
Journal of Computer Languages 75 (2023) 101203

A
w
E
a

b

c

A

K
D
J
J
J
W
T

1

t
a
t
p
h

e
A
o
a
l
w
e
t
a

4
p
s
c

h
R
A
2
(

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

n approach to build JSON-based Domain Specific Languages solutions for
eb applications

nrique Chavarriaga a,∗, Francisco Jurado b, Francy D. Rodríguez c

Uground Global S.L., Madrid, Spain
Universidad Autónoma de Madrid, Madrid, Spain
Universidad Católica de Ávila, Ávila, Spain

R T I C L E I N F O

eywords:
omain-Specific Languages
avaScript
SON
SON-DSL
eb applications

emplates engine

A B S T R A C T

Because of their level of abstraction, Domain-Specific Languages (DSLs) enable building applications that
ease software implementation. In the context of web applications, we can find a lot of technologies and
programming languages for server-side applications that provide fast, robust, and flexible solutions, whereas
those for client-side applications are limited, and mostly restricted to directly use JavaScript, HTML5, CSS3,
JSON and XML. This article presents a novel approach to creating DSL-based web applications using JSON
grammar (JSON-DSL) for both, the server and client side. The approach includes an evaluation engine, a
programming model and an integrated web development environment that support it. The evaluation engine
allows the execution of the elements created with the programming model. For its part, the programming model
allows the definition and specification of JSON-DSLs, the implementation of JavaScript components, the use of
JavaScript templates provided by the engine, the use of link connectors to heterogeneous information sources,
and the integration with other widgets, web components and JavaScript frameworks. To validate the strength
and capacity of our approach, we have developed four case studies that use the integrated web development
environment to apply the programming model and check the results within the evaluation engine.
. Introduction

Domain-Specific Languages (DSLs) provide a high level of abstrac-
ion to model, specify and define structures, specifications and function-
lities that solve domain-specific problems. The goal of a DSL is to ease
he process of implementing a system or part of it, allowing domain ex-
erts to be involved in the development process of reliable, robust and
igh-quality systems to provide solutions to specific problems [1,2].

The DSL deployment implies using parsers, analyzers and code gen-
rators to evaluate and execute the code behind the DSL specification.
lso, to favor the deployment of DSLs, we can find Integrated Devel-
pment Environments (IDEs), such as Visual Studio, Eclipse, NetBeans
nd WebStorm, among others, that provide utilities and dedicated
anguages and frameworks to design and implement DSLs. Focusing on
eb application development, when we must define grammars that are
asy to integrate into the building and deployment of web applications,
here are two widely adopted de facto standards: those based on XML
nd those based on JSON.

Thus, on the one hand, when a DSL based on the XML standard [3,
], i.e. the DSL follows an XML grammar (XML-DSL), general purpose
arsers such as Document Object Model (DOM) [5] can be used for the
pecification of domain-specific solutions and the evaluation and exe-
ution of the DSL. Besides, when the approaches use languages such as

∗ Corresponding author.
E-mail addresses: echavarriaga@uground.com (E. Chavarriaga), francisco.jurado@uam.es (F. Jurado), fdiomar.rodriguez@ucavila.es (F.D. Rodríguez).

HTML5, SVG [6], MathML [7] and XSLT [8], the solutions are enhanced
on the client side, both visually and functionally. As an example, we can
mention the work in [9], where we can find the PsiEngine, a XML-DSL
execution engine for web clients, and a set of tools that facilitate the
development and running of those DSLs. In [9,10] the authors show
case studies of DSL with XML-based solutions that use the PsiEngine
for different domain-specific problems.

On the other hand, the JSON standard [11] focuses on information
exchange both on the server and client side. Thus, we can mention
JSON for Linked Data (JSON-LD) [12,13], which allows the exchange
of structured information that can be read and shared automatically.
However, several issues arise when we specify a DSL that follows a
JSON grammar (JSON-DSL), namely: how is the JSON-DSL grammar
defined, what parsers, analyzers and code generation tools can we use
to run the DSL, how is evaluated a program written in JSON-DSL, and
whether can multiple programs and multiple JSON-DSLs interact. This
paper proposes an approach that satisfies all these issues.

Despite the growing relevance of web applications and the interest
shown by the scientific and industrial communities in using this kind
of application, there are few research works in the literature dealing
with the specification and evaluation of JSON-DSL at both server- and
ttps://doi.org/10.1016/j.cola.2023.101203
eceived 12 December 2022; Received in revised form 2 March 2023; Accepted 20
vailable online 25 March 2023
590-1184/© 2023 The Author(s). Published by Elsevier Ltd. This is an open acces
http://creativecommons.org/licenses/by-nc-nd/4.0/).
March 2023

s article under the CC BY-NC-ND license

https://doi.org/10.1016/j.cola.2023.101203
https://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2023.101203&domain=pdf
mailto:echavarriaga@uground.com
mailto:francisco.jurado@uam.es
mailto:fdiomar.rodriguez@ucavila.es
https://doi.org/10.1016/j.cola.2023.101203
http://creativecommons.org/licenses/by-nc-nd/4.0/

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203
client-side web applications. Literature on this topic focuses on JSON-
DSLs for solving domain-specific problems and not on tools neither
approaches for implementing JSON-DSLs in general. Most of the works
address the specification of a JSON-DSL and how it works, regardless
of desktop applications, server- or client-side web applications. Thus,
to mention a few, Canis [14] is a high-level language that allows JSON
specifications for data-driven graph animations, JSON-P [15] shows a
case study on the development of a player for simple human–machine
dialogs, JS4Geo [16] is a canonical JSON schema for geographic data
stored in NoSQL databases, and JSON-LS [17] facilitates cross-linking
with BioThings APIs for knowledge exploration.

Therefore, in this article we propose an architecture for building
JSON-DSL, called RhoArchitecture, named after our previous PsiArchi-
tecture [9]. This architecture includes: (a) a JSON-DSL Rho Evalua-
tion Engine (RhoEngine for short), which is the JavaScript component
able to run multiple programs written in different JSON-DSLs; (b)
the Rho Programming Model (RhoModel for short) that establishes
a programming model to add JavaScript functionality and support
the corresponding code generation and documentation; and (c) an
integrated web development environment known as Web Integrated
Development Environment for Rho (WebIDERho for short) to allow
specifying, implementing and deploying NodeJS-based server-side and
client-side projects, as well as visualize the class diagram. Our approach
allows: (i) the specification and evaluation of JSON-DSL; (ii) the im-
plementation of JavaScript components that can interact with the DSL;
(iii) the application of JavaScript Templates Engine that can serve as
a way for programmers to effectively and efficiently generate strings
coded in HTML, JavaScript, CSS, etc.; and (iv) the connection to het-
erogeneous information sources (JSON, XML, and Text) to embed data
and integrate it with other widgets, components, and web frameworks.
With all these features, the goal is to create fast, robust, and flexible
solutions for both server- and client-side web applications.

With these three pieces of the RhoArchitecture (RhoEngine, Rho-
Model and WebIDERho), we try to establish the base for applying
Model-Driven Engineering (MDE) in the specification, implementation,
and deployment of JSON-DSL. MDE is a software engineering paradigm
focused on defining Domain Models to simplify the building of informa-
tion systems [18]. Thus, by combining the concepts of JSON-DSL with
code generation and transformation engines, we set a solid foundation
for applying MDE for web applications.

We will provide four case studies to demonstrate the capability
of JSON-DSL specification and evaluation and the implementation of
JavaScript components in our RhoArchitecture. The first case study is
the classic ‘‘Hello World’’ to show the implementation and execution
of a JSON-DSL. The second case study highlights the ability to manage
multiple heterogeneous information sources (XML, JSON and Text)
integrated. The third case study aims to validate programming at the
server-side with the creation of a web service that includes the speci-
fication of a JSON-DSL, the use of Templates Engine and the design of
web pages. The last case of use, which we called DrawRho, validates
in an integrated way all the features proposed for the RhoArchitecture,
including the interface with other frameworks. In all these case studies
we have followed the qualitative case study methodology suggested
by [19] and adapted it for Software Engineering in [20] to validate
the most relevant characteristics of our approach.

The rest of the article is structured as follows: Section 2 highlights
related works; Section 3 provides an overview of RhoArchitecture and
the relevant features of our approach; Section 4 shows the four case
studies; Section 5 details the results we have obtained; and finally,
Section 6 closes the article with some conclusions and future work.

2. Outline and related works

The term Domain-Specific Language (DSL) is not defined rigorously
in the literature. Fowler [2] defines it as «a computer programming
language of limited expressiveness focused on a particular domain». In [21–
23] the authors agree that a DSL is a programming language that is
2

targeted at a specific problem, such that its syntax and semantics con-
tain the same level of abstraction that the problem domain offers, and
its objective is to facilitate the design, definition and implementation
of information systems that provide a solution to the problem domain.
In addition, according to [2,23] the DSL provides a suitable grammar
so that domain experts can perform these tasks more efficiently and
produce systems of higher quality and reliability. On the other hand,
the work presented in [24] studies the grammar composition of lan-
guages and helps to classify DSLs by considering: language extension,
language restriction, language unification, self-extension and extension
composition.

In [25], we can find a Systematic Mapping Study (SMS1) to de-
termine the most popular domains (in this order: web, network, data
intensive apps, control systems, low-level software, parallel comput-
ing, visual languages, embedded systems, real-time systems, dynamic
systems, among others) where DSLs have been applied, using pub-
lications before 2011. In addition, they perform several research to
list techniques, methods and/or processes dealing with DSLs. Lastly,
SMS1 makes a comparative analysis between types of research versus
domains.

In [26] we can find another Systematic Mapping Study (SMS2) on
DSLs to identify research trends in the period 2006–2012. Their authors
looked for possible open issues and an analysis on what they called
demographics of the literature. In their SMS2, the authors observed that
the DSL community appears to be more interested in the development
of new techniques and methods that support the different phases of the
development process (analysis, design, and implementation) of DSLs,
rather than researching new tools, and only a small portion of studies
focus on validation and maintenance. In addition, the authors observed
that most of the works do not indicate the tools they used for the
implementation.

Moreover, we can find in [27] a last Systematic Mapping Study
(SMS3) to identify and map the tools and IDEs (what authors call
Languages Workbenches LW) in publications between 2012–2019.
They identified 59 tools (9 under commercial licenses and 41 non-
commercial) after analyzing more than 230 papers, and concluded
that the tools largely cover the features proposed in [26] (grouped
in the categories: notation, semantics, editor, validation, testing, and
composability). Furthermore, in SMS3 the authors observed that the
developers adopt a type of textual or graphical notation to implement
their DSL.

