Journal of Computer Languages 75 (2023) 101203

Contents lists available at ScienceDirect

some: COMPUTER
LANGURGES

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

An approach to build JSON-based Domain Specific Languages solutions for n

Check for

web applications

Enrique Chavarriaga ®", Francisco Jurado ®, Francy D. Rodriguez ¢

a Uground Global S.L., Madrid, Spain
b Universidad Auténoma de Madrid, Madrid, Spain
¢ Universidad Catélica de Avila, Avila, Spain

ARTICLE INFO ABSTRACT

Keywords: Because of their level of abstraction, Domain-Specific Languages (DSLs) enable building applications that
Domain-Specific Languages ease software implementation. In the context of web applications, we can find a lot of technologies and
JavaScript programming languages for server-side applications that provide fast, robust, and flexible solutions, whereas
j:gg DSL those for client-side applications are limited, and mostly restricted to directly use JavaScript, HTML5, CSS3,

JSON and XML. This article presents a novel approach to creating DSL-based web applications using JSON
grammar (JSON-DSL) for both, the server and client side. The approach includes an evaluation engine, a
programming model and an integrated web development environment that support it. The evaluation engine
allows the execution of the elements created with the programming model. For its part, the programming model
allows the definition and specification of JSON-DSLs, the implementation of JavaScript components, the use of
JavaScript templates provided by the engine, the use of link connectors to heterogeneous information sources,
and the integration with other widgets, web components and JavaScript frameworks. To validate the strength
and capacity of our approach, we have developed four case studies that use the integrated web development

Web applications
Templates engine

environment to apply the programming model and check the results within the evaluation engine.

1. Introduction

Domain-Specific Languages (DSLs) provide a high level of abstrac-
tion to model, specify and define structures, specifications and function-
alities that solve domain-specific problems. The goal of a DSL is to ease
the process of implementing a system or part of it, allowing domain ex-
perts to be involved in the development process of reliable, robust and
high-quality systems to provide solutions to specific problems [1,2].

The DSL deployment implies using parsers, analyzers and code gen-
erators to evaluate and execute the code behind the DSL specification.
Also, to favor the deployment of DSLs, we can find Integrated Devel-
opment Environments (IDEs), such as Visual Studio, Eclipse, NetBeans
and WebStorm, among others, that provide utilities and dedicated
languages and frameworks to design and implement DSLs. Focusing on
web application development, when we must define grammars that are
easy to integrate into the building and deployment of web applications,
there are two widely adopted de facto standards: those based on XML
and those based on JSON.

Thus, on the one hand, when a DSL based on the XML standard [3,
4], i.e. the DSL follows an XML grammar (XML-DSL), general purpose
parsers such as Document Object Model (DOM) [5] can be used for the
specification of domain-specific solutions and the evaluation and exe-
cution of the DSL. Besides, when the approaches use languages such as

* Corresponding author.

HTMLS5, SVG [6], MathML [7] and XSLT [8], the solutions are enhanced
on the client side, both visually and functionally. As an example, we can
mention the work in [9], where we can find the PsiEngine, a XML-DSL
execution engine for web clients, and a set of tools that facilitate the
development and running of those DSLs. In [9,10] the authors show
case studies of DSL with XML-based solutions that use the PsiEngine
for different domain-specific problems.

On the other hand, the JSON standard [11] focuses on information
exchange both on the server and client side. Thus, we can mention
JSON for Linked Data (JSON-LD) [12,13], which allows the exchange
of structured information that can be read and shared automatically.
However, several issues arise when we specify a DSL that follows a
JSON grammar (JSON-DSL), namely: how is the JSON-DSL grammar
defined, what parsers, analyzers and code generation tools can we use
to run the DSL, how is evaluated a program written in JSON-DSL, and
whether can multiple programs and multiple JSON-DSLs interact. This
paper proposes an approach that satisfies all these issues.

Despite the growing relevance of web applications and the interest
shown by the scientific and industrial communities in using this kind
of application, there are few research works in the literature dealing
with the specification and evaluation of JSON-DSL at both server- and

E-mail addresses: echavarriaga@uground.com (E. Chavarriaga), francisco.jurado@uam.es (F. Jurado), fdiomar.rodriguez@ucavila.es (F.D. Rodriguez).

https://doi.org/10.1016/j.cola.2023.101203

Received 12 December 2022; Received in revised form 2 March 2023; Accepted 20 March 2023

Available online 25 March 2023

2590-1184/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.cola.2023.101203
https://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2023.101203&domain=pdf
mailto:echavarriaga@uground.com
mailto:francisco.jurado@uam.es
mailto:fdiomar.rodriguez@ucavila.es
https://doi.org/10.1016/j.cola.2023.101203
http://creativecommons.org/licenses/by-nc-nd/4.0/

E. Chavarriaga, F. Jurado and F.D. Rodriguez

client-side web applications. Literature on this topic focuses on JSON-
DSLs for solving domain-specific problems and not on tools neither
approaches for implementing JSON-DSLs in general. Most of the works
address the specification of a JSON-DSL and how it works, regardless
of desktop applications, server- or client-side web applications. Thus,
to mention a few, Canis [14] is a high-level language that allows JSON
specifications for data-driven graph animations, JSON-P [15] shows a
case study on the development of a player for simple human-machine
dialogs, JS4Geo [16] is a canonical JSON schema for geographic data
stored in NoSQL databases, and JSON-LS [17] facilitates cross-linking
with BioThings APIs for knowledge exploration.

Therefore, in this article we propose an architecture for building
JSON-DSL, called RhoArchitecture, named after our previous PsiArchi-
tecture [9]. This architecture includes: (a) a JSON-DSL Rho Evalua-
tion Engine (RhoEngine for short), which is the JavaScript component
able to run multiple programs written in different JSON-DSLs; (b)
the Rho Programming Model (RhoModel for short) that establishes
a programming model to add JavaScript functionality and support
the corresponding code generation and documentation; and (c) an
integrated web development environment known as Web Integrated
Development Environment for Rho (WebIDERho for short) to allow
specifying, implementing and deploying NodeJS-based server-side and
client-side projects, as well as visualize the class diagram. Our approach
allows: (i) the specification and evaluation of JSON-DSL; (ii) the im-
plementation of JavaScript components that can interact with the DSL;
(iii) the application of JavaScript Templates Engine that can serve as
a way for programmers to effectively and efficiently generate strings
coded in HTML, JavaScript, CSS, etc.; and (iv) the connection to het-
erogeneous information sources (JSON, XML, and Text) to embed data
and integrate it with other widgets, components, and web frameworks.
With all these features, the goal is to create fast, robust, and flexible
solutions for both server- and client-side web applications.

With these three pieces of the RhoArchitecture (RhoEngine, Rho-
Model and WebIDERho), we try to establish the base for applying
Model-Driven Engineering (MDE) in the specification, implementation,
and deployment of JSON-DSL. MDE is a software engineering paradigm
focused on defining Domain Models to simplify the building of informa-
tion systems [18]. Thus, by combining the concepts of JSON-DSL with
code generation and transformation engines, we set a solid foundation
for applying MDE for web applications.

We will provide four case studies to demonstrate the capability
of JSON-DSL specification and evaluation and the implementation of
JavaScript components in our RhoArchitecture. The first case study is
the classic “Hello World” to show the implementation and execution
of a JSON-DSL. The second case study highlights the ability to manage
multiple heterogeneous information sources (XML, JSON and Text)
integrated. The third case study aims to validate programming at the
server-side with the creation of a web service that includes the speci-
fication of a JSON-DSL, the use of Templates Engine and the design of
web pages. The last case of use, which we called DrawRho, validates
in an integrated way all the features proposed for the RhoArchitecture,
including the interface with other frameworks. In all these case studies
we have followed the qualitative case study methodology suggested
by [19] and adapted it for Software Engineering in [20] to validate
the most relevant characteristics of our approach.

The rest of the article is structured as follows: Section 2 highlights
related works; Section 3 provides an overview of RhoArchitecture and
the relevant features of our approach; Section 4 shows the four case
studies; Section 5 details the results we have obtained; and finally,
Section 6 closes the article with some conclusions and future work.

2. Outline and related works

The term Domain-Specific Language (DSL) is not defined rigorously
in the literature. Fowler [2] defines it as «a computer programming
language of limited expressiveness focused on a particular domainy. In [21—
23] the authors agree that a DSL is a programming language that is

Journal of Computer Languages 75 (2023) 101203

targeted at a specific problem, such that its syntax and semantics con-
tain the same level of abstraction that the problem domain offers, and
its objective is to facilitate the design, definition and implementation
of information systems that provide a solution to the problem domain.
In addition, according to [2,23] the DSL provides a suitable grammar
so that domain experts can perform these tasks more efficiently and
produce systems of higher quality and reliability. On the other hand,
the work presented in [24] studies the grammar composition of lan-
guages and helps to classify DSLs by considering: language extension,
language restriction, language unification, self-extension and extension
composition.

In [25], we can find a Systematic Mapping Study (SMS1) to de-
termine the most popular domains (in this order: web, network, data
intensive apps, control systems, low-level software, parallel comput-
ing, visual languages, embedded systems, real-time systems, dynamic
systems, among others) where DSLs have been applied, using pub-
lications before 2011. In addition, they perform several research to
list techniques, methods and/or processes dealing with DSLs. Lastly,
SMS1 makes a comparative analysis between types of research versus
domains.

In [26] we can find another Systematic Mapping Study (SMS2) on
DSLs to identify research trends in the period 2006-2012. Their authors
looked for possible open issues and an analysis on what they called
demographics of the literature. In their SMS2, the authors observed that
the DSL community appears to be more interested in the development
of new techniques and methods that support the different phases of the
development process (analysis, design, and implementation) of DSLs,
rather than researching new tools, and only a small portion of studies
focus on validation and maintenance. In addition, the authors observed
that most of the works do not indicate the tools they used for the
implementation.

Moreover, we can find in [27] a last Systematic Mapping Study
(SMS3) to identify and map the tools and IDEs (what authors call
Languages Workbenches LW) in publications between 2012-2019.
They identified 59 tools (9 under commercial licenses and 41 non-
commercial) after analyzing more than 230 papers, and concluded
that the tools largely cover the features proposed in [26] (grouped
in the categories: notation, semantics, editor, validation, testing, and
composability). Furthermore, in SMS3 the authors observed that the
developers adopt a type of textual or graphical notation to implement
their DSL.

The implementation of a DSL involves the use of parsers, analyzers,
and code generation tools to obtain the functionality to run the DSL.
Throughout time, most interpreters and compilers are based on Lex
& Yacc [28] or Flex & Bison [29]. In addition, current IDEs provide
specialized tools, plugins and languages for ease the design and im-
plementation of DSLs. For example, Visual Studio has the Software
Development Kit (SDK) for building model-based DSLs [30] and Eclipse
provides a variety of specialized plugins for building DSLs like Strat-
ego/XT [31], LISA [32], Spoofax [33], Antlr [34], Xtext [35,36] and
Eclipse Modeling Project [37]. From the point of view of MDE [18,
38,39], a survey on software products, platforms and transformation
tools for building modeling languages can be found in [40]. Like-
wise, using general purpose programming languages, together with
specific design patterns and methodologies, we can build internal DSLs,
e.g., for Java [23,41], C# [42], Scala [23,43], Ruby [23], Kotlin [44],
Rust [45], Groovy [23,46], Python [47], Clojure [48], and Haskell [49].

Thus, as far as we know, there are many tools for creating DSLs
that are mainly focused on the creation of textual or graphical DSLs.
However, there are no solutions to implement JSON-DSL. The men-
tioned SMS1, SMS2 and SMS3 do not explicitly refer to the creation
of JSON-DSL, neither the creation of DSL for web client-side. The
papers [14-17] mentioned above, describe how their specification and
the implementation of the functionality of the JSON-DSL are explicitly
performed ad-hoc.

With these two drawbacks — the need to make tools for building
JSON-DSL available; and the need to have an execution engine to run

E. Chavarriaga, F. Jurado and F.D. Rodriguez

programs written with JSON-DSL at both at server-side and client-side
of web applications — our work focus on covering these needs and
creating case studies to validate our proposal.

3. Approach to building JSON-based Domain Specific Languages

This section presents a detailed approach to the specification and
implementation of JSON-based Domain Specific Languages (JSON-DSL)
solutions for web applications, both on the server and client side. This
section shows the core ideas related to RhoArchitecture and its three
pieces: RhoEngine, RhoModel, and WebIDERho. Thus, we will start
providing a brief overview of the approach, and afterwards, we will
break down it.

3.1. Brief overview

RhoArchitecture’s cornerstone is the RhoEngine, a JavaScript com-
ponent that can run multiple programs written in different JSON-DSLs.
A JSON-DSL is a programming language that follows a JSON gram-
mar, while RhoLanguage is a JSON-DSL plus the JavaScript classes
that implement grammar elements’ functionality. The running of a
JSON-DSL program evaluates the functionality of the nested grammar
symbols, starting from the root and drilling down based on grammar
definition. JSON-DSLs running in RhoEngine can connect and exchange
heterogeneous information, use template engines, use components and
web components, apply security policies, and follow good programming
practices [50,51], making their code more functional, reliable, and
robust.

