table 2 Preliminary study on the impact of the inclusion of each type of sequence to a 5% random selection
of the Cityscapes and Mapilliary train sets for training a Deeplab V3 architecture [12]

Cityscapes Mapilliary

Sequence Wearable MIoU Sequence Wearable MIoU

Fixed × 0.34 Fixed × 0.36

Pedestrian � 0.32 Pedestrian � 0.30

Helicopter � 0.30 Helicopter � 0.30

Car � 0.34 Car � 0.36

Bus � 0.30 Bus � 0.29

Tested on their respective validation sets
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Fig. 4 RGB validation images (left column), results of training with fixed cameras (middle column) and
wearable cameras from cars (right column)

The proposed dataset contains sequences from the following types: fixed, car and pedes-
trian. These sequences are created according to the proposed protocol explained in the next
section

3.2 Protocol

The MSS dataset is structured into subsets by the amount of objects present in the virtual sce-
nario, with aims at creating subsets with an increasing complexity. This protocol is inspired
by [27] applied to object detection, which accomplishes an increase in performance by sort-
ing the order in which images are shown to the model during training. We hypothesize that
learning the general structure of urban scenes can be facilitated by starting with easy exam-
ples with few hard instances such as cars, poles and pedestrians. Later, the learned urban
layout can be refined with more complex examples. This data ordering gives the model a
distinct advantage over using a protocol where the model needs to understand the whole
structure from scratch. We captured sequences in the virtual scenario with different points
of views and different amount of cars and pedestrians present in the virtual scenario. This
allowed a classification of the sequences by point of view and amount of cars and pedestri-
ans. This categorization of the sequences provides an straightforward implementation of a
learning protocol where complexity is periodically increased through the inclusion of more
complex training examples.

Complexity is parametrized in order of importance as follows: First, the amount of mov-
ing agents in the scenario. The amount of moving agents refers to the amount of vehicles
and pedestrians acting in the virtual city while filming the sequence. This parameter reg-
ulates the maximum amount of non static objects present per image, ranging from 50 to
750. Second, the amount of included points of view. Straight poses are easier to under-
stand for CNNs compared to rotations [27]. Therefore, straight views are considered easier
and are predominant in the less complex datasets, while more complex ones include dif-
ferent scales of objects and different points of view. The harder the sequence is intended
to be, the further the camera is placed, in terms of degrees with respect to the road and
meters from the agents, ranging from +70 to -70 degrees. This change in the camera angle
affects the shape and appearance of objects, hence, increasing the complexity [27]. Finally,
the predominant spatial distribution of the sequences. The spatial distribution is graded
by the type of sequences employed, ranging from 0-40% of wearable cameras. Pedestrian
wearable cameras include predominantly buildings and sidewalks rather than the predom-
inant centered road distribution. Furthermore, pedestrian wearable cameras present wider
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rotation freedom when compared to a car, which can only turn on specific points of the
scenario, making the sequences less stable and harder to extrapolate to the general spa-
tial distribution found when driving a car, see Table 2. Figure 5 includes RGB images
(Fig. 5a–c) and labels (Fig. 5d–h) generated following the described protocol and gener-
ated using the MSS simulator. Figure 5d and e provide examples of the effect of increasing
the complexity by modifying the background, i.e., samples with a more diverse background
but the same amount of foreground elements. Figure 5e and f exemplify an increase in
complexity by foreground, specifically, an increase in complexity is achieved by intro-
ducing more foreground elements (cars and pedestrians) in various scales while keeping
the same background objects. Figure 5g and h display modifications on the complexity
of a scene without modifying its elements, here an increase in complexity is obtained
by moving the camera closer or further away from the scene, evenly changing the scale
of all the objects.

