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a b s t r a c t

Biohybrid circuits of interacting living and model neurons are an advantageous means to study
neural dynamics and to assess the role of specific neuron and network properties in the nervous
system. Hybrid networks are also a necessary step to build effective artificial intelligence and brain
hybridization. In this work, we deal with the automatized online and offline adaptation, exploration
and parameter mapping to achieve a target dynamics in hybrid circuits and, in particular, those that
yield dynamical invariants between living and model neurons. We address dynamical invariants that
form robust cycle-by-cycle relationships between the intervals that build neural sequences from such
interaction. Our methodology first attains automated adaptation of model neurons to work in the same
amplitude regime and time scale of living neurons. Then, we address the automatized exploration
and mapping of the synapse parameter space that lead to a specific dynamical invariant target. Our
approach uses multiple configurations and parallel computing from electrophysiological recordings of
living neurons to build full mappings, and genetic algorithms to achieve an instance of the target
dynamics for the hybrid circuit in a short time. We illustrate and validate such strategy in the context
of the study of functional sequences in neural rhythms, which can be easily generalized for any variety
of hybrid circuit configuration. This approach facilitates both the building of hybrid circuits and the
accomplishment of their scientific goal.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
.

1. Introduction

Biohybrid neuronal circuits are neural networks built with liv-
ng and artificial neurons and connections. Their use offers broad
erspectives in many fields ranging from neurobiology studies
o neuromorphic engineering and the interface between im-
lantable neuroprosthetic devices and artificial intelligence (Broc-
ard et al., 2017; Buccelli et al., 2019; Chiolerio et al., 2017;
eorge et al., 2020; Keren et al., 2019; Serb et al., 2020; Vassanelli
Mahmud, 2016). Although research assessing neural dynamics
ith this kind of circuits goes back to the early 90’s and 2000’s,
.g. see Le Masson et al. (1995, 2002), Nowotny et al. (2003),
prisan et al. (2004), Potter (2002), Szücs et al. (2000), Yarom
1991), Zeck and Fromherz (2001), their use in the neuroscience
ommunity is not yet widespread. This is because hybrid circuits
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are, in general, rather difficult to design and implement. To
establish an online connection between living cells and model
neurons, either unidirectional o bidirectional, model neurons
need to work at the same time regime and in many cases, in
the same approximate amplitude range of cell membrane voltage.
Hybrid synapses also require a realistic signaling exchange and,
overall, the model dynamics needs to be compatible with that of
the living cells to build an effective interaction.

Computational neuroscience models highly depend on their
parameters to reproduce neural dynamics (Torres & Varona, 2012)
The need for methods to establish those parameters has been long
recognized, including the use of genetic algorithms (Bornholdt
& Graudenz, 1992; Gonçalves et al., 2020; Keren et al., 2005;
LaTorre et al., 2020; Van Geit et al., 2016; Vanier & Bower,
1999). Best parameter constraining approaches are those that
involve multiple experimental validations, which also contributes
to interpret the results of experimental techniques (Tennøe et al.,
2018; Varona et al., 2000). Neuron and synapse models employed
to build hybrid circuits require that these parameters are set
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Automatic model exploration approaches to achieve a target dynamics in biohybrid circuits. Panel A: building a target dynamics full map. This panel illustrates
ow electrophysiological recordings are input to models with continuous parameter sets and their performance to achieve a desired target dynamics is measured and
apped. The large number of simulations required can be implemented in parallel using cluster computing. Such approach leads to a full target dynamics map, but

ypically cannot be used in online experiments because of the long time taken by the exploration, even using optimized parallelization. Panel B illustrates a second
pproach in which a genetic algorithm searches iteratively over several generations for an instance of the target dynamics as characterized by a well-defined metrics.
his second solution is more versatile, takes less computational resources, and can be used to tune the hybrid circuit in real-time using a bidirectional synapse. Both
pproaches can be combined, e.g. an online genetic algorithm search followed by validation through an offline mapping based on the experimental recordings.
uring the lifespan of the hybrid circuit, which in many cases is
hort.
In previous works we have produced tools to ease the im-

lementation of biohybrid circuits. In particular, we have de-
igned algorithms to scale different neuron and synapse models
o match online the dynamics of living cell recordings (Reyes-
anchez et al., 2020). We have also released a platform that
ses real-time software technology to build hybrid circuits with
recise temporal constraints resulting in highly realistic inter-
ctions (Amaducci et al., 2019), and general strategies to build
iohybrid closed-loop interactions (Varona et al., 2016). Algo-
ithms that adapt model dynamics to build hybrid circuits employ
alibrations based on living neuron recordings and the character-
zation of the effect of synaptic input both into the cells and into
he models.