To allow a JSON-DSL work with the RhoEngine, we must follow
the RhoModel, which establishes a programming model for generating
JavaScript code and documentation. As we will detail, the RhoModel
focus on specifying the JSON-DSL and implementing the JavaScript
components and other necessary reusable web components at both
the server- and client-side. The RhoModel is based on our previous
PsiModel [9].

Finally, the WebIDERho uses the RhoModel as programming model
and the RhoEngine as the execution environment. WebIDERho en-
ables us to define projects at the server and client-side, visualize
the class diagram, automatically generate documentation, and deploy
NodeJS-based server and client-side web applications.

3.2. The RhoArchitecture

To follow our explanation, Fig. 1 presents the software architecture
that defines, at a conceptual level, the components involved in our
approach to work with JSON-DSLs, i.e., the RhoArchitecture. The main
goal of this architecture is to facilitate next two steps:

i. Specifying a JSON-DSL: in this step, a JSON-DSL is defined as
a Rholanguage using the RhoModel (in the lower-central part
of Fig. 1). To do so, first we must define the JSON-DSL gram-
mar and then implement the functionality related with the el-
ements (terminal and non-terminal symbols) of the grammar.
In the RhoModel, this functionality must be provided as a set
of JavaScript Classes by inheriting from the RhoLanguage base
classes to ease the programmer’s task. The functionality associ-
ated to each element of the grammar is implemented in what
we call Components (at the bottom of Fig. 1). After providing
the grammar and the related functionality, the RhoModel can
generate the JavaScript code when evaluating the corresponding
JSON-DSL code.

ii. Evaluating the JSON-DSL: the main goal of this step is to fetch
a RhoCode program (on the left side of Fig. 1) written in a
RhoLanguage together with the necessary resources (i.e., HTML
fragments, images, videos, css, svg, etc.) and then to run the
RhoCode using RhoEngine. To do so, the RhoEngine generates a

Journal of Computer Languages 75 (2023) 101203

RhoProgram by transforming the RhoCode into a JavaScript ob-
ject (the RhoObject on the right side of Fig. 1). This RhoObject is
generated by executing the functionality of each nested element
of the grammar, starting from the root element, and drilling
down according to the definition of its grammar. The obtained
RhoObject solves a specific problem and can run within a web
application, either on server- or client-side. While performing
this step, compilation and execution errors will be reported for
processing.

At the top of Fig. 1, the Data Sources components encapsulate the
functionality to manage information in JSON, XML and Text format.
Thus, any object or class defined in RhoArchitecture can use these
Data Sources components to fetch external information and link one
or more of its properties at runtime. Thus, the proposal allows us to
bring heterogeneous information and assign it to the class with the ap-
propriate parameterization. Therefore, the approach can decouple the
data sources from the JSON-DSLs, adding versatility and power when
implementing solutions to specific problems within a web application.

At the bottom of Fig. 1, we can see Templates. They are pre-
designed text containing variable labels that can be dynamically tuned
to produce customized text output. These templates can be used to
generate HTML, SVG, JSON, XML, and JavaScript code, which speeds
up the development of web applications. To custom manage the use
of the templates, on the left-hand of Fig. 1, we can see the Templates
Engine. A Template Engine is a JavaScript component that enables the
creation of custom Templates using different specific syntaxes (usually
precompiled in memory) to generate strings quickly and efficiently.
There is a variety of Template Engines in the market, and in partic-
ular, we can mention EJS [52], Handlebars [53,54], and Hogan [55]
engines. These engines are added to RhoArchitecture as plugins and are
used easily by RhoEngine. Additionally, RhoArchitecture implements
an easy native Template Engine we have called Plain, with limited
functionality. Using these Template Engines when creating JSON-DSL,
together with the Data Sources binding, exponentially increases the
power and versatility of these languages.

At the bottom of Fig. 1, we can see Web Components [56-59], which
are widgets or reusable components built in HTML, DOM, JavaScript
and CSS, and are deployed within the web application. RhoArchitecture
generates the code of web components automatically by using the
Templates Engine. To incorporate these Programming Components and
Tools into our programming models, we have implemented the Factory
Web Components and Plugins Templates Engine (see Fig. 1 on left of
the RhoModel box).

As can be inferred so far, the main idea behind our approach
is a strong emphasis in code generation, which is a well-established
field in software engineering with a particular focus on model-driven
engineering [60,61]. Code generation brings time savings, increased
efficiency, higher quality and standardization when building informa-
tion systems [62,63]. Thus, in this context, to simplify the specification
of RhoLanguages (which we will detail later in Section 3.4), we need
the RhoModel (see Fig. 1). This allows the definition of RhoGrammars
G and the implementation of Template Engines, Web Components
and JavaScript Components based on RhoEngine. RhoModel separates
specification from implementation following our findings from previ-
ous research work on the former PsiModel [9] and automatic code
generation.

To sum up, with the RhoArchitecture, any JSON- DSL implemented
for RhoEngine is able to connect to heterogeneous data sources (XML,
JSON, text, etc.), to use Templates Engine, to work with Web Compo-
nents in order to add versatility and functionality to the language, and
if security policies and good programming practices are applied then
quite reliable and robust executions can be obtained.

E. Chavarriaga, F. Jurado and F.D. Rodriguez

Journal of Computer Languages 75 (2023) 101203

Data Sources

Jg 0 0

XML JSON TEXT

GO

REST SQL/NoSQL

000

RhoCode

Resources)

RhoEngine

Ry R;

OO

ik
Factory ‘)
Web Components | use §> Use
3 RhoModel
Create))
Templates Engine Lijse —

Others
7
LJ ‘ Web Server (NodelS) ‘
Run
)‘ %:3 RhoObject ‘
Jj
Rn Run
S
S § ‘ Web Client ‘
S
s g
Rholanguage py
(JSON-DSL)
RhoGrammar
JSON-DSL Grammars

Use

Programming Components and Tools

Web Components

Templates T Use

T

Components

T

T T

T

Notation: Source Code JSON

R;: Object JavaScript RhoProgram

{@3 0;: Object JavaScript RhoObject

Fig. 1. Diagram of functional blocks for the RhoArchitecture.

3.3. The RhoEngine

Within the RhoArchitecture, the RhoEngine is the evaluation engine
for JSON-DSLs. Formally, RhoEngine manages a set of RhoLanguages
defined as P = {pl, s Pl e ,pm}. That is, it can handle several JSON-
DSLs, and in this way, to interpret and evaluate jointly several programs
written in JSON to creating components for web application.

Each RholLanguage p, € P is registered with an alias. Thus, when
executing a RhoCode S, the alias of the corresponding p, is loaded.
The RhoEngine gets the S; and the alias for p,, creates a RhoProgram
R; and adds it to the list of running programs R = {Ry,... R,R,}.
Then, each R; converts ; into a RhoObject O;. This is what we call
evaluation of JSON-DSL, which ends up executing S; using a language
Pr-

To execute S;, RhoEngine gets the grammar of the language p;
and starting from the root element of the grammar in S, it validates
and evaluates the functionality for that element. Then, it goes deep
into the nested elements of S; and analyzes them against the structure
of the grammar of p,, so that, for each nested element it validates
and evaluates the associated functionality. The execution ends when
RhoEngine has finished going through all the nested elements of S;. As
a result of the execution, the RhoProgram R; returns a reference to an
object O;, which solves a specific problem (or part of it) within a web
application, either at web server or web client side.

Formally, a solution to a specific problem for a W ,pp web applica-
tion can be seen as a set of RhoLanguages programs to be executed:

Wypp = {Sikll <j<n,S coded inp, € P,1 <k <m}

and the execution of a W, pp web application, either at client or server
side, can be expressed as the set of executions:

Exec(W pp) = {Ojkll <j < 1,0y object reference of
Ry €R.1<k<m},

The execution of an application W,pp can coexist with the ex-
ecutions of other W ,pp written in different p, € P, i.e., different
JSON-DSL.

Due to RhoEngine evaluates the JSON-DSL code directly, and thanks
to the dynamic nature of JSON, the source program (RhoCode S;)
can change during its execution by modifying the RhoObject O;. To
allow reusing the modified code, RhoEngine can serialize the changes
and create a new S;. This same JSON feature would also allow us
to combine RhoCode fragments to build dynamic programs, obtaining
versatility, flexibility, and adaptability to changes in a web application.
Furthermore, unlike other JSON-DSLs, RhoLanguages can associate
external resources (XML, JSON or text) to use and modify information
at runtime. Additionally, they have the ability to use JavaScript Web
Components and Template Engine. The RhoEngine base class has built-
in support for all these features, which can be directly incorporated into
a JSON-DSL specification.

3.4. The RhoLanguage

As mentioned above, a JSON-DSL is a programming language writ-
ten using JSON grammar, and the associated functionality is imple-
mented with JavaScript programming, both client-side and NodeJS-
based server-side [64-66].

From this assertion, these JSON-DSLs can be specified and built
within RhoModel as a JavaScript component (see Fig. 2). We have
denoted these JSON-DSLs by RhoLanguages. For a particular RhoLan-
guage p,, a RhoGrammar G is defined by a duple:

G =(E|E,) €))

where E= {E|, E,, ..., E, } is the set of available objects or elements of
the grammar, that is, the functionality associated to the elements of the
language defined via an instance object E;. The object E, is the root
object of the grammar (for any E,eE 1<¢< n). Each E; € E has the
next structure:

E; = {CLASS : N,,PROPERTIES : P, CHILDREN : H, } 2

E. Chavarriaga, F. Jurado and F.D. Rodriguez

Journal of Computer Languages 75 (2023) 101203

L

I “Object”, “Array” or “Map” |

Web Server (NodelJS)
RhoEngine o
§> g@ RhoObject
J
Resources Ry R; R, Run
ﬁ Web Client
Rholanguage (py) I
f RhoGrammar (G) 1 (Component K
{ Grammar Classes (C)
E¢: {
CLASS: Ng, ¢ Co o
PROPERTIES: {Attry: v, ..., Attr: v}
CHILDREN: { ..., Ag;: { KEY: E;, TYPE: t;}, ..}, J J
}’ Ci Cl
it{
CLASS: N, Cy
PROPERTIES: {Attr;1: V1, .., AttTis: Vish, —1 |
CHILDREN: { ..., A;: { KEY: k;;,KEY_REF: 73;, TYPE: t;;}, ... } '

}

B

J L | Additional Classc:|

Notation: Source Code JSON

R;: Object RhoProgram

{:3 0;: Object RhoObject

Fig. 2. Association diagram between RhoGrammar G and component K.

where N; is the name of the related class, P, are the properties or
attributes for the object E;, and H; defines the children or nested
objects (see Fig. 2), where:

H; = {A;|1 <j<mA;={KEY: k;;KEYREF:r; TYPE:1;}} 3

ij> ij»

been m is the number of nested objects, and 4; the definition of the
nested object (where k;; is the reference to an element of the grammar
that depends on the attribute r,;, and 7;; is the type of nested object,
which can be “Object”, “Array” or “Map”).

Once defined the RhoGrammar G, we must implement its semantic,
i.e., to code the functionality associated to each object (i.e., the instance
of the corresponding element) of the grammar G that is referenced in
E (see Fig. 2). This functionality is implemented in the grammar’s set
of classes C = {C},...,C,}. The C classes are stored in the package K
of reusable Component coded in JavaScript [8,58] that implements the
entire RhoLanguage p;. The execution of a program S; written with the
grammar of py, is the evaluation of all nested objects in the S;.

Formally, a RhoLanguage p, is defined with the tuple:

pi = (GIKIE & C) o)

where RhoGrammar G is the grammar of language p,, as defined
in (1), K is the reusable JavaScript component that implements the
functionality of the language. p,, C is the subset of classes that define
the grammar’s functionality G, and finally, E « C is the association
between E; and C;, for each E; € E and C; € C, respectively. Note that
a class C; € C can be associated with multiple elements of the grammar
G, and for an object E; € E has only one class defined C;.

TempraTE 1 and TempiATE 2 shows a possible implementation of a
JavaScript Component for a RholLanguage p, and the grammatical
definition for its execution in RhoEngine. The Temprate 1 defines the

Component K of Fig. 2, and contains: (i) the set of grammar classes C
(where each class inherits RHO. JSONDSL . Base, see Section 3.7), (ii)
the additional classes of the Component K, and (iii) the public interface
of the Component K.

TempLATE 2 shows: (i) defines the Grammar G of Fig. 2 according to
(1), (i) the register language p, in RhoEngine, and finally, (iii) example
of the execution of a programmer S; of language p, in RhoEngine.

3.5. The RhoModel

Automatic code generation is one of the cornerstones of software
engineering, leading to time savings, greater efficiency, higher quality,
and standardization for building information systems [63,67]. In this
context and as mentioned in the previous section, RhoModel (Rho
Programming Model) allows the specification and implementation of
RhoLanguages, Templates Engines, Web Components and JavaScript
Components. RhoModel separates specification from implementation
based on our previous works on the PsiModel [9] and using code-
behind techniques. RhoModel allows to specify and implement the
following: (i) basic programming elements (Const, Var, Object, Enum,
and Function tags), (ii) classes (Class tag, using the definition given
in [64,67]), (iii) references to external classes (ExternalClass tag),
(iv) JavaScript components (Component tag, using the definition of
component or module given in [67,68]), and (v) definition of DSL’s
(DSL tag).

