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1 Introduction

The idea that primordial black holes (PBHs) could constitute all the dark matter of the
Universe or part of it has gained a remarkable momentum in recent years. The most popular
scenario for the production of black holes in the primordial Universe consists in the collapse
of radiation overdensities, which originate from large quantum fluctuations seeded during
inflation, see e.g. [1, 2]. Several models devised with the aim of enhancing the primordial
spectrum have been recently explored. Most of them have a single inflationary field whose
dynamics deviates from standard slow-roll, leading to a primordial spectrum peaking with
a large value at some scale of (comoving) distance. See [2–9] for a representative sample of
a popular class of models.
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From a broader perspective, one can identify two physically distinct options that imple-
ment dynamical characteristics leading to large primordial fluctuations. The first possibility
is a substantial change in the homogeneous background evolution of the Universe during
inflation. Many concrete models that fall in this category — and in particular the ones
mentioned above — feature a significant reduction of the slow-roll parameter ε ≡ −Ḣ/H2.
Rather generically, this can lead to a breakdown of the slow-roll evolution and, possibly, a
transition into an ultra slow-roll phase [4, 10, 11]. This kind of background dynamics in-
duces a large effect in the small quantum fluctuations that are inherently associated to the
background, generating a large primordial spectrum. A second possibility consists instead
in some modification of the dynamics of the perturbations alone, while keeping the back-
ground evolution in a, rather featureless, inflationary evolution, see [12] (and also [13, 14]).
In the present work, we will focus on this latter case, assuming a standard quasi-de Sitter
spacetime during inflation, with approximately constant slow-roll parameters throughout.

For our analysis to be as general and model-independent as possible, we will work
within the framework of the effective field theory (EFT) of single-field inflation [15, 16].
In addition, the robustness of our results will be guaranteed by an approximate symmetry,
which protects the effective couplings against potentially large quantum corrections. This
is in contrast with the more commonly explored models, mentioned earlier, in which a large
power spectrum comes from a very small ε. In such models, the smallness of ε generically
arises as a consequence of a fine tuning of the parameters in the (covariant) Lagrangian of
the inflaton. This tuning can be a cause of concern because it is in general not protected
by any symmetry.

Besides our phenomenological motivation of PBHs as dark matter, the question of
determining the largest primordial spectrum consistently allowed in the EFT of inflation
from different operators is interesting on its own. Although a very large spectrum is
physically irrelevant at large enough distance scales, due to stringent Cosmic Microwave
Background (CMB) and Large Scale Structure (LSS) bounds, the size of the spectrum
at smaller scales can be orders of magnitude larger. Indeed, even though there exist
indirect, model-dependent and scale-dependent bounds (coming mainly from the absence
of compelling evidence for the existence of PBHs), there are comoving scales where the
primordial spectrum is essentially unconstrained. In particular, there are no bounds in
the range 1012 Mpc — 1014 Mpc, corresponding to PBHs that would have formed during
radiation domination with masses between 10−12M� and 10−16M�.1

In models that do not rely on a reduction of ε, a large primordial spectrum is usually ac-
companied by sizable interactions between fluctuations and significant non-Gaussianities.
This means that the primordial spectrum cannot be arbitrarily large without stepping
over the regime of validity of the EFT. For instance, the partial-wave unitarity cutoff
for models with an inflaton φ featuring a Lagrangian of the form

∫
d4x
√
−g [M2

PlR/2 +
P (φ, (∂µφ)2)] [19] and a small speed of sound cs � 1 is Λ? ∼

√
MPlH

(
εc5
s

)1/4. The con-
sistency requirement H � Λ? can then be rephrased as c4

s � ∆2
ζ [16], setting a bound

on the maximum primordial spectrum ∆2
ζ that can be achieved for a given (small) value

1See [17, 18] for recent compilations of PBH bounds.
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of cs. Since in the simplest, Gaussian, approximation the PBH abundance depends (ex-
ponentially) on the primordial spectrum, the relation c4

s � ∆2
ζ may be used to constrain

mechanisms of PBH formation in scenarios in which cs is small [12]. Assuming that a large
∆2
ζ is needed to generate an abundance of PBHs compatible with the dark matter density,

it was argued in [12] that mechanisms based on a small cs in the realm of the vanilla EFT
of inflation — i.e. with the kind of covariant action mentioned above — point towards a
very small ε and, possibly ε � c2

s. This conclusion assumes small variations of the EFT
coefficients during inflation, but it is nevertheless indicative of the difficulty of obtaining a
large primordial spectrum in the EFT of inflation from a variation of cs; a difficulty that
becomes more severe as the desired spectrum is increased.

A potential way of circumventing this issue, which was already suggested in [12], con-
sists in invoking a modified dispersion relation for the primordial fluctuations, as it happens
e.g. in ghost inflation [20]. This changes the cutoff of the EFT through the appearance of
a new scale, which is associated to the higher-dimensional terms of the action responsible
for the modified dispersion relation. In the present paper we will explore this idea in more
depth. One of main results of our paper is the following: we find that a transition into
a phase of ghost condensation results in an enhanced power spectrum, while it raises the
unitarity cutoff of the theory, which avoids the strong coupling issues arising from a small
speed of sound and keeps the theory for the perturbations weakly coupled during the evo-
lution. The enhancement of the primordial spectrum in this case is in the form of a power
law and scales generically as (Λ?/H)3/2, where Λ? represents the new raised cutoff.

To put the following discussion into context, we need to understand what we mean by
a ‘large power spectrum’. As we mentioned before, the PBH abundance is exponentially
sensitive to the primordial power spectrum, in the Gaussian approximation. It turns out
that, with this approximation, ∆2

ζ ∼ 10−2 is required in order for PBHs to account for
all the dark matter. This is a crude approximation as it ignores several effects that may
be important, depending on the model, notably: non-Gaussianities, stochastic dynamics,
shape of the primordial spectrum, threshold for the formation of PBHs and equation of
state of the Universe at the time of formation. For this reason, we will not focus our
analysis on obtaining a specific value of ∆2

ζ , but rather on primordial spectra that are
orders of magnitude larger than the CMB one, in a broad range. Nevertheless, we can still
use ∆2

ζ ∼ 10−2 as a convenient benchmark, keeping in mind that smaller values of ∆2
ζ —

possibly orders of magnitude smaller — may be enough to account for all dark matter. In
any case, ∆2

ζ ∼ 10−2 (or any meaningful large value relevant in this context) is indeed very
large in comparison to the primordial spectrum inferred from the CMB, which is about
seven orders of magnitude smaller.

In order to explore the possibilities for obtaining a large primordial spectrum in the
EFT of inflation away from a reduction in ε,2 we will focus on the operators (δg00)2 and
δKδg00 in the unitary gauge action for the perturbations [15, 16]. Despite being higher
order in derivatives, δKδg00 can become as large as (δg00)2 on the inflationary background
thanks to a weakly broken galileon (WBG) symmetry, in a way that is stable under loop
corrections [21, 22]. The combination of these operators can make the sound speed become

2Often implying a large second slow-roll parameter η in concrete models, see e.g. [4].
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very small and the dispersion relation for the perturbations, which in general reads

ω2 = c2
sk

2 + α
k4

a2H2 , (1.1)

dominated by the k4 term (see eq. (2.12) for the expressions of cs and α in terms of the
effective coefficients).

In addition to the transition into a ghost-inflation-like phase, we discuss another mecha-
nism, which allows to increase more efficiently the power spectrum. This consists in pushing
the sound speed beyond c2

s = 0, allowing for a transient phase with c2
s < 0. In this case,

the primordial spectrum grows exponentially (at specific comoving scales).
As we will discuss, there is in principle nothing wrong with this temporary instability

provided that the dynamics of modes with the largest physical momenta is controlled by
the k4 term. However, the validity of perturbation theory will restrict the duration of the
phase with c2

s < 0 as well as the amplitude of the change in c2
s. Phases with this type of

instability have been discussed before see e.g. [15], and more recently in [13, 14, 23–28].
The paper is organized as follows. In section 2 we review the EFT of the (scalar)

fluctuations of a single scalar field coupled to gravity — during inflation and at quadratic
order in the fluctuations — including the general next-to-leading order term in spatial
derivatives, see eq. (2.4). In section 3 we discuss, using the EFT, to what extent it is
possible to enhance the power spectrum by means of a negative friction coefficient in the
linearized equation for the perturbations. In section 4 we discuss how a transition from a
standard phase with linear dispersion relation for the perturbations, ω = csk, into a phase
with quadratic dispersion relation, ω =

√
αk2/(aH), can result in an enhanced primordial

spectrum. In particular, we compare this enhancement to the one that can be obtained
(within the EFT) from a swift change in the slow-roll parameters assuming ω = csk.

In section 5 we entertain the possibility that c2
s becomes temporarily negative during

inflation, leading to an exponential enhancement of the perturbations. In section 6 we
discuss the relation between non-Gaussianities and the validity of the EFT. In section 7
we present our conclusions. Appendices A and B deepen on various aspects of the main
text, while we compare in appendix C our findings to previous results in the context of
multi-field models.

Conventions: we work in mostly-plus signature for the metric, (−,+,+,+). The Hubble
and slow-roll parameters are defined in cosmological time by H ≡ ȧ/a, ε = −Ḣ/H2 and
η = ε̇/(Hε). Throughout the paper we will declare that slow-roll is satisfied if ε, η and
higher order slow-roll parameters are � 1. The conformal time is denoted with τ and is
defined by a dτ ≡ dt. Comoving spatial momenta living in Fourier space are denoted in
bold font as k, and we define k ≡ |k|. The reduced Planck mass is MPl = 1/

√
8πG.

2 Preliminary effective field theory considerations

Let us start from the EFT of a single scalar degree of freedom coupled to gravity in a
FLRW spacetime, with background metric ḡµν = diag(−1, a(t)2, a(t)2, a(t)2), in unitary
gauge [15, 16] (in which all the fluctuations are on the spacetime metric). Up to quadratic
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order in perturbations, we will focus on the following subset of operators:

S =
∫

d4x
√
−g
[
M2

Pl
2 R−M2

Pl(3H2 + Ḣ) +M2
PlḢg

00

+ 1
2M

4
2 (δg00)2 − 1

2M̂
3
1 δg

00δK − 1
2M̄

2
2 (δK)2 + . . .

]
,

(2.1)

where K = Kµ
µ denotes the trace of the extrinsic curvature Kµν associated with the equal-

time hypersurfaces of the spacetime foliation defined by the unitary gauge choice [16]. The
first line in (2.1) is unambiguously fixed by the background dynamics. The second line
contains some of the quadratic operators that contribute to the action up to second order
in the derivative expansion. The coefficients of these operators, such as M4

2 , M̂3
1 and

M̄2
2 are actually arbitrary functions of time, due to the breaking of time diffeomorphisms.

In the absence of any other symmetries, higher derivative operators,3 like δg00δK and
(δK)2, are usually subleading and the dynamics of the perturbations at quadratic order
is dominated by (δg00)2. In this paper, we are interested instead in situations where
M4

2 (δg00)2 and M̂3
1 δg

00δK are of the same order on the FLRW background. At first
sight, this seems in contrast with the spirit of the EFT. However, as shown in [21, 22],
having M4

2 ∼ M̂3
1H (and hence both operators of the same order) is possible in theories

characterized by a WBG invariance. As a bonus, a non-renormalization theorem, stemming
from the weakly broken symmetry, guarantees that quantum corrections to M4

2 and M̂3
1

are parametrically suppressed. For further details on models featuring a WBG symmetry,
see appendix A.4 The operator (δK)2 is instead of a different type. It is not protected
by symmetries and it is always subleading compared, e.g. to (δg00)2 in the Lagrangian.5

Nevertheless, it may end up providing the leading correction to the dispersion relation for
the perturbations [20, 29, 30].6 Since we will discuss this option in the following, we have
written explicitly this operator in (2.1). Note however that there are other operators of
the same type that enter at the same order in derivatives and that, in principle, we should
have written in (2.1). In fact, these operators are generated via loop corrections from the
ones in (2.1). We have omitted them for simplicity because they do not change our results
qualitatively. In this sense, (δK)2 should be considered as a representative of this class of
operators. To recap, we will focus below on the action (2.1) where the effective couplings
satisfy the following hierarchy,7

M4
2 ∼ M̂3

1H � M̄2
2H

2 , (2.2)

which is stable against quantum corrections.
3By higher derivative operators we mean operators that in the covariant Lagrangian have more than

one derivative per field (see appendix A), or equivalently that in the unitary gauge language of (2.1) have
at least one derivative acting on the metric perturbations.