Biohybrid circuits typically have a well-defined goal to be
ompleted during the experiment. Examples of such goal in-
lude the control of a living nervous system dynamics, e.g., the
xploration of synaptic or neural dynamics by the interaction
rovided with the model neurons (Manor & Nadim, 2001), a
earning target (Nowotny et al., 2003), the mapping of bifurca-
ions in neuronal activity (Pinto et al., 2000), the control of an
xternal device like robots, hybrots or prostheses (Kositsky et al.,
009; Soëtard et al., 2023), or driving neural activity out of a
athological state (Keren et al., 2019; Selverston et al., 2000).
ost of these goals can be summarized as the achievement of a

arget dynamics by modifying the parameters of the interaction
ith model neurons.
In this work, we show that the combination of experimental

ecordings and theoretical paradigms can be applied to explore
nd rapidly tune neuron and synapse models to fulfill target hy-
rid circuit dynamics (see Fig. 1). The protocols that we propose
465
here allow for the first time the automation in finding the param-
eter model space that results in a desired dynamics of the hybrid
circuit. We illustrate this technology by searching the neuron and
synaptic parameter space to yield dynamical invariants between
a living cell and different model neurons connected through a
graded synapse model, which mimics the current flowing into
the postsynaptic cell as a function of the presynaptic membrane
potential (Golowasch et al., 1999).

Dynamical invariants reflect robust sequential activations that
constrain specific time intervals that build such sequences. The
relationships between intervals that participate in invariants are
preserved cycle-by-cycle in the sequence, underlying neural co-
ordination even during transients (Elices et al., 2019). In our
validation tests for achieving hybrid circuit target dynamics, we
mapped the presence of invariants in the form of linear rela-
tionships between the interval defined by the beginning of the
bursting activity between the living and model neurons and the
instantaneous period of their sequence. Fig. 2 illustrates the con-
cept of invariant showing two intervals of the sequence used in
the validation examples, and the resulting linear correlation when
the invariant occurs.

During the proposed protocol, we input biological time se-
ries with a characteristic temporal structure of spiking–bursting
dynamics to different model neurons. The model signals and
synapses are preprocessed online to automatically adapt the cor-
responding time and amplitude scales to those of the living neu-
rons employed in this study. Our methodology can then map the
neuron and synapse parameters that yield a dynamical invariant
taking into account the temporal structure of the interaction out-
put. By testing thousands of combinations, this approach allows
a full characterization of the parameter space that contributes to
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Fig. 2. Illustration of the concept of dynamical invariant in sequential neural activity. The dynamical invariant used to validate the exploration of hybrid circuit
target dynamics in this paper is a linear relationship between the instantaneous period of the living neuron and the corresponding interval from the first spike of
the living neuron to the first spike of the model neuron in the hybrid interaction. In addition to the implementation of the interaction between the living and model
neurons, during the experiment spike events are timed and successive intervals are measured to calculate the R2 of their correlation. The panel on the right shows
n example of the correlation that defines a dynamical invariant in the sequential activations of the neurons. Each point in this panel corresponds to a cycle of the
equential interaction.
w
i

he generation of the predefined target dynamics. Because of the
eavy computational task, such map typically takes up to hours to
e built, and thus cannot always be implemented in bidirectional
ybrid circuit preparations. Thus, we also propose the use of a
enetic algorithm approach to find specific instances of the target
ynamics in a few iterations. Both approaches are validated below
nd their combined use is discussed.

. Experimental methods and models

.1. Experimental methods

The experimental recordings to build hybrid circuits in this
ork were performed on the pyloric central pattern generator
CPG) (Marder & Calabrese, 1996; Selverston, 2005) of crustacean.
dult crabs (Carcinus maenas) were used in all preparations. They
ere purchased in a local fish shop and maintained in a tank
ith artificial seawater at 13-15 ◦C. Crabs were anesthetized by

ce for 15 minutes before dissection. All procedures followed the
nimal treatment guidelines from the European Commission and
niversidad Autónoma de Madrid. The stomatogastric nervous
ystem was dissected and pinned in a Sylgard-coated dish con-
aining Carcinus maenas saline (in mM: 433 NaCl, 12 KCl, 12
aCl2 · 2H2O, 20 MgCl2 · 6H2O, 10 HEPES adjusted to pH 7.60
ith 4 M 287 NaOH). After desheathing the stomatogastric gan-
lion (STG), neurons were identified by their membrane potential
aveforms and the spike time structure observed in extracellular
ecordings using stainless steel electrodes from the correspond-
ng motor nerves. Neurons’ membrane potential was measured
n long recordings of bursting activity from the lateral pyloric
euron using segments of 148 seconds (which included ∼180
ursts), using 3 M KCl filled microelectrodes (50 M�) and a DC
mplifier (ELC-03M, NPI). Spikes were detected with a threshold-
rossing criterion and intervals were calculated by subtracting
onsecutive time references. Current injection to implement hy-
rid connections into the living neurons (following the synaptic
odel described below) was delivered with a second electrode
n the same neuron. Data was acquired using an A/D DAQ board
PCI-6251, National Instruments). Recordings were performed at
10 kHz acquisition rate.