More details about RhoEngine, RhoLanguages and RhoModel can
be found in the “Rho API” submenu of http://www.devrho.com. This
website includes RhoModel code, automatic documentation, generated
code, and interactive diagrams, of all libraries and projects gener-
ated with RhoModel (“Docs” submenu) in its lightweight development
environment WebIDERho.

http://www.devrho.com

E. Chavarriaga, F. Jurado and F.D. Rodriguez Journal of Computer Languages 75 (2023) 101203

TEMPLATE 1. JavaScript template to define Grammar Classes C of a RhoLanguage.

// Definition Component RholLanguage K

var MyComponentK = (function () {
// Associated classes for the RhoGrammar G
function Classl (def, parent, ref) { }; // Class Classl implementation
Classl.prototype = Object.create(RHO.JSONDSL.Base.prototype);

function ClassI (def, parent, ref) { }; // Class ClassI implementation
ClassI.prototype = Object.create(RHO.JSONDSL.Base.prototype);

function ClassN (def, parent, ref) { }; // Class ClassN implementation
ClassN.prototype = Object.create(RHO.JSONDSL.Base.prototype);

// Component additional classes
function ClassOtherl (def, parent, ref) { };

function ClassOtherM (def, parent, ref) { };

return {
Classl: Classil,
ClassI: ClassI,
ClassN: ClassN,
. //Others programming elements.
}; // MyComponentK interface
HOs

TEMPLATE 2. JavaScript template to define RhoGrammar G of a RhoLanguage.

// Definition RhoGrammar G
var MY_RHO GAMMAR = {
NAME: "MyNameRho",
ELEMENTS: {
"Eroot": {
CLASS: "MyComponentK.ClassRoot",
PROPERTIES: {"Attri": {VALID: true}, ..., "AttrR": {VALID: true}},
CHILDREN: {
., "NameOi": {KEY: "Ei", TYPE: "<Type>"}, //<Type>: Object, Array or Map

}
1,
"E1": {
CLASS: "MyComponentK.Classl", PROPERTIES: { ... }, CHILDREN: { ... }
1
e
"Eit: {

CLASS: "MyComponentK.ClassI",
PROPERTIES: {"AttrI1": {VALID: true}, ..., "AttrIS": {VALID: true}},

CHILDREN: {
e
"DeltaIl": {KEY: "Ej", TYPE: "<Type>"}, //<Type>: Object, Array or Map
ey
"DeltaIK": {KEY: ["Ek1", ..., "Ekm"], KEY_REF: "AttrIK", TYPE: "<Type>"},

}...

}s
ceey
"En": {
CLASS: "MyComponentK.ClassN", PROPERTIES: { ... }, CHILDREN: { ... }

}

s

ROOT: "Eroot" // Root name element

s

// RholLanguage Register
RHO.registerRhoLanguage ("MyNameRho", MY_RHO_GAMMAR);

//Execute program Sk
var RHO_CODE_Sk = { .. };
PROGRAM = RHO.Engine.runJSONDSL("MyNameRho", "Sk", {json: RHO_CODE_Sk});

E. Chavarriaga, F. Jurado and F.D. Rodriguez

Journal of Computer Languages 75 (2023) 101203

P HeloRho

€ C @ deviho

- . |
[

* Type

ese MyComponent Component ¥ B Compile C ile & I
) €nvRho # Home 8 Project = D Docs = 5 Gogais
' B Compile & Save i Execute —
WyC ol is e L
Rho Projects st pegecs mydirectory MyComponent js @ Execute / o
%" Diagram Data Diagram e *
<« C @ devhocom/# B aww »0@ :
© Tumon Server) €mvRAO project Helorno 4 Home B Project + D) Docs + @ Gitub 5" Project
e . @ Shutdown Server e Rl
. - 1
Project | =2 =3 ,
RhoModel © Tumon Application X |
S Code execute Output |
@ Shutdown Application ”
(| by
N d @ Hello World!!
a',"‘;’ D Newfile
MRho &_Project Jrrno Rho WebIDERho
Model Rno's ; o - S Save project _O, tion: utps
I Iptions
Edit project
Wi e

-]
/’

P B Delete project
-

LR

Config project

Inheritance
Hello.prototype =
Project Hello.prototype.

WebIDERho

Project
RhoEngine

pe MRho iorno
‘ File
S ation m

Subclass extend

v - o X

Documents
com/# —x » 0@ :

Home ® Project + D Docs » © GitHub 5* Project ~

RunFile HTML JavaScript
Code File

1d Project

5T
etvalue(sty
= RHO.setVal,

© 2023 Copyright deviho.com

Object. create(RHO.DSLISON. Base. prototype) ;
onstructor = Hello;

2023 Copyright devrho.com

(a) Mode “List projects”

(b) Mode “Edit project”

Fig. 3. Integrated web development environment WebIDERho.

3.6. The WebIDERho

The WebIDERho Web Integrated Development Environment is im-
plemented to allow developers to create projects at the web server
and web client side, visualize class diagrams, create documentation
automatically, and deploy NodeJS-based web servers and client ap-
plications. WebIDERho manages group of projects called project list.
Fig. 3(a) shows the projects list “_core” (RhoArchitecture core projects),
each project shows its name, description, number of files, and the
edit and delete buttons. In WebIDERho, we can create three kinds of
projects: Empty, RhoLanguage (specification of JSON-DSL’s) and Com-
ponent (creation of JavaScript components), all based on RhoModel.

On the other hand, Fig. 3(b) shows the editor for a WebIDERho
project. The following summarizes the project menu options:

i. Open Projects List: opens projects list by using www.devrho.com
?projects=<list> in the web browser, where <list> is the name
projects list. By default, the RhoModel sample projects (<list> =
_samples) are displayed, which contains the case study projects
detailed in this article.

ii. Compile & Execute compiles the specification file (MRho File)
and the implementation files (MIRho Files) to generate the
JavaScript code. On the other hand, WebIDERho has a simple
environment for the execution of the component.

iii. Diagram: builds and displays the class diagram of the project (see
Fig. 5). It is possible to create as many diagrams as needed.

iv. Server & Application: deploys NodeJS-based web services and
applications.

v. Options Project: manages the Rho project (save all, edit and
delete). It allows the creation of multiple file types, as it uses
CodeMirror [69] as editor.

vi. Documents: in this submenu we access the utilities for the au-
tomatic documentation of all available RhoEngine components
and examples.

Particularly, Fig. 3(a) shows the projects set with “<name> =
_core”, among the list is the implementation of our RhoEngine engine
(Rho project, type Component), the RhoModel programming model
(MRho project, type Component), and this development environment
(WebIDERho project, type Component).

3.7. Implementation summary

Based on the RhoArchitecture block diagram of Fig. 1, Fig. 4
shows the RhoArchitecture components diagram, and, Fig. 5 details the
RhoArchitecture class diagram, where RHO is the name of the main
component, and the subcomponents that make it up are summarized
below:

+ Engine is the component that implements our execution engine
RhoEngine.

» JSONDSL is the JavaScript Component that implements the basis
for the creation of RhoLanguage, i.e., the foundations for the
building and implementation of JSON-DSLs.

» DS, Templates y Factory are the components that implement the
management of Data Source, Template Engine and Factory Web
Components.

» MRho is the external component that implements our program-
ming model RhoModel.

WebIDERho diagrams are based on Diagram Programming Generate
DPG [70], a JSON-DSL that allows to specify programmable diagrams
based on PsiDiagram [71] for web applications. It is possible to have
multiple views of the diagram and to see the source code of each
RhoModel programming element. As future works, WebIDERho will be
able to support both textual and visual programming DSLs. The class
diagram in Fig. 5 is a DPG diagram, and the detailed help generated by
WebIDERho can be found at www.devrho.com?doc=rho.

3.8. Final comments

Throughout this section, we have presented the RhoArchitecture
that defines how to specify and implement JSON-DSLs, as well as how
they are evaluated by the RhoEngine. In summary, a JSON-DSL is
a programming language written with JSON grammar. The grammar
of the language and its functionality (denoted by RhoLanguage) can
be specified and built using the Rho Programming Model (named
RhoModel). Finally, the integrated web development environment, We-
bIDERho, enable the use of the RhoModel and allows defining web
server and web client projects, visualize the class diagram, create
automatic documentation, deploy servers, and web applications based
on NodeJS.

Next section focuses on developing case studies to validate the
whole approach.

http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?doc=rho

E. Chavarriaga, F. Jurado and F.D. Rodriguez

Journal of Computer Languages 75 (2023) 101203

O— DS

JSONDSL 2]

: O— Templates g

2]

MRho =]
(RhoModel)

g /O

O— Factory Rholnterface

Fig. 4. RhoArchitecture components diagram.

P Rho x +

<« C @ localhost:8090/index.htmi?projects=_core

p emkgo Project Rho
i

E - Specification Tools Factory Sources Engine
=

5
m
@
o}
=
m

v - 0O X
W e x »0@ :

A Home & Project ~ [Docs ~ € GitHub "g" Project ~

JSONDSL Templates

Engine 1. Templates 1. Factory 1.

™
®H Programs [BaseMotor

E PlainMotor]

A
@8 Component] F ComponentBase]

E EJSMotor

- T
—

ComponentBuilder

HandlebarsMotor

1 —

[f] e i= £l £ £ [f

runJSONDSL loadLib ProgramState register addMotor render loadXML

vi vi v v W

JIRGES: (ERSATTENE _motors _motors_rel _map

f K K
f ‘ ‘ f l lf getParams validComponent RESERVED-
10adJSON l0adTXT apply _WORK

K K v

errorDefinition errorCreation _components

JSONDSL 1.

n

‘E Base ‘ ‘E Language] [E Element]

DS
[a Source HE SourceXML] la RESTClient ’

el e

[SourceJSON ’Wg SourceTXT ’ F DataManager ’

=

S sml=]<]-]blofmloalg]x]k]o]

(f] [f] [f = v

register get loadCode ElementType languages

[i Data Hi DataJsoN [f] [f]

registerSource getSource

i
A : ‘ [f] v
g Validator i (] £l f [f] [DataxMu] oo] evallSON _map
‘ DEBUG loadSync extend gup loadSync
£l [f (f] [f] K K K K v v
setvalue applyPlain getvalue exist RegExpStartEnd patternSpecials SPECIALS genld FLAG_DEBUG INDEX

© 2023 Copyright: devrho.com

B components B classes E External classes a Definition DSL’s [Objects
n Functions n Variables H Enumerative types n Constants Scripts

Fig. 5. RhoArchitecture class diagram. Visual language for RhoModel visualization based on DPG.

4. Cases of studies

In this section, we will detail how to apply and validate our whole
approach. Thus, the aim of the case studies is to illustrate the use
of RhoArchitecture and the RhoEngine. The first case is the classical
“Hello World”, where we create a very simple JSON-DSL to show in
a straightforward way how to specify and deploy a RhoLanguage. The
second case study highlights the use of multiple heterogeneous data

sources (XML, JSON and Text) implemented in a single class. The third
case study deals with validating the capabilities to the RhoEngine for
server-side applications, using a RhoLanguage for implementing a REST
service for the back-end, creating Templates Engine, and designing web
pages that use Material Design for the front-end (for example, by using
MDBootstrap [72]). The last case study fully validates the most relevant
features of the RhoArchitecture, namely: the specification of a RhoLan-
guage, the implementation of Components and Web Components, the

E. Chavarriaga, F. Jurado and F.D. Rodriguez

Definition
Class Hello

Grammar
Functionality

${this.message}</div>");

${this.style

Hello.prototype.toString = function() { return "Hello"; };

(a) Hello class generation with RhoModel.

Journal of Computer Languages 75 (2023) 101203

5 %)

Definition
RhoGrammar

AR_HELLO_RHO =

110Rno",

/ Oroot

211

": {VALID: true}, "style": null},

CHILDREN: null

b
ROOT: “root”

RHO.DSLISON. register("HelloRho", GAMMAR_HELLO_RHO);

(b) Definition RhoGrammar G="HelloRho”.

hello.json
{
"message”: "Hello World!!",
"st: 1 "font-size solid blue;

1.5em; color:blue;border:2px margin:Spx;padding:Spx 20px;”

L= |

‘ Hello World!!

(c) Running a RhoCode program “hello.json”.

Fig. 6. Program HelloRho “hello.json” and its execution in RhoEngine.

use of Templates Engine, the exchange of heterogeneous information,
and the integration with other frameworks.