4In principle, there are other operators in (2.1) that we did not write that belong to the same class of
operators with WBG symmetry. However, thanks to the non-renormalization theorem, it is completely safe
to set their tree-level couplings to ‘zero’ in (2.1).

5Unless it enters through the combination (δK)2 − δKµνδKµν , which also belongs to the class of Horn-
deski operators with WBG symmetry [21].

6As we will see, this can happen as a result of cancellations between different coefficients in the dispersion
relation. However, this is not a fine tuning thanks to the WBG symmetry.

7Notice that H is the only relevant scale for the size of (massless) metric fluctuations during inflation.
Therefore, since δK has dimension of mass 1, its expected order of magnitude is δK ∼ H on purely
dimensional grounds.
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To study the dynamics of the scalar perturbations it is convenient to use the ζ-gauge,
defined by [31]:

δgij = a2e2ζδij . (2.3)

After integrating out the non-dynamical components of the metric, δg00 and δg0i,
from (2.1), one finds the following quadratic action for ζ,

S
(2)
ζ =

∫
d4xAa3

[
ζ̇2 − c2

s

(∇ζ)2

a2 − α (∇2ζ)2

H2a4

]
, (2.4)

where

A =
M2

Pl

(
2M2

PlḢ
(
2M2

Pl + 3M̄2
2

)
− 4M4

2

(
2M2

Pl + 3M̄2
2

)
− 3M̂6

1

)
2M2

PlM̄
2
2 Ḣ − 2M2

PlH
2
(
2M2

Pl + 3M̄2
2

)
+ 4M2

PlHM̂
3
1 − 4M4

2 M̄
2
2 − M̂6

1
, (2.5)

c2
s = 1

A

(
−M2

Pl + Ẏ

a

)
, (2.6)

α = − 2M2
PlH

2M̄2
2

2M2
PlḢ

(
2M2

Pl + 3M̄2
2

)
− 4M4

2

(
2M2

Pl + 3M̄2
2

)
− 3M̂6

1
, (2.7)

being

Y = −
2M4

Pla
(
H
(
2M2

Pl + 3M̄2
2

)
− M̂3

1

)
2M2

PlM̄
2
2 Ḣ − 2M2

PlH
2
(
2M2

Pl + 3M̄2
2

)
+ 4M2

PlHM̂
3
1 − 4M4

2 M̄
2
2 − M̂6

1
. (2.8)

The possible values for the coefficients are restricted by the validity of the effective descrip-
tion (see, e.g., [21, 22] and appendix A below):

εM2
PlH

2 .M4
2 , M̂

3
1H .M

2
PlH

2 , ε2/3M
4/3
Pl H

2/3 . M̄2
2 .M

4/3
Pl H

2/3 , (2.9)

where ε ≡ −Ḣ/H2 � 1. To make our expressions simpler, we will work in the decou-
pling limit (i.e. the regime where the scalar mode is decoupled from the metric perturba-
tions [16]),8 which applies if [21]

M4
2 , M̂

3
1H �M2

PlH
2 , M̄2

2 �M
4/3
Pl H

2/3 . (2.10)

Using (2.10), eqs. (2.5)–(2.8) simplify considerably and the quadratic action for ζ reduces to

S
(2)
ζ =

∫
d4x a3H−2

(
2M4

2 −M2
PlḢ

) [
ζ̇2 − c2

s

(∇ζ)2

a2 − α(∇2ζ)2

H2a4

]
, (2.11)

where now

c2
s = −2M2

PlḢ + M̂3
1H + ∂t(M̂3

1 )
2(2M4

2 −M2
PlḢ)

, α = M̄2
2H

2

2(2M4
2 −M2

PlḢ)
. (2.12)

8To explore the whole range of values for the parameters in (2.9), one would need to take into account
the coupling to the metric perturbations. However, this would not change qualitatively our conclusions,
but it would complicate unnecessarily the expressions for cs, α, etc. . .
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Note that, even if the decoupling limit applies in the whole range (2.10), in the following
we will mainly assume

M4
2 ∼ M̂3

1H ∼ εM2
PlH

2 , M̄2
2 ∼ ε2/3M

4/3
Pl H

2/3 , (2.13)

which corresponds to cases where the inflationary background dynamics is mostly driven
by the scalar’s potential [21, 32]. If this latter hierarchy is satisfied, then9

α ∼ (H/Λ3)2 , (2.14)

where we defined the scale Λ3 as

Λ3 ∼ ε1/6(MPlH
2)1/3 . (2.15)

In theories with a WBG invariance, Λ3 is precisely the scale that suppresses the higher
derivative operators; see, e.g., [21, 32] and appendix A below.

Note that in (2.11) the quadratic operator (∇2ζ)2 is the first of a series of terms of the
form (∇nζ)2. We did not write explicitly these operators for n > 2 because, as required
by the consistency of the derivative expansion, they are increasingly subleading at low
(comoving) momenta as n grows, provided that

kτ .
1√
α
, (2.16)

where τ is the conformal time and where we used the slow-roll approximation to write τ ∼
(aH)−1. Thus, at any given τ , only modes with comoving momentum k satisfying (2.16)
are captured by the derivative expansion (2.1). If cs ∼ O(1), eq. (2.16) ensures that all
the operators ∝ (∇nζ)2 with n ≥ 2 provide subleading corrections to the linearized scalar
dynamics. However, it may happen that the system dynamically evolves into a phase in
which cs � 1. In this case, the operator (∇2ζ)2 may become the leading one, changing the
dispersion relation for ζ. If this happens before the dynamics becomes strongly coupled,
then the system effectively enters a ghost-condensate-like phase [20, 29]. In the following,
we will discuss precisely this situation and analyze to what extent this can be used to
enhance the power spectrum of ζ within the EFT (2.1).

2.1 Linearized mode function equations

It is convenient to rewrite the linearized equation of motion for ζ in terms of the number of
e-folds N , which are related to the cosmological time t and the conformal time τ through

dN = Hdt = aHdτ . (2.17)

Defining

v ≡ zζ , z2 ≡ 2a2

H2

(
2M4

2 −M2
PlḢ

)
= 2M2

Pla
2ε(1 + α1) , (2.18)

9We stress again that the effective theory (2.1) will contain in general other operators of the same type
of (δK)2 (even if we did not write them explicitly in (2.1)) that contribute to (∇2ζ)2 in (2.11) (and enter
at the same scale of (δK)2). These will change the explicit expression of α in (2.12), but will not change its
dependence on the relevant scales of the problem, eq. (2.14), which is what we will be using in the following.
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where
α1 ≡ −

2M4
2

M2
PlḢ

, (2.19)

mirroring the notation of [32], the quadratic action for ζ (2.11) can be rewritten as

S
(2)
ζ = 1

2

∫
dτd3x

[
v′2 − c2

s(∇v)2 − α(∇2v)2

H2a2 + z′′

z
v2
]
, (2.20)

where the prime ′ denotes derivatives with respect to the conformal time τ . Then, one
finds the following Mukhanov-Sasaki type of equation for the mode function vk in momen-
tum space,

v′′k +
(
c2
sk

2 + αk4τ2 − z′′

z

)
vk = 0 . (2.21)

Throughout the paper, we will use the following definition for the first two slow-roll
parameters:

ε ≡ d logH−1

dN , η ≡ d log ε
dN . (2.22)

In addition, we define
s ≡ d log cs

dN , γ1 ≡
d log(1 + α1)

dN . (2.23)

We will say that generalized slow-roll is satisfied provided that ε, η, higher order slow-roll
parameters and s, γ1 are � 1. With this notation,

z′′

z
= a2H2

[(
1 + 1

2(η + γ1)
)(

2− ε+ 1
2(η + γ1)

)
+ 1

2
d(η + γ1)

dN

]
, (2.24)

and the equation (2.21) takes the form

d2vk
dN2 + (1− ε)dvk

dN +
[(
c2
s + αk2

a2H2

)
k2 − z′′

z

]
vk

a2H2 = 0 , (2.25)

or, equivalently, in terms of ζk = vk/z,

d2ζk
dN2 + (3− ε+ η + γ1) dζk

dN +
(
c2
sk

2

a2H2 + αk4

a4H4

)
ζk = 0 . (2.26)

Setting in (2.12) M̄2 = 0 (which means α = 0) and M̂1 = 0 (which implies 1/c2
s = 1 + α1,

and γ1 = −2s) we recover the analogous equation studied in [12] (setting there µ = 0).
Later on, we will discuss particular solutions to (2.26) and compute the corresponding
power spectra, which we will compare to the slow-roll one. Neglecting for the time being
the k4-term in the dispersion relation (α = 0), at leading order in generalized slow-roll, the
power spectrum for ζ is

∆2
ζ ≡

k3

2π2Pζ = (H/MPl)2

8π2 (1 + α1) ε c3
s

, (2.27)

which in the aforementioned limit (M̂1 = 0) reduces to the usual expression for cs 6= 1:

∆2
ζ = (H/MPl)2

8π2εcs
. (2.28)
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2.2 Strong coupling

As in any EFT, a fairly reliable way to determine the regime of validity of (2.1) is to estimate
the energy scale Λ? at which the theory becomes strongly coupled or perturbative unitarity
breaks down. To this end, one would need to include in (2.1) all the interactions that
contribute at the same order in derivatives, e.g. the cubic operators (δg00)3 and (δg00)2δK

(which we did not write explicitly in (2.1)), and determine for instance at which energy
scale loop corrections become as large as the tree-level diagrams. As an example, we
consider below the operator M̂3

1H
−3(∇ζ)2∇2ζ, which results from M̂3

1 δg
00δK. This will

be particularly relevant later on, when we consider the case of small c2
s. Indeed, when

cs 6= 1, different operators provide in general different estimates of the strong coupling
scale. In particular, in the limit cs � 1, the operator (∇ζ)2∇2ζ is the first one to become
strongly coupled [16, 32, 33].

Let us start considering the limiting case α � 1, with c2
s . 1. If the EFT coefficients

are constant in time, or at least do not change too fast — more on this point later—,
following e.g. [32], one finds

Λ6
? ∼ (4π)2M2

Pl|Ḣ|H2α−2
2 (1 + α1)3c11

s ∼ (4π)2α−2
2 (1 + α1)3c11

s Λ6
3 , (2.29)

where we have used the expression (2.15) for Λ3 and we have defined

α2 ≡ −
M̂3

1H

M2
PlḢ

. (2.30)

It is sometimes convenient to rewrite (2.29) in terms of the slow-roll power spectrum (2.27),

Λ6
? ∼

2H6(1 + α1)2c8
s

α2
2∆2

ζ

. (2.31)

Requiring that Λ? & H amounts to the condition

(1 + α1)2c8
s & α

2
2∆2

ζ . (2.32)

Similar conditions can be obtained from other interactions in the EFT (2.1). Let us assume
that initially α1, α2 and c2

s are all O(1). If (1 + α1) or c2
s then decrease in time, the left-

hand side of (2.32) becomes smaller, while the power spectrum on the right-hand side
increases according to (2.27). The system approaches therefore strong coupling, resulting
eventually in a breaking of the effective expansion once (2.32) ceases to hold. When c2

s goes
to zero, the breakdown of the effective theory can be avoided if, before strong coupling is
reached, the operator α(∇2ζ)2 becomes dominant over c2

s(∇ζ)2 resulting in a change of
the dispersion relation [30]. In this case, the system effectively enters a ghost-condensate
phase [20, 29], which provides a weakly-coupled UV completion [30]. In this new phase,
the strong coupling scale, determined by the operator (∇ζ)2∇2ζ, is precisely10

Λ? ∼ Λ3 , (2.33)
10Had we chosen the operator ζ̇(∇ζ)2 instead of (∇ζ)2∇2ζ to determine the strong coupling scale, we

would have found Λ? ∼ Λ3/α
2 � Λ3 (assuming again α1, α2 ∼ O(1)) instead of (2.33), in agreement with

eq. (3.25) of [30].
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where we used (2.13) and (2.14), dropped numerical factors and assumed α1, α2 ∼ O(1)
for simplicity.