.2. Neuron models for hybrid circuit construction

To illustrate the automation procedure to explore hybrid cir-

uits proposed in the paper, we selected three neuronal models

466
ith distinct complexity in their dynamics. All of them can be
ntegrated in hard real-time (Amaducci et al., 2019):

• The Izhikevich neuron model is a two-dimensional system
of ordinary differential equations with a quadratic volt-
age nonlinearity and an after-spike reset (Izhikevich, 2003).
This model can produce a wide variety of spiking activity
observed in many neuron types, including the bursting be-
havior that we will use here to assess the presence of hybrid
dynamical invariants, and it is described as:

dv(t)/dt = 0.004v2
+ 5v + 140 − u + I − Isyn

du(t)/dt = a(bv − u)

v if ≥ 30 then
{

v = c
u = u + d

The parameters used for the model bursting mode in the
hybrid circuit implementation were: a=0.02; b=0.20; c =

−50; d = 2; I = 10. In the equation for the membrane
voltage v, Isyn is the synaptic current from the living neuron
which is described below.

• The Komendatov and Kononenko (K–K) model is a bio-
physically realistic conductance based paradigm used to
reproduce the spiking–bursting activity of different neuron
types (Komendantov & Kononenko, 1996). This model can
generate chaotic spiking bursting activity, which is a de-
sirable feature in many studies that address the building
up of robust neural rhythms and sequences that arise from
negotiated interactions among neurons (Elices & Varona,
2015, 2017). The model description is as follows:

dv(t)/dt = −(
∑

Iion + Isyn)/Cm

where
∑

Iion describes all ionic membrane currents and Isyn
is the synaptic current from the living neuron explained
below. The models uses the following slow-wave ionic gen-
erating mechanism for the bursting dynamics:

INa(v) = g∗

Na(v)(1/(1 + e−0.2(v+45)))(v − vNa)
Ik = g∗

k (v − vk)
INa = g∗

Na(v − vNa)
IB = g∗

BmBhB(v − vB)
0.4(v+34)
dmB(t)/dt = (1/(1 + e ) − mB)/0.05
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dhB(t)/dt = (1/(1 + e−0.55(v+43)) − hB)/1.5

The spike-generating mechanism employs the following cur-
rents:

INa(TTX) = g∗

Na(TTX)m
3h(v − vNa)

IK (TEA) = g∗

K (TEA)n
4(v − vK )

dm(t)/dt = (1/(1 + e−0.4(v+31)) − m)/0.0005

dh(t)/dt = (1/(1 + e0.25(v+45)) − h)/0.01

dn(t)/dt = (1/(1 + e−0.18(v+25)) − n)/0.015

The calcium dynamics are modeled as:

ICa = g∗

Cam
2
Ca(v − vCa)

dmCa(t)/dt = (1/(1 + e−0.2v) − mCa)/0.01

ICa−Ca = (g∗

Ca−Ca/(1 + e−0.06(v+45)))

· ((v − vCa)/(1 + ekβ ([Ca]−β)))

d[Ca](t)/dt = ρ{(−ICa)/(2F ∗ 4πR3/3) − ks[Ca]}

The parameters used in this study yield a chaotic bursting
regime in the model (Komendantov & Kononenko, 1996),
which will be employed to match the variability observed
in living neurons (Elices et al., 2019) for the hybrid circuit
implementation:
Cm = 0.02 µF; g∗

Na = 0.023 µS; g∗

k = 0.25 µS; g∗

B =

0.165 µS; g∗

Na(v) = 0.11 µS; vk = −70.0 mV; vB =

−58.0 mV; vNa = 40.0 mV; g∗

Na(TTX) = 400.0 µS; g∗

Ca =

1.5 µS; kβ = 15000.0/ mM; g∗

K (TEA) = 10.0 µS; vCa =

150.0 mV; β = 0.00004 mM; g∗

Ca−Ca = 0.02 µS; ks =

50.0/ s; ρ = 0.002; F = 96.485.

• Finally we use the Ghigliazza and Holmes model, a conduc-
tance model with the sigmoid voltage dependencies of the
classic Hodgkin–Huxley descriptions (Ghigliazza & Holmes,
2004), which is described by the following equations:

dv(t)/dt = −(
∑

Iion + Isyn)/Cm

dm(t)/dt = (ϵ/τm)(1/(1 + e−kK (v(t)−vth_K )) − m(t))

dc(t)/dt = (δ/τc)(1/(1 + e−kKs(v(t)−vth_Ks)) − c(t))

and the following ionic current descriptions:

ICa = gCa(v(t) − ECa)/(1 + e−kCa(v(t)−vth_Ca))
Il = gl(v(t) − El)
Ik = gKm(t)(v(t) − EK )
Iks = gKsc(t)(v(t) − EK )

The parameters used for the hybrid circuit implementation
of this model were set in the bursting regime (Ghigliazza &
Holmes, 2004):
gCa = 4.4 mS/cm2; ECa = 120 mV; vth_Ca = −1.2 mV;
kCa = 0.11 mV/s; gK = 9 mS/cm2; EK = −80 mV;
vth_K = 2.0 mV; kK = 0.2 mV/s; gKs = 0.25 mS/cm2;
vth_Ks = −27 mV; ks = 0.8 mV/s; gl = 2.0 mS/cm2;
El = −60 mV; Cm = 1.2 µF/ cm2; I = 35.6 mV.
We used a fixed time constant τm = τc = 0.8.