4.1. Implementing the HelloRho JSON-DSL

HelloRho is a JSON-DSL that aims to show a simple specification
of a RhoLanguage. In Fig. 6(a), we can see how HelloRho implements
the functionality for the grammar in only one class C = O = {Hello}.
Also, RhoModel uses Template 1 (see Section 3.4) as a guide for the
code generation, and to implement the reusable JavaScript Component
K in “HelloRho.js”. Also, we can observe that the functionality of this
grammar (at the bottom of Fig. 6(a)) consists of adding a DIV element
in a container with an identifier (attribute this.dentifier), and
then modifying the text Content (attribute this.message) and the
style (attribute this.style).

For its part, Fig. 6(b) shows the definition of the grammar. As
we can see, the name of the grammar is “HelloRho”, it has only the
root element containing two properties: message (mandatory property
with {VALID: true}) and style. The JavaScript class that implements
its functionality (“Hello”), and no children as nested elements. That is,
we have the grammar for HelloRho G = (0|O0,,,,) specified according
to (1), where the HelloRho language is defined by:

HelloRho = (G|K|O « C)

Finally, in Fig. 6(c), we can see result for the execution of the
program written in the RhoCode (S; = “hello.json” at the bottom
of Fig. 6(c)). This program can be modified and executed as de-
sired. This example is available at devrho.com, in the menu option
“Samples>Hello world!!”.

4.2. Associate heterogeneous data sources of information

The TestSources case study aims to validate the ability to associate
heterogeneous Data Sources in XML, JSON and Text formats for Objects
and Classes defined in RhoArchitecture. This example consists in dis-
playing the character’s information coming from different Data Sources
(see Fig. 7(a)), as described below: (i) the first and last name comes
from a JSON file “actors.json”; (ii) the age, email and image reach from
an XML file “details.xml”; and (iii) the description is loaded from tags
in a Text file “descriptions.txt”. The information from the different Data
Sources can be accessed through a Key identifier, as shown in Fig. 7(a).

Fig. 7(b) shows how RhoModel can define attributes within an
Object or Class, whose source links to a Data Source (XML, JSON

and Text). For instance, the attribute Name, takes the information of
“{{info:First}}”; the variable info links to the source ACTORS, in
turn, registered in the RHO.DS component. Another remarkable detail
is how the tags are configured (using JavaScript regular expressions) in
the desc attribute to obtain the enumerate of the Actor.

Finally, Fig. 7(c) shows the execution that displays the information
of an Actor through its identifier. Note that RhoModel’s Plain template
engine and MDBootstrap [72] were used for the template design.

In this case study, it is worth noting that the Actor class brings
together the three available data sources. In perspective, if the data
sources are linked to SOAP Services [73], REST services [74], or to
non-relational databases, the Actor class could directly update the
information through these services, being transparent to the class. If
we add the use of template engines, and the design of web pages with
material design, then RhoArchitecture is an interesting alternative in
implementing and deploy web applications, both at client- and server-
side. This case study is available at devrho.com, in the menu option
“Samples>Star Wars Actors”.

4.3. Creating a simple “web service”

ComicSpeech is a RhoModel project that aims to validate the server-
side programming of RhoEngine in the following aspects: (i) specifica-
tion of a web service, (ii) creation of a server-side RhoLanguage and
(iii) the use of the different Templates Engine with material design for
Bootstrap [72].

Fig. 8(a) shows a RhoCode that manages the list of speeches and
their search. Also, Fig. 8(a) outline the methods available on the web
service “/comicspeech”. Thus:

(i) the method “/list” (shows the available list of speeches), and
(ii) the method “/speech” (search for a list of comma-separated
speeches).

Fig. 8(b) shows the output for the execution of this method for:
Ouch, Hey and ZZZ “/speech?search = Ouch,Hey,ZZZ”. This case study
is available on devrho.com, under the menu option “Samples>Comic
Speech”.

4.4. Creating an SVG diagramming JSON-DSL

DrawRho is a RhoLanguage that aims to paint reusable graphical
elements based on an SVG library. DrawRho is based on the creation

E. Chavarriaga, F. Jurado and F.D. Rodriguez

actors
P

1
2

details xml

1 <?xml vers

2 <Details>

3 <Person i
4 <Person i
5 <Person i
6 </Details>

descriptions.txt

1 Charactef
2

3 [#(actor:p1)]{

of the actors

Journal of Computer Languages 75 (2023) 101203

created by George Lucas. Portrayed by Mark Hamill, Luke first appeared in Star Wars (1977), and he r
he portrayed the character in the Star Wars sequel trilogy, aj

d Jedi (1983). Three decades later

& [#(actor:p2)]{
9 Obi-Wan Kenobi.
101

(a) Heterogeneous sources of information JSON, XML and Text.

Luke Skywalker is a fictional character and the main protagonist of the original film trilogy :

also known as Ben Kenobi. is a character in the Star Wars franchise. Within t~
»

LAl SR Define association Data Sources Ewi

16 <Class id="actor" arguments="id"> -

17<Data arguments="id"><![CDATA

18 return {

19 info: {alias: "ACTORS", selector: id},

20 datail: {alias: "DETAILS", selector: "#"+id},

21 desc: {

22 alias: "DESCRIPTIONS", selector: id,

23 config: {name:"actor”, start: [#(actor:${id})]{", end: }[#(actor)]", paterns:{field: {start:"", end:""}}}

24 ¥

25)}

26111></Data>

27 <Property escriptor="a

28 <Property info:First]} = et e st
29 <Property "{{info:Last}}'" descriptor i e ol
30 <Property '{{datail:@email}}'" descriptgr="accessor"/> flars by

31 <Property '{[datail:@age]}'" default="10"|descriptor="accessor"/>)

32 <Property ="' {[datail:@image]}'" default={10" descriptor="accessor"/>

33 <Property escription” value="'{[desc:description]}'")descriptor="accessor"/>

34 <Property nam 5 Iswhame} ${this.Surname} ;</Get></Property>

35 <Method name='
36 output.empty().append(RHO.Templates.applyPlain(TEMPLATE_ACTOR, this)
11></Method>

</Class>

<Oh3art id="manacar">s

<Method name="createSources" arguments="actors, details, descriptions"><![CDATA[
RHO.DS. registerSource("json", "ACTORS", actors);

49, RHO.DS.registerSource("xml", "DETAILS", details);

(c) Execution view Actor

Loading Data Sources:
JSON, XML and Text

»

Fig. 7. Linking different heterogeneous data sources.

24] RHO registerSource("txt", "DESCRIPTIONS", descriptions);

4534 i

46,

code.json
14
2 "title": omi(Speechs!!",
3 "speechs"T
4 {"name": "BOOM", "description": "To exclaim with force, to shout, to
5 Help", "descriptio "Help request for dramatic moments."
Hey", "description”: "An exclamation to get attention.”, ")
7 Kapow™, "description”: "A powerful sound of impact or trans
8 OH", "description": "Expression of wonder, amazement, or av
9 {"name": "Oh NO", “"descripti : "An exclamation or expression of al:
10 {"name”": "Ouch”, "descriptio An_expression in sympathy at anotheC)
11 {"name POP™, "description”: "Used to represent a loud, sharp sounc
12 {"name": "Puff", “description": "Deflating object or a magical disapf
13 {"name": "Run", "description": "Sound to assign moving objects."”, "in
14 : "Splash",
15 il
16 "777", "description": "Supposed to represent the sound of s
17| 1
18|}

‘ »

1. Turnon Application Server localhost:8090/comicspeech:
2. Services available at /comicspeech:

« llist?motor=[name]: List the speech available in the database. The available template
motors name: Plain, EJS, Hogan and Handlebars

« Ispeech?search=[name7],[nameZ2], ... Displays a speech from the database by name
Example: /speech?search=POP,Ouch,OH

(a) ComicSpeechRho program "code.json”, and, definition of services.

Service

Ispeech?search=Ouch,Hey,ZZZ

Search Speech: Ouch,Hey,Z2ZZ

Generate by Plain Template Engine

y

Ouch

[220x215]

ZZZ

[225x225]

Hey
[225x225]
An expression in
sympathy at another's

Supposed to represent
the sound of snoring

An exclamation to get
attention.

pain.

(b) Running a RhoCode program “code.json”, and, run application server.

Fig. 8. Example of web services using JSON-DSL and the Templates Engine.

of Web Components with the help of the SVGJS framework [75], the
Handlebars templates [54] and the Draggable plug-in [76] to move the
graphical elements. Thus, DrawRho implements the following graphical
elements:

(i) layer: defines the concept of a graphical layer where it contains
a list of shapes, lines and containers. The graphical layer refers to
the depth at which the set of elements in the layer is located,

10

that is, whether it is at the bottom (defined as the first layer) or
at the front (defined as the last layer). It is defined with the SVG
element grouping tag (g tag).

(ii) shape: is the graphical representation of a figure, object or entity.
It is defined by the grouping of SVG elements (g tag) such as:
rect, circle, ellipse, image, line, polyline, polygon, text, path, etc.
(i.e., all available SVG elements).

E. Chavarriaga, F. Jurado and F.D. Rodriguez

(iii) line: is the description of a path with a beginning and an end,
at the edges are defined markers to represent arrows, joints,
connectors, etc. A line can be defined with an SVG line, polyline
or path element, and text can be added with the SVG text tag.

(iv) container: represents a grouping of graphical elements such as
shapes, lines or other containers. If a container is moved, all its
elements move with it. It is also defined with the SVG element
grouping tag (g tag).

As previously stated, the case study in this section comprehensively
validates the most relevant features of our RhoArchitecture, such as:
the creation of a JSON-DSL (with multiple executions), the creation of
Components and Web Components, the use of Templates Engine and
the Data Sources information exchange connection (in JSON format).

Fig. 9(a) shows a couple of RhoCode programs with grammar
DrawRho. The first program (file “StarWars.json”) draws the containers
with the roles in Star Wars. The second program (file “Speechs.json”)
draws the nodes with images from speech. Also, Fig. 9(a) shows the
library of SVG graphical elements defined in the file “templates.xml”,
and the file “sources.json” contains two Data Sources in JSON format:
Actors (list of actors) and ComicSpeech (list of speeches). Fig. 9(b) shows
the output of the execution.

The way it works for each graphical element is as follows: (1) deter-
mine the type of element (attribute type = “layer |shape|line|container”);
(2) search in the graphical library for the corresponding template
(using the lib attribute); (3) apply the changes to the information in
the template for the graphical element (attribute key, x, y) for each
SVG element (attribute key) by modifying their attributes, and links
the corresponding information (attribute source) for the Data Source of
Actors; and then, (4) add the SVG canvas to the template; finally, (5)
links the necessary events.

In particular, Fig. 9 shows the ‘“StarWars.json” once it works.
Briefly, it searches a shape with Node identifier specifying a circle and
text (full name of a Actor) and places it in the position (150,60). We
want to remark that the creation of a diagram can be done through a set
of independent programs, providing versatility when creating diagrams
and allowing experts in niche parts of the specific domain to collaborate
with each other. Languages of this kind can be used in the creation
of collaborative diagrams. This case study is available on devrho.com,
under the menu option “Samples>Draw Rho”.

4.5. Other examples

There are other interesting case studies on devrho.com, under the
menu option “Samples” (BPM Tester, MDB Tester), which are not in-
cluded in the validation study results. The BPM Tester project includes
the implementation of a RhoLanguage called BPMERho to execute a
BPMN 2.0 [77] designed in the BPMEPsi visual tool [71]. The MDB
Tester project also includes the implementation of a RhoLanguage
called MDBRho that aims to create Material Design Bootstrap MDB
components, forms, navigation, dialogue boxes, block design, etc. [72].

5. Results and validation

The research has been conducted according to the qualitative
case study methodology suggested by [19] and adapted for Software
Engineering in [20]. Therefore, a case study for RhoArchitecture must
seek to validate the most relevant characteristics or issues, namely: the
creation and execution of JSON-DSL’s, the creation of Components and
Web Components, the use of Templates Engine, and the exchange of
heterogeneous information. For short, the case study must allow us to
validate RhoEngine and RhoModel as a whole. WebIDERho is included
as the implementation of RhoModel for validation.

The methodology described in [19] corresponds to the multi-case
type. The multi-case type in this context can be expressed as the set
of characteristics and/or functionalities to be validated. Each case of

11

Journal of Computer Languages 75 (2023) 101203

study covers part of the set, and the total number of cases must cover
the whole set of characteristics. A feature can be validated by more
than one case study. In general, although it can be extremely costly in
time and execution [20], the evidence created from the multi-case type
is considered robust and reliable.

5.1. Defining relevant characteristics of RhoArchitecture

Below, the list of the most relevant characteristics and/or function-
alities for RhoArchitecture are described:

Cl. Implementation and execution of RhoEngine as a reusable
JavaScript component and working at both web server (W) and
web client (C) level.

Implementation and use of the MRho, MIRho and EditorRho
languages (code editor based on CodeMirror [69]) of RhoModel
for WebIDERho.

Implementation of case studies: HelloRho, Start Wars, Comic-
SpeechRho, DrawRho.

Capacity to create of RhoLanguages and execution of RhoPro-
grams: (S) simple-simple (a program of a RhoLanguage); (P)
multiple-simple (multiple programs of one RhoLanguage); (M)
multiple-multiple (multiple programs written with multiple
RhoLanguages).