Table 3 details the criteria for determining the complexity levels for each MSS subset.
Table 4 provides a comparison with related datasets in terms of the proportion of labeled
semantic classes. Table 5 presents the comparison of points of views with related datasets.
As we can see, the proposed dataset has similar proportions of labeled data as compared

Fig. 5 Comparison of proposed synthetic GT labels of a,b,c) RGB images of the samples, d) Easy complexity
image GT e) Medium complexity image GT f) Hard complexity image GT g & h) Same background different
foreground scale and population
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Table 5 Comparison of real and synthetic datasets for urban scenes segmentation

Point of view

Wearable cameras Fixed view

Name Type Open Ground Aerial Ground Aerial Free view Number

source of images

Kitti Real − � 200

Cityscapes Real − � 25000

Mapilliary Real − � � 25000

VKITTI2 Hybrid × � 21260

Synthia Synthetic × � � 220000

GTAV Synthetic × � � 25000

MSSf ull Synthetic � � × � � � 200000

The open source column indicates whether the source code is publicly available (�) or not (×), for real
datasets as there is no source code a - is assigned

to real/synthetic datasets and also allows ranking sequences/subsets by their complexity,
which is not available in existing datasets.

4 Weakly-supervised strategies for training

Three different strategies are studied to handle weakly supervised domain adaptation: direct
combined training, fine-tuning and curriculum learning. The first two strategies are derived
from [43, 59, 61], we aim at mimicking scenarios where there is little available data from the
target to train. Finally, we propose a curriculum learning strategy aiming at understanding
how all synthetic sources can be used in conjunction to reduce the domain gap with respect
to the real domain.

4.1 Combined training

Inspired by [43, 59, 61], this strategy trains with only a fraction of the real data in combi-
nation with all synthetic data. This strategy allows to measure the impact of each synthetic
dataset and also which quantity of real data for training is sufficient to get an acceptable
performance level. We train from scratch with a percentage of the real data varying from
5% to 100% of the original dataset mixed with the full synthetic dataset. The results are
measured by testing on the corresponding real validation set. When using combined train-
ing sets, we expect the model to learn the general concepts from simulated images, and use
the real samples to adapt. However, there is no scheduling nor structure in the combined
training approach: samples from synthetic and real data are presented at a random pace.
Therefore, the fulfillment of these expectations is not guaranteed.

4.2 Fine-tuning

Inspired by [43, 59, 61], this strategy consists on four stages. First, we start with a model
with a backbone randomly initialized. Second, we train the full model with synthetic data
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until convergence, following the procedure described in [43]. Third, we proceed by freezing
the weights of the backbone and training the classifier head with the real images until con-
vergence. Finally, we unfreeze the backbone, reduce the learning rate (lr0) by 10 and train
with the real subset until the validation MIoU stalls. Figure 6 depicts a graphical representa-
tion of the fine-tuning strategy. As the combined training strategy, we also consider different
fractions of the full real datasets and perform testing using the real data validation set.

4.3 Curriculum learning

Inspired by curriculum learning for object detection and image classication [27, 30, 32,
33, 45], we propose a new curriculum strategy based on progressively feeding the different
datasets and subsets to the model sorted by a predefined complexity order. The proposed
complexity is defined by the number of semantic classes present on each synthetic set, and
the complexity of each of the datasets. Formally, let Xs, s ∈ [1, N ] be each source dataset,
with N the number of synthetic datasets, {xs, ys}ns

i=1 ∈ Xs the input images and their ground
truth tensors, composed of one one-hot encoded C-length vector label per image pixel,
respectively. ns the number of labeled samples for dataset Xs .

Being � the trainable set of parameters of the segmentation architecture and x the input
sample image, the prediction probability is obtained by G(x; �) = Px ∈ (0, 1)C , so that∑C

c=1P
h,b,c
x = 1 for any (h, b) ∈ ([0, H ] × [0, B]), where C are the number of semantic

classes and H × B is the image size.
� are optimized through stochastic gradient descent by minimizing the cross-entropy loss, (1):

�t+1 = �t − lrstep

n∑

i=1

∇Lseg(xi, yi; �t)

Fig. 6 Fine-tuning stategy stages. a) Initial Semantic segmentation model with randomly initialized back-
bone. b) Training of the full model using synthetic data. c) Backbone freezing and classifier head training
with real data. d) Training of the full model using real data with a learning rate ten times smaller than b)
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The whole training process is controlled by three hyper-parameters, γ , lr0 and β: We

define a training subset X{βstep
s }Ns=1

=
N⋃

s=1

ns×β
step
s⋃

i=1
{xs, ys}, as one containing only the easiest

β
step
s proportion of each dataset s, β with ranging from 0 − 100%, these proportions are

modified at each curriculum step τ ∈ [1, N ].
At each curriculum step τ ∈ [1, N ] G is trained with X{βτ

s }Ns=1
until convergence with

learning rate lrτ = lr0 ×γ τ , being β0, lr0 and γ methods’ hyper-parameters, the proportion
of sampels used at each step is defined by:

βτ
s =

{
(β0)

(s−τ) if s ≤ τ

0 otherwise
(2)

This dataset addition and re-training is repeated until each dataset has been used for train-
ing. Finally, once all the training stages are concluded, we perform a final fine-tuning stage,
as depicted previously, with only the target real training dataset until convergence.

Algorithm 1 summarizes the steps of this training strategy

Algorithm 1 Curriculum learning procedure for domain adaptation in semantic segmentation.
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5 Experimental results

We provide an analysis of the semantic gap between real and synthetic domains
(Section 5.2). Then, we validate the utility of the MSS dataset for combined training
(Section 5.3) and fine-tuning (Section 5.4). We also compare the results against Synthia, the
largest publicly available synthetic dataset similar in size to the proposed MSS dataset. We
present the results for the proposed curriculum learning strategy (Section 5.5), that com-
bines several synthetic datasets employed in the literature. Finally, best achieved results are
compared with the state of the art (Section 5.6) followed by a discussion of mayor findings
and a qualitative comparisons (Section 5.7).

5.1 Experimental setup

Two performance evaluation metrics are employed: Mean Intersection over Union (MIoU)
and Mean Pixel Accuracy (MPA) [44]. MIoU is widely used to measure the similarity
between two subsets as the area of their overlap against the union of the areas of each
subset. MPA refers to the percentage of correctly classified pixels. For all strategies, the
common and specific training parameters are detailed in Table 6. These parameters have
been determined considering similar state-of-art proposals [10, 12, 40].

Five datasets of data are employed: Mapilliary and Cityscapes compose the real sources
whereas MSS, Sytnhia and GTAV compose the synthetic sources. See Section 2 for further
details. In the different experiments, we also make use of proportions for each dataset (see
Table 7) to assess the performance impact for varying-size sets of data.

5.2 Baseline: training with only real or synthetic data

As baseline for further comparisons, we consider models trained from scratch with only one
source of data. In this experiment we analyze the domain gap between pairs of train-test
datasets (synthetic-real and real-real). Table 8 includes the results of training a Deeplab V3
architecture [10] using only one source dataset untill the MIoU stalls on their own validation
set [70]. Then, we validate on each of the real target validation sets. These results show a
noticeable drop in performance when testing on a different validation set rather than the
source one. The only one which consistently presents better results on all three test sets is

Table 6 Training configuration
Image size 400 × 800

Backbone ResNet 101

Optimizer SGD

lr0 1e-4

Weight decay 1e-5

Step size 5

Scheduler Reduce on Plateau

Batch size 13

Loss function Cross entropy

Weighted loss Effective #samples [15]

Data augmentations Color jitter & Random horizontal flip

Number of epoch 50
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Table 7 Size and proportions of
datasets Dataset Domain Percentage #Images

Cityscapes 100 2975

50 1488

Real 25 744

15 446

5 149

Mapilliary 100 25000

50 12500

Real 25 6250

15 3750

5 1250

MSS Synthetic 100 200000

Synthetic 50 100000

Synthetic 25 50000

Synthetic 15 30000

Synthetic 5 10000

Synthia Synthetic 100 220000

Synthetic 50 110000

Synthetic 25 55000

Synthetic 15 33000

Synthetic 5 11000

GTAV Synthetic 100 25000The images are selected
randomly

the Mapilliary train dataset. We believe that the better transfer capabilities of the Mapilliary
case is mainly due to the big size gap between the datasets, refer to Table 7 for a size
comparison. When comparing synthetic sets, we find that MSS dataset presents a smaller
domain gap when compared to the Synthia dataset (see Table 8). Additionally, it can be
seen how the combination of both synthetic datasets, All synthetic, outperforms using any
of the synthetic datasets. Despite the clear domain shift between real and synthetic data,
the performances obtained training only synthetic data do not differ drastically from the
ones obtained when using different real datasets as source and target domains, a situation
that has been already observed in object detection [43]. In the context of this paper, aiming
to improve semantic segmentation in urban scenarios, these differences are aggravated by
factors such as the high diversity in car models, street appearances and lighting conditions
between source and target datasets.