To derive (2.29) and (2.33) we have assumed that all the EFT couplings are (approxi-
mately) constant. In general, this is allowed if the typical energy scale associated with the
time dependence in the effective couplings, Γ, is smaller than H. Indeed, the rate of change
of some effective coupling f over a Hubble time can be estimated as H−1df/dt ∼ (Γ/H)f ,
which will be much smaller than f itself — i.e. the variation is slow — provided that
Γ � H. However, in the following we will be interested in considering situations where
some of the parameters, in particular α1 and c2

s, change over time scales Γ−1 that are
smaller than H−1. Can this affect the estimate of the range of validity of the EFT, invali-
dating in particular (2.29) and (2.33)? In principle, these will remain good estimates of the
strong coupling scale as long as the typical time scale associated with the time evolution
of these coefficients, Γ−1, is larger than Λ−1

? . In the presence of such a scale separation,
it is acceptable to estimate the strong coupling scale of the theory — which effectively
corresponds to probing the short-distance dynamics of the perturbations in the system —
as if the effective coefficients were constant in time. In terms of the number of e-folds,
requiring that the time scale of a certain ‘feature’ in the effective coefficients or the power
spectrum is much larger than Λ−1

? (which can be thought of as the ‘time-resolution’ of
the EFT) amounts to the condition ∆Nfeature � H/Λ?, where we assumed H ' constant.
Under this assumption, one can rely on (2.29) and (2.33) to estimate the regime of validity
of the effective theory. The presence of the feature might affect the value of Λ? by at most
an O(1) correction, but it will not change its order of magnitude.

3 Enhanced power spectrum from negative friction

In this section we discuss one of the possible mechanisms by which a large power spectrum
can be obtained in the EFT (2.1). This consists in the excitation of a growing mode when it
is outside the horizon because the Hubble friction in the linearized equation for ζ becomes
negative. This mechanism has been studied in the literature when the change of sign in
the friction comes from either η (see e.g. [9] and references therein) or the time variation
of the speed of sound (see [6, 12]). Here we will consider a variation of the EFT coefficient
γ1 — see eq. (2.23)—which encompasses also the latter of those.

Let us first consider eq. (2.26) in the small-k limit. One of the two possible solutions of
this equation is simply ζ̇ = 0, which (using the appropriate boundary conditions) gives the
expression (2.27) for the power spectrum if the variation of the EFT coefficients is slow.
The other solution satisfies

dζ
dN ∝ exp

[
−
∫

(3− ε+ η + γ1) dN
]
. (3.1)

If the sign of the ‘friction coefficient’ ξ, defined by

ξ ≡ 3− ε+ η + γ1 , (3.2)

becomes negative during inflation, ζ is not conserved on superhorizon scales and its spec-
trum may grow significantly above the slow-roll solution (2.27). This friction enhacement
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of the spectrum can arise from a fast change in ε which temporarily triggers η < −3 (see,
e.g., [4, 9, 34]). We are instead interested in the possibility of γ1 < −3, with small and
approximately constant ε and |η|. From eq. (2.23) we see that γ1 < −3 can occur if (1+α1)
diminishes fast enough. In particular, an O(1) reduction of α1 over one e-fold is necessary
for this friction enhancement to take place. Assuming a sudden change of γ1 to a value
γ1 < −3 that remains constant over a time interval ∆N to decrease rapidly afterwards,
the maximum enhancement can be estimated as

∆2
ζ = ∆2

ζ(k → 0) e−2(3+γ1)∆N , (3.3)

where ∆2
ζ(k → 0) is given by (2.27). We emphasize that this effect is different from the

enhancement that can happen from a slow decrease of (1 + α1), which is already explicit
in (2.27).

The exponential enhancement (3.3) is in principle possible, but we should check that
it does not violate perturbative unitarity in the EFT, nor any of the assumptions in sec-
tion 2.2. In particular, we will require that (2.29) is valid and that the inequality (2.32) is
satisfied. For simplicity, let us start assuming cs constant — we shall discuss later cases
where cs evolves in time. Plugging (2.27) into (2.32) and assuming α1, α2 ∼ O(1) initially,
one infers that (1 + α1) cannot get smaller than roughly ∼ 10−3. In other words, defining
1 + α1 ≡ 10−y, weak coupling requires roughly ∆y . 3, if y is initially close to zero. On
the other hand, in order for the friction coefficient (3.2) to become negative, one needs
∆y & 3∆N/ log 10. Combined with ∆y . 3, this implies ∆N . 2. However, from the con-
siderations in section 2.2, we want ∆N & O(1) to trust (2.29) in the first place. Therefore,
one concludes that, even if it is certainly possible to obtain a significant enhancement of
the power spectrum by means of a large and negative ξ, this may require some additional
assumptions about the UV physics. Otherwise, based on the results of section 2.2, the
enhancement is bounded by the combined requirements that (1 + α1) becomes not too
small and its variation is not too fast.

We consider an explicit example in figure 1, where we show the power spectrum for a
particular choice of the time evolution of the coefficient α1. In the figure, (1+α1) decreases
from an O(1) number by roughly 3 orders of magnitude, in a time lapse of a couple of e-
folds, before increasing again back to its original value.11 As a result, this translates into
an enhancement of the power spectrum of about four orders of magnitude, with respect to
the CMB value, which has been set at k � kpeak to be ∼ 2× 10−9.

It is instructive to compare the previous case to the one in which M̂1 = 0. As we men-
tioned at the end of section 2.1, if M̂1 = 0 then 1/c2

s = 1 +α1 and γ1 = −2(d log cs/dN) =
−2s. In this case, assuming a slow variation of the EFT coefficients, ∆2

ζ ∝ 1/cs and a
reduction of cs enhances the slow-roll spectrum. However, γ1 > 0 when dcs/dN < 0 (as-
suming cs > 0) and such a variation cannot enhance the spectrum by means of the friction
effect discussed above, as it only makes the non-constant mode of ζ fall even more rapidly
as N grows. The enhancement of the power spectrum from a change in c2

s was discussed
11In this example cs is constant for simplicity. This is possible in spite of the change in M2 (required to

have a variation of α1), thanks to the freedom in the choice of M̂3
1 , see eqs. (2.12).
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Figure 1. We show the numerical power spectrum as a function of the momentum k, given the
following time dependence in the parameter α1: 1 + α1 = (1− αf ) tanh(w(N −N0))2 + αf , where
αf = 10−3 and w = 1/3. We have assumed c2

s = 1 and ε = 10−3. N0 denotes the (arbitrary) e-fold
time around which the transition happens.

in [12] in analogous terms. There, it was pointed out that a small sound speed, leading to a
large ∆2

ζ ∝ 1/cs (as required for abundant PBH formation) can lead to strong coupling and
the loss of validity of the effective theory. In that case, the strong coupling condition (2.32)
reduces indeed to c4

s & ∆2
ζ [15], which provides a lower bound on cs. In the following, we

will explore further the possibility of enhancing the power spectrum through a change in
the sound speed, as well as possible ways to avoid strong coupling issues.

4 Enhanced power spectrum from a ghost-inflation phase

In ref. [12] it was pointed out in the context of PBH formation that the strong coupling
problem that arises when one tries to enhance the power spectrum to large values by
sending cs → 0 may be addressed by considering a modified dispersion relation in this
limit, and specifically the case of ghost inflation [20].12 This is because a change in the
dispersion relation for the low-energy degrees of freedom can raise the cutoff of the theory,
extending the regime of validity of the effective description. In the following, we discuss in
detail this possibility. In particular, we consider the case in which the system transits from
a slow-roll regime into a ghost-condensate-like phase. This is possible provided that M̂3

1
is appropriately chosen. The robustness of the transition is ensured by the assumed WBG
symmetry [21, 32]. As we will see, this type of transition, which modifies the dispersion
relation for the perturbations, allows to simultaneously i) enhance the power spectrum
on shorter scales and ii) keep the theory for the perturbations weakly coupled during
the evolution.

The initial slow-roll evolution is characterized by the usual dynamics (with cs ∼ O(1)
initially),

v′′k +
(
c2
sk

2 − 2
τ2

)
vk = 0 , (4.1)

which admits the standard solution

vSR
k (τ) = e−icskτ√

2csk

(
1− i

cskτ

)
, (4.2)

12Another possibility consists in invoking the appearance of new degrees of freedom that provide a UV
completion to the effective theory, see appendix C.
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where the Wronskian condition vkv
′∗
k − v′kv∗k = i has been imposed at τ → −∞. As cs

decreases in time, the slow-roll power spectrum (2.27), obtained from the solution (4.2),
increases, but at the same time the system approaches strong coupling. However, before it
becomes strongly coupled, we assume that the dynamics of the perturbations gets dynam-
ically modified, in particular that the term proportional αk4 becomes dominant over c2

sk
2

in eq. (2.21):

v′′k +
(
αk4τ2 − 2

τ2

)
vk = 0 . (4.3)

Given a certain mode with momentum k, the crossover between the two regimes occurs at
the conformal time τ∗, defined by cs(τ∗) ∼

√
α(τ∗)(−kτ∗). Modes with very small k that

exit the horizon very soon will not be affected by the change in the dynamics, and will
have the power spectrum given in (2.27). Let us focus instead on modes with larger k, that
were still sub-horizon during the transition into the ghost-inflation like phase. In order to
estimate the power spectrum for these modes, we can proceed as follows. First, we solve
the mode function equation (4.3). The most general solution can be written as [20, 29]

vGI
k (τ) = Ak

√
−τH(1)

3/4

(1
2
√
αk2τ2

)
+Bk

√
−τH(2)

3/4

(1
2
√
αk2τ2

)
. (4.4)

Next, we match (4.4) to (4.2) by requiring continuity across the transition. This will
unambiguously fix the coefficients Ak and Bk in (4.4). Since the modes which we want
to estimate the power spectrum for after the transition were well within the horizon in
the slow-roll phase, we can obtain a reasonable approximation to the solution in the ghost-
condensate phase by matching (4.2) and (4.4) at large negative conformal times, τ = −∞.13

Using the following formulae for the Hankel functions,

H(1)
p (z → +∞) ≈

√
2
πz

ei(z−p
π
2−

π
4 ) , H(2)

p (z → +∞) ≈
√

2
πz

e−i(z−p
π
2−

π
4 ) , (4.5)

and keeping only the solution proportional to Ak in (4.4), which has the correct phase at
short distances, we can approximate

vGI
k (τ → −∞) ≈ Ak e−i

5π
8

2
α1/4k

√
−τ
√
π

e
i
2
√
αk2τ2

. (4.6)

By definition, at the transition one has cs(τ∗) ∼
√
α∗(−kτ∗). Then,

vGI
k (τ ≈ τ∗) ≈

2
√

2Ak e−i
5π
8 + i

2 cs(τ∗)kτ∗
√
π

e−ics(τ∗)kτ∗√
2kcs(τ∗)

, (4.7)

and the matching with (4.2) yields

Ak =
√
π

2
√

2
ei

5π
8 −

i
2 cs∗kτ∗ . (4.8)

13Clearly the correct procedure would require matching ζ and ζ′ at the crossing point — see, e.g. figure 2
below. However, doing this does not significantly affect the order of magnitude of the enhancement in (4.10).
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Expanding at τ → 0, one finds the following estimate for the power spectrum after the
transition,14

∆2
ζ,GI ≈

H4

2π Γ(1
4)2 α3/4

(
2M4

2 −M2
PlḢ

) = (H/MPl)2

2π Γ(1
4)2 α3/4 (1 + α1) ε

, (4.9)

to be compared with the slow-roll power spectrum (2.27), which gives

∆2
ζ,GI '

4π
Γ(1

4)2
c3
s

α3/4 ∆2
ζ(k → 0) , (4.10)

where cs is the sound speed in the slow-roll phase before the sound speed starts changing
in time. If we take cs ∼ O(1) before the transition, then it follows from (4.10) that the
final power spectrum is enhanced by a factor of α−3/4 (recall that α � 1) for modes that
exit the horizon after τ∗, with respect to modes that become super-horizon during the
slow-roll phase.