The implementation of a DSL involves the use of parsers, analyzers,
and code generation tools to obtain the functionality to run the DSL.
Throughout time, most interpreters and compilers are based on Lex
& Yacc [28] or Flex & Bison [29]. In addition, current IDEs provide
specialized tools, plugins and languages for ease the design and im-
plementation of DSLs. For example, Visual Studio has the Software
Development Kit (SDK) for building model-based DSLs [30] and Eclipse
provides a variety of specialized plugins for building DSLs like Strat-
ego/XT [31], LISA [32], Spoofax [33], Antlr [34], Xtext [35,36] and
Eclipse Modeling Project [37]. From the point of view of MDE [18,
38,39], a survey on software products, platforms and transformation
tools for building modeling languages can be found in [40]. Like-
wise, using general purpose programming languages, together with
specific design patterns and methodologies, we can build internal DSLs,
e.g., for Java [23,41], C# [42], Scala [23,43], Ruby [23], Kotlin [44],
Rust [45], Groovy [23,46], Python [47], Clojure [48], and Haskell [49].

Thus, as far as we know, there are many tools for creating DSLs
that are mainly focused on the creation of textual or graphical DSLs.
However, there are no solutions to implement JSON-DSL. The men-
tioned SMS1, SMS2 and SMS3 do not explicitly refer to the creation
of JSON-DSL, neither the creation of DSL for web client-side. The
papers [14–17] mentioned above, describe how their specification and
the implementation of the functionality of the JSON-DSL are explicitly
performed ad-hoc.

With these two drawbacks – the need to make tools for building

JSON-DSL available; and the need to have an execution engine to run

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203
programs written with JSON-DSL at both at server-side and client-side
of web applications – our work focus on covering these needs and
creating case studies to validate our proposal.

3. Approach to building JSON-based Domain Specific Languages

This section presents a detailed approach to the specification and
implementation of JSON-based Domain Specific Languages (JSON-DSL)
solutions for web applications, both on the server and client side. This
section shows the core ideas related to RhoArchitecture and its three
pieces: RhoEngine, RhoModel, and WebIDERho. Thus, we will start
providing a brief overview of the approach, and afterwards, we will
break down it.

3.1. Brief overview

RhoArchitecture’s cornerstone is the RhoEngine, a JavaScript com-
ponent that can run multiple programs written in different JSON-DSLs.
A JSON-DSL is a programming language that follows a JSON gram-
mar, while RhoLanguage is a JSON-DSL plus the JavaScript classes
that implement grammar elements’ functionality. The running of a
JSON-DSL program evaluates the functionality of the nested grammar
symbols, starting from the root and drilling down based on grammar
definition. JSON-DSLs running in RhoEngine can connect and exchange
heterogeneous information, use template engines, use components and
web components, apply security policies, and follow good programming
practices [50,51], making their code more functional, reliable, and
robust.

To allow a JSON-DSL work with the RhoEngine, we must follow
the RhoModel, which establishes a programming model for generating
JavaScript code and documentation. As we will detail, the RhoModel
focus on specifying the JSON-DSL and implementing the JavaScript
components and other necessary reusable web components at both
the server- and client-side. The RhoModel is based on our previous
PsiModel [9].

Finally, the WebIDERho uses the RhoModel as programming model
and the RhoEngine as the execution environment. WebIDERho en-
ables us to define projects at the server and client-side, visualize
the class diagram, automatically generate documentation, and deploy
NodeJS-based server and client-side web applications.

3.2. The RhoArchitecture

To follow our explanation, Fig. 1 presents the software architecture
that defines, at a conceptual level, the components involved in our
approach to work with JSON-DSLs, i.e., the RhoArchitecture. The main
goal of this architecture is to facilitate next two steps:

𝑖. Specifying a JSON-DSL: in this step, a JSON-DSL is defined as
a RhoLanguage using the RhoModel (in the lower-central part
of Fig. 1). To do so, first we must define the JSON-DSL gram-
mar and then implement the functionality related with the el-
ements (terminal and non-terminal symbols) of the grammar.
In the RhoModel, this functionality must be provided as a set
of JavaScript Classes by inheriting from the RhoLanguage base
classes to ease the programmer’s task. The functionality associ-
ated to each element of the grammar is implemented in what
we call Components (at the bottom of Fig. 1). After providing
the grammar and the related functionality, the RhoModel can
generate the JavaScript code when evaluating the corresponding
JSON-DSL code.

𝑖𝑖. Evaluating the JSON-DSL: the main goal of this step is to fetch
a RhoCode program (on the left side of Fig. 1) written in a
RhoLanguage together with the necessary resources (i.e., HTML
fragments, images, videos, css, svg, etc.) and then to run the
RhoCode using RhoEngine. To do so, the RhoEngine generates a
3

RhoProgram by transforming the RhoCode into a JavaScript ob-
ject (the RhoObject on the right side of Fig. 1). This RhoObject is
generated by executing the functionality of each nested element
of the grammar, starting from the root element, and drilling
down according to the definition of its grammar. The obtained
RhoObject solves a specific problem and can run within a web
application, either on server- or client-side. While performing
this step, compilation and execution errors will be reported for
processing.

At the top of Fig. 1, the Data Sources components encapsulate the
functionality to manage information in JSON, XML and Text format.
Thus, any object or class defined in RhoArchitecture can use these
Data Sources components to fetch external information and link one
or more of its properties at runtime. Thus, the proposal allows us to
bring heterogeneous information and assign it to the class with the ap-
propriate parameterization. Therefore, the approach can decouple the
data sources from the JSON-DSLs, adding versatility and power when
implementing solutions to specific problems within a web application.

At the bottom of Fig. 1, we can see Templates. They are pre-
designed text containing variable labels that can be dynamically tuned
to produce customized text output. These templates can be used to
generate HTML, SVG, JSON, XML, and JavaScript code, which speeds
up the development of web applications. To custom manage the use
of the templates, on the left-hand of Fig. 1, we can see the Templates
Engine. A Template Engine is a JavaScript component that enables the
creation of custom Templates using different specific syntaxes (usually
precompiled in memory) to generate strings quickly and efficiently.
There is a variety of Template Engines in the market, and in partic-
ular, we can mention EJS [52], Handlebars [53,54], and Hogan [55]
engines. These engines are added to RhoArchitecture as plugins and are
used easily by RhoEngine. Additionally, RhoArchitecture implements
an easy native Template Engine we have called Plain, with limited
functionality. Using these Template Engines when creating JSON-DSL,
together with the Data Sources binding, exponentially increases the
power and versatility of these languages.

At the bottom of Fig. 1, we can see Web Components [56–59], which
are widgets or reusable components built in HTML, DOM, JavaScript
and CSS, and are deployed within the web application. RhoArchitecture
generates the code of web components automatically by using the
Templates Engine. To incorporate these Programming Components and
Tools into our programming models, we have implemented the Factory
Web Components and Plugins Templates Engine (see Fig. 1 on left of
the RhoModel box).

As can be inferred so far, the main idea behind our approach
is a strong emphasis in code generation, which is a well-established
field in software engineering with a particular focus on model-driven
engineering [60,61]. Code generation brings time savings, increased
efficiency, higher quality and standardization when building informa-
tion systems [62,63]. Thus, in this context, to simplify the specification
of RhoLanguages (which we will detail later in Section 3.4), we need
the RhoModel (see Fig. 1). This allows the definition of RhoGrammars
G and the implementation of Template Engines, Web Components
and JavaScript Components based on RhoEngine. RhoModel separates
specification from implementation following our findings from previ-
ous research work on the former PsiModel [9] and automatic code
generation.

To sum up, with the RhoArchitecture, any JSON- DSL implemented
for RhoEngine is able to connect to heterogeneous data sources (XML,
JSON, text, etc.), to use Templates Engine, to work with Web Compo-
nents in order to add versatility and functionality to the language, and
if security policies and good programming practices are applied then
quite reliable and robust executions can be obtained.

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203

D
w

Fig. 1. Diagram of functional blocks for the RhoArchitecture.
3.3. The RhoEngine

Within the RhoArchitecture, the RhoEngine is the evaluation engine
for JSON-DSLs. Formally, RhoEngine manages a set of RhoLanguages
defined as 𝑃 =

{

𝜌1,… , 𝜌𝑘,… , 𝜌𝑚
}

. That is, it can handle several JSON-
SLs, and in this way, to interpret and evaluate jointly several programs
ritten in JSON to creating components for web application.

Each RhoLanguage 𝜌𝑘 ∈ 𝑃 is registered with an alias. Thus, when
executing a RhoCode 𝑆𝑗 , the alias of the corresponding 𝜌𝑘 is loaded.
The RhoEngine gets the 𝑆𝑗 and the alias for 𝜌𝑘, creates a RhoProgram
𝑅𝑗 and adds it to the list of running programs R =

{

𝑅1,… , 𝑅𝑗 ,… , 𝑅𝑛
}

.
Then, each 𝑅𝑗 converts 𝑆𝑗 into a RhoObject 𝑂𝑗 . This is what we call
evaluation of JSON-DSL, which ends up executing 𝑆𝑗 using a language
𝜌𝑘.

To execute 𝑆𝑗 , RhoEngine gets the grammar of the language 𝜌𝑘
and starting from the root element of the grammar in 𝑆𝑗 , it validates
and evaluates the functionality for that element. Then, it goes deep
into the nested elements of 𝑆𝑗 and analyzes them against the structure
of the grammar of 𝜌𝑘, so that, for each nested element it validates
and evaluates the associated functionality. The execution ends when
RhoEngine has finished going through all the nested elements of 𝑆𝑗 . As
a result of the execution, the RhoProgram 𝑅𝑗 returns a reference to an
object 𝑂𝑗 , which solves a specific problem (or part of it) within a web
application, either at web server or web client side.

Formally, a solution to a specific problem for a W𝐴𝑃𝑃 web applica-
tion can be seen as a set of RhoLanguages programs to be executed:

W𝐴𝑃𝑃 =
{

Sjk |1 ≤ j ≤ n,Sjk coded in 𝜌𝑘 ∈ 𝑃 , 1 ≤ k ≤ m
}

and the execution of a W𝐴𝑃𝑃 web application, either at client or server
side, can be expressed as the set of executions:

Exec(W𝐴𝑃𝑃) =
{

Ojk |1 ≤ j ≤ r,Ojk object reference of
𝑅𝑗𝑘 ∈ R, 1 ≤ k ≤ m

}

,

4

The execution of an application W𝐴𝑃𝑃 can coexist with the ex-
ecutions of other W𝐴𝑃𝑃 written in different 𝜌𝑘 ∈ 𝑃 , i.e., different
JSON-DSL.