Impact of the synthetic dataset size As we are proposing a new dataset which includes
over 200K new synthetic images, we want to ensure that the amount of generated images
is relevant. To that aim, we measure the impact of employing only a subset of samples in
the synthetic sets, ranging from 5% up to 100% of samples for each of the studied datasets.
Figure 7 represents the impact of the synthetic dataset size employed in the downstream
performance of the model trained on the target real data. It can be seen how as the number
of images is increased, the downstream performance is also increased for all the studied
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Table 8 Results of training Deeplab V3 with a ResNet101 backbone [10] with one source and testing on
each of the real validation sets

Train Test MIoU MAP

Type Source Type Target

Real Cityscapes Real Cityscapes 76.2 97.7

Real Mapilliary Real Cityscapes 39.1 86.9

Real Kitty Real Cityscapes 17.0 48.4

Synthetic MSS Real Cityscapes 17.2 67.2

Synthetic Synthia Real Cityscapes 16.4 48.8

Synthetic All Synthetic Real Cityscapes 20.1 70.1

Real Mapilliary Real Mapilliary 42.3 87.8

Real Cityscapes Real Mapilliary 30.0 80.4

Real Kitty Real Mapilliary 15.5 44.2

Synthetic MSS Real Mapilliary 18.8 67.0

Synthetic Synthia Real Mapilliary 16.2 45.2

Synthetic All Synthetic Real Mapilliary 22.2 71.0

Real Kitty Real Kitty 31.5 85.6

Real Mapilliary Real Kitty 29.9 87.0

Real Cityscapes Real Kitty 18.4 60.9

Synthetic MSS Real Kitty 16.3 43.4

Synthetic Synthia Real Kitty 16.2 43.2

Synthetic All Synthetic Real Kitty 25.2 79.6

(KEY. MSS: multi-camera System Simulator, All Synthetic: both Synthia and MSS)

synthetic datasets. However the gain in performance is not linearly correlated with the size.
For instance, for both synthetic datasets, employing 5 times more of data yields an 13.2%
increase in performance (from 17 to 19.5 MIoU), while employing 10 times more samples
provides a 21.7% increase in performance (from 17 to 21 MIoU).

5.3 Combined training: concurrent synthetic-real data usage

We apply the combined training strategy defined in the Section 4.1 to train a Deeplab V3
with a ResNet101 backbone [10]. We employ proportions of the synthetic datasets for ass-
esing their influence on the final performance (see Table 7). As for testing, we use only
the real validation sets. Tables 9 and 10 compile the performances obtained by training
with different proportions of the Cityscapes and Mapilliary datasets respectively in con-
junction with the complete synthetic datasets, similar results are obtained when employing
a Fully Convolutional Network (FCN) [40]. This initial experiment indicates that the MSS
dataset can compete favorably with Synthia, specially in scenarios where less real data is
provided (see Table 9). Differently, as indicated by the performances in Table 10. Further-
more, we can see how the drop in performance is not linear to the amount of real data
employed, employing 50% of the target data reduces the performance in less than 15% for
both studied real datasets.
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Fig. 7 Impact of synthetic dataset size for baseline training using a DeeplabV3, tested on the target validation
set Cityscapes

5.4 Fine-tuning: using pre-training from synthetic data

We apply the fine-tuning strategy defined in the Section 4.2 to train two architectures:
Deeplab V3 with a ResNet101 backbone [10] and Fully Convolutional Network (FCN) [40].
We employ proportions of the synthetic datasets for assesing their influence on the final
performance as defined in Table 7. As for testing, we use only the real validation sets. Con-
sistently with the previous experiment, Fig. 8a and b illustrate that the proposed MSS-based
dataset outperforms the Synthia dataset on both the Cityscapes and Mapilliary datasets when
it is used to train a model that is later refined with real data. Furthermore, in this experiment
it is shown that the finetuned models provide better performance than the combined train-
ing strategy (see Tables 9 and 10) and the baseline (see Table 8). All synthetic refers to the
combination of Synthia and MSS.