In order to understand the origin of the enhancement, we shall reason as follows. It is
convenient to focus on the two-point functions resulting from the solutions (4.2) and (4.4) as
functions of kτ . In particular, let us assume for simplicity that cs is the only time-dependent
quantity, with cs = 1 initially, while all the other parameters are constant, and let us define
the functions ∆1(z) ≡ c−1

s (z2 + c−2
s ) and ∆2(z) ≡ 2|Ak|2(−z)3|H(1)

3/4

(
1
2
√
α z2

)
|2, where

z ≡ kτ ≤ 0. ∆1 is related to the power spectrum (2.27) in the slow-roll phase via ∆2
ζ,SR =

(H/MPl)2

8π2 (1+α1) ε∆1(z → 0), while ∆2 gives, in the limit z → 0, the power spectrum (4.9) in
the ghost-condensate phase after multiplying by the same overall constant and using (4.8).
As already mentioned above, modes with momentum k that exit the horizon well before
the sound speed starts decreasing will not be affected by the change in the dynamics and
will have a power spectrum determined by ∆1(z → 0) with cs = 1. Instead, the power
spectrum of modes that become super-horizon while cs is decreasing (but before their
dispersion relation switches from linear to quadratic) is still determined by ∆1 but with
a smaller value for cs. In particular, the enhancement of these modes with respect to the
previous ones scales (in the slow-roll approximation) as c−3

s at horizon crossing, as dictated
by eq. (2.27). Finally, let us consider modes with values of k that exit the horizon in the
ghost-condensate phase. These modes are still sub-horizon around τ = τ∗. Before τ∗, their
amplitude follows (up to an overall constant factor) the curve ∆1 as a function of kτ , while
after τ∗ they will evolve according to ∆2. However, since ∆1 and ∆2 have different shapes in
z, and, in particular, since ∆2 decreases more slowly than ∆1, the power spectrum is larger
than what it would be without the change in the mode dynamics. The enhancement scales
precisely as α−3/4. We emphasize that this precise scaling α−3/4 holds strictly speaking in
the limit of very large |τ∗|. Considering a shorter duration for the ghost-inflation-like phase
will in general translate into a smaller enhancement. In addition, the actual enhancement
in the power spectrum will also depend on the details of the transition and on the presence

14We stress that (4.9) holds only in the limit of very large |τ∗|. Keeping τ∗ finite introduces corrections
that depend on cs and α computed at τ∗. A more precise realization of the transition is discussed later,
with the resulting power spectrum shown in figure 2.
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Figure 2. Power spectrum, ∆2
ζ(k), normalized to ∆2

ζ(k → 0) = 2 × 10−9. Left panel: we assume
a transition between a slow-roll phase with cs = 1 and α negligible, and a phase with quadratic
dispersion relation (cs = 0 and ω =

√
αk2τ2, for α = 10−7). The horizontal dashed line is given

by eq. (4.10). The orange dashed line has the slope k4. The figure illustrates that the presence of
the oscillations allow to get a peak whose actual amplitude is between 1 and 2 orders of magnitude
larger than the value estimated with eq. (4.10). Right panel: we assume now that the phase with
quadratic dispersion relation has a finite duration (∆N ' 6). After that, the initial dynamics with
c2
s = 1 is restored. In the intermediate phase, α = 10−10 in this case.

of oscillations, which may result in a larger peak. We show an explicit example in figure 2,
where we plot ∆2

ζ(k). In the left panel, we have assumed that the system is initially in a
slow-roll phase with c2

s = 1 and α negligible. At some time in the evolution, c2
s goes to

zero and the dynamics becomes thereafter dominated by the k4-term.15 As shown by the
orange dashed line, the slope of the spectrum goes as ∼ k4. Note that this is the same slope
that was found in [35], although the growth there is due to a change in the background
evolution (in particular, a transition into an ultra-slow-roll phase) instead of a change in
the dispersion relation for the perturbations. In the right panel, the evolution is the same
except that the phase with quadratic dispersion relation has finite duration: ∼ 6 e-folds
after the first transition, the sound speed becomes c2

s = 1 again, and the initial slow-roll
dynamics is restored. To make the analysis as simple as possible, we have assumed the
transitions between the different phases instantaneous, and we have matched the solutions
for ζ and ζ ′ at the transition points.

Looking at eq. (4.10), one might be tempted to conclude that, by suitably choosing α
to be sufficiently small (which, using the scaling (2.14), would correspond to raising the
scale Λ3) it is possible to obtain an arbitrarily large relative enhancement of the power
spectrum with respect to the standard slow-roll one. Nevertheless, we know that α cannot
be arbitrarily small (or, Λ3 arbitrarily large — see appendix A for further details). Indeed, a
nonzero α is generated anyway at the quantum level. Then, the relevant question is whether
the possible values of α that are compatible with the size of its quantum corrections allow
to obtain the desired enhancement. Note that, according to (4.10), a relative increase of
roughly 6 or 7 orders of magnitude would require α of order ∼ 10−9. This seems hard
to get using the values in table 1 in appendix A for the effective couplings (even in the

15In reality, cs will never be exactly zero. It is indeed bounded from below by the size of the quantum
corrections to the effective couplings in (2.12).
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kinetically-driven scenario) and the typical values of H during inflation. However, one
might get such small numbers for α if the parametric separation between M4

2 and M̄2
2H

2 is
larger than the one we considered here (see eq. (2.13)), which would correspond to further
suppressing the relative size of the higher derivative operators with respect to standard
P (φ, (∂µφ)2) operators in the theory. However, as mentioned above, oscillatory features
such as those displayed in figure 2 may lead to a larger spectrum (possibly by a couple
of orders of magnitude) for a given α, depending on the specific implementation of the
transition into the ghost-condensate-like phase.

To recap, a phase with a quadratic dispersion relation (ω ∝ k2) allowed us to attain
two main results at the same time: firstly, it raised the cutoff of the theory, avoiding short
modes (with large k) to become strongly coupled as cs → 0; secondly, it resulted in an
enhanced power spectrum at large k, compared to the power spectrum at low k, thanks to
a different time evolution for the modes in the slow-roll and ghost-inflation phases. The
enhancement scales as α−3/4, with α bounded from below by the size of the quantum
corrections in the theory. In the case of interest, the typical value of α can be read off
eq. (2.14) and table 1 in appendix A.

5 Transition into a phase with imaginary sound speed

5.1 Exponential growth from ghost inflation

A transition into a ghost-inflation-like phase allowed us to alleviate the strong coupling
regime that stems from reducing the sound speed of the perturbations and, at the same
time, to enhance the power spectrum on short scales. However, since the relative increase
is a power law in α (in particular scales as α−3/4), an enhancement of seven orders of
magnitude (as required by the Gaussian approximation to account for all DM with PBHs
formed during radiation domination)16 is only possible at the price of further increasing
the parametric separation between H and Λ3, which is tantamount to pushing the form
of the theory toward a standard P (φ, (∂µφ)2) theory. A different, and in principle more
efficient, way to enhance the power spectrum is to excite a growing mode by assuming
that, after transiting into the ghost-condensate phase, the quantity c2

s in (2.12) keeps
decreasing and eventually becomes negative. This corresponds to an instability for the
perturbation ζ, which now grows exponentially. Usually, this is an unwanted behavior
for the perturbations, as this sort of instability heralds a breakdown of the perturbative
expansion and threatens the validity of the background classical solution. In the following,
we will discuss to what extent such a gradient instability can be used to enhance the power
spectrum in a controlled way over a period of time of a few e-folds. Caveats and possible
obstructions are discussed later in this section and in section 6.

We remain agnostic about the UV mechanism that is responsible for the exponen-
tial growth of the perturbations in the effective theory. In particular, we do not rely on

16We reiterate that this approximation is unlikely to be precise given that it may not describe well enough
the tails of the probability distribution function of ζ. Still, a large power spectrum of ζ is certainly needed
for a large PBH abundance.
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any specific multi-field model.17 In our analysis, the transition from the slow-roll phase
into a transient regime of exponential growth is entirely captured by the weakly coupled,
single-field effective theory (2.1) and it is driven by higher derivative operators with WBG
symmetry [21, 22]. The robustness of the classical trajectory and of the EFT is guaranteed
by the approximate symmetry, which protects the effective couplings against large quantum
corrections.18

For the moment, let us start by focusing on the transition between the ghost-condensate
regime and the phase with imaginary sound speed. Later on, we will consider a more
complete scenario, in which these are transient phases in a more general inflationary slow-
roll evolution.

In the ghost-condensate phase, the sound speed is effectively negligible and the lin-
earized dynamics for the perturbations is described by (4.3). After this phase, we as-
sume that c2

s evolves from zero to negative values. The dynamics is now governed by the
mode equation

v′′k +
(
−c2

sk
2 + αk4τ2 − 2

τ2

)
vk = 0 , (5.1)

which corresponds to (2.21) at the leading order in the quasi-de Sitter approximation and
where we replaced, for convenience, cs 7→ ics in such a way to work with positive c2

s.
In general, the equation (5.1) cannot be solved exactly in the presence of a non-trivial
time dependence in c2

s and α. Therefore, we will take them constant and approximate
the evolution with a sharp transition from a ghost-condensate phase (with cs = 0 and
α = constant) to a gradient-instability phase (with α = 0 and |cs| = constant). We
will thus solve the equation separately in the two phases, and match the solutions at the
crossing point. To this end, let us define τ0 ≡ −|cs|/(k

√
α) to be the (conformal) time when

the transition takes place. In the ghost-condensate phase, τ � τ0, the k4 term dominates
in (5.1) and the solution is given by

vk(τ) =
√
π

8
√
−τ H(1)

3/4

(1
2
√
αk2τ2

)
, (5.2)

where the standard boundary condition for ghost inflation has been imposed at τ →
−∞ [20]. After the transition time τ0, the k2 term dominates in (5.1) and the most
general solution for vk takes the form

vk(τ) =
√
−τ

(
AkH

(1)
3/2(−icskτ) +BkH

(2)
3/2(−icskτ)

)
. (5.3)

17In [23, 25–27] (see also [14, 28] and appendix C) a gradient instability arises as a consequence of a
transient tachyonic instability in a two-field model. In these works, a heavy degree of freedom becomes
temporarily tachyonic. Once integrated out, the tachyonic phase manifests as a gradient instability in the
infrared dynamics.

18See also [24] for a multi-field motivated EFT description of the gradient instability, albeit without any
discussion about the role of the higher derivative operators (responsible for a modified dispersion relation
at large momenta) or any symmetry considerations.
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The coefficients Ak and Bk can be obtained by matching to (5.2), requiring the continuity
of ζk ≡ vk/z and ζ ′k across the transition point:

Ak = (−1)1/4πe
c2s√
α

8csα1/4

[(
c2
s −
√
α
)
H

(1)
−1/4

(
c2
s

2
√
α

)
− c2

sH
(1)
3/4

(
c2
s

2
√
α

)]
, (5.4)

Bk = −(−1)1/4πe−
c2s√
α

8csα1/4

[(
c2
s +
√
α
)
H

(1)
−1/4

(
c2
s

2
√
α

)
+ c2

sH
(1)
3/4

(
c2
s

2
√
α

)]
, (5.5)

where we used τ0 ≡ −|cs|/(k
√
α). These expressions can be further simplified using√

α/|cs|2 � 1. Expanding the Hankel functions as in (4.5) for c2
s/(2
√
α)� 1, we find

Ak ≈
√
π

8 (−1)3/8e
c2s√
α

+ ic2s
2
√
α , (5.6)

Bk ≈ i
√
π

8 (−1)3/8e−
c2s√
α

+ ic2s
2
√
α . (5.7)

Plugging these expressions back into (5.3), the power spectrum for ζ is

∆2
ζ ≡

k3

2π2 |ζk|
2 ≈ H2e

2c2s√
α

16π2M2
Plε(1 + α1)c3

s

. (5.8)

where we used (2.18) and neglected subleading terms in
√
α/c2

s. Eq. (5.8) can also be
written as

∆2
ζ ≈

πα3/4e
2c2s√
α

4c3
sΓ
(

3
4

)2 ∆2
ζ(k → 0) , (5.9)

where ∆2
ζ(k → 0) ' 2 × 10−9 (normalized to the CMB measurements) corresponds to

the power spectrum of the modes that exited the horizon before the instability phase (i.e.
during the ghost-inflation phase). From (5.9) one can thus read off the enhancement factor
πe2x/[4x3/2Γ(3

4)2], where we defined x ≡ c2
s/
√
α. In principle, it is enough to choose cs and

α in such a way that x ' 10 to obtain an enhanced spectrum as large as ' 10−2. Note that
the power spectrum (5.9) is analogous to the one that arises from the tilted version of ghost
inflation [36]. Yet, there are differences worth remarking. As opposed to [36], where the
growth of the perturbations stems from an increasing H in time, which violates the Null
Energy Condition (NEC), in our case the background evolution is not altered with respect
to standard slow-roll inflation, i.e. with Ḣ < 0 and −Ḣ/H2 � 1. Instead, the instability
that leads to a growth of the primordial perturbations is triggered by higher derivative
operators in the underlying theory with WBG symmetry, resulting in a temporary change
of the sign of c2

s (which we have approximated as an instantaneous transition).
It is worth stressing that (5.9) gives the maximum enhancement of the power spectrum.

Recall indeed that we have confined our discussion so far to a single mode k, while one
should note that not all the modes experience the same relative enhancement. This will be
transparent in the next section (see, in particular, figure 3), where we consider an analytic
approximation for the transient unstable phase and analyze in more detail the behavior of
the different modes during the evolution.
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5.2 Analytic approximations for the transition into the unstable phase

In this section, we consider a more refined version of the dynamics we just discussed above.
In particular, we assume that the system evolves from a slow-roll phase into a transient
unstable phase dominated by a dynamics for the perturbations with c2

s < 0. Then, after
some time, c2

s turns positive again and the system recovers a slow-roll type of evolution. To
make this scenario tractable analytically, we approximate the evolution by three separate
phases, connected by instantaneous transitions, where the solutions to the equations of
motion for the perturbations are matched. This will allow us to show explicitly the behavior
of the different modes. A smoother version of the evolution is discussed in the next section,
but all the main ingredients and qualitative aspects are already captured by the present
stepwise approximation.