Due to RhoEngine evaluates the JSON-DSL code directly, and thanks
to the dynamic nature of JSON, the source program (RhoCode 𝑆𝑗)
can change during its execution by modifying the RhoObject 𝑂𝑗 . To
allow reusing the modified code, RhoEngine can serialize the changes
and create a new 𝑆𝑗 . This same JSON feature would also allow us
to combine RhoCode fragments to build dynamic programs, obtaining
versatility, flexibility, and adaptability to changes in a web application.
Furthermore, unlike other JSON-DSLs, RhoLanguages can associate
external resources (XML, JSON or text) to use and modify information
at runtime. Additionally, they have the ability to use JavaScript Web
Components and Template Engine. The RhoEngine base class has built-
in support for all these features, which can be directly incorporated into
a JSON-DSL specification.

3.4. The RhoLanguage

As mentioned above, a JSON-DSL is a programming language writ-
ten using JSON grammar, and the associated functionality is imple-
mented with JavaScript programming, both client-side and NodeJS-
based server-side [64–66].

From this assertion, these JSON-DSLs can be specified and built
within RhoModel as a JavaScript component (see Fig. 2). We have
denoted these JSON-DSLs by RhoLanguages. For a particular RhoLan-
guage 𝜌𝑘, a RhoGrammar G is defined by a duple:

G =
⟨

E|𝐸𝜙
⟩

(1)

where E=
{

𝐸1, 𝐸2,… , 𝐸𝑛
}

is the set of available objects or elements of
the grammar, that is, the functionality associated to the elements of the
language defined via an instance object 𝐸𝑖. The object 𝐸𝜙 is the root
object of the grammar (for any 𝐸𝜙 ∈ E, 1 ≤ 𝜙 ≤ 𝑛). Each 𝐸𝑖 ∈ E has the
next structure:

𝐸 =
{

𝖢𝖫𝖠𝖲𝖲∶𝑁 , 𝖯𝖱𝖮𝖯𝖤𝖱𝖳𝖨𝖤𝖲∶𝑃 ,𝖢𝖧𝖨𝖫𝖣𝖱𝖤𝖭∶𝐻
}

(2)
𝑖 𝑖 𝑖 𝑖

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203

w
a
o

𝐻

b
n
t
w

i
o

Fig. 2. Association diagram between RhoGrammar G and component K.
here 𝑁𝑖 is the name of the related class, 𝑃𝑖 are the properties or
ttributes for the object 𝐸𝑖, and 𝐻𝑖 defines the children or nested
bjects (see Fig. 2), where:

𝑖 =
{

𝛥𝑖𝑗 |1 ≤ 𝑗 ≤ 𝑚, 𝛥𝑖𝑗 =
{

𝖪𝖤𝖸∶ 𝑘𝑖𝑗 ,𝖪𝖤𝖸_𝖱𝖤𝖥∶ 𝑟𝑖𝑗 ,𝖳𝖸𝖯𝖤∶ 𝑡𝑖𝑗
}}

(3)

een m is the number of nested objects, and 𝛥ij the definition of the
ested object (where 𝑘ij is the reference to an element of the grammar
hat depends on the attribute 𝑟𝑖𝑗 , and 𝑡𝑖𝑗 is the type of nested object,
hich can be ‘‘Object’’, ‘‘Array’’ or ‘‘Map’’).

Once defined the RhoGrammar G, we must implement its semantic,
.e., to code the functionality associated to each object (i.e., the instance
f the corresponding element) of the grammar G that is referenced in

E (see Fig. 2). This functionality is implemented in the grammar’s set
of classes C =

{

𝐶1,… , 𝐶𝑛
}

. The C classes are stored in the package K
of reusable Component coded in JavaScript [8,58] that implements the
entire RhoLanguage 𝜌𝑘. The execution of a program 𝑆𝑗 written with the
grammar of 𝜌𝑘, is the evaluation of all nested objects in the 𝑆𝑗 .

Formally, a RhoLanguage 𝜌𝑘 is defined with the tuple:

𝜌𝑘 = ⟨G|K|E ↔ C⟩ (4)

where RhoGrammar G is the grammar of language 𝜌𝑘, as defined
in (1), K is the reusable JavaScript component that implements the
functionality of the language. 𝜌𝑘, C is the subset of classes that define
the grammar’s functionality G, and finally, E ↔ C is the association
between 𝐸𝑖 and 𝐶𝑖, for each 𝐸𝑖 ∈ E and 𝐶𝑖 ∈ C, respectively. Note that
a class 𝐶𝑖 ∈ C can be associated with multiple elements of the grammar
G, and for an object 𝐸𝑖 ∈ E has only one class defined 𝐶𝑖.

Template 1 and Template 2 shows a possible implementation of a
JavaScript Component for a RhoLanguage 𝜌𝑘 and the grammatical
definition for its execution in RhoEngine. The Template 1 defines the
5

Component K of Fig. 2, and contains: (i) the set of grammar classes C
(where each class inherits RHO. JSONDSL.Base, see Section 3.7), (ii)
the additional classes of the Component K, and (iii) the public interface
of the Component K.

Template 2 shows: (i) defines the Grammar G of Fig. 2 according to
(1), (ii) the register language 𝜌𝑘 in RhoEngine, and finally, (iii) example
of the execution of a programmer 𝑆𝑗 of language 𝜌𝑘 in RhoEngine.

3.5. The RhoModel

Automatic code generation is one of the cornerstones of software
engineering, leading to time savings, greater efficiency, higher quality,
and standardization for building information systems [63,67]. In this
context and as mentioned in the previous section, RhoModel (Rho
Programming Model) allows the specification and implementation of
RhoLanguages, Templates Engines, Web Components and JavaScript
Components. RhoModel separates specification from implementation
based on our previous works on the PsiModel [9] and using code-
behind techniques. RhoModel allows to specify and implement the
following: (i) basic programming elements (Const, Var, Object, Enum,
and Function tags), (ii) classes (Class tag, using the definition given
in [64,67]), (iii) references to external classes (ExternalClass tag),
(iv) JavaScript components (Component tag, using the definition of
component or module given in [67,68]), and (v) definition of DSL’s
(DSL tag).

More details about RhoEngine, RhoLanguages and RhoModel can
be found in the ‘‘Rho API’’ submenu of http://www.devrho.com. This
website includes RhoModel code, automatic documentation, generated
code, and interactive diagrams, of all libraries and projects gener-
ated with RhoModel (‘‘Docs’’ submenu) in its lightweight development

environment WebIDERho.

http://www.devrho.com

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203

6

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203
Fig. 3. Integrated web development environment WebIDERho.
3

s
R
c
b

D
b
m
R
a
d
W

3

t
t
a
o
b
R
b
s
a
o

3.6. The WebIDERho

The WebIDERho Web Integrated Development Environment is im-
plemented to allow developers to create projects at the web server
and web client side, visualize class diagrams, create documentation
automatically, and deploy NodeJS-based web servers and client ap-
plications. WebIDERho manages group of projects called project list.
Fig. 3(a) shows the projects list ‘‘_core’’ (RhoArchitecture core projects),
each project shows its name, description, number of files, and the
edit and delete buttons. In WebIDERho, we can create three kinds of
projects: Empty, RhoLanguage (specification of JSON-DSL’s) and Com-
ponent (creation of JavaScript components), all based on RhoModel.

On the other hand, Fig. 3(b) shows the editor for a WebIDERho
project. The following summarizes the project menu options:

𝑖. Open Projects List : opens projects list by using www.devrho.com
?projects=<list> in the web browser, where <list> is the name
projects list. By default, the RhoModel sample projects (<list> =
_samples) are displayed, which contains the case study projects
detailed in this article.

𝑖𝑖. Compile & Execute compiles the specification file (MRho File)
and the implementation files (MIRho Files) to generate the
JavaScript code. On the other hand, WebIDERho has a simple
environment for the execution of the component.

𝑖𝑖𝑖. Diagram: builds and displays the class diagram of the project (see
Fig. 5). It is possible to create as many diagrams as needed.

𝑖𝑣. Server & Application: deploys NodeJS-based web services and
applications.

𝑣. Options Project : manages the Rho project (save all, edit and
delete). It allows the creation of multiple file types, as it uses
CodeMirror [69] as editor.

𝑣𝑖. Documents: in this submenu we access the utilities for the au-
tomatic documentation of all available RhoEngine components
and examples.

Particularly, Fig. 3(a) shows the projects set with ‘‘<name> =
_core’’, among the list is the implementation of our RhoEngine engine
(Rho project, type Component), the RhoModel programming model
(MRho project, type Component), and this development environment
(WebIDERho project, type Component).
 w

7

.7. Implementation summary

Based on the RhoArchitecture block diagram of Fig. 1, Fig. 4
hows the RhoArchitecture components diagram, and, Fig. 5 details the
hoArchitecture class diagram, where RHO is the name of the main
omponent, and the subcomponents that make it up are summarized
elow:

• Engine is the component that implements our execution engine
RhoEngine.

• JSONDSL is the JavaScript Component that implements the basis
for the creation of RhoLanguage, i.e., the foundations for the
building and implementation of JSON-DSLs.

• DS, Templates 𝑦 Factory are the components that implement the
management of Data Source, Template Engine and Factory Web
Components.

• MRho is the external component that implements our program-
ming model RhoModel.

WebIDERho diagrams are based on Diagram Programming Generate
PG [70], a JSON-DSL that allows to specify programmable diagrams
ased on PsiDiagram [71] for web applications. It is possible to have
ultiple views of the diagram and to see the source code of each
hoModel programming element. As future works, WebIDERho will be
ble to support both textual and visual programming DSLs. The class
iagram in Fig. 5 is a DPG diagram, and the detailed help generated by
ebIDERho can be found at www.devrho.com?doc=rho.

.8. Final comments

Throughout this section, we have presented the RhoArchitecture
hat defines how to specify and implement JSON-DSLs, as well as how
hey are evaluated by the RhoEngine. In summary, a JSON-DSL is
programming language written with JSON grammar. The grammar

f the language and its functionality (denoted by RhoLanguage) can
e specified and built using the Rho Programming Model (named
hoModel). Finally, the integrated web development environment, We-
IDERho, enable the use of the RhoModel and allows defining web
erver and web client projects, visualize the class diagram, create
utomatic documentation, deploy servers, and web applications based
n NodeJS.