Each model has its own particular bursting characteristics,
level of adaptability for the hybrid circuit dynamics and specific
computational cost. This allowed us to test how the target goal
for the hybrid circuit depended on the chosen neuron model.

2.3. Synapse model for hybrid circuit construction

To connect the living and model neurons we used a model

of an inhibitory chemical graded synapse, which is a common p

467
synaptic interaction underlying the sequential activations of most
known central pattern generator circuits (Golowasch et al., 1999).
In this type of synapses, neurotransmitters are released pro-
gressively from a threshold value of the presynaptic membrane
potential, which is lower than the spike amplitude. Thus, the
amplitude of the current resulting from this type of synapse
depends both on the presynaptic and postsynaptic neuron volt-
ages. Mutual inhibition with this type of synapses typically leads
to regularized sequential activations (Elices et al., 2019; Varona
et al., 2001). The current injected in the models is described by
the following equation:

Ifast = gfast (VMN − Esyn)/(1 + esfast (Vth−VLN ))

The default parameters for the synapse were: gfast = 0.6 and
sfast = 5.

For the bidirectional experiments we also implemented a slow
graded synapse from Golowasch et al. (1999), by injecting the
following current into the living cell:

Islow = gslowm(VLN − Esyn)

dm(t)/dt = (k1(1 − m)/(1 + esslow (Vth−VMN ))) − k2m

he default parameters for the synapse were: gslow = 0.6, k1 =

.0, k2 = 0.03, sslow = 1. All hybrid synapses were implemented
sing the dynamic clamp technique (Nowotny & Varona, 2014).
To avoid the effect of voltage drift during the experimental

ecordings, we did not employ a fixed value of Esyn and Vth, but
nstead used a technique proposed in Reyes-Sanchez et al. (2020)
here these values are calculated as a percentage of the specific
oltage range of the signal evaluated in every cycle. In particular,
he default percentages applied were: Esyn = 15.0% and Vth =

2.0%.
Note that building hybrid interactions requires scaling the

iving neuron voltage (VLN ) to the working regime of the model,
djusting the model time constants to match the living neuron
nd model dynamics, and calculating the optimal threshold and
eversal potentials (Vth and Esyn). For such tasks, we used the
lgorithms described in Reyes-Sanchez et al. (2020), which allow
he automatic calibration and adaptation of the different working
egimes of neuron models to those of the biological cells. These
lgorithms also managed the integration of the model neurons,
llowing to match the input data flow and the speed of output
roduction with the sampling frequency of the electrophysiolog-
cal recordings. The online detection of the events by which the
resence of the dynamical invariant is evaluated (spike detection
nd the assessment of their category as first of last spikes in a
urst and the quantification of the corresponding intervals and
nstantaneous cycle period, see Fig. 2) was also performed online.

For the integration of the differential equations a 6(5) order
unge–Kutta numerical method was used (Hull et al., 1972).

.4. Full map exploration

Full map exploration requires quantifying the metrics for the
arget goal in a specified range of parameters controlling the
iohybrid interaction. Bidirectional hybrid interactions require an
nline protocol which can take longer than the lifespan of the
reparation. However, in monodirectional hybrid circuits, where
he model neuron receives input from the living neuron but
oes not send any feedback, the exploration for the presence of
ynamical invariants can be processed offline from the electro-
hysiological recordings. Thus, intracellular neuronal recordings
re used as input to the model neurons and different model

arameters can be tested to evaluate the presence of dynamical
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Fig. 3. Parallelization strategy to produce the target dynamics map in a biohy-
rid circuit. Each core simulates a batch of different configurations. The resulting
ap integrates all the partial results computed at each core. The colors indicate
ow each cell of the target map is assigned to a different cluster core. Input
ata from the electrophysiological recording is shared by all processors.

nvariants with any arbitrary resolution for the search. The ac-
ivity of the living neuron can be delivered through the model
ynapse into multiple versions of a neuron model as illustrated
n Fig. 3. This allowed to parallelize multiple configurations to
uild full maps of the target dynamics in the model parameter
pace. Since this process is computationally expensive when the
arameter space is wide and/or high resolution for the map is
sed, high performance cluster computing can be employed for
his task.

This approach allows to save time, reducing the cost of eval-
ating the parameter space from 1–2 days to 2–3 hours (see
able 1 for a comparison of the performance of the different
earch strategies). Fig. 3 shows how the work was distributed
hrough the different cores available. The target dynamics map
as built from the different experiments distributed throughout
he cluster cores. In this study, we used nodes with AMD EPYC
451 processors, splitting the work across hundreds of nodes,
.g. for a 900 grid cell map, 180 cores were used, each node
xecuting 5 cells.