Table 9 Combined training with
Cityscapes using a Deeplab V3
with a ResNet101 backbone [10],
tested on the Cityscapes
validation set

Synthetic Real % MAP MIoU �

− 100 97.7 76.2 0

Synthia 5 89.1 42.2 − 34.1

MSS 5 89.8 42.7 − 33.8

Synthia 15 92.9 45.3 − 31.0

MSS 15 94.7 52.9 − 23.4

Synthia 25 95.6 54.0 − 22.3

MSS 25 95.8 57.3 − 19.0

Synthia 50 96.4 63.2 − 13.1

MSS 50 96.5 64.4 − 11.9

Synthia 100 97.2 70.1 − 6.2

MSS 100 97.2 70.4 − 5.9� refers to the difference to the
baseline
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Table 10 Combined training
with Mapilliary using a Deeplab
V3 with a ResNet101 backbone
[10], tested on the Mapilliary
validation set

Synthetic Real % MAP MIoU �

− 100 89.8 42.3 0

Synthia 5 85.8 32.1 − 10.2

MSS 5 86.0 32.8 − 9.5

Synthia 15 86.3 33.1 − 9.2

MSS 15 86.7 33.4 − 8.9

Synthia 25 86.9 34.4 − 7.9

MSS 25 87.0 34.6 − 7.7

Synthia 50 89.0 41.1 − 1.2

MSS 50 89.2 42.2 − 0.1

Synthia 100 89.4 42.4 +0.2

MSS 100 89.6 42.6 +0.4� refers to the difference to the
baseline

For both real datasets, using an initial training on synthetic data to transfer knowledge
to the real domain proves beneficial when compared to the baseline case (i.e. training only
with real data). Furthermore, we observe the non-linear relationship between the percentage
of real data introduced and the performance gain. With only a 5% of real data we can get up
to 70% of the performance compared to training with the full dataset.

Impact of the synthetic dataset size In order to measure the impact of synthetic dataset
size, Fig. 9 agglutinates the impact in the performance on real-data validation of the number
of dataset samples used together with real data for training two models, one for each of the
explored synthetic datasets. We can see how consistently employing larger datasets provides
a better performance, hence, motivating the usage of our proposed dataset.

5.5 Curriculum learning

We explore the application of a new strategy based on Curriculum Learning (see Section 4.3)
to train two architectures: Deeplab V3 with a ResNet101 backbone [10] and a FCN [40].

Fig. 8 Fine-tunning with portions of target train set using a Deeplab V3 [10] and Fully Convolutional Net-
work [40] (FCN), tested on the target validation set. The baseline corresponds to the model trained with the
full target set



Multimedia Tools and Applications

Fig. 9 Impact of synthetic dataset size for finetuning training using a DeeplabV3, tested on the target
validation set Cityscapes

We employ all synthetic datasets in a sequential manner, periodically including new sources
according to the complexity criteria defined in Section 3.2. The defined order of the datasets
is (in increasing complexity, see Table 3): MSS50, MSS100, MSS250, MSS750, Synthia and
GTAV.

Two hyper-parameters are used as defined in Section 4.3. γ regulates the learning rate
and β regulates the amount of images which are kept from the previous training set. Table 11
presents the hyper-parameter study using a FCN architecture trained and validated with
Cityscapes as the target dataset, from this analysis we set γ = 0.9 and β = 0.75, due to
the common patterns and tendencies in performance found in previous experiments (see
Sections 5.4 and 5.3), we set the same parameters for both architectures.