Next section focuses on developing case studies to validate the
hole approach.

http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?projects=%3clist%3e
http://www.devrho.com?doc=rho

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203
Fig. 4. RhoArchitecture components diagram.
Fig. 5. RhoArchitecture class diagram. Visual language for RhoModel visualization based on DPG.
4. Cases of studies

In this section, we will detail how to apply and validate our whole
approach. Thus, the aim of the case studies is to illustrate the use
of RhoArchitecture and the RhoEngine. The first case is the classical
‘‘Hello World’’, where we create a very simple JSON-DSL to show in
a straightforward way how to specify and deploy a RhoLanguage. The
second case study highlights the use of multiple heterogeneous data
8

sources (XML, JSON and Text) implemented in a single class. The third
case study deals with validating the capabilities to the RhoEngine for
server-side applications, using a RhoLanguage for implementing a REST
service for the back-end, creating Templates Engine, and designing web
pages that use Material Design for the front-end (for example, by using
MDBootstrap [72]). The last case study fully validates the most relevant
features of the RhoArchitecture, namely: the specification of a RhoLan-
guage, the implementation of Components and Web Components, the

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203

u
a

4

o
t

Fig. 6. Program HelloRho ‘‘hello.json’’ and its execution in RhoEngine.
t
s

se of Templates Engine, the exchange of heterogeneous information,
nd the integration with other frameworks.

.1. Implementing the HelloRho JSON-DSL

HelloRho is a JSON-DSL that aims to show a simple specification
f a RhoLanguage. In Fig. 6(a), we can see how HelloRho implements
he functionality for the grammar in only one class C = O = {𝐻𝑒𝑙𝑙𝑜}.

Also, RhoModel uses Template 1 (see Section 3.4) as a guide for the
code generation, and to implement the reusable JavaScript Component
K in ‘‘HelloRho.js’’. Also, we can observe that the functionality of this
grammar (at the bottom of Fig. 6(a)) consists of adding a DIV element
in a container with an identifier (attribute this.dentifier), and
then modifying the text Content (attribute this.message) and the
style (attribute this.style).

For its part, Fig. 6(b) shows the definition of the grammar. As
we can see, the name of the grammar is ‘‘HelloRho’’, it has only the
root element containing two properties: message (mandatory property
with {VALID: true}) and style. The JavaScript class that implements
its functionality (‘‘Hello’’), and no children as nested elements. That is,
we have the grammar for HelloRho G = ⟨O|𝑂𝑟𝑜𝑜𝑡⟩ specified according
to (1), where the HelloRho language is defined by:

𝐻𝑒𝑙𝑙𝑜𝑅ℎ𝑜 = ⟨G|K|O ↔ C⟩

Finally, in Fig. 6(c), we can see result for the execution of the
program written in the RhoCode (𝑆𝑗 = ‘‘hello.json’’ at the bottom
of Fig. 6(c)). This program can be modified and executed as de-
sired. This example is available at devrho.com, in the menu option
‘‘Samples>Hello world!!’’.

4.2. Associate heterogeneous data sources of information

The TestSources case study aims to validate the ability to associate
heterogeneous Data Sources in XML, JSON and Text formats for Objects
and Classes defined in RhoArchitecture. This example consists in dis-
playing the character’s information coming from different Data Sources
(see Fig. 7(a)), as described below: (i) the first and last name comes
from a JSON file ‘‘actors.json’’; (ii) the age, email and image reach from
an XML file ‘‘details.xml’’; and (iii) the description is loaded from tags
in a Text file ‘‘descriptions.txt’’. The information from the different Data
Sources can be accessed through a Key identifier, as shown in Fig. 7(a).

Fig. 7(b) shows how RhoModel can define attributes within an

Object or Class, whose source links to a Data Source (XML, JSON

9

and Text). For instance, the attribute Name, takes the information of
‘‘{{info:First}}’’; the variable info links to the source ACTORS, in
turn, registered in the RHO.DS component. Another remarkable detail
is how the tags are configured (using JavaScript regular expressions) in
the desc attribute to obtain the enumerate of the Actor.

Finally, Fig. 7(c) shows the execution that displays the information
of an Actor through its identifier. Note that RhoModel’s Plain template
engine and MDBootstrap [72] were used for the template design.

In this case study, it is worth noting that the Actor class brings
together the three available data sources. In perspective, if the data
sources are linked to SOAP Services [73], REST services [74], or to
non-relational databases, the Actor class could directly update the
information through these services, being transparent to the class. If
we add the use of template engines, and the design of web pages with
material design, then RhoArchitecture is an interesting alternative in
implementing and deploy web applications, both at client- and server-
side. This case study is available at devrho.com, in the menu option
‘‘Samples>Star Wars Actors’’.

4.3. Creating a simple ‘‘web service’’

ComicSpeech is a RhoModel project that aims to validate the server-
side programming of RhoEngine in the following aspects: (i) specifica-
tion of a web service, (ii) creation of a server-side RhoLanguage and
(iii) the use of the different Templates Engine with material design for
Bootstrap [72].

Fig. 8(a) shows a RhoCode that manages the list of speeches and
heir search. Also, Fig. 8(a) outline the methods available on the web
ervice ‘‘/comicspeech’’. Thus:

(𝑖) the method ‘‘/list’’ (shows the available list of speeches), and
(𝑖𝑖) the method ‘‘/speech’’ (search for a list of comma-separated

speeches).

Fig. 8(b) shows the output for the execution of this method for:
Ouch, Hey and ZZZ ‘‘/speech?search = Ouch,Hey,ZZZ’’. This case study
is available on devrho.com, under the menu option ‘‘Samples>Comic
Speech’’.

4.4. Creating an SVG diagramming JSON-DSL

DrawRho is a RhoLanguage that aims to paint reusable graphical

elements based on an SVG library. DrawRho is based on the creation

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203
Fig. 7. Linking different heterogeneous data sources.
Fig. 8. Example of web services using JSON-DSL and the Templates Engine.
of Web Components with the help of the SVGJS framework [75], the
Handlebars templates [54] and the Draggable plug-in [76] to move the
graphical elements. Thus, DrawRho implements the following graphical
elements:

(𝑖) layer : defines the concept of a graphical layer where it contains
a list of shapes, lines and containers. The graphical layer refers to
the depth at which the set of elements in the layer is located,
10
that is, whether it is at the bottom (defined as the first layer) or
at the front (defined as the last layer). It is defined with the SVG
element grouping tag (g tag).

(𝑖𝑖) shape: is the graphical representation of a figure, object or entity.
It is defined by the grouping of SVG elements (g tag) such as:
rect, circle, ellipse, image, line, polyline, polygon, text, path, etc.
(i.e., all available SVG elements).

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203

t

m
(
(
t
S
t
A
l

B
t
w
o
a
w
o
u

4

m
c
t
B
T
c
c

5

c
E
s
c
W
h
v
a

M
M
w
t
t

q
S
h
t

5

a
s
t
r

5

t
p
s
a
m
(

(𝑖𝑖𝑖) line: is the description of a path with a beginning and an end,
at the edges are defined markers to represent arrows, joints,
connectors, etc. A line can be defined with an SVG line, polyline
or path element, and text can be added with the SVG text tag.

(𝑖𝑣) container : represents a grouping of graphical elements such as
shapes, lines or other containers. If a container is moved, all its
elements move with it. It is also defined with the SVG element
grouping tag (g tag).

As previously stated, the case study in this section comprehensively
validates the most relevant features of our RhoArchitecture, such as:
the creation of a JSON-DSL (with multiple executions), the creation of
Components and Web Components, the use of Templates Engine and
the Data Sources information exchange connection (in JSON format).

Fig. 9(a) shows a couple of RhoCode programs with grammar
DrawRho. The first program (file ‘‘StarWars.json’’) draws the containers
with the roles in Star Wars. The second program (file ‘‘Speechs.json’’)
draws the nodes with images from speech. Also, Fig. 9(a) shows the
library of SVG graphical elements defined in the file ‘‘templates.xml’’,
and the file ‘‘sources.json’’ contains two Data Sources in JSON format:
Actors (list of actors) and ComicSpeech (list of speeches). Fig. 9(b) shows
he output of the execution.

The way it works for each graphical element is as follows: (1) deter-
ine the type of element (attribute type = ‘‘layer |shape|line|container ’’);

2) search in the graphical library for the corresponding template
using the lib attribute); (3) apply the changes to the information in
he template for the graphical element (attribute key, x, y) for each
VG element (attribute key) by modifying their attributes, and links
he corresponding information (attribute source) for the Data Source of
ctors; and then, (4) add the SVG canvas to the template; finally, (5)

inks the necessary events.
In particular, Fig. 9 shows the ‘‘StarWars.json’’ once it works.

riefly, it searches a shape with Node identifier specifying a circle and
ext (full name of a Actor) and places it in the position (150,60). We
ant to remark that the creation of a diagram can be done through a set
f independent programs, providing versatility when creating diagrams
nd allowing experts in niche parts of the specific domain to collaborate
ith each other. Languages of this kind can be used in the creation
f collaborative diagrams. This case study is available on devrho.com,
nder the menu option ‘‘Samples>Draw Rho’’.

.5. Other examples

There are other interesting case studies on devrho.com, under the
enu option ‘‘Samples’’ (BPM Tester, MDB Tester), which are not in-

luded in the validation study results. The BPM Tester project includes
he implementation of a RhoLanguage called BPMERho to execute a
PMN 2.0 [77] designed in the BPMEPsi visual tool [71]. The MDB
ester project also includes the implementation of a RhoLanguage
alled MDBRho that aims to create Material Design Bootstrap MDB
omponents, forms, navigation, dialogue boxes, block design, etc. [72].

. Results and validation

The research has been conducted according to the qualitative
ase study methodology suggested by [19] and adapted for Software
ngineering in [20]. Therefore, a case study for RhoArchitecture must
eek to validate the most relevant characteristics or issues, namely: the
reation and execution of JSON-DSL’s, the creation of Components and
eb Components, the use of Templates Engine, and the exchange of

eterogeneous information. For short, the case study must allow us to
alidate RhoEngine and RhoModel as a whole. WebIDERho is included
s the implementation of RhoModel for validation.

The methodology described in [19] corresponds to the multi-case
type. The multi-case type in this context can be expressed as the set
of characteristics and/or functionalities to be validated. Each case of
11
study covers part of the set, and the total number of cases must cover
the whole set of characteristics. A feature can be validated by more
than one case study. In general, although it can be extremely costly in
time and execution [20], the evidence created from the multi-case type
is considered robust and reliable.