Capacity to accept heterogeneous data sources: (X) XML; (J)
JSON; (T) Text.

Creation and use of (C) Components y (W) Web Components.
Definition and use of Templates Engine: (P) Plain; (E) EJS; (H)
Handlebars; and (O) Hogan.

C2.

C3.

C4.

C5.

C6.
C7.

It is worth highlighting that the components RhoEngine, MRho,
MIRho, WebIDERho and EditorRho were also implemented using Rho-
Model, and thus, they also act as case studies for validation. Hence,
with these components and the four case studies previously presented,
the most relevant characteristics and/or functionalities of RhoArchitec-
ture will be covered.

On the one hand, we will use several software metrics to validate the
quality of the implementations of RhoEngine, RhoModel and the Case
Studies, and in this way, to appraise characteristics C1-C3. On the other
hand, characteristics and/or functionalities C4—-C7 allow us to validate
the RhoModel programming model and the RhoEngine functionality.

5.2. Validating the implementation of RhoArchitecture and case studies

In the field of Software Engineering, a software metric represents
an objective measure to know or estimate a feature of an information
system. Although there are a lot of software metrics in the litera-
ture, [78-80] present systematic reviews focused on software quality,
reliability, documentation, and complexity, among others.

5.2.1. Software metrics used to validate JavaScript modules

In the context of our proposal, software metrics should focus on
the analysis of JavaScript. In [81], software metrics are redesigned for
prototype-based languages, such as JavaScript. In particular, the analy-
sis will be performed on the generated JavaScript code using RhoModel,
and we will compare them with recognized JavaScript components or
modules such as: Bootstrap (bootstrap.com), CodeMirror [69], jQuery
(jquery.com), Material Design Bootstrap [72], among others.

The software metrics that we have chosen to use in our analysis are:

(i) Lines Codes [82] (LOC, physical lines code SLOC, logical lines
code LLOC, comment lines code CLOC, and, blank lines code
BLOCQ);

(ii) Cyclomatic Complexity [83] (average per-function cyclomatic
complexity CNN, and, cyclomatic complexity density for module
CND [84]);

E. Chavarriaga, F. Jurado and F.D. Rodriguez

"star_main", "type “co

"key":

”5%”9”“" Element type

"key": "nl",

Data
Source

type”:

" shape®, "lib"

": {"fill": "#e6f2ff", "skroke": "#004080"}},

source”: {

Speechs json

;. Ty": 400,
, "y": 400,

<Template id="Panel"><![CDATA[

sources json

(a) RhoCode program “StarWars.json“
and Data Sources.

, to shout, to th

“source":
"source”:

{{y}}) scale(1 1) rotate(e)">
“drag select box" fill="#ffffcc"l

and “Speechs.json”, templates

"width

{"alia

Journal of Computer Languages 75 (2023) 101203

i Luke Skywalker | Obi-Wan Kenobi

{"aliv D2-R2 (Artoo-Detoo) C3PO (See-Threepio)

3

Help

»

(b) Running a RhoCode program “StarWars.json”
and “Speechs.json”.

Fig. 9. Example of a DrawRho program for displaying a diagram.

(iii) Halstead Metrics [85] (Halstead vocabulary size per-module HS,
Halstead difficulty per-module HD, Halstead volume per-module
HV, Halstead effort per-module HE, Halstead bugs per-module
HB, Halstead time per-module HT, and, Average Halstead effort
per-function HEF); and

(iv) Maintainability Index MI [86].

We have used the following two tools to calculate the metrics above:
Excomplex [87] implemented on NodeJS, provides an analysis of the
software complexity of JavaScript Abstract Syntax Trees (ASTs); and
FrontEndART SourceMeter for JavaScript [88,89], which is a tool for
source code analysis that can perform a deep static analysis of complex
JavaScript source code (sourcemeter.com).

5.2.2. Analysis of JavaScript code generated with RhoModel

Table 1 summarizes the JavaScript metrics of the code generation
for the Components of the RhoArchitecture (noted by CRA, in yellows):
RhoEngine, RhoModel, WebIDERho and EditorRho. The four compo-
nents were developed as projects that follow the RhoModel. There were
created 20 files, of which 20% (4 files) are intended for the MRho
specification and the remaining 80% (16 files) for MIRho implemen-
tation files. In these files, we find a total of 4422 lines of RhoModel
source code that generated a total of 7808 lines of JavaScript code. This
means a conciseness ratio of 1.77. It is worth noting that RhoEngine’s
conciseness ratio of 2.19 is the highest because the programming model
supports code generation at both the web client and web server sides.
On the other hand, CLOC comment lines represent 27% (average of the
four projects), which is a very high rate of documented capacity (>25%,
according to [40]), whereas RhoEngine has an average of 31%. This
highlights the quality of existing RhoArchitecture documentation.

In details the code generation summary of the Case Studies (denoted
by CAS, blue color) presented in this document. Ten files were written
(40% MRho files and 60% MIRho files). The average conciseness ratio
of 1.68 is acceptable, and on average it is 29%, which implies that the
case studies are also well documented.

12

Table 2, details the code generation summary of the Case Studies
(denoted by CAS, blue color) presented in this document. Ten files
were written (40% MRho files and 60% MIRho files). The average
conciseness ratio of 1.68 is acceptable, and on average it is 29%, which
implies that the case studies are also well documented.

Table 3 shows the most relevant metrics for the frameworks used in
WebIDERho (denoted by FUW, in purple). We retrieve the source code
of each framework in the version shown. If we analyze SLOC, MDB
PRO has 53% and jQuery 17% of a total of 41,541, i.e., 70% of lines of
code. On the other hand, RhoEngine (CLOC = 22%) and jQuery (CLOC
= 17%) have “moderate documentation”, the remaining frameworks
are “poorly documented”. An interesting finding is that 36% of lines
in JQuery are CBLOC and BLOC and it has the lowest percentage of
physical lines of code, SLOC = 64%.

Fig. 10 presents the percentage of SLOC, LLOC, CLOC and BLOC,
for the total number of LOC lines, for all the components/frameworks
analyzed in this article. From the total number of 58,926 lines of code,
85% are FUW, 14% are CRA, and 1% are CAS. Furthermore, the “good
documentation” of CRA and CAS for FUW is ratified. BLOC is between
10%-20% in most components/frameworks, while SLOC is between
50%-80%. It is worth noting that the highest percentage of LLOC is
for WebIDERho with 72%.

Table 4 provides a summary of the software metrics (cyclomatic
complexity, Halstead metrics and maintainability index) distributed
over the three sets CRA, FUW and CAS.

Overall, according to Table 4, the software metrics obtained for CAS
are very good. On the one hand, the cyclomatic complexity reflects
“simple functionality, without too much risk” (CNN < 5 according
to [83]). On the other hand, and according to [81,85], CAS have the
following characteristics in average values: low complexity and lower
associated functionality (HS = 120.5, HV = 5922), lower difficulty level
(HD = 31), lower implementation time (HT = 15,970), minimum error
estimation (HB = 2.0) and low understanding effort (HEF = 66).

E. Chavarriaga, F. Jurado and F.D. Rodriguez

Journal of Computer Languages 75 (2023) 101203

Table 1
[CRA] Components of the RhoArchitecture: JavaScript generation code summary.
Project File RhoModel JavaScript generated code Conciseness
MRho MIRho RHOLOC|LOC SLOC LLOC CLOC BLOC [RHOLOC/SLOC
. |Rho.js (client 2,375 1,347 1,350 714 314
Rlesichs Rho.j‘s Esever)) 237(1) 1578(6) 1815 |)'cos 47 go9 510 241 219
RhoModel |MRho.js 277(1) 949(6) 1,226 2,140 1,518 1,055 516 106 1.75
WebIDERho [WebIDERho.js | 129(1) 910(3) 1,039 [1,232 812 886 287 133 1.19
EditorRho |EditorRho.js 44(1) 298(1) 342 463 303 218 103 57 1.35
Total 687(4) 3,735(16) 4,422 |7,808 4,827 4,318 2,130 851 1.77

Note: X(Y) MRho/MIRho; X: Number of Rho lines, Y: Number of Psi files; RHOLOC: total Rho lines of code; LOC: JavaScript
generated lines; SLOC: Physical executable code lines; LLOC: Logical executable code lines; CLOC: Comments code lines;

BLOC: Blank code lines.

Table 2
[CAS] Components Case Studies: JavaScript generation code summary.
Case Study (* js) i RhoModel JavaScript generated code Conciseness
MPsi MIPsi RHOLOC | LOC SLOC LLOC CLOC BLOC |SLOC/RHOLOC

HelloRho.js 13 (1) 30 (1) 43 67 34 35 22 11 1.56
StarWars.js 25 (1) 57 (1) 82 127 76 90 35 16 1.55
ComicSpeechRho.js 18 (1) 109 (1) 127 172 99 101 46 27 1.35
DrawRho.js 55 (1) 205 (3) 260 493 276 297 149 68 1.90
Total 111 (4) 401(6) 512 859 485 523 252 122 1.68

Note: X(Y) MRho/MIRho; X: Number of Rho lines, Y: Number of Psi files; RHOLOC: total Rho lines of code; LOC: JavaScript
generated lines; SLOC: Physical executable code lines; LLOC: Logical executable code lines; CLOC: Comments code lines;

BLOC: Blank code lines.

Table 3
[FUW] Components/Frameworks used in WebIDERho: Java

Script code summary.

. . . JavaScript code
Framework/Component File (* js) Version LoC SLOC LIE) OC _CLOC BLOC
Bootstrap 4 bootstrap.js 4.5.0 4,421 3,225 2,644 314 852
CodeMirror 5 codemirror.js 5.1 9,807 7,802 6,180 1,016 989
jQuery jquery.js 3.5.1 10,872 6,906 4,421 1,890 2,026
MDB jQuery PRO mdb.js 4.19.2 23,117 22,064 9,146 799 254
Psi Engine PsiEngine.js 3.0 2,024 1,514 1,023 440 88
Total 50,259 41,541 23,414 4,459 4,259

Note: LOC: JavaScript generated lines; SLOC: Physical executable code lines; LLOC: Logical executable code lines; CLOC:

Comments code lines; BLOC: Blank code lines.

CRA: Components RhoArchitecture FUW: Fra

(LOC 14%)
100%

90%

80% Max. 72%

70% -
60% A

meworks used in WebIDERho CAS: Case studies
(LOC 85%) (LOC 1%)

N Max. 95%

N
N

40% M 329%
30% Max. 19%
20%
10% Min. 3%
0% .
Min. 1%
X < 2 () o Q N Q (¢) O o & o o
C\\é\ fo"f\e @ob o‘gp 0810 &’}@ @,\,\o 0‘)?} %Q% <é‘°‘§ \\éis S ¢ &@ &
& >
. \(\e \Q@ Q\S\o é& %bx Q700 obz N ®0 Q‘°\ & (_}’b QQ/Q/ &K
) N < &
&° x© s
—@—SLOC =@=LLOC CLocC BLOC

Fig. 10. Comparison of the SLOC, LLOC, CLOC and BLOC metrics between Comp

Hereafter, we will focus on analyzing and comparing the software
metrics obtained for CRA and FUW. This analysis will help us to
determine the quality, reliability, and complexity of our proposal.

Fig. 11 shows the graph of the software measures of Cyclomatic
Complexity for the CRAs and FUW. For all components, it reflects
that the functions/methods have a “simple functionality, without much

onents RhoArchitecture CRA, Frameworks used WebIDERho FUW and Case Studies CAS.

risk” (CNN < 5 according to [83]). On the other hand, [84] shows that
the lower the CND value, the simpler the productivity and software
maintenance becomes, it is worth noting that the CND value of CRA
is 50% lower than that of FUW. Additionally, we highlight that our
RhoEngine engine has better productivity, better maintainability, and
less risk, than any FUW component.

13

E. Chavarriaga, F. Jurado and F.D. Rodriguez

Table 4

Journal of Computer Languages 75 (2023) 101203

Summary of software metrics (cyclomatic complexity, Halstead metrics and maintainability index) from: RhoArchitecture, case

studies and frameworks used.