Tables 12 and 13 show the evolution of the results using a FCN and a Deeplab V3 respec-
tively, we can see a MIoU increase as each new dataset is included, which affects to all
classes. For comparison with the state of the art, only Cityscapes is included, however results
extrapolate to Mapilliary. We observe lower improvements for less representative seman-
tic classes (e.g, sign, pedestrian and pole) until increasingly complex synthetic sources
are added to the training set. We believe this issue to be because of the broad appearance
gap between synthetic and real images. However, as more synthetic sources are added, the
model is forced to look for shape similarities rather than color and texture. Hence, it pro-
duces producing big jumps in performance once a new synthetic dataset is included. For
more representative semantic classes (e.g., road, sidewalk, building and vegetation), new
synthetic sets reinforce performance in two ways. Regarding the first factor, note that these

Table 11 Hyper-parameter study
for curriculum learning using a
FCN [40] model with Cityscapes
as the target set

γ MIoU β MIoU

1 67.9 1 69.3

0.9 69.3 0.75 69.3

0.8 68.1 0.5 67.8

0.7 66.6 0.25 66.9
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semantic instances are heavily location biased (see Fig. 10) and that bias is common to all
datasets. Therefore, including new synthetic datasets seemingly reinforces the model to rely
on this location patters rather than appearance. Regarding the second factor, note that as
new semantic labels are added, less pixels are wrongly labeled as those broader classes.

Finally, experimental results validate the curriculum hypothesis, as the DNN trained
using our curriculum over-perform standard-paced random training on synthetic data alone
by 36.62% and 20% MIoU when employing only the MSS dataset and both Synthia and MSS
datasets respectively, see Tables 8 and 13. This also applies for the scenario where only real
data is employed and in conjunction with synthetic data for training, as the baselines are
surpassed by a 6.1% and a 7.9% respectively for FCN (see Table 14) and 3.4% and 11.9%
respectively for DeeplabV3 (see Tables 8, 9 and 13).

5.6 Comparison with state-of-the-art methods

Table 14 compares the proposed strategies with related works employing two widely pop-
ular architectures in semantic segmentation (Deeplab and FCN). Authors of NAE [57]
performed a experiment similar to our combined training (CT) and fine-tuning (FT) without
the MSS dataset. We can see how our CT leads to a worse performance than NAE due to
having a greater amount of synthetic images, hence, decreasing real images ratio in the com-
plete dataset. However, the inclusion of the MSS dataset is advantegeous in the FT strategy,
providing richer initial weights with a 0.4 MIoU gain in performance after fine-tuning. Our
curriculum strategy (CL) achieves competitive performance to state-of-the-art baselines for
both Deeplab V3 and FCN architectures, with a 2.6 gain in MIoU with the baseline, and
a 0.6 gain to the state of the art [5] without relying on the training of a discriminator net-
work, making our method a more stable and reliable approach when compared to the other
alternatives.

Table 15 compares the best result of the analyzed strategies (i.e. Curriculum learning,
CL) against related work in segmantic segmentation. Only convolutional-based architec-
tures are considered for this comparison to grant fairness. Results are provided for the
Cityscapes validation set. Compared to the other models, our proposal main improvements
are achieved on static classes. While [12, 13, 58, 79] present close performances to ours, our
model has less than half the amount of parameters. Finally, [68] is attention-based, hence,
we have employed their provided code to train a Deeplab + ResNet 101 which is publicly
available on their selected framework [73].

We believe the main advantage of the proposed CL strategy is a better learning of the
urban scenes topology. Our proposal achieves state of the art performance on semantic
classes which are persistently located in similar areas of the image like: road, sidewalk,
building, wall and fence. We attribute this improvement to the repeated training on different

Fig. 10 Heat-map of semantic classes location probability of the Cityscapes dataset
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Table 14 Comparison of state of the art weakly-supervised domain adaptation approaches with selected
architectures on the Cityscapes validation set