5.1. Defining relevant characteristics of RhoArchitecture

Below, the list of the most relevant characteristics and/or function-
alities for RhoArchitecture are described:

C1. Implementation and execution of RhoEngine as a reusable
JavaScript component and working at both web server (W) and
web client (C) level.

C2. Implementation and use of the MRho, MIRho and EditorRho
languages (code editor based on CodeMirror [69]) of RhoModel
for WebIDERho.

C3. Implementation of case studies: HelloRho, Start Wars, Comic-
SpeechRho, DrawRho.

C4. Capacity to create of RhoLanguages and execution of RhoPro-
grams: (S) simple–simple (a program of a RhoLanguage); (P)
multiple–simple (multiple programs of one RhoLanguage); (M)
multiple–multiple (multiple programs written with multiple
RhoLanguages).

C5. Capacity to accept heterogeneous data sources: (X) XML; (J)
JSON; (T) Text.

C6. Creation and use of (C) Components 𝑦 (W) Web Components.
C7. Definition and use of Templates Engine: (P) Plain; (E) EJS; (H)

Handlebars; and (O) Hogan.

It is worth highlighting that the components RhoEngine, MRho,
IRho, WebIDERho and EditorRho were also implemented using Rho-
odel, and thus, they also act as case studies for validation. Hence,
ith these components and the four case studies previously presented,

he most relevant characteristics and/or functionalities of RhoArchitec-
ure will be covered.

On the one hand, we will use several software metrics to validate the
uality of the implementations of RhoEngine, RhoModel and the Case
tudies, and in this way, to appraise characteristics C1–C3. On the other
and, characteristics and/or functionalities C4–C7 allow us to validate
he RhoModel programming model and the RhoEngine functionality.

.2. Validating the implementation of RhoArchitecture and case studies

In the field of Software Engineering, a software metric represents
n objective measure to know or estimate a feature of an information
ystem. Although there are a lot of software metrics in the litera-
ure, [78–80] present systematic reviews focused on software quality,
eliability, documentation, and complexity, among others.

.2.1. Software metrics used to validate JavaScript modules
In the context of our proposal, software metrics should focus on

he analysis of JavaScript. In [81], software metrics are redesigned for
rototype-based languages, such as JavaScript. In particular, the analy-
is will be performed on the generated JavaScript code using RhoModel,
nd we will compare them with recognized JavaScript components or
odules such as: Bootstrap (bootstrap.com), CodeMirror [69], jQuery

jquery.com), Material Design Bootstrap [72], among others.
The software metrics that we have chosen to use in our analysis are:

(𝑖) Lines Codes [82] (LOC, physical lines code SLOC, logical lines
code LLOC, comment lines code CLOC, and, blank lines code
BLOC);

(𝑖𝑖) Cyclomatic Complexity [83] (average per-function cyclomatic
complexity CNN, and, cyclomatic complexity density for module
CND [84]);

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203

E
s
F
s
J

5

f
R
n
c
s
t
s
m
c
s
O
f
a
h

b
(
o
c

Fig. 9. Example of a DrawRho program for displaying a diagram.
(
w
c
i

W
o
P
c

(𝑖𝑖𝑖) Halstead Metrics [85] (Halstead vocabulary size per-module HS,
Halstead difficulty per-module HD, Halstead volume per-module
HV, Halstead effort per-module HE, Halstead bugs per-module
HB, Halstead time per-module HT, and, Average Halstead effort
per-function HEF); and

(𝑖𝑣) Maintainability Index MI [86].

We have used the following two tools to calculate the metrics above:
xcomplex [87] implemented on NodeJS, provides an analysis of the
oftware complexity of JavaScript Abstract Syntax Trees (ASTs); and
rontEndART SourceMeter for JavaScript [88,89], which is a tool for
ource code analysis that can perform a deep static analysis of complex
avaScript source code (sourcemeter.com).

.2.2. Analysis of JavaScript code generated with RhoModel
Table 1 summarizes the JavaScript metrics of the code generation

or the Components of the RhoArchitecture (noted by CRA, in yellows):
hoEngine, RhoModel, WebIDERho and EditorRho. The four compo-
ents were developed as projects that follow the RhoModel. There were
reated 20 files, of which 20% (4 files) are intended for the MRho
pecification and the remaining 80% (16 files) for MIRho implemen-
ation files. In these files, we find a total of 4422 lines of RhoModel
ource code that generated a total of 7808 lines of JavaScript code. This
eans a conciseness ratio of 1.77. It is worth noting that RhoEngine’s

onciseness ratio of 2.19 is the highest because the programming model
upports code generation at both the web client and web server sides.
n the other hand, CLOC comment lines represent 27% (average of the

our projects), which is a very high rate of documented capacity (>25%,
ccording to [40]), whereas RhoEngine has an average of 31%. This
ighlights the quality of existing RhoArchitecture documentation.

In details the code generation summary of the Case Studies (denoted
y CAS, blue color) presented in this document. Ten files were written
40% MRho files and 60% MIRho files). The average conciseness ratio
f 1.68 is acceptable, and on average it is 29%, which implies that the

ase studies are also well documented.

12
Table 2, details the code generation summary of the Case Studies
denoted by CAS, blue color) presented in this document. Ten files
ere written (40% MRho files and 60% MIRho files). The average

onciseness ratio of 1.68 is acceptable, and on average it is 29%, which
mplies that the case studies are also well documented.

Table 3 shows the most relevant metrics for the frameworks used in
ebIDERho (denoted by FUW, in purple). We retrieve the source code

f each framework in the version shown. If we analyze SLOC, MDB
RO has 53% and jQuery 17% of a total of 41,541, i.e., 70% of lines of
ode. On the other hand, RhoEngine (CLOC = 22%) and jQuery (CLOC
= 17%) have ‘‘moderate documentation’’, the remaining frameworks
are ‘‘poorly documented’’. An interesting finding is that 36% of lines
in JQuery are CBLOC and BLOC and it has the lowest percentage of
physical lines of code, SLOC = 64%.

Fig. 10 presents the percentage of SLOC, LLOC, CLOC and BLOC,
for the total number of LOC lines, for all the components/frameworks
analyzed in this article. From the total number of 58,926 lines of code,
85% are FUW, 14% are CRA, and 1% are CAS. Furthermore, the ‘‘good
documentation’’ of CRA and CAS for FUW is ratified. BLOC is between
10%–20% in most components/frameworks, while SLOC is between
50%–80%. It is worth noting that the highest percentage of LLOC is
for WebIDERho with 72%.

Table 4 provides a summary of the software metrics (cyclomatic
complexity, Halstead metrics and maintainability index) distributed
over the three sets CRA, FUW and CAS.

Overall, according to Table 4, the software metrics obtained for CAS
are very good. On the one hand, the cyclomatic complexity reflects
‘‘simple functionality, without too much risk’’ (CNN < 5 according
to [83]). On the other hand, and according to [81,85], CAS have the
following characteristics in average values: low complexity and lower
associated functionality (HS = 120.5, HV = 5922), lower difficulty level
(HD = 31), lower implementation time (HT = 15,970), minimum error

estimation (HB = 2.0) and low understanding effort (HEF = 66).

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203

m
d

C
t

Table 1
[CRA] Components of the RhoArchitecture: JavaScript generation code summary.

Note: X(Y) MRho/MIRho; X: Number of Rho lines, Y: Number of Psi files; RHOLOC: total Rho lines of code; LOC: JavaScript
generated lines; SLOC: Physical executable code lines; LLOC: Logical executable code lines; CLOC: Comments code lines;
BLOC: Blank code lines.
Table 2
[CAS] Components Case Studies: JavaScript generation code summary.

Note: X(Y) MRho/MIRho; X: Number of Rho lines, Y: Number of Psi files; RHOLOC: total Rho lines of code; LOC: JavaScript
generated lines; SLOC: Physical executable code lines; LLOC: Logical executable code lines; CLOC: Comments code lines;
BLOC: Blank code lines.
Table 3
[FUW] Components/Frameworks used in WebIDERho: JavaScript code summary.

Note: LOC: JavaScript generated lines; SLOC: Physical executable code lines; LLOC: Logical executable code lines; CLOC:
Comments code lines; BLOC: Blank code lines.
Fig. 10. Comparison of the SLOC, LLOC, CLOC and BLOC metrics between Components RhoArchitecture CRA, Frameworks used WebIDERho FUW and Case Studies CAS.
Hereafter, we will focus on analyzing and comparing the software
etrics obtained for CRA and FUW. This analysis will help us to
etermine the quality, reliability, and complexity of our proposal.

Fig. 11 shows the graph of the software measures of Cyclomatic
omplexity for the CRAs and FUW. For all components, it reflects
hat the functions/methods have a ‘‘simple functionality, without much
13
risk’’ (CNN < 5 according to [83]). On the other hand, [84] shows that
the lower the CND value, the simpler the productivity and software
maintenance becomes, it is worth noting that the CND value of CRA
is 50% lower than that of FUW. Additionally, we highlight that our
RhoEngine engine has better productivity, better maintainability, and
less risk, than any FUW component.

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203

H
d
i

c
l
P
f
i
(

n
T
=
T
C
S
t

E
s
T
m

Table 4
Summary of software metrics (cyclomatic complexity, Halstead metrics and maintainability index) from: RhoArchitecture, case
studies and frameworks used.

Note: CNN: Cyclomatic complexity average per-function; CND: Cyclomatic complexity per-module; HS: Halstead vocabulary
size per-module; HD: Halstead difficulty per-module; HV: Halstead volume per-module (*thousands); HE: Halstead effort per-
module (+millions); HEF: Average Halstead effort per-function; HB: Halstead bugs per-module; HT: Halstead time per-module
(*thousands); MI: Maintainability Index.
Fig. 11. Cyclomatic complexity graphs for the Components RhoArchitecture CRA, and the Frameworks used WebIDERho FUW.
l
d
o

a
m
R
i
o
s
t

C
w
a

5

i
S

Fig. 12 displays the graph of the Halstead metrics HS, HV, HD,
T, HB and HEF for the CRA and FUW components. Each metric
efines an explanation note, the average per group and its respective
nterpretation.

The average AHS = 494 implies that all CRA components are less
omplex than FUW, and the average AHV = 55, implies that CRA has
ittle associated functionality. In addition, 41.3% of HV is from MDB
RO, i.e., it is a rather complex framework, with a lot of associated
unctionality, also the difficulty level is high (HD = 526), has a long
mplementation time (HT = 53,444,000) and with high estimated error
HB = 838.3).