Let us start assuming that cs(τ) is the only time-dependent function determining the
dynamics of the perturbations, while we will keep for simplicity all the other slow-roll
parameters, including α in (5.1), constant. To make the analysis as simple as possible,
we will assume that c2

s changes instantaneously from a certain constant value to another
constant value. In particular, we shall define τt and τ ′t such that c2

s(τ < τt) = c̄2
s > 0,

c2
s(τt < τ < τ ′t) = −c̃2

s < 0 and c2
s(τ > τ ′t) = c̄2

s > 0, where c̄2
s ' 1 and c̃2

s � 1. In the
first phase defined by τ < τt, the scalar perturbations have a standard dispersion relation
with sound speed ∼ 1. In particular, the k4-term in (5.1) is subdominant for all the modes
captured by the effective description. Then, the system undergoes a transient unstable
phase triggered by c2

s(τ) = −c̃2
s < 0 for τt < τ < τ ′t , and the amplitude of (some of)

the modes increases exponentially. In the last phase starting at τ ′t , the original value of
the sound speed is restored and the modes stop growing. To understand the effect of the
instability on the power spectrum, it is convenient to follow the evolution of modes with
different momenta k. Let us call τk the conformal time at which a certain mode with
momentum k exits the horizon. Modes with sufficiently small k, i.e. |kτt| � 1, that exit
the horizon before the unstable phase, i.e. τk < τt, do not feel the effect of the gradient
instability and will not have an enhanced power spectrum. Let us then focus on modes
that exit the horizon during or after the unstable phase, i.e. such that τk > τt. These
will in general grow because of the instability and will have a power spectrum enhanced
(with respect to the previous ones) by a factor of ∼ e2c̃sk∆τ , where ∆τ = τk − τt or
∆τ = τ ′t − τt, whichever is the smallest. This seems to indicate that the modes with the
largest enhancement are the ones with the largest momentum. However, this comes with
a caveat. One should take also into account the presence of the k4-term in (5.1), which
can be relevant in the unstable phase since c̃s � 1. Indeed, modes with large enough k, in
particular those with c̃s√

α
. |kτ ′t | < |kτt| . 1√

α
, whose dynamics resembles the one of ghost

inflation, will not be significantly affected by the instability and will not grow as much as
those with intermediate k. Thus, the largest relative enhancement at the level of the power

spectrum is obtained for modes with c̃s√
α
& |kτt|, and corresponds to ∼ e

2c̃2s√
α

(1−τ ′t/τt), where
we assumed |τk| < |τ ′t |.19 An explicit example is shown in figure 3, where we plot the power

19Note that this estimate reproduces the exponential factor in (5.9) in the limit |τ ′t/τt| � 1.
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Figure 3. Power spectrum of ζ as a function of k for c̄2
s = 1, c̃2

s = 0.55, α = 10−4, τtkpeak = −57.75
and τ ′tkpeak = −44 (see section 5.2). Modes with k/kpeak � 1 that exit the horizon well before τt
are not affected by the gradient instability (c2

s < 0). The first modes that start feeling its effect are
those with k/kpeak & 0.02. Modes with larger, intermediate, k are those that are enhanced the most.
Those with even larger k (k/kpeak > 1) are instead suppressed (with respect to the peak), as the
k4-term in (5.1) starts competing with the c̃2

sk
2 term, mitigating the effect of the instability. Modes

with very large values of k/kpeak, not displayed in the plot, are beyond the effective expansion, as
they violate (2.16).

spectrum ∆2
ζ as a function of k, normalized to the CMB value, 2 × 10−9, at k � kpeak.20

The plot has been obtained by solving the equation (4.1) with c2
s = c̄2

s for τ < τt and
τ > τ ′t , and the equation (5.1) with c2

s = c̃2
s for τt < τ < τ ′t , and then matching ζk and

ζ ′k across the transition points. The shape with a peak at intermediate k is in agreement
with the numerical solution of section 5.3. Note that the oscillations in figure 3 follow from
interference effects resulting from the transition between different phases [12].21

5.3 Numerical solution

In this section, we present a numerical solution to the equation (2.21) for a smoother version
of the transition described in the previous section. The result is reported in figure 4. To
obtain the solution, we choose −0.03 . c2

s . 1, with c2
s ' 1 before and after the transition,

while α ∼ O(1)× 10−7 throughout the entire evolution. We assume that the system starts
in a phase of slow-roll evolution and that the dynamics of the perturbations is initially
governed by a standard dispersion relation with c2

s ' 1, as displayed in the right panel of
20Assuming the scaling (2.13) for M̄2

2 (see also table 1 in appendix A), with the chosen value α = 10−4

for α defined in (2.12), to have the power spectrum in figure 3 correctly normalized at k/kpeak � 1 to the
CMB value, one needs α1 ∼ O(10− 100).

21We stress that this is true for all the oscillations visible in figure 3, except those at the rightmost part
of the plot. These ones are instead affected by the fact e−ic̄skτi (with τi being the initial time where the
boundary condition is imposed) is no longer the correct initial condition for modes with very large k.
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Figure 4. On the left we plot the power spectrum obtained by solving (5.1) numerically, with the
parameters shown on the right. The yellow dashed line is 106α and the black line is c2

s. The (e-fold)
time dependence of cs is given by c2

s = (1 − (tanh(N − N0 + 0.5) − tanh(N − N0 − 0.5))δcs
)c2

0s
with c2

0s = 1, and δcs = 1.115 a, whereas α = (tanh(N −N0 + 1.5) − tanh(N −N0 − 1.5))δα + α0
with α0 = 10−7, and δα = 1.2 × 10−7. We assume that all the other parameters are constant. In
particular, we set ε = 10−4 and α1 = 150, while we set all the other slow-roll parameters to zero.

figure 4 (solid line). Then, the sound speed gradually diminishes and, after a couple of e-
folds, the system enters the ghost-condensate-like phase with quadratic dispersion relation.
The dashed curve in the right plot of figure 4 describes the evolution of the EFT coefficient
α. Thereafter, the system temporarily stays in a phase with c2

s < 0. This triggers an
exponential growth of the amplitude of the perturbations, resulting in an enhanced power
spectrum as shown in the left plot of figure 4. Afterwards, c2

s returns positive restoring the
original dynamics.

In the plot in figure 4, one recognizes the two salient features discussed in sections 5.1
and 5.2: the first one is the exponential enhancement obtained during the unstable phase
(as opposed to the example in figure 2 where the growth is compatible with a power law);
the second one is the sudden decay in the shape of the power spectrum after the peak.
The presence of the plateau before the exponential growth simply follows from the fact
that modes with sufficiently small k, which exit the horizon very soon, remain unaffected
by the instability. The second plateau, occurring after the peak (and barely shown in the
plot), arises instead, as noticed already in section 5.2, because modes with very large k
remain dominated by the quadratic dispersion relation during the transient phase with
c2
s < 0. Therefore, they effectively remain in the ghost-condensate-like regime and are also
not enhanced. As a result, the final power spectrum is peaked only over a finite range of
momenta, which are those that effectively experience the gradient instability.

At this point, one might worry about the consistency of the effective expansion in the
unstable phase and, in particular, across the points where the dispersion relation for ω2

turns from positive to negative, and vice versa. A prototypical example of the instability is
the (an)harmonic oscillator in quantum mechanics with inverted potential. Let us imagine
that the curvature of the potential is initially positive and that the oscillator is in its
ground state. At some time, the curvature of the potential suddenly turns negative. In the
limit of an instantaneous transition, the system will initially still be in the same state, but
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the wavefunction will start to change in time: it will grow and spread as a result of the
unbounded potential. However, as long as the unstable phase is just temporary — one can
imagine that, after a certain time interval, the curvature of the potential becomes positive
again—the wave function will stabilize. In the case of an EFT with transient gradient
instability, one should check that the maximum rate of the instability lies within the realm
of validity of the effective expansion. In particular, focusing on the dispersion relation in
the unstable phase, which we can write schematically as

ω2H−2 ∼ −|cs|2(kτ)2 + α(kτ)4 , (5.10)

the maximum rate of the instability is given by

Γ ≡ max(Im ω) ∼ |cs|
2H√
α
∼ |cs|2Λ3 , (5.11)

where we used (2.14). Taking now into account eq. (2.33) and that |cs|2 � 1 in the unstable
phase, from (5.11) one finds that Γ � Λ?, corresponding therefore to energies that are
below the cutoff.22 Finally, another possible obstacle in applying the EFT to describe the
transition between slow-roll inflation (or the ghost condensate) and the unstable regime is
that a too fast evolution may jeopardize the estimate of the strong coupling scale across
phases — see our discussion in section 2.2 above. On the other hand, this obstacle may
not be insurmountable as long as one does not need to resolve the details of the transition
between the two phases. Since we are mainly interested in the computation of the global
shape of the power spectrum, we can still use the EFT to describe the relevant phases,
whose robustness is guaranteed by symmetries, and match across the transition points, as
we already schematically did before in the previous section.

6 Non-Gaussianities and the validity of perturbation theory

The main reason that has recently motivated the study of inflationary scenarios with large
power spectra on small scales is the possibility of generating PBHs. Analytical and nu-
merical analyses indicate that ζ & 0.1 is needed for PBH formation. Therefore, in order to
correctly estimate their abundance, the information about the size of the two-point func-
tion may not be enough, and one may need to know additional information about the full
shape of the distribution, e.g. the form of higher-order correlation functions. The most
promising approach to this issue may lie on techniques that attempt to go beyond pertur-
bation theory, see e.g. [37–42] for several recent attempts with different methods. Our goal
in the present section is more modest. We will estimate the size of the leading n-point

22This is correct if the loop corrections are dominated by the high-energy part of the loop integral, i.e. by
the dynamics of modes with quadratic dispersion relation, ω ∝ k2, which are perfectly stable and weakly
coupled. However, it does not completely address the question of strong coupling in the unstable phase. A
quick scaling argument, following the one in the next section, seems to suggest the presence of potentially
dangerous large N -loop corrections in the large-N limit, where the leading contribution comes from the
exchange of exponentially growing modes. We leave a more detailed analysis of this aspect for future work.
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correlation function for the example presented in the previous section and compare it with
the power spectrum via the relation

〈ζn〉
〈ζ2〉n/2

. 1 , (6.1)

which may give an indication of the validity of the perturbative expansion.
The presence of an (even temporary) instability inducing an exponential growth of the

curvature perturbations may be worrisome, as it may yield even larger effects at the level
of higher-point correlators, indicating the breakdown of perturbation theory. The actual
situation is, however, less catastrophic. Refs. [25, 26] have shown indeed that, during a
gradient instability phase, higher-point correlation functions of ζ grow less than the naive
counting based on the scaling of the field would suggest. In the present section, we briefly
summarize this result and extend it to the case of the interactions resulting from the
operators (δg00)nδK in the effective theory (2.1).

A generic n-point correlation function can be computed in the in-in formalism [43] as

〈ζn(t)〉 =
∞∑
N=0

iN
∫ t

−∞
dtN . . .