Net Method Backbone #Synthetic sets #Real sets Input image size MIoU

Proposed CT VGG 3 1 400 64.2

NAE [57] (CT) VGG 2 2 512 64.6

FCN [40] VGG 0 3 500 65.3

NAE [57] (FT) VGG 2 2 512 66.0

FCN-8s PixelDA [4, 57]1 VGG 2 2 512 66.1

Focal Loss [38, 57]1 VGG 2 2 512 66.2

Proposed FT VGG 3 1 400 66.4

NAE [57] VGG 2 2 512 68.1

Proposed CL VGG 3 1 400 69.3

Adv [29] ResNet101 0 2 321 67.7

RL [81] ResNet101 2 2 512 69.2

Proposed CT ResNet101 3 1 400 70.4

MME [49] ResNet101 2 2 − 72.7

SSDA [8] ResNet101 1 2 − 74.7

SSG [69] ResNet101 2 2 512 75.2

Deeplab Proposed baseline ResNet101 0 2 400 76.2

ASS [67] ResNet101 2 2 − 77.1

Dual level [5] ResNet101 1 2 − 77.2

Proposed FT ResNet101 3 1 400 77.5

ContrastiveSeg [68]2 ResNet101 0 3 − 78.8

Proposed CL ResNet101 3 1 400 78.8

(KEY. CT: combined training, FT: Fine-tuning, CL: Curriculum learning). 1 Results reported from [57]. 2

Our results with the publicly available code. Bold indicates best results for each other class

sources of urban scenes images, hence, reinforcing through every iteration of the curriculum
strategy the spatial configuration of the scene. As depicted in Fig. 10, some classes present
a high location bias.

5.7 Discussion

Results One of our major findings is how much scheduling the training can impact the final
performance, see Table 14. Using the same DNN, training time budget and data, we are able
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Fig. 11 Qualitative results of semantic segmentation results on the Cityscapes validation set. For each target
image in the first column we present the GT (a). For the second to forth column we retrieve the results of the
proposed finetuning without pretraining on the MSS dataset (b), proposed finetuning with pretraining on the
MSS dataset (c), Proposed curriculum (d)

to improve the performance up to an 8%. Secondly, for the fine-tuning strategy, the pre-
training on synthetic data leads to small fluctuations between different synthetic sets when
the full real dataset is used. However, when there is little target data available, the gap in
performance between synthetic datasets grows up to a 23%. Finally, following the proposed
protocol for synthetic data generation (see Section 3), we managed to generate a dataset
which has proven consistently useful for training compared to the most similar publicly
available synthetic dataset: Synthia (see Tables 8, 9, 10 and Fig. 8a, b).

Fig. 12 Qualitative results of semantic segmentation results on the Cityscapes validation set against the state-
of-the-art semantic segmentation proposals. For each target image in the first and second column we present
the RGB image and its respective Ground truth map (a,b). For the third and fourth column we retrieve the
results of two state of the art segmentation DNN, ContrastiveSeg and ProtoSeg (c,d) respectively. The last
column is a DeeplabV3 model trained employing our CL proposal
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Qualitative results of our model Figure 11 presents a qualitative comparison between the
generated semantic segmentation of the models trained with only real data, synthetic data
and a combination of both. Employing the proposed MSS datasets seems to be aiding the
model with better discrimination of smaller structures such as signs, fences and walls. Fur-
thermore, the proposed approach appears to provide a finer-detailed segmentation when
compared with the proposed FT strategies, where one can observe a fuzzier discrimination
of classes such as rider (1st row), fence and wall (2nd row), bike (3rd row) and sidewalk (4th
row). Figure 12 compares different state of art alternatives ([68, 82]) with our DeeplabV3
model trained employing CL. While state of the art models provide finer details on far-
ther and smaller structures —such as gaps between traffic signs, our model predicts more
reliably structures like buses, sidewalks and fences.

6 Conclusion

In this paper our contribution is three-folded. First, we propose a new synthetic data genera-
tion protocol. By using the MSS simulator, we generate a new synthetic dataset for semantic
segmentation which is composed of four different subsets ordered in terms of complexity,
defining the complexity in terms of the amount of smaller semantic instances present in the
virtual scenario. Second, we analyze the impact of introducing synthetic data using different
architectures for semantic segmentation in urban scenes. We explore two different strategies
to abstract synthetic data knowledge to the real domain: combined training and fine-tuning.
Third, we propose a new curriculum learning strategy based on a complexity analysis of
the generated data with the proposed protocol. When handling domain adaptation, we find
that structuring the learning of the model leads to significant boost in performance, hav-
ing combined training as the least optimal approach, sometime leading to worse models
than using solely real data. Pre-training with synthetic data and fine-tuning with limited real
images provides better results than training with all sources jointly. Moreover, a structured
learning where images are presented in an increasing complexity manner leads to better
understanding of the scene. This progressively pacing leads to a better learning of broader
structures such as roads and buildings first, allowing later epochs to be focused on under-
standing small-sized semantic instances such as pedestrians, traffic lights and poles. This
approach differs from current state of the art approaches by being model agnostic, hence,
can be applied to any architecture. The results of the experiments also suggest that realism
is not the only key factor of synthetic data, the content of each image and the inclusion pace
of the synthetic images to the model during training are also a key factors barely analyzed
in the literature.