Framework/Component| CNN | CND | HS |HD| HV" HE* HEF HB HT" MI

Rho Engine v1.1 (client) 1.9 14.3 610| 154 68.9 10.63 2,663 23.0 590.4 114.3
Rho Engine v1.1 (server) 1.8 13.7 413| 140 41.2 5.78| 2,082 13.7 321.4 116.6
Rho Model v.1.0 3.5 20.1| 626| 176 95.2 16.73| 11,073 31.7 929.4 97.9
Web IDE Rho v1.1 1.7 9.4| 575| 118 54.8 6.45| 2,336 18.3 358.5| 114.2
Editor Rho v1.0 1.4 8.4 246| 71 14.4 1.02 1,350 4.8 56.8 122.1
Bootstrap v4.5.0 2.4 18.2| 1,296| 166 174.1 28.97| 3,487 58.0/ 1,609.7| 109.6
CodeMirror v5.1 3.5 28.1| 2,736| 317 663.0 209.97| 7,382 221.0/ 11,665.3] 104.7
jQuery v3.5.1 3.5 31.6| 1,801| 259 334.8 86.65| 6,003 111.6| 4,814.0f 107.4
MDB PRO 4.19.2 2.4 25.2| 6,760| 526| 2,515.0| 1,322.00| 5,144| 838.3| 73,444.6| 114.2
Psi Engine v3.0 3.7 29.7| 813| 185 112.2 20.71| 5,984 37.4| 1,150.4| 105.5
HelloRho v.1.0 1.0 2.9 57| 10 1.2 0.01 246 0.4 0.7 140.9
StarWars v1.1 1.0 1.2 103| 18 3.4 0.06 553 1.1 3.4 129.4
ComicSpeechRho v1.0 1.6 73| 129 33 4.3 0.14| 1,628 1.4 79| 1149
DrawRho v1.0 1.2 4.4 193| 63 14.8 0.94 1,435 4.9 52.0 123.9

Note: CNN: Cyclomatic complexity average per-function; CND: Cyclomatic complexity per-module; HS: Halstead vocabulary
size per-module; HD: Halstead difficulty per-module; HV: Halstead volume per-module (*thousands); HE: Halstead effort per-
module (+millions); HEF: Average Halstead effort per-function; HB: Halstead bugs per-module; HT: Halstead time per-module

(*thousands); MI: Maintainability Index.

Cyclomatic complexity

Average cyclomatic complexity

40 25y 30 29,7 30
;(5) 6 o 25,2 o} 26,55 §
20,1 / : ’
25 a 182, © 2 E
20 14,3 13,7 \ (o] é
15 O—0 A 20 §
10 O <
. 19 18 35 17 81 24 35 35 24 37 §
g O0—0—9%—o0—0 00— 9% 15 13,18 3
Q D Q N Q o N N o |ag g
A NS AR A P SRR SV S O | 3 o3
@ & Q Q < . RY > N 3 S 3
\© 52 > g]) & Y D & 35 10 S
N ,»\ b & R & Q Qo & = 3
&) SHEE) S GRS g 3
) Kea Q 9 S > O > & ~ 2
&) &0) i Ob N Q Q© =
& & & W < T
(o 5 3,11 S
&S 2,06 S
0 o , 5
N QL(\ :
0
O=CNN =O==CND CNN CND

[] CRA: Components RhoArchitecture

[7] FUW: Frameworks used in WebIDERho

Fig. 11. Cyclomatic complexity graphs for the Components RhoArchitecture CRA, and the Frameworks used WebIDERho FUW.

Fig. 12 displays the graph of the Halstead metrics HS, HV, HD,
HT, HB and HEF for the CRA and FUW components. Each metric
defines an explanation note, the average per group and its respective
interpretation.

The average AHS = 494 implies that all CRA components are less
complex than FUW, and the average AHV = 55, implies that CRA has
little associated functionality. In addition, 41.3% of HV is from MDB
PRO, i.e., it is a rather complex framework, with a lot of associated
functionality, also the difficulty level is high (HD = 526), has a long
implementation time (HT = 53,444,000) and with high estimated error
(HB = 838.3).

In comparison, the AHD difficulty level is 31% of the CRA compo-
nents and 69% of the FUW components, i.e., approximately one-third.
The difficulty level of RhoEngine is among the lowest (HD = 140, HD
= 154), and it should be noted that it is a JSON-DSL execution engine.
The implementation and understanding time (AHT = 451) are low for
CRA and is approximately 41 times lower than the FUW components.
Similarly, the estimated error (AHB = 18) of CRA is approximately 14
times lower than the estimated error of FUW.

Finally, the HEF values, i.e., the understanding effort for RhoEngine,
EditorRho and WebIDERho are less than 3000, requiring less under-
standing than the FUW components, which are between 3000-8000.
The effort to understand RhoModel is the highest (HEF = 11,073), and
makes sense since we are establishing a new programming model.

14

In general terms, the CRA components are low in complexity, with
little associated functionality that reduces complexity, low level of
difficulty, low implementation and understanding, and low estimation
of errors.

Finally, Fig. 13 plots the Maintainability Index (MI) for CRA, CAS
and FUW. As can be seen, all components and frameworks have a “good
maintainability” (>85, according to [86]). Components developed from
RhoModel, such as CRA and CAS, are higher than the average FUW. It
is worth mentioning that RhoEngine and WebIDERho, cornerstone of
our proposal, have better maintainability than recognized frameworks
such as MDB PRO, jQuery, CodeMirror and Bootstrap. This contributes
to validating the quality of RhoModel’s design and code generation.

In summary, the Components RhoArchitecture CRA and the CAS
Case Studies succeed in obtaining the recommended values for the soft-
ware metrics as specified in the literature. With this software metrics
analysis, we have validated the relevant characteristics of C1-C3.

5.3. Results for case studies and components RhoArchitecture

This section is aimed at validating the relevant C4-C7 character-
istics and/or functionalities of RhoArchitecture, aided by the Case
Studies (HelloRho, Start Wars, ComicSpeechRho, DrawRho), and the
RhoArchitecture Components (RhoEngine, RhoModel, WebIDERho and

E. Chavarriaga, F. Jurado and F.D. Rodriguez Journal of Computer Languages 75 (2023) 101203

Halstead vocabulary size Halstead volume Halstead difficulty
per-module HS per-module (thousands) HV per-module HD
Psi Engine v3.0 mmmm 813 — 112 2515 —— 185
MDB PRO 4.19.2 6760 — 526
jQueryv3.5.1 w1801 s—— 335 ——— 259
CodeMirror v5.1 w2736 663 317
Bootstrap v4.5.0 w1296 —— 174 e 166
Editor Rho v1.0 246 14 71
Average AHS Average AHD
Web IDE Rho v1.1 575 € 55 Average AHV 118 €
2681 760 290
Rho Model v.1.0 626 95 176
Rho Engine v1.1 (server) 413 41 140
RhoEngine v1.1 (client) 610 69 154
0 1000 2000 3000 4000 5000 6000 7000 0 200 400 600 800 0 200 400 600
< _less complex and less associated functionality less difficulty level
Note: the vocabulary size is the measure of the Note: the volume is the measure of complexity to give Note: the difficulty is the measure of
complexity of the sentences of a program/module. more weight to the number of different operators and complexity that determines the difficulty of
operands of functions/methods of a program/module. a program/module.
Halstead time per-module Halstead bugs Averange Halstead effort
(thousands) HT per-module HB per-function HEF
Psi Enginev3.0 mmm 1150 73444 w374 Rho Engine
MDB PRO 4.19.2 > 8383 V1.1 (client)
jQuery v3.5.1 m— 4314 — 111,6 Psi Engine ,1,2990'\‘\\ Rho Engine
CodeMirror v5.1 11665 210 V30 7 9000 ~~_ Nld(server)
’ ’ -~ S \
Bootst 4.5.0 m— — SA - ~< N
:gitsmraRphZ V10 | 57 e >80 MDB PRO - /59?092&53\\ h 0, "o Mode!
: 4,8 4192 1+ (. 5000%Phsy O v10
Web IDE Rho v1.1 359 Average AHT 183 Average AHB EEE (; 63‘.) %107?
18537 ! [
Bho Model v.1.0 929 31,7 253 ! ko9, L %_%3313 j iWeb oE AR
R::(; E;glr\e vll.ll(sell.'ve;) 321 13,7 Query v3.5.1 l\ \\\ . 3 Z—/ p // Vit
oEngine v1.1 (client) 590 23,0 \\\ > ‘ -~ //, K
0 2000 4000 6000 8000 10000 12000 50 100 150 200 250 CodeMirror, | ~=~~"" __gditor Rho
v5.1 Seel 77 v1.0

C—w—lle“ P on time Bootstrap
v4.5.0
Note: the time is the measure to implement and Note: It is the measure of estimated bugs in a
understand a program/module. program/module. < = less understanding effort

Note: the effort is the measure of analyzing

[] CRA: Components RhoArchitecture . FUW: Frameworks used in WebIDERho and understanding a program/module.

Fig. 12. Graphs of the Halstead metrics HS, HV, HD, HT, HB and HEF for the Components RhoArchitecture CRA, and the Frameworks used WebIDERho FUW.

Maintainability Index MI Average Maintainability Index
140
DrawRho v1.0 1 ! 123,9 127,3
ComicSpeechRho v1.0 i 1 114,9
StarWars v1.1 1 1 129,4 11212 13,0 108,3
HelloRho v.1.0 1 1 140,9
Psi Engine v3.0 I 105,5 100
MDB PRO 4.19.2 114,2
jQuery v3.5.1 I 107,4 80
CodeMirror v5.1 I 104,7
Bootstrap v4.5.0 I 109,6 60
Editor Rho v1.0 | ! 122,1
Web IDE Rho v1.1 i 114,2 40
Rho Model v.1.0 | 97,9
Rho Engine v1.1 (server) | 1 116,6 20
Rho Engine v1.1 (client) | 11143
85 114,3
0 50 100 150 0

[] cRA: Components RhoArchitecture [] cas: case studies [7] FUW: Frameworks used in WebIDERho

Fig. 13. Maintainability Index MI for RhoArchitecture CRA, Frameworks used WebIDERho FUW, and Case Studies CAS.

EditorRho). For each characteristic, it will be summarized how its (P) multiple-simple (multiple programs of a RhoLanguage): DrawRho

objecgtives have been achieved. is a RhoLanguage, where multiple programs (e.g. StarWars.json,
F : i L. i . .

eature C4: Capacity to create Rholanguages and execution Speechs.json) can be written and run on the same SVG canvas,

RhoPrograms:
with the opportunity to generate endless graphics.
(S) simple-simple (a program of a RhoLanguage): HelloRho is a (M) multiple-multiple (multiple programs written in multiple RhoLan-
RhoLanguage, where the program ‘“hello.json” is written and ex- guages): MRho and MIRho are RhoLanguages of RhoModel,

ecuted. ComicSpeechRho is a RhoLanguage, where its program
“code.json” is executed at the server level. Finally, ProjectRho
is a RhoLanguage dedicated to the administration of a project in
WebIDERho, it executes a program when a project is edited. and multiple MIRho programs.

when you run the compilation and code generation of a project
in WebIDERho, internally you are running one MRho program

15

E. Chavarriaga, F. Jurado and F.D. Rodriguez

O Feature C5: Capacity to accept heterogeneous XML, JSON and
Text data sources:

(X) XML: in RhoModel the templates for code generation are stored
in XML. Similarly, in ComicSpeech the templates are saved in
“templates.xml” file for page generation.

(J) JSON: in WebIDERho the information of all projects grouped by
user is stored in a JSON file.

(XJ) XML/JSON: in DrawRho, the Actors and ComicSpeech informa-
tion used in the diagram are stored in the file “sources.json”, and
the templates of the graphic library “templates.xml” are stored
in an XML file.

(XJT) XML/JSON/Text: the Star Wars case study illustrates the flex-
ibility of RhoModel to associate in the same class information
stored in XML (“details.xml” file), JSON (“actors.json” file) and
Text (“descriptions.txt” file).

O Feature C6: Creation and use of Components and Web Compo-
nents:

(C) Components: RhoModel-based components have been created
for all the projects studied in this analysis.

(W) Web Components: DrawRho uses the SVG templates of graphi-
cal elements specified in XML in the “templates.xml” file, and
the Handlebars template engine for the generation of graphical
elements on an SVG canvas. On the other hand, in RhoEngine,
you have the base classes for the creation of Web Components.

O Feature C7: Definition and use of Templates Engine:

(P) Plain: in RhoModel this engine is used to generate the JavaScript
code of a project. While in Star Wars this engine is used to
display the Star Wars actors’ information.

(H) Handlebars: In WebIDERho, this engine is used to generate the
development environment of a Rho project, a novel approach
that may allow for multiple project types in the future. On
the other hand, in DrawRho, this engine is used to create SVG
graphic elements.

(PEHO) All engines: the ComicSpeechRho case study is focused on using
all available engines for verification.

Based on the above findings, we have qualitatively validated the
relevant characteristics C4-C7.

5.4. Validation summary

Table 5 summarizes the validations for the list of relevant char-
acteristics of RhoArchitecture. On the one hand, with the analysis of
software metrics on the RhoArchitecture Components and the Case
Studies, the relevant characteristics C1, C6—C7 were validated. On the
other hand, the relevant characteristics C2—-C5 were validated with the
Case Studies.

To conclude, following the qualitative case study methodology sug-
gested by [19] and adapted by [20], and using the validation summary
of the relevant characteristics shown in Table 5, we provide a validation
of the most relevant characteristics or aspects of RhoArchitecture, such
as: the RhoModel programming model, the creation and execution of
JSON-DSL'’s, the creation of Components and Web Components, the use
of Templates Engine, and the exchange of heterogeneous XML, JSON
and Text information.

5.5. Validity threats

This section summarizes the threats to the internal and external
validity of the performed work on the specification and execution of
JSON-based Domain Specific Languages. Thus, we will discuss four
identified threats to internal validity.