.5. Genetic algorithm

In hybrid-circuit online protocols, and particularly in those
ases in which bidirectional interaction between living and model
eurons is required, time needed to achieve the target dynamics
s a crucial element. Therefore, full map explorations are not typi-
ally an option in these situations due to the long time required to
uild them. For these cases, we designed an online protocol that
mploys a genetic algorithm to search for model parameters that
468
lead to an instance of the target dynamics. This approach does not
yield a complete map of the parameter space or a confirmation
that the final result is fully optimal but we determine a minimum
level of performance for the target dynamics. We have imple-
mented a genetic algorithm that randomly creates a population
consisting of a set of individuals with different parameters for the
biohybrid interaction. For each individual experiment, ongoing
online offset and amplitude adaptations are performed and the
target is evaluated using a cost function. This function assesses
the presence of the target dynamics and measures its perfor-
mance. Using such score, we save the best individual for the next
generations (elite) and create new individuals mixing the param-
eters of the current individuals (crossover). The crossover process
takes into account the cost function, correlating the probability
of mixing each individual to the obtained score. The algorithm
also introduces random variations in the parameters (mutation)
to increase the variability and obtain better results. This ap-
proach only takes a few minutes (see Table 1), which makes it
highly convenient for biohybrid circuits built with bidirectional
synapses.

In the examples shown below, we chose a single elite indi-
vidual from a reduced population of individuals and generations
to yield a fast evolution. For the crossover process, individuals
with score 0 were not taken into account. Random genes from
individuals with score > 0 where selected to create new indi-
viduals in each generation. The mutation process was applied to
all new individuals by modifying the genes following a uniform
distribution. Other configurations can also be used to balance the
resulting increase in the accuracy and the time taken to evolve
the parameter search from the choice of individual, generation
and mutation numbers and strategies. The process followed the
algorithm described below:

1: Define number of individuals and generations
2: Set duration of the hybrid interactions
3: Random creation of the initial population
4: Initial signal range & time calibration
5: During i generations:
6: For each individual j in population:
7: Hybrid Experiment on individual j:
8: Ongoing offset & amplitude adaptations
9: Voltage read & event detection
0: Synapse computation
1: Current injection
2: Cost function score for individual j
3: Sort population by individuals score
4: Save elite individual
5: Crossover individuals
6: Mutate individuals

In the monodirectional validation experiments we created a
population of three individuals, with one elite individual across
four generations. In these first experiments, the complete maps
were also produced, and we compared both methods to check
if the genetic algorithm found an optimal set of parameters. In
the online experiment, each generation required a substantial
amount of time. For this reason, in the online experiments with
living neurons, we used three generations. The validation shows
that this number of generations is enough to obtain a good result.
See Results section for more details.

For a dynamical invariant target, the cost function used was
the linear correlation R2 between the two intervals defined in Fig. 2
calculated as follows:
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Table 1
Differences between the two discussed approaches for the search of target dynamics in hybrid circuits in terms of
online and offline nature, exploration technology, time taken, and technology needed.
Mode Goal Exploration

strategy
Time Technology

needed

Offline Parameter space
mapping

Serial map
exploration

Very slow
(1–2 Days)

Standard PC

Parallel map
exploration

Slow
(2–3 Hours)

Computer cluster

Online
(Real-time constraints)

Find one valid
configuration

Genetic Algorithm Fast
(Minutes)

Fast CPU, GPUs
Fig. 4. Synaptic conductance vs. graded synapse threshold exploration in monodirectional hybrid circuits. In this figure, we assess how the synaptic conductance to
the model neuron and the voltage threshold of the synapse affect the emergence of the dynamical invariant in three distinct neuron models (panels A, C and D). The
threshold parameter Vth is calculated for each model regime, thus here is represented as a percentage of the range of the total voltage signal. The conductance gsyn
is measured in µS. Trajectories indicated by black dots and arrows represent distinct evolutions of the genetic algorithm in search of the target dynamics, and are
superposed over the full maps for their validation. Each model neuron panel shows three different trajectories (indicated with arrows) from randomly selected points
and their final destination. Each black point represents the best individual for that iteration of the genetic algorithm. Autoloop lines represent an exploration where
new generations had no better individuals created, and thus the best set of parameters corresponded to the current elite. Panel B shows an illustrative example of
the interval relationships for the Komendantov and Kononenko model, corresponding to the departing parameters and the final parameters of one execution of the
genetic algorithm. The first set of parameters, completely random, has a very low R2 value, while the final set yields correlated intervals, showing that the target
dynamics was achieved in the hybrid circuit.
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R2
=

Covariance(x, y)2

Variance(x)2Variance(y)2

here x is the living neuron’s cycle period and y is the first-to-
irst spike interval, as is illustrated in Fig. 2.

. Results

.1. Full map exploration

Representative examples of full parameter exploration and
apping of hybrid circuit dynamics that lead to dynamical invari-
nts are shown in Figs. 4, 6, and 7. The color code in each map
ndicates the resulting R2 correlation value for each model neuron
nd set of tested parameters as specified in the map axis. The
egions colored in red or orange correspond to a strong presence
f the dynamical invariant (R2 > 0.75). A weak dynamical invari-
nt is represented in yellow or green tones (0.5 < R2 < 0.75).
ifferent tones of blue indicate that the invariant is absent (R2 <
.5) for that particular region of the parameter space. Gray color
s used to indicate when the set of parameters does not result in
obust rhythms with sequential cyclic activation of the neurons.
469
his behavior can occur mainly because of two reasons: (i) the
mount of current injected into one neuron from the other can be
oo large and thus resulting in complete inhibition of the neural
ctivity, or (ii) not enough to create the joint rhythm. The time
ourse of the interaction currents as a function of the ongoing
ynamics of the neurons yields the level of correlation between
he two explored intervals that build invariants.