In comparison, the AHD difficulty level is 31% of the CRA compo-
ents and 69% of the FUW components, i.e., approximately one-third.
he difficulty level of RhoEngine is among the lowest (HD = 140, HD
154), and it should be noted that it is a JSON-DSL execution engine.

he implementation and understanding time (AHT = 451) are low for
RA and is approximately 41 times lower than the FUW components.
imilarly, the estimated error (AHB = 18) of CRA is approximately 14
imes lower than the estimated error of FUW.

Finally, the HEF values, i.e., the understanding effort for RhoEngine,
ditorRho and WebIDERho are less than 3000, requiring less under-
tanding than the FUW components, which are between 3000–8000.
he effort to understand RhoModel is the highest (HEF = 11,073), and
akes sense since we are establishing a new programming model.
 R

14
In general terms, the CRA components are low in complexity, with
ittle associated functionality that reduces complexity, low level of
ifficulty, low implementation and understanding, and low estimation
f errors.

Finally, Fig. 13 plots the Maintainability Index (MI) for CRA, CAS
nd FUW. As can be seen, all components and frameworks have a ‘‘good
aintainability’’ (>85, according to [86]). Components developed from
hoModel, such as CRA and CAS, are higher than the average FUW. It

s worth mentioning that RhoEngine and WebIDERho, cornerstone of
ur proposal, have better maintainability than recognized frameworks
uch as MDB PRO, jQuery, CodeMirror and Bootstrap. This contributes
o validating the quality of RhoModel’s design and code generation.

In summary, the Components RhoArchitecture CRA and the CAS
ase Studies succeed in obtaining the recommended values for the soft-
are metrics as specified in the literature. With this software metrics
nalysis, we have validated the relevant characteristics of C1–C3.

.3. Results for case studies and components RhoArchitecture

This section is aimed at validating the relevant C4–C7 character-
stics and/or functionalities of RhoArchitecture, aided by the Case
tudies (HelloRho, Start Wars, ComicSpeechRho, DrawRho), and the
hoArchitecture Components (RhoEngine, RhoModel, WebIDERho and

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203

E
o

R

Fig. 12. Graphs of the Halstead metrics HS, HV, HD, HT, HB and HEF for the Components RhoArchitecture CRA, and the Frameworks used WebIDERho FUW.
Fig. 13. Maintainability Index MI for RhoArchitecture CRA, Frameworks used WebIDERho FUW, and Case Studies CAS.
ditorRho). For each characteristic, it will be summarized how its
bjectives have been achieved.

Feature C4: Capacity to create RhoLanguages and execution
hoPrograms:

(S) simple-simple (a program of a RhoLanguage): HelloRho is a
RhoLanguage, where the program ‘‘hello.json’’ is written and ex-
ecuted. ComicSpeechRho is a RhoLanguage, where its program
‘‘code.json’’ is executed at the server level. Finally, ProjectRho
is a RhoLanguage dedicated to the administration of a project in
WebIDERho, it executes a program when a project is edited.
15
(P) multiple-simple (multiple programs of a RhoLanguage): DrawRho
is a RhoLanguage, where multiple programs (e.g. StarWars.json,
Speechs.json) can be written and run on the same SVG canvas,
with the opportunity to generate endless graphics.

(M) multiple-multiple (multiple programs written in multiple RhoLan-
guages): MRho and MIRho are RhoLanguages of RhoModel,
when you run the compilation and code generation of a project
in WebIDERho, internally you are running one MRho program
and multiple MIRho programs.

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203

n

(P

r

5

a
s
S
o
C

g
o
o
a
J
o
a

5

v
J
i

Feature C5: Capacity to accept heterogeneous XML, JSON and
Text data sources:

(X) XML: in RhoModel the templates for code generation are stored
in XML. Similarly, in ComicSpeech the templates are saved in
‘‘templates.xml’’ file for page generation.

(J) JSON: in WebIDERho the information of all projects grouped by
user is stored in a JSON file.

(XJ) XML/JSON: in DrawRho, the Actors and ComicSpeech informa-
tion used in the diagram are stored in the file ‘‘sources.json’’, and
the templates of the graphic library ‘‘templates.xml’’ are stored
in an XML file.

(XJT) XML/JSON/Text: the Star Wars case study illustrates the flex-
ibility of RhoModel to associate in the same class information
stored in XML (‘‘details.xml’’ file), JSON (‘‘actors.json’’ file) and
Text (‘‘descriptions.txt’’ file).

Feature C6: Creation and use of Components and Web Compo-
ents:

(C) Components: RhoModel-based components have been created
for all the projects studied in this analysis.

(W) Web Components: DrawRho uses the SVG templates of graphi-
cal elements specified in XML in the ‘‘templates.xml’’ file, and
the Handlebars template engine for the generation of graphical
elements on an SVG canvas. On the other hand, in RhoEngine,
you have the base classes for the creation of Web Components.

Feature C7: Definition and use of Templates Engine:

(P) Plain: in RhoModel this engine is used to generate the JavaScript
code of a project. While in Star Wars this engine is used to
display the Star Wars actors’ information.

(H) Handlebars: In WebIDERho, this engine is used to generate the
development environment of a Rho project, a novel approach
that may allow for multiple project types in the future. On
the other hand, in DrawRho, this engine is used to create SVG
graphic elements.

EHO) All engines: the ComicSpeechRho case study is focused on using
all available engines for verification.

Based on the above findings, we have qualitatively validated the
elevant characteristics C4–C7.

.4. Validation summary

Table 5 summarizes the validations for the list of relevant char-
cteristics of RhoArchitecture. On the one hand, with the analysis of
oftware metrics on the RhoArchitecture Components and the Case
tudies, the relevant characteristics C1, C6–C7 were validated. On the
ther hand, the relevant characteristics C2–C5 were validated with the
ase Studies.

To conclude, following the qualitative case study methodology sug-
ested by [19] and adapted by [20], and using the validation summary
f the relevant characteristics shown in Table 5, we provide a validation
f the most relevant characteristics or aspects of RhoArchitecture, such
s: the RhoModel programming model, the creation and execution of
SON-DSL’s, the creation of Components and Web Components, the use
f Templates Engine, and the exchange of heterogeneous XML, JSON
nd Text information.

.5. Validity threats

This section summarizes the threats to the internal and external
alidity of the performed work on the specification and execution of
SON-based Domain Specific Languages. Thus, we will discuss four
dentified threats to internal validity.
16
The first two threats are related to the evaluation using the multi-
case type in different scenarios, and the consistency and precision of
the results. Although the case studies allowed us to globally evaluate
the features of the RhoArchitecture to solve domain-specific problems,
more case studies are required to determine the efficiency, precision
and reliability of JSON-DSLs in aspects such as: (i) concurrent execu-
tion of RhoCode program written in several RhoLanguages; (ii) run-
time memory requirements; (iii) interaction between different RhoLan-
guages; (iv) capability to work with large volumes of data; and (v) load
tests. On the one hand, these threats are mitigated with the quality
of the JavaScript component associated with JSON-DSL and evaluated
through different software metrics. On the other hand, performance and
reliability are guaranteed by the browser and the NodeJS server.

The other two internal threats identified are related to error and
exception evaluation, and semantic validation. The case studies in
Section 4 help us control these threats, but again, it depends on the
quality of the JavaScript component.

Regarding the external validity of the work, we want to discuss two
threats. The first threat is related to the generalization of JSON-DSLs
compared to Textual DSLs. For domain experts, it can be difficult or
confusing to write solutions in JSON format compared to any other tex-
tual language. This threat can be mitigated with a good documentation
and illustrative examples of the JSON-DSL. The second relevant threat
refers to the usability of WebIDERho for the creation of JSON-DSL.
Currently, WebIDERho is based on the PsiModel [9] implementation
model, which uses code-behind techniques separating the specification
from the implementation. To mitigate this threat, our future works
include to extend the functionality of the Class Diagram based on
DPG (Diagram Programming Generate [70,71]), so that the creation
of a JSON-DSL can be performed in a visual way, that is, we will
work in a Domain-Specific Visual Language for the specification and
creation of JSON-DSL. Also, it should include the automatic generation
of documentation and a debugging and execution area. We are aware
that WebIDERho is limited, but it offers the necessary tools and features
for our purpose, the construction and execution of JSON-based Domain
Specific Languages.

6. Conclusions

Domain-specific languages enable the construction of software ap-
plications with high speed by increasing the productivity, of both
software engineers and domain experts, due to the level of abstraction
they provide. Building a DSL solution involves the use of tools for
implementing interpreters and compilers. However, as we have shown,
few approaches can create DSL alternatives with JSON grammar for
web applications at both the web server and web client levels.

To address this initiative, in this article we have formalized and
validated an architecture that allows us to work with JSON-based
Domain Specific Languages (JSON-DSL) solutions to address domain-
specific problems at both the web server and web client level, called
RhoArchitecture. RhoArchitecture includes a RhoEngine evaluation en-
gine, a RhoModel programming model and a WebIDERho lightweight
web development environment. Our approach allows the creation and
evaluation of JSON-DSLs, JavaScript Components and Web Compo-
nents, Templates Engine, and the use of connectors to heterogeneous
information sources (JSON, XML, Text formats) to encapsulate func-
tionality and integrate them with other web widgets, components
and/or frameworks, to create fast, robust, and flexible solutions for
a web application. In this context, we have formally defined RhoLan-
guages and its grammar RhoGrammar to implement JSON-DSLs, which
can be implemented with RhoModel and executed with RhoEngine.

To demonstrate the capabilities and potential of our approach, we
have presented four Case Studies to validate the most relevant charac-
teristics or aspects, such as the creation and execution of JSON-DSLs,
the creation of Components and Web Components, the use of Templates

Engine, and the exchange of heterogeneous information. In the first

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203
Table 5
The RhoArchitecture relevant characteristics list and the validations summary.
case, HelloRho allows us to create and execute a RhoLanguage. The sec-
ond case study, Start Wars, highlights the use of multiple heterogeneous
information sources (XML, JSON, and Text) implemented in a single
class. The third case study, ComicSpeechRho, validates programming at
the web server level, with the creation of a RhoLanguage, a web service,
the use of Templates Engine and the design of web pages with material
design. The last case study, DrawRho, comprehensively validates the
most relevant aspects of RhoArchitecture.

In the field of Software Engineering, a software metric represents
an objective measure to know or estimate a characteristic of an in-
formation system. The analysis presented in this article allows us to
affirm that the RhoArchitecture Components (RhoEngine, RhoModel,
WebIDERho and EditorRho) are not very complex: they have little
associated functionality that reduces their complexity; their level of
difficulty, implementation and understanding are low; error estimation
is also low; and they have good maintainability. It is worth noting that
these values were compared with recognized frameworks such as MDB
PRO, jQuery, CodeMirror and Bootstrap, and that, in many of the cases,
Components RhoArchitecture obtained better-recommended values in
these software metrics.