16

Journal of Computer Languages 75 (2023) 101203

The first two threats are related to the evaluation using the multi-
case type in different scenarios, and the consistency and precision of
the results. Although the case studies allowed us to globally evaluate
the features of the RhoArchitecture to solve domain-specific problems,
more case studies are required to determine the efficiency, precision
and reliability of JSON-DSLs in aspects such as: (i) concurrent execu-
tion of RhoCode program written in several RhoLanguages; (ii) run-
time memory requirements; (iii) interaction between different RhoLan-
guages; (iv) capability to work with large volumes of data; and (v) load
tests. On the one hand, these threats are mitigated with the quality
of the JavaScript component associated with JSON-DSL and evaluated
through different software metrics. On the other hand, performance and
reliability are guaranteed by the browser and the NodeJS server.

The other two internal threats identified are related to error and
exception evaluation, and semantic validation. The case studies in
Section 4 help us control these threats, but again, it depends on the
quality of the JavaScript component.

Regarding the external validity of the work, we want to discuss two
threats. The first threat is related to the generalization of JSON-DSLs
compared to Textual DSLs. For domain experts, it can be difficult or
confusing to write solutions in JSON format compared to any other tex-
tual language. This threat can be mitigated with a good documentation
and illustrative examples of the JSON-DSL. The second relevant threat
refers to the usability of WebIDERho for the creation of JSON-DSL.
Currently, WebIDERho is based on the PsiModel [9] implementation
model, which uses code-behind techniques separating the specification
from the implementation. To mitigate this threat, our future works
include to extend the functionality of the Class Diagram based on
DPG (Diagram Programming Generate [70,71]), so that the creation
of a JSON-DSL can be performed in a visual way, that is, we will
work in a Domain-Specific Visual Language for the specification and
creation of JSON-DSL. Also, it should include the automatic generation
of documentation and a debugging and execution area. We are aware
that WebIDERho is limited, but it offers the necessary tools and features
for our purpose, the construction and execution of JSON-based Domain
Specific Languages.

6. Conclusions

Domain-specific languages enable the construction of software ap-
plications with high speed by increasing the productivity, of both
software engineers and domain experts, due to the level of abstraction
they provide. Building a DSL solution involves the use of tools for
implementing interpreters and compilers. However, as we have shown,
few approaches can create DSL alternatives with JSON grammar for
web applications at both the web server and web client levels.

To address this initiative, in this article we have formalized and
validated an architecture that allows us to work with JSON-based
Domain Specific Languages (JSON-DSL) solutions to address domain-
specific problems at both the web server and web client level, called
RhoArchitecture. RhoArchitecture includes a RhoEngine evaluation en-
gine, a RhoModel programming model and a WebIDERho lightweight
web development environment. Our approach allows the creation and
evaluation of JSON-DSLs, JavaScript Components and Web Compo-
nents, Templates Engine, and the use of connectors to heterogeneous
information sources (JSON, XML, Text formats) to encapsulate func-
tionality and integrate them with other web widgets, components
and/or frameworks, to create fast, robust, and flexible solutions for
a web application. In this context, we have formally defined RhoLan-
guages and its grammar RhoGrammar to implement JSON-DSLs, which
can be implemented with RhoModel and executed with RhoEngine.

To demonstrate the capabilities and potential of our approach, we
have presented four Case Studies to validate the most relevant charac-
teristics or aspects, such as the creation and execution of JSON-DSLs,
the creation of Components and Web Components, the use of Templates
Engine, and the exchange of heterogeneous information. In the first

E. Chavarriaga, F. Jurado and F.D. Rodriguez

Journal of Computer Languages 75 (2023) 101203

Table 5
The RhoArchitecture relevant characteristics list and the validations summary.
o
<
o
N 2 3
S 3 = o ° & o
£ < < © =% Q
& & T & = ¢ £
w S o] ° t = H
L Q S @] = % | £ %
Relevant characteristics E =& = &8 £ & 8 s
Implementation and execution of RhoEngine as a reusable
C1 JavaScript component and working at both web server (W) IWC EC EC EC EC EC EW EC
and web client (C) level.
Implementation and use of the MRho, MIRho and EditorRho
2 languages of RhoModel for WebIDERho. & & 4 & @ & = &
Implementation of case studies: HelloRho, Start Wars,
&2 ComicSpeechRho, DrawRho. ® = ® = = S c b
ca Capa;lty crgate RhoLang]uages aﬁd executlonl R.hoProglra'ms: = M S = S = S P
(S) simple-simple; (P) multiple-simple; (M) multiple-mdltiple.
Capacity to accept heterogeneous data sources: (X) XML;
C5 () JSON; (T) Text. 53] X J 3] B XIT X X
c6 Creation and use of (C) Components y (W) Web W C C c C c c ow
Components.
7 Definition and use of Templates Engine: (P) Plain; (E) EJS; (H) = P u = P PEHO H
Handlebars; and (O) Hogan.
case, HelloRho allows us to create and execute a RhoLanguage. The sec- Acknowledgment

ond case study, Start Wars, highlights the use of multiple heterogeneous
information sources (XML, JSON, and Text) implemented in a single
class. The third case study, ComicSpeechRho, validates programming at
the web server level, with the creation of a RhoLanguage, a web service,
the use of Templates Engine and the design of web pages with material
design. The last case study, DrawRho, comprehensively validates the
most relevant aspects of RhoArchitecture.

In the field of Software Engineering, a software metric represents
an objective measure to know or estimate a characteristic of an in-
formation system. The analysis presented in this article allows us to
affirm that the RhoArchitecture Components (RhoEngine, RhoModel,
WebIDERho and EditorRho) are not very complex: they have little
associated functionality that reduces their complexity; their level of
difficulty, implementation and understanding are low; error estimation
is also low; and they have good maintainability. It is worth noting that
these values were compared with recognized frameworks such as MDB
PRO, jQuery, CodeMirror and Bootstrap, and that, in many of the cases,
Components RhoArchitecture obtained better-recommended values in
these software metrics.

As part of our future work, we aim to incorporate Domain Specific
Visual Languages capabilities to the approach that is based on Diagram
Programming Generate (DPG). In addition, we plan to develop new
RhoLanguages such as BPMERho, which will allow the execution of
BPMN 2.0, MDBRho for creating components, forms, navigation, dia-
logue boxes, block designs, etc. using Material Design Bootstrap, and
RESTRho for specifying and executing a REST API through a JSON-DSL.

CRediT authorship contribution statement

Enrique Chavarriaga: Conceptualization, Methodology, Software,
Validation, Data curation. Francisco Jurado: Conceptualization, Writ-
ing — original draft, Writing — review & editing. Francy D. Rodriguez:
Investigation, Writing — review & editing.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article

17

The validation of this was carried in collaboration with the researh
departament (I+D+i) of UGround Global S.L. (http://www.uground.

com/).

References
[1] M. Voelter, DSL Engineering: Designing, Implementing and using Domain-Specific

Languages, Dslbook, 2013.

M. Fowler, T. White, Domain-Specific Languages, Addison-Wesley Professional,

Denver, 2010.

W3c, Extensible Markup Language (XML) Version 1.1, W3C Recomm, 2006,

https://www.w3.org/standards/xml/ (accessed August 30, 2021).

J. Fawcett, L. Quin, D. A, Beginning XML, fifth ed., Wrox Press, 2012.

W3C, Document Object Model (DOM) Level 3 Core Specification Version 1.0,

W3C Recomm, 2004, https://www.w3.org/TR/DOM-Level-3-Core/ (accessed

September 3, 2021).

W3C, Scalable Vector Graphics (SVG) 2, W3C Candidate Recomm, 2018, https:

//www.w3.0rg/TR/SVG2/ (accessed August 30, 2021).

W3C, Mathematical Markup Language (MathML) Version 3.0, W3C Recomm,

2014, https://www.w3.org/TR/MathML3/ (accessed September 1, 2021).

W3C, XSL Transformation (XSLT) Version 2.0, W3C Recomm, 2021, https://

www.w3.0org/TR/xslt20/ (accessed September 1, 2021).

E. Chavarriaga, F. Jurado, F. Diez, An approach to build XML-based domain

specific languages solutions for client-side web applications, Comput. Lang. Syst.

Struct. 49 (2017) http://dx.doi.org/10.1016/.c1.2017.04.002.

E. Chavarriaga, F. Jurado, F. Diez, PsiLight: A lightweight programming language

to explore multiple program execution and data-binding in a web-client DSL

evaluation engine, J. Univers Comput. Sci. 23 (2017) 953-968.

ECMA, ECMA-404: The JSON Data Interchange Syntax, first ed., 2018, https://

www.ecma-international.org/publications-and-standards/standards/ecma-404/

(accessed September 2, 2021).

W3C Recommendation, JSON-LD 1.1: A JSON-Based Serialization for Linked Data

(W3C Recommendation 16 July 2020), 2020, https://www.w3.org/TR/json-1d/.

Web Payments Working Group, JSON for Linking Data, 2022, https://json-

1d.org/.

T. Ge, Y. Zhao, B. Lee, D. Ren, B. Chen, Y. Wang, Canis: A high-level language

for data-driven chart animations, Comput. Graph. Forum 39 (2020) 607-617.

A. Sarasa-Cabezuelo, J.-L. Sierra, Grammar-driven development of JSON pro-

cessing applications, in: 2013 Fed. Conf. Comput. Sci. Inf. Syst., 2013, pp.

1557-1564.

A.A. Frozza, R. Mello, S. dos, JS4Geo: a canonical JSON schema for geographic

data suitable to NoSQL databases, Geoinformatica 24 (2020) 987-1019.

J. Xin, C. Afrasiabi, S. Lelong, J. Adesara, G. Tsueng, A.L. Su, et al., Cross-

linking BioThings APIs through JSON-LD to facilitate knowledge exploration,

BMC Bioinformatics 19 (2018) 1-N.PAG..

D.C. Schmidt, Model-driven engineering, Comput 39 (2006) 25-31.

R.K. Yin, Case Study Research: Design and Methods, fifth ed., Sage Publications,

Inc., London, 2014.

P. Baxter, S. Jack, Qualitative case study methodology. Study design and

implementation for novice researchers, Qual. Rep. (2008) 13-17.

[2]
[3]
[4]
[5]
[6]
[71
[8]

[91]

[10]

[11]

[12]
[13]
[14]

[15]

[16]
[17]
[18]
[19]

[20]

http://www.uground.com/
http://www.uground.com/
http://www.uground.com/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb1
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb1
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb1
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb2
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb2
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb2
https://www.w3.org/standards/xml/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb4
https://www.w3.org/TR/DOM-Level-3-Core/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/xslt20/
https://www.w3.org/TR/xslt20/
https://www.w3.org/TR/xslt20/
http://dx.doi.org/10.1016/j.cl.2017.04.002
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb10
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb10
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb10
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb10
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb10
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.w3.org/TR/json-ld/
https://json-ld.org/
https://json-ld.org/
https://json-ld.org/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb14
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb14
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb14
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb15
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb15
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb15
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb15
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb15
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb16
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb16
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb16
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb17
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb17
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb17
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb17
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb17
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb18
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb19
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb19
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb19
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb20
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb20
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb20

E. Chavarriaga, F. Jurado and F.D. Rodriguez

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

M. Mernik, J. Heering, A.M. Sloane, When and how to develop domain-specific
languages, ACM Comput. Surv. 37 (2005) 316-344.

D. Spinellis, Notable design patterns for domain-specific languages, J. Syst. Softw.
56 (2001) 91-99.

D. Ghosh, DSLs in Action, Manning Publications, Greenwich, 2010.

S. Erdweg, P.G. Giarrusso, T. Rendel, Language composition untangled, in: Proc.
12th Work. Lang. Descr. Tools, Appl. LDTA 2012, 2012, http://dx.doi.org/10.
1145/2427048.2427055.

L.M. do Nascimento, D.L. Viana, P.A.S. Neto, D.A. Martins, V.C. Garcia, S.R.
Meira, A systematic mapping study on domain-specific languages, in: Seventh
Int. Conf. Softw. Eng. Adv. (ICSEA 2012), 2012, pp. 179-187.

T. Kosar, S. Bohra, M. Mernik, Domain-specific languages: A systematic mapping
study, Inf. Softw. Technol. (2016) 71, http://dx.doi.org/10.1016/j.infsof.2015.
11.001.

A. Tung, J. Carbonell, L. Marchezan, E. Rodrigues, M. Bernardino, F.P. Basso, et
al., Systematic mapping study on domain-specific language development tools,
Empir. Softw. Eng. 25 (2020) 4205-4249.

D. Brown, J. Levine, T. Mason, Lex & Yacc, second ed., O’Reilly Media, New
York, 1992.

J. Levine, Flex & Bison, O’Reilly Media, Sebastopol, 2009.

Microsoft, Modeling SDK for visual studio - Domain-specific languages, 2022,
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-
visual-studio-domain-specific-languages?view=vs-2022.

M. Bravenboer, K.T. Kalleberg, R. Vermaas, E. Visser, Stratego/XT 0.17. A
language and toolset for program transformation, Sci. Comput. Program. 72
(2008) 52-70.