Fig. 4 illustrates the effect of voltage threshold (Vth) and
ynapse conductance (gsyn) on the presence of the dynamical in-
ariant for three types of neuron models studied. Panel 4A shows
he results obtained using a Komendantov–Kononenko model
euron. This model has high flexibility in the hyperpolarization
nd good adaptability in burst duration from the interaction with
he living neuron resulting in large regions with dynamical invari-
nts, as illustrated by the wide red to orange zones in the map.
anel 4B shows two representative points from the map depicted
n panel 4A. P1 corresponds to a disperse cloud of points in the
elationship between the instantaneous period and the first-to-
irst spike interval and thus the linear correlation obtained is low
R2

= 0.18). On the other hand, P2 corresponds to an example
f parameter combination that leads to the searched relationship
ith large correlation between the instantaneous period and the

irst-to-first spike interval (R2
= 0.78). Panel 4C shows the results
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Fig. 5. Representative time series of the monodirectional interaction between the living (orange) and K–K model (blue) neurons in a hybrid circuit for the three
distinct regions in the maps depicted in Fig. 4A. Panel A corresponds to a region of the parameter space in which no robust sequential activation is achieved (gray
regions in the maps, signals from Fig. 4A, cell %Vth = 58 and gsyn = 0.30, R2

= 0.0). Panel B corresponds to a region with a robust sequential activation but no
nvariant (blue regions in the maps, signals from Fig. 4A, cell %Vth = 45 and gsyn = 0.10, R2

= 0.12). Panel C corresponds to a robust invariant (orange-red regions
n the maps, signals from Fig. 4A, cell %Vth = 32 and gsyn = 0.25, R2

= 0.9). The mean period of the living neuron in this recording was 0.59s and coefficient of
ariation Cv = 0.043. The model signal in panel A had different metrics, with a mean period of 0.77s and coefficient of variation Cv = 4.0e−5 . In Panel B the mean
eriod of the model neuron matched the period of the living mean period with 0.59s but with a different coefficient of variation Cv = 0.15. Finally, in panel C, the
odel neuron exhibited metrics almost equal to the living neuron, with a mean period of 0.59 s and a coefficient of variation Cv = 0.045. The amplitude of these
ignals is 30 mV.
Fig. 6. Exploration of the synaptic conductance vs. the parameter s that scales the presynaptic potential and release threshold of the monodirectional hybrid chemical
ynapse. Differences in the presence of the invariant can be observed between model neurons. When the colored area occupies a small area of the complete map,
ike in the Ghigliazza and Holmes model map, the genetic algorithm can get stuck in a gray zone (no sequential rhythm present). Example trajectories of the genetic
lgorithm indicated by the arrows are superposed in the full map for their validation.
l
t
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p

f the same experiment performed with the Izhikevich neuron
odel. While the map trend is similar, it is shifted to the left,
ince the Izhikevich neurons need more current injection than
omendantov and Kononenko neurons to be affected by the living
euron, therefore for this model the voltage threshold to find the
nvariant is lower. However, in panel 4D we can see that using a
higliazza and Holmes model neuron it is not possible to obtain
clear region that leads to a robust presence of the dynamical

nvariant, and only a few values of the parameter space seem to
e close to the target goal.
Fig. 5 shows representative time series of the activity resulting

rom the interaction in the hybrid circuit for the three regions
iscussed in Fig. 4. Note that the dynamical invariants are only
resent when the interaction results in robust sequential activity
etween the neurons and the level of variability of the intervals in
he living cell is matched by the variability in the model neuron.

In Fig. 6 we map the s parameter of the synapse model, which
cales the difference between the release threshold voltage and
 a

470
the presynaptic potential (see Section 2.3), against the maximum
synaptic conductance. Comparing the results in panels A and B for
Komendantov and Kononenko and the Izhikevich model, respec-
tively, we observe that the former neuron model has a stronger
presence of the dynamical invariant, with wider parameter areas
close to R2