∫ t2

−∞
dt1〈[HI(t1), · · · [HI(tN ), ζnI (t)]]〉 , (6.2)

where HI represents an insertion of the interaction Hamiltonian. After the Wick con-
tractions of the fields, each nested commutator corresponds to the imaginary part of the
product of a certain number of mode functions ζk with an equal number of complex con-
jugate modes ζ∗k . Since, from (5.2), (5.6) and (5.7), the mode function for the curvature
perturbation in the unstable phase is schematically of the form

ζk = eiψN
[
e
c2s√
α

+cskτ (1− cskτ)− i e−
c2s√
α
−cskτ (1 + cskτ)

]
, (6.3)

where ψ ∈ R is some phase and N an irrelevant, constant, (and also real) normalization
factor, it is clear that, when taking the imaginary part of the product of an m-number of ζk
and an m-number of ζ∗k , the leading contribution, in the limit x ≡ c2

s/
√
α� 1, is e(2m−2)x,

and not e2mx. The insertion of at least one decaying mode in (6.3) is necessary to obtain
something that is imaginary and yields a non-zero commutator. In practice, this means
that, at tree-level, given a generic correlator (6.2), the leading exponential scaling in x can
be obtained as follows: one should attach a factor of e2x to each (internal or external) leg in
the diagram and a factor e−2x to each vertex (which corresponds to a single insertion of the
interaction Hamiltonian) [26]. For instance, with (n−2) insertions of the cubic Hamiltonian,
the n-point correlator scales therefore at most as 〈ζn〉 ∼ e(2n−2)x [26]. In addition to the
exponential enhancement, as pointed out in [25], there could also be a polynomial in x

multiplying the exponential factor. These additional contributions can be understood as
follows. To be concrete, let us focus for simplicity on our example of section 5.1. When
applying the formula (6.2), one needs to perform a certain number of integrations in time.
Since we are interested in estimating the leading contribution to the correlator coming
from the instability, we can simply restrict, for this purpose, the integration interval over
the unstable phase, which is defined to start at τ = τ0, and cut the integrals from below
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at τ0.23 From (6.3), one infers that ζ scales in conformal time as ζ ∼ ecskτkτ .24 Thus, the
interaction Hamiltonians that provide the largest scaling in τ are those with the largest
number of temporal (∂t = −Hτ∂τ ) or spatial (∂ia = −Hτ∂i) derivatives per number of
fields. For the EFT (2.1), these Hamiltonians arise from the higher derivative operators
(δg00)nδK and are schematically of the form H

(m)
I =

∫
d3x a3(τ∂τζ)m−1τ2∂2

i ζ [32, 44],25

which thus scale roughly as ∼ τ2m−2. Then, plugging into the formula (6.2), in addition
to the exponential factor, the correlator takes schematically the form

〈ζn(τ)〉 ⊇
∑
N

e
(∑N

j=1 mj−2N+n
)
x
∫ τ

τ0
dτN τ

2m
N
−3

N . . .

∫ τ

τ0
dτ1 τ

2m1−3
1 , (6.4)

where we dropped all the dependence on the spatial momenta and retained only the leading
polynomial scaling in τ in each integral. The polynomials in τ in (6.4) are usually harmless
because they multiply an exponential in τ and are converted by the integral into functions of
the external momenta. However, we mentioned above that each vertex involves a decaying
mode. Thus, the situation changes if the spatial momenta are such that the momentum of
the decaying mode exactly equals the sum of the moduli of the momenta of the growing
modes [25, 26]. In such a flattened configuration, the exponential factor in the integral
drops and one is left with just an integral of the type

∫
dτjτ

2mj−3
j , which yields τ2mj−2

0 .26

Replacing τ0 with ∼ cs/(k
√
α) = x/(kcs), eqs. (6.4) and (5.8) then yield

〈ζn〉
〈ζ2〉n−1 ∼ e−2x(n−1)∑

N

e
(∑N

j=1 mj−2N+n
)
x
x

2
∑N

j=1 mj−2N =
∑
N

x2n+2N−4 , (6.5)

where we used the relation n =
∑N
j=1mj − 2N + 2, which is valid at tree level, and where

we assumed for simplicity cs ∼ O(1).27 The largest enhancement is obtained when the
number of vertices in the diagram is the highest, i.e. when N = n − 2, corresponding to
〈ζn〉/〈ζ2〉n−1 ∼ x4n−8.28 In the large-n limit, eq. (6.1) reduces to the condition

√
∆2
ζx

8 . 1.
Using (5.9), this condition tells us that perturbation theory might not be completely under
control when x & 6. This bounds the maximum power spectrum reachable in the example
of the previous section to be at most ∆2

ζ . 10−5.29 This bound should be taken with a grain
of salt. Even though perturbative unitarity is satisfied thanks to the modified dispersion

23We are essentially disregarding terms that correspond to integrals of oscillating functions, which are not
subject to the exponential enhancement. They provide, therefore, subleading corrections to the correlator
in the large-x limit.

24Since we will eventually replace τ with τ0, we are simply taking the large-|τ | limit in (6.3).
25The derivatives acting on ζ in H

(m)
I could in principle be either in conformal time or in the spatial

coordinates. The final counting does not change.
26We come back to this point in appendix B where we present an explicit calculation of the three-point

correlation function.
27Taking |cs| � 1 would simply make the ratio (6.5) between higher-point correlators and the power

spectrum larger — see appendix B for further details.
28Note that this result is different from the one of [25] (which is 〈ζn〉/〈ζ2〉n−1 ∼ x3n−6), where the

couplings of the operators (δg00)nδK are set to zero.
29It is easy to show that the bound derived from requiring that the energy density associated with the

exponentially growing modes remains small compared with the background energy density — which is a
necessary condition to avoid backreaction, see e.g. [45]—is less strong than the bound obtained here.
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relation with the k4-term that dominates at high momenta in the unstable phase (provided
that H < Λ∗, see the considerations in section 2.2), a stronger constraint may result from
loop corrections to the power spectrum computed using (6.2). This would require to extend
the considerations in the present section beyond tree level, which we leave for future work.
In appendix B, we present an explicit calculation confirming the scaling (6.5), where we
will also track down the scaling in the sound speed, which is relevant when |cs| � 1.

7 Discussion

Motivated by the idea that PBHs — produced from the collapse of overdensities originating
from quantum inflationary fluctuations — could provide an explanation for dark matter,
we have studied to what extent it is possible to obtain a large power spectrum for the
curvature perturbation within the effective theory of single-field inflation. A large power
spectrum (on distance scales smaller than the CMB ones) is a necessary ingredient to
induce those overdensities. A correct estimate of the abundance of PBHs requires good
knowledge of the shape of the tail of the probability distribution of the curvature fluctuation
and it might be that, in general, it can only be tackled accurately with non-perturbative
methods. From this perspective, our goal in this paper has been more modest. However,
understanding which dynamics can lead to a large power spectrum is a prerequisite for
a complete picture of PBH formation in the EFT of inflation. Using this rather model-
independent framework (which only assumes a quasi-de Sitter universe and the existence
of a single degree of freedom that spontaneously breaks time diffeormorphisms) we have
analyzed several mechanisms that, by changing the dynamics of the perturbations during
inflation, induce an enhancement in the power spectrum. One of our main results has
been showing that a transition into a ghost-inflation-like phase with quadratic dispersion
relation can increase the power spectrum by several orders of magnitude and, at the same
time, alleviate the strong coupling problem arising in models with small sound speed. The
enhancement scales as (Λ3/H)3/2, where Λ3 is the energy scale associated with higher
derivative operators in the underlying scalar-tensor theory, although the actual amplitude
of the peak in the power spectrum depends on the duration of the ghost-inflation-like
phase and the details of the transition, which may result in additional oscillations (see
figure 2). Assuming the scaling (Λ3/H)3/2, a power spectrum of order of ∆2

ζ ∼ 10−2

would require Λ3 ∼ 3 × 104H, which may be obtained at the price of further suppressing
higher derivative operators with respect to more standard P (φ, (∂µφ)2) operators in the
underlying covariant theory. An explicit realization and model building in this context
is left for future work. In addition, we have considered the case where an exponentially
growing mode is temporarily turned on, as a result of a transient gradient instability in
the spectrum of the perturbations. At any fixed time during this transient phase, only the
behavior of the low-energy modes is affected by the instability, while the dynamics of the
perturbations at large physical momenta is under control thanks to a modified dispersion
relation. The resulting enhancement in the power spectrum goes in this case as e2|cs|2Λ3/H ,
where |cs| is the absolute value of the sound speed in the unstable phase. This estimate
was obtained assuming instantaneous transitions and constant sound speed in the different
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phases. Here, a milder separation between Λ3 and H is enough to reach large values for
the power spectrum.

There are several important or interesting aspects that we have left for future research.

∗ In addressing the question on the validity of perturbation theory in the scenario
with the gradient instability, we have used simple tree-level scaling arguments (which
are a straightforward generalization of similar analyses done in [25, 26]) to infer the
behavior of a generic n-point correlator. For this purpose, we have not taken into
account possible combinatorial factors that might be relevant in the large n limit.
It would be interesting to understand in detail the seeming presence of a factorial
enhancement in the cosmological n-point correlators in the scenarios we have studied
as well as in generic single-field models of inflation, as done in a concrete multi-field
context in [46].

∗ We have not fully addressed the issue of strong coupling in the gradient instability
phase. Loop corrections that are dominated by the high-energy part of the loops
are expected to remain under perturbative control, since the dynamics at large k
is dominated by the k4-term, which is perfectly stable and weakly coupled. On the
other hand, one may be worried that N -loop corrections to tree-level amplitudes may
soon become dominated by the exchange of unstable modes, and grow dangerously
as ∼ e2Nx, in the large-N limit, as a naive scaling reasoning suggests. It would be
interesting to check if this is indeed the case by performing a more detailed calculation
of loop corrections to the power spectrum (see, e.g. [47, 48]) in the cases we have
explored.

∗ A detailed calculation of the non-Gaussian properties of ζ as well as an investiga-
tion into its stochastic dynamics in the scenarios we have delineated may help to
characterize better the PBH abundance and determine to which extent the power
spectrum needs to be large for PBHs to account for all dark matter. These pending
analyses are doubly important in connection with the improved perturbative bounds
mentioned above.

∗ A significant stochastic background of gravitational waves is generically induced at
second order in perturbations if the scalar power spectrum is large. The location of
the peak of the latter determines the peak frequency of the induced gravitational wave
background (see e.g. [9]) and features such as oscillations can be carried over from
one spectrum to the other, see [28]. A characterization of the correlations between
the two may help to distinguish our scenarios from others that are also motivated
from PBH formation, such as e.g. [9, 28, 49].

∗ Finally, a gradient instability often appears as well in bouncing cosmologies (see,
e.g., [50–54]). It might be interesting to understand whether such an instability
can also lead in those scenarios to a large power spectrum. This would open to
addressing the formation of PBHs in such alternative cosmologies, like bouncing and
genesis models.30

30See [55] for previous works on PBH formation in bouncing cosmological scenarios.
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A Estimating the size of the effective couplings

Our starting point was the EFT of inflation (2.1) [15, 16]. As any other EFT, the ac-
tion (2.1) is organized as an infinite sum of higher dimensional operators, and is completely
specified by the low-energy degrees of freedom (which fix the form of the operators in the
Lagrangian)31 and the symmetries at play in the system (which dictate a set of rules to
power count the size of the operators). In the absence of symmetries, higher derivative
operators like M̂3

1 δg
00δK in (2.1) are expected to be subleading at low energies. In other

words, they can never provide O(1) corrections at the level of the observables without in-
curring in fine-tuning problems or having infinitely many operators becoming of the same
size at low energies, invalidating therefore the predictive power of the theory. This conclu-
sion can change if the underlying scalar-tensor theory has a weakly broken galileon (WBG)
invariance [21]. The approximate symmetry introduces a different power counting rule for
some of the operators in the theory, allowing their couplings to be larger than what they
would normally be without the symmetry. In the context of (2.1), this allows to have a
well-defined hierarchy M4

2 ∼ M̂3
1H in the theory. For details, see [21, 22] (and also [56]).

We will briefly summarize now the main ingredients and results, and report in table 1
the ranges of values for the effective parameters in (2.1) that are allowed by the (weakly
broken) symmetry.

Let us start considering the most general theory of a scalar field coupled to gravity.
Let Λ3 be the cutoff of the EFT and let us introduce the scale Λ2 = (MPlΛ3

3)1/4 � Λ3,
whose relation to Λ3 is going to be fixed by the coupling to gravity. The WBG symmetry
allows to classify the operators in the EFT schematically as follows [21, 22]:

L ⊇ cI (∇φ)2n

Λ4(n−1)
2

(∇∇φ)m

Λ3m
3︸ ︷︷ ︸

(I)

+cII (∇φ)2n

Λ4n
2

(∇∇φ)m

Λ3m−4
3︸ ︷︷ ︸

(II)

+cIII ∇m(∇∇φ)n

Λ3n+m−4
3︸ ︷︷ ︸

(III)

, (A.1)

where: (I) refers to operators which benefit from non-renormalization properties [21, 22, 56–
59], whose couplings cI are protected against large quantum corrections (in particular,

31In the present context the low-energy degrees of freedom are the scalar and the two graviton degrees
of freedom, even though, in the main text, we primarily worked in the decoupling limit [16], which allowed
us to neglect the coupling to gravity.
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Potentially-driven evolution Kinetically-driven evolution

Λ4
2 ∼
√
εM2

PlH
2, Λ3

3 ∼
√
εMPlH

2 Λ4
2 ∼M2

PlH
2, Λ3

3 ∼MPlH
2

M4
2 ∼ εM2

PlH
2, M̂3

1 ∼ εM2
PlH, M4

2 ∼M2
PlH

2, M̂3
1 ∼M2

PlH,

M̄2
2 ∼
√
εMPlΛ3 ∼ ε2/3M

4/3
Pl H

2/3 M̄2
2 ∼MPlΛ3 ∼M4/3

Pl H
2/3

Table 1. Typical sizes of the scales Λ2 and Λ3, and the effective couplings in (2.1). The left
column reports the typical sizes for these quantities when computed around background solutions
that are mostly dominated by the potential (with X ∼

√
ε) [21, 32], while the higher derivative

operators provide O(1) corrections to the dynamics of the perturbations. The right column shows
instead the values when the background dynamics is mainly driven by the derivative operators (i.e.,
X ∼ 1) [21, 44]. In both cases, �φ ∼ Λ3

3 on the background. The typical sizes of M4
2 and M̂3

1 are
computed in [21, 22]. The size of M̄2

2 can be estimated by using that �φ ∼ Λ2
2
√
XK (see, e.g., [60])

and therefore (�φ)2/Λ2
3 ∼ (Λ4

2X/Λ2
3)K2, which implies M̄2

2 ∼ Λ4
2X/Λ2

3.