M. Mernik, M. Leni¢, E. Avdi¢ausevié¢, V. Zumer, LISA: An interactive environ-
ment for programming language development, in: Int. Conf. Compil. Constr.,
2002, pp. 1-4.

L.C.L. Kats, K.T. Kalleberg, E. Visser, Domain-specific languages for composable
editor plugins, Electron. Notes Theor. Comput. Sci. (2010) 253, http://dx.doi.
0rg/10.1016/j.entcs.2010.08.038.

H. Rajan, ANTLR: A brief review, 2022.

L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend, Packt
Publishing, 2013.

M. Toussaint, T. Baar, Enriching Textual Xtext-DSLs with a Graphical GEF-Based
Editor, in: LNCS, vol. 10742, Springer Verlag, 2018.

R. Gronback, Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit, Addison-Wesley Professional, Denver, 2009.
M. Brambilla, J. Cabot, M. Wimmer, L. Baresi,
Engineering in Practice, second ed., 2017.

A. Diez, N. Nguyen, F. Diez, E. Chavarriaga, MDE for enterprise application
systems, in: Model. 2013 - Proc. 1st Int. Conf. Model. Eng. Softw. Dev., 2013.
AR. Da Silva, Model-driven engineering: A survey supported by the unified
conceptual model, Comput. Lang. Syst. Struct. 43 (2015) 139-155.

L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend, Packt
Publishing Ltd, 2016.

D.G. Kourie, D. Fick, B.W. Watson, Virtual machine framework for constructing
domain-specific languages, IET Softw. 3 (2009) 1-13.

D. Pollak, V. Layka, A. Sacco, DSL and Parser Combinator. Begin. Scala 3,
Springer, 2022, pp. 237-245.

V. Subramaniam, Programming DSLs in Kotlin, Pragmatic Bookshelf, 2021.

K. Segeljakt, A Scala DSL for Rust code generation, 2018.

F. Dearle, Groovy for Domain-Specific Languages, packt Publishing Ltd, 2015.
P. McGuire, Getting Started with Pyparsing, O’Reilly Media, Inc., 2007.

R.D. Kelker, Clojure for Domain-Specific Languages, Packt Publishing, 2013.

N. Valliappan, R. Krook, A. Russo, K. Claessen, Towards secure IoT programming
in Haskell, 2020.

C. Yue, H. Wang, A measurement study of insecure javascript practices on the
web, ACM Trans. Web 7 (2013) 1-39.

G. Czech, M. Moser, J. Pichler, Best practices for domain-specific modeling. A
systematic mapping study, in: 2018 44th Euromicro Conf. Softw. Eng. Adv. Appl.,
2018, pp. 137-145.

M. Eernisse, Embedded JavaScript Templating (EJS), 2012, https://ejs.co
(accessed November 15, 2021).

A. Mardan, Template Engines: Pug and Handlebars. Pract. Node. js, Springer,
2018, pp. 113-163.

Y. Katz, Handlebars: minimal templating on steroids, 2021, https://handlebarsjs.
com/ (accessed November 10, 2021).

Velasco A. Hogan, JavaScript templating from Twitter, 2021, http://twitter.
github.io/hogan.js/.

WEBCOMPONENTS.ORG, Discuss & share web components, 2021, https://www.
webcomponents.org/ (accessed October 11, 2021).

Model-Driven Software

18

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]
[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]
[86]

[87]

[88]

[89]

Journal of Computer Languages 75 (2023) 101203

W3C, Introduction to Web Components. W3C Work Gr Note, 2014, https://www.
w3.org/TR/components-intro/ (accessed October 1, 2021).

A. Gupta, M. Ahirwar, R. Pandey, Creating website as a service using web
components, Int. Res. J. Eng. Technol. 6 (2019).

P.J. Molina, Quid: prototyping web components on the web, in: Proc. ACM
SIGCHI Symp. Eng. Interact. Comput. Syst., 2019, pp. 1-5.

K. Lano, Q. Xue, S. Kolahdouz-Rahimi, Agile specification of code generators for
model-driven engineering, in: ICSEA 2020, 2020, p. 19.

T. Barth, I.LP. Fromm, Modeling and code generation for safety critical systems,
in: Embed. World Conf., Vol. 2020, 2020.

G. Sebastian, J.A. Gallud, R. Tesoriero, Code generation using model driven
architecture: A systematic mapping study, J. Comput. Lang. 56 (2020) 100935.
A. Prout, J.M. Atlee, N.A. Day, P. Shaker, Code generation for a family of
executable modelling notations, Softw. Syst. Model. (2012) 11, http://dx.doi.
org/10.1007/5s10270-010-0176-6.

O. Fundation, Node.js: JavaScript runtime built on Chrome’s V8 JavaScript
engine, 2021, https://nodejs.org/ (accessed October 30, 2021).

J. Wexler, Get programming with Node. js. Simon and Schuster, 2019.

B. Griggs, Node Cookbook: Discover Solutions, Techniques, and Best Practices
for Server-Side Web Development with Node. js 14, Packt Publishing Ltd, 2020.
D. Flanagan, JavaScript: The Definitive Guide: Master the World’s Most-Used
Programming Language, seventh ed., 2020.

R. Ferguson, JavaScript and Development Tools. Begin. JavaScript Ultim. Guid.
to Mod. JavaScript Dev, A Press, Berkeley, CA, 2019, pp. 11-24, http://dx.doi.
0org/10.1007/978-1-4842-4395-4_2.

M. Haverbeke, CodeMirror, 2017, https://codemirror.net/.

F. Rani, P. Diez, E. Chavarriaga, E. Guerra, J. de Lara, Automated migration of
eugenia graphical editors to the web, in: Proc. 23rd ACM/IEEE Int. Conf. Model
Driven Eng. Lang. Syst. Companion Proc., 2020, pp. 1-7.

E. Chavarriaga, Modelo Programable Para la Serializacién y Evaluacién de Mod-
elos Heterogéneos en Clientes Web (Doctoral Thesis), Repository Autonomous
University of Madrid, 2017.

MDBootstrap, Material Design for Bootstrap V5 & V4, 2022, https://mdbootstrap.
com/ (accessed June 28, 2021).

W.J. Wang, Y.W. Luo, X.L. Wang, X.P. Liu, Z.Q. Xu, Web services based
framework for spatial information and services integration, 28 (2005)
1213-1222.

F. Rademacher, M. Peters, S. Sachweh, Design of a Domain-Specific Language
Based on a Technology-Independent Web Service Framework. Vol. 9278, Springer
Verlag, 2015, pp. 357-371, http://dx.doi.org/10.1007/978-3-319-23727-5_29.
U.-M. Schéfer, SVG.js, 2012, https://svgjs.dev/ (accessed February 28, 2021).
J. Doyle, GreenSock: Engaging the internet, 2021, https://greensock.com/
(accessed February 10, 2021).

OMG, Business Process Model and Notation (BPMN), Version 2.0.4, 2014, https:
//www.omg.org/spec/BPMN (accessed February 20, 2023).

A. Tahir, S.G. Mac Donell, A systematic mapping study on dynamic metrics
and software quality, in: IEEE Int. Conf. Softw. Maintenance, ICSM, 2012,
http://dx.doi.org/10.1109/ICSM.2012.6405289.

M. Riaz, E. Mendes, E. Tempero, A systematic review of software maintainability
prediction and metrics, in: 2009 3rd Int. Symp. Empir. Softw. Eng. Meas., 2009,
pp. 367-377.

A. Jatain, Y. Mehta, Metrics and models for software reliability: A systematic
review, in: 2014 Int. Conf. Issues Challenges Intell. Comput. Tech., 2014, pp.
210-214.

S. Ahsan, F. Hayat, M. Afzal, T. Ahmad, K.H. Asif, HM.S. Asif, et al.,
Object oriented metrics for prototype based languages, Life Sci. J. 9 (2012)
63-66.

V. Nguyen, S. Deeds-Rubin, T. Tan, B. Boehm, A SLOC Counting Standard, Univ
South California, Cent Syst Softw Eng, 2007.

T. McCabe, A complexity measure, IEEE Trans. Softw. Eng. SE-2 (1976) 308-320,
http://dx.doi.org/10.1109/TSE.1976.233837.

G.K. Gill, C.F. Kemerer, Cyclomatic complexity density and software maintenance
productivity, IEEE Trans. Softw. Eng. 17 (1991) 1284.

M. Halstead, Elements of Software Science, Comput Sci Libr, 1977.

P.W. Oman, J. Hagemeister, D. Ash, A Definition and Taxonomy for Software
Maintainability, Univ. Idaho, Softw. Eng. Test Lab, 1991.

J. Stilwell, Escomplex Version 2.0.0-alpha, 2021, https://www.npmjs.com/
package/escomplex (accessed November 2, 2021).

SourceMeter: Version 9.2, Front Softw Ltd, 2021, https://www.sourcemeter.com/
(accessed October 15, 2021).

R. Ferenc, L. Lang6, 1. Siket, T. Gyiméthy, T. Bakota, Source meter sonar qube
plug-in, in: 2014 IEEE 14th Int. Work. Conf. Source Code Anal. Manip., 2014,
pp. 77-82.

http://refhub.elsevier.com/S2590-1184(23)00013-8/sb21
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb21
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb21
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb22
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb22
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb22
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb23
http://dx.doi.org/10.1145/2427048.2427055
http://dx.doi.org/10.1145/2427048.2427055
http://dx.doi.org/10.1145/2427048.2427055
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb25
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb25
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb25
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb25
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb25
http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb27
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb27
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb27
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb27
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb27
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb28
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb28
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb28
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb29
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb31
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb31
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb31
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb31
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb31
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb32
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb32
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb32
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb32
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb32
http://dx.doi.org/10.1016/j.entcs.2010.08.038
http://dx.doi.org/10.1016/j.entcs.2010.08.038
http://dx.doi.org/10.1016/j.entcs.2010.08.038
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb34
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb35
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb35
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb35
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb36
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb36
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb36
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb37
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb37
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb37
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb38
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb38
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb38
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb39
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb39
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb39
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb40
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb40
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb40
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb41
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb41
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb41
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb42
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb42
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb42
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb43
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb43
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb43
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb44
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb45
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb46
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb47
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb48
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb49
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb49
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb49
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb50
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb50
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb50
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb51
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb51
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb51
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb51
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb51
https://ejs.co
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb53
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb53
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb53
https://handlebarsjs.com/
https://handlebarsjs.com/
https://handlebarsjs.com/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
https://www.webcomponents.org/
https://www.webcomponents.org/
https://www.webcomponents.org/
https://www.w3.org/TR/components-intro/
https://www.w3.org/TR/components-intro/
https://www.w3.org/TR/components-intro/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb58
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb58
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb58
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb59
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb59
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb59
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb60
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb60
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb60
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb61
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb61
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb61
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb62
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb62
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb62
http://dx.doi.org/10.1007/s10270-010-0176-6
http://dx.doi.org/10.1007/s10270-010-0176-6
http://dx.doi.org/10.1007/s10270-010-0176-6
https://nodejs.org/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb65
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb66
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb66
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb66
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb67
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb67
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb67
http://dx.doi.org/10.1007/978-1-4842-4395-4_2
http://dx.doi.org/10.1007/978-1-4842-4395-4_2
http://dx.doi.org/10.1007/978-1-4842-4395-4_2
https://codemirror.net/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb70
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb70
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb70
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb70
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb70
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb71
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb71
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb71
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb71
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb71
https://mdbootstrap.com/
https://mdbootstrap.com/
https://mdbootstrap.com/
http://dx.doi.org/10.1007/978-3-319-23727-5_29
https://svgjs.dev/
https://greensock.com/
https://www.omg.org/spec/BPMN
https://www.omg.org/spec/BPMN
https://www.omg.org/spec/BPMN
http://dx.doi.org/10.1109/ICSM.2012.6405289
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb79
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb79
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb79
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb79
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb79
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb80
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb80
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb80
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb80
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb80
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb81
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb81
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb81
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb81
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb81
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb82
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb82
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb82
http://dx.doi.org/10.1109/TSE.1976.233837
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb84
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb84
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb84
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb85
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb86
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb86
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb86
https://www.npmjs.com/package/escomplex
https://www.npmjs.com/package/escomplex
https://www.npmjs.com/package/escomplex
https://www.sourcemeter.com/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb89
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb89
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb89
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb89
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb89

	An approach to build JSON-based Domain Specific Languages solutions for web applications
	Introduction
	Outline and related works
	Approach to building JSON-based Domain Specific Languages
	Brief Overview
	The RhoArchitecture
	The RhoEngine
	The RhoLanguage
	The RhoModel
	The WebIDERho
	Implementation summary
	Final comments

	Cases of studies
	Implementing the HelloRho JSON-DSL
	Associate heterogeneous data sources of information
	Creating a simple ``web service''
	Creating an SVG diagramming JSON-DSL
	Other examples

	Results and validation
	Defining relevant characteristics of RhoArchitecture
	Validating the implementation of RhoArchitecture and Case Studies
	Software metrics used to validate JavaScript modules
	Analysis of JavaScript code generated with RhoModel

	Results for Case Studies and Components RhoArchitecture
	Validation summary
	Validity threats

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