= 1 than the Izhikevich model, which neverthe-
ess displays several regions with high correlations. Despite of
his, the Izhikevich model offers more possible combinations of
arameters that lead to robust sequential activations from the
nteraction (colored areas). Ghigliazza and Holmes model neu-
on offers neither a wide area of robust sequential interaction
or a strong presence of the invariant with the chosen model
arameters.
In Fig. 7, we explored at the same time Vth and s. Similar results

o those in Fig. 6 were obtained, as wide and continuous areas of
he map with a high presence of the dynamical invariant were
resent for the Komendantov and Kononenko model (panel A)

nd more colored areas, but with lesser high correlation were



M. Reyes-Sanchez, R. Amaducci, P. Sanchez-Martin et al. Neural Networks 164 (2023) 464–475
Fig. 7. Maps of the presence of the dynamical invariant (R2 Coefficient) when the s parameter and the voltage threshold Vth of the monodirectional graded chemical
synapse used are explored. As in the previous figures, parameters s and Vth are represented as a percentage of the range of the voltage signal. While for the
Komendantov and Kononenko model there is a widespread presence of the dynamical invariant, the Izhikevich model shows a different shape for the regions in
which the dynamical invariant is present, mainly concentrated for low values in both axes. From the combination of these two parameters, and although it is possible
to achieve a valid rhythm between both neurons (colored zones), the Ghigliazza and Holmes model does not yield dynamical invariants (orange to red zones absent).
Example trajectories of the genetic algorithm indicated by the arrows are superposed in the full map for their validation.
present for Izhikevich model (panel B). Finally, the Ghigliazza and
Holmes model has the worst results and could not achieve the
target dynamical invariant (panel C). With the chosen parameters
for the time constants ofm and c , this model has a more restricted
capability to follow the dynamics from the living neuron after
the hyperpolarizations than the Komendantov–Kononenko and
Izhikevich models.

3.2. Genetic algorithm target dynamics search

As we have discussed in the previous sections, the genetic
algorithm can be used to perform a fast informed search instead
of calculating all possible parameter combinations to explore the
target dynamics full map. The genetic algorithm searches for the
target dynamics using a restricted set of invariant evaluations,
plotted as dark points over the complete maps in Figs. 4, 6 and
471
7. These points are linked through lines with arrows in these fig-
ures to indicate the trajectory followed by the genetic algorithm
search. In each figure, three illustrative trajectories show how the
genetic algorithm progressively finds a set of parameters with
higher R2 for the linear correlation value of the target dynamics.

This protocol helps to select which model is more reliable to
reproduce the dynamical invariant in ongoing experiments. Com-
plete maps help us to evaluate offline which models yield wider
parameter ranges that reproduce the target dynamics, while the
genetic algorithm is a useful tool to readily achieve the target
dynamics during an ongoing experiment.

Note that the results of the search for dynamical invariants
are different for each model used to build the hybrid circuits.
This was expected as each model has its own specific bursting
characteristics and level of adaptability for the hybrid circuit
dynamics based on the synaptic interactions. The Komendantov–
Kononenko model displayed the best combination of intrinsic



M. Reyes-Sanchez, R. Amaducci, P. Sanchez-Martin et al. Neural Networks 164 (2023) 464–475

r
t
R
m
p
w
e
s
t
f
i
o

l
t
g

Fig. 8. Representative illustration of online synaptic tuning with a genetic algorithm of a bidirectional hybrid circuit. This experiment was performed in real time
with a living preparation with a bidirectional connection from and to the living cell using real-time software technology. Panel (A) shows the online evolution of
the genetic algorithm which is able to find the dynamical invariant in three generations. The best individual of each generation is marked as elite and linked with
arrows. The other individuals correspond to intermediate stages in each generation. Panel (B) shows the resulting dynamical invariant for the final elite individual.
Panel (C) shows the time series of the bidirectional interaction with the living neuron for this final elite. The real-time detection of the time references used to
calculate the invariant from the first-to-first interval and instantaneous period are indicated in black. The amplitude of the signal is 30 mV.
variability in the neuron dynamics and adaptation to the in-
hibitory interaction to build dynamical invariants.

Bidirectional interactions between living and model neurons
in hybrid circuits can more effectively lead to the target dy-
namics than monodirectional hybrid circuits. Fig. 8 illustrates
this in a bidirectional interaction between a pyloric LP neu-
ron and a Komendantov–Kononenko model neuron. The synapse
from the LP cell to the model neuron was modeled with the
fast graded model used in the previous monodirectional ex-
amples. The synapse from the model neuron to the living cell
was implemented with the slow synapse paradigm described
above to mimic the PD-LP neuron interaction in the pyloric
CPG (Golowasch et al., 1999).

Panel A in Fig. 8 shows the evolution of the genetic algo-
rithm within this bidirectional hybrid circuit interaction. Arrows
indicate the transit in the evaluation of the dynamical invariant
between elite individuals in consecutive generations. Representa-
tive examples of intermediate individuals are also shown in this
panel. Note that the genetic algorithm is able to find a robust
invariant with R2

= 0.935 in just three generations. The cor-
esponding monodirectional map in this preparation, built with
he same protocol as the previously discussed, yields a maximum
2

= 0.73. In all our experiments, bidirectional interactions were
ore effective to find dynamical invariants than monodirectional
rotocols. Fig. 8A also illustrates that intermediate individuals
ithin a generation often yield worst invariant results during the
xploration than the previous elite. The overall target dynamics
earch in this example took 18 minutes with 90 second interac-
ion intervals to quantify the relationships that built the invariant
or each individual. Panels B and C show the final dynamical
nvariant achieved and a section of the corresponding time series
f the resulting interaction.
The supplementary video shows further details of the evo-

ution of the target dynamics exploration. The video illustrates
he real-time quantification of the dynamical invariant for each
eneration elite together with the ongoing time series of the
472
bidirectional interaction between the living and model neurons
(Appendix A).