As part of our future work, we aim to incorporate Domain Specific
Visual Languages capabilities to the approach that is based on Diagram
Programming Generate (DPG). In addition, we plan to develop new
RhoLanguages such as BPMERho, which will allow the execution of
BPMN 2.0, MDBRho for creating components, forms, navigation, dia-
logue boxes, block designs, etc. using Material Design Bootstrap, and
RESTRho for specifying and executing a REST API through a JSON-DSL.

CRediT authorship contribution statement

Enrique Chavarriaga: Conceptualization, Methodology, Software,
Validation, Data curation. Francisco Jurado: Conceptualization, Writ-
ing – original draft, Writing – review & editing. Francy D. Rodríguez:
Investigation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article
17
Acknowledgment

The validation of this was carried in collaboration with the researh
departament (I+D+i) of UGround Global S.L. (http://www.uground.
com/).

References

[1] M. Voelter, DSL Engineering: Designing, Implementing and using Domain-Specific
Languages, Dslbook, 2013.

[2] M. Fowler, T. White, Domain-Specific Languages, Addison-Wesley Professional,
Denver, 2010.

[3] W3c, Extensible Markup Language (XML) Version 1.1, W3C Recomm, 2006,
https://www.w3.org/standards/xml/ (accessed August 30, 2021).

[4] J. Fawcett, L. Quin, D. A, Beginning XML, fifth ed., Wrox Press, 2012.
[5] W3C, Document Object Model (DOM) Level 3 Core Specification Version 1.0,

W3C Recomm, 2004, https://www.w3.org/TR/DOM-Level-3-Core/ (accessed
September 3, 2021).

[6] W3C, Scalable Vector Graphics (SVG) 2, W3C Candidate Recomm, 2018, https:
//www.w3.org/TR/SVG2/ (accessed August 30, 2021).

[7] W3C, Mathematical Markup Language (MathML) Version 3.0, W3C Recomm,
2014, https://www.w3.org/TR/MathML3/ (accessed September 1, 2021).

[8] W3C, XSL Transformation (XSLT) Version 2.0, W3C Recomm, 2021, https://
www.w3.org/TR/xslt20/ (accessed September 1, 2021).

[9] E. Chavarriaga, F. Jurado, F. Díez, An approach to build XML-based domain
specific languages solutions for client-side web applications, Comput. Lang. Syst.
Struct. 49 (2017) http://dx.doi.org/10.1016/j.cl.2017.04.002.

[10] E. Chavarriaga, F. Jurado, F. Díez, PsiLight: A lightweight programming language
to explore multiple program execution and data-binding in a web-client DSL
evaluation engine, J. Univers Comput. Sci. 23 (2017) 953–968.

[11] ECMA, ECMA-404: The JSON Data Interchange Syntax, first ed., 2018, https://
www.ecma-international.org/publications-and-standards/standards/ecma-404/
(accessed September 2, 2021).

[12] W3C Recommendation, JSON-LD 1.1: A JSON-Based Serialization for Linked Data
(W3C Recommendation 16 July 2020), 2020, https://www.w3.org/TR/json-ld/.

[13] Web Payments Working Group, JSON for Linking Data, 2022, https://json-
ld.org/.

[14] T. Ge, Y. Zhao, B. Lee, D. Ren, B. Chen, Y. Wang, Canis: A high-level language
for data-driven chart animations, Comput. Graph. Forum 39 (2020) 607–617.

[15] A. Sarasa-Cabezuelo, J.-L. Sierra, Grammar-driven development of JSON pro-
cessing applications, in: 2013 Fed. Conf. Comput. Sci. Inf. Syst., 2013, pp.
1557–1564.

[16] A.A. Frozza, R. Mello, S. dos, JS4Geo: a canonical JSON schema for geographic
data suitable to NoSQL databases, Geoinformatica 24 (2020) 987–1019.

[17] J. Xin, C. Afrasiabi, S. Lelong, J. Adesara, G. Tsueng, A.I. Su, et al., Cross-
linking BioThings APIs through JSON-LD to facilitate knowledge exploration,
BMC Bioinformatics 19 (2018) 1-N.PAG..

[18] D.C. Schmidt, Model-driven engineering, Comput 39 (2006) 25–31.
[19] R.K. Yin, Case Study Research: Design and Methods, fifth ed., Sage Publications,

Inc., London, 2014.
[20] P. Baxter, S. Jack, Qualitative case study methodology. Study design and

implementation for novice researchers, Qual. Rep. (2008) 13–17.

http://www.uground.com/
http://www.uground.com/
http://www.uground.com/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb1
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb1
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb1
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb2
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb2
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb2
https://www.w3.org/standards/xml/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb4
https://www.w3.org/TR/DOM-Level-3-Core/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/SVG2/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/xslt20/
https://www.w3.org/TR/xslt20/
https://www.w3.org/TR/xslt20/
http://dx.doi.org/10.1016/j.cl.2017.04.002
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb10
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb10
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb10
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb10
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb10
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.w3.org/TR/json-ld/
https://json-ld.org/
https://json-ld.org/
https://json-ld.org/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb14
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb14
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb14
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb15
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb15
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb15
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb15
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb15
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb16
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb16
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb16
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb17
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb17
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb17
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb17
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb17
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb18
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb19
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb19
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb19
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb20
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb20
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb20

E. Chavarriaga, F. Jurado and F.D. Rodríguez Journal of Computer Languages 75 (2023) 101203
[21] M. Mernik, J. Heering, A.M. Sloane, When and how to develop domain-specific
languages, ACM Comput. Surv. 37 (2005) 316–344.

[22] D. Spinellis, Notable design patterns for domain-specific languages, J. Syst. Softw.
56 (2001) 91–99.

[23] D. Ghosh, DSLs in Action, Manning Publications, Greenwich, 2010.
[24] S. Erdweg, P.G. Giarrusso, T. Rendel, Language composition untangled, in: Proc.

12th Work. Lang. Descr. Tools, Appl. LDTA 2012, 2012, http://dx.doi.org/10.
1145/2427048.2427055.

[25] L.M. do Nascimento, D.L. Viana, P.A.S. Neto, D.A. Martins, V.C. Garcia, S.R.
Meira, A systematic mapping study on domain-specific languages, in: Seventh
Int. Conf. Softw. Eng. Adv. (ICSEA 2012), 2012, pp. 179–187.

[26] T. Kosar, S. Bohra, M. Mernik, Domain-specific languages: A systematic mapping
study, Inf. Softw. Technol. (2016) 71, http://dx.doi.org/10.1016/j.infsof.2015.
11.001.

[27] A. Iung, J. Carbonell, L. Marchezan, E. Rodrigues, M. Bernardino, F.P. Basso, et
al., Systematic mapping study on domain-specific language development tools,
Empir. Softw. Eng. 25 (2020) 4205–4249.

[28] D. Brown, J. Levine, T. Mason, Lex & Yacc, second ed., O’Reilly Media, New
York, 1992.

[29] J. Levine, Flex & Bison, O’Reilly Media, Sebastopol, 2009.
[30] Microsoft, Modeling SDK for visual studio - Domain-specific languages, 2022,

https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-
visual-studio-domain-specific-languages?view=vs-2022.

[31] M. Bravenboer, K.T. Kalleberg, R. Vermaas, E. Visser, Stratego/XT 0.17. A
language and toolset for program transformation, Sci. Comput. Program. 72
(2008) 52–70.

[32] M. Mernik, M. Lenič, E. Avdičaušević, V. Žumer, LISA: An interactive environ-
ment for programming language development, in: Int. Conf. Compil. Constr.,
2002, pp. 1–4.

[33] L.C.L. Kats, K.T. Kalleberg, E. Visser, Domain-specific languages for composable
editor plugins, Electron. Notes Theor. Comput. Sci. (2010) 253, http://dx.doi.
org/10.1016/j.entcs.2010.08.038.

[34] H. Rajan, ANTLR: A brief review, 2022.
[35] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend, Packt

Publishing, 2013.
[36] M. Toussaint, T. Baar, Enriching Textual Xtext-DSLs with a Graphical GEF-Based

Editor, in: LNCS, vol. 10742, Springer Verlag, 2018.
[37] R. Gronback, Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit, Addison-Wesley Professional, Denver, 2009.
[38] M. Brambilla, J. Cabot, M. Wimmer, L. Baresi, Model-Driven Software

Engineering in Practice, second ed., 2017.
[39] A. Diez, N. Nguyen, F. Diez, E. Chavarriaga, MDE for enterprise application

systems, in: Model. 2013 - Proc. 1st Int. Conf. Model. Eng. Softw. Dev., 2013.
[40] A.R. Da Silva, Model-driven engineering: A survey supported by the unified

conceptual model, Comput. Lang. Syst. Struct. 43 (2015) 139–155.
[41] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend, Packt

Publishing Ltd, 2016.
[42] D.G. Kourie, D. Fick, B.W. Watson, Virtual machine framework for constructing

domain-specific languages, IET Softw. 3 (2009) 1–13.
[43] D. Pollak, V. Layka, A. Sacco, DSL and Parser Combinator. Begin. Scala 3,

Springer, 2022, pp. 237–245.
[44] V. Subramaniam, Programming DSLs in Kotlin, Pragmatic Bookshelf, 2021.
[45] K. Segeljakt, A Scala DSL for Rust code generation, 2018.
[46] F. Dearle, Groovy for Domain-Specific Languages, packt Publishing Ltd, 2015.
[47] P. McGuire, Getting Started with Pyparsing, O’Reilly Media, Inc., 2007.
[48] R.D. Kelker, Clojure for Domain-Specific Languages, Packt Publishing, 2013.
[49] N. Valliappan, R. Krook, A. Russo, K. Claessen, Towards secure IoT programming

in Haskell, 2020.
[50] C. Yue, H. Wang, A measurement study of insecure javascript practices on the

web, ACM Trans. Web 7 (2013) 1–39.
[51] G. Czech, M. Moser, J. Pichler, Best practices for domain-specific modeling. A

systematic mapping study, in: 2018 44th Euromicro Conf. Softw. Eng. Adv. Appl.,
2018, pp. 137–145.

[52] M. Eernisse, Embedded JavaScript Templating (EJS), 2012, https://ejs.co
(accessed November 15, 2021).

[53] A. Mardan, Template Engines: Pug and Handlebars. Pract. Node. js, Springer,
2018, pp. 113–163.

[54] Y. Katz, Handlebars: minimal templating on steroids, 2021, https://handlebarsjs.
com/ (accessed November 10, 2021).