δcI/cI ∼ Λ3/MPl [21, 22]); (II) represents operators with the same number of fields and
derivatives but that are not protected by the symmetry, i.e. δcII/cII ∼ O(1); (III) contains
all the other operators with at least two derivatives per field that are generated at the scale
Λ3 and that are such that δcIII/cIII ∼ O(1) [22].32 The WBG symmetry guarantees that
the parametric separation between Λ2 and Λ3, and the power countings in (A.1) are stable
against quantum corrections. For instance, let us consider the following explicit example,

L = Λ4
2P (X) + (∇φ)2�φ

Λ3
3

+ (�φ)2

Λ2
3

, X ≡ −(∇φ)2

Λ4
2

. (A.2)

Schematically, to rewrite (A.2) in the language of the action (2.1) in the unitary gauge,
we can replace �φ ∼

√
XK (see, e.g., [60]). The P (X) operators simply correspond to

the terms (δg00)n in (2.1), while (∇φ)2�φ [61] contributes to the operator δg00δK [15, 16].
The last term in (A.2) schematically becomes instead (δK)2 in (2.1). The typical sizes
of the effective coefficients in (2.1) in the limiting cases of a potentially-driven evolution
(characterized by X ∼

√
ε � 1 on the background) and a kinetically-driven evolution

(which has instead X ∼ 1 on the background) have been discussed in [21, 22, 32, 44] and
are summarized in table 1 below.

B Non-Gaussianities and the validity of perturbation theory: an explicit
example

In section 6 we estimated the size of non-Gaussianities and the breakdown of perturbation
theory in the EFT of single-field inflation in the presence of higher derivative operators if
the curvature perturbations undergo a transient phase of gradient instability, extending the
arguments of [25, 26]. In this section, we want to consider an explicit example and show
that the correlators satisfy indeed the scaling discussed in section 6. For simplicity, we

32Note that these operators are usually associated with ghost degrees of freedom. However, since they
enter at the cutoff scale, they are completely harmless at low energies.
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assume that the cosmic evolution is first well-described by a stage of slow-roll with c2
s > 0.

Then, at some conformal time τ = τ0, the system enters an unstable phase with c2
s < 0.

In order to provide analytic results and simplify the final expressions, we will assume that
the transition is instantaneous and we will implement it just by switching cs → ics, while
keeping the absolute value of cs unchanged. Even if this is an extreme approximation of the
more feasible scenario that we presented and solved numerically in section 5.3, this example
contains all the ingredients that we need to illustrate more concretely the considerations
outlined in section 6.

The solutions to (2.21) (with α = 0) in this stepwise approximation are given by

vk(τ) = e−icskτ√
2csk

(
1− i

cskτ

)
, for τ < τ0 , (B.1)

vk(τ) = Akecskτ
(

1− 1
cskτ

)
+Bke−cskτ

( 1
cskτ

+ 1
)
, for τ > τ0 , (B.2)

where we imposed Bunch-Davies initial conditions, and where Ak and Bk are determined
by requiring continuity of ζk and ζ ′k across τ0,

Ak = (−1)−1/4 (cskτ0 + 1− i)e−icskτ0
2(csk)3/2τ0

e−cskτ0 , (B.3)

Bk = (−1)1/4 (cskτ0 − 1− i)e−icskτ0
2(csk)3/2τ0

ecskτ0 . (B.4)

As discussed in section 6, the operators that yield the largest contribution at the level of
the correlators, with the strongest dependence on the duration of the unstable phase, are
those with the largest number of derivatives per field. In the small-|cs| limit, these are of
the form (∂iζ)2n∂2ζ, with positive n. As an illustrative example, let us compute the three-
point correlation function with the interaction Hamiltonian H

(3)
I =

∫
d3x a−1(∂iζ)2∂2ζ.

Using the in-in formula (6.2) [43],

〈ζk1ζk2ζk3〉 ⊇ (2π)3δ(k1 + k2 + k3)(k1 · k2)k2
3

×
∫ 0

−∞
dτ Im

[
ζk1(τ)ζk2(τ)ζk3(τ)ζ∗k1(0)ζ∗k2(0)ζ∗k3(0)

]
+ perms. (B.5)

The integral is computed from the initial time (with standard iε-prescription switching
off the interactions) up to late times. However, since we are interested in estimating the
leading non-Gaussianities induced by the growing mode in the unstable phase, we can
use the fact that the integral is mostly dominated by the contributions coming from the
interval [τ0, 0]. Indeed, it is precisely the integral from τ0 to 0 that involves the growing
modes that are responsible for the exponential enhancement of the spectrum and a pole in
the flattened momentum configurations. Instead, the integral over (−∞, τ0] involves only
products of the mode functions (B.1), yielding the standard total energy pole, without
any exponential or polynomial enhancement in τ0 [62, 63]. Thus, for our purposes, we can
restrict the integral (B.5) to the interval [τ0, 0],

〈ζk1ζk2ζk3〉 ⊇ (2π)3δ(k1 + k2 + k3)(k1 · k2)k2
3

×
∫ 0

τ0
dτ Im

[
ζk1(τ)ζk2(τ)ζk3(τ)ζ∗k1(0)ζ∗k2(0)ζ∗k3(0)

]
+ perms. (B.6)
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The calculation then mimics the one in cosmologies with non-Bunch-Davies vacuum where
both positive and negative frequencies appear in the mode functions,

vk(τ) ' e−icskτ0−
iπ
4

2
√
csk

[
ecsk(τ−τ0)

(
1− 1

cskτ

)
+ i e−csk(τ−τ0)

( 1
cskτ

+ 1
)]

, τ > τ0 , (B.7)

for k|τ0| � 1, and the result parallels the one of [24–26]. First, one can notice that, the ζ
modes in (B.6), which we have to compute the imaginary part of, given the solution (B.7),
cannot be all growing, but there must be instead an odd number of insertions of the
decaying component. Then, one can identify two types of leading contributions. The first
one arises from inserting one decaying mode in the external legs in (B.6), while the internal
legs are all growing. In this case, the integral between τ0 and 0 provides a standard total
energy pole, kT = k1 + k2 + k3 [62], with no polynomials in τ0. As a result, the correlator
grows exponentially as ∼ e4csk|τ0| [24, 26]. The second leading contribution arises when
the decaying mode is in one of the internal legs, while the external legs are all growing. In
this case, the integral does not result in a term proportional to 1/kT , but it yields instead
a pole in the flattened configuration [24]. In this limit, in addition to the exponential
enhancement ∼ e4csk|τ0|, the bispectrum contains a quartic polynomial in τ0,∫ 0

τ0

dτ
τ

Im
[
ζk1(τ)ζk2(τ)ζk3(τ)ζ∗k1(0)ζ∗k2(0)ζ∗k3(0)

]
⊇ − 5τ4

0 e−2cs(k2+k3)τ0

256c6
sk

2
2k

2
3(k2 + k3)2 , (B.8)

where the external momenta have been chosen in such a way that k1 = k2 + k3. The
generalization to higher-point correlation functions follows from analogous considerations
to those in [25–27]. The argument can be understood as follows. Considering a generic tree-
level diagram, each vertex corresponds to one insertion of a certain interaction Hamiltonian
and, therefore, to the integral of a certain commutator in the in-in formula (6.2). As noted
above and pointed out in [25–27], given the mode function in the form (B.7), to have
a non-zero contribution the fields in the imaginary part resulting from each commutator
cannot be all of the same type. Instead, there must be an odd number of both growing
and decaying modes. In particular, the leading contribution corresponds to the case in
which a single decaying mode is involved in each vertex of the diagram. As before, there
are two possibilities: either the decaying mode is attached to an external field, or it is
attached to one of the internal legs of the vertex. In the first case, there is an overall
exponential enhancement and the time integrals simply turn into some function of the
external momenta. In the second case, the correlators are always suppressed, except for
particular flattened configurations of the momenta. These configurations are such that
the decaying mode exactly cancels the growing exponentials and the result of the integral
is now some finite polynomial in τ0 [24–27]. At tree level, the degree of the polynomial
depends on the number n of external fields and the number N of vertices in the diagram.
For interaction Hamiltonians of the form H

(mj)
I =

∫
d3x a3(τ∂iζ)mj−1τ2∂2

j ζ (which are of
the type discussed in the main text), where j = 1, . . . , N , we find — see also eq. (6.5)
above —

〈ζn〉
〈ζ2〉n−1 ⊇ c

3n−3
s

∑
N

τ2n+2N−4
0
c2n−N+1
s

, (B.9)
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where we used the tree-level identity n =
∑N
j=1mj − 2N + 2 and the fact that 〈ζ2〉 ∼ c−3

s .
The scaling in τ0 in (B.9) is maximum when N = n− 2, which yields

〈ζn〉
〈ζ2〉n−1 ∼ c

2n−6
s τ4n−8

0 , (B.10)

in agreement with the explicit calculation (B.8) for n = 3. Note that the enhancement
is larger than the one estimated, e.g. in [24, 25], where the EFT was truncated at the
leading order in derivatives. Note also that, had we chosen the interaction Hamiltonian
H

(3)
I =

∫
d3x a3ζ̇3 to compute the three-point function

〈ζk1ζk2ζk3〉 ∝ (2π)3δ(k1 + k2 + k3)
∫ 0

−∞

dτ
τ

Im
[
ζ ′k1(τ)ζ ′k2(τ)ζ ′k3(τ)ζ∗k1(0)ζ∗k2(0)ζ∗k3(0)

]
,

(B.11)
we would have found [14, 24–27]

∫ 0

τ0

dτ
τ

Im
[
ζ ′k1(τ)ζ ′k2(τ)ζ ′k3(τ)ζ∗k1(0)ζ∗k2(0)ζ∗k3(0)

]
⊇ τ3

0 e−2cs(k2+k3)τ0

64c3
sk2k3(k2 + k3) , (B.12)

which, as anticipated, is subleading compared with (B.8).
We conclude mentioning that the estimate (B.10) might be excessively pessimistic.

In more realistic situations with smoother transitions between the various phases, there
might be cancellations that result in a smaller enhancement of the correlators, see e.g. [64].
However, these cancellations are model dependent and cannot be captured in full generality
for arbitrary correlators.

C Large power spectra in multi-field models of inflation

In the main text, we discussed different scenarios in the context of the EFT of single-
field inflation that can lead to an enhancement of the final power spectrum for a range
of momenta. As opposed to several previous works, we discussed here the role of higher
derivative operators, as well as of approximate symmetries that ensure the robustness of
the evolution. In this appendix, we review some known results in the context of multi-field
models of inflation, which can be useful to contrast against the analysis that we have carried
in this paper. We anticipate that, even if it is possible to reduce these multi-field models
to an effective single-field description at low energies, there are still important conceptual
differences to keep in mind. For instance, it is not clear which sort of UV completion of
multifield models would give rise to the higher derivative operators, considered above, with
WBG symmetry. This makes our analysis and the multi-field scenarios, e.g. of [13, 14, 23–
28], substantially different. In particular, in the scenario with negative c2

s, the enhancement
in the final power spectrum cannot in our discussion above be directly related to the mass
of some UV degree of freedom, as in the cases reviewed below, but it is instead crucially
related to the scale Λ3, at which the WBG operators enter.
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C.1 Two-field example

Let us consider a two-field model, with φa denoting the field space coordinates, whose
components are labelled by the index a. Let V (φa) be the potential, which depends on
the fields φa. The kinetic term is γab∂µφa∂µφb, where γab is the metric on field space.
It is convenient to introduce the unit vectors T a ≡ φ̇a0/φ̇0 and Na ≡

√
det γ εabT b, where

φ̇0 ≡
√
φ̇0aφ̇a0 and where εab is the two dimensional Levi-Civita symbol — see, e.g. [65–68]

for further details. T a and Na represent the tangent and normal to the trajectory [69–
71], and satisfy TaT

a = NaN
a = 1 and NaT

a = 0. In addition, we define DtT
a ≡

Ṫ a + Γabcφ̇b0T c = ΩNa, where
Ω ≡ −Na∂aV/φ̇0.