4. Conclusions

Biohybrid circuits that use interacting living and model neu-
rons are key tools to study neural dynamics and to assess the
role of specific neuron and network properties in emergent phe-
nomena of neural computation. However, hybrid circuits are not
easy to design nor to implement because of the inherent diffi-
culty underlying the interaction between living and model neu-
ral dynamics, and the associated technical issues. In this work,
we assessed the automation of the exploration and mapping of
model parameters in hybrid circuits and, in particular, those that
yield dynamical invariants as an illustration of well-defined target
dynamics in the interaction between living and model neurons.

We first adapted the model neurons to work in the same
amplitude regime and time scale of living neurons. Then, we
automatically explored and mapped different combinations of the
synapse parameter space which lead to achieve a specific dynam-
ical invariant target. Our approach used multiple configurations
and parallel computing from the same input time series of living
neurons to build full mappings. We illustrated this methodol-
ogy in the context of the study of dynamical invariants defined
as preserved cycle-by-cycle relationships between specific time
intervals that build robust sequences in neural rhythms. The
existence of such invariants in the pyloric CPG of crustacean
has been recently unveiled, even under the presence of intrinsic
or induced large variability in the rhythms (Elices et al., 2019).
Robust invariants shaping the coordination of sequential neural
activity can be present in a wide variety of nervous systems,
which can be a source of bioinspiration for the development of
novel artificial intelligence, autonomous robotics and rehabili-
tation protocols (Elices et al., 2019; Garrido-Peña et al., 2021).
The proposed strategy can be employed in any hybrid circuit
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onsisting of many types of neural recordings and models. In this
ork, we built the biohybrid circuit with current synaptic models

mplemented with dynamic clamp, but the same approach can
e generalized with other techniques for the interaction such
s neurotransmitter or neuromodulator microinjection or optical
timulation (Chamorro et al., 2012; Shi et al., 2021).
We also showed that a genetic algorithm can readily lead

o finding the target dynamics in a few minutes. This approach
as validated by contrasting this fast exploratory search with

ull maps, which due to the extensive search can take several
ours to be completed, and thus cannot be used for online hybrid
ircuit experiments. The genetic algorithm approach leads to the
nvariant in a few minutes and is adequate for real-time hybrid
xperiments including bidirectional interactions between living
nd model neurons. In general, bidirectional interactions between
iving cells and model neurons are more effective to find the
nvariant target dynamics than monodirectional protocols.

The code to implement the map exploration and the genetic
earch is available at the following links:

• https://github.com/GNB-UAM/RTHy_mono
Map exploration code: A version of RTHybrid modified to
work offline with living neurons recordings, used to create
the complete maps in this paper (Figs. 4, 6 and 7).

• https://github.com/GNB-UAM/RTHy_genetic
Genetic algorithm code: Standard RTHybrid with the addic-
tion of the code that controls the genetic algorithm. The
genetic algorithm code, in python, creates XML configu-
ration files for RTHybrid and automatically launches the
experiments to perform the needed hybrid circuits. This
code was employed in the online bidirectional hybrid circuit
built with the living neuron showed in Fig. 8.

The repositories content additional information about how to
se them. The code can be easily generalized for the exploration
f other neuron and synapse parameters, including distinct target
ynamics evaluated from the spiking activity of living and model
eurons.
The hybrid scientific approach and tools described in this pa-

er can be used to assess a wide variety of neuronal and synaptic
ynamics phenomena, which are currently assessed separately or
xclusively in experimental and modeling efforts. These phenom-
na include the long standing domain of synchronization (Puebla
t al., 2017; Zirkle & Rubchinsky, 2021), and also novel research
n inverse resonance (Torres et al., 2020b), vibrational reso-
ance (Calim et al., 2021), neural sequence processing (Torres
t al., 2020a), history-dependent excitability (Baroni et al., 2010),
tc.
Although the synergy between simulation, parallel computing,

ptimization and artificial intelligence has been emphasized in
any different scientific areas (Melab et al., 2020), their joint
se in hybrid circuit construction and associated applications
as not been exploited so far. In this paper we have presented
first approach in this context. Neuronal and synapse models
re typically developed under the intrinsic constraint of being
imple and adapted to the current knowledge under which they
ere developed. The dynamical richness of their living coun-
erparts is only captured partially. Protocols that explore the
ynamical range in which such models can be used to imple-
ent biohybrid circuits are very much needed in experimental
euroscience. This is the path to design effective biohybrid cir-
uits with compatible dynamics of living and model neurons,
hich not only require technological development (Frank et al.,
019; Musk, 2019; Rochford et al., 2020; Serb et al., 2020; Wan
t al., 2020; Xia et al., 2021; Zaer et al., 2021), but also under-
tanding of coordination dynamics even at the level of single
euron and small circuits. Such methodology can lead to future
isruptive technologies of hybrid brains in the context of implant
eurotechnology.
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