[55] Velasco A. Hogan, JavaScript templating from Twitter, 2021, http://twitter.
github.io/hogan.js/.

[56] WEBCOMPONENTS.ORG, Discuss & share web components, 2021, https://www.
webcomponents.org/ (accessed October 11, 2021).
18
[57] W3C, Introduction to Web Components. W3C Work Gr Note, 2014, https://www.
w3.org/TR/components-intro/ (accessed October 1, 2021).

[58] A. Gupta, M. Ahirwar, R. Pandey, Creating website as a service using web
components, Int. Res. J. Eng. Technol. 6 (2019).

[59] P.J. Molina, Quid: prototyping web components on the web, in: Proc. ACM
SIGCHI Symp. Eng. Interact. Comput. Syst., 2019, pp. 1–5.

[60] K. Lano, Q. Xue, S. Kolahdouz-Rahimi, Agile specification of code generators for
model-driven engineering, in: ICSEA 2020, 2020, p. 19.

[61] T. Barth, I.P. Fromm, Modeling and code generation for safety critical systems,
in: Embed. World Conf., Vol. 2020, 2020.

[62] G. Sebastián, J.A. Gallud, R. Tesoriero, Code generation using model driven
architecture: A systematic mapping study, J. Comput. Lang. 56 (2020) 100935.

[63] A. Prout, J.M. Atlee, N.A. Day, P. Shaker, Code generation for a family of
executable modelling notations, Softw. Syst. Model. (2012) 11, http://dx.doi.
org/10.1007/s10270-010-0176-6.

[64] O. Fundation, Node.js: JavaScript runtime built on Chrome’s V8 JavaScript
engine, 2021, https://nodejs.org/ (accessed October 30, 2021).

[65] J. Wexler, Get programming with Node. js. Simon and Schuster, 2019.
[66] B. Griggs, Node Cookbook: Discover Solutions, Techniques, and Best Practices

for Server-Side Web Development with Node. js 14, Packt Publishing Ltd, 2020.
[67] D. Flanagan, JavaScript: The Definitive Guide: Master the World’s Most-Used

Programming Language, seventh ed., 2020.
[68] R. Ferguson, JavaScript and Development Tools. Begin. JavaScript Ultim. Guid.

to Mod. JavaScript Dev, A Press, Berkeley, CA, 2019, pp. 11–24, http://dx.doi.
org/10.1007/978-1-4842-4395-4_2.

[69] M. Haverbeke, CodeMirror, 2017, https://codemirror.net/.
[70] F. Rani, P. Diez, E. Chavarriaga, E. Guerra, J. de Lara, Automated migration of

eugenia graphical editors to the web, in: Proc. 23rd ACM/IEEE Int. Conf. Model
Driven Eng. Lang. Syst. Companion Proc., 2020, pp. 1–7.

[71] E. Chavarriaga, Modelo Programable Para la Serialización y Evaluación de Mod-
elos Heterogéneos en Clientes Web (Doctoral Thesis), Repository Autonomous
University of Madrid, 2017.

[72] MDBootstrap, Material Design for Bootstrap V5 & V4, 2022, https://mdbootstrap.
com/ (accessed June 28, 2021).

[73] W.J. Wang, Y.W. Luo, X.L. Wang, X.P. Liu, Z.Q. Xu, Web services based
framework for spatial information and services integration, 28 (2005)
1213–1222.

[74] F. Rademacher, M. Peters, S. Sachweh, Design of a Domain-Specific Language
Based on a Technology-Independent Web Service Framework. Vol. 9278, Springer
Verlag, 2015, pp. 357–371, http://dx.doi.org/10.1007/978-3-319-23727-5_29.

[75] U.-M. Schäfer, SVG.js, 2012, https://svgjs.dev/ (accessed February 28, 2021).
[76] J. Doyle, GreenSock: Engaging the internet, 2021, https://greensock.com/

(accessed February 10, 2021).
[77] OMG, Business Process Model and Notation (BPMN), Version 2.0.4, 2014, https:

//www.omg.org/spec/BPMN (accessed February 20, 2023).
[78] A. Tahir, S.G. Mac Donell, A systematic mapping study on dynamic metrics

and software quality, in: IEEE Int. Conf. Softw. Maintenance, ICSM, 2012,
http://dx.doi.org/10.1109/ICSM.2012.6405289.

[79] M. Riaz, E. Mendes, E. Tempero, A systematic review of software maintainability
prediction and metrics, in: 2009 3rd Int. Symp. Empir. Softw. Eng. Meas., 2009,
pp. 367–377.

[80] A. Jatain, Y. Mehta, Metrics and models for software reliability: A systematic
review, in: 2014 Int. Conf. Issues Challenges Intell. Comput. Tech., 2014, pp.
210–214.

[81] S. Ahsan, F. Hayat, M. Afzal, T. Ahmad, K.H. Asif, H.M.S. Asif, et al.,
Object oriented metrics for prototype based languages, Life Sci. J. 9 (2012)
63–66.

[82] V. Nguyen, S. Deeds-Rubin, T. Tan, B. Boehm, A SLOC Counting Standard, Univ
South California, Cent Syst Softw Eng, 2007.

[83] T. McCabe, A complexity measure, IEEE Trans. Softw. Eng. SE-2 (1976) 308–320,
http://dx.doi.org/10.1109/TSE.1976.233837.

[84] G.K. Gill, C.F. Kemerer, Cyclomatic complexity density and software maintenance
productivity, IEEE Trans. Softw. Eng. 17 (1991) 1284.

[85] M. Halstead, Elements of Software Science, Comput Sci Libr, 1977.
[86] P.W. Oman, J. Hagemeister, D. Ash, A Definition and Taxonomy for Software

Maintainability, Univ. Idaho, Softw. Eng. Test Lab, 1991.
[87] J. Stilwell, Escomplex Version 2.0.0-alpha, 2021, https://www.npmjs.com/

package/escomplex (accessed November 2, 2021).
[88] SourceMeter: Version 9.2, Front Softw Ltd, 2021, https://www.sourcemeter.com/

(accessed October 15, 2021).
[89] R. Ferenc, L. Langó, I. Siket, T. Gyimóthy, T. Bakota, Source meter sonar qube

plug-in, in: 2014 IEEE 14th Int. Work. Conf. Source Code Anal. Manip., 2014,
pp. 77–82.

http://refhub.elsevier.com/S2590-1184(23)00013-8/sb21
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb21
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb21
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb22
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb22
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb22
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb23
http://dx.doi.org/10.1145/2427048.2427055
http://dx.doi.org/10.1145/2427048.2427055
http://dx.doi.org/10.1145/2427048.2427055
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb25
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb25
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb25
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb25
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb25
http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb27
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb27
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb27
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb27
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb27
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb28
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb28
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb28
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb29
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/modeling/modeling-sdk-for-visual-studio-domain-specific-languages?view=vs-2022
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb31
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb31
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb31
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb31
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb31
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb32
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb32
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb32
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb32
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb32
http://dx.doi.org/10.1016/j.entcs.2010.08.038
http://dx.doi.org/10.1016/j.entcs.2010.08.038
http://dx.doi.org/10.1016/j.entcs.2010.08.038
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb34
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb35
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb35
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb35
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb36
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb36
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb36
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb37
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb37
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb37
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb38
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb38
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb38
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb39
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb39
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb39
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb40
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb40
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb40
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb41
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb41
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb41
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb42
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb42
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb42
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb43
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb43
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb43
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb44
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb45
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb46
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb47
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb48
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb49
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb49
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb49
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb50
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb50
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb50
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb51
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb51
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb51
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb51
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb51
https://ejs.co
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb53
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb53
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb53
https://handlebarsjs.com/
https://handlebarsjs.com/
https://handlebarsjs.com/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/
https://www.webcomponents.org/
https://www.webcomponents.org/
https://www.webcomponents.org/
https://www.w3.org/TR/components-intro/
https://www.w3.org/TR/components-intro/
https://www.w3.org/TR/components-intro/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb58
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb58
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb58
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb59
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb59
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb59
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb60
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb60
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb60
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb61
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb61
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb61
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb62
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb62
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb62
http://dx.doi.org/10.1007/s10270-010-0176-6
http://dx.doi.org/10.1007/s10270-010-0176-6
http://dx.doi.org/10.1007/s10270-010-0176-6
https://nodejs.org/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb65
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb66
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb66
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb66
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb67
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb67
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb67
http://dx.doi.org/10.1007/978-1-4842-4395-4_2
http://dx.doi.org/10.1007/978-1-4842-4395-4_2
http://dx.doi.org/10.1007/978-1-4842-4395-4_2
https://codemirror.net/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb70
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb70
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb70
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb70
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb70
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb71
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb71
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb71
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb71
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb71
https://mdbootstrap.com/
https://mdbootstrap.com/
https://mdbootstrap.com/
http://dx.doi.org/10.1007/978-3-319-23727-5_29
https://svgjs.dev/
https://greensock.com/
https://www.omg.org/spec/BPMN
https://www.omg.org/spec/BPMN
https://www.omg.org/spec/BPMN
http://dx.doi.org/10.1109/ICSM.2012.6405289
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb79
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb79
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb79
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb79
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb79
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb80
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb80
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb80
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb80
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb80
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb81
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb81
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb81
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb81
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb81
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb82
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb82
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb82
http://dx.doi.org/10.1109/TSE.1976.233837
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb84
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb84
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb84
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb85
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb86
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb86
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb86
https://www.npmjs.com/package/escomplex
https://www.npmjs.com/package/escomplex
https://www.npmjs.com/package/escomplex
https://www.sourcemeter.com/
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb89
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb89
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb89
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb89
http://refhub.elsevier.com/S2590-1184(23)00013-8/sb89

	An approach to build JSON-based Domain Specific Languages solutions for web applications
	Introduction
	Outline and related works
	Approach to building JSON-based Domain Specific Languages
	Brief Overview
	The RhoArchitecture
	The RhoEngine
	The RhoLanguage
	The RhoModel
	The WebIDERho
	Implementation summary
	Final comments

	Cases of studies
	Implementing the HelloRho JSON-DSL
	Associate heterogeneous data sources of information
	Creating a simple ``web service''
	Creating an SVG diagramming JSON-DSL
	Other examples

	Results and validation
	Defining relevant characteristics of RhoArchitecture
	Validating the implementation of RhoArchitecture and Case Studies
	Software metrics used to validate JavaScript modules
	Analysis of JavaScript code generated with RhoModel

	Results for Case Studies and Components RhoArchitecture
	Validation summary
	Validity threats

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