In this work we have studied and validated the benefits of structuring and arranging data
in a sample-based curriculum learning paradigm. As potential improvements of this work,
we envision the incorporation of an explicit domain adaption technique to further narrow
the real and synthetic domains. Moreover, we have a simple, yet effective, definition of
sample complexity (i.e., number of moving object instances) for a single virtual scenario.
This can be extended by incorporating additional complexity factors such as multiple view-
points, number of semantic labels or even the usage of several virtual scenarios. Finally, it is
important to highlight the unpaired number of classes between real and synthetic datasets.
This mismatch leads to a performance degradation when evaluating using real data.
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24. González M (2017) Multicamera distributed system based on unity. Bachelor Thesis, Universidad

Autonoma of Madrid
25. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014)

Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680
26. Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A (2012) A kernel two-sample test. J Mach

Learn Res 13(25):723–773
27. Hinterstoisser S, Pauly O, Heibel H, Marek M, Bokeloh M (2019) An annotation saved is an annotation

earned: using fully synthetic training for object instance detection. In: Proc IEEE Conf Comput Vis
Pattern Recognit (CVF)

28. Hoffman J, Wang D, Yu F, Darrell T (2016) Fcns in the wild: pixel-level adversarial and constraint-based
adaptation. arXiv:1612.02649. [cs.CV]

29. Hung W-C, Tsai Y-H, Liou Y-T, Lin Y-Y, Yang M-H (2018) Adversarial learning for semi-supervised
semantic segmentation. In: Proceedings of the british machine vision conference (BMVC)

30. Ionescu RT, Alexe B, Leordeanu M, Popescu M, Papadopoulos DP, Ferrari V (2016) How hard can it
be? estimating the difficulty of visual search in an image. In: 2016 IEEE conference on computer vision
and pattern recognition (CVPR), pp 2157–2166

31. Kong S, Fowlkes CC (2017) Recurrent scene parsing with perspective understanding in the loop. CoRR
arXiv:1705.07238

32. Kumar MP, Packer B, Koller D (2010) Self-paced learning for latent variable models. In: NIPS
33. Kumar MP, Turki H, Preston D, Koller D (2011) Learning specific-class segmentation from diverse data.

In: 2011 International conference on computer vision, pp 1800–1807
34. Li Y, Kuang Z, Chen Y, Zhang W (2019) Data-driven neuron allocation for scale aggregation networks.

In: Proc IEEE conf comput vis pattern recognit CVPR
35. Li S, Liu CH, Lin Q, Xie B, Ding Z, Huang G, Tang J (2020) Domain conditioned adaptation network.

In: Proc conf art intell (AAAI), pp 11386–11393
36. Li X, Zhou T, Li J, Zhou Y, Zhang Z (2020) Group-wise semantic mining for weakly supervised

semantic segmentation. arXiv
37. Lian Q, Lv F, Duan L, Gong B (2019) Constructing self-motivated pyramid curriculums for cross-

domain semantic segmentation: a non-adversarial approach. In: Proc IEEE conf comput vis (ICCV)
38. Lin T-Y, Goyal P, Girshick RB, He K, Dollár P (2017) Focal loss for dense object detection. In: Proc

IEEE conf Comput Vis (ICCV), pp 2999–3007
39. Lin G, Milan A, Shen C, Reid ID (2016) Refinenet: Multi-path refinement networks for high-resolution

semantic segmentation. CoRR arXiv:1611.06612
40. Long J, Evan Shelhamer* TD (2015) Fully convolutional models for semantic segmentation. In: Proc

IEEE conf comput vis pattern recognit (CVPR)
41. Michieli U, Zanuttigh P (2021) Knowledge distillation for incremental learning in semantic segmenta-

tion. Comput Vis Image Underst 205:103167. https://doi.org/10.1016/j.cviu.2021.103167
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