Slow-roll parameters are defined in analogy with the single-field case, e.g. ε ≡
φ̇2

0/(2M2
PlH

2), where now φ0 depends on the two fields.
Following [66, 68], defining the comoving curvature perturbation ζ and the (heavy)

isocurvature perturbation ψ by projecting δφa using the vectors T a and Na, one finds the
following quadratic action:

S = M2
Pl

2

∫
d4x a3

[
2εζ̇2 − 2ε

a2 (∇ζ)2 + ψ̇2 − 1
a2 (∇ψ)2 −M2ψ2 − 4Ω φ̇0

HMPl
ζ̇ψ

]
(C.1)

where M is the mass of the heavy field ψ which depends on background quantities, M2 =
−Ω2 +NaN b∇a∇bV +H2εR, with R the Ricci scalar associated with the field space metric
γab. Note that this expression allows M2 to be negative if, for example, the curvature R is
negative, or if the coupling Ω is large enough. It will be convenient to introduce the speed
of sound,

c−2
s ≡ 1 + 4Ω2

M2 , (C.2)

which can be used to re-express the ratio Ω2/M2. Its relation to (2.12) (the sound speed
we have used in this work) will be clear in a moment. To see how the coupling Ω affects
the dynamics of both fields, let us write the equations of motion [66]

ζ̈ + (3 + 2ε− 2η)Hζ̇ + k2

a2 ζ = 2ΩHMPl

φ̇0

[
ψ̇ +

(
3− η + ε+ Ω̇

HΩ

)
Hψ

]
, (C.3)

ψ̈ + 3Hψ̇ + k2

a2ψ +M2ψ = −2 φ̇0
HMPl

Ωζ̇ , (C.4)

where we introduced η ≡ −φ̈0/(Hφ̇0) and where we have transformed the fields into Fourier
space. In order to study the dynamics of the coupled equations above, it is convenient to
make some approximations. In particular, we will focus on the high-energy limit, k � aH,
where the dynamics of the modes is well approximated by the flat-space limit, H → 0. In
this regime, it is possible to ignore the friction terms and one can find a solution by using
a plane wave ansatz, eiωt, for the mode functions. Ignoring slow-roll terms, the frequencies
are given by [30, 72],

ω2
± = M2

2c2
s

+ k2

a2 ±
M2

2c2
s

√
1 + 4c2

sk
2(1− c2

s)
a2M2 , (C.5)
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which are in general non-analytic in k. In particular, we are interested in the case where
one of the two degrees of freedom is very heavy, in such a way that it can be integrated out
and we can find an effective theory for the light mode. When k � aH, there is a hierarchy
between ω− and ω+ if

k2

a2 �
M2

c2
s

, (C.6)

which implies ω2
− � ω2

+. Expanding ω± in powers of k/a, we get

ω2
− = c2

s

k2

a2 + (1− c2
s)2

M2c−2
s

k4

a4 +O
(
k6

a6

)
, (C.7)

ω2
+ = M2c−2

s + (2− c2
s)
k2

a2 −
(1− c2

s)2

M2c−2
s

k4

a4 +O
(
k6

a6

)
, (C.8)

where we neglected terms suppressed by higher powers of csk/(aM). In the following,
we are interested in the regime M � Ω, which corresponds to c2

s � 1. Note that when
M2 . k2

a2 � M2c−2
s , the second term in (C.7) dominates and the dispersion relation of

the light mode becomes of the form ω2
− ≈ k4/(4Ω2a4), resembling the regime discussed in

section 4. We recover instead a linear dispersion relation with a small sound speed when
k2

a2 �M2 �M2c−2
s . Following the nomenclature of [30, 73], one can define

Λnew = Mcs , (C.9)

which corresponds to the energy scale at which the dispersion relation for ω− turns from
linear to quadratic, to be compared with ΛUV ≡ Mc−1

s , which is instead the scale where
the single-field effective description is no longer applicable and one should integrate back
in the heavy field.33

After having established the relevant scales, we shall go back to the quadratic ac-
tion (C.1) and, under the assumption of (C.6), integrate out the massive mode explicitly
to obtain an effective description of the light degree of freedom. Using the equation (C.4),
in the regime where one neglects time derivatives of ψ,

|ψ̈| �M2ψ, H2 �M2 , (C.10)

we can solve for ψ as a function of the curvature mode as34

ψ = − 2Ωφ̇0
H(k2/a2 +M2) ζ̇ (C.11)

Plugging back into the action we get,

S = M2
Pl

2

∫
dtd3k a32ε

[(
M2c−2

s + k2/a2

M2 + k2/a2

)
ζ̇2 − k2

a2 ζ
2
]
. (C.12)

33ΛUV can be simply obtained by plugging kUV/a = M/cs, given by (C.6), into (C.7), when the k4-term
dominates.

34In deriving this equation we assumed that time derivatives on ψ are subdominant. This can be translated
into a constraint over the coupling Ω. Assuming that the main time dependence in ψ, given in (C.11), comes
from the coupling Ω, the condition (C.10) becomes |Ω̈| � M2|Ω|, where we neglected time derivatives of
the other background quantities. Now assuming that the typical time scale of Ω is given by ∆N/H, where
N denotes the number of e-folds, one finds the condition ∆N � H/M , as it should be.
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The equation of motion for ζ can be written in the form [30, 65, 73],

ζ̈ + 3Hζ̇ + 2H(1− c2
s)M2k2/a2

(M2 + k2/a2)(M2 + c2
sk

2/a2) ζ̇ + M2 + k2/a2

M2c−2
s + k2/a2

k2

a2 ζ = 0 . (C.13)

Notice that when cs = 1 the ‘non-local’ terms disappear and one recovers the usual equa-
tion of motion for ζ. However, in the general case, when cs 6= 1, the equation is rather
complicated. To find an approximate analytic solution, we will work, in the following, in
the regime of small cs. In the limit c2

s � 1, eq. (C.13) becomes

ζ̈ +
(

3H + 2Hk2

k2 +M2a2

)
ζ̇ +

(
c2
s

k2

a2 + k4

a4M2c−2
s

)
ζ = 0 , (C.14)

where we neglected subleading orders in powers of c2
s. Let us now look at (C.14) in the two

regimes considered above. Let us consider modes with wavenumber k that, at sufficiently
early times, satisfy the condition M2 � k2/a2 � M2c−2

s . For these modes, the k4 term
in (C.14) dominates and the dynamics is effectively described by the equation

ζ̈ + 5Hζ̇ + c2
sk

4

a4M2 ζ = 0, k/a�M . (C.15)

As the system evolves in time, the k4 contribution in (C.14) redshifts faster than the other
k2 term, until it becomes subdominant. At that point, when k/a < M , the equation of
motion takes on the standard form

ζ̈ + 3Hζ̇ + c2
s

k2

a2 ζ = 0, k/a�M . (C.16)

Thus, instead of solving (C.13) exactly, we can study these two asymptotic regimes and
solve (C.15) and (C.16) separately, and then perform the matching at the crossing point
a = k/M .

Defining the canonically normalized fields u =
√

2εMPlM
csk

a2ζ and v =
√

2εMPl
cs

aζ in the
two regimes, the equations (C.15) and (C.16) read

u′′k +
(
c2
sH

2

M2 k4τ2 − 6
τ2

)
uk = 0 , k/a�M , (C.17)

v′′k +
(
c2
sk

2 − 2
τ2

)
vk = 0 , k/a�M . (C.18)

To solve (C.17), which describes the short-distance dynamics of the perturbations, we
should impose the correct Bunch-Davies condition. Selecting the positive frequency solu-
tion in the limit k/a�M , one finds [30]

uk(τ) =
√
π

8 (−τ)1/2H
(1)
5/4

(
Hcs
2M (kτ)2

)
. (C.19)

At late times, when the k2 term dominates in the dispersion relation, the solution to (C.18)
for vk can be written in general as

vk(τ) =
√
−τ

(
AkH

(1)
3/2(cskτ) +BkH

(2)
3/2(cskτ)

)
, (C.20)
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where the coefficients Ak and Bk can be fixed by requiring that ζ and ζ ′ are continuous
across the transition point τ = −M/(Hk). Note that in the case of (C.17), Hubble crossing
occurs at k2τ2

c ∼ M/(Hcs), while for (C.18) it happens at |kτc| ∼ 1/cs. Let us start
considering the case in which Hubble crossing happens in the phase where the dynamics
is described by (C.18), i.e. H/(Mcs) � 1. After matching (C.20) with (C.19) at τ =
−M/(Hk), one finds the following power spectrum,

∆2
ζ = k3

2π2 〈ζkζ−k〉
′ = (H/MPl)2

8π2εcs
. (C.21)

Note that the power spectrum takes the usual form, where the dependence on M is
only through cs, as it should be.

In the opposite regime instead, when Mcs � H, modes exit the horizon in the phase
described by (C.17), where the quartic term dominates. Thus, using (C.19), the power
spectrum is found to be [73]

∆2
ζ =

√
M

csH
Γ(5/4)2 (H/MPl)2

π3ε
. (C.22)

Note that, in this case, the power spectrum is enhanced by a factor of ∼
√
Mcs/H =

cs
√

ΛUV/H, with respect to (C.21). In this regime, the strong coupling scale is found to
be [73],

Λ? =
( 2
π

)2/5
(

H2

8π2M2
Plε

)−2/5(
H4c2

s

Λ4
UV

)2/5

ΛUV , (C.23)

Now, similarly to the case discussed in section 4, one can imagine a situation where
the two-field model can be initially described at low energies in terms of an effective theory
for a single degree of freedom with cs ∼ 1. Then, the UV dynamics is such that cs evolves
in time and becomes small. In particular, we shall assume that cs becomes small enough
that some of the modes end up being governed by a quadratic dispersion relation. In this
scenario, there will be modes with sufficiently small k that are still in the initial phase with
cs ∼ 1 when they exit the horizon. These will have a final power spectrum given by (C.21)
with cs ∼ 1. On the other hand, modes with larger k that cross the horizon in the phase
dominated by (C.19)35 will have a final power spectrum enhanced, compared to the former
modes, by the factor

√
ΛUV/H. Clearly, this factor cannot be arbitrarily large — or, cs

cannot be arbitrarily small — as it should satisfied the condition Λ? & ΛUV, with Λ? given
in (C.23). However, already for cs ∼ 10−1, one finds

√
ΛUV/H . 10, which provides a

strong limitation on the possible enhancement of the power spectrum.

C.2 Transient phase with imaginary sound speed

As discussed e.g. in [14, 23–27], one can obtain a significantly larger power spectrum if
the heavy field turns out to be tachyonic, M2 < 0, which, in the low-energy description

35To be precise, in the scenario, one should reconsider the solution (C.19) and the Bunch-Davies early-
time condition. However, if the crossover between the phases with cs ∼ 1 and cs � 1 happens when
|kτ | � 1, this will affect the power spectrum of such modes by an irrelevant order-one factor — see also
section 4.
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corresponds to having a gradient instability, c2
s < 0, (we are still assuming |c2

s| � 1) in the
dynamics of the light mode.

Replacing c2
s 7→ −c2

s and M2 7→ −M2 in (C.14), we can write the mode function
equation as

ζ̈ +
(

3H + 2Hk2

k2 −M2a2

)
ζ̇ +

(
−c2

s

k2

a2 + k4

a4M2c−2
s

)
ζ = 0 . (C.24)

The effect of the instability becomes visible only when k/a � |M |. In this limit, the
dynamics is effectively described by

v′′k +
(
−c2

sk −
2
τ2

)
vk = 0 , (C.25)

which admits the general solution

vk = (−τ)1/2
(
AkH

(1)
3/2(−icskτ) +BkH

(2)
3/2(−icskτ)

)
. (C.26)

For larger k, more precisely when k/a � |M |, the theory is instead dominated by the k4

term and the dynamics is stable. The equation of motion is the same as (C.17), with the
solution (C.19).

Following the same procedure we described above, the power spectrum is found to be

∆2
ζ = k3

2π2 〈ζkζ−k〉
′ = (H/MPl)2

16π2εcs
e

2csM
H , (C.27)

where the quantity in the exponent has to be |csM/H| � 1 in order for Hubble crossing to
happen in the unstable phase. Otherwise, the modes would not be significantly enhanced
by the instability and the power spectrum would still be given by (C.22).36